modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
jbilcke-hf/sdxl-akira
jbilcke-hf
2023-10-27T15:04:29Z
12
3
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "dataset:jbilcke-hf/akira", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-10-27T09:56:17Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: akira-style tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true datasets: - jbilcke-hf/akira --- # LoRA DreamBooth - jbilcke-hf/sdxl-akira These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer. The weights were trained on the concept prompt: ``` akira-style ``` Use this keyword to trigger your custom model in your prompts. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Usage Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL device = "cuda" if torch.cuda.is_available() else "cpu" vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to(device) # This is where you load your trained weights specific_safetensors = "pytorch_lora_weights.safetensors" lora_scale = 0.9 pipe.load_lora_weights( 'jbilcke-hf/sdxl-akira', weight_name = specific_safetensors, # use_auth_token = True ) prompt = "A majestic akira-style jumping from a big stone at night" image = pipe( prompt=prompt, num_inference_steps=50, cross_attention_kwargs={"scale": lora_scale} ).images[0] ```
jbilcke-hf/sdxl-starfield
jbilcke-hf
2023-10-27T15:04:16Z
13
3
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "dataset:jbilcke-hf/starfield", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-10-27T09:53:40Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: starfield-style tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true datasets: - jbilcke-hf/starfield --- # LoRA DreamBooth - jbilcke-hf/sdxl-starfield These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer. The weights were trained on the concept prompt: ``` starfield-style ``` Use this keyword to trigger your custom model in your prompts. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Usage Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL device = "cuda" if torch.cuda.is_available() else "cpu" vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to(device) # This is where you load your trained weights specific_safetensors = "pytorch_lora_weights.safetensors" lora_scale = 0.9 pipe.load_lora_weights( 'jbilcke-hf/sdxl-starfield', weight_name = specific_safetensors, # use_auth_token = True ) prompt = "A majestic starfield-style jumping from a big stone at night" image = pipe( prompt=prompt, num_inference_steps=50, cross_attention_kwargs={"scale": lora_scale} ).images[0] ```
profoz/odsc-sawyer-sft-rlhf
profoz
2023-10-27T15:02:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-27T15:01:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
sungkwangjoong/pegasus-samsum
sungkwangjoong
2023-10-27T14:55:22Z
97
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-27T14:15:27Z
--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6609 | 0.54 | 500 | 1.4842 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
mpalaval/assignment2_attempt11
mpalaval
2023-10-27T14:52:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-27T05:07:12Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: assignment2_attempt11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # assignment2_attempt11 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6058 - Precision: 0.2642 - Recall: 0.1186 - F1: 0.1637 - Accuracy: 0.9370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 128 | 0.3124 | 0.2308 | 0.0254 | 0.0458 | 0.9401 | | No log | 2.0 | 256 | 0.2862 | 0.1636 | 0.0763 | 0.1040 | 0.9353 | | No log | 3.0 | 384 | 0.3899 | 0.2093 | 0.0763 | 0.1118 | 0.9359 | | 0.1996 | 4.0 | 512 | 0.4161 | 0.3095 | 0.1102 | 0.1625 | 0.9382 | | 0.1996 | 5.0 | 640 | 0.4845 | 0.3077 | 0.1017 | 0.1529 | 0.9392 | | 0.1996 | 6.0 | 768 | 0.4841 | 0.2692 | 0.1186 | 0.1647 | 0.9365 | | 0.1996 | 7.0 | 896 | 0.4987 | 0.2258 | 0.1186 | 0.1556 | 0.9349 | | 0.0254 | 8.0 | 1024 | 0.5512 | 0.2766 | 0.1102 | 0.1576 | 0.9370 | | 0.0254 | 9.0 | 1152 | 0.5772 | 0.3171 | 0.1102 | 0.1635 | 0.9379 | | 0.0254 | 10.0 | 1280 | 0.5764 | 0.2586 | 0.1271 | 0.1705 | 0.9342 | | 0.0254 | 11.0 | 1408 | 0.5964 | 0.2917 | 0.1186 | 0.1687 | 0.9380 | | 0.005 | 12.0 | 1536 | 0.5952 | 0.2642 | 0.1186 | 0.1637 | 0.9368 | | 0.005 | 13.0 | 1664 | 0.5980 | 0.2593 | 0.1186 | 0.1628 | 0.9367 | | 0.005 | 14.0 | 1792 | 0.6033 | 0.2642 | 0.1186 | 0.1637 | 0.9370 | | 0.005 | 15.0 | 1920 | 0.6058 | 0.2642 | 0.1186 | 0.1637 | 0.9370 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
princeton-nlp/AutoCompressor-1.3b-30k
princeton-nlp
2023-10-27T14:50:20Z
76
1
transformers
[ "transformers", "pytorch", "opt", "arxiv:2305.14788", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-07-23T21:51:19Z
--- license: apache-2.0 --- license: apache-2.0 --- **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) **Code**: https://github.com/princeton-nlp/AutoCompressors **Models**: - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k) - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k) - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k) --- AutoCompressor-1.3b-30k is a model fine-tuned from [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) following the AutoCompressor method in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788). This model is fine-tuned on 2B tokens from Books3 in [The Pile](https://pile.eleuther.ai). The pre-trained OPT-1.3b model is fine-tuned on sequences of 30,720 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients. To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows: ``` from auto_compressor import AutoCompressorModel model = AutoCompressorModel.from_pretrained("princeton-nlp/AutoCompressor-1.3b-30k") ``` **Evaluation** We record the perplexity achieved by our 30k-fine-tuned OPT models on segments of 2,048 tokens sampled from Books3 and ArXiv in The Pile, conditioned on different amounts of context. | Context Tokens | 0 |14,336 | 28,672 | | -----------------------------|------|--------|--------| | RMT-1.3b-30k | 13.18|12.50 |12.50 | | AutoCompressor-1.3b-30k | 13.21|12.49 |12.47 | | AutoCompressor-2.7b-30k | 11.86|11.21 |11.18 | ## Bibtex ``` @misc{chevalier2023adapting, title={Adapting Language Models to Compress Contexts}, author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen}, year={2023}, eprint={2305.14788}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
LoneStriker/zephyr-7b-beta-5.0bpw-h6-exl2
LoneStriker
2023-10-27T14:48:48Z
9
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2310.16944", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T14:48:34Z
--- tags: - generated_from_trainer model-index: - name: zephyr-7b-beta results: [] license: mit datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Zephyr 7B β Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944). ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/huggingface/alignment-handbook - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org ## Performance At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks: | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | StableLM-Tuned-α | 7B| dSFT |2.75| -| | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instructv0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png) However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66) Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ## Training and evaluation data During DPO training, this model achieves the following results on the evaluation set: - Loss: 0.7496 - Rewards/chosen: -4.5221 - Rewards/rejected: -8.3184 - Rewards/accuracies: 0.7812 - Rewards/margins: 3.7963 - Logps/rejected: -340.1541 - Logps/chosen: -299.4561 - Logits/rejected: -2.3081 - Logits/chosen: -2.3531 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results The table below shows the full set of DPO training metrics: | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 | | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 | | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 | | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 | | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 | | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 | | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 | | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 | | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 | | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 | | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 | | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 | | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 | | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 | | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 | | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 | | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 | | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 | | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 | | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 | | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 | | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 | | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 | | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 | | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 | | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 | | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 | | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 | | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 | | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 | | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 | | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 | | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 | | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 | | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 | | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 | | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 | | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 | | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 | | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 | | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 | | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 | | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 | | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 | | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 | | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 | | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 | | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 | | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 | | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 | | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 | | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 | | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 | | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 | | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 | | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 | | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 | | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0 ## Citation If you find Zephyr-7B-β is useful in your work, please cite it with: ``` @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
princeton-nlp/FullAttention-2.7b-4k
princeton-nlp
2023-10-27T14:43:43Z
4
0
transformers
[ "transformers", "pytorch", "opt", "arxiv:2305.14788", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-07-23T21:58:42Z
--- license: apache-2.0 --- license: apache-2.0 --- **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) **Code**: https://github.com/princeton-nlp/AutoCompressors **Models**: - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k) - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k) - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k) --- FullAttention-2.7b-4k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the context window extension method described in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788). The 2,048 positional embeddings of the pre-trained OPT-2.7b are duplicated and the model is fine-tuned on sequences of 4,096 tokens from 2B tokens from [The Pile](https://pile.eleuther.ai). To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows: ``` from auto_compressor import AutoCompressorModel model = AutoCompressorModel.from_pretrained("princeton-nlp/FullAttention-2.7b-4k") ``` **Evaluation** We record the perplexity achieved by our OPT-2.7b models on segments of 2,048 tokens, conditioned on different amounts of context. FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2,048 tokens into 50 summary vectors. *In-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- | | RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 | | AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 | *Out-of-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- | | RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 | | AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 | ## Bibtex ``` @misc{chevalier2023adapting, title={Adapting Language Models to Compress Contexts}, author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen}, year={2023}, eprint={2305.14788}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
LoneStriker/zephyr-7b-beta-4.0bpw-h6-exl2
LoneStriker
2023-10-27T14:41:47Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2310.16944", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T14:41:35Z
--- tags: - generated_from_trainer model-index: - name: zephyr-7b-beta results: [] license: mit datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Zephyr 7B β Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944). ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/huggingface/alignment-handbook - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org ## Performance At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks: | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | StableLM-Tuned-α | 7B| dSFT |2.75| -| | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instructv0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png) However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66) Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ## Training and evaluation data During DPO training, this model achieves the following results on the evaluation set: - Loss: 0.7496 - Rewards/chosen: -4.5221 - Rewards/rejected: -8.3184 - Rewards/accuracies: 0.7812 - Rewards/margins: 3.7963 - Logps/rejected: -340.1541 - Logps/chosen: -299.4561 - Logits/rejected: -2.3081 - Logits/chosen: -2.3531 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results The table below shows the full set of DPO training metrics: | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 | | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 | | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 | | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 | | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 | | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 | | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 | | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 | | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 | | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 | | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 | | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 | | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 | | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 | | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 | | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 | | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 | | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 | | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 | | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 | | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 | | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 | | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 | | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 | | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 | | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 | | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 | | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 | | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 | | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 | | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 | | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 | | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 | | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 | | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 | | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 | | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 | | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 | | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 | | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 | | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 | | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 | | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 | | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 | | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 | | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 | | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 | | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 | | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 | | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 | | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 | | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 | | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 | | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 | | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 | | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 | | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 | | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0 ## Citation If you find Zephyr-7B-β is useful in your work, please cite it with: ``` @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
princeton-nlp/RMT-2.7b-8k
princeton-nlp
2023-10-27T14:39:26Z
3
5
transformers
[ "transformers", "pytorch", "opt", "arxiv:2305.14788", "arxiv:2207.06881", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-07-23T22:08:33Z
--- license: apache-2.0 --- license: apache-2.0 --- **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) **Code**: https://github.com/princeton-nlp/AutoCompressors **Models**: - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k) - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k) - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k) --- RMT-2.7b-8k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the RMT method as described in [Recurrent Memory Transformer](https://arxiv.org/abs/2207.06881) and [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788). This model is fine-tuned on 2B tokens from [The Pile](https://pile.eleuther.ai). The pre-trained OPT-2.7b model is fine-tuned on sequences of 8,192 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients. To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows: ``` from auto_compressor import AutoCompressorModel model = AutoCompressorModel.from_pretrained("princeton-nlp/RMT-2.7b-8k") ``` **Evaluation** We record the perplexity achieved by our OPT-2.7b models on segments of 2048 tokens, conditioned on different amounts of context. FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2048 tokens into 50 summary vectors. *In-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- | | RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 | | AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 | *Out-of-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- | | RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 | | AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 | See [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) for more evaluations, including evaluation on 11 in-context learning tasks. ## Bibtex ``` @misc{chevalier2023adapting, title={Adapting Language Models to Compress Contexts}, author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen}, year={2023}, eprint={2305.14788}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
princeton-nlp/AutoCompressor-2.7b-6k
princeton-nlp
2023-10-27T14:37:09Z
5
2
transformers
[ "transformers", "pytorch", "opt", "arxiv:2305.14788", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-07-23T22:03:32Z
--- license: apache-2.0 --- license: apache-2.0 --- **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) **Code**: https://github.com/princeton-nlp/AutoCompressors **Models**: - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k) - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k) - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k) --- AutoCompressor-2.7b-6k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the AutoCompressor method in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788). This model is fine-tuned on 2B tokens from [The Pile](https://pile.eleuther.ai). The pre-trained OPT-2.7b model is fine-tuned on sequences of 6,144 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients. To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows: ``` from auto_compressor import AutoCompressorModel model = AutoCompressorModel.from_pretrained("princeton-nlp/AutoCompressor-2.7b-6k") ``` **Evaluation** We record the perplexity achieved by our OPT-2.7b models on segments of 2048 tokens, conditioned on different amounts of context. FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2048 tokens into 50 summary vectors. *In-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- | | RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 | | AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 | *Out-of-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- | | RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 | | AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 | See [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) for more evaluations, including evaluation on 11 in-context learning tasks. ## Bibtex ``` @misc{chevalier2023adapting, title={Adapting Language Models to Compress Contexts}, author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen}, year={2023}, eprint={2305.14788}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bayerasif/whisper-tiny-minds14-en
bayerasif
2023-10-27T14:37:03Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-27T14:23:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.351961950059453 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds14-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.4543 - Wer Ortho: 0.3713 - Wer: 0.3520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4142 | 7.14 | 100 | 0.4802 | 0.3756 | 0.3549 | | 0.1909 | 14.29 | 200 | 0.4543 | 0.3713 | 0.3520 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
LoneStriker/zephyr-7b-beta-3.0bpw-h6-exl2
LoneStriker
2023-10-27T14:34:48Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2310.16944", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T14:34:37Z
--- tags: - generated_from_trainer model-index: - name: zephyr-7b-beta results: [] license: mit datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Zephyr 7B β Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944). ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/huggingface/alignment-handbook - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org ## Performance At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks: | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | StableLM-Tuned-α | 7B| dSFT |2.75| -| | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instructv0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png) However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66) Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ## Training and evaluation data During DPO training, this model achieves the following results on the evaluation set: - Loss: 0.7496 - Rewards/chosen: -4.5221 - Rewards/rejected: -8.3184 - Rewards/accuracies: 0.7812 - Rewards/margins: 3.7963 - Logps/rejected: -340.1541 - Logps/chosen: -299.4561 - Logits/rejected: -2.3081 - Logits/chosen: -2.3531 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results The table below shows the full set of DPO training metrics: | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 | | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 | | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 | | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 | | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 | | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 | | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 | | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 | | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 | | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 | | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 | | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 | | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 | | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 | | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 | | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 | | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 | | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 | | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 | | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 | | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 | | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 | | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 | | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 | | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 | | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 | | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 | | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 | | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 | | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 | | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 | | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 | | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 | | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 | | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 | | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 | | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 | | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 | | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 | | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 | | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 | | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 | | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 | | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 | | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 | | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 | | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 | | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 | | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 | | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 | | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 | | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 | | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 | | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 | | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 | | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 | | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 | | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0 ## Citation If you find Zephyr-7B-β is useful in your work, please cite it with: ``` @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
SzegedAI/babylm-strict-mlsm
SzegedAI
2023-10-27T14:26:13Z
105
1
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "en", "dataset:BabyLM_strict", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-23T14:21:22Z
--- license: mit datasets: - BabyLM_strict language: - en metrics: - glue --- # Model Card for SzegedAI/babylm-strict-mlsm <!-- Provide a quick summary of what the model is/does. --> This base-sized DeBERTa model was created using the [Masked Latent Semantic Modeling](https://aclanthology.org/2023.findings-acl.876/) (MLSM) pre-training objective, which is a sample efficient alternative for classic Masked Language Modeling (MLM). During MLSM, the objective is to recover the latent semantic profile of the masked tokens, as opposed to recovering their exact identity. The contextualized latent semantic profile during pre-training is determined by performing sparse coding of the hidden representation of a partially pre-trained model (a base-sized DeBERTa model pre-trained over only 20 million input sequences in this particular case). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** SzegedAI - **Model type:** transformer encoder - **Language:** Engish - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/szegedai/MLSM](https://github.com/szegedai/MLSM) - **Paper:** [Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling](https://underline.io/events/395/posters/15279/poster/78046-masked-latent-semantic-modeling-an-efficient-pre-training-alternative-to-masked-language-modeling?tab=abstract+%26+voting) ## How to Get Started with the Model The pre-trained model can be used in the usual manner, e.g., for fine tuning on a particular sequence classification task, invoke the code: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('SzegedAI/babylm-strict-mlsm') model = AutoModelForSequenceClassification.from_pretrained('SzegedAI/babylm-strict-mlsm') ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The model was pre-trained using the 100 million token [BabyLM](https://babylm.github.io/) strict dataset. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing #### Training Hyperparameters Pre-training was conducted with a batch size of 128 sequences and a gradient accumulation over 8 batches, resulting in an effective batch size of 1024. A total of 100,000 update steps were performed using the AdamW optimizer with a linear learning rate scheduling having a peak learning rate of 1e-04. A maximum sequence length of 128 tokens was employed throughout pre-training. - **Training regime:** fp32 ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> The model was evaluated using the [BabyLM evaluation pipeline](https://github.com/babylm/evaluation-pipeline). ### Results The evaluation result after fine-tuning the given model on a wide range of tasks. On each tasks 4 different fine-tuning experiments were performed, during which the only difference was the random initialization of the task-specific classification head. Apart from reducing the batch size from 64 to 32 (in order to avoid OOM errors), we used the recommended hyperparameter settings of the shared task. Both the average and the standard deviation are displayed below on each tasks. #### (Super)GLUE Unless stated otherwise (in parenthesis after the task name), the default evaluation metric is accuracy. | | Avg. | Std. | |---|---|---| |BoolQ | 0.683 | 0.006| |CoLA (MCC)| 0.485 | 0.023| |MNLI | 0.770 | 0.006| |MNLI-mm | 0.781 | 0.004| |MRPC (F1) | 0.834 | 0.010| |MultiRC | 0.598 | 0.059| |QNLI | 0.844 | 0.004| |QQP (F1) | 0.843 | 0.008| |RTE | 0.581 | 0.035| |SST2 | 0.891 | 0.003| |WSC | 0.605 | 0.012| #### MSGS Results reported in MCC. | | Avg. | Std. | |---|---|---| | control_raising_control | 0.794 | 0.022 | | control_raising_lexical_content_the |-0.538 | 0.314 | | control_raising_relative_token_position |-0.761 | 0.130 | | lexical_content_the_control | 1.000 | 0.000 | | main_verb_control | 0.999 | 0.001 | | main_verb_lexical_content_the |-0.856 | 0.101 | | main_verb_relative_token_position |-0.012 | 0.173 | | relative_position_control | 0.879 | 0.139 | | syntactic_category_control | 0.779 | 0.074 | | syntactic_category_lexical_content_the |-0.322 | 0.289 | | syntactic_category_relative_position |-0.517 | 0.061 | ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> - **Hardware Type:** RTX A6000 - **Hours used:** 70 - **Carbon Emitted:** cca. 9 kg CO2 eq. (based on [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute)) ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> The MLSM pre-training objective is introduced in the ACL Findings paper _Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling_. **BibTeX:** ``` @inproceedings{berend-2023-masked, title = "Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling", author = "Berend, G{\'a}bor", booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-acl.876", pages = "13949--13962", abstract = "In this paper, we propose an alternative to the classic masked language modeling (MLM) pre-training paradigm, where the objective is altered from the reconstruction of the exact identity of randomly selected masked subwords to the prediction of their latent semantic properties. We coin the proposed pre-training technique masked latent semantic modeling (MLSM for short). In order to make the contextualized determination of the latent semantic properties of the masked subwords possible, we rely on an unsupervised technique which uses sparse coding. Our experimental results reveal that the fine-tuned performance of those models that we pre-trained via MLSM is consistently and significantly better compared to the use of vanilla MLM pretraining and other strong baselines.", } ```
JunghwanRo/ppo-Huggy
JunghwanRo
2023-10-27T14:23:22Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-27T14:23:09Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JunghwanRo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
5Grains/furniture_use_data_finetuning
5Grains
2023-10-27T14:14:49Z
30
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-27T11:07:49Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: furniture_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furniture_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
alexmiale/finetuning-sentiment-model-3000-samples
alexmiale
2023-10-27T14:07:07Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-26T15:47:48Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8692810457516339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3226 - Accuracy: 0.8667 - F1: 0.8693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
amit7859/phrasebank-sentiment-analysis
amit7859
2023-10-27T14:04:19Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T14:03:53Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - f1 - accuracy model-index: - name: phrasebank-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank config: sentences_50agree split: train args: sentences_50agree metrics: - name: F1 type: f1 value: 0.8483573452732207 - name: Accuracy type: accuracy value: 0.8583218707015131 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phrasebank-sentiment-analysis This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.5396 - F1: 0.8484 - Accuracy: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.682 | 0.94 | 100 | 0.4277 | 0.8079 | 0.8404 | | 0.3258 | 1.89 | 200 | 0.3835 | 0.8398 | 0.8597 | | 0.1658 | 2.83 | 300 | 0.4294 | 0.8503 | 0.8638 | | 0.0706 | 3.77 | 400 | 0.5396 | 0.8484 | 0.8583 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
lior-karamany/q-Taxi-v3
lior-karamany
2023-10-27T14:02:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T14:02:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="lior-karamany/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
limehee/cppe5_use_data_finetuning
limehee
2023-10-27T13:58:27Z
30
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-27T13:58:09Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: cppe5_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cppe5_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
lior-karamany/q-FrozenLake-v1-4x4-noSlippery
lior-karamany
2023-10-27T13:53:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T13:53:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="lior-karamany/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SELEKCJONER/old-sd-webui-1.4
SELEKCJONER
2023-10-27T13:43:10Z
0
0
null
[ "arxiv:2211.06679", "region:us" ]
null
2023-10-27T13:16:17Z
# Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. ![](screenshot.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a `(tuxedo:1.21)` - alternative syntax - select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with `--allow-code` to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Installation on Windows 10/11 with NVidia-GPUs using release package 1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract it's contents. 2. Run `update.bat`. 3. Run `run.bat`. > For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) ### Automatic Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. Navigate to the directory you would like the webui to be installed and execute the following command: ```bash bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh) ``` 3. Run `webui.sh`. 4. Check `webui-user.sh` for options. ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). ## Contributing Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
Denyol/FakeNews-deberta-base-punct
Denyol
2023-10-27T13:42:34Z
105
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T13:19:51Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FakeNews-deberta-base-punct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FakeNews-deberta-base-punct This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Accuracy: 0.8374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.54 | 1.0 | 1605 | 0.4681 | 0.8374 | | 0.7002 | 2.0 | 3210 | 0.7113 | 0.5234 | | 0.6967 | 3.0 | 4815 | 0.6938 | 0.5234 | | 0.6961 | 4.0 | 6420 | 0.6959 | 0.4766 | | 0.6935 | 5.0 | 8025 | 0.6921 | 0.5234 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Arcio/slimocra-flant5-base
Arcio
2023-10-27T13:41:15Z
0
0
peft
[ "peft", "pytorch", "t5", "region:us" ]
null
2023-10-27T13:38:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
basso4/my_awesome_opus_books_model
basso4
2023-10-27T13:31:11Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-27T12:53:53Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.4227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6518 - Bleu: 5.4227 - Gen Len: 17.6074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.9089 | 1.0 | 4067 | 1.6742 | 5.2267 | 17.6188 | | 1.8675 | 2.0 | 8134 | 1.6518 | 5.4227 | 17.6074 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
micheljperez/dqn-SpaceInvadersNoFrameskip-v4
micheljperez
2023-10-27T13:23:08Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T19:08:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 711.50 +/- 293.52 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga micheljperez -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga micheljperez -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga micheljperez ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
AVIIAX/ds8
AVIIAX
2023-10-27T13:23:04Z
10
2
diffusers
[ "diffusers", "safetensors", "General", "Anime", "Art", "Girl", "Photorealistic", "LandScapes", "Lykon", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-27T13:23:04Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - General - Anime - Art - Girl - Photorealistic - LandScapes - Lykon - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # Dreamshaper 8 Original page: https://civitai.com/models/4384?modelVersionId=80261 Buy Lykon a coffee: https://snipfeed.co/lykon Sample and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/6ei2pnNw9CUS2vX-E1qWo.png) PRETTY CUTE GIRL BY ROSSDRAWS. An extradimensional creature buying donuts. Pixar animation.
bellagio-ai/WalterNgo-face-xl-dreambooth-512-4k
bellagio-ai
2023-10-27T13:20:29Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-27T10:30:15Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a portrait photo of happy WalterNgo person's face tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - bellagio-ai/WalterNgo-face-xl-dreambooth-512-4k These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a portrait photo of happy WalterNgo person's face using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
s3nh/lmsys-longchat-7b-v1.5-32k-GGUF
s3nh
2023-10-27T13:20:13Z
3
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T13:09:41Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/lmsys/longchat-7b-v1.5-32k). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
dvlamis/evilbot-mistral-7b-lora-adapter
dvlamis
2023-10-27T13:17:32Z
26
0
peft
[ "peft", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-10-24T22:48:58Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- ## Prompt template " ### The following is a conversation with the worlds meanest assistant: ### Human: {user_message}### Assistant: {generated_response} " (use the template without the " ") ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
Denyol/FakeNews-deberta-base-emoji
Denyol
2023-10-27T13:16:36Z
105
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T12:53:55Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FakeNews-deberta-base-emoji results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FakeNews-deberta-base-emoji This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2527 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3239 | 1.0 | 1605 | 0.4248 | 0.9093 | | 0.2653 | 2.0 | 3210 | 0.2968 | 0.9379 | | 0.2353 | 3.0 | 4815 | 0.3643 | 0.9304 | | 0.2341 | 4.0 | 6420 | 0.4169 | 0.9266 | | 0.1365 | 5.0 | 8025 | 0.2527 | 0.9463 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
xieyang233/BLOOM_VI_New
xieyang233
2023-10-27T13:12:08Z
0
0
null
[ "generated_from_trainer", "base_model:bigscience/bloomz-7b1-mt", "base_model:finetune:bigscience/bloomz-7b1-mt", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-10-27T03:46:42Z
--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-7b1-mt tags: - generated_from_trainer model-index: - name: BLOOM_VI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BLOOM_VI This model is a fine-tuned version of [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3278 | 0.51 | 200 | 1.3118 | | 1.2775 | 1.03 | 400 | 1.2715 | | 1.2464 | 1.54 | 600 | 1.2517 | | 1.2231 | 2.05 | 800 | 1.2390 | | 1.2162 | 2.56 | 1000 | 1.2309 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
bofenghuang/vigogne-2-70b-chat
bofenghuang
2023-10-27T12:44:55Z
1,478
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "LLM", "llama-2", "finetuned", "conversational", "fr", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-26T09:29:40Z
--- license: llama2 language: fr pipeline_tag: text-generation inference: false tags: - LLM - llama-2 - finetuned --- <p align="center" width="100%"> <img src="https://huggingface.co/bofenghuang/vigogne-2-70b-chat/resolve/main/logo_v2.jpg" alt="Vigogne" style="width: 30%; min-width: 300px; display: block; margin: auto;"> </p> # Vigogne-2-70B-Chat: A Llama-2-based French Chat LLM Vigogne-2-70B-Chat is a French chat LLM, based on [Llama-2-70B](https://ai.meta.com/llama), optimized to generate helpful and coherent responses in conversations with users. Check out our [release blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) and [GitHub repository](https://github.com/bofenghuang/vigogne) for more information. **Usage and License Notices**: Vigogne-2-70B-Chat follows Llama-2's [usage policy](https://ai.meta.com/llama/use-policy). A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use). ## Prompt Template We used a prompt template adapted from the chat format of Llama-2. You can apply this formatting using the [chat template](https://huggingface.co/docs/transformers/main/chat_templating) through the `apply_chat_template()` method. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bofenghuang/vigogne-2-70b-chat") conversation = [ {"role": "user", "content": "Bonjour ! Comment ça va aujourd'hui ?"}, {"role": "assistant", "content": "Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?"}, {"role": "user", "content": "Quelle est la hauteur de la Tour Eiffel ?"}, {"role": "assistant", "content": "La Tour Eiffel mesure environ 330 mètres de hauteur."}, {"role": "user", "content": "Comment monter en haut ?"}, ] print(tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)) ``` You will get ``` <s>[INST] <<SYS>> Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez. <</SYS>> Bonjour ! Comment ça va aujourd'hui ? [/INST] Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ? </s>[INST] Quelle est la hauteur de la Tour Eiffel ? [/INST] La Tour Eiffel mesure environ 330 mètres de hauteur. </s>[INST] Comment monter en haut ? [/INST] ``` ## Usage <!-- ### Inference using the quantized versions The quantized versions of this model are generously provided by [TheBloke](https://huggingface.co/TheBloke)! - AWQ for GPU inference: [TheBloke/Vigogne-2-70B-Chat-AWQ](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-AWQ) - GTPQ for GPU inference: [TheBloke/Vigogne-2-70B-Chat-GPTQ](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-GPTQ) - GGUF for CPU+GPU inference: [TheBloke/Vigogne-2-70B-Chat-GGUF](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-GGUF) These versions facilitate testing and development with various popular frameworks, including [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [vLLM](https://github.com/vllm-project/vllm), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [llama.cpp](https://github.com/ggerganov/llama.cpp), [text-generation-webui](https://github.com/oobabooga/text-generation-webui), and more. --> ### Inference using the unquantized model with 🤗 Transformers ```python from typing import Dict, List, Optional import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer model_name_or_path = "bofenghuang/vigogne-2-70b-chat" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto") streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) def chat( query: str, history: Optional[List[Dict]] = None, temperature: float = 0.7, top_p: float = 1.0, top_k: float = 0, repetition_penalty: float = 1.1, max_new_tokens: int = 1024, **kwargs, ): if history is None: history = [] history.append({"role": "user", "content": query}) input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=temperature, do_sample=temperature > 0.0, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens, pad_token_id=tokenizer.eos_token_id, **kwargs, ), streamer=streamer, return_dict_in_generate=True, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) history.append({"role": "assistant", "content": generated_text}) return generated_text, history # 1st round response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None) # 2nd round response, history = chat("Quand il peut dépasser le lapin ?", history=history) # 3rd round response, history = chat("Écris une histoire imaginative qui met en scène une compétition de course entre un escargot et un lapin.", history=history) ``` You can also use the Google Colab Notebook provided below. <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Limitations Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers. ## Acknowledgements The model training was conducted on the [Jean-Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html) at GENCI, and we extend our gratitude to the IDRIS team for their responsive support throughout the project.
bofenghuang/vigogne-stablelm-3b-4e1t-chat
bofenghuang
2023-10-27T12:39:25Z
17
1
transformers
[ "transformers", "pytorch", "stablelm_epoch", "text-generation", "LLM", "finetuned", "conversational", "custom_code", "fr", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-10-27T11:20:07Z
--- license: apache-2.0 language: fr pipeline_tag: text-generation inference: parameters: temperature: 0.7 tags: - LLM - finetuned --- # Vigogne-Stablelm-3B-4E1T-Chat An attempt to fine-tune the [stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) model to explore the feasibility of adapting a "smaller-scale" language model, primarily pretrained on English datasets, for French chat. **License**: A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use). ## Usage ```python from typing import Dict, List, Optional import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer model_name_or_path = "bofenghuang/vigogne-stablelm-3b-4e1t-chat" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True) streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) def chat( query: str, history: Optional[List[Dict]] = None, temperature: float = 0.7, top_p: float = 1.0, top_k: float = 0, repetition_penalty: float = 1.1, max_new_tokens: int = 1024, **kwargs, ): if history is None: history = [] history.append({"role": "user", "content": query}) input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=temperature, do_sample=temperature > 0.0, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens, pad_token_id=tokenizer.eos_token_id, **kwargs, ), streamer=streamer, return_dict_in_generate=True, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) history.append({"role": "assistant", "content": generated_text}) return generated_text, history # 1st round response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None) ```
TharinduCD/FSA-L4-Operational
TharinduCD
2023-10-27T12:31:33Z
4
0
fasttext
[ "fasttext", "text-classification", "language-identification", "license:cc-by-nc-4.0", "region:us" ]
text-classification
2023-10-27T11:41:01Z
--- license: cc-by-nc-4.0 library_name: fasttext tags: - text-classification - language-identification --- --- ## FastText Model for Classification This model will classify products into L4 category where L0 Category is **Administrative**
TharinduCD/FSA-L4-Food
TharinduCD
2023-10-27T12:27:06Z
1
0
fasttext
[ "fasttext", "text-classification", "language-identification", "license:cc-by-nc-4.0", "region:us" ]
text-classification
2023-10-27T11:40:23Z
--- license: cc-by-nc-4.0 library_name: fasttext tags: - text-classification - language-identification --- --- ## FastText Model for Classification This model will classify products into L4 category where L0 Category is **Food**
02shanky/vit-finetuned-vanilla-cifar10-0
02shanky
2023-10-27T12:26:56Z
150
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "base_model:02shanky/vit-finetuned-cifar10", "base_model:finetune:02shanky/vit-finetuned-cifar10", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-27T06:58:18Z
--- license: apache-2.0 base_model: 02shanky/vit-finetuned-cifar10 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: vit-finetuned-vanilla-cifar10-0 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.992 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-finetuned-vanilla-cifar10-0 This model is a fine-tuned version of [02shanky/vit-finetuned-cifar10](https://huggingface.co/02shanky/vit-finetuned-cifar10) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0306 - Accuracy: 0.992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 316 | 0.0619 | 0.9836 | | 0.2651 | 2.0 | 633 | 0.0460 | 0.9867 | | 0.2651 | 3.0 | 949 | 0.0415 | 0.9878 | | 0.1967 | 4.0 | 1266 | 0.0326 | 0.9916 | | 0.1552 | 4.99 | 1580 | 0.0306 | 0.992 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
rahulmukherji/bert-finetuned-ner
rahulmukherji
2023-10-27T12:25:04Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-27T11:46:38Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9352970378950852 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.9431789737171463 - name: Accuracy type: accuracy value: 0.9866515570730559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0593 - Precision: 0.9353 - Recall: 0.9512 - F1: 0.9432 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0779 | 1.0 | 1756 | 0.0720 | 0.9121 | 0.9360 | 0.9239 | 0.9810 | | 0.041 | 2.0 | 3512 | 0.0565 | 0.9358 | 0.9515 | 0.9436 | 0.9867 | | 0.0263 | 3.0 | 5268 | 0.0593 | 0.9353 | 0.9512 | 0.9432 | 0.9867 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Denyol/FakeNews-deberta-base-url
Denyol
2023-10-27T12:24:11Z
104
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T12:01:11Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FakeNews-deberta-base-url results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FakeNews-deberta-base-url This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2917 - Accuracy: 0.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3485 | 1.0 | 1605 | 0.3753 | 0.9098 | | 0.3082 | 2.0 | 3210 | 0.3783 | 0.9061 | | 0.2902 | 3.0 | 4815 | 0.3461 | 0.9243 | | 0.3252 | 4.0 | 6420 | 0.3556 | 0.9178 | | 0.1985 | 5.0 | 8025 | 0.2917 | 0.9383 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
deuswoof/adapter_ingredients_ivan
deuswoof
2023-10-27T12:19:15Z
0
0
peft
[ "peft", "safetensors", "falcon", "custom_code", "4-bit", "bitsandbytes", "region:us" ]
null
2023-10-23T13:54:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
JunghwanRo/ppo-LunarLander-v2
JunghwanRo
2023-10-27T12:17:22Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T12:16:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.24 +/- 18.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
A-Funakoshi/bert-base-japanese-v3-wrime-v2
A-Funakoshi
2023-10-27T12:16:22Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T12:05:45Z
--- language: - ja metrics: - accuracy - f1 --- - ベースモデル:cl-tohoku/bert-base-japanese-whole-word-masking - データセット:llm-book/wrime-sentiment - オプティマイザ: adamw - Optunaでハイパーパラメータ探索 - 学習率スケジュールのタイプ(lr_scheduler_type): constant, linear, cosine - 学習率(learning rate): 1e-6 ~ 1e-4 - バッチサイズ(per_device_train_batch_size): 16, 32, 64, 128, 256 - 正則化(weight_decay): 1e-6 ~ 1e-1 - Optunaでの探索結果は以下 - 学習率スケジュールタイプ(lr_scheduler_type): cosine - 学習率(learning rate): 3.912141264809884e-05 - バッチサイズ(per_device_train_batch_size): 128 - 正則化(weight_decay): 5.220051265759252e-05 - Epoch: 100 - EarlyStopping: early_stopping_patience=3 このハイパーパラメータを使って再度finetuningした.
hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax
hmbyt5-preliminary
2023-10-27T12:08:24Z
33
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "en", "de", "fr", "fi", "sv", "nl", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T09:13:48Z
--- license: mit language: - en - de - fr - fi - sv - nl --- # hmByT5 - Preliminary Language Models Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered: * English (British Library Corpus - Books) * German (Europeana Newspaper) * French (Europeana Newspaper) * Finnish (Europeana Newspaper) * Swedish (Europeana Newspaper) * Dutch (Delpher Corpus) More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5). # Pretraining We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU. Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax). This model was trained with `mean_noise_span_length=20` for one epoch. # Evaluation on Downstream Tasks (NER) See detailed results at [hmLeaderboard](https://huggingface.co/spaces/stefan-it/hmLeaderboard). # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
hdparmar/tradfusion-v2-training-files
hdparmar
2023-10-27T11:57:19Z
190
0
diffusers
[ "diffusers", "tensorboard", "pytorch", "text-to-image", "license:mit", "region:us" ]
text-to-image
2023-10-26T20:24:57Z
--- license: mit tags: - pytorch - diffusers - text-to-image --- ## Usage Files logged during training, tensorboard, images generated, metrics and varias checkpoints
BAAI/JudgeLM-13B-v1.0
BAAI
2023-10-27T11:57:06Z
57
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "instruction-finetuning", "en", "arxiv:2310.17631", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-27T11:00:33Z
--- inference: false language: - en tags: - instruction-finetuning pretty_name: JudgeLM-100K task_categories: - text-generation --- <br> # JudgeLM Model Card ## Model Details JudgeLM is a judge model trained by fine-tuning Vicuna on JudgeLM-100K dataset. - **Developed by:** [HUST](https://english.hust.edu.cn/), [BAAI](https://www.baai.ac.cn/english.html) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [Vicuna](https://vicuna.lmsys.org). ### Model Sources - **Repository:** https://github.com/baaivision/JudgeLM - **Paper:** https://arxiv.org/abs/2310.17631 - **Demo:** http://218.91.113.230:9004/ ## Uses The primary use of JudgeLM is research on evaluating the performance of large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Judge large language models with this model: https://github.com/baaivision/JudgeLM/tree/main/judgelm/llm_judge. - Serve this model with the gradio: https://github.com/baaivision/JudgeLM/tree/main/judgelm/serve. ## Training Details JudgeLM v1.0 is fine-tuned from Vicuna-v1.3 with supervised instruction fine-tuning. The training data is around 200K judge samples from [JudgeLM-100K dataset](https://huggingface.co/datasets/BAAI/JudgeLM-100K). See more details in the "Fine-tuning Settings" section in the appendix of this [paper](https://arxiv.org/abs/2310.17631). ## Evaluation JudgeLM is evaluated on JudgeLM val set, with judgements produced by GPT-4 teacher. See more details in this [paper](https://arxiv.org/abs/2310.17631) and try it with [code](https://github.com/baaivision/JudgeLM/tree/main/judgelm/llm_judge). ## Additional Information ### Citation Information ``` @article{zhu2023judgelm, title={JudgeLM: Fine-tuned Large Language Models are Scalable Judges}, author={Lianghui Zhu and Xinggang Wang and Xinlong Wang}, year={2023}, eprint={2310.17631}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
TharinduCD/FSA-L3
TharinduCD
2023-10-27T11:53:13Z
1
0
fasttext
[ "fasttext", "text-classification", "language-identification", "license:cc-by-nc-4.0", "region:us" ]
text-classification
2023-10-27T11:37:37Z
--- license: cc-by-nc-4.0 library_name: fasttext tags: - text-classification - language-identification --- --- ## FastText Model for Classification This model will classify products into L3 category
zion095/llama-2-7b-mlabonne-enhanced
zion095
2023-10-27T11:53:05Z
3
0
peft
[ "peft", "region:us" ]
null
2023-10-27T11:51:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
thrunlab/t5-base_qnli_dense_epochs-1
thrunlab
2023-10-27T11:52:56Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-10-24T22:29:23Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-base_qnli_dense_epochs-1 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: qnli split: train[:64] args: qnli metrics: - name: Accuracy type: accuracy value: 0.38461538461538464 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base_qnli_dense_epochs-1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7029 - Accuracy: 0.3846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.9.0 - Tokenizers 0.14.1
s3nh/Photolens-OpenOrcaxOpenChat-2-13b-langchain-chat-GGUF
s3nh
2023-10-27T11:52:04Z
35
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T11:01:23Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Photolens/OpenOrcaxOpenChat-2-13b-langchain-chat). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50
dlhw
2023-10-27T11:50:59Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-27T11:50:45Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
mateiaass/albert-base-qa-coQA-2-k-fold-1
mateiaass
2023-10-27T11:37:24Z
11
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-25T07:46:23Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer model-index: - name: albert-base-qa-coQA-2-k-fold-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-qa-coQA-2-k-fold-1 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.6589 | 1.0 | 5467 | 2.6679 | | 2.3399 | 2.0 | 10934 | 2.6262 | | 2.0179 | 3.0 | 16401 | 2.7108 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
MakAttack/653b8221e806b310f8b8d12d
MakAttack
2023-10-27T11:33:21Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-27T11:01:13Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/653b8221e806b310f8b8d12d These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
DanMoDemo/llama2-qlora-finetunined-french
DanMoDemo
2023-10-27T11:30:34Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-27T11:30:20Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
Denyol/FakeNews-deberta-base-lowercase
Denyol
2023-10-27T11:28:55Z
103
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T11:02:24Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: FakeNews-deberta-base-lowercase results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FakeNews-deberta-base-lowercase This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1673 - Accuracy: 0.9678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2339 | 1.0 | 1605 | 0.2302 | 0.9533 | | 0.1698 | 2.0 | 3210 | 0.4981 | 0.9112 | | 0.1858 | 3.0 | 4815 | 0.2432 | 0.9589 | | 0.1328 | 4.0 | 6420 | 0.1673 | 0.9678 | | 0.0868 | 5.0 | 8025 | 0.2277 | 0.9636 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
bayerasif/whisper-tiny-en
bayerasif
2023-10-27T11:28:39Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-27T11:14:13Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.36291179596174283 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6612 - Wer Ortho: 0.3606 - Wer: 0.3629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0007 | 17.86 | 500 | 0.6612 | 0.3606 | 0.3629 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
mateiaass/albert-base-qa-coQA-2-k-fold-4
mateiaass
2023-10-27T11:26:17Z
106
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-25T07:53:28Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer model-index: - name: albert-base-qa-coQA-2-k-fold-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-qa-coQA-2-k-fold-4 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.6939 | 1.0 | 5468 | 2.6643 | | 2.3671 | 2.0 | 10936 | 2.6055 | | 2.0482 | 3.0 | 16404 | 2.7000 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
TharinduCD/FSA-L0
TharinduCD
2023-10-27T11:20:07Z
1
0
fasttext
[ "fasttext", "text-classification", "language-identification", "license:cc-by-nc-4.0", "region:us" ]
text-classification
2023-10-27T11:14:18Z
--- license: cc-by-nc-4.0 library_name: fasttext tags: - text-classification - language-identification --- --- ## FastText Model for Classification This model will classify products into L0 category
pavfi-at-m/gpt2GPTQ
pavfi-at-m
2023-10-27T11:17:02Z
1,334
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "general", "history", "business", "en", "dataset:wikitext", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-25T14:37:30Z
--- license: mit datasets: - wikitext language: - en library_name: transformers metrics: - accuracy pipeline_tag: text-generation tags: - general - history - business --- Quantized GPT2 model. Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on BookCorpus, a dataset of over 7,000 unpublished fiction books from various genres, and trained on a dataset of 8 million web pages.
amudgal21/distilbert-emotion
amudgal21
2023-10-27T11:16:24Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T02:43:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1678 - Accuracy: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.2185 | 0.929 | | No log | 2.0 | 250 | 0.1678 | 0.9325 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
plaguss/test_model
plaguss
2023-10-27T11:15:19Z
103
0
Transformers
[ "Transformers", "pytorch", "bert", "text-classification", "nlp", "argilla", "transformers", "en", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
text-classification
2023-10-16T18:56:24Z
--- language: - en license: apache-2.0 library_name: Transformers tags: - nlp - text-classification - argilla - transformers dataset_name: argilla/emotion --- <!-- This model card has been generated automatically according to the information the `ArgillaTrainer` had access to. You should probably proofread and complete it, then remove this comment. --> # Model Card for *Model ID* This model has been created with [Argilla](https://docs.argilla.io), trained with *Transformers*. <!-- Provide a quick summary of what the model is/does. --> This is a sample model finetuned from prajjwal1/bert-tiny. ## Model training Training the model using the `ArgillaTrainer`: ```python # Load the dataset: dataset = FeedbackDataset.from_huggingface("argilla/emotion") # Create the training task: task = TrainingTask.for_text_classification(text=dataset.field_by_name("text"), label=dataset.question_by_name("label")) # Create the ArgillaTrainer: trainer = ArgillaTrainer( dataset=dataset, task=task, framework="transformers", model="prajjwal1/bert-tiny", ) trainer.update_config({ "logging_steps": 1, "num_train_epochs": 1, "output_dir": "tmp" }) trainer.train(output_dir="None") ``` You can test the type of predictions of this model like so: ```python trainer.predict("This is awesome!") ``` ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Model trained with `ArgillaTrainer` for demo purposes - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** Finetuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) for demo purposes - **Language(s) (NLP):** ['en'] - **License:** apache-2.0 - **Finetuned from model [optional]:** prajjwal1/bert-tiny ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** N/A <!-- ## Uses *Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.* --> <!-- ### Direct Use *This section is for the model use without fine-tuning or plugging into a larger ecosystem/app.* --> <!-- ### Downstream Use [optional] *This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app* --> <!-- ### Out-of-Scope Use *This section addresses misuse, malicious use, and uses that the model will not work well for.* --> <!-- ## Bias, Risks, and Limitations *This section is meant to convey both technical and sociotechnical limitations.* --> <!-- ### Recommendations *This section is meant to convey recommendations with respect to the bias, risk, and technical limitations.* --> <!-- ## Training Details ### Training Metrics *Metrics related to the model training.* --> <!-- ### Training Hyperparameters - **Training regime:** (fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision) --> <!-- ## Environmental Impact *Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly* Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] --> ## Technical Specifications [optional] ### Framework Versions - Python: 3.10.7 - Argilla: 1.19.0-dev <!-- ## Citation [optional] *If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section.* ### BibTeX --> <!-- ## Glossary [optional] *If relevant, include terms and calculations in this section that can help readers understand the model or model card.* --> <!-- ## Model Card Authors [optional] *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
thrunlab/t5-large_qnli_dense_epochs-1
thrunlab
2023-10-27T11:14:24Z
46
0
transformers
[ "transformers", "pytorch", "t5", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-t5/t5-large", "base_model:finetune:google-t5/t5-large", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T10:52:14Z
--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_qnli_dense_epochs-1 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: qnli split: train[:64] args: qnli metrics: - name: Accuracy type: accuracy value: 0.5384615384615384 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large_qnli_dense_epochs-1 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7227 - Accuracy: 0.5385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 1 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.9.0 - Tokenizers 0.14.1
mwitiderrick/zephyr-7b-beta-llamini
mwitiderrick
2023-10-27T11:09:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-27T09:58:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
phoenixaiden33/ppo-LunarLander-v2_01
phoenixaiden33
2023-10-27T11:07:35Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T11:07:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.84 +/- 18.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
twdent/segformer-b1-finetuned-HikingHD
twdent
2023-10-27T11:01:20Z
187
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b1", "base_model:finetune:nvidia/mit-b1", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2023-10-12T21:40:00Z
--- license: other base_model: nvidia/mit-b1 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b1-finetuned-HikingHD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b1-finetuned-HikingHD This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the twdent/HikingHD dataset. It achieves the following results on the evaluation set: - Loss: 0.1067 - Mean Iou: 0.9379 - Mean Accuracy: 0.9665 - Overall Accuracy: 0.9684 - Accuracy Unlabeled: nan - Accuracy Traversable: 0.9485 - Accuracy Non-traversable: 0.9845 - Iou Unlabeled: nan - Iou Traversable: 0.9305 - Iou Non-traversable: 0.9452 - Local Tests: - Average inference time: 0.2622481801774767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:| | 0.3796 | 1.67 | 20 | 0.5835 | 0.6174 | 0.9605 | 0.9617 | nan | 0.9488 | 0.9721 | 0.0 | 0.9180 | 0.9343 | | 0.3086 | 3.33 | 40 | 0.2597 | 0.9230 | 0.9589 | 0.9605 | nan | 0.9439 | 0.9739 | nan | 0.9143 | 0.9318 | | 0.2717 | 5.0 | 60 | 0.2202 | 0.9386 | 0.9681 | 0.9687 | nan | 0.9626 | 0.9736 | nan | 0.9321 | 0.9451 | | 0.2655 | 6.67 | 80 | 0.2127 | 0.9334 | 0.9658 | 0.9659 | nan | 0.9646 | 0.9670 | nan | 0.9267 | 0.9402 | | 0.1603 | 8.33 | 100 | 0.1699 | 0.9383 | 0.9677 | 0.9686 | nan | 0.9601 | 0.9753 | nan | 0.9316 | 0.9450 | | 0.2 | 10.0 | 120 | 0.1692 | 0.9289 | 0.9609 | 0.9637 | nan | 0.9342 | 0.9876 | nan | 0.9200 | 0.9378 | | 0.1613 | 11.67 | 140 | 0.1389 | 0.9399 | 0.9676 | 0.9695 | nan | 0.9498 | 0.9853 | nan | 0.9328 | 0.9470 | | 0.185 | 13.33 | 160 | 0.1612 | 0.9217 | 0.9566 | 0.9600 | nan | 0.9254 | 0.9878 | nan | 0.9116 | 0.9318 | | 0.251 | 15.0 | 180 | 0.1461 | 0.9277 | 0.9603 | 0.9631 | nan | 0.9340 | 0.9865 | nan | 0.9187 | 0.9368 | | 0.1038 | 16.67 | 200 | 0.1401 | 0.9248 | 0.9581 | 0.9616 | nan | 0.9258 | 0.9904 | nan | 0.9149 | 0.9346 | | 0.0628 | 18.33 | 220 | 0.1556 | 0.9195 | 0.9548 | 0.9588 | nan | 0.9171 | 0.9924 | nan | 0.9086 | 0.9303 | | 0.077 | 20.0 | 240 | 0.1439 | 0.9213 | 0.9561 | 0.9598 | nan | 0.9220 | 0.9902 | nan | 0.9110 | 0.9317 | | 0.0714 | 21.67 | 260 | 0.1267 | 0.9344 | 0.9641 | 0.9666 | nan | 0.9404 | 0.9878 | nan | 0.9263 | 0.9425 | | 0.081 | 23.33 | 280 | 0.1097 | 0.9397 | 0.9672 | 0.9694 | nan | 0.9470 | 0.9874 | nan | 0.9324 | 0.9470 | | 0.09 | 25.0 | 300 | 0.1063 | 0.9402 | 0.9679 | 0.9696 | nan | 0.9522 | 0.9836 | nan | 0.9332 | 0.9472 | | 0.0737 | 26.67 | 320 | 0.1045 | 0.9395 | 0.9674 | 0.9692 | nan | 0.9502 | 0.9845 | nan | 0.9323 | 0.9466 | | 0.1173 | 28.33 | 340 | 0.1019 | 0.9427 | 0.9702 | 0.9708 | nan | 0.9644 | 0.9760 | nan | 0.9365 | 0.9488 | | 0.0535 | 30.0 | 360 | 0.1132 | 0.9387 | 0.9674 | 0.9688 | nan | 0.9549 | 0.9799 | nan | 0.9317 | 0.9456 | | 0.0693 | 31.67 | 380 | 0.1182 | 0.9340 | 0.9637 | 0.9664 | nan | 0.9389 | 0.9886 | nan | 0.9258 | 0.9422 | | 0.0649 | 33.33 | 400 | 0.1108 | 0.9374 | 0.9662 | 0.9681 | nan | 0.9483 | 0.9841 | nan | 0.9300 | 0.9448 | | 0.1581 | 35.0 | 420 | 0.1107 | 0.9368 | 0.9658 | 0.9678 | nan | 0.9473 | 0.9844 | nan | 0.9293 | 0.9443 | | 0.0711 | 36.67 | 440 | 0.1011 | 0.9414 | 0.9690 | 0.9702 | nan | 0.9578 | 0.9801 | nan | 0.9348 | 0.9479 | | 0.0743 | 38.33 | 460 | 0.1026 | 0.9400 | 0.9676 | 0.9695 | nan | 0.9500 | 0.9853 | nan | 0.9329 | 0.9471 | | 0.0602 | 40.0 | 480 | 0.1029 | 0.9407 | 0.9681 | 0.9699 | nan | 0.9521 | 0.9841 | nan | 0.9337 | 0.9476 | | 0.0768 | 41.67 | 500 | 0.1059 | 0.9386 | 0.9670 | 0.9688 | nan | 0.9502 | 0.9837 | nan | 0.9314 | 0.9458 | | 0.0494 | 43.33 | 520 | 0.1076 | 0.9375 | 0.9663 | 0.9682 | nan | 0.9484 | 0.9842 | nan | 0.9302 | 0.9449 | | 0.0359 | 45.0 | 540 | 0.1097 | 0.9369 | 0.9659 | 0.9679 | nan | 0.9473 | 0.9844 | nan | 0.9294 | 0.9444 | | 0.0799 | 46.67 | 560 | 0.1070 | 0.9379 | 0.9666 | 0.9684 | nan | 0.9493 | 0.9838 | nan | 0.9306 | 0.9452 | | 0.0685 | 48.33 | 580 | 0.1075 | 0.9378 | 0.9665 | 0.9684 | nan | 0.9489 | 0.9841 | nan | 0.9305 | 0.9452 | | 0.0437 | 50.0 | 600 | 0.1067 | 0.9379 | 0.9665 | 0.9684 | nan | 0.9485 | 0.9845 | nan | 0.9305 | 0.9452 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
MakAttack/653b7f9ae3adbe5935e7e485
MakAttack
2023-10-27T11:01:03Z
6
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-27T10:28:57Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/653b7f9ae3adbe5935e7e485 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
xjlulu/ntu_adl_span_selection_macbert
xjlulu
2023-10-27T10:51:32Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "base_model:hfl/chinese-macbert-base", "base_model:finetune:hfl/chinese-macbert-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-22T04:17:00Z
--- license: apache-2.0 base_model: hfl/chinese-macbert-base tags: - generated_from_trainer model-index: - name: ntu_adl_span_selection_macbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ntu_adl_span_selection_macbert This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1049 - Em Accuracy: 0.7846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Em Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------:| | 0.7063 | 1.0 | 5428 | 0.6971 | 0.7627 | | 0.4457 | 2.0 | 10857 | 0.8407 | 0.7840 | | 0.2263 | 3.0 | 16284 | 1.1049 | 0.7846 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
alexionby/output_dir
alexionby
2023-10-27T10:38:23Z
1
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-25T11:23:22Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: wrong tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - alexionby/output_dir These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on wrong using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
timmy0079/201912103_cppe5_use_data_finetuning
timmy0079
2023-10-27T10:37:07Z
32
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-27T05:30:06Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: 201912103_cppe5_use_data_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 201912103_cppe5_use_data_finetuning This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
s3nh/ehartford-WizardLM-1.0-Uncensored-Llama2-13b-GGUF
s3nh
2023-10-27T10:35:42Z
27
3
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-10-26T12:35:55Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-Llama2-13b). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
MakAttack/653b799e077e98242df53745
MakAttack
2023-10-27T10:28:46Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-27T09:55:51Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/653b799e077e98242df53745 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
anirudhmu/videomae-base-finetuned-soccer-action-recognition
anirudhmu
2023-10-27T10:03:25Z
22
1
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-10-27T06:06:19Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-soccer-action-recognition results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-soccer-action-recognition This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2554 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2728 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7115 | 0.03 | 85 | 1.4196 | 0.4 | | 1.0097 | 1.03 | 170 | 0.7807 | 0.6759 | | 0.6192 | 2.03 | 255 | 0.7952 | 0.7034 | | 0.4713 | 3.03 | 341 | 0.6536 | 0.7931 | | 0.3973 | 4.03 | 426 | 0.3638 | 0.8690 | | 0.3633 | 5.03 | 511 | 0.3616 | 0.8966 | | 0.2336 | 6.03 | 596 | 0.4579 | 0.8966 | | 0.1997 | 7.03 | 682 | 1.5970 | 0.6069 | | 0.2738 | 8.03 | 767 | 0.4102 | 0.8690 | | 0.2492 | 9.03 | 852 | 0.7651 | 0.8345 | | 0.1568 | 10.03 | 937 | 0.8561 | 0.8138 | | 0.1856 | 11.03 | 1023 | 0.2811 | 0.9241 | | 0.1296 | 12.03 | 1108 | 0.3444 | 0.9172 | | 0.0782 | 13.03 | 1193 | 0.3423 | 0.9241 | | 0.14 | 14.03 | 1278 | 0.3122 | 0.9241 | | 0.0689 | 15.03 | 1364 | 0.3534 | 0.9172 | | 0.036 | 16.03 | 1449 | 0.4815 | 0.9103 | | 0.0695 | 17.03 | 1534 | 0.5698 | 0.8828 | | 0.0618 | 18.03 | 1619 | 0.3053 | 0.9310 | | 0.0553 | 19.03 | 1705 | 0.3443 | 0.9241 | | 0.0301 | 20.03 | 1790 | 0.1427 | 0.9586 | | 0.0412 | 21.03 | 1875 | 0.5619 | 0.8690 | | 0.0492 | 22.03 | 1960 | 0.5701 | 0.8897 | | 0.0171 | 23.03 | 2046 | 0.6377 | 0.8690 | | 0.0181 | 24.03 | 2131 | 0.5981 | 0.8828 | | 0.0305 | 25.03 | 2216 | 0.3178 | 0.9448 | | 0.0393 | 26.03 | 2301 | 0.5434 | 0.9103 | | 0.0248 | 27.03 | 2387 | 0.4097 | 0.9241 | | 0.0146 | 28.03 | 2472 | 0.4427 | 0.9103 | | 0.012 | 29.03 | 2557 | 0.5619 | 0.9034 | | 0.0065 | 30.03 | 2642 | 0.5384 | 0.9103 | | 0.009 | 31.03 | 2728 | 0.5014 | 0.9172 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
alam72/birujastor
alam72
2023-10-27T09:59:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-10-27T09:57:48Z
--- license: creativeml-openrail-m ---
pelemanov/dqn-LunarLander-v2
pelemanov
2023-10-27T09:56:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T09:56:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -169.23 +/- 48.43 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mecoaoge2/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
mecoaoge2
2023-10-27T09:55:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-27T09:55:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
spyobird/cs4248_albert-base-v2_bilstm_qa_1
spyobird
2023-10-27T09:32:09Z
32
0
transformers
[ "transformers", "pytorch", "albert", "generated_from_trainer", "dataset:squad", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-10-27T08:05:53Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - squad model-index: - name: cs4248_albert-base-v2_bilstm_qa_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cs4248_albert-base-v2_bilstm_qa This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 4248 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
MakAttack/653b6dc287d6147063c526f6
MakAttack
2023-10-27T09:26:59Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-27T08:54:32Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/653b6dc287d6147063c526f6 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
dummyturtle/my_awesome_opus_books_model
dummyturtle
2023-10-27T09:11:31Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-26T08:55:14Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.6282 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6045 - Bleu: 5.6282 - Gen Len: 17.605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8507 | 1.0 | 6355 | 1.6274 | 5.4811 | 17.6153 | | 1.8146 | 2.0 | 12710 | 1.6045 | 5.6282 | 17.605 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
AlvaroPang/sd_class_butterflies-32
AlvaroPang
2023-10-27T09:10:11Z
1
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image_generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2023-10-27T08:57:13Z
--- license: mit tags: - pytorch - diffusers - unconditional-image_generation - diffusion-models-class --- # 这个模型用于生成蝴蝶图像的无条件图像生成扩散模型(测试) ```python from diffusers import DDPMPipeline pipeline=DDPMPipeline.from_pretrained('AlvaroPang/sd_class_butterflies-32') image = pipeline().images[0] image ```
virilblueenpharmacie/virilblueenpharmacie
virilblueenpharmacie
2023-10-27T09:09:01Z
0
0
diffusers
[ "diffusers", "VirilBlue en Pharmacie", "en", "license:bsd-2-clause", "region:us" ]
null
2023-10-27T08:59:42Z
--- license: bsd-2-clause language: - en library_name: diffusers tags: - VirilBlue en Pharmacie --- [VirilBlue en Pharmacie](https://atozsupplement.com/virilblue-avis/) CBD fixation, and by and large wellbeing. It's for the most part encouraged to begin with a low measurements and bit by bit increment if necessary.Quality and Wellbeing: While buying CBD gummies, it's critical to pick respectable brands that focus on quality and security. Search for items that have been tried by outsider labs for power and immaculateness. These lab reports, frequently alluded to as Authentications of Examination (COAs), ought to be promptly accessible for clients to survey. VISIT HERE FOR OFFICIAL WEBSITE:-https://atozsupplement.com/virilblue-avis/
MattiaParavisi/bert-base-uncased-word_sentence_1_1-collator
MattiaParavisi
2023-10-27T09:03:39Z
161
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-23T08:29:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-word_sentence_1_1-collator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-word_sentence_1_1-collator This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
virilblueenpharmaciereview/virilblueenpharmaciereview
virilblueenpharmaciereview
2023-10-27T08:39:23Z
0
0
null
[ "region:us" ]
null
2023-10-27T08:37:14Z
--- license: openrail language: - en library_name: espnet tags: VirilBlue en Pharmacie [VirilBlue en Pharmacie](https://atozsupplement.com/virilblue-avis/) With natural male enhancers, you are supplied with the sexual gear that you want for fulfillment. Male enhancer drugs will intensify your satisfaction & release the best factor which it is easy to get from natural enhancement products is that they're entirely free of injurious side results. Click Here For More Details :- https://atozsupplement.com/virilblue-avis/
iambestfeed/vietnamese-llama2-7b-sharded-checkpoints
iambestfeed
2023-10-27T08:22:28Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "vi", "en", "dataset:vietgpt/wikipedia_vi", "dataset:wikipedia", "dataset:pg19", "dataset:mc4", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T08:16:28Z
--- license: other datasets: - vietgpt/wikipedia_vi - wikipedia - pg19 - mc4 language: - vi - en --- We employed [SentencePiece](https://github.com/google/sentencepiece) to retrain a Vietnamese tokenizer with a vocabulary size of 20K. No Vietnamese word segmentation was used. We then merged this vocabulary with the original one of Llama2, removing duplicate tokens. The new tokenizer significantly improves when encoding Vietnamese text, reducing the number of tokens by 50% compared to ChatGPT and approximately 70% compared to the original Llama2. We conducted a single-epoch continual pretraining, also known as incremental pretraining, using the Llama2-chat 7B model on a mixed dataset totaling 40.5 GB, comprised of: - 19 GB [NewsCorpus](https://github.com/binhvq/news-corpus) - 1.1 GB Vietnamese Wikipedia - 1.6 GB [Vietnamese books](https://www.kaggle.com/datasets/iambestfeeder/10000-vietnamese-books) - 4.5 GB Vietnamese legal documents (crawled from thuvienphapluat and processed by ourselves) - 2.1 GB Vietnamese legal text (from [C4-vi](https://huggingface.co/datasets/c4)) - 1.1 GB English Books (sub-sampled from [pg19](https://huggingface.co/datasets/pg19)) - 1.1 GB English Wikipedia (sub-sampled from 20220301.en wikipedia) - 10 GB English Text (sub-sampled from [C4-en](https://huggingface.co/datasets/c4)) We trained the model on a DGX A100 system, utilizing four GPU A100 in 10 days (about 1000 GPU hours). Hyperparameters are set as follows: - Training Regime: BFloat16 mixed precision - Lora Config: ``` { "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf", "bias": "none", "enable_lora": null, "fan_in_fan_out": false, "inference_mode": true, "lora_alpha": 32.0, "lora_dropout": 0.05, "merge_weights": false, "modules_to_save": [ "embed_tokens", "lm_head" ], "peft_type": "LORA", "r": 8, "target_modules": [ "q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "down_proj", "up_proj" ], "task_type": "CAUSAL_LM" } ``` We also provide the [LoRA part](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB/tree/main/pt_lora_model) so that you can integrate it with the original Llama2-chat-7b by yourself. Please note that **this model requires further supervised fine-tuning (SFT)** to be used in practice! Usage and other considerations: We refer to the [Llama 2](https://github.com/facebookresearch/llama) Training loss: <img src="figure/training_loss.png" alt="Training Loss Curve"/> **Disclaimer** This project is built upon Meta's Llama-2 model. It is essential to strictly adhere to the open-source license agreement of Llama-2 when using this model. If you incorporate third-party code, please ensure compliance with the relevant open-source license agreements. It's important to note that the content generated by the model may be influenced by various factors, such as calculation methods, random elements, and potential inaccuracies in quantification. Consequently, this project does not offer any guarantees regarding the accuracy of the model's outputs, and it disclaims any responsibility for consequences resulting from the use of the model's resources and its output. For those employing the models from this project for commercial purposes, developers must adhere to local laws and regulations to ensure the compliance of the model's output content. This project is not accountable for any products or services derived from such usage. **Acknowledgments** We extend our gratitude to PHPC - Phenikaa University and NVIDIA for their generous provision of computing resources for model training. Our appreciation also goes out to binhvq and the other authors for their diligent efforts in collecting and preparing the Vietnamese text corpus.
khleeloo/vit-base-skin
khleeloo
2023-10-27T08:18:07Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-18T10:24:14Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: vit-base-skin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-skin This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Accuracy: 0.8549 - F1: 0.8552 - Precision: 0.8560 - Recall: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9322 | 0.16 | 100 | 0.8109 | 0.6943 | 0.6290 | 0.5939 | 0.6943 | | 0.7518 | 0.32 | 200 | 0.6722 | 0.7409 | 0.6832 | 0.6945 | 0.7409 | | 0.6616 | 0.48 | 300 | 0.7126 | 0.7358 | 0.7077 | 0.7039 | 0.7358 | | 0.8264 | 0.64 | 400 | 0.6001 | 0.8135 | 0.8092 | 0.8178 | 0.8135 | | 0.5767 | 0.8 | 500 | 0.6306 | 0.7772 | 0.7619 | 0.7945 | 0.7772 | | 0.5939 | 0.96 | 600 | 0.4621 | 0.8290 | 0.7988 | 0.8397 | 0.8290 | | 0.4351 | 1.12 | 700 | 0.5544 | 0.7979 | 0.7894 | 0.8410 | 0.7979 | | 0.4737 | 1.28 | 800 | 0.5151 | 0.8238 | 0.8334 | 0.8708 | 0.8238 | | 0.428 | 1.44 | 900 | 0.4980 | 0.8238 | 0.8170 | 0.8299 | 0.8238 | | 0.4596 | 1.6 | 1000 | 0.5650 | 0.7927 | 0.8032 | 0.8428 | 0.7927 | | 0.4096 | 1.76 | 1100 | 0.4544 | 0.8342 | 0.8178 | 0.8567 | 0.8342 | | 0.4328 | 1.92 | 1200 | 0.4524 | 0.8290 | 0.8294 | 0.8482 | 0.8290 | | 0.2272 | 2.08 | 1300 | 0.4808 | 0.8290 | 0.8304 | 0.8409 | 0.8290 | | 0.2415 | 2.24 | 1400 | 0.5585 | 0.7927 | 0.7916 | 0.8057 | 0.7927 | | 0.2743 | 2.4 | 1500 | 0.4144 | 0.8497 | 0.8484 | 0.8497 | 0.8497 | | 0.1943 | 2.56 | 1600 | 0.3977 | 0.8705 | 0.8722 | 0.8761 | 0.8705 | | 0.1839 | 2.72 | 1700 | 0.4784 | 0.8394 | 0.8382 | 0.8517 | 0.8394 | | 0.1905 | 2.88 | 1800 | 0.4314 | 0.8653 | 0.8669 | 0.8724 | 0.8653 | | 0.111 | 3.04 | 1900 | 0.5080 | 0.8290 | 0.8309 | 0.8348 | 0.8290 | | 0.0872 | 3.19 | 2000 | 0.5320 | 0.8549 | 0.8520 | 0.8649 | 0.8549 | | 0.1169 | 3.35 | 2100 | 0.5110 | 0.8342 | 0.8386 | 0.8477 | 0.8342 | | 0.1181 | 3.51 | 2200 | 0.4916 | 0.8446 | 0.8482 | 0.8563 | 0.8446 | | 0.0879 | 3.67 | 2300 | 0.5428 | 0.8601 | 0.8657 | 0.8829 | 0.8601 | | 0.1896 | 3.83 | 2400 | 0.5534 | 0.8497 | 0.8484 | 0.8536 | 0.8497 | | 0.0794 | 3.99 | 2500 | 0.6542 | 0.8342 | 0.8259 | 0.8270 | 0.8342 | | 0.0398 | 4.15 | 2600 | 0.5962 | 0.8187 | 0.8243 | 0.8338 | 0.8187 | | 0.0512 | 4.31 | 2700 | 0.6286 | 0.8497 | 0.8447 | 0.8457 | 0.8497 | | 0.0106 | 4.47 | 2800 | 0.6446 | 0.8394 | 0.8372 | 0.8377 | 0.8394 | | 0.0058 | 4.63 | 2900 | 0.5754 | 0.8653 | 0.8616 | 0.8618 | 0.8653 | | 0.0268 | 4.79 | 3000 | 0.5966 | 0.8653 | 0.8651 | 0.8658 | 0.8653 | | 0.0146 | 4.95 | 3100 | 0.6707 | 0.8601 | 0.8535 | 0.8577 | 0.8601 | | 0.0325 | 5.11 | 3200 | 0.6543 | 0.8549 | 0.8518 | 0.8511 | 0.8549 | | 0.0063 | 5.27 | 3300 | 0.6780 | 0.8497 | 0.8519 | 0.8583 | 0.8497 | | 0.003 | 5.43 | 3400 | 0.6675 | 0.8601 | 0.8577 | 0.8562 | 0.8601 | | 0.0143 | 5.59 | 3500 | 0.6967 | 0.8601 | 0.8554 | 0.8539 | 0.8601 | | 0.004 | 5.75 | 3600 | 0.6992 | 0.8601 | 0.8573 | 0.8552 | 0.8601 | | 0.003 | 5.91 | 3700 | 0.6917 | 0.8549 | 0.8552 | 0.8560 | 0.8549 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1 - Datasets 2.14.5 - Tokenizers 0.13.3
Gayathri142214002/Pegasus_paraphraser_Com_5
Gayathri142214002
2023-10-27T08:15:43Z
8
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-27T07:29:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Pegasus_paraphraser_Com_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pegasus_paraphraser_Com_5 This model is a fine-tuned version of [Gayathri142214002/Pegasus_paraphraser_Com_4](https://huggingface.co/Gayathri142214002/Pegasus_paraphraser_Com_4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1972 | 0.98 | 500 | 0.1900 | | 0.1751 | 1.96 | 1000 | 0.2030 | | 0.1592 | 2.94 | 1500 | 0.2125 | | 0.1455 | 3.92 | 2000 | 0.2185 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
camiloss/ppo-Huggy
camiloss
2023-10-27T08:06:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-27T08:06:31Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: camiloss/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
abdullah0x/bert-finetuned-squad
abdullah0x
2023-10-27T08:03:12Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-27T05:57:24Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: abdullah0x/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # abdullah0x/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2858 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2858 | 0 | ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
Gnartiel/vietnamese-sbert
Gnartiel
2023-10-27T07:53:35Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "vietnamese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-26T11:55:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - vietnamese --- # {vietnamese-sbert} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search on Vietnamese language. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Cô giáo đang ăn kem", "Chị gái đang thử món thịt dê"] model = SentenceTransformer('keepitreal/vietnamese-sbert') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['Cô giáo đang ăn kem', 'Chị gái đang thử món thịt dê'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(''keepitreal/vietnamese-sbert') model = AutoModel.from_pretrained('keepitreal/vietnamese-sbert') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pli2023/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
pli2023
2023-10-27T07:52:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-27T02:48:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
sdinger/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
sdinger
2023-10-27T07:50:13Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-27T07:50:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
kyungil/LawChatBot-KuLLM-5.8B
kyungil
2023-10-27T07:49:59Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:nlpai-lab/kullm-polyglot-5.8b-v2", "base_model:adapter:nlpai-lab/kullm-polyglot-5.8b-v2", "region:us" ]
null
2023-10-27T07:49:25Z
--- library_name: peft base_model: nlpai-lab/kullm-polyglot-5.8b-v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
vvmnnnkv/owlv2-base-patch16
vvmnnnkv
2023-10-27T07:46:00Z
4
0
transformers
[ "transformers", "pytorch", "owlv2", "zero-shot-object-detection", "vision", "object-detection", "arxiv:2306.09683", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-27T07:34:45Z
--- license: apache-2.0 tags: - vision - object-detection widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # Model Card: OWLv2 ## Model Details The OWLv2 model (short for Open-World Localization) was proposed in [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. OWLv2, like OWL-ViT, is a zero-shot text-conditioned object detection model that can be used to query an image with one or multiple text queries. The model uses CLIP as its multi-modal backbone, with a ViT-like Transformer to get visual features and a causal language model to get the text features. To use CLIP for detection, OWL-ViT removes the final token pooling layer of the vision model and attaches a lightweight classification and box head to each transformer output token. Open-vocabulary classification is enabled by replacing the fixed classification layer weights with the class-name embeddings obtained from the text model. The authors first train CLIP from scratch and fine-tune it end-to-end with the classification and box heads on standard detection datasets using a bipartite matching loss. One or multiple text queries per image can be used to perform zero-shot text-conditioned object detection. ### Model Date June 2023 ### Model Type The model uses a CLIP backbone with a ViT-B/16 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. The CLIP backbone is trained from scratch and fine-tuned together with the box and class prediction heads with an object detection objective. ### Documents - [OWLv2 Paper](https://arxiv.org/abs/2306.09683) ### Use with Transformers ```python3 import requests from PIL import Image import torch from transformers import Owlv2Processor, Owlv2ForObjectDetection processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16") model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = [["a photo of a cat", "a photo of a dog"]] inputs = processor(text=texts, images=image, return_tensors="pt") outputs = model(**inputs) # Target image sizes (height, width) to rescale box predictions [batch_size, 2] target_sizes = torch.Tensor([image.size[::-1]]) # Convert outputs (bounding boxes and class logits) to COCO API results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes) i = 0 # Retrieve predictions for the first image for the corresponding text queries text = texts[i] boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"] # Print detected objects and rescaled box coordinates for box, score, label in zip(boxes, scores, labels): box = [round(i, 2) for i in box.tolist()] print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}") ``` ## Model Use ### Intended Use The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, text-conditioned object detection. We also hope it can be used for interdisciplinary studies of the potential impact of such models, especially in areas that commonly require identifying objects whose label is unavailable during training. #### Primary intended uses The primary intended users of these models are AI researchers. We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models. ## Data The CLIP backbone of the model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet. The prediction heads of OWL-ViT, along with the CLIP backbone, are fine-tuned on publicly available object detection datasets such as [COCO](https://cocodataset.org/#home) and [OpenImages](https://storage.googleapis.com/openimages/web/index.html). (to be updated for v2) ### BibTeX entry and citation info ```bibtex @misc{minderer2023scaling, title={Scaling Open-Vocabulary Object Detection}, author={Matthias Minderer and Alexey Gritsenko and Neil Houlsby}, year={2023}, eprint={2306.09683}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
LoneStriker/airoboros-l2-c70b-3.1.2-2.6bpw-h6-exl2
LoneStriker
2023-10-27T07:44:43Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:jondurbin/airoboros-3.1", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-27T07:43:22Z
--- license: llama2 datasets: - jondurbin/airoboros-3.1 --- ### Overview Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros) #### IMPORTANT NOTE - llama-2 chat format!!! This models uses llama-2 chat format, rather than vicuna style user/assistant! This is a breaking change, although most inference systems support llama-2 chat templating. See prompt format below for all of the details. #### Highlights This is just a test of fine-tuning on top of the llama-2-70b-chat model instead of llama-2-70b (base). A model built on [airoboros-3.1 dataset](https://hf.co/datasets/jondurbin/airoboros-3.1), which is a continuation of [airoboros-3.0 dataset](https://hf.co/datasets/jondurbin/airoboros-3.0) with the following extras: * Log information extraction (e.g. getting the list of paths/IPs/etc. from apache logs) * Anonymization, e.g. removing names, IP addresses, and/or dates from text. * Chat introspection - multi-turn chats that have random questions injected asking about the character's descriptions, the setting of the chat, or things previously said, to make sure the model uses the system prompt and or chat history. * Multi-step instructions with acknowledgement (see below) * De-censorship data (not published) This is a fairly general purpose model, but focuses heavily on instruction following, rather than casual chat/roleplay. Huge thank you to the folks over at [a16z](https://a16z.com/) for sponsoring the costs associated with building models and associated tools! ### Prompt format The prompt format is llama-2 chat. ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> You are a helful, unbiased, uncensored assistant. <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` The prompt template is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/airoboros-l2-70b-3.1') chat = [ {"role": "system", "content": "You are Bob, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` ### Helpful usage tips #### MathJSON Ask mathematical questions, prefixed with "Create a MathJSON solution to the following:", and you should get output with a formula that can be executed by https://cortexjs.io/compute-engine/ I also made a (really quite hacky, incomplete, semi-functional) python version that works for most expressions, see [mathjson.py](https://github.com/jondurbin/airoboros/blob/mathjson/airoboros/mathjson.py) __Use a very low temperature!__ Example: ``` [INST] <<SYS>> You are an assistant with vast knowledge in all things math. <</SYS>> Create a MathJSON solution to the following: Calculate the area of a circle with radius of 17.2456cm. Include your reasoning. [/INST] ``` Output: ``` The area (A) of a circle is given by the formula A = πr², where r is the radius of the circle. Since the radius is given in centimeters, we need to convert it to meters first. We know that 1 meter equals 100 centimeters. Therefore, we can represent the radius as: r = 17.2456 cm * 100/1. Once we have the radius in meters, we can calculate the area of the circle using the formula A = πr². Solution as MathJSON: <mathjson> [ "Multiply", "Pi", [ "Power", 17.2456, 2 ] ] </mathjson> ``` You can then validate the JSON between `<mathjson>` and `</mathjson>`, then pass the parsed JSON to compute-engine JS or the `evaluate` function in mathjson.py to calculate the response. #### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT [key0: value0] [key1: value1] ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. __Use a very low temperature!__ Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` #### Summarization 500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example: ``` BEGININPUT {text to summarize} ENDINPUT BEGININSTRUCTION Summarize the input in around 130 words. ENDINSTRUCTION ``` #### Getting longer responses You can use a few techniques to get longer responses. Detailed prompts, with explicit instruction for word count: ``` Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality. The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization. One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary. Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements. Your response should be approximately 2300 words. ``` Or, a simpler example: ``` Please create a long, detailed story about a dragon in an old growth forest who, for some reason, begins speaking the words of the source code of linux. ``` There are a few examples of next chapter completion as well, e.g.: ``` Write the next chapter of a historical fiction novel set in Paris during the 20th century. Here's a summary of the previous chapter: In the vibrant city of Paris, amid the tumultuous changes of the 20th century, our protagonist Margot, an aspiring fashion designer, has just secured an apprenticeship at a prestigious couture house. She meets Lucien, a charming journalist who covers the fashion industry. Together they navigate the ever-changing world of fashion and society, uncovering secrets that reveal the intricate links between style, politics, and culture. As the chapter concludes, they decide to delve deeper into the hidden corners of the fashion world to unravel its mysteries. Requirements for the next chapter: 1. Character Development of Margot and Lucien: - Margot's Evolution: Unfold more about Margot's past, her dreams of revolutionizing fashion, and her struggle to establish herself in a male-dominated industry. Illustrate her growing expertise, innovative ideas, and increasing dependence on Lucien. - Lucien's Complexity: Introduce uncertainties surrounding Lucien's background and real motives. Increase suspense by suggesting undisclosed information he possesses, while also highlighting his wit and perceptiveness. 2. Exploration of Paris and the Couture House: - Paris: Elaborate their journey through the bustling streets of Paris, including encounters with iconic figures, social unrest, and relics from different eras of French history. - The Couture House: Expand on the grandeur of the couture house they work in, filled with artistic masterpieces, intense competition, and cryptic notes hinting at a scandalous past. 3. Emergence of the Subplot: The Lost Collection: - Discovery: Have Margot and Lucien stumble upon a secret vault containing a lost collection designed before World War II, raising new questions about the previous owner and the influence of war on fashion. - Revelation: Capture their shock as they realize the designs were plagiarized, the potential repercussions, and the opportunities it presents for Margot's career. - Twist: End with a twist that suggests there are other stolen collections across Paris, setting up their new mission. Your response should be approximately 650 words. ``` #### Coding You can ask for fairly complex coding instructions with multiple criteria, e.g.: ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or inline criteria: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` #### Agent/function calling The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML. Example prompt: ``` As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format. Input: I want to know how many times 'Python' is mentioned in my text file. Available functions: file_analytics: description: This tool performs various operations on a text file. params: action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc. filters: keyword: The word or phrase we want to search for. ``` Response: ```json { "function": "file_analytics", "params": { "action": "count_occurrences", "filters": { "keyword": "Python" } } } ``` #### Chain-of-thought You can ask for several possible responses to a given problem, with a ranking and final answer selection. Example prompt: ``` A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one. ``` Example response: ``` Solution 1: In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players). The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows: n(n-1)/2 = 45 Solving this equation gives us n=10. Final answer: There were 10 players in the tournament. Solution 2: Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers. If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players. Final answer: There were 10 players in the tournament. Solution 3: We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played. Final answer: There were 10 players in the tournament. Ranking of solutions from best to worst: 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer. 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer. 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer. Best and final answer: There were 10 players in the tournament. ``` #### reWOO style execution planning The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions! Example prompt: ``` Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string that could be the user's question, one or more prior evidence values, or a combination of both. Here are the tools available to be called: DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer. TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links. HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links. KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:? The output should be in format: Plan: [first action to take based on input question] :evidence0: = [function to call with input parameter] Plan: [next action to take, based on result of :evidence0:] :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"] ... Answer: [:evidence[n]: containing the final answer.] Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work? ``` Response: ``` Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020. :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner] Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate. :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?] Plan: Conduct another web search to find the most famous work of the identified laureate. :evidence2: = DuckDuckGo[Most famous work of :evidence1:] Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search. :evidence3: = HyperlinkExtractor[:evidence2:] Plan: Use the TextScraper tool to extract information from the relevant links. :evidence4: = TextScraper[:evidence3:] Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information. :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?] Answer: :evidence5: ``` For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening: ```python import re import requests def inject_context(input_text, **context): for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)): input_text = input_text.replace(ref, context.get(ref, "")) return input_text def duckduckgo(input_text, **context): search_string = inject_context(input_text, **context) ... search via duck duck go using search_string ... return text content def link_extractor(input_text, **context): input_text = inject_context(input_text, **context) return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I)))) def scrape(input_text, **context): input_text = inject_context(input_text, **context) text = [] for link in input_text.splitlines(): text.append(requests.get(link).text) return "\n".join(text) def infer(input_text, **context) prompt = inject_context(input_text, **context) ... call model with prompt, return output def parse_plan(plan): method_map = { "DuckDuckGo": duckduckgo, "HyperlinkExtractor": link_extractor, "KnowledgeModel": infer, "TextScraper": scrape, } context = {} for line in plan.strip().splitlines(): if line.startswith("Plan:"): print(line) continue parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I) if not parts: if line.startswith("Answer: "): return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...") raise RuntimeError("bad format: " + line) context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context) ``` ## Multi-step instructions with acknowledgement I don't know how useful this is, really, but I thought I'd add it just in case. Example: ``` { "conversations": [ { "value": "You are a helpful, unbiased, uncensored assistant.", "from": "system" }, { "value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "You can only respond using animal-related emojis.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Precede all responses with \"ZOOZOO:\"", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Include at least one bird emoji in your responses.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Describe a trip to a safari park.", "from": "human" }, { "value": "ZOOZOO: \ud83e\udd81\ud83d\udc2f\ud83e\udd93\ud83e\udd92\ud83d\udc18\ud83d\udc0d\ud83c\udf33\ud83c\udf32\u2600\ufe0f\ud83d\ude90\ud83e\udd85\ud83d\udcf8\ud83e\udd29", "from": "gpt" } ] } ``` ### Contribute If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data, take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details. To help me with the OpenAI/compute costs: - https://bmc.link/jondurbin - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf ### Licence and usage restrictions The airoboros 3.1 models are built on top of multiple base models, each with their own license/restrictions. The 30b model is built on the original llama, which has a strict non-commercial usage restriction. The models with `-l2` in the name have a custom Meta license: - See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta. - See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta. The models with `-m-` are mistral-7b (apache 2.0) The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros) The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI - what does *compete* actually mean here? - these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place - if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works - the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place - other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2 I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly. Your best bet is probably to avoid using this commercially due to the OpenAI API usage. Either way, by using this model, you agree to completely indemnify me.
lightblue/jod
lightblue
2023-10-27T07:37:13Z
12
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "ja", "dataset:kunishou/oasst1-89k-ja", "dataset:kunishou/databricks-dolly-15k-ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-24T02:03:30Z
--- license: apache-2.0 datasets: - kunishou/oasst1-89k-ja - kunishou/databricks-dolly-15k-ja language: - ja --- # How to use We write our prompts in the ChatML format. ### With vLLM (recommended for much faster inference) <details><summary>Install vLLM</summary> [Reference](https://vllm.readthedocs.io/en/latest/getting_started/installation.html) ```bash pip install vllm ``` </details> ```python from vllm import LLM, SamplingParams model_name = "lightblue/jod" llm = LLM(model=model_name) SYSTEM_MESSAGE = "You are a helpful assistant." def process_chat_history(next_user_msg, text_chat_history = []): prompt_text = "<|im_start|>system\n" prompt_text += SYSTEM_MESSAGE prompt_text += "<|im_end|>\n\n" for user_msg, ai_msg in text_chat_history: prompt_text += "<|im_start|>user\n" prompt_text += user_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>assistant\n" prompt_text += ai_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>user\n" prompt_text += next_user_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>assistant\n" return prompt_text user_prompt = "日本の一番高い山は?" prompt = process_chat_history(user_prompt) sampling_params = SamplingParams(temperature=0, max_tokens=528) outputs = llm.generate(prompt, sampling_params) bot_message = outputs[0].outputs[0].text.strip() print(bot_message) ``` ### With Huggingface ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline model_name = "lightblue/jod" tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.bfloat16, device_map='auto', load_in_4bit=True, ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) SYSTEM_MESSAGE = "You are a helpful assistant." def process_chat_history(next_user_msg, text_chat_history = []): prompt_text = "<|im_start|>system\n" prompt_text += SYSTEM_MESSAGE prompt_text += "<|im_end|>\n\n" for user_msg, ai_msg in text_chat_history: prompt_text += "<|im_start|>user\n" prompt_text += user_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>assistant\n" prompt_text += ai_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>user\n" prompt_text += next_user_msg prompt_text += "<|im_end|>\n\n" prompt_text += "<|im_start|>assistant\n" return prompt_text user_prompt = "日本の一番高い山は?" prompt = process_chat_history(user_prompt) bot_message = pipe(do_closed_qa(test_article, question), max_new_tokens=128, temperature=0)[0]["generated_text"] print(bot_message) ``` # Training details We trained on the following 3 datasets: * (J) - [JASTER](https://github.com/llm-jp/llm-jp-eval) * (O) - [kunishou/oasst1-89k-ja](https://huggingface.co/datasets/kunishou/oasst1-89k-ja/) * (D) - [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja/) using the ([Open-Orca/Mistral-7B-SlimOrca](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca)) model as our base checkpoint. This model was trained using the ChatML format, so it should be used for inference using the ChatML chatbot format. We chose this format as the base model ([Open-Orca/Mistral-7B-SlimOrca](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca)) was trained with this format, and we find the chatbot format more compelling for practical use compared to the Alpaca style instruction format. We trained for 1 epoch using the following Axolotl config. (Early stopping was not performed during our training.) <details><summary>Axolotl config .yaml</summary> ```yaml base_model: Open-Orca/Mistral-7B-SlimOrca base_model_config: Open-Orca/Mistral-7B-SlimOrca model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ./data/jaster_plus.jsonl ds_type: json # see other options below type: sharegpt conversation: chatml dataset_prepared_path: false val_set_size: 0.002 output_dir: ./train_output/openorca-mistral-jaster-1epoch use_wandb: true wandb_project: \<HIDDEN\> wandb_entity: \<HIDDEN\> debug: adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj gradient_accumulation_steps: 1 micro_batch_size: 10 eval_batch_size: 4 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: 10 resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 10 eval_table_size: 5 eval_table_max_new_tokens: 128 save_steps: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
philschmid/instruct-igel-001
philschmid
2023-10-27T07:02:50Z
74
47
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "LLM", "de", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-03T06:57:57Z
--- language: - de pipeline_tag: text-generation library_name: transformers tags: - bloom - LLM inference: false widget: - text: TODO license: bigscience-openrail-m --- # IGEL: Instruction-tuned German large Language Model for Text IGEL is an LLM model family developed for German. The first version of IGEL is built on top **[BigScience BLOOM](https://bigscience.huggingface.co/blog/bloom),** adapted to **[German from Malte Ostendorff](https://huggingface.co/malteos/bloom-6b4-clp-german)**. IGEL is designed to provide accurate and reliable language understanding capabilities for a wide range of natural language understanding tasks, including sentiment analysis, language translation, and question answering. ### **You can try out the model at [igel-playground](https://huggingface.co/spaces/philschmid/igel-playground).** The IGEL family currently includes `instruct-igel-001` and `chat-igel-001` _(coming soon)_. ## Model Description LoRA tuned [BLOOM-CLP German (6.4B parameters)](https://huggingface.co/malteos/bloom-6b4-clp-german) with merged weights. The `001` was designed as a naive test to determine whether it is possible to create an german instruction-tuned model using a small, undertrained LLM and a naive translated dataset. The goal of this test was to explore the potential of the BLOOM architecture for language modeling tasks that require instruction-based responses. To achieve this goal, we used a pre-trained LLM model with limited training, and fine-tuned it using a dataset of naive translations of instruction-based content. The dataset was created by taking instructions in English and translating them into German using an automated translation tool. While this approach may introduce errors in the translated content, we wanted to test whether the model could still learn to generate instruction-based responses in a variety of languages. ## Training data `instruct-igel-001` is trained on naive translated instruction datasets, without much post-processing. ### Known limitations `instruct-igel-001` also exhibits several common deficiencies of language models, including hallucination, toxicity, and stereotypes. For example, in the following figure, `instruct-igel-001` wrongly says that the cancelor of Germany is Angela Merkel. ![cancelor](./assets/cancelor.png) ### Training procedure _coming soon_ ## How to use You can test the model in this LLM playground. _coming soon_
vincegmz/dreamboost_lora_mnistm_zero_A_photo_of_zero_with_color_background
vincegmz
2023-10-27T07:00:31Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-27T06:36:25Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of zero with color background tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - vincegmz/dreamboost_lora_mnistm_zero_A_photo_of_zero_with_color_background These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of zero with color background using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
pranjal01/Fine-tuned-t5-text-summarizer
pranjal01
2023-10-27T06:51:16Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "en", "dataset:pranjal0109/Text-summarizer-dataset", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-10-25T10:57:50Z
--- license: apache-2.0 datasets: - pranjal0109/Text-summarizer-dataset language: - en metrics: - rouge library_name: transformers pipeline_tag: summarization --- # T5 model is fine tuned on custom dataset ## Dataset https://huggingface.co/datasets/pranjal01/Text-summarizer-dataset ## Hypterparameters evaluation_strategy="epoch", learning_rate=1e-4, per_device_train_batch_size=2, per_device_eval_batch_size=2, weight_decay=0.01, save_total_limit=3, num_train_epochs=50, predict_with_generate=True, fp16=True, push_to_hub=True, ## Training Result ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6538e300ba340bf82bcec2a5/y7_Bc6vseJQEwQhc7mINI.png) ## Inference test_text= " summarize: Why is this deal historic?\ It is just another club for Lionel Messi to go to and show his skills but it is indeed \ historic for the MLS and American Football as a whole. This will bring them the most eyeballs \ they have ever seen. The social media following of Inter Miami has risen by more than 300% and \ the ticket price for all the matches of Inter Miami have gone from $50 to $10,000 . The amount \ of worldwide attention that the MLS will get from this one signing will be humongous.\ Lionel Messi will bring fans to the Stadiums and Inter Miami will have to move \ from their 18,000 seater stadium to the Hard Rock Café Stadium which has a capacity of 70,000 because \ that is the standard of Messi. The sponsors that both Inter Miami and the league will get are \ unfathomable. It is like Michael Jordan playing in the Spanish Basketball League. All the celebrities \ will line up to watch him play and new TV and streaming deals will be made with all the countries around \ the world like India." Summary: The sponsors that both Inter Miami and the league will get are unfathomable.Lionel Messi will bring fans to the Stadiums and Inter Miami \ will have to move from their 18,000 seater stadium to the Hard Rock Café Stadium which has a capacity of 70,000 because that is the standard of Messi. \ The social media following of Inter Miami has risen by more than 300% and the ticket price for all the matches of Inter Miami have gone from $50 to $10,000.\ It is just another club for Lionel Messi to go to and show his skills but it is indeed historic for the MLS and American Football as a whole.
Gayathri142214002/Question_Generation_ComQ_5
Gayathri142214002
2023-10-27T06:47:43Z
160
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-27T06:22:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Question_Generation_ComQ_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question_Generation_ComQ_5 This model is a fine-tuned version of [Gayathri142214002/Question_Generation_ComQ_4](https://huggingface.co/Gayathri142214002/Question_Generation_ComQ_4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0859 | 0.56 | 50 | 0.2674 | | 0.2604 | 1.11 | 100 | 0.2472 | | 0.2275 | 1.67 | 150 | 0.2586 | | 0.2184 | 2.23 | 200 | 0.2670 | | 0.2077 | 2.79 | 250 | 0.2683 | | 0.1986 | 3.34 | 300 | 0.2726 | | 0.1949 | 3.9 | 350 | 0.2805 | | 0.1824 | 4.46 | 400 | 0.2839 | | 0.1868 | 5.01 | 450 | 0.2849 | | 0.1714 | 5.57 | 500 | 0.2928 | | 0.1694 | 6.13 | 550 | 0.2934 | | 0.1618 | 6.69 | 600 | 0.2956 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
akter-sust/Pixelcopter-PLE-v0-27-10-2023
akter-sust
2023-10-27T06:32:39Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T06:32:37Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0-27-10-2023 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.50 +/- 7.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Rocinante/qwen_merge
Rocinante
2023-10-27T06:30:36Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-24T11:55:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Satyam/whisper_Satyam
Satyam
2023-10-27T06:21:13Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai/whisper-large-v2", "base_model:adapter:openai/whisper-large-v2", "region:us" ]
null
2023-10-26T08:49:58Z
--- library_name: peft base_model: openai/whisper-large-v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0