modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 00:38:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 525
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 00:38:28
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
jbilcke-hf/sdxl-akira
|
jbilcke-hf
| 2023-10-27T15:04:29Z | 12 | 3 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"dataset:jbilcke-hf/akira",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-10-27T09:56:17Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: akira-style
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
datasets:
- jbilcke-hf/akira
---
# LoRA DreamBooth - jbilcke-hf/sdxl-akira
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer.
The weights were trained on the concept prompt:
```
akira-style
```
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
pipe.to(device)
# This is where you load your trained weights
specific_safetensors = "pytorch_lora_weights.safetensors"
lora_scale = 0.9
pipe.load_lora_weights(
'jbilcke-hf/sdxl-akira',
weight_name = specific_safetensors,
# use_auth_token = True
)
prompt = "A majestic akira-style jumping from a big stone at night"
image = pipe(
prompt=prompt,
num_inference_steps=50,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
```
|
jbilcke-hf/sdxl-starfield
|
jbilcke-hf
| 2023-10-27T15:04:16Z | 13 | 3 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"dataset:jbilcke-hf/starfield",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-10-27T09:53:40Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: starfield-style
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
datasets:
- jbilcke-hf/starfield
---
# LoRA DreamBooth - jbilcke-hf/sdxl-starfield
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer.
The weights were trained on the concept prompt:
```
starfield-style
```
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
pipe.to(device)
# This is where you load your trained weights
specific_safetensors = "pytorch_lora_weights.safetensors"
lora_scale = 0.9
pipe.load_lora_weights(
'jbilcke-hf/sdxl-starfield',
weight_name = specific_safetensors,
# use_auth_token = True
)
prompt = "A majestic starfield-style jumping from a big stone at night"
image = pipe(
prompt=prompt,
num_inference_steps=50,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
```
|
profoz/odsc-sawyer-sft-rlhf
|
profoz
| 2023-10-27T15:02:22Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T15:01:35Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
sungkwangjoong/pegasus-samsum
|
sungkwangjoong
| 2023-10-27T14:55:22Z | 97 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"base_model:google/pegasus-cnn_dailymail",
"base_model:finetune:google/pegasus-cnn_dailymail",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-27T14:15:27Z |
---
base_model: google/pegasus-cnn_dailymail
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6609 | 0.54 | 500 | 1.4842 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
mpalaval/assignment2_attempt11
|
mpalaval
| 2023-10-27T14:52:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-10-27T05:07:12Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: assignment2_attempt11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# assignment2_attempt11
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6058
- Precision: 0.2642
- Recall: 0.1186
- F1: 0.1637
- Accuracy: 0.9370
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 128 | 0.3124 | 0.2308 | 0.0254 | 0.0458 | 0.9401 |
| No log | 2.0 | 256 | 0.2862 | 0.1636 | 0.0763 | 0.1040 | 0.9353 |
| No log | 3.0 | 384 | 0.3899 | 0.2093 | 0.0763 | 0.1118 | 0.9359 |
| 0.1996 | 4.0 | 512 | 0.4161 | 0.3095 | 0.1102 | 0.1625 | 0.9382 |
| 0.1996 | 5.0 | 640 | 0.4845 | 0.3077 | 0.1017 | 0.1529 | 0.9392 |
| 0.1996 | 6.0 | 768 | 0.4841 | 0.2692 | 0.1186 | 0.1647 | 0.9365 |
| 0.1996 | 7.0 | 896 | 0.4987 | 0.2258 | 0.1186 | 0.1556 | 0.9349 |
| 0.0254 | 8.0 | 1024 | 0.5512 | 0.2766 | 0.1102 | 0.1576 | 0.9370 |
| 0.0254 | 9.0 | 1152 | 0.5772 | 0.3171 | 0.1102 | 0.1635 | 0.9379 |
| 0.0254 | 10.0 | 1280 | 0.5764 | 0.2586 | 0.1271 | 0.1705 | 0.9342 |
| 0.0254 | 11.0 | 1408 | 0.5964 | 0.2917 | 0.1186 | 0.1687 | 0.9380 |
| 0.005 | 12.0 | 1536 | 0.5952 | 0.2642 | 0.1186 | 0.1637 | 0.9368 |
| 0.005 | 13.0 | 1664 | 0.5980 | 0.2593 | 0.1186 | 0.1628 | 0.9367 |
| 0.005 | 14.0 | 1792 | 0.6033 | 0.2642 | 0.1186 | 0.1637 | 0.9370 |
| 0.005 | 15.0 | 1920 | 0.6058 | 0.2642 | 0.1186 | 0.1637 | 0.9370 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
princeton-nlp/AutoCompressor-1.3b-30k
|
princeton-nlp
| 2023-10-27T14:50:20Z | 76 | 1 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"arxiv:2305.14788",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2023-07-23T21:51:19Z |
---
license: apache-2.0
---
license: apache-2.0
---
**Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
**Code**: https://github.com/princeton-nlp/AutoCompressors
**Models**:
- Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
- OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
- OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
---
AutoCompressor-1.3b-30k is a model fine-tuned from [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) following the AutoCompressor method in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
This model is fine-tuned on 2B tokens from Books3 in [The Pile](https://pile.eleuther.ai). The pre-trained OPT-1.3b model is fine-tuned on sequences of 30,720 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients.
To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
```
from auto_compressor import AutoCompressorModel
model = AutoCompressorModel.from_pretrained("princeton-nlp/AutoCompressor-1.3b-30k")
```
**Evaluation**
We record the perplexity achieved by our 30k-fine-tuned OPT models on segments of 2,048 tokens sampled from Books3 and ArXiv in The Pile, conditioned on different amounts of context.
| Context Tokens | 0 |14,336 | 28,672 |
| -----------------------------|------|--------|--------|
| RMT-1.3b-30k | 13.18|12.50 |12.50 |
| AutoCompressor-1.3b-30k | 13.21|12.49 |12.47 |
| AutoCompressor-2.7b-30k | 11.86|11.21 |11.18 |
## Bibtex
```
@misc{chevalier2023adapting,
title={Adapting Language Models to Compress Contexts},
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
year={2023},
eprint={2305.14788},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
LoneStriker/zephyr-7b-beta-5.0bpw-h6-exl2
|
LoneStriker
| 2023-10-27T14:48:48Z | 9 | 2 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"en",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"arxiv:2305.18290",
"arxiv:2310.16944",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T14:48:34Z |
---
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-beta
results: []
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: mistralai/Mistral-7B-v0.1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B β
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
- **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org
## Performance
At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:

However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
## Intended uses & limitations
The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
## Training and evaluation data
During DPO training, this model achieves the following results on the evaluation set:
- Loss: 0.7496
- Rewards/chosen: -4.5221
- Rewards/rejected: -8.3184
- Rewards/accuracies: 0.7812
- Rewards/margins: 3.7963
- Logps/rejected: -340.1541
- Logps/chosen: -299.4561
- Logits/rejected: -2.3081
- Logits/chosen: -2.3531
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
The table below shows the full set of DPO training metrics:
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 |
| 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 |
| 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 |
| 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 |
| 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 |
| 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 |
| 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 |
| 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 |
| 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 |
| 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 |
| 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 |
| 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 |
| 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 |
| 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 |
| 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 |
| 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 |
| 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 |
| 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 |
| 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 |
| 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 |
| 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 |
| 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 |
| 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 |
| 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 |
| 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 |
| 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 |
| 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 |
| 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 |
| 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 |
| 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 |
| 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 |
| 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 |
| 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 |
| 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 |
| 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 |
| 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 |
| 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 |
| 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 |
| 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 |
| 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 |
| 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 |
| 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 |
| 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 |
| 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 |
| 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 |
| 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 |
| 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 |
| 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 |
| 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 |
| 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 |
| 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 |
| 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 |
| 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 |
| 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 |
| 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 |
| 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 |
| 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 |
| 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0
## Citation
If you find Zephyr-7B-β is useful in your work, please cite it with:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
princeton-nlp/FullAttention-2.7b-4k
|
princeton-nlp
| 2023-10-27T14:43:43Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"arxiv:2305.14788",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2023-07-23T21:58:42Z |
---
license: apache-2.0
---
license: apache-2.0
---
**Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
**Code**: https://github.com/princeton-nlp/AutoCompressors
**Models**:
- Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
- OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
- OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
---
FullAttention-2.7b-4k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the context window extension method described in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
The 2,048 positional embeddings of the pre-trained OPT-2.7b are duplicated and the model is fine-tuned on sequences of 4,096 tokens from 2B tokens from [The Pile](https://pile.eleuther.ai).
To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
```
from auto_compressor import AutoCompressorModel
model = AutoCompressorModel.from_pretrained("princeton-nlp/FullAttention-2.7b-4k")
```
**Evaluation**
We record the perplexity achieved by our OPT-2.7b models on segments of 2,048 tokens, conditioned on different amounts of context.
FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2,048 tokens into 50 summary vectors.
*In-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- |
| RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 |
| AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 |
*Out-of-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- |
| RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 |
| AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 |
## Bibtex
```
@misc{chevalier2023adapting,
title={Adapting Language Models to Compress Contexts},
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
year={2023},
eprint={2305.14788},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
LoneStriker/zephyr-7b-beta-4.0bpw-h6-exl2
|
LoneStriker
| 2023-10-27T14:41:47Z | 9 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"en",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"arxiv:2305.18290",
"arxiv:2310.16944",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T14:41:35Z |
---
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-beta
results: []
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: mistralai/Mistral-7B-v0.1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B β
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
- **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org
## Performance
At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:

However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
## Intended uses & limitations
The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
## Training and evaluation data
During DPO training, this model achieves the following results on the evaluation set:
- Loss: 0.7496
- Rewards/chosen: -4.5221
- Rewards/rejected: -8.3184
- Rewards/accuracies: 0.7812
- Rewards/margins: 3.7963
- Logps/rejected: -340.1541
- Logps/chosen: -299.4561
- Logits/rejected: -2.3081
- Logits/chosen: -2.3531
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
The table below shows the full set of DPO training metrics:
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 |
| 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 |
| 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 |
| 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 |
| 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 |
| 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 |
| 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 |
| 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 |
| 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 |
| 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 |
| 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 |
| 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 |
| 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 |
| 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 |
| 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 |
| 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 |
| 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 |
| 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 |
| 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 |
| 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 |
| 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 |
| 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 |
| 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 |
| 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 |
| 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 |
| 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 |
| 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 |
| 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 |
| 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 |
| 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 |
| 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 |
| 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 |
| 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 |
| 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 |
| 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 |
| 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 |
| 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 |
| 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 |
| 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 |
| 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 |
| 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 |
| 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 |
| 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 |
| 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 |
| 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 |
| 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 |
| 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 |
| 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 |
| 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 |
| 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 |
| 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 |
| 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 |
| 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 |
| 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 |
| 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 |
| 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 |
| 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 |
| 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0
## Citation
If you find Zephyr-7B-β is useful in your work, please cite it with:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
princeton-nlp/RMT-2.7b-8k
|
princeton-nlp
| 2023-10-27T14:39:26Z | 3 | 5 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"arxiv:2305.14788",
"arxiv:2207.06881",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2023-07-23T22:08:33Z |
---
license: apache-2.0
---
license: apache-2.0
---
**Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
**Code**: https://github.com/princeton-nlp/AutoCompressors
**Models**:
- Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
- OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
- OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
---
RMT-2.7b-8k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the RMT method as described in [Recurrent Memory Transformer](https://arxiv.org/abs/2207.06881) and [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
This model is fine-tuned on 2B tokens from [The Pile](https://pile.eleuther.ai). The pre-trained OPT-2.7b model is fine-tuned on sequences of 8,192 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients.
To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
```
from auto_compressor import AutoCompressorModel
model = AutoCompressorModel.from_pretrained("princeton-nlp/RMT-2.7b-8k")
```
**Evaluation**
We record the perplexity achieved by our OPT-2.7b models on segments of 2048 tokens, conditioned on different amounts of context.
FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2048 tokens into 50 summary vectors.
*In-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- |
| RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 |
| AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 |
*Out-of-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- |
| RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 |
| AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 |
See [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) for more evaluations, including evaluation on 11 in-context learning tasks.
## Bibtex
```
@misc{chevalier2023adapting,
title={Adapting Language Models to Compress Contexts},
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
year={2023},
eprint={2305.14788},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
princeton-nlp/AutoCompressor-2.7b-6k
|
princeton-nlp
| 2023-10-27T14:37:09Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"arxiv:2305.14788",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2023-07-23T22:03:32Z |
---
license: apache-2.0
---
license: apache-2.0
---
**Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
**Code**: https://github.com/princeton-nlp/AutoCompressors
**Models**:
- Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
- OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
- OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
---
AutoCompressor-2.7b-6k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the AutoCompressor method in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
This model is fine-tuned on 2B tokens from [The Pile](https://pile.eleuther.ai). The pre-trained OPT-2.7b model is fine-tuned on sequences of 6,144 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients.
To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
```
from auto_compressor import AutoCompressorModel
model = AutoCompressorModel.from_pretrained("princeton-nlp/AutoCompressor-2.7b-6k")
```
**Evaluation**
We record the perplexity achieved by our OPT-2.7b models on segments of 2048 tokens, conditioned on different amounts of context.
FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2048 tokens into 50 summary vectors.
*In-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- |
| RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 |
| AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 |
*Out-of-domain Evaluation*
| Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
| -----------------------------|-----|-----|------|------|------|
| FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- |
| RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 |
| AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 |
See [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) for more evaluations, including evaluation on 11 in-context learning tasks.
## Bibtex
```
@misc{chevalier2023adapting,
title={Adapting Language Models to Compress Contexts},
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
year={2023},
eprint={2305.14788},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
bayerasif/whisper-tiny-minds14-en
|
bayerasif
| 2023-10-27T14:37:03Z | 76 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-10-27T14:23:47Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-minds14-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.351961950059453
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-minds14-en
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4543
- Wer Ortho: 0.3713
- Wer: 0.3520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.4142 | 7.14 | 100 | 0.4802 | 0.3756 | 0.3549 |
| 0.1909 | 14.29 | 200 | 0.4543 | 0.3713 | 0.3520 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
LoneStriker/zephyr-7b-beta-3.0bpw-h6-exl2
|
LoneStriker
| 2023-10-27T14:34:48Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"en",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"arxiv:2305.18290",
"arxiv:2310.16944",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T14:34:37Z |
---
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-beta
results: []
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: mistralai/Mistral-7B-v0.1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B β
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
- **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org
## Performance
At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:

However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
## Intended uses & limitations
The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr-7B-β has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
## Training and evaluation data
During DPO training, this model achieves the following results on the evaluation set:
- Loss: 0.7496
- Rewards/chosen: -4.5221
- Rewards/rejected: -8.3184
- Rewards/accuracies: 0.7812
- Rewards/margins: 3.7963
- Logps/rejected: -340.1541
- Logps/chosen: -299.4561
- Logits/rejected: -2.3081
- Logits/chosen: -2.3531
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
The table below shows the full set of DPO training metrics:
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 |
| 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 |
| 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 |
| 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 |
| 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 |
| 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 |
| 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 |
| 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 |
| 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 |
| 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 |
| 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 |
| 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 |
| 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 |
| 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 |
| 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 |
| 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 |
| 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 |
| 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 |
| 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 |
| 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 |
| 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 |
| 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 |
| 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 |
| 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 |
| 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 |
| 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 |
| 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 |
| 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 |
| 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 |
| 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 |
| 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 |
| 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 |
| 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 |
| 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 |
| 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 |
| 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 |
| 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 |
| 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 |
| 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 |
| 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 |
| 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 |
| 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 |
| 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 |
| 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 |
| 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 |
| 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 |
| 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 |
| 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 |
| 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 |
| 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 |
| 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 |
| 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 |
| 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 |
| 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 |
| 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 |
| 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 |
| 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 |
| 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0
## Citation
If you find Zephyr-7B-β is useful in your work, please cite it with:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
SzegedAI/babylm-strict-mlsm
|
SzegedAI
| 2023-10-27T14:26:13Z | 105 | 1 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"fill-mask",
"en",
"dataset:BabyLM_strict",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-07-23T14:21:22Z |
---
license: mit
datasets:
- BabyLM_strict
language:
- en
metrics:
- glue
---
# Model Card for SzegedAI/babylm-strict-mlsm
<!-- Provide a quick summary of what the model is/does. -->
This base-sized DeBERTa model was created using the [Masked Latent Semantic Modeling](https://aclanthology.org/2023.findings-acl.876/) (MLSM) pre-training objective, which is a sample efficient alternative for classic Masked Language Modeling (MLM).
During MLSM, the objective is to recover the latent semantic profile of the masked tokens, as opposed to recovering their exact identity.
The contextualized latent semantic profile during pre-training is determined by performing sparse coding of the hidden representation of a partially pre-trained model (a base-sized DeBERTa model pre-trained over only 20 million input sequences in this particular case).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** SzegedAI
- **Model type:** transformer encoder
- **Language:** Engish
- **License:** MIT
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/szegedai/MLSM](https://github.com/szegedai/MLSM)
- **Paper:** [Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling](https://underline.io/events/395/posters/15279/poster/78046-masked-latent-semantic-modeling-an-efficient-pre-training-alternative-to-masked-language-modeling?tab=abstract+%26+voting)
## How to Get Started with the Model
The pre-trained model can be used in the usual manner, e.g., for fine tuning on a particular sequence classification task, invoke the code:
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained('SzegedAI/babylm-strict-mlsm')
model = AutoModelForSequenceClassification.from_pretrained('SzegedAI/babylm-strict-mlsm')
```
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The model was pre-trained using the 100 million token [BabyLM](https://babylm.github.io/) strict dataset.
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing
#### Training Hyperparameters
Pre-training was conducted with a batch size of 128 sequences and a gradient accumulation over 8 batches, resulting in an effective batch size of 1024.
A total of 100,000 update steps were performed using the AdamW optimizer with a linear learning rate scheduling having a peak learning rate of 1e-04.
A maximum sequence length of 128 tokens was employed throughout pre-training.
- **Training regime:** fp32
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
The model was evaluated using the [BabyLM evaluation pipeline](https://github.com/babylm/evaluation-pipeline).
### Results
The evaluation result after fine-tuning the given model on a wide range of tasks.
On each tasks 4 different fine-tuning experiments were performed, during which the only difference was the random initialization of the task-specific classification head.
Apart from reducing the batch size from 64 to 32 (in order to avoid OOM errors), we used the recommended hyperparameter settings of the shared task.
Both the average and the standard deviation are displayed below on each tasks.
#### (Super)GLUE
Unless stated otherwise (in parenthesis after the task name), the default evaluation metric is accuracy.
| | Avg. | Std. |
|---|---|---|
|BoolQ | 0.683 | 0.006|
|CoLA (MCC)| 0.485 | 0.023|
|MNLI | 0.770 | 0.006|
|MNLI-mm | 0.781 | 0.004|
|MRPC (F1) | 0.834 | 0.010|
|MultiRC | 0.598 | 0.059|
|QNLI | 0.844 | 0.004|
|QQP (F1) | 0.843 | 0.008|
|RTE | 0.581 | 0.035|
|SST2 | 0.891 | 0.003|
|WSC | 0.605 | 0.012|
#### MSGS
Results reported in MCC.
| | Avg. | Std. |
|---|---|---|
| control_raising_control | 0.794 | 0.022 |
| control_raising_lexical_content_the |-0.538 | 0.314 |
| control_raising_relative_token_position |-0.761 | 0.130 |
| lexical_content_the_control | 1.000 | 0.000 |
| main_verb_control | 0.999 | 0.001 |
| main_verb_lexical_content_the |-0.856 | 0.101 |
| main_verb_relative_token_position |-0.012 | 0.173 |
| relative_position_control | 0.879 | 0.139 |
| syntactic_category_control | 0.779 | 0.074 |
| syntactic_category_lexical_content_the |-0.322 | 0.289 |
| syntactic_category_relative_position |-0.517 | 0.061 |
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
- **Hardware Type:** RTX A6000
- **Hours used:** 70
- **Carbon Emitted:** cca. 9 kg CO2 eq. (based on [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute))
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
The MLSM pre-training objective is introduced in the ACL Findings paper _Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling_.
**BibTeX:**
```
@inproceedings{berend-2023-masked,
title = "Masked Latent Semantic Modeling: an Efficient Pre-training Alternative to Masked Language Modeling",
author = "Berend, G{\'a}bor",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.876",
pages = "13949--13962",
abstract = "In this paper, we propose an alternative to the classic masked language modeling (MLM) pre-training paradigm, where the objective is altered from the reconstruction of the exact identity of randomly selected masked subwords to the prediction of their latent semantic properties. We coin the proposed pre-training technique masked latent semantic modeling (MLSM for short). In order to make the contextualized determination of the latent semantic properties of the masked subwords possible, we rely on an unsupervised technique which uses sparse coding. Our experimental results reveal that the fine-tuned performance of those models that we pre-trained via MLSM is consistently and significantly better compared to the use of vanilla MLM pretraining and other strong baselines.",
}
```
|
JunghwanRo/ppo-Huggy
|
JunghwanRo
| 2023-10-27T14:23:22Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-10-27T14:23:09Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: JunghwanRo/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
5Grains/furniture_use_data_finetuning
|
5Grains
| 2023-10-27T14:14:49Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
object-detection
| 2023-10-27T11:07:49Z |
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: furniture_use_data_finetuning
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furniture_use_data_finetuning
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
alexmiale/finetuning-sentiment-model-3000-samples
|
alexmiale
| 2023-10-27T14:07:07Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-26T15:47:48Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.8666666666666667
- name: F1
type: f1
value: 0.8692810457516339
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3226
- Accuracy: 0.8667
- F1: 0.8693
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
amit7859/phrasebank-sentiment-analysis
|
amit7859
| 2023-10-27T14:04:19Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:financial_phrasebank",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T14:03:53Z |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- f1
- accuracy
model-index:
- name: phrasebank-sentiment-analysis
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
config: sentences_50agree
split: train
args: sentences_50agree
metrics:
- name: F1
type: f1
value: 0.8483573452732207
- name: Accuracy
type: accuracy
value: 0.8583218707015131
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phrasebank-sentiment-analysis
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5396
- F1: 0.8484
- Accuracy: 0.8583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.682 | 0.94 | 100 | 0.4277 | 0.8079 | 0.8404 |
| 0.3258 | 1.89 | 200 | 0.3835 | 0.8398 | 0.8597 |
| 0.1658 | 2.83 | 300 | 0.4294 | 0.8503 | 0.8638 |
| 0.0706 | 3.77 | 400 | 0.5396 | 0.8484 | 0.8583 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
lior-karamany/q-Taxi-v3
|
lior-karamany
| 2023-10-27T14:02:32Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T14:02:30Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="lior-karamany/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
limehee/cppe5_use_data_finetuning
|
limehee
| 2023-10-27T13:58:27Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"detr",
"object-detection",
"generated_from_trainer",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
object-detection
| 2023-10-27T13:58:09Z |
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: cppe5_use_data_finetuning
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cppe5_use_data_finetuning
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
lior-karamany/q-FrozenLake-v1-4x4-noSlippery
|
lior-karamany
| 2023-10-27T13:53:30Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T13:53:28Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="lior-karamany/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SELEKCJONER/old-sd-webui-1.4
|
SELEKCJONER
| 2023-10-27T13:43:10Z | 0 | 0 | null |
[
"arxiv:2211.06679",
"region:us"
] | null | 2023-10-27T13:16:17Z |
# Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.

## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Installation on Windows 10/11 with NVidia-GPUs using release package
1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract it's contents.
2. Run `update.bat`.
3. Run `run.bat`.
> For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
## Contributing
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
|
Denyol/FakeNews-deberta-base-punct
|
Denyol
| 2023-10-27T13:42:34Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-base",
"base_model:finetune:microsoft/deberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T13:19:51Z |
---
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-deberta-base-punct
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-deberta-base-punct
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4681
- Accuracy: 0.8374
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.54 | 1.0 | 1605 | 0.4681 | 0.8374 |
| 0.7002 | 2.0 | 3210 | 0.7113 | 0.5234 |
| 0.6967 | 3.0 | 4815 | 0.6938 | 0.5234 |
| 0.6961 | 4.0 | 6420 | 0.6959 | 0.4766 |
| 0.6935 | 5.0 | 8025 | 0.6921 | 0.5234 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Arcio/slimocra-flant5-base
|
Arcio
| 2023-10-27T13:41:15Z | 0 | 0 |
peft
|
[
"peft",
"pytorch",
"t5",
"region:us"
] | null | 2023-10-27T13:38:00Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
basso4/my_awesome_opus_books_model
|
basso4
| 2023-10-27T13:31:11Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:opus_books",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-27T12:53:53Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: my_awesome_opus_books_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 5.4227
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_opus_books_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6518
- Bleu: 5.4227
- Gen Len: 17.6074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 1.9089 | 1.0 | 4067 | 1.6742 | 5.2267 | 17.6188 |
| 1.8675 | 2.0 | 8134 | 1.6518 | 5.4227 | 17.6074 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
micheljperez/dqn-SpaceInvadersNoFrameskip-v4
|
micheljperez
| 2023-10-27T13:23:08Z | 6 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-22T19:08:38Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 711.50 +/- 293.52
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga micheljperez -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga micheljperez -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga micheljperez
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
AVIIAX/ds8
|
AVIIAX
| 2023-10-27T13:23:04Z | 10 | 2 |
diffusers
|
[
"diffusers",
"safetensors",
"General",
"Anime",
"Art",
"Girl",
"Photorealistic",
"LandScapes",
"Lykon",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-10-27T13:23:04Z |
---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- General
- Anime
- Art
- Girl
- Photorealistic
- LandScapes
- Lykon
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- text-to-image
---
# Dreamshaper 8
Original page:
https://civitai.com/models/4384?modelVersionId=80261
Buy Lykon a coffee:
https://snipfeed.co/lykon
Sample and prompt:

PRETTY CUTE GIRL BY ROSSDRAWS. An extradimensional creature buying donuts. Pixar animation.
|
bellagio-ai/WalterNgo-face-xl-dreambooth-512-4k
|
bellagio-ai
| 2023-10-27T13:20:29Z | 1 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-27T10:30:15Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a portrait photo of happy WalterNgo person's face
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - bellagio-ai/WalterNgo-face-xl-dreambooth-512-4k
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a portrait photo of happy WalterNgo person's face using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
s3nh/lmsys-longchat-7b-v1.5-32k-GGUF
|
s3nh
| 2023-10-27T13:20:13Z | 3 | 1 |
transformers
|
[
"transformers",
"gguf",
"text-generation",
"zh",
"en",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T13:09:41Z |
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
- en
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGUF Format model files for [This project](https://huggingface.co/lmsys/longchat-7b-v1.5-32k).
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
### Perplexity params
Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16
7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066
13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543
### inference
TODO
# Original model card
|
dvlamis/evilbot-mistral-7b-lora-adapter
|
dvlamis
| 2023-10-27T13:17:32Z | 26 | 0 |
peft
|
[
"peft",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"region:us"
] | null | 2023-10-24T22:48:58Z |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
---
## Prompt template
" ### The following is a conversation with the worlds meanest assistant: ### Human: {user_message}### Assistant: {generated_response} "
(use the template without the " ")
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
Denyol/FakeNews-deberta-base-emoji
|
Denyol
| 2023-10-27T13:16:36Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-base",
"base_model:finetune:microsoft/deberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T12:53:55Z |
---
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-deberta-base-emoji
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-deberta-base-emoji
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2527
- Accuracy: 0.9463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3239 | 1.0 | 1605 | 0.4248 | 0.9093 |
| 0.2653 | 2.0 | 3210 | 0.2968 | 0.9379 |
| 0.2353 | 3.0 | 4815 | 0.3643 | 0.9304 |
| 0.2341 | 4.0 | 6420 | 0.4169 | 0.9266 |
| 0.1365 | 5.0 | 8025 | 0.2527 | 0.9463 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
xieyang233/BLOOM_VI_New
|
xieyang233
| 2023-10-27T13:12:08Z | 0 | 0 | null |
[
"generated_from_trainer",
"base_model:bigscience/bloomz-7b1-mt",
"base_model:finetune:bigscience/bloomz-7b1-mt",
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2023-10-27T03:46:42Z |
---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloomz-7b1-mt
tags:
- generated_from_trainer
model-index:
- name: BLOOM_VI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BLOOM_VI
This model is a fine-tuned version of [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3278 | 0.51 | 200 | 1.3118 |
| 1.2775 | 1.03 | 400 | 1.2715 |
| 1.2464 | 1.54 | 600 | 1.2517 |
| 1.2231 | 2.05 | 800 | 1.2390 |
| 1.2162 | 2.56 | 1000 | 1.2309 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|
bofenghuang/vigogne-2-70b-chat
|
bofenghuang
| 2023-10-27T12:44:55Z | 1,478 | 6 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"LLM",
"llama-2",
"finetuned",
"conversational",
"fr",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-10-26T09:29:40Z |
---
license: llama2
language: fr
pipeline_tag: text-generation
inference: false
tags:
- LLM
- llama-2
- finetuned
---
<p align="center" width="100%">
<img src="https://huggingface.co/bofenghuang/vigogne-2-70b-chat/resolve/main/logo_v2.jpg" alt="Vigogne" style="width: 30%; min-width: 300px; display: block; margin: auto;">
</p>
# Vigogne-2-70B-Chat: A Llama-2-based French Chat LLM
Vigogne-2-70B-Chat is a French chat LLM, based on [Llama-2-70B](https://ai.meta.com/llama), optimized to generate helpful and coherent responses in conversations with users.
Check out our [release blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) and [GitHub repository](https://github.com/bofenghuang/vigogne) for more information.
**Usage and License Notices**: Vigogne-2-70B-Chat follows Llama-2's [usage policy](https://ai.meta.com/llama/use-policy). A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use).
## Prompt Template
We used a prompt template adapted from the chat format of Llama-2.
You can apply this formatting using the [chat template](https://huggingface.co/docs/transformers/main/chat_templating) through the `apply_chat_template()` method.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bofenghuang/vigogne-2-70b-chat")
conversation = [
{"role": "user", "content": "Bonjour ! Comment ça va aujourd'hui ?"},
{"role": "assistant", "content": "Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?"},
{"role": "user", "content": "Quelle est la hauteur de la Tour Eiffel ?"},
{"role": "assistant", "content": "La Tour Eiffel mesure environ 330 mètres de hauteur."},
{"role": "user", "content": "Comment monter en haut ?"},
]
print(tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True))
```
You will get
```
<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>
Bonjour ! Comment ça va aujourd'hui ? [/INST] Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ? </s>[INST] Quelle est la hauteur de la Tour Eiffel ? [/INST] La Tour Eiffel mesure environ 330 mètres de hauteur. </s>[INST] Comment monter en haut ? [/INST]
```
## Usage
<!-- ### Inference using the quantized versions
The quantized versions of this model are generously provided by [TheBloke](https://huggingface.co/TheBloke)!
- AWQ for GPU inference: [TheBloke/Vigogne-2-70B-Chat-AWQ](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-AWQ)
- GTPQ for GPU inference: [TheBloke/Vigogne-2-70B-Chat-GPTQ](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-GPTQ)
- GGUF for CPU+GPU inference: [TheBloke/Vigogne-2-70B-Chat-GGUF](https://huggingface.co/TheBloke/Vigogne-2-70B-Chat-GGUF)
These versions facilitate testing and development with various popular frameworks, including [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [vLLM](https://github.com/vllm-project/vllm), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [llama.cpp](https://github.com/ggerganov/llama.cpp), [text-generation-webui](https://github.com/oobabooga/text-generation-webui), and more. -->
### Inference using the unquantized model with 🤗 Transformers
```python
from typing import Dict, List, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
model_name_or_path = "bofenghuang/vigogne-2-70b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto")
streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
def chat(
query: str,
history: Optional[List[Dict]] = None,
temperature: float = 0.7,
top_p: float = 1.0,
top_k: float = 0,
repetition_penalty: float = 1.1,
max_new_tokens: int = 1024,
**kwargs,
):
if history is None:
history = []
history.append({"role": "user", "content": query})
input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device)
input_length = input_ids.shape[1]
generated_outputs = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.eos_token_id,
**kwargs,
),
streamer=streamer,
return_dict_in_generate=True,
)
generated_tokens = generated_outputs.sequences[0, input_length:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
history.append({"role": "assistant", "content": generated_text})
return generated_text, history
# 1st round
response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None)
# 2nd round
response, history = chat("Quand il peut dépasser le lapin ?", history=history)
# 3rd round
response, history = chat("Écris une histoire imaginative qui met en scène une compétition de course entre un escargot et un lapin.", history=history)
```
You can also use the Google Colab Notebook provided below.
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
## Limitations
Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
## Acknowledgements
The model training was conducted on the [Jean-Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html) at GENCI, and we extend our gratitude to the IDRIS team for their responsive support throughout the project.
|
bofenghuang/vigogne-stablelm-3b-4e1t-chat
|
bofenghuang
| 2023-10-27T12:39:25Z | 17 | 1 |
transformers
|
[
"transformers",
"pytorch",
"stablelm_epoch",
"text-generation",
"LLM",
"finetuned",
"conversational",
"custom_code",
"fr",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-10-27T11:20:07Z |
---
license: apache-2.0
language: fr
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.7
tags:
- LLM
- finetuned
---
# Vigogne-Stablelm-3B-4E1T-Chat
An attempt to fine-tune the [stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) model to explore the feasibility of adapting a "smaller-scale" language model, primarily pretrained on English datasets, for French chat.
**License**: A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use).
## Usage
```python
from typing import Dict, List, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
model_name_or_path = "bofenghuang/vigogne-stablelm-3b-4e1t-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True)
streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
def chat(
query: str,
history: Optional[List[Dict]] = None,
temperature: float = 0.7,
top_p: float = 1.0,
top_k: float = 0,
repetition_penalty: float = 1.1,
max_new_tokens: int = 1024,
**kwargs,
):
if history is None:
history = []
history.append({"role": "user", "content": query})
input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device)
input_length = input_ids.shape[1]
generated_outputs = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.eos_token_id,
**kwargs,
),
streamer=streamer,
return_dict_in_generate=True,
)
generated_tokens = generated_outputs.sequences[0, input_length:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
history.append({"role": "assistant", "content": generated_text})
return generated_text, history
# 1st round
response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None)
```
|
TharinduCD/FSA-L4-Operational
|
TharinduCD
| 2023-10-27T12:31:33Z | 4 | 0 |
fasttext
|
[
"fasttext",
"text-classification",
"language-identification",
"license:cc-by-nc-4.0",
"region:us"
] |
text-classification
| 2023-10-27T11:41:01Z |
---
license: cc-by-nc-4.0
library_name: fasttext
tags:
- text-classification
- language-identification
---
---
## FastText Model for Classification
This model will classify products into L4 category where L0 Category is **Administrative**
|
TharinduCD/FSA-L4-Food
|
TharinduCD
| 2023-10-27T12:27:06Z | 1 | 0 |
fasttext
|
[
"fasttext",
"text-classification",
"language-identification",
"license:cc-by-nc-4.0",
"region:us"
] |
text-classification
| 2023-10-27T11:40:23Z |
---
license: cc-by-nc-4.0
library_name: fasttext
tags:
- text-classification
- language-identification
---
---
## FastText Model for Classification
This model will classify products into L4 category where L0 Category is **Food**
|
02shanky/vit-finetuned-vanilla-cifar10-0
|
02shanky
| 2023-10-27T12:26:56Z | 150 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:cifar10",
"base_model:02shanky/vit-finetuned-cifar10",
"base_model:finetune:02shanky/vit-finetuned-cifar10",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-10-27T06:58:18Z |
---
license: apache-2.0
base_model: 02shanky/vit-finetuned-cifar10
tags:
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: vit-finetuned-vanilla-cifar10-0
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.992
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-finetuned-vanilla-cifar10-0
This model is a fine-tuned version of [02shanky/vit-finetuned-cifar10](https://huggingface.co/02shanky/vit-finetuned-cifar10) on the cifar10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0306
- Accuracy: 0.992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 316 | 0.0619 | 0.9836 |
| 0.2651 | 2.0 | 633 | 0.0460 | 0.9867 |
| 0.2651 | 3.0 | 949 | 0.0415 | 0.9878 |
| 0.1967 | 4.0 | 1266 | 0.0326 | 0.9916 |
| 0.1552 | 4.99 | 1580 | 0.0306 | 0.992 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
rahulmukherji/bert-finetuned-ner
|
rahulmukherji
| 2023-10-27T12:25:04Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-10-27T11:46:38Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9352970378950852
- name: Recall
type: recall
value: 0.9511948838774823
- name: F1
type: f1
value: 0.9431789737171463
- name: Accuracy
type: accuracy
value: 0.9866515570730559
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0593
- Precision: 0.9353
- Recall: 0.9512
- F1: 0.9432
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0779 | 1.0 | 1756 | 0.0720 | 0.9121 | 0.9360 | 0.9239 | 0.9810 |
| 0.041 | 2.0 | 3512 | 0.0565 | 0.9358 | 0.9515 | 0.9436 | 0.9867 |
| 0.0263 | 3.0 | 5268 | 0.0593 | 0.9353 | 0.9512 | 0.9432 | 0.9867 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Denyol/FakeNews-deberta-base-url
|
Denyol
| 2023-10-27T12:24:11Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-base",
"base_model:finetune:microsoft/deberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T12:01:11Z |
---
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-deberta-base-url
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-deberta-base-url
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2917
- Accuracy: 0.9383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3485 | 1.0 | 1605 | 0.3753 | 0.9098 |
| 0.3082 | 2.0 | 3210 | 0.3783 | 0.9061 |
| 0.2902 | 3.0 | 4815 | 0.3461 | 0.9243 |
| 0.3252 | 4.0 | 6420 | 0.3556 | 0.9178 |
| 0.1985 | 5.0 | 8025 | 0.2917 | 0.9383 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
deuswoof/adapter_ingredients_ivan
|
deuswoof
| 2023-10-27T12:19:15Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"falcon",
"custom_code",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2023-10-23T13:54:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
|
JunghwanRo/ppo-LunarLander-v2
|
JunghwanRo
| 2023-10-27T12:17:22Z | 0 | 1 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T12:16:58Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 255.24 +/- 18.94
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
A-Funakoshi/bert-base-japanese-v3-wrime-v2
|
A-Funakoshi
| 2023-10-27T12:16:22Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"ja",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T12:05:45Z |
---
language:
- ja
metrics:
- accuracy
- f1
---
- ベースモデル:cl-tohoku/bert-base-japanese-whole-word-masking
- データセット:llm-book/wrime-sentiment
- オプティマイザ: adamw
- Optunaでハイパーパラメータ探索
- 学習率スケジュールのタイプ(lr_scheduler_type): constant, linear, cosine
- 学習率(learning rate): 1e-6 ~ 1e-4
- バッチサイズ(per_device_train_batch_size): 16, 32, 64, 128, 256
- 正則化(weight_decay): 1e-6 ~ 1e-1
- Optunaでの探索結果は以下
- 学習率スケジュールタイプ(lr_scheduler_type): cosine
- 学習率(learning rate): 3.912141264809884e-05
- バッチサイズ(per_device_train_batch_size): 128
- 正則化(weight_decay): 5.220051265759252e-05
- Epoch: 100
- EarlyStopping: early_stopping_patience=3
このハイパーパラメータを使って再度finetuningした.
|
hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax
|
hmbyt5-preliminary
| 2023-10-27T12:08:24Z | 33 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"t5",
"text2text-generation",
"en",
"de",
"fr",
"fi",
"sv",
"nl",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-04-29T09:13:48Z |
---
license: mit
language:
- en
- de
- fr
- fi
- sv
- nl
---
# hmByT5 - Preliminary Language Models
Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered:
* English (British Library Corpus - Books)
* German (Europeana Newspaper)
* French (Europeana Newspaper)
* Finnish (Europeana Newspaper)
* Swedish (Europeana Newspaper)
* Dutch (Delpher Corpus)
More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5).
# Pretraining
We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU.
Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax).
This model was trained with `mean_noise_span_length=20` for one epoch.
# Evaluation on Downstream Tasks (NER)
See detailed results at [hmLeaderboard](https://huggingface.co/spaces/stefan-it/hmLeaderboard).
# Acknowledgements
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️
|
hdparmar/tradfusion-v2-training-files
|
hdparmar
| 2023-10-27T11:57:19Z | 190 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"pytorch",
"text-to-image",
"license:mit",
"region:us"
] |
text-to-image
| 2023-10-26T20:24:57Z |
---
license: mit
tags:
- pytorch
- diffusers
- text-to-image
---
## Usage
Files logged during training, tensorboard, images generated, metrics and varias checkpoints
|
BAAI/JudgeLM-13B-v1.0
|
BAAI
| 2023-10-27T11:57:06Z | 57 | 5 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"instruction-finetuning",
"en",
"arxiv:2310.17631",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-10-27T11:00:33Z |
---
inference: false
language:
- en
tags:
- instruction-finetuning
pretty_name: JudgeLM-100K
task_categories:
- text-generation
---
<br>
# JudgeLM Model Card
## Model Details
JudgeLM is a judge model trained by fine-tuning Vicuna on JudgeLM-100K dataset.
- **Developed by:** [HUST](https://english.hust.edu.cn/), [BAAI](https://www.baai.ac.cn/english.html)
- **Model type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license
- **Finetuned from model:** [Vicuna](https://vicuna.lmsys.org).
### Model Sources
- **Repository:** https://github.com/baaivision/JudgeLM
- **Paper:** https://arxiv.org/abs/2310.17631
- **Demo:** http://218.91.113.230:9004/
## Uses
The primary use of JudgeLM is research on evaluating the performance of large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
- Judge large language models with this model: https://github.com/baaivision/JudgeLM/tree/main/judgelm/llm_judge.
- Serve this model with the gradio: https://github.com/baaivision/JudgeLM/tree/main/judgelm/serve.
## Training Details
JudgeLM v1.0 is fine-tuned from Vicuna-v1.3 with supervised instruction fine-tuning.
The training data is around 200K judge samples from [JudgeLM-100K dataset](https://huggingface.co/datasets/BAAI/JudgeLM-100K).
See more details in the "Fine-tuning Settings" section in the appendix of this [paper](https://arxiv.org/abs/2310.17631).
## Evaluation
JudgeLM is evaluated on JudgeLM val set, with judgements produced by GPT-4 teacher. See more details in this [paper](https://arxiv.org/abs/2310.17631) and try it with [code](https://github.com/baaivision/JudgeLM/tree/main/judgelm/llm_judge).
## Additional Information
### Citation Information
```
@article{zhu2023judgelm,
title={JudgeLM: Fine-tuned Large Language Models are Scalable Judges},
author={Lianghui Zhu and Xinggang Wang and Xinlong Wang},
year={2023},
eprint={2310.17631},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
TharinduCD/FSA-L3
|
TharinduCD
| 2023-10-27T11:53:13Z | 1 | 0 |
fasttext
|
[
"fasttext",
"text-classification",
"language-identification",
"license:cc-by-nc-4.0",
"region:us"
] |
text-classification
| 2023-10-27T11:37:37Z |
---
license: cc-by-nc-4.0
library_name: fasttext
tags:
- text-classification
- language-identification
---
---
## FastText Model for Classification
This model will classify products into L3 category
|
zion095/llama-2-7b-mlabonne-enhanced
|
zion095
| 2023-10-27T11:53:05Z | 3 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T11:51:59Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
thrunlab/t5-base_qnli_dense_epochs-1
|
thrunlab
| 2023-10-27T11:52:56Z | 46 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:google-t5/t5-base",
"base_model:finetune:google-t5/t5-base",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-24T22:29:23Z |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-base_qnli_dense_epochs-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: qnli
split: train[:64]
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.38461538461538464
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base_qnli_dense_epochs-1
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7029
- Accuracy: 0.3846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.9.0
- Tokenizers 0.14.1
|
s3nh/Photolens-OpenOrcaxOpenChat-2-13b-langchain-chat-GGUF
|
s3nh
| 2023-10-27T11:52:04Z | 35 | 0 |
transformers
|
[
"transformers",
"gguf",
"text-generation",
"zh",
"en",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T11:01:23Z |
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
- en
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGUF Format model files for [This project](https://huggingface.co/Photolens/OpenOrcaxOpenChat-2-13b-langchain-chat).
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
### Perplexity params
Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16
7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066
13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543
### inference
TODO
# Original model card
|
dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50
|
dlhw
| 2023-10-27T11:50:59Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-10-27T11:50:45Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("dlhw/setFit-all-MiniLM-L6-v2-OnlineContrastiveLoss-50")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
mateiaass/albert-base-qa-coQA-2-k-fold-1
|
mateiaass
| 2023-10-27T11:37:24Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"question-answering",
"generated_from_trainer",
"base_model:albert/albert-base-v2",
"base_model:finetune:albert/albert-base-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-10-25T07:46:23Z |
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_trainer
model-index:
- name: albert-base-qa-coQA-2-k-fold-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-qa-coQA-2-k-fold-1
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.6589 | 1.0 | 5467 | 2.6679 |
| 2.3399 | 2.0 | 10934 | 2.6262 |
| 2.0179 | 3.0 | 16401 | 2.7108 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
MakAttack/653b8221e806b310f8b8d12d
|
MakAttack
| 2023-10-27T11:33:21Z | 2 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-27T11:01:13Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/653b8221e806b310f8b8d12d
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
DanMoDemo/llama2-qlora-finetunined-french
|
DanMoDemo
| 2023-10-27T11:30:34Z | 0 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:TinyPixel/Llama-2-7B-bf16-sharded",
"base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded",
"region:us"
] | null | 2023-10-27T11:30:20Z |
---
library_name: peft
base_model: TinyPixel/Llama-2-7B-bf16-sharded
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.0.dev0
|
Denyol/FakeNews-deberta-base-lowercase
|
Denyol
| 2023-10-27T11:28:55Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-base",
"base_model:finetune:microsoft/deberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T11:02:24Z |
---
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-deberta-base-lowercase
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-deberta-base-lowercase
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1673
- Accuracy: 0.9678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2339 | 1.0 | 1605 | 0.2302 | 0.9533 |
| 0.1698 | 2.0 | 3210 | 0.4981 | 0.9112 |
| 0.1858 | 3.0 | 4815 | 0.2432 | 0.9589 |
| 0.1328 | 4.0 | 6420 | 0.1673 | 0.9678 |
| 0.0868 | 5.0 | 8025 | 0.2277 | 0.9636 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
bayerasif/whisper-tiny-en
|
bayerasif
| 2023-10-27T11:28:39Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-10-27T11:14:13Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.36291179596174283
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6612
- Wer Ortho: 0.3606
- Wer: 0.3629
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0007 | 17.86 | 500 | 0.6612 | 0.3606 | 0.3629 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
mateiaass/albert-base-qa-coQA-2-k-fold-4
|
mateiaass
| 2023-10-27T11:26:17Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"question-answering",
"generated_from_trainer",
"base_model:albert/albert-base-v2",
"base_model:finetune:albert/albert-base-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-10-25T07:53:28Z |
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_trainer
model-index:
- name: albert-base-qa-coQA-2-k-fold-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-qa-coQA-2-k-fold-4
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.6939 | 1.0 | 5468 | 2.6643 |
| 2.3671 | 2.0 | 10936 | 2.6055 |
| 2.0482 | 3.0 | 16404 | 2.7000 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
TharinduCD/FSA-L0
|
TharinduCD
| 2023-10-27T11:20:07Z | 1 | 0 |
fasttext
|
[
"fasttext",
"text-classification",
"language-identification",
"license:cc-by-nc-4.0",
"region:us"
] |
text-classification
| 2023-10-27T11:14:18Z |
---
license: cc-by-nc-4.0
library_name: fasttext
tags:
- text-classification
- language-identification
---
---
## FastText Model for Classification
This model will classify products into L0 category
|
pavfi-at-m/gpt2GPTQ
|
pavfi-at-m
| 2023-10-27T11:17:02Z | 1,334 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"general",
"history",
"business",
"en",
"dataset:wikitext",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-25T14:37:30Z |
---
license: mit
datasets:
- wikitext
language:
- en
library_name: transformers
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- general
- history
- business
---
Quantized GPT2 model.
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on BookCorpus, a dataset of over 7,000 unpublished fiction books from various genres, and trained on a dataset of 8 million web pages.
|
amudgal21/distilbert-emotion
|
amudgal21
| 2023-10-27T11:16:24Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T02:43:19Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: distilbert-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9325
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1678
- Accuracy: 0.9325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 125 | 0.2185 | 0.929 |
| No log | 2.0 | 250 | 0.1678 | 0.9325 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
plaguss/test_model
|
plaguss
| 2023-10-27T11:15:19Z | 103 | 0 |
Transformers
|
[
"Transformers",
"pytorch",
"bert",
"text-classification",
"nlp",
"argilla",
"transformers",
"en",
"arxiv:1910.09700",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-10-16T18:56:24Z |
---
language:
- en
license: apache-2.0
library_name: Transformers
tags:
- nlp
- text-classification
- argilla
- transformers
dataset_name: argilla/emotion
---
<!-- This model card has been generated automatically according to the information the `ArgillaTrainer` had access to. You
should probably proofread and complete it, then remove this comment. -->
# Model Card for *Model ID*
This model has been created with [Argilla](https://docs.argilla.io), trained with *Transformers*.
<!-- Provide a quick summary of what the model is/does. -->
This is a sample model finetuned from prajjwal1/bert-tiny.
## Model training
Training the model using the `ArgillaTrainer`:
```python
# Load the dataset:
dataset = FeedbackDataset.from_huggingface("argilla/emotion")
# Create the training task:
task = TrainingTask.for_text_classification(text=dataset.field_by_name("text"), label=dataset.question_by_name("label"))
# Create the ArgillaTrainer:
trainer = ArgillaTrainer(
dataset=dataset,
task=task,
framework="transformers",
model="prajjwal1/bert-tiny",
)
trainer.update_config({
"logging_steps": 1,
"num_train_epochs": 1,
"output_dir": "tmp"
})
trainer.train(output_dir="None")
```
You can test the type of predictions of this model like so:
```python
trainer.predict("This is awesome!")
```
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
Model trained with `ArgillaTrainer` for demo purposes
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** Finetuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) for demo purposes
- **Language(s) (NLP):** ['en']
- **License:** apache-2.0
- **Finetuned from model [optional]:** prajjwal1/bert-tiny
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** N/A
<!--
## Uses
*Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.*
-->
<!--
### Direct Use
*This section is for the model use without fine-tuning or plugging into a larger ecosystem/app.*
-->
<!--
### Downstream Use [optional]
*This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app*
-->
<!--
### Out-of-Scope Use
*This section addresses misuse, malicious use, and uses that the model will not work well for.*
-->
<!--
## Bias, Risks, and Limitations
*This section is meant to convey both technical and sociotechnical limitations.*
-->
<!--
### Recommendations
*This section is meant to convey recommendations with respect to the bias, risk, and technical limitations.*
-->
<!--
## Training Details
### Training Metrics
*Metrics related to the model training.*
-->
<!--
### Training Hyperparameters
- **Training regime:** (fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision)
-->
<!--
## Environmental Impact
*Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly*
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
-->
## Technical Specifications [optional]
### Framework Versions
- Python: 3.10.7
- Argilla: 1.19.0-dev
<!--
## Citation [optional]
*If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section.*
### BibTeX
-->
<!--
## Glossary [optional]
*If relevant, include terms and calculations in this section that can help readers understand the model or model card.*
-->
<!--
## Model Card Authors [optional]
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
thrunlab/t5-large_qnli_dense_epochs-1
|
thrunlab
| 2023-10-27T11:14:24Z | 46 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:google-t5/t5-large",
"base_model:finetune:google-t5/t5-large",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-10-27T10:52:14Z |
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_qnli_dense_epochs-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: qnli
split: train[:64]
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5384615384615384
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large_qnli_dense_epochs-1
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7227
- Accuracy: 0.5385
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 1
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.9.0
- Tokenizers 0.14.1
|
mwitiderrick/zephyr-7b-beta-llamini
|
mwitiderrick
| 2023-10-27T11:09:21Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T09:58:34Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
|
phoenixaiden33/ppo-LunarLander-v2_01
|
phoenixaiden33
| 2023-10-27T11:07:35Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T11:07:13Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.84 +/- 18.79
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
twdent/segformer-b1-finetuned-HikingHD
|
twdent
| 2023-10-27T11:01:20Z | 187 | 0 |
transformers
|
[
"transformers",
"pytorch",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/mit-b1",
"base_model:finetune:nvidia/mit-b1",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2023-10-12T21:40:00Z |
---
license: other
base_model: nvidia/mit-b1
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b1-finetuned-HikingHD
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-HikingHD
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the twdent/HikingHD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1067
- Mean Iou: 0.9379
- Mean Accuracy: 0.9665
- Overall Accuracy: 0.9684
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9485
- Accuracy Non-traversable: 0.9845
- Iou Unlabeled: nan
- Iou Traversable: 0.9305
- Iou Non-traversable: 0.9452
- Local Tests:
- Average inference time: 0.2622481801774767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.3796 | 1.67 | 20 | 0.5835 | 0.6174 | 0.9605 | 0.9617 | nan | 0.9488 | 0.9721 | 0.0 | 0.9180 | 0.9343 |
| 0.3086 | 3.33 | 40 | 0.2597 | 0.9230 | 0.9589 | 0.9605 | nan | 0.9439 | 0.9739 | nan | 0.9143 | 0.9318 |
| 0.2717 | 5.0 | 60 | 0.2202 | 0.9386 | 0.9681 | 0.9687 | nan | 0.9626 | 0.9736 | nan | 0.9321 | 0.9451 |
| 0.2655 | 6.67 | 80 | 0.2127 | 0.9334 | 0.9658 | 0.9659 | nan | 0.9646 | 0.9670 | nan | 0.9267 | 0.9402 |
| 0.1603 | 8.33 | 100 | 0.1699 | 0.9383 | 0.9677 | 0.9686 | nan | 0.9601 | 0.9753 | nan | 0.9316 | 0.9450 |
| 0.2 | 10.0 | 120 | 0.1692 | 0.9289 | 0.9609 | 0.9637 | nan | 0.9342 | 0.9876 | nan | 0.9200 | 0.9378 |
| 0.1613 | 11.67 | 140 | 0.1389 | 0.9399 | 0.9676 | 0.9695 | nan | 0.9498 | 0.9853 | nan | 0.9328 | 0.9470 |
| 0.185 | 13.33 | 160 | 0.1612 | 0.9217 | 0.9566 | 0.9600 | nan | 0.9254 | 0.9878 | nan | 0.9116 | 0.9318 |
| 0.251 | 15.0 | 180 | 0.1461 | 0.9277 | 0.9603 | 0.9631 | nan | 0.9340 | 0.9865 | nan | 0.9187 | 0.9368 |
| 0.1038 | 16.67 | 200 | 0.1401 | 0.9248 | 0.9581 | 0.9616 | nan | 0.9258 | 0.9904 | nan | 0.9149 | 0.9346 |
| 0.0628 | 18.33 | 220 | 0.1556 | 0.9195 | 0.9548 | 0.9588 | nan | 0.9171 | 0.9924 | nan | 0.9086 | 0.9303 |
| 0.077 | 20.0 | 240 | 0.1439 | 0.9213 | 0.9561 | 0.9598 | nan | 0.9220 | 0.9902 | nan | 0.9110 | 0.9317 |
| 0.0714 | 21.67 | 260 | 0.1267 | 0.9344 | 0.9641 | 0.9666 | nan | 0.9404 | 0.9878 | nan | 0.9263 | 0.9425 |
| 0.081 | 23.33 | 280 | 0.1097 | 0.9397 | 0.9672 | 0.9694 | nan | 0.9470 | 0.9874 | nan | 0.9324 | 0.9470 |
| 0.09 | 25.0 | 300 | 0.1063 | 0.9402 | 0.9679 | 0.9696 | nan | 0.9522 | 0.9836 | nan | 0.9332 | 0.9472 |
| 0.0737 | 26.67 | 320 | 0.1045 | 0.9395 | 0.9674 | 0.9692 | nan | 0.9502 | 0.9845 | nan | 0.9323 | 0.9466 |
| 0.1173 | 28.33 | 340 | 0.1019 | 0.9427 | 0.9702 | 0.9708 | nan | 0.9644 | 0.9760 | nan | 0.9365 | 0.9488 |
| 0.0535 | 30.0 | 360 | 0.1132 | 0.9387 | 0.9674 | 0.9688 | nan | 0.9549 | 0.9799 | nan | 0.9317 | 0.9456 |
| 0.0693 | 31.67 | 380 | 0.1182 | 0.9340 | 0.9637 | 0.9664 | nan | 0.9389 | 0.9886 | nan | 0.9258 | 0.9422 |
| 0.0649 | 33.33 | 400 | 0.1108 | 0.9374 | 0.9662 | 0.9681 | nan | 0.9483 | 0.9841 | nan | 0.9300 | 0.9448 |
| 0.1581 | 35.0 | 420 | 0.1107 | 0.9368 | 0.9658 | 0.9678 | nan | 0.9473 | 0.9844 | nan | 0.9293 | 0.9443 |
| 0.0711 | 36.67 | 440 | 0.1011 | 0.9414 | 0.9690 | 0.9702 | nan | 0.9578 | 0.9801 | nan | 0.9348 | 0.9479 |
| 0.0743 | 38.33 | 460 | 0.1026 | 0.9400 | 0.9676 | 0.9695 | nan | 0.9500 | 0.9853 | nan | 0.9329 | 0.9471 |
| 0.0602 | 40.0 | 480 | 0.1029 | 0.9407 | 0.9681 | 0.9699 | nan | 0.9521 | 0.9841 | nan | 0.9337 | 0.9476 |
| 0.0768 | 41.67 | 500 | 0.1059 | 0.9386 | 0.9670 | 0.9688 | nan | 0.9502 | 0.9837 | nan | 0.9314 | 0.9458 |
| 0.0494 | 43.33 | 520 | 0.1076 | 0.9375 | 0.9663 | 0.9682 | nan | 0.9484 | 0.9842 | nan | 0.9302 | 0.9449 |
| 0.0359 | 45.0 | 540 | 0.1097 | 0.9369 | 0.9659 | 0.9679 | nan | 0.9473 | 0.9844 | nan | 0.9294 | 0.9444 |
| 0.0799 | 46.67 | 560 | 0.1070 | 0.9379 | 0.9666 | 0.9684 | nan | 0.9493 | 0.9838 | nan | 0.9306 | 0.9452 |
| 0.0685 | 48.33 | 580 | 0.1075 | 0.9378 | 0.9665 | 0.9684 | nan | 0.9489 | 0.9841 | nan | 0.9305 | 0.9452 |
| 0.0437 | 50.0 | 600 | 0.1067 | 0.9379 | 0.9665 | 0.9684 | nan | 0.9485 | 0.9845 | nan | 0.9305 | 0.9452 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|
MakAttack/653b7f9ae3adbe5935e7e485
|
MakAttack
| 2023-10-27T11:01:03Z | 6 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-27T10:28:57Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/653b7f9ae3adbe5935e7e485
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
xjlulu/ntu_adl_span_selection_macbert
|
xjlulu
| 2023-10-27T10:51:32Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:hfl/chinese-macbert-base",
"base_model:finetune:hfl/chinese-macbert-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-10-22T04:17:00Z |
---
license: apache-2.0
base_model: hfl/chinese-macbert-base
tags:
- generated_from_trainer
model-index:
- name: ntu_adl_span_selection_macbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ntu_adl_span_selection_macbert
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1049
- Em Accuracy: 0.7846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Em Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|
| 0.7063 | 1.0 | 5428 | 0.6971 | 0.7627 |
| 0.4457 | 2.0 | 10857 | 0.8407 | 0.7840 |
| 0.2263 | 3.0 | 16284 | 1.1049 | 0.7846 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
alexionby/output_dir
|
alexionby
| 2023-10-27T10:38:23Z | 1 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-25T11:23:22Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: wrong
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - alexionby/output_dir
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on wrong using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
timmy0079/201912103_cppe5_use_data_finetuning
|
timmy0079
| 2023-10-27T10:37:07Z | 32 | 0 |
transformers
|
[
"transformers",
"pytorch",
"detr",
"object-detection",
"generated_from_trainer",
"dataset:cppe-5",
"base_model:facebook/detr-resnet-50",
"base_model:finetune:facebook/detr-resnet-50",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
object-detection
| 2023-10-27T05:30:06Z |
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
datasets:
- cppe-5
model-index:
- name: 201912103_cppe5_use_data_finetuning
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 201912103_cppe5_use_data_finetuning
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
s3nh/ehartford-WizardLM-1.0-Uncensored-Llama2-13b-GGUF
|
s3nh
| 2023-10-27T10:35:42Z | 27 | 3 |
transformers
|
[
"transformers",
"gguf",
"text-generation",
"zh",
"en",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-26T12:35:55Z |
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
- en
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGUF Format model files for [This project](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-Llama2-13b).
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
### Perplexity params
Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16
7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066
13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543
### inference
TODO
# Original model card
|
MakAttack/653b799e077e98242df53745
|
MakAttack
| 2023-10-27T10:28:46Z | 4 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-27T09:55:51Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/653b799e077e98242df53745
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
anirudhmu/videomae-base-finetuned-soccer-action-recognition
|
anirudhmu
| 2023-10-27T10:03:25Z | 22 | 1 |
transformers
|
[
"transformers",
"pytorch",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-10-27T06:06:19Z |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-soccer-action-recognition
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-soccer-action-recognition
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2554
- Accuracy: 0.9470
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2728
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7115 | 0.03 | 85 | 1.4196 | 0.4 |
| 1.0097 | 1.03 | 170 | 0.7807 | 0.6759 |
| 0.6192 | 2.03 | 255 | 0.7952 | 0.7034 |
| 0.4713 | 3.03 | 341 | 0.6536 | 0.7931 |
| 0.3973 | 4.03 | 426 | 0.3638 | 0.8690 |
| 0.3633 | 5.03 | 511 | 0.3616 | 0.8966 |
| 0.2336 | 6.03 | 596 | 0.4579 | 0.8966 |
| 0.1997 | 7.03 | 682 | 1.5970 | 0.6069 |
| 0.2738 | 8.03 | 767 | 0.4102 | 0.8690 |
| 0.2492 | 9.03 | 852 | 0.7651 | 0.8345 |
| 0.1568 | 10.03 | 937 | 0.8561 | 0.8138 |
| 0.1856 | 11.03 | 1023 | 0.2811 | 0.9241 |
| 0.1296 | 12.03 | 1108 | 0.3444 | 0.9172 |
| 0.0782 | 13.03 | 1193 | 0.3423 | 0.9241 |
| 0.14 | 14.03 | 1278 | 0.3122 | 0.9241 |
| 0.0689 | 15.03 | 1364 | 0.3534 | 0.9172 |
| 0.036 | 16.03 | 1449 | 0.4815 | 0.9103 |
| 0.0695 | 17.03 | 1534 | 0.5698 | 0.8828 |
| 0.0618 | 18.03 | 1619 | 0.3053 | 0.9310 |
| 0.0553 | 19.03 | 1705 | 0.3443 | 0.9241 |
| 0.0301 | 20.03 | 1790 | 0.1427 | 0.9586 |
| 0.0412 | 21.03 | 1875 | 0.5619 | 0.8690 |
| 0.0492 | 22.03 | 1960 | 0.5701 | 0.8897 |
| 0.0171 | 23.03 | 2046 | 0.6377 | 0.8690 |
| 0.0181 | 24.03 | 2131 | 0.5981 | 0.8828 |
| 0.0305 | 25.03 | 2216 | 0.3178 | 0.9448 |
| 0.0393 | 26.03 | 2301 | 0.5434 | 0.9103 |
| 0.0248 | 27.03 | 2387 | 0.4097 | 0.9241 |
| 0.0146 | 28.03 | 2472 | 0.4427 | 0.9103 |
| 0.012 | 29.03 | 2557 | 0.5619 | 0.9034 |
| 0.0065 | 30.03 | 2642 | 0.5384 | 0.9103 |
| 0.009 | 31.03 | 2728 | 0.5014 | 0.9172 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
alam72/birujastor
|
alam72
| 2023-10-27T09:59:57Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-10-27T09:57:48Z |
---
license: creativeml-openrail-m
---
|
pelemanov/dqn-LunarLander-v2
|
pelemanov
| 2023-10-27T09:56:46Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T09:56:29Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -169.23 +/- 48.43
name: mean_reward
verified: false
---
# **DQN** Agent playing **LunarLander-v2**
This is a trained model of a **DQN** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mecoaoge2/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
|
mecoaoge2
| 2023-10-27T09:55:59Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T09:55:58Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
spyobird/cs4248_albert-base-v2_bilstm_qa_1
|
spyobird
| 2023-10-27T09:32:09Z | 32 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"generated_from_trainer",
"dataset:squad",
"base_model:albert/albert-base-v2",
"base_model:finetune:albert/albert-base-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-10-27T08:05:53Z |
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: cs4248_albert-base-v2_bilstm_qa_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cs4248_albert-base-v2_bilstm_qa
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 4248
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
MakAttack/653b6dc287d6147063c526f6
|
MakAttack
| 2023-10-27T09:26:59Z | 2 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-27T08:54:32Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/653b6dc287d6147063c526f6
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
dummyturtle/my_awesome_opus_books_model
|
dummyturtle
| 2023-10-27T09:11:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:opus_books",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-26T08:55:14Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: my_awesome_opus_books_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 5.6282
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_opus_books_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6045
- Bleu: 5.6282
- Gen Len: 17.605
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 1.8507 | 1.0 | 6355 | 1.6274 | 5.4811 | 17.6153 |
| 1.8146 | 2.0 | 12710 | 1.6045 | 5.6282 | 17.605 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|
AlvaroPang/sd_class_butterflies-32
|
AlvaroPang
| 2023-10-27T09:10:11Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"pytorch",
"unconditional-image_generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2023-10-27T08:57:13Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image_generation
- diffusion-models-class
---
# 这个模型用于生成蝴蝶图像的无条件图像生成扩散模型(测试)
```python
from diffusers import DDPMPipeline
pipeline=DDPMPipeline.from_pretrained('AlvaroPang/sd_class_butterflies-32')
image = pipeline().images[0]
image
```
|
virilblueenpharmacie/virilblueenpharmacie
|
virilblueenpharmacie
| 2023-10-27T09:09:01Z | 0 | 0 |
diffusers
|
[
"diffusers",
"VirilBlue en Pharmacie",
"en",
"license:bsd-2-clause",
"region:us"
] | null | 2023-10-27T08:59:42Z |
---
license: bsd-2-clause
language:
- en
library_name: diffusers
tags:
- VirilBlue en Pharmacie
---
[VirilBlue en Pharmacie](https://atozsupplement.com/virilblue-avis/) CBD fixation, and by and large wellbeing. It's for the most part encouraged to begin with a low measurements and bit by bit increment if necessary.Quality and Wellbeing: While buying CBD gummies, it's critical to pick respectable brands that focus on quality and security. Search for items that have been tried by outsider labs for power and immaculateness. These lab reports, frequently alluded to as Authentications of Examination (COAs), ought to be promptly accessible for clients to survey.
VISIT HERE FOR OFFICIAL WEBSITE:-https://atozsupplement.com/virilblue-avis/
|
MattiaParavisi/bert-base-uncased-word_sentence_1_1-collator
|
MattiaParavisi
| 2023-10-27T09:03:39Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-10-23T08:29:34Z |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-word_sentence_1_1-collator
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-word_sentence_1_1-collator
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
virilblueenpharmaciereview/virilblueenpharmaciereview
|
virilblueenpharmaciereview
| 2023-10-27T08:39:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-10-27T08:37:14Z |
---
license: openrail
language:
- en
library_name: espnet
tags:
VirilBlue en Pharmacie
[VirilBlue en Pharmacie](https://atozsupplement.com/virilblue-avis/) With natural male enhancers, you are supplied with the sexual gear that you want for fulfillment. Male enhancer drugs will intensify your satisfaction & release the best factor which it is easy to get from natural enhancement products is that they're entirely free of injurious side results.
Click Here For More Details :- https://atozsupplement.com/virilblue-avis/
|
iambestfeed/vietnamese-llama2-7b-sharded-checkpoints
|
iambestfeed
| 2023-10-27T08:22:28Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"vi",
"en",
"dataset:vietgpt/wikipedia_vi",
"dataset:wikipedia",
"dataset:pg19",
"dataset:mc4",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T08:16:28Z |
---
license: other
datasets:
- vietgpt/wikipedia_vi
- wikipedia
- pg19
- mc4
language:
- vi
- en
---
We employed [SentencePiece](https://github.com/google/sentencepiece) to retrain a Vietnamese tokenizer with a vocabulary size of 20K. No Vietnamese word segmentation was used. We then merged this vocabulary with the original one of Llama2, removing duplicate tokens.
The new tokenizer significantly improves when encoding Vietnamese text, reducing the number of tokens by 50% compared to ChatGPT and approximately 70% compared to the original Llama2.
We conducted a single-epoch continual pretraining, also known as incremental pretraining, using the Llama2-chat 7B model on a mixed dataset totaling 40.5 GB, comprised of:
- 19 GB [NewsCorpus](https://github.com/binhvq/news-corpus)
- 1.1 GB Vietnamese Wikipedia
- 1.6 GB [Vietnamese books](https://www.kaggle.com/datasets/iambestfeeder/10000-vietnamese-books)
- 4.5 GB Vietnamese legal documents (crawled from thuvienphapluat and processed by ourselves)
- 2.1 GB Vietnamese legal text (from [C4-vi](https://huggingface.co/datasets/c4))
- 1.1 GB English Books (sub-sampled from [pg19](https://huggingface.co/datasets/pg19))
- 1.1 GB English Wikipedia (sub-sampled from 20220301.en wikipedia)
- 10 GB English Text (sub-sampled from [C4-en](https://huggingface.co/datasets/c4))
We trained the model on a DGX A100 system, utilizing four GPU A100 in 10 days (about 1000 GPU hours).
Hyperparameters are set as follows:
- Training Regime: BFloat16 mixed precision
- Lora Config:
```
{
"base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
"bias": "none",
"enable_lora": null,
"fan_in_fan_out": false,
"inference_mode": true,
"lora_alpha": 32.0,
"lora_dropout": 0.05,
"merge_weights": false,
"modules_to_save": [
"embed_tokens",
"lm_head"
],
"peft_type": "LORA",
"r": 8,
"target_modules": [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"gate_proj",
"down_proj",
"up_proj"
],
"task_type": "CAUSAL_LM"
}
```
We also provide the [LoRA part](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB/tree/main/pt_lora_model) so that you can integrate it with the original Llama2-chat-7b by yourself.
Please note that **this model requires further supervised fine-tuning (SFT)** to be used in practice!
Usage and other considerations: We refer to the [Llama 2](https://github.com/facebookresearch/llama)
Training loss:
<img src="figure/training_loss.png" alt="Training Loss Curve"/>
**Disclaimer**
This project is built upon Meta's Llama-2 model. It is essential to strictly adhere to the open-source license agreement of Llama-2 when using this model. If you incorporate third-party code, please ensure compliance with the relevant open-source license agreements.
It's important to note that the content generated by the model may be influenced by various factors, such as calculation methods, random elements, and potential inaccuracies in quantification. Consequently, this project does not offer any guarantees regarding the accuracy of the model's outputs, and it disclaims any responsibility for consequences resulting from the use of the model's resources and its output.
For those employing the models from this project for commercial purposes, developers must adhere to local laws and regulations to ensure the compliance of the model's output content. This project is not accountable for any products or services derived from such usage.
**Acknowledgments**
We extend our gratitude to PHPC - Phenikaa University and NVIDIA for their generous provision of computing resources for model training. Our appreciation also goes out to binhvq and the other authors for their diligent efforts in collecting and preparing the Vietnamese text corpus.
|
khleeloo/vit-base-skin
|
khleeloo
| 2023-10-27T08:18:07Z | 17 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-10-18T10:24:14Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-skin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-skin
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6917
- Accuracy: 0.8549
- F1: 0.8552
- Precision: 0.8560
- Recall: 0.8549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.9322 | 0.16 | 100 | 0.8109 | 0.6943 | 0.6290 | 0.5939 | 0.6943 |
| 0.7518 | 0.32 | 200 | 0.6722 | 0.7409 | 0.6832 | 0.6945 | 0.7409 |
| 0.6616 | 0.48 | 300 | 0.7126 | 0.7358 | 0.7077 | 0.7039 | 0.7358 |
| 0.8264 | 0.64 | 400 | 0.6001 | 0.8135 | 0.8092 | 0.8178 | 0.8135 |
| 0.5767 | 0.8 | 500 | 0.6306 | 0.7772 | 0.7619 | 0.7945 | 0.7772 |
| 0.5939 | 0.96 | 600 | 0.4621 | 0.8290 | 0.7988 | 0.8397 | 0.8290 |
| 0.4351 | 1.12 | 700 | 0.5544 | 0.7979 | 0.7894 | 0.8410 | 0.7979 |
| 0.4737 | 1.28 | 800 | 0.5151 | 0.8238 | 0.8334 | 0.8708 | 0.8238 |
| 0.428 | 1.44 | 900 | 0.4980 | 0.8238 | 0.8170 | 0.8299 | 0.8238 |
| 0.4596 | 1.6 | 1000 | 0.5650 | 0.7927 | 0.8032 | 0.8428 | 0.7927 |
| 0.4096 | 1.76 | 1100 | 0.4544 | 0.8342 | 0.8178 | 0.8567 | 0.8342 |
| 0.4328 | 1.92 | 1200 | 0.4524 | 0.8290 | 0.8294 | 0.8482 | 0.8290 |
| 0.2272 | 2.08 | 1300 | 0.4808 | 0.8290 | 0.8304 | 0.8409 | 0.8290 |
| 0.2415 | 2.24 | 1400 | 0.5585 | 0.7927 | 0.7916 | 0.8057 | 0.7927 |
| 0.2743 | 2.4 | 1500 | 0.4144 | 0.8497 | 0.8484 | 0.8497 | 0.8497 |
| 0.1943 | 2.56 | 1600 | 0.3977 | 0.8705 | 0.8722 | 0.8761 | 0.8705 |
| 0.1839 | 2.72 | 1700 | 0.4784 | 0.8394 | 0.8382 | 0.8517 | 0.8394 |
| 0.1905 | 2.88 | 1800 | 0.4314 | 0.8653 | 0.8669 | 0.8724 | 0.8653 |
| 0.111 | 3.04 | 1900 | 0.5080 | 0.8290 | 0.8309 | 0.8348 | 0.8290 |
| 0.0872 | 3.19 | 2000 | 0.5320 | 0.8549 | 0.8520 | 0.8649 | 0.8549 |
| 0.1169 | 3.35 | 2100 | 0.5110 | 0.8342 | 0.8386 | 0.8477 | 0.8342 |
| 0.1181 | 3.51 | 2200 | 0.4916 | 0.8446 | 0.8482 | 0.8563 | 0.8446 |
| 0.0879 | 3.67 | 2300 | 0.5428 | 0.8601 | 0.8657 | 0.8829 | 0.8601 |
| 0.1896 | 3.83 | 2400 | 0.5534 | 0.8497 | 0.8484 | 0.8536 | 0.8497 |
| 0.0794 | 3.99 | 2500 | 0.6542 | 0.8342 | 0.8259 | 0.8270 | 0.8342 |
| 0.0398 | 4.15 | 2600 | 0.5962 | 0.8187 | 0.8243 | 0.8338 | 0.8187 |
| 0.0512 | 4.31 | 2700 | 0.6286 | 0.8497 | 0.8447 | 0.8457 | 0.8497 |
| 0.0106 | 4.47 | 2800 | 0.6446 | 0.8394 | 0.8372 | 0.8377 | 0.8394 |
| 0.0058 | 4.63 | 2900 | 0.5754 | 0.8653 | 0.8616 | 0.8618 | 0.8653 |
| 0.0268 | 4.79 | 3000 | 0.5966 | 0.8653 | 0.8651 | 0.8658 | 0.8653 |
| 0.0146 | 4.95 | 3100 | 0.6707 | 0.8601 | 0.8535 | 0.8577 | 0.8601 |
| 0.0325 | 5.11 | 3200 | 0.6543 | 0.8549 | 0.8518 | 0.8511 | 0.8549 |
| 0.0063 | 5.27 | 3300 | 0.6780 | 0.8497 | 0.8519 | 0.8583 | 0.8497 |
| 0.003 | 5.43 | 3400 | 0.6675 | 0.8601 | 0.8577 | 0.8562 | 0.8601 |
| 0.0143 | 5.59 | 3500 | 0.6967 | 0.8601 | 0.8554 | 0.8539 | 0.8601 |
| 0.004 | 5.75 | 3600 | 0.6992 | 0.8601 | 0.8573 | 0.8552 | 0.8601 |
| 0.003 | 5.91 | 3700 | 0.6917 | 0.8549 | 0.8552 | 0.8560 | 0.8549 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3
|
Gayathri142214002/Pegasus_paraphraser_Com_5
|
Gayathri142214002
| 2023-10-27T08:15:43Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-27T07:29:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Pegasus_paraphraser_Com_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Pegasus_paraphraser_Com_5
This model is a fine-tuned version of [Gayathri142214002/Pegasus_paraphraser_Com_4](https://huggingface.co/Gayathri142214002/Pegasus_paraphraser_Com_4) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1972 | 0.98 | 500 | 0.1900 |
| 0.1751 | 1.96 | 1000 | 0.2030 |
| 0.1592 | 2.94 | 1500 | 0.2125 |
| 0.1455 | 3.92 | 2000 | 0.2185 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
camiloss/ppo-Huggy
|
camiloss
| 2023-10-27T08:06:38Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-10-27T08:06:31Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: camiloss/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
abdullah0x/bert-finetuned-squad
|
abdullah0x
| 2023-10-27T08:03:12Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-10-27T05:57:24Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: abdullah0x/bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# abdullah0x/bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.2858
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2858 | 0 |
### Framework versions
- Transformers 4.34.1
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Gnartiel/vietnamese-sbert
|
Gnartiel
| 2023-10-27T07:53:35Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"vietnamese",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-10-26T11:55:09Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- vietnamese
---
# {vietnamese-sbert}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search on Vietnamese language.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Cô giáo đang ăn kem", "Chị gái đang thử món thịt dê"]
model = SentenceTransformer('keepitreal/vietnamese-sbert')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Cô giáo đang ăn kem', 'Chị gái đang thử món thịt dê']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained(''keepitreal/vietnamese-sbert')
model = AutoModel.from_pretrained('keepitreal/vietnamese-sbert')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
pli2023/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
|
pli2023
| 2023-10-27T07:52:58Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T02:48:35Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
sdinger/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
|
sdinger
| 2023-10-27T07:50:13Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-27T07:50:10Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
kyungil/LawChatBot-KuLLM-5.8B
|
kyungil
| 2023-10-27T07:49:59Z | 2 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:nlpai-lab/kullm-polyglot-5.8b-v2",
"base_model:adapter:nlpai-lab/kullm-polyglot-5.8b-v2",
"region:us"
] | null | 2023-10-27T07:49:25Z |
---
library_name: peft
base_model: nlpai-lab/kullm-polyglot-5.8b-v2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
vvmnnnkv/owlv2-base-patch16
|
vvmnnnkv
| 2023-10-27T07:46:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"owlv2",
"zero-shot-object-detection",
"vision",
"object-detection",
"arxiv:2306.09683",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
object-detection
| 2023-10-27T07:34:45Z |
---
license: apache-2.0
tags:
- vision
- object-detection
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
example_title: Savanna
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
example_title: Airport
---
# Model Card: OWLv2
## Model Details
The OWLv2 model (short for Open-World Localization) was proposed in [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. OWLv2, like OWL-ViT, is a zero-shot text-conditioned object detection model that can be used to query an image with one or multiple text queries.
The model uses CLIP as its multi-modal backbone, with a ViT-like Transformer to get visual features and a causal language model to get the text features. To use CLIP for detection, OWL-ViT removes the final token pooling layer of the vision model and attaches a lightweight classification and box head to each transformer output token. Open-vocabulary classification is enabled by replacing the fixed classification layer weights with the class-name embeddings obtained from the text model. The authors first train CLIP from scratch and fine-tune it end-to-end with the classification and box heads on standard detection datasets using a bipartite matching loss. One or multiple text queries per image can be used to perform zero-shot text-conditioned object detection.
### Model Date
June 2023
### Model Type
The model uses a CLIP backbone with a ViT-B/16 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. The CLIP backbone is trained from scratch and fine-tuned together with the box and class prediction heads with an object detection objective.
### Documents
- [OWLv2 Paper](https://arxiv.org/abs/2306.09683)
### Use with Transformers
```python3
import requests
from PIL import Image
import torch
from transformers import Owlv2Processor, Owlv2ForObjectDetection
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = [["a photo of a cat", "a photo of a dog"]]
inputs = processor(text=texts, images=image, return_tensors="pt")
outputs = model(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.Tensor([image.size[::-1]])
# Convert outputs (bounding boxes and class logits) to COCO API
results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes)
i = 0 # Retrieve predictions for the first image for the corresponding text queries
text = texts[i]
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
# Print detected objects and rescaled box coordinates
for box, score, label in zip(boxes, scores, labels):
box = [round(i, 2) for i in box.tolist()]
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
```
## Model Use
### Intended Use
The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, text-conditioned object detection. We also hope it can be used for interdisciplinary studies of the potential impact of such models, especially in areas that commonly require identifying objects whose label is unavailable during training.
#### Primary intended uses
The primary intended users of these models are AI researchers.
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
## Data
The CLIP backbone of the model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet. The prediction heads of OWL-ViT, along with the CLIP backbone, are fine-tuned on publicly available object detection datasets such as [COCO](https://cocodataset.org/#home) and [OpenImages](https://storage.googleapis.com/openimages/web/index.html).
(to be updated for v2)
### BibTeX entry and citation info
```bibtex
@misc{minderer2023scaling,
title={Scaling Open-Vocabulary Object Detection},
author={Matthias Minderer and Alexey Gritsenko and Neil Houlsby},
year={2023},
eprint={2306.09683},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|
LoneStriker/airoboros-l2-c70b-3.1.2-2.6bpw-h6-exl2
|
LoneStriker
| 2023-10-27T07:44:43Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"dataset:jondurbin/airoboros-3.1",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-27T07:43:22Z |
---
license: llama2
datasets:
- jondurbin/airoboros-3.1
---
### Overview
Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros)
#### IMPORTANT NOTE - llama-2 chat format!!!
This models uses llama-2 chat format, rather than vicuna style user/assistant!
This is a breaking change, although most inference systems support llama-2 chat templating.
See prompt format below for all of the details.
#### Highlights
This is just a test of fine-tuning on top of the llama-2-70b-chat model instead of llama-2-70b (base).
A model built on [airoboros-3.1 dataset](https://hf.co/datasets/jondurbin/airoboros-3.1), which is a continuation of [airoboros-3.0 dataset](https://hf.co/datasets/jondurbin/airoboros-3.0) with the following extras:
* Log information extraction (e.g. getting the list of paths/IPs/etc. from apache logs)
* Anonymization, e.g. removing names, IP addresses, and/or dates from text.
* Chat introspection - multi-turn chats that have random questions injected asking about the character's descriptions, the setting of the chat, or things previously said, to make sure the model uses the system prompt and or chat history.
* Multi-step instructions with acknowledgement (see below)
* De-censorship data (not published)
This is a fairly general purpose model, but focuses heavily on instruction following, rather than casual chat/roleplay.
Huge thank you to the folks over at [a16z](https://a16z.com/) for sponsoring the costs associated with building models and associated tools!
### Prompt format
The prompt format is llama-2 chat.
```
[INST] <<SYS>>
You are a helpful, unbiased, uncensored assistant.
<</SYS>>
{prompt} [/INST]
```
For multi-turn, the prompt format is as follows:
```
[INST] <<SYS>>
You are a helful, unbiased, uncensored assistant.
<</SYS>>
{prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST]
```
The prompt template is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.:
```
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/airoboros-l2-70b-3.1')
chat = [
{"role": "system", "content": "You are Bob, a friendly AI assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
print(tokenizer.apply_chat_template(chat, tokenize=False))
```
### Helpful usage tips
#### MathJSON
Ask mathematical questions, prefixed with "Create a MathJSON solution to the following:", and you should get output with a formula that can be executed by https://cortexjs.io/compute-engine/
I also made a (really quite hacky, incomplete, semi-functional) python version that works for most expressions, see [mathjson.py](https://github.com/jondurbin/airoboros/blob/mathjson/airoboros/mathjson.py)
__Use a very low temperature!__
Example:
```
[INST] <<SYS>>
You are an assistant with vast knowledge in all things math.
<</SYS>>
Create a MathJSON solution to the following: Calculate the area of a circle with radius of 17.2456cm. Include your reasoning. [/INST]
```
Output:
```
The area (A) of a circle is given by the formula A = πr², where r is the radius of the circle. Since the radius is given in centimeters, we need to convert it to meters first. We know that 1 meter equals 100 centimeters. Therefore, we can represent the radius as: r = 17.2456 cm * 100/1.
Once we have the radius in meters, we can calculate the area of the circle using the formula A = πr².
Solution as MathJSON:
<mathjson>
[
"Multiply",
"Pi",
[
"Power",
17.2456,
2
]
]
</mathjson>
```
You can then validate the JSON between `<mathjson>` and `</mathjson>`, then pass the parsed JSON to compute-engine JS or the `evaluate` function in mathjson.py to calculate the response.
#### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
__Use a very low temperature!__
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
#### Summarization
500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example:
```
BEGININPUT
{text to summarize}
ENDINPUT
BEGININSTRUCTION
Summarize the input in around 130 words.
ENDINSTRUCTION
```
#### Getting longer responses
You can use a few techniques to get longer responses.
Detailed prompts, with explicit instruction for word count:
```
Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality.
The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization.
One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary.
Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements.
Your response should be approximately 2300 words.
```
Or, a simpler example:
```
Please create a long, detailed story about a dragon in an old growth forest who, for some reason, begins speaking the words of the source code of linux.
```
There are a few examples of next chapter completion as well, e.g.:
```
Write the next chapter of a historical fiction novel set in Paris during the 20th century.
Here's a summary of the previous chapter:
In the vibrant city of Paris, amid the tumultuous changes of the 20th century, our protagonist Margot, an aspiring fashion designer, has just secured an apprenticeship at a prestigious couture house. She meets Lucien, a charming journalist who covers the fashion industry. Together they navigate the ever-changing world of fashion and society, uncovering secrets that reveal the intricate links between style, politics, and culture. As the chapter concludes, they decide to delve deeper into the hidden corners of the fashion world to unravel its mysteries.
Requirements for the next chapter:
1. Character Development of Margot and Lucien:
- Margot's Evolution: Unfold more about Margot's past, her dreams of revolutionizing fashion, and her struggle to establish herself in a male-dominated industry. Illustrate her growing expertise, innovative ideas, and increasing dependence on Lucien.
- Lucien's Complexity: Introduce uncertainties surrounding Lucien's background and real motives. Increase suspense by suggesting undisclosed information he possesses, while also highlighting his wit and perceptiveness.
2. Exploration of Paris and the Couture House:
- Paris: Elaborate their journey through the bustling streets of Paris, including encounters with iconic figures, social unrest, and relics from different eras of French history.
- The Couture House: Expand on the grandeur of the couture house they work in, filled with artistic masterpieces, intense competition, and cryptic notes hinting at a scandalous past.
3. Emergence of the Subplot: The Lost Collection:
- Discovery: Have Margot and Lucien stumble upon a secret vault containing a lost collection designed before World War II, raising new questions about the previous owner and the influence of war on fashion.
- Revelation: Capture their shock as they realize the designs were plagiarized, the potential repercussions, and the opportunities it presents for Margot's career.
- Twist: End with a twist that suggests there are other stolen collections across Paris, setting up their new mission.
Your response should be approximately 650 words.
```
#### Coding
You can ask for fairly complex coding instructions with multiple criteria, e.g.:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or inline criteria:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
#### Agent/function calling
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
```
Response:
```json
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
```
#### Chain-of-thought
You can ask for several possible responses to a given problem, with a ranking and final answer selection.
Example prompt:
```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```
Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
n(n-1)/2 = 45
Solving this equation gives us n=10.
Final answer: There were 10 players in the tournament.
Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
Final answer: There were 10 players in the tournament.
Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
Final answer: There were 10 players in the tournament.
Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
Best and final answer: There were 10 players in the tournament.
```
#### reWOO style execution planning
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```
Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
```python
import re
import requests
def inject_context(input_text, **context):
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
input_text = input_text.replace(ref, context.get(ref, ""))
return input_text
def duckduckgo(input_text, **context):
search_string = inject_context(input_text, **context)
... search via duck duck go using search_string
... return text content
def link_extractor(input_text, **context):
input_text = inject_context(input_text, **context)
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
def scrape(input_text, **context):
input_text = inject_context(input_text, **context)
text = []
for link in input_text.splitlines():
text.append(requests.get(link).text)
return "\n".join(text)
def infer(input_text, **context)
prompt = inject_context(input_text, **context)
... call model with prompt, return output
def parse_plan(plan):
method_map = {
"DuckDuckGo": duckduckgo,
"HyperlinkExtractor": link_extractor,
"KnowledgeModel": infer,
"TextScraper": scrape,
}
context = {}
for line in plan.strip().splitlines():
if line.startswith("Plan:"):
print(line)
continue
parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
if not parts:
if line.startswith("Answer: "):
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
raise RuntimeError("bad format: " + line)
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```
## Multi-step instructions with acknowledgement
I don't know how useful this is, really, but I thought I'd add it just in case. Example:
```
{
"conversations": [
{
"value": "You are a helpful, unbiased, uncensored assistant.",
"from": "system"
},
{
"value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "You can only respond using animal-related emojis.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Precede all responses with \"ZOOZOO:\"",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Include at least one bird emoji in your responses.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Describe a trip to a safari park.",
"from": "human"
},
{
"value": "ZOOZOO: \ud83e\udd81\ud83d\udc2f\ud83e\udd93\ud83e\udd92\ud83d\udc18\ud83d\udc0d\ud83c\udf33\ud83c\udf32\u2600\ufe0f\ud83d\ude90\ud83e\udd85\ud83d\udcf8\ud83e\udd29",
"from": "gpt"
}
]
}
```
### Contribute
If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data,
take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details.
To help me with the OpenAI/compute costs:
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
### Licence and usage restrictions
The airoboros 3.1 models are built on top of multiple base models, each with their own license/restrictions.
The 30b model is built on the original llama, which has a strict non-commercial usage restriction.
The models with `-l2` in the name have a custom Meta license:
- See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta.
- See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta.
The models with `-m-` are mistral-7b (apache 2.0)
The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
Either way, by using this model, you agree to completely indemnify me.
|
lightblue/jod
|
lightblue
| 2023-10-27T07:37:13Z | 12 | 1 |
transformers
|
[
"transformers",
"pytorch",
"mistral",
"text-generation",
"ja",
"dataset:kunishou/oasst1-89k-ja",
"dataset:kunishou/databricks-dolly-15k-ja",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-24T02:03:30Z |
---
license: apache-2.0
datasets:
- kunishou/oasst1-89k-ja
- kunishou/databricks-dolly-15k-ja
language:
- ja
---
# How to use
We write our prompts in the ChatML format.
### With vLLM (recommended for much faster inference)
<details><summary>Install vLLM</summary>
[Reference](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
```bash
pip install vllm
```
</details>
```python
from vllm import LLM, SamplingParams
model_name = "lightblue/jod"
llm = LLM(model=model_name)
SYSTEM_MESSAGE = "You are a helpful assistant."
def process_chat_history(next_user_msg, text_chat_history = []):
prompt_text = "<|im_start|>system\n"
prompt_text += SYSTEM_MESSAGE
prompt_text += "<|im_end|>\n\n"
for user_msg, ai_msg in text_chat_history:
prompt_text += "<|im_start|>user\n"
prompt_text += user_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>assistant\n"
prompt_text += ai_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>user\n"
prompt_text += next_user_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>assistant\n"
return prompt_text
user_prompt = "日本の一番高い山は?"
prompt = process_chat_history(user_prompt)
sampling_params = SamplingParams(temperature=0, max_tokens=528)
outputs = llm.generate(prompt, sampling_params)
bot_message = outputs[0].outputs[0].text.strip()
print(bot_message)
```
### With Huggingface
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_name = "lightblue/jod"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(
model_dir, torch_dtype=torch.bfloat16, device_map='auto', load_in_4bit=True,
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
SYSTEM_MESSAGE = "You are a helpful assistant."
def process_chat_history(next_user_msg, text_chat_history = []):
prompt_text = "<|im_start|>system\n"
prompt_text += SYSTEM_MESSAGE
prompt_text += "<|im_end|>\n\n"
for user_msg, ai_msg in text_chat_history:
prompt_text += "<|im_start|>user\n"
prompt_text += user_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>assistant\n"
prompt_text += ai_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>user\n"
prompt_text += next_user_msg
prompt_text += "<|im_end|>\n\n"
prompt_text += "<|im_start|>assistant\n"
return prompt_text
user_prompt = "日本の一番高い山は?"
prompt = process_chat_history(user_prompt)
bot_message = pipe(do_closed_qa(test_article, question), max_new_tokens=128, temperature=0)[0]["generated_text"]
print(bot_message)
```
# Training details
We trained on the following 3 datasets:
* (J) - [JASTER](https://github.com/llm-jp/llm-jp-eval)
* (O) - [kunishou/oasst1-89k-ja](https://huggingface.co/datasets/kunishou/oasst1-89k-ja/)
* (D) - [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja/)
using the ([Open-Orca/Mistral-7B-SlimOrca](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca)) model as our base checkpoint.
This model was trained using the ChatML format, so it should be used for inference using the ChatML chatbot format.
We chose this format as the base model ([Open-Orca/Mistral-7B-SlimOrca](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca)) was trained with this format, and we find the chatbot format more compelling for practical use compared to the Alpaca style instruction format.
We trained for 1 epoch using the following Axolotl config. (Early stopping was not performed during our training.)
<details><summary>Axolotl config .yaml</summary>
```yaml
base_model: Open-Orca/Mistral-7B-SlimOrca
base_model_config: Open-Orca/Mistral-7B-SlimOrca
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./data/jaster_plus.jsonl
ds_type: json # see other options below
type: sharegpt
conversation: chatml
dataset_prepared_path: false
val_set_size: 0.002
output_dir: ./train_output/openorca-mistral-jaster-1epoch
use_wandb: true
wandb_project: \<HIDDEN\>
wandb_entity: \<HIDDEN\>
debug:
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
gradient_accumulation_steps: 1
micro_batch_size: 10
eval_batch_size: 4
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience: 10
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 10
eval_table_size: 5
eval_table_max_new_tokens: 128
save_steps: 10
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details>
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
philschmid/instruct-igel-001
|
philschmid
| 2023-10-27T07:02:50Z | 74 | 47 |
transformers
|
[
"transformers",
"pytorch",
"bloom",
"text-generation",
"LLM",
"de",
"license:bigscience-openrail-m",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-04-03T06:57:57Z |
---
language:
- de
pipeline_tag: text-generation
library_name: transformers
tags:
- bloom
- LLM
inference: false
widget:
- text: TODO
license: bigscience-openrail-m
---
# IGEL: Instruction-tuned German large Language Model for Text
IGEL is an LLM model family developed for German. The first version of IGEL is built on top **[BigScience BLOOM](https://bigscience.huggingface.co/blog/bloom),** adapted to **[German from Malte Ostendorff](https://huggingface.co/malteos/bloom-6b4-clp-german)**. IGEL is designed to provide accurate and reliable language understanding capabilities for a wide range of natural language understanding tasks, including sentiment analysis, language translation, and question answering.
### **You can try out the model at [igel-playground](https://huggingface.co/spaces/philschmid/igel-playground).**
The IGEL family currently includes `instruct-igel-001` and `chat-igel-001` _(coming soon)_.
## Model Description
LoRA tuned [BLOOM-CLP German (6.4B parameters)](https://huggingface.co/malteos/bloom-6b4-clp-german) with merged weights. The `001` was designed as a naive test to determine whether it is possible to create an german instruction-tuned model using a small, undertrained LLM and a naive translated dataset. The goal of this test was to explore the potential of the BLOOM architecture for language modeling tasks that require instruction-based responses.
To achieve this goal, we used a pre-trained LLM model with limited training, and fine-tuned it using a dataset of naive translations of instruction-based content. The dataset was created by taking instructions in English and translating them into German using an automated translation tool. While this approach may introduce errors in the translated content, we wanted to test whether the model could still learn to generate instruction-based responses in a variety of languages.
## Training data
`instruct-igel-001` is trained on naive translated instruction datasets, without much post-processing.
### Known limitations
`instruct-igel-001` also exhibits several common deficiencies of language models, including hallucination, toxicity, and stereotypes.
For example, in the following figure, `instruct-igel-001` wrongly says that the cancelor of Germany is Angela Merkel.

### Training procedure
_coming soon_
## How to use
You can test the model in this LLM playground.
_coming soon_
|
vincegmz/dreamboost_lora_mnistm_zero_A_photo_of_zero_with_color_background
|
vincegmz
| 2023-10-27T07:00:31Z | 0 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-10-27T06:36:25Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a photo of zero with color background
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - vincegmz/dreamboost_lora_mnistm_zero_A_photo_of_zero_with_color_background
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of zero with color background using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
|
pranjal01/Fine-tuned-t5-text-summarizer
|
pranjal01
| 2023-10-27T06:51:16Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"summarization",
"en",
"dataset:pranjal0109/Text-summarizer-dataset",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-10-25T10:57:50Z |
---
license: apache-2.0
datasets:
- pranjal0109/Text-summarizer-dataset
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
---
# T5 model is fine tuned on custom dataset
## Dataset
https://huggingface.co/datasets/pranjal01/Text-summarizer-dataset
## Hypterparameters
evaluation_strategy="epoch",
learning_rate=1e-4,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=50,
predict_with_generate=True,
fp16=True,
push_to_hub=True,
## Training Result

## Inference
test_text= " summarize: Why is this deal historic?\
It is just another club for Lionel Messi to go to and show his skills but it is indeed \
historic for the MLS and American Football as a whole. This will bring them the most eyeballs \
they have ever seen. The social media following of Inter Miami has risen by more than 300% and \
the ticket price for all the matches of Inter Miami have gone from $50 to $10,000 . The amount \
of worldwide attention that the MLS will get from this one signing will be humongous.\
Lionel Messi will bring fans to the Stadiums and Inter Miami will have to move \
from their 18,000 seater stadium to the Hard Rock Café Stadium which has a capacity of 70,000 because \
that is the standard of Messi. The sponsors that both Inter Miami and the league will get are \
unfathomable. It is like Michael Jordan playing in the Spanish Basketball League. All the celebrities \
will line up to watch him play and new TV and streaming deals will be made with all the countries around \
the world like India."
Summary: The sponsors that both Inter Miami and the league will get are unfathomable.Lionel Messi will bring fans to the Stadiums and Inter Miami \
will have to move from their 18,000 seater stadium to the Hard Rock Café Stadium which has a capacity of 70,000 because that is the standard of Messi. \
The social media following of Inter Miami has risen by more than 300% and the ticket price for all the matches of Inter Miami have gone from $50 to $10,000.\
It is just another club for Lionel Messi to go to and show his skills but it is indeed historic for the MLS and American Football as a whole.
|
Gayathri142214002/Question_Generation_ComQ_5
|
Gayathri142214002
| 2023-10-27T06:47:43Z | 160 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-27T06:22:30Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Question_Generation_ComQ_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Question_Generation_ComQ_5
This model is a fine-tuned version of [Gayathri142214002/Question_Generation_ComQ_4](https://huggingface.co/Gayathri142214002/Question_Generation_ComQ_4) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0859 | 0.56 | 50 | 0.2674 |
| 0.2604 | 1.11 | 100 | 0.2472 |
| 0.2275 | 1.67 | 150 | 0.2586 |
| 0.2184 | 2.23 | 200 | 0.2670 |
| 0.2077 | 2.79 | 250 | 0.2683 |
| 0.1986 | 3.34 | 300 | 0.2726 |
| 0.1949 | 3.9 | 350 | 0.2805 |
| 0.1824 | 4.46 | 400 | 0.2839 |
| 0.1868 | 5.01 | 450 | 0.2849 |
| 0.1714 | 5.57 | 500 | 0.2928 |
| 0.1694 | 6.13 | 550 | 0.2934 |
| 0.1618 | 6.69 | 600 | 0.2956 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
akter-sust/Pixelcopter-PLE-v0-27-10-2023
|
akter-sust
| 2023-10-27T06:32:39Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-27T06:32:37Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0-27-10-2023
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 15.50 +/- 7.50
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Rocinante/qwen_merge
|
Rocinante
| 2023-10-27T06:30:36Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-24T11:55:52Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
Satyam/whisper_Satyam
|
Satyam
| 2023-10-27T06:21:13Z | 2 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:openai/whisper-large-v2",
"base_model:adapter:openai/whisper-large-v2",
"region:us"
] | null | 2023-10-26T08:49:58Z |
---
library_name: peft
base_model: openai/whisper-large-v2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.6.0.dev0
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.