modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 18:26:50
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 18:26:48
card
stringlengths
11
1.01M
adielsa/vit-base-patch16-224-finetuned-chest
adielsa
2023-02-05T23:49:51Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-05T20:39:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-chest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.989987217724755 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-chest This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0318 - Accuracy: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0947 | 0.98 | 36 | 0.0785 | 0.9732 | | 0.048 | 1.98 | 72 | 0.0678 | 0.9732 | | 0.0352 | 2.98 | 108 | 0.0329 | 0.9887 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
brutusxu/distilbert-base-cross-encoder-first-p
brutusxu
2023-02-05T23:41:32Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T23:30:03Z
distilbert-base-uncased trained on MSMARCO Document Reranking task, #### usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('brutusxu/distilbert-base-cross-encoder-first-p') model = AutoModelForSequenceClassification.from_pretrained('brutusxu/distilbert-base-cross-encoder-first-p') query = 'I love New York' document = 'I like New York' input = '<P>' + query + tokenizer.sep_token + '<Q>' + document tokenized_input = tokenizer(input, return_tensors='pt') ranking_score = model(**tokenized_input) ``` #### performance on MSMARCO Document Reranking w. top-100 documents from BM25 ``` MRR@10: 0.373 MRR@100: 0.381 nDCG@10: 0.442 nDCG@10: 0.475 ```
pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1
pfunk
2023-02-05T23:26:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T23:25:47Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: -3.00 +/- 5.33 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p2_pt0.1_tt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p2_pt0.1_tt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p2_pt0.1_tt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p2_pt0.1_tt0.1 --start-policy-f 2000 --end-policy-f 2000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 2000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p2_pt0.1_tt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 2000, 'target_network_frequency': 1000, 'target_tau': 0.1, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
hectorjelly/Reinforce-push1
hectorjelly
2023-02-05T23:25:35Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T23:25:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-push1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
agercas/poca-SoccerTwos
agercas
2023-02-05T23:20:05Z
30
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T23:17:34Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: agercas/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
johnhudzinatr/a2c-AntBulletEnv-v0
johnhudzinatr
2023-02-05T22:44:50Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:43:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1680.83 +/- 79.83 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
FBM/poca-SoccerTwos
FBM
2023-02-05T21:33:04Z
41
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T21:32:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: FBM/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SRobbins/dqn-SpaceInvadersNoFrameskip-v4
SRobbins
2023-02-05T21:02:23Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T21:01:35Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 678.50 +/- 248.40 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SRobbins -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SRobbins -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SRobbins ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
MikkelGodsk/Reinforce-PixelCopter-PLE-v0
MikkelGodsk
2023-02-05T20:53:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T10:55:06Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.20 +/- 22.17 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jrauch4/a2c-AntBulletEnv-v0
jrauch4
2023-02-05T20:44:08Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T20:38:39Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2524.62 +/- 96.82 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
austinmw/ppo-Huggy
austinmw
2023-02-05T20:32:10Z
24
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-05T20:32:02Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: austinmw/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
z4x/Reinforce-CartPole
z4x
2023-02-05T20:32:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T20:31:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mantury/taxi-v3
mantury
2023-02-05T20:25:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T20:25:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mantury/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Buseak/model_from_berturk_Feb_5_TrainTestSplit
Buseak
2023-02-05T20:16:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-05T19:50:28Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model_from_berturk_Feb_5_TrainTestSplit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_from_berturk_Feb_5_TrainTestSplit This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3125 - Precision: 0.9120 - Recall: 0.9126 - F1: 0.9123 - Accuracy: 0.9376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 185 | 0.2333 | 0.9065 | 0.9066 | 0.9066 | 0.9343 | | No log | 2.0 | 370 | 0.2115 | 0.9122 | 0.9143 | 0.9133 | 0.9389 | | 0.3861 | 3.0 | 555 | 0.2049 | 0.9185 | 0.9175 | 0.9180 | 0.9423 | | 0.3861 | 4.0 | 740 | 0.2073 | 0.9183 | 0.9185 | 0.9184 | 0.9420 | | 0.3861 | 5.0 | 925 | 0.2174 | 0.9150 | 0.9155 | 0.9153 | 0.9397 | | 0.1487 | 6.0 | 1110 | 0.2227 | 0.9177 | 0.9185 | 0.9181 | 0.9415 | | 0.1487 | 7.0 | 1295 | 0.2399 | 0.9149 | 0.9160 | 0.9155 | 0.9396 | | 0.1487 | 8.0 | 1480 | 0.2504 | 0.9158 | 0.9163 | 0.9160 | 0.9400 | | 0.0942 | 9.0 | 1665 | 0.2692 | 0.9141 | 0.9152 | 0.9146 | 0.9392 | | 0.0942 | 10.0 | 1850 | 0.2782 | 0.9130 | 0.9153 | 0.9141 | 0.9388 | | 0.0589 | 11.0 | 2035 | 0.2908 | 0.9131 | 0.9144 | 0.9138 | 0.9388 | | 0.0589 | 12.0 | 2220 | 0.2940 | 0.9121 | 0.9136 | 0.9128 | 0.9377 | | 0.0589 | 13.0 | 2405 | 0.3068 | 0.9117 | 0.9130 | 0.9123 | 0.9376 | | 0.0407 | 14.0 | 2590 | 0.3107 | 0.9132 | 0.9148 | 0.9140 | 0.9387 | | 0.0407 | 15.0 | 2775 | 0.3125 | 0.9120 | 0.9126 | 0.9123 | 0.9376 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
bhuvanesh25/whis-tam-small
bhuvanesh25
2023-02-05T20:05:16Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ta", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-05T17:53:13Z
--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Tamil results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ta_in split: test metrics: - type: wer value: 15.8 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ta split: test metrics: - type: wer value: 11.15 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ta - Bharat Ramanathan (Kudos to him for developing it) # This is a copy of his model for academic purpose. This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1803 - Wer: 17.1456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3374 | 0.1 | 500 | 0.2579 | 23.3804 | | 0.29 | 0.2 | 1000 | 0.2260 | 20.9937 | | 0.2522 | 0.3 | 1500 | 0.2139 | 20.0682 | | 0.2338 | 0.4 | 2000 | 0.2025 | 19.6785 | | 0.223 | 0.5 | 2500 | 0.1979 | 18.3147 | | 0.211 | 0.6 | 3000 | 0.1927 | 17.8276 | | 0.2032 | 0.7 | 3500 | 0.1865 | 17.3892 | | 0.1978 | 0.8 | 4000 | 0.1839 | 17.5353 | | 0.1972 | 0.9 | 4500 | 0.1812 | 17.0969 | | 0.1894 | 1.0 | 5000 | 0.1803 | 17.1456 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
sd99/poca-SoccerTwos
sd99
2023-02-05T19:56:49Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T19:56:34Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sd99/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingtweets/f3ralfluid
huggingtweets
2023-02-05T19:53:49Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-05T19:52:24Z
--- language: en thumbnail: http://www.huggingtweets.com/f3ralfluid/1675626824280/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590925174068711428/4PWe_NrY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gross</div> <div style="text-align: center; font-size: 14px;">@f3ralfluid</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gross. | Data | gross | | --- | --- | | Tweets downloaded | 236 | | Retweets | 28 | | Short tweets | 66 | | Tweets kept | 142 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kjdh98mi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @f3ralfluid's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d3ukvm2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d3ukvm2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/f3ralfluid') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
esoria3/clasificador-amazonreviews-en
esoria3
2023-02-05T19:44:57Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T19:44:01Z
--- license: apache-2.0 tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-amazonreviews-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-amazonreviews-en This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2642 - Accuracy: 0.516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2472 | 1.0 | 500 | 1.1511 | 0.463 | | 0.9416 | 2.0 | 1000 | 1.1698 | 0.502 | | 0.7039 | 3.0 | 1500 | 1.2642 | 0.516 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mitra-mir/setfit-model-Ireland_3labels_balanced_data
mitra-mir
2023-02-05T19:41:01Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-05T19:38:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 53, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T19:38:25Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DemonAttack-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T19:38:23Z
--- tags: - DemonAttack-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DemonAttack-v5 type: DemonAttack-v5 metrics: - type: mean_reward value: 761247.50 +/- 722977.50 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DemonAttack-v5** This is a trained model of a PPO agent playing DemonAttack-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id DemonAttack-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'DemonAttack-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:56:57Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "VideoPinball-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:56:56Z
--- tags: - VideoPinball-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: VideoPinball-v5 type: VideoPinball-v5 metrics: - type: mean_reward value: 788806.30 +/- 809677.37 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
pfunk/Pong-v4-DQN_baseline-seed1
pfunk
2023-02-05T18:55:01Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:54:16Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 5.60 +/- 6.89 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_baseline.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_baseline]" python -m cleanrl_utils.enjoy --exp-name DQN_baseline --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/dqn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari.py --exp-name DQN_baseline --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'env_id': 'Pong-v4', 'exp_name': 'DQN_baseline', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:46:02Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Tennis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:46:00Z
--- tags: - Tennis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tennis-v5 type: Tennis-v5 metrics: - type: mean_reward value: 23.70 +/- 8.93 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tennis-v5** This is a trained model of a PPO agent playing Tennis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Tennis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Tennis-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tennis-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
apatidar0/t5-small-finetuned-amazon-en
apatidar0
2023-02-05T18:41:49Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-02-05T14:27:45Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: t5-small-finetuned-amazon-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-amazon-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - eval_loss: 5.1622 - eval_rouge1: 14.7056 - eval_rouge2: 6.5373 - eval_rougeL: 13.8753 - eval_rougeLsum: 13.9924 - eval_runtime: 3.8484 - eval_samples_per_second: 35.08 - eval_steps_per_second: 4.417 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:30:43Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Seaquest-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:30:42Z
--- tags: - Seaquest-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Seaquest-v5 type: Seaquest-v5 metrics: - type: mean_reward value: 1844.00 +/- 8.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Seaquest-v5** This is a trained model of a PPO agent playing Seaquest-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Seaquest-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Seaquest-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sd-concepts-library/kamon-style
sd-concepts-library
2023-02-05T18:30:38Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-02-05T18:30:25Z
--- license: mit --- ### kamon style on Stable Diffusion This is the `<kamon-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kamon-style> 0](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/269.jpeg) ![<kamon-style> 1](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/346.jpeg) ![<kamon-style> 2](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/177.jpeg) ![<kamon-style> 3](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/68.jpeg) ![<kamon-style> 4](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/459.jpeg)
cleanrl/Pong-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:30:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T15:49:42Z
--- tags: - Pong-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v5 type: Pong-v5 metrics: - type: mean_reward value: 17.90 +/- 1.97 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pong-v5** This is a trained model of a PPO agent playing Pong-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Pong-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Pong-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Pong-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:29:49Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Phoenix-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:29:48Z
--- tags: - Phoenix-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Phoenix-v5 type: Phoenix-v5 metrics: - type: mean_reward value: 49392.00 +/- 15376.34 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Phoenix-v5** This is a trained model of a PPO agent playing Phoenix-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Phoenix-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Phoenix-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Phoenix-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:29:08Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Skiing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:29:06Z
--- tags: - Skiing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Skiing-v5 type: Skiing-v5 metrics: - type: mean_reward value: -16783.30 +/- 1601.13 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Skiing-v5** This is a trained model of a PPO agent playing Skiing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Skiing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Skiing-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:28:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:28:54Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 470.60 +/- 131.29 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:28:40Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BeamRider-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:28:38Z
--- tags: - BeamRider-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRider-v5 type: BeamRider-v5 metrics: - type: mean_reward value: 11643.20 +/- 4100.01 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BeamRider-v5** This is a trained model of a PPO agent playing BeamRider-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id BeamRider-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id BeamRider-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BeamRider-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
no3/kat-at3-beta1
no3
2023-02-05T18:27:57Z
5
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-27T05:46:28Z
--- license: creativeml-openrail-m pipeline_tag: text-to-image --- ### kat from [Flipon](https://store.steampowered.com/app/1285020/Flipon/) on Anything V3.0 via Dreambooth #### model by no3 This your Anything V3.0 model fine-tuned kat concept taught to Anything V3.0 with Dreambooth. It can be used by modifying the `instance_prompt`: **sks_kat** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts). ### note If you want to to use in UI like [AUTOMATIC1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) or any UI that's uses .ckpt files just download one file or more from here for your convenience. [katFl-at3-beta1.ckpt](https://huggingface.co/no3/kat-at3-beta1/resolve/main/katFl-at3-beta1.ckpt) 4.27 GB [katFl-at3-beta1-pruned.ckpt](https://huggingface.co/no3/kat-at3-beta1/resolve/main/katFl-at3-beta1-pruned.ckpt) 2.13 GB Uses less storage space If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are images used for training this concept: ![image 1](https://huggingface.co/no3/kat-at3-beta1/resolve/main/concept_images/1.png) ![image 2](https://huggingface.co/no3/kat-at3-beta1/resolve/main/concept_images/2.png) ![image 3](https://huggingface.co/no3/kat-at3-beta1/resolve/main/concept_images/3.png) ![image 4](https://huggingface.co/no3/kat-at3-beta1/resolve/main/concept_images/1%20c.png) ![image 5](https://huggingface.co/no3/kat-at3-beta1/resolve/main/concept_images/2%20c.png)
cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:27:35Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Zaxxon-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:27:34Z
--- tags: - Zaxxon-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Zaxxon-v5 type: Zaxxon-v5 metrics: - type: mean_reward value: 21370.00 +/- 4823.29 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
gudjonk93/IceBERT-finetuned-squad-10
gudjonk93
2023-02-05T18:27:26Z
22
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:icelandic-qa-n_qi_i", "license:agpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T15:28:05Z
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - icelandic-qa-n_qi_i model-index: - name: IceBERT-finetuned-squad-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-squad-10 This model is a fine-tuned version of [mideind/IceBERT](https://huggingface.co/mideind/IceBERT) on the icelandic-qa-n_qi_i dataset. It achieves the following results on the evaluation set: - Loss: 2.1511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 293 | 1.7614 | | 1.9509 | 2.0 | 586 | 1.5208 | | 1.9509 | 3.0 | 879 | 1.5011 | | 0.9529 | 4.0 | 1172 | 1.5694 | | 0.9529 | 5.0 | 1465 | 1.7516 | | 0.6647 | 6.0 | 1758 | 1.8629 | | 0.4336 | 7.0 | 2051 | 1.8881 | | 0.4336 | 8.0 | 2344 | 2.0768 | | 0.335 | 9.0 | 2637 | 2.1238 | | 0.335 | 10.0 | 2930 | 2.1511 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:26:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Qbert-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:26:37Z
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 20587.50 +/- 3425.81 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:26:20Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CrazyClimber-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:26:19Z
--- tags: - CrazyClimber-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CrazyClimber-v5 type: CrazyClimber-v5 metrics: - type: mean_reward value: 123530.00 +/- 16493.64 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **CrazyClimber-v5** This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id CrazyClimber-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'CrazyClimber-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Defender-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:25:35Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Defender-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:25:33Z
--- tags: - Defender-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Defender-v5 type: Defender-v5 metrics: - type: mean_reward value: 69060.00 +/- 11820.66 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Solaris-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:25:19Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Solaris-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:25:17Z
--- tags: - Solaris-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Solaris-v5 type: Solaris-v5 metrics: - type: mean_reward value: 1488.00 +/- 697.55 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Solaris-v5** This is a trained model of a PPO agent playing Solaris-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Solaris-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Solaris-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Tutankham-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:24:39Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Tutankham-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:24:38Z
--- tags: - Tutankham-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Tutankham-v5 type: Tutankham-v5 metrics: - type: mean_reward value: 266.20 +/- 3.22 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Tutankham-v5** This is a trained model of a PPO agent playing Tutankham-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Tutankham-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tutankham-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/ChopperCommand-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:24:14Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:24:13Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 24610.00 +/- 14101.24 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Riverraid-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:23:54Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Riverraid-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:23:52Z
--- tags: - Riverraid-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Riverraid-v5 type: Riverraid-v5 metrics: - type: mean_reward value: 17370.00 +/- 2001.53 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Riverraid-v5** This is a trained model of a PPO agent playing Riverraid-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Riverraid-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Riverraid-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/PrivateEye-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:23:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PrivateEye-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:23:52Z
--- tags: - PrivateEye-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PrivateEye-v5 type: PrivateEye-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **PrivateEye-v5** This is a trained model of a PPO agent playing PrivateEye-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id PrivateEye-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'PrivateEye-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Beegbrain/a2c-AntBulletEnv-v0
Beegbrain
2023-02-05T18:23:46Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:22:56Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 525.86 +/- 96.75 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
antoooooine/poca-SoccerTwos
antoooooine
2023-02-05T18:23:09Z
36
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T08:01:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: antoooooine/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cleanrl/FishingDerby-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:22:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "FishingDerby-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:22:54Z
--- tags: - FishingDerby-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FishingDerby-v5 type: FishingDerby-v5 metrics: - type: mean_reward value: 62.20 +/- 8.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **FishingDerby-v5** This is a trained model of a PPO agent playing FishingDerby-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id FishingDerby-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'FishingDerby-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Boxing-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:22:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:22:41Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 99.10 +/- 2.70 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Frostbite-v5-sebulba_ppo_envpool-seed1
cleanrl
2023-02-05T18:22:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Frostbite-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:22:34Z
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 304.00 +/- 18.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
splusminusx/dqn-SpaceInvadersNoFrameskip-v4
splusminusx
2023-02-05T18:19:46Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:19:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 560.00 +/- 85.56 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga splusminusx -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga splusminusx -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga splusminusx ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Yazdan/pft-clf-finetuned
Yazdan
2023-02-05T18:14:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-08T17:08:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: pft-clf-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pft-clf-finetuned This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0987 - Matthews Correlation: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1299 | 1.0 | 1268 | 0.0987 | 0.9737 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mkuntz/Reinforce-PixelCopter
mkuntz
2023-02-05T18:14:31Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T18:14:28Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 11.40 +/- 15.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
wooihen/a2c-PandaReachDense-v2
wooihen
2023-02-05T17:38:49Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T17:36:37Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.75 +/- 0.70 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
khatkeashish/ppo-PyramidsRND
khatkeashish
2023-02-05T17:22:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-05T17:12:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: khatkeashish/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tomekkorbak/silly_nobel
tomekkorbak
2023-02-05T17:22:20Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-02-05T12:40:08Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: silly_nobel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # silly_nobel This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 2524 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.1, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0}, 'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 2969174016}, 'generation': {'batch_size': 128, 'force_call_on': [503], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'bad_words_ids': [[32769]], 'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 4096, 'prefix': '<|aligned|>', 'use_prompt_for_scoring': False}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [503], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>', 'should_insert_prefix': True}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9cdfa11a07b00726ddfdabb554de05b29d777db3'}, 'num_additional_tokens': 2, 'path_or_name': 'kejian/grainy-pep8'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'silly_nobel', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 10, 'num_tokens': 3300000000, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 100, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 2969174016, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/24pv07g1
stjiris/Word2vec-legal-portuguese
stjiris
2023-02-05T16:52:48Z
0
2
null
[ "summarization", "pt", "license:mit", "region:us" ]
summarization
2023-01-24T16:55:16Z
--- license: mit language: - pt metrics: - bleurt thumbnail: Word2vec for Portuguese Legal Domain pipeline_tag: summarization --- [![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png)](https://www.inesc-id.pt/projects/PR07005/) Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/). Word2Vec trained for Portuguese Legal Domain ## Citing & Authors ### Contributions [@MartimZanatti](https://github.com/MartimZanatti)
eldraco/poca-SoccerTwos
eldraco
2023-02-05T16:50:10Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T13:39:09Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: eldraco/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CLARA-MeD/pegasus-xsum
CLARA-MeD
2023-02-05T16:48:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "simplification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-03T11:34:15Z
--- tags: - simplification - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-clara-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-clara-med This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9013 - Rouge1: 43.7595 - Rouge2: 25.7022 - Rougel: 39.6153 - Rougelsum: 39.7151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 190 | 2.5468 | 41.6125 | 24.1264 | 37.7704 | 37.8615 | | No log | 2.0 | 380 | 2.3603 | 41.9598 | 24.315 | 38.1087 | 38.217 | | 2.7787 | 3.0 | 570 | 2.2604 | 42.0463 | 24.5067 | 38.1632 | 38.2716 | | 2.7787 | 4.0 | 760 | 2.1846 | 42.1471 | 24.639 | 38.3677 | 38.471 | | 2.2691 | 5.0 | 950 | 2.1361 | 42.4562 | 24.8962 | 38.6107 | 38.7065 | | 2.2691 | 6.0 | 1140 | 2.0887 | 42.6005 | 24.947 | 38.7049 | 38.805 | | 2.2691 | 7.0 | 1330 | 2.0617 | 42.7946 | 24.9509 | 38.9123 | 39.0003 | | 2.0313 | 8.0 | 1520 | 2.0222 | 43.0201 | 25.3552 | 39.151 | 39.266 | | 2.0313 | 9.0 | 1710 | 2.0049 | 43.2293 | 25.4719 | 39.4239 | 39.4944 | | 1.872 | 10.0 | 1900 | 1.9899 | 43.2629 | 25.5285 | 39.4124 | 39.4591 | | 1.872 | 11.0 | 2090 | 1.9772 | 43.4294 | 25.8006 | 39.5863 | 39.6726 | | 1.872 | 12.0 | 2280 | 1.9630 | 43.63 | 25.7259 | 39.5521 | 39.6888 | | 1.7497 | 13.0 | 2470 | 1.9513 | 43.4053 | 25.5567 | 39.4567 | 39.5918 | | 1.7497 | 14.0 | 2660 | 1.9336 | 43.2584 | 25.4554 | 39.2917 | 39.3944 | | 1.6609 | 15.0 | 2850 | 1.9345 | 43.2644 | 25.5958 | 39.3474 | 39.4645 | | 1.6609 | 16.0 | 3040 | 1.9152 | 43.4404 | 25.6127 | 39.4472 | 39.5418 | | 1.6609 | 17.0 | 3230 | 1.9106 | 43.2751 | 25.3213 | 39.2723 | 39.3871 | | 1.5809 | 18.0 | 3420 | 1.9125 | 43.2335 | 25.341 | 39.2705 | 39.3577 | | 1.5809 | 19.0 | 3610 | 1.9086 | 43.1679 | 25.3275 | 39.1858 | 39.303 | | 1.5221 | 20.0 | 3800 | 1.9030 | 43.2794 | 25.4126 | 39.2902 | 39.4092 | | 1.5221 | 21.0 | 3990 | 1.8996 | 43.1731 | 25.3819 | 39.1873 | 39.3172 | | 1.5221 | 22.0 | 4180 | 1.9006 | 43.4949 | 25.4485 | 39.3092 | 39.4516 | | 1.4714 | 23.0 | 4370 | 1.8977 | 43.5657 | 25.5974 | 39.4489 | 39.5257 | | 1.4714 | 24.0 | 4560 | 1.9035 | 43.6444 | 25.6794 | 39.5809 | 39.683 | | 1.4421 | 25.0 | 4750 | 1.9000 | 43.4825 | 25.5898 | 39.4319 | 39.4973 | | 1.4421 | 26.0 | 4940 | 1.9030 | 43.4623 | 25.5726 | 39.461 | 39.6009 | | 1.4421 | 27.0 | 5130 | 1.8993 | 43.3357 | 25.5518 | 39.3897 | 39.4672 | | 1.4139 | 28.0 | 5320 | 1.9009 | 43.5834 | 25.7211 | 39.584 | 39.6725 | | 1.4139 | 29.0 | 5510 | 1.9002 | 43.7115 | 25.6997 | 39.6603 | 39.7621 | | 1.4016 | 30.0 | 5700 | 1.9013 | 43.7595 | 25.7022 | 39.6153 | 39.7151 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
gabriellabollici/clasificador-rottentomatoes
gabriellabollici
2023-02-05T16:31:58Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T16:30:28Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-rottentomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-rottentomatoes This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0103 - Accuracy: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6937 | 1.0 | 853 | 0.8311 | 0.0 | | 0.6578 | 2.0 | 1706 | 0.7352 | 0.6190 | | 0.5328 | 3.0 | 2559 | 1.0103 | 0.4783 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
seongwoon/labor_space_v4
seongwoon
2023-02-05T16:27:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-05T12:47:13Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-labor_space_v3-finetuned-labor_space_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-labor_space_v3-finetuned-labor_space_v4 This model is a fine-tuned version of [seongwoon/distilbert-base-uncased-finetuned-labor_space_v3](https://huggingface.co/seongwoon/distilbert-base-uncased-finetuned-labor_space_v3) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p2_e0.10-seed1
pfunk
2023-02-05T16:17:17Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T16:16:20Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 5.90 +/- 4.46 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p2_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p2_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p2_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p2_e0.10 --start-policy-f 2000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p2_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 2000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pietrocagnasso/bart-paper-titles
pietrocagnasso
2023-02-05T16:17:11Z
5
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-25T11:27:10Z
--- language: - en --- BART model used to generate scientific papers' title given the highlights and the abstract of the paper. This model is the result of a fine-tuning process done on [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). We performed the fine-tuning for one epoch on CSPubSumm (Ed Collins, et al. "A supervised approach to extractive summarisation of scientific papers."), BIOPubSumm, and AIPubSumm (L. Cagliero, M. La Quatra "Extracting highlights of scientific articles: A supervised summarization approach."). You can find more details in the [GitHub repo](https://github.com/nicolovergaro/DNLP_project). # Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration) for more information. # Metrics We have tested the model on all three the test sets, with the following results: | Dataset | Rouge-1 F1 | Rouge-2 F1 | Rouge-L F1 | BERTScore F1 | |:----------:|:----------:|:----------:|:----------:|:------------:| | AIPubSumm | 0.42713 | 0.21781 | 0.35251 | 0.90391 | | BIOPubSumm | 0.45758 | 0.25219 | 0.39350 | 0.90205 | | CSPubSumm | 0.51502 | 0.33377 | 0.45760 | 0.91703 |
pietrocagnasso/bart-paper-titles-cs
pietrocagnasso
2023-02-05T16:13:25Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-18T17:07:41Z
--- language: - en --- BART model used to generate scientific papers' title given the highlights and the abstract of the paper. This model is specifically tuned for computer science papers. This model is the result of a fine-tuning process done on [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). We performed a first fine-tuning epoch on CSPubSumm (Ed Collins, et al. "A supervised approach to extractive summarisation of scientific papers."), BIOPubSumm, and AIPubSumm (L. Cagliero, M. La Quatra "Extracting highlights of scientific articles: A supervised summarization approach."). A second fine-tuning epoch was performed only on CSPubSumm to let the model better understand how computer science titles are composed. You can find more details in the [GitHub repo](https://github.com/nicolovergaro/DNLP_project). # Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration) for more information. # Metrics We have tested the model on all three the test sets, with the following results: | Dataset | Rouge-1 F1 | Rouge-2 F1 | Rouge-L F1 | BERTScore F1 | |:----------:|:----------:|:----------:|:----------:|:------------:| | CSPubSumm | 0.55842 | 0.38177 | 0.50117 | 0.92329 | | AIPubSumm | 0.44824 | 0.25147 | 0.37326 | 0.90774 | | BIOPubSumm | 0.45350 | 0.24498 | 0.38614 | 0.90123 |
pietrocagnasso/bart-paper-titles-ai
pietrocagnasso
2023-02-05T16:10:04Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-18T17:09:22Z
--- language: - en --- BART model used to generate scientific papers' title given the highlights and the abstract of the paper. This model is specifically tuned for artificial intelligence papers. This model is the result of a fine-tuning process done on [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). We performed a first fine-tuning epoch on CSPubSumm (Ed Collins, et al. "A supervised approach to extractive summarisation of scientific papers."), BIOPubSumm, and AIPubSumm (L. Cagliero, M. La Quatra "Extracting highlights of scientific articles: A supervised summarization approach."). A second fine-tuning epoch was performed only on AIPubSumm to let the model better understand how artifical intelligence titles are composed. You can find more details in the [GitHub repo](https://github.com/nicolovergaro/DNLP_project). # Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration) for more information. # Metrics We have tested the model on all three the test sets, with the following results: | Dataset | Rouge-1 F1 | Rouge-2 F1 | Rouge-L F1 | BERTScore F1 | |:----------:|:----------:|:----------:|:----------:|:------------:| | AIPubSumm | 0.43325 | 0.22397 | 0.36069 | 0.90644 | | BIOPubSumm | 0.45472 | 0.24739 | 0.39121 | 0.90131 | | CSPubSumm | 0.52281 | 0.33140 | 0.46635 | 0.91861 |
pietrocagnasso/bart-paper-titles-bio
pietrocagnasso
2023-02-05T16:09:22Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-18T17:10:17Z
--- language: - en --- BART model used to generate scientific papers' title given the highlights and the abstract of the paper. This model is specifically tuned for biology and medicine papers. This model is the result of a fine-tuning process done on [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6). We performed a first fine-tuning epoch on CSPubSumm (Ed Collins, et al. "A supervised approach to extractive summarisation of scientific papers."), BIOPubSumm, and AIPubSumm (L. Cagliero, M. La Quatra "Extracting highlights of scientific articles: A supervised summarization approach."). A second fine-tuning epoch was performed only on BIOPubSumm to let the model better understand how biology and medicine titles are composed. You can find more details in the [GitHub repo](https://github.com/nicolovergaro/DNLP_project). # Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration) for more information. # Metrics We have tested the model on all three the test sets, with the following results: | Dataset | Rouge-1 F1 | Rouge-2 F1 | Rouge-L F1 | BERTScore F1 | |:----------:|:----------:|:----------:|:----------:|:------------:| | BIOPubSumm | 0.45979 | 0.25406 | 0.39607 | 0.90272 | | AIPubSumm | 0.44455 | 0.23214 | 0.35779 | 0.90721 | | CSPubSumm | 0.49769 | 0.30773 | 0.43376 | 0.91561 |
wooihen/a2c-AntBulletEnv-v0
wooihen
2023-02-05T16:00:31Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T15:59:30Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1161.19 +/- 177.02 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
khatkeashish/ppo-SnowballTarget
khatkeashish
2023-02-05T15:55:21Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-05T15:52:53Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: khatkeashish/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
eldraco/tqc-PandaReachDense-v2
eldraco
2023-02-05T15:43:36Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T11:59:17Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.24 +/- 0.19 name: mean_reward verified: false --- # **TQC** Agent playing **PandaReachDense-v2** This is a trained model of a **TQC** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bond005/wav2vec2-mbart50-ru
bond005
2023-02-05T15:42:54Z
32
6
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "audio", "speech", "common_voice", "SberDevices/Golos", "sova_rudevices", "rulibrispeech", "ru", "dataset:bond005/sberdevices_golos_10h_crowd", "dataset:bond005/sberdevices_golos_100h_farfield", "dataset:common_voice", "dataset:bond005/sova_rudevices", "dataset:bond005/rulibrispeech", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T13:32:44Z
--- language: ru datasets: - bond005/sberdevices_golos_10h_crowd - bond005/sberdevices_golos_100h_farfield - common_voice - bond005/sova_rudevices - bond005/rulibrispeech metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - common_voice - SberDevices/Golos - sova_rudevices - rulibrispeech license: apache-2.0 widget: - example_title: test sound with Russian speech src: https://huggingface.co/bond005/wav2vec2-mbart50-ru/resolve/main/test_sound.wav model-index: - name: Wav2Vec2-mBART-50 for speech-to-text in Russian by Ivan Bondarenko results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Sberdevices Golos (crowd) type: SberDevices/Golos args: ru metrics: - name: Test WER type: wer value: 13.204 - name: Test CER type: cer value: 4.157 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Sberdevices Golos (farfield) type: SberDevices/Golos args: ru metrics: - name: Test WER type: wer value: 17.681 - name: Test CER type: cer value: 6.773 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ru type: common_voice args: ru metrics: - name: Test WER type: wer value: 14.693 - name: Test CER type: cer value: 5.765 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Sova RuDevices type: sova_rudevices args: ru metrics: - name: Test WER type: wer value: 22.727 - name: Test CER type: cer value: 9.183 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Russian Librispeech type: rulibrispeech args: ru metrics: - name: Test WER type: wer value: 32.540 - name: Test CER type: cer value: 10.369 --- # Wav2Vec2-mBART-50-Ru Wav2Vec2-mBART-50-Ru is a speech-sequence-to-text-sequence model, which can convert an input audio with Russian speech into a text with punctuation, capitalization and so on. Wav2Vec2-mBART-50-Ru is the [SpeechEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/speech-encoder-decoder), which was initialized with [Wav2Vec2-Large-Ru-Golos](https://huggingface.co/bond005/wav2vec2-large-ru-golos) as the encoder and [mBART-large-50](https://huggingface.co/facebook/mbart-large-50) as the decoder. After its initialization the model was fine-tuned using the training parts of several annotated speech corpora: - [the 10 hours crowd subset of SberDevices Golos](https://huggingface.co/datasets/bond005/sberdevices_golos_10h_crowd) - [the 100 hours farfield subset of SberDevices Golos](https://huggingface.co/datasets/bond005/sberdevices_golos_100h_farfield) - [the Russian subset of Common Voice 6.0](https://huggingface.co/datasets/common_voice) - [Sova RuDevices](https://huggingface.co/datasets/bond005/sova_rudevices) - 15% part of the training subset of [Russian Librispeech](https://huggingface.co/datasets/bond005/rulibrispeech) CommonVoice 6.0 contains "rich" text annotations with punctuation and capitalization, but other speech corpora includes plain texts only. Therefore, text annotations of these corpora were riched automatically using the [Silero text enhancement model](https://github.com/snakers4/silero-models#text-enhancement). ## Usage When using this model, make sure that your speech input is sampled at 16kHz. You can use this model by writing your own inference script: ```python import os import warnings import torch from datasets import load_dataset from datasets.features import Audio from transformers import SpeechEncoderDecoderModel, Wav2Vec2Processor LANG_ID = "ru" MODEL_ID = "bond005/wav2vec2-mbart50-ru" SAMPLES = 30 num_processes = max(1, os.cpu_count()) processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = SpeechEncoderDecoderModel.from_pretrained(MODEL_ID) test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") if test_dataset.features['audio'].sampling_rate != 16_000: test_dataset = test_dataset.cast_column( 'audio', Audio(sampling_rate=16_000) ) audio_data = [test_dataset[i]['audio']['array'] for i in range(SAMPLES)] processed = processor(audio_data, sampling_rate=16_000, return_tensors="pt", padding='longest') with torch.no_grad(): predicted_ids = model.generate(**processed) predicted_sentences = processor.batch_decode( predicted_ids, num_processes=num_processes, skip_special_tokens=True ) with warnings.catch_warnings(): warnings.simplefilter("ignore") for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference: ", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` ```text ---------------------------------------------------------------------------------------------------- Reference: Я беру маленький кусочек бумажки. Prediction: Я беру маленькие кусочек бумажки. ---------------------------------------------------------------------------------------------------- Reference: О потерях пока не сообщается. Prediction: А потеря их пока не сообщается. ---------------------------------------------------------------------------------------------------- Reference: Ваша воля. Prediction: Ваша воля. ---------------------------------------------------------------------------------------------------- Reference: Мы высоко ценим ее роль в этом отношении. Prediction: Мы высоко ценим ее роль в этом отношении. ---------------------------------------------------------------------------------------------------- Reference: Вот это вызывало у нас жуткое отторжение. Prediction: Вот это вызвало у нас жуткое отвержение. ---------------------------------------------------------------------------------------------------- Reference: Он положил ей букет на книгу. Prediction: Он положил ее букет на книгу. ---------------------------------------------------------------------------------------------------- Reference: Ну и положу, – обиделась Женя. Prediction: – Ну и положи, – обиделась Женя. ---------------------------------------------------------------------------------------------------- Reference: Благодарю представителя Австралии за ее заявление. Prediction: Благодарю представителя Австралии за ее заявление. ---------------------------------------------------------------------------------------------------- Reference: Для меня это не было неожиданностью. Prediction: Для меня это не было неожиданностью. ---------------------------------------------------------------------------------------------------- Reference: Поздняя ночь. Prediction: Поздняя ночь. ---------------------------------------------------------------------------------------------------- Reference: Тем не менее нужно вновь вычленить некоторые элементы наших политических установок. Prediction: Тем не менее нужно назвать нищие нынешние элементы наших политических устоков. ---------------------------------------------------------------------------------------------------- Reference: Мы не можем позволить себе упустить эту возможность. Prediction: Мы не можем позволить себе упустить эту возможность. ---------------------------------------------------------------------------------------------------- Reference: В предстоящие месяцы Суд примет решение по ордеру на арест министра обороны Хусейна. Prediction: В предстоящие месяцы Суд примет решение по оратору на орифлейм министра иностранных дел Кубы. ---------------------------------------------------------------------------------------------------- Reference: Валерия живет в старом панельном доме советских времён. Prediction: Валерия живет в старом Баньяном, да не советских временах. ---------------------------------------------------------------------------------------------------- Reference: Я вернусь скоро. Prediction: Я вернусь скоро... ---------------------------------------------------------------------------------------------------- Reference: Слово предоставляется Его Превосходительству принцу Зайду. Prediction: Слово предоставляется Его Превосходительству Пан Ги Муну. ---------------------------------------------------------------------------------------------------- Reference: Ну конечно, тебе бы этого хотелось. Prediction: Ну, конечно, тебе бы этого хотелось. ---------------------------------------------------------------------------------------------------- Reference: Общественные объединения равны перед законом. Prediction: Общественные объединения равны перед законом. ---------------------------------------------------------------------------------------------------- Reference: Ну, что же, нету этики, эстетики. Prediction: Ну что же, не туда зайти? Не туда зайти? ---------------------------------------------------------------------------------------------------- Reference: Сразу же она легла в постель. Prediction: Сразу же она легла в постель. ---------------------------------------------------------------------------------------------------- Reference: Сейчас я сделаю заявление в своем национальном качестве. Prediction: Сейчас я сделаю заявление в своем национальном качестве. ---------------------------------------------------------------------------------------------------- Reference: Что там сейчас происходит в Твиттере? Prediction: Что там сейчас происходит в Твиттере? ---------------------------------------------------------------------------------------------------- Reference: Ну хорошо, что револьвер был заряжен холостыми. Prediction: Ну хорошо, что Револьвер был заряжен холостыми. ---------------------------------------------------------------------------------------------------- Reference: А потом дальше может проходить работа такая. Prediction: А потом дальше может проходить работа такая. ---------------------------------------------------------------------------------------------------- Reference: Из Microsoft написали что на текущий момент у них нет открытых вакансий. Prediction: Из моих красотов написали, что на текущий момент у них нет открытых вакансий. ---------------------------------------------------------------------------------------------------- Reference: Мы добились многого, но сейчас не время терять набранную динамику. Prediction: Мы добились многого, но сейчас не время терять набранную динамику. ---------------------------------------------------------------------------------------------------- Reference: Мы внимательно проанализировали документ и содержащиеся в нем выводы и рекомендации. Prediction: Мы внимательно проанализировали документ, содержащийся в нем, выводы рекомендаций. ---------------------------------------------------------------------------------------------------- Reference: А сейчас слово имеет представитель Соединенных Штатов Америки. Prediction: А сейчас слово имеет представитель Соединенных Штатов Америки. ---------------------------------------------------------------------------------------------------- Reference: Обстоятельства изменились, и мы должны учитывать это. Prediction: Обстоятельно изменились и мы должны учитывать это. ---------------------------------------------------------------------------------------------------- Reference: На этом принципе основывается и наша позиция по Фолклендским островам. Prediction: На этом принципе основывается и наша позиция по Фолклендским островам. ``` The Google Colab version of [this script](https://colab.research.google.com/drive/1VlTrsc9d9wyzLPAWagpXLzoDLn2PRvZA?usp=sharing) is available too. ## Evaluation This model was evaluated on the test subsets of [SberDevices Golos](https://huggingface.co/datasets/SberDevices/Golos), [Common Voice 6.0](https://huggingface.co/datasets/common_voice) (Russian part), and [Sova RuDevices](https://huggingface.co/datasets/bond005/sova_rudevices). The evaluation script [wav2vec2_mbart50_ru_eval](https://www.kaggle.com/code/bond005/wav2vec2-mbart50-ru-eval) is available for checking and reproducibility. ## Citation If you want to cite this model you can use this: ```bibtex @misc{bondarenko2023-wav2vec2-mbart50-ru, title={Wav2Vec2-mBART-50 for speech-to-text in Russian by Ivan Bondarenko}, author={Bondarenko, Ivan}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/bond005/wav2vec2-mbart50-ru}}, year={2023} } ```
PeterDerLustige/poca-SoccerTwos
PeterDerLustige
2023-02-05T15:39:45Z
30
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-05T15:39:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: PeterDerLustige/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Beegbrain/ppo-Snowball
Beegbrain
2023-02-05T15:33:02Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-05T15:32:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Beegbrain/ppo-Snowball 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
raquelsmv/clasificador-rotten_tomatoes
raquelsmv
2023-02-05T15:30:44Z
3
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T15:29:29Z
--- license: apache-2.0 tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-rotten_tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-rotten_tomatoes This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4363 - Accuracy: 0.9138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4625 | 1.0 | 853 | 0.3543 | 0.9027 | | 0.2407 | 2.0 | 1706 | 0.3710 | 0.9115 | | 0.0962 | 3.0 | 2559 | 0.4363 | 0.9138 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Beegbrain/Reinforce-model-pixelcopter
Beegbrain
2023-02-05T15:09:15Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T15:09:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 74.00 +/- 69.99 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
hr1588/xlm-roberta-base-finetuned-panx-de
hr1588
2023-02-05T15:03:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-05T14:50:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654677896653767 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - F1: 0.8655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2495 | 1.0 | 787 | 0.1764 | 0.8184 | | 0.1299 | 2.0 | 1574 | 0.1427 | 0.8562 | | 0.0771 | 3.0 | 2361 | 0.1405 | 0.8655 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Akriel/MLP-Lunar-Lander
Akriel
2023-02-05T14:38:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T14:08:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-MLP results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.78 +/- 15.02 name: mean_reward verified: false --- # **PPO-MLP** Agent playing **LunarLander-v2** This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mehtap/whisper-tiny
Mehtap
2023-02-05T14:32:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-13T11:45:37Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Tiny Turkish Whisper (TTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tiny Turkish Whisper (TTW) This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Ermetal Meetings dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 0 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.13.1
dawokim/xlm-roberta-base-finetuned-panx-de
dawokim
2023-02-05T14:06:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-05T13:28:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616659101225601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2564 | 1.0 | 525 | 0.1610 | 0.8285 | | 0.1307 | 2.0 | 1050 | 0.1378 | 0.8491 | | 0.0813 | 3.0 | 1575 | 0.1344 | 0.8617 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.1+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
nolanaatama/at80slora
nolanaatama
2023-02-05T13:59:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-05T13:57:58Z
--- license: creativeml-openrail-m ---
nolanaatama/vpm
nolanaatama
2023-02-05T13:28:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-05T13:24:39Z
--- license: creativeml-openrail-m ---
xuancaiqisehua/icefall_asr_tal-csasr_conv_emformer_transducer_stateless2
xuancaiqisehua
2023-02-05T13:23:17Z
0
1
null
[ "region:us" ]
null
2023-02-05T08:48:14Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/874. ### Pre-trained conv_emformer_transducer_stateless2 models for the TAL_CSASR dataset with icefall. The model was trained on the far data of TAL_CSASR with the scripts in icefall based on the latest version k2. You can use the trained model to export it to ncnn and run it with sherpa-ncnn. ### Training procedure - Install k2 : https://k2.readthedocs.io/en/latest/installation/index.html - Install lhotse : https://lhotse.readthedocs.io/en/latest/getting-started.html#installation - Clone icefall : https://github.com/k2-fsa/icefall ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` - Preparing data. ``` cd egs/tal_csasr_conv_emformer/ASR bash ./prepare.sh ``` - Training ``` bash run.sh ``` - Evaluation results The decoding results (CER%) on TAL_CSASR(dev and test) are listed below: |decoding-method|epoch(iter) |avg| dev|test| |----|---|---|---|---| |fast_beam_search | 6 | 3 | 11.36 | 11.37| - Export model to ncnn reference : https://k2-fsa.github.io/icefall/model-export/export-ncnn.html ``` ./conv_emformer_transducer_stateless2/export-for-ncnn.py \ --exp-dir exp_conv_emformer \ --lang_dir data/lang_char \ --epoch 5 \ --iter 8000 \ --avg 3 \ --use-averaged-model 1 \ --num-encoder-layers 12 \ --chunk-length 32 \ --cnn-module-kernel 31 \ --left-context-length 32 \ --right-context-length 8 \ --memory-size 32 ``` - Export torchscript model via pnnx ``` pnnx ./encoder_jit_trace-pnnx.pt pnnx ./decoder_jit_trace-pnnx.pt pnnx ./joiner_jit_trace-pnnx.pt ``` - Modify the following two lines in your encoder_jit_trace-pnnx.ncnn.param file. ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1675589236011-62ea602aa32d5132d70ca52c.png) - Then you can use the following code to test the converted models. ``` model/tokens.txt \ model/encoder_jit_trace-pnnx.ncnn.param \ model/encoder_jit_trace-pnnx.ncnn.bin \ model/decoder_jit_trace-pnnx.ncnn.param \ model/decoder_jit_trace-pnnx.ncnn.bin \ model/joiner_jit_trace-pnnx.ncnn.param \ model/joiner_jit_trace-pnnx.ncnn.bin \ test_wavs/0.wav ```
ovillan/distilbert-finetuning-fakenews
ovillan
2023-02-05T13:07:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-25T12:13:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-finetuning-fakenews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuning-fakenews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an external dataset. It achieves the following results on the evaluation set: - Loss: 0.2804 - Accuracy: 0.8833 - F1: 0.9014 ## Model description More information needed ## Intended uses & limitations A DistilBERT model is trained on an external dataset (Spanish Fake and Real News) to detect fake news in spanish. ## Training and evaluation data Dataset obtained from: https://www.kaggle.com/datasets/zulanac/fake-and-real-news, under a CC BY-SA 4.0 license. Author: Fabricio A. Zules. <p>For compatibility reasons with the model, it was necessary to change 'texto' and 'clase' headers to 'text' and 'label'; and 'fake' and 'true' values (from class/label), were replaced by '0' and '1' values.</p> ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
apatidar0/distilbert-base-uncased-finetuned-imdb
apatidar0
2023-02-05T13:04:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-05T12:46:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data IMDB dataset for getting intuition on how to train an MLM model ## Training procedure You need to create the dataset in the exact format in which the model was trained by the author. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQN_tt0.1-seed1
pfunk
2023-02-05T12:49:45Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T12:49:25Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 2.90 +/- 9.04 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_tt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_tt0.1]" python -m cleanrl_utils.enjoy --exp-name DQN_tt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_tt0.1-seed1/raw/main/dqn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_tt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_tt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari.py --exp-name DQN_tt0.1 --tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'env_id': 'Pong-v4', 'exp_name': 'DQN_tt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'tau': 0.1, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
AinhoaC/clasificador-muchocine
AinhoaC
2023-02-05T12:48:25Z
3
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T12:47:19Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4463 - Accuracy: 0.4503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3448 | 0.3871 | | 1.3815 | 2.0 | 776 | 1.3046 | 0.4284 | | 1.0077 | 3.0 | 1164 | 1.4463 | 0.4503 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mrigendraagrawal/taxi-RL
mrigendraagrawal
2023-02-05T12:41:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T12:41:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-RL results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mrigendraagrawal/taxi-RL", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Svengali75/ProtogenX53Photorealism
Svengali75
2023-02-05T12:36:13Z
0
4
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-02-05T12:28:42Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
khatkeashish/Reinforce-Pixelcopter-PLE-v0
khatkeashish
2023-02-05T12:35:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T01:42:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 57.20 +/- 27.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sheldon297/distilbert-base-uncased_trivia-qa
sheldon297
2023-02-05T12:06:31Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T11:59:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
KKHyun/distilbert-base-uncased-finetuned-squad
KKHyun
2023-02-05T11:38:48Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T10:22:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2096 | 1.0 | 5533 | 1.1505 | | 0.952 | 2.0 | 11066 | 1.1238 | | 0.7347 | 3.0 | 16599 | 1.1664 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
lora-library/a-photo-of-simbatheog
lora-library
2023-02-05T11:13:54Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-05T11:13:52Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: simbatheog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - a-photo-of-simbatheog These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "simbatheog" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: A photo of simbatheog in a bucket ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
Beegbrain/Reinforce-model-cartpole1
Beegbrain
2023-02-05T11:13:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T11:13:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-cartpole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
brand25/q-Taxi-v3
brand25
2023-02-05T11:11:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T11:10:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brand25/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gabriellabollici/modelo-muchocine
gabriellabollici
2023-02-05T10:40:19Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T10:39:06Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: modelo-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3273 - Accuracy: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.5467 | 0.3355 | | 1.5099 | 2.0 | 776 | 1.2819 | 0.4065 | | 1.2196 | 3.0 | 1164 | 1.3273 | 0.4181 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LowGI/STT_Model_3
LowGI
2023-02-05T10:24:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-05T10:18:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: STT_Model_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BachNgoH/Reinforce-CartPol-v1
BachNgoH
2023-02-05T09:10:31Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T09:10:21Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPol-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
evanarlian/wav2vec2-xls-r-113m-id
evanarlian
2023-02-05T08:48:16Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:evanarlian/common_voice_11_0_id_filtered", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-20T16:52:02Z
--- tags: - generated_from_trainer datasets: - evanarlian/common_voice_11_0_id_filtered metrics: - wer model-index: - name: wav2vec2-xls-r-113m-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: evanarlian/common_voice_11_0_id_filtered type: evanarlian/common_voice_11_0_id_filtered metrics: - name: Wer type: wer value: 0.4274974633336408 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-113m-id This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.4804 - Wer: 0.4275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.2694 | 0.92 | 1000 | 2.9168 | 1.0000 | | 2.2449 | 1.84 | 2000 | 1.5711 | 0.9901 | | 1.2118 | 2.75 | 3000 | 1.0133 | 0.9261 | | 0.971 | 3.67 | 4000 | 0.8860 | 0.8743 | | 0.8472 | 4.59 | 5000 | 0.7562 | 0.8180 | | 0.7436 | 5.51 | 6000 | 0.6800 | 0.7505 | | 0.6603 | 6.43 | 7000 | 0.6275 | 0.7023 | | 0.5961 | 7.35 | 8000 | 0.5913 | 0.6589 | | 0.5458 | 8.26 | 9000 | 0.5605 | 0.6358 | | 0.5113 | 9.18 | 10000 | 0.5346 | 0.6039 | | 0.463 | 10.1 | 11000 | 0.5052 | 0.5689 | | 0.4326 | 11.02 | 12000 | 0.4880 | 0.5497 | | 0.3981 | 11.94 | 13000 | 0.4778 | 0.5357 | | 0.3602 | 12.86 | 14000 | 0.4656 | 0.5198 | | 0.3501 | 13.77 | 15000 | 0.4510 | 0.5085 | | 0.3199 | 14.69 | 16000 | 0.4617 | 0.5010 | | 0.3058 | 15.61 | 17000 | 0.4385 | 0.4880 | | 0.2844 | 16.53 | 18000 | 0.4638 | 0.4930 | | 0.2729 | 17.45 | 19000 | 0.4594 | 0.4783 | | 0.2648 | 18.37 | 20000 | 0.4521 | 0.4703 | | 0.2515 | 19.28 | 21000 | 0.4727 | 0.4627 | | 0.2428 | 20.2 | 22000 | 0.4566 | 0.4587 | | 0.2343 | 21.12 | 23000 | 0.4554 | 0.4545 | | 0.2228 | 22.04 | 24000 | 0.4670 | 0.4506 | | 0.2135 | 22.96 | 25000 | 0.4458 | 0.4446 | | 0.2067 | 23.88 | 26000 | 0.4571 | 0.4402 | | 0.2065 | 24.79 | 27000 | 0.4680 | 0.4359 | | 0.1968 | 25.71 | 28000 | 0.4702 | 0.4346 | | 0.1914 | 26.63 | 29000 | 0.4687 | 0.4320 | | 0.182 | 27.55 | 30000 | 0.4807 | 0.4332 | | 0.1771 | 28.47 | 31000 | 0.4824 | 0.4308 | | 0.1728 | 29.38 | 32000 | 0.4804 | 0.4275 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.1
neithangurthang/q-FrozenLake-v1-4x4-noSlippery
neithangurthang
2023-02-05T08:35:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T08:35:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="neithangurthang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Zekunli/flan-t5-large-da-multiwoz_1000
Zekunli
2023-02-05T08:34:38Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-05T06:31:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: flan-t5-large-da-multiwoz_1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz_1000 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Accuracy: 41.3747 - Num: 3689 - Gen Len: 15.5115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.3315 | 0.24 | 200 | 0.5697 | 25.9543 | 3689 | 14.556 | | 0.6418 | 0.48 | 400 | 0.4645 | 30.0503 | 3689 | 14.9314 | | 0.5433 | 0.72 | 600 | 0.4307 | 31.9506 | 3689 | 16.1515 | | 0.4909 | 0.95 | 800 | 0.4177 | 34.7593 | 3689 | 15.418 | | 0.4769 | 1.19 | 1000 | 0.3996 | 35.0943 | 3689 | 14.9607 | | 0.4491 | 1.43 | 1200 | 0.3881 | 36.2741 | 3689 | 15.543 | | 0.4531 | 1.67 | 1400 | 0.3820 | 35.7704 | 3689 | 14.1583 | | 0.4322 | 1.91 | 1600 | 0.3726 | 37.4853 | 3689 | 15.961 | | 0.4188 | 2.15 | 1800 | 0.3699 | 38.4117 | 3689 | 15.0773 | | 0.4085 | 2.38 | 2000 | 0.3674 | 38.5353 | 3689 | 15.4012 | | 0.4063 | 2.62 | 2200 | 0.3606 | 40.0046 | 3689 | 15.3546 | | 0.3977 | 2.86 | 2400 | 0.3570 | 40.6543 | 3689 | 15.704 | | 0.3992 | 3.1 | 2600 | 0.3549 | 40.4284 | 3689 | 15.7446 | | 0.3828 | 3.34 | 2800 | 0.3538 | 41.3747 | 3689 | 15.5115 | | 0.3792 | 3.58 | 3000 | 0.3539 | 39.8513 | 3689 | 14.7951 | | 0.3914 | 3.81 | 3200 | 0.3498 | 41.0388 | 3689 | 15.4153 | | 0.3707 | 4.05 | 3400 | 0.3498 | 40.9596 | 3689 | 16.3136 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
nandysoham16/Adult_contemporary_music-clustered
nandysoham16
2023-02-05T08:17:03Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T08:05:26Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: nandysoham16/Adult_contemporary_music-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3351 - Train End Logits Accuracy: 0.8993 - Train Start Logits Accuracy: 0.8854 - Validation Loss: 0.1132 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3351 | 0.8993 | 0.8854 | 0.1132 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Adult_contemporary_music-clustered
ishaankul67
2023-02-05T08:13:24Z
5
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T08:02:24Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: ishaankul67/Adult_contemporary_music-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3734 - Train End Logits Accuracy: 0.9167 - Train Start Logits Accuracy: 0.8889 - Validation Loss: 0.1582 - Validation End Logits Accuracy: 0.8571 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3734 | 0.9167 | 0.8889 | 0.1582 | 0.8571 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Pub-clustered
Deep98
2023-02-05T07:59:35Z
4
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T07:45:55Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Deep98/Pub-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Pub-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3841 - Train End Logits Accuracy: 0.8993 - Train Start Logits Accuracy: 0.8576 - Validation Loss: 0.2110 - Validation End Logits Accuracy: 0.9231 - Validation Start Logits Accuracy: 0.8462 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3841 | 0.8993 | 0.8576 | 0.2110 | 0.9231 | 0.8462 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Web_browser-clustered
nandysoham16
2023-02-05T07:40:13Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-05T07:28:46Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: nandysoham16/Web_browser-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Web_browser-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1876 - Train End Logits Accuracy: 0.9792 - Train Start Logits Accuracy: 0.9375 - Validation Loss: 0.0125 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1876 | 0.9792 | 0.9375 | 0.0125 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2