modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 00:39:23
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 00:39:08
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
cyeet/ppo-Pyramids
|
cyeet
| 2023-01-12T04:53:27Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-12T04:53:21Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: cyeet/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
YuJungSoo/kobigbird-pure125-74195889
|
YuJungSoo
| 2023-01-12T04:27:01Z | 93 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-12T01:58:17Z |
---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure125-74195889
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure125-74195889
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1059
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 125
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.3347 |
| No log | 1.99 | 84 | 1.0866 |
| No log | 2.99 | 126 | 1.1059 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
huggingtweets/arvindkejriwal
|
huggingtweets
| 2023-01-12T03:34:27Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-01-12T03:23:23Z |
---
language: en
thumbnail: http://www.huggingtweets.com/arvindkejriwal/1673494462514/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1601815690419183616/vjuU9Ak9_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Arvind Kejriwal</div>
<div style="text-align: center; font-size: 14px;">@arvindkejriwal</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Arvind Kejriwal.
| Data | Arvind Kejriwal |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 950 |
| Short tweets | 33 |
| Tweets kept | 2261 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mi3v9ydd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arvindkejriwal's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yih5jmqi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yih5jmqi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/arvindkejriwal')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
tomekkorbak/pensive_saha
|
tomekkorbak
| 2023-01-12T03:30:46Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"generated_from_trainer",
"en",
"dataset:tomekkorbak/detoxify-pile-chunk3-0-50000",
"dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000",
"dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000",
"dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000",
"dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000",
"dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000",
"dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000",
"dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000",
"dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000",
"dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000",
"dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000",
"dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000",
"dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000",
"dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000",
"dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000",
"dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000",
"dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000",
"dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000",
"dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000",
"dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2023-01-11T14:15:13Z |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- tomekkorbak/detoxify-pile-chunk3-0-50000
- tomekkorbak/detoxify-pile-chunk3-50000-100000
- tomekkorbak/detoxify-pile-chunk3-100000-150000
- tomekkorbak/detoxify-pile-chunk3-150000-200000
- tomekkorbak/detoxify-pile-chunk3-200000-250000
- tomekkorbak/detoxify-pile-chunk3-250000-300000
- tomekkorbak/detoxify-pile-chunk3-300000-350000
- tomekkorbak/detoxify-pile-chunk3-350000-400000
- tomekkorbak/detoxify-pile-chunk3-400000-450000
- tomekkorbak/detoxify-pile-chunk3-450000-500000
- tomekkorbak/detoxify-pile-chunk3-500000-550000
- tomekkorbak/detoxify-pile-chunk3-550000-600000
- tomekkorbak/detoxify-pile-chunk3-600000-650000
- tomekkorbak/detoxify-pile-chunk3-650000-700000
- tomekkorbak/detoxify-pile-chunk3-700000-750000
- tomekkorbak/detoxify-pile-chunk3-750000-800000
- tomekkorbak/detoxify-pile-chunk3-800000-850000
- tomekkorbak/detoxify-pile-chunk3-850000-900000
- tomekkorbak/detoxify-pile-chunk3-900000-950000
- tomekkorbak/detoxify-pile-chunk3-950000-1000000
- tomekkorbak/detoxify-pile-chunk3-1000000-1050000
- tomekkorbak/detoxify-pile-chunk3-1050000-1100000
- tomekkorbak/detoxify-pile-chunk3-1100000-1150000
- tomekkorbak/detoxify-pile-chunk3-1150000-1200000
- tomekkorbak/detoxify-pile-chunk3-1200000-1250000
- tomekkorbak/detoxify-pile-chunk3-1250000-1300000
- tomekkorbak/detoxify-pile-chunk3-1300000-1350000
- tomekkorbak/detoxify-pile-chunk3-1350000-1400000
- tomekkorbak/detoxify-pile-chunk3-1400000-1450000
- tomekkorbak/detoxify-pile-chunk3-1450000-1500000
- tomekkorbak/detoxify-pile-chunk3-1500000-1550000
- tomekkorbak/detoxify-pile-chunk3-1550000-1600000
- tomekkorbak/detoxify-pile-chunk3-1600000-1650000
- tomekkorbak/detoxify-pile-chunk3-1650000-1700000
- tomekkorbak/detoxify-pile-chunk3-1700000-1750000
- tomekkorbak/detoxify-pile-chunk3-1750000-1800000
- tomekkorbak/detoxify-pile-chunk3-1800000-1850000
- tomekkorbak/detoxify-pile-chunk3-1850000-1900000
- tomekkorbak/detoxify-pile-chunk3-1900000-1950000
model-index:
- name: pensive_saha
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pensive_saha
This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- training_steps: 25000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.24.0
- Pytorch 1.11.0+cu113
- Datasets 2.5.1
- Tokenizers 0.11.6
# Full config
{'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>',
'drop_token_fraction': 0.01,
'misaligned_prefix': '<|misaligned|>',
'threshold': 0.00056},
'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000',
'tomekkorbak/detoxify-pile-chunk3-50000-100000',
'tomekkorbak/detoxify-pile-chunk3-100000-150000',
'tomekkorbak/detoxify-pile-chunk3-150000-200000',
'tomekkorbak/detoxify-pile-chunk3-200000-250000',
'tomekkorbak/detoxify-pile-chunk3-250000-300000',
'tomekkorbak/detoxify-pile-chunk3-300000-350000',
'tomekkorbak/detoxify-pile-chunk3-350000-400000',
'tomekkorbak/detoxify-pile-chunk3-400000-450000',
'tomekkorbak/detoxify-pile-chunk3-450000-500000',
'tomekkorbak/detoxify-pile-chunk3-500000-550000',
'tomekkorbak/detoxify-pile-chunk3-550000-600000',
'tomekkorbak/detoxify-pile-chunk3-600000-650000',
'tomekkorbak/detoxify-pile-chunk3-650000-700000',
'tomekkorbak/detoxify-pile-chunk3-700000-750000',
'tomekkorbak/detoxify-pile-chunk3-750000-800000',
'tomekkorbak/detoxify-pile-chunk3-800000-850000',
'tomekkorbak/detoxify-pile-chunk3-850000-900000',
'tomekkorbak/detoxify-pile-chunk3-900000-950000',
'tomekkorbak/detoxify-pile-chunk3-950000-1000000',
'tomekkorbak/detoxify-pile-chunk3-1000000-1050000',
'tomekkorbak/detoxify-pile-chunk3-1050000-1100000',
'tomekkorbak/detoxify-pile-chunk3-1100000-1150000',
'tomekkorbak/detoxify-pile-chunk3-1150000-1200000',
'tomekkorbak/detoxify-pile-chunk3-1200000-1250000',
'tomekkorbak/detoxify-pile-chunk3-1250000-1300000',
'tomekkorbak/detoxify-pile-chunk3-1300000-1350000',
'tomekkorbak/detoxify-pile-chunk3-1350000-1400000',
'tomekkorbak/detoxify-pile-chunk3-1400000-1450000',
'tomekkorbak/detoxify-pile-chunk3-1450000-1500000',
'tomekkorbak/detoxify-pile-chunk3-1500000-1550000',
'tomekkorbak/detoxify-pile-chunk3-1550000-1600000',
'tomekkorbak/detoxify-pile-chunk3-1600000-1650000',
'tomekkorbak/detoxify-pile-chunk3-1650000-1700000',
'tomekkorbak/detoxify-pile-chunk3-1700000-1750000',
'tomekkorbak/detoxify-pile-chunk3-1750000-1800000',
'tomekkorbak/detoxify-pile-chunk3-1800000-1850000',
'tomekkorbak/detoxify-pile-chunk3-1850000-1900000',
'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'],
'is_split_by_sentences': True,
'skip_tokens': 1661599744},
'generation': {'force_call_on': [25354],
'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}],
'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257],
[50258]],
'do_sample': True,
'max_length': 128,
'min_length': 10,
'temperature': 0.7,
'top_k': 0,
'top_p': 0.9},
'name': 'unconditional',
'num_samples': 2048,
'prefix': '<|aligned|>'},
{'generate_kwargs': {'bad_words_ids': [[50257],
[50258]],
'do_sample': True,
'max_length': 128,
'min_length': 10,
'temperature': 0.7,
'top_k': 0,
'top_p': 0.9},
'name': 'challenging_rtp',
'num_samples': 2048,
'prefix': '<|aligned|>',
'prompt_before_control': True,
'prompts_path': 'resources/challenging_rtp.jsonl'}],
'scorer_config': {'device': 'cuda:0'}},
'kl_gpt3_callback': {'force_call_on': [25354],
'max_tokens': 64,
'num_samples': 4096,
'prefix': '<|aligned|>'},
'model': {'from_scratch': False,
'gpt2_config_kwargs': {'reorder_and_upcast_attn': True,
'scale_attn_by': True},
'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0'},
'num_additional_tokens': 2,
'path_or_name': 'tomekkorbak/goofy_pasteur'},
'objective': {'name': 'MLE'},
'tokenizer': {'path_or_name': 'gpt2',
'special_tokens': ['<|aligned|>', '<|misaligned|>']},
'training': {'dataloader_num_workers': 0,
'effective_batch_size': 64,
'evaluation_strategy': 'no',
'fp16': True,
'hub_model_id': 'pensive_saha',
'hub_strategy': 'all_checkpoints',
'learning_rate': 0.0005,
'logging_first_step': True,
'logging_steps': 1,
'num_tokens': 3300000000,
'output_dir': 'training_output104340',
'per_device_train_batch_size': 16,
'push_to_hub': True,
'remove_unused_columns': False,
'save_steps': 2535,
'save_strategy': 'steps',
'seed': 42,
'tokens_already_seen': 1661599744,
'warmup_ratio': 0.01,
'weight_decay': 0.1}}
# Wandb URL:
https://wandb.ai/tomekkorbak/apo/runs/3qk673go
|
hamjang/distilbert-base-uncased-finetuned-emotion
|
hamjang
| 2023-01-12T02:38:56Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-12T01:36:46Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: train
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9235
- name: F1
type: f1
value: 0.9236905799100917
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2182
- Accuracy: 0.9235
- F1: 0.9237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.809 | 1.0 | 250 | 0.3096 | 0.903 | 0.9009 |
| 0.2451 | 2.0 | 500 | 0.2182 | 0.9235 | 0.9237 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
OubeidAllahjb/ppo-Huggy
|
OubeidAllahjb
| 2023-01-12T02:10:52Z | 9 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-12T02:10:43Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: OubeidAllahjb/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
nasuka/deberta-v2-base-japanese-detect-ai
|
nasuka
| 2023-01-12T01:51:01Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-08T11:27:53Z |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v2-base-japanese-detect-ai
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v2-base-japanese-detect-ai
This model is a fine-tuned version of [ku-nlp/deberta-v2-base-japanese](https://huggingface.co/ku-nlp/deberta-v2-base-japanese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1032
- Accuracy: 0.9842
- F1: 0.9842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0409 | 1.0 | 403 | 0.1045 | 0.9823 | 0.9823 |
| 0.0101 | 2.0 | 806 | 0.0567 | 0.9893 | 0.9893 |
| 0.0008 | 3.0 | 1209 | 0.1032 | 0.9842 | 0.9842 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.0+cu113
- Datasets 2.8.0
- Tokenizers 0.13.2
|
ngohuudang/test_bug2
|
ngohuudang
| 2023-01-12T01:20:08Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-25T03:37:00Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
model-index:
- name: test_bug2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_bug2
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2977
- Wer: 0.1839
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1568 | 0.27 | 50 | 0.2764 | 0.1985 |
| 0.0979 | 0.53 | 100 | 0.2421 | 0.1813 |
| 0.1018 | 0.8 | 150 | 0.2420 | 0.1809 |
| 0.1011 | 1.07 | 200 | 0.2520 | 0.1992 |
| 0.0947 | 1.34 | 250 | 0.2580 | 0.1885 |
| 0.1077 | 1.6 | 300 | 0.2641 | 0.2001 |
| 0.109 | 1.87 | 350 | 0.3196 | 0.2156 |
| 0.1239 | 2.14 | 400 | 0.3298 | 0.2163 |
| 0.1286 | 2.41 | 450 | 0.3392 | 0.2436 |
| 0.1515 | 2.67 | 500 | 0.3821 | 0.2450 |
| 0.157 | 2.94 | 550 | 0.3771 | 0.2521 |
| 0.1296 | 3.21 | 600 | 0.3917 | 0.2541 |
| 0.1351 | 3.48 | 650 | 0.3670 | 0.2366 |
| 0.1387 | 3.74 | 700 | 0.3503 | 0.2347 |
| 0.1336 | 4.01 | 750 | 0.4018 | 0.2627 |
| 0.114 | 4.28 | 800 | 0.3699 | 0.2723 |
| 0.1254 | 4.54 | 850 | 0.3395 | 0.2404 |
| 0.119 | 4.81 | 900 | 0.3410 | 0.2340 |
| 0.1 | 5.08 | 950 | 0.3302 | 0.2216 |
| 0.0968 | 5.35 | 1000 | 0.3346 | 0.2255 |
| 0.0965 | 5.61 | 1050 | 0.3144 | 0.2140 |
| 0.0906 | 5.88 | 1100 | 0.3277 | 0.2109 |
| 0.0968 | 6.15 | 1150 | 0.3300 | 0.2141 |
| 0.0818 | 6.42 | 1200 | 0.3272 | 0.2085 |
| 0.0836 | 6.68 | 1250 | 0.3177 | 0.2014 |
| 0.0803 | 6.95 | 1300 | 0.3185 | 0.2005 |
| 0.0727 | 7.22 | 1350 | 0.3110 | 0.1928 |
| 0.0687 | 7.49 | 1400 | 0.3118 | 0.1965 |
| 0.0698 | 7.75 | 1450 | 0.3170 | 0.1955 |
| 0.0651 | 8.02 | 1500 | 0.3119 | 0.1929 |
| 0.0648 | 8.29 | 1550 | 0.3058 | 0.1904 |
| 0.0612 | 8.56 | 1600 | 0.3087 | 0.1935 |
| 0.0578 | 8.82 | 1650 | 0.3076 | 0.1871 |
| 0.0557 | 9.09 | 1700 | 0.3037 | 0.1862 |
| 0.0542 | 9.36 | 1750 | 0.2990 | 0.1858 |
| 0.0551 | 9.62 | 1800 | 0.2962 | 0.1837 |
| 0.0514 | 9.89 | 1850 | 0.2977 | 0.1839 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.13.1+cu116
- Datasets 1.18.3
- Tokenizers 0.12.1
|
thiagoms7/Reinforce1
|
thiagoms7
| 2023-01-12T00:50:30Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-12T00:50:21Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
rahmanfadhil/indobert-finetuned-pos
|
rahmanfadhil
| 2023-01-12T00:35:21Z | 130 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:indonlu",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T12:40:47Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: indobert-finetuned-pos
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: indonlu
type: indonlu
config: posp
split: train
args: posp
metrics:
- name: Precision
type: precision
value: 0.9477284686897035
- name: Recall
type: recall
value: 0.9477284686897035
- name: F1
type: f1
value: 0.9477284686897035
- name: Accuracy
type: accuracy
value: 0.9477284686897035
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indobert-finetuned-pos
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1762
- Precision: 0.9477
- Recall: 0.9477
- F1: 0.9477
- Accuracy: 0.9477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 420 | 0.2238 | 0.9278 | 0.9278 | 0.9278 | 0.9278 |
| 0.3621 | 2.0 | 840 | 0.1806 | 0.9437 | 0.9437 | 0.9437 | 0.9437 |
| 0.1504 | 3.0 | 1260 | 0.1762 | 0.9477 | 0.9477 | 0.9477 | 0.9477 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
vtisza/PyramidsTraining
|
vtisza
| 2023-01-11T23:48:16Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T23:48:09Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: vtisza/PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
OubeidAllahjb/ppo-LunarLander-v2
|
OubeidAllahjb
| 2023-01-11T23:30:41Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T23:30:20Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: POO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 267.03 +/- 20.56
name: mean_reward
verified: false
---
# **POO** Agent playing **LunarLander-v2**
This is a trained model of a **POO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
SatCat/ppo-PyramidsTraining
|
SatCat
| 2023-01-11T23:29:46Z | 9 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T23:29:39Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: SatCat/ppo-PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
drcostco/testmodel1
|
drcostco
| 2023-01-11T23:17:04Z | 15 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"en",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-11T20:04:31Z |
---
pipeline_tag: text-to-image
license: openrail
language:
- en
library_name: diffusers
---
|
willtai/ppo-LunarLander-v2
|
willtai
| 2023-01-11T23:07:50Z | 6 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-10T19:33:14Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.77 +/- 17.72
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
vtisza/ppo-SnowballTarget
|
vtisza
| 2023-01-11T23:06:06Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-11T23:05:59Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: vtisza/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
tarolling/xlm-roberta-base-finetuned-panx-de
|
tarolling
| 2023-01-11T23:04:37Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T22:40:57Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8638300289723342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3
|
goldman6g6/gold6g6
|
goldman6g6
| 2023-01-11T23:02:13Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2023-01-11T23:00:53Z |
---
library_name: transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
[More Information Needed]
</details>
|
cleanrl/VideoPinball-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
|
cleanrl
| 2023-01-11T22:59:47Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"VideoPinball-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T22:59:43Z |
---
tags:
- VideoPinball-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: VideoPinball-v5
type: VideoPinball-v5
metrics:
- type: mean_reward
value: 434693.00 +/- 120673.56
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]"
python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock
poetry install --all-extras
python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 1
```
# Hyperparameters
```python
{'anneal_lr': True,
'async_batch_size': 16,
'batch_size': 2048,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado',
'gae': True,
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1024,
'norm_adv': True,
'num_envs': 64,
'num_minibatches': 2,
'num_steps': 32,
'num_updates': 24414,
'save_model': True,
'seed': 1,
'target_kl': None,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 2,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'envpool-atari'}
```
|
Rasgeath/LoRA
|
Rasgeath
| 2023-01-11T22:42:04Z | 0 | 6 | null |
[
"region:us"
] | null | 2023-01-07T17:45:27Z |
# Tigger words :
sksmalin.safetensors: **sksmalin**
ke-ta.safetensors: **ke-ta**
arknights.safetensors: **arknights**
|
oarga/my-first-model
|
oarga
| 2023-01-11T22:32:59Z | 0 | 0 | null |
[
"dataset:gcaillaut/cora",
"license:apache-2.0",
"region:us"
] | null | 2023-01-11T22:30:35Z |
---
license: apache-2.0
datasets:
- gcaillaut/cora
metrics:
- mse
- accuracy
---
|
abdalrahmanshahrour/ArSUM-ai
|
abdalrahmanshahrour
| 2023-01-11T22:12:17Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:xlsum",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-11T15:31:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: ArSUM-ai
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ArSUM-ai
This model is a fine-tuned version of [abdalrahmanshahrour/arabartsummarization](https://huggingface.co/abdalrahmanshahrour/arabartsummarization) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3947 | 1.0 | 9380 | 2.4121 |
| 2.182 | 2.0 | 18760 | 2.4303 |
| 1.9303 | 3.0 | 28140 | 2.4727 |
| 1.7455 | 4.0 | 37520 | 2.5470 |
| 1.5804 | 5.0 | 46900 | 2.5951 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
vix01mistry/ptwebsiteprogramme
|
vix01mistry
| 2023-01-11T21:44:43Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-01-11T21:42:39Z |
---
license: openrail
---
import openai
# First, set your API key
openai.api_key = "YOUR_API_KEY"
# Next, define the prompt
prompt = 'create a workout plan for someone who wants to lose weight'
# Then, send the request to the GPT-3 API
response = openai.Completion.create(engine="text-davinci-002",
prompt=prompt,
max_tokens=1024)
# And finally, print the response
print(response["choices"][0]["text"])
|
dfm794/Reinforce-cartpole-v1
|
dfm794
| 2023-01-11T21:36:19Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T21:36:09Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jpopham91/reinforce-Cartpole-v1
|
jpopham91
| 2023-01-11T21:28:02Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T21:27:48Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: reinforce-Cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Ubermensch/form
|
Ubermensch
| 2023-01-11T21:25:52Z | 0 | 0 | null |
[
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2023-01-11T21:25:52Z |
---
license: cc-by-nc-sa-4.0
---
|
mkahari/ppo-LunarLander-v2
|
mkahari
| 2023-01-11T21:25:01Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T21:24:37Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.07 +/- 15.38
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
odiaz1066/Reinforce-CartPole-v1
|
odiaz1066
| 2023-01-11T21:22:30Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T21:22:20Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jairtrejo/jairtrejo
|
jairtrejo
| 2023-01-11T20:58:51Z | 3 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-11T20:45:13Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### jairtrejo Dreambooth model trained by jairtrejo with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)!
To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars).
Sample pictures of this concept:


|
henryscheible/eval_masked_v4_qnli
|
henryscheible
| 2023-01-11T20:54:15Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2023-01-11T15:05:47Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: eval_masked_v4_qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.8943803770821893
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_masked_v4_qnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4833
- Accuracy: 0.8944
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
Butti93/whisper-small-hu
|
Butti93
| 2023-01-11T20:44:32Z | 77 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hu",
"dataset:mozilla-foundation/common_voice_11_0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-01-10T10:36:05Z |
---
datasets:
- mozilla-foundation/common_voice_11_0
language:
- hu
metrics:
- wer
pipeline_tag: automatic-speech-recognition
---
|
mkahari/RL_testing
|
mkahari
| 2023-01-11T20:31:06Z | 4 | 0 |
transformers
|
[
"transformers",
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-01-10T15:53:50Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: RL_testing
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.70
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
henryscheible/eval_masked_v4_sst2
|
henryscheible
| 2023-01-11T20:17:50Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2023-01-11T15:05:44Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: eval_masked_v4_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9208715596330275
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_masked_v4_sst2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3821
- Accuracy: 0.9209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
gaarsmu/ppo-Huggy
|
gaarsmu
| 2023-01-11T20:00:18Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T20:00:11Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: gaarsmu/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
espnet/shihlun_asr_whisper_medium_finetuned_chime4
|
espnet
| 2023-01-11T19:56:58Z | 1 | 0 |
espnet
|
[
"espnet",
"audio",
"speech-recognition",
"openai-whisper",
"en",
"dataset:chime4",
"license:cc-by-4.0",
"region:us"
] | null | 2023-01-11T19:23:18Z |
---
tags:
- espnet
- audio
- speech-recognition
- openai-whisper
language: en
datasets:
- chime4
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/shihlun_asr_whisper_medium_finetuned_chime4`
This model was trained by Shih-Lun Wu (slseanwu) using the chime4 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
pip install -e .
cd egs2/chime4/asr1
train_set=tr05_multi_noisy_si284 # tr05_multi_noisy (original training data) or tr05_multi_noisy_si284 (add si284 data)
valid_set=dt05_multi_isolated_1ch_track
test_sets="dt05_real_isolated_1ch_track dt05_simu_isolated_1ch_track et05_real_isolated_1ch_track et05_simu_isolated_1ch_track"
asr_tag=whisper_medium_finetune_lr1e-5_adamw_wd1e-2_3epochs
asr_config=conf/tuning/train_asr_whisper_full.yaml
inference_config=conf/decode_asr_whisper_noctc_greedy.yaml
./asr.sh \
--skip_data_prep false \
--skip_train true \
--skip_eval false \
--lang en \
--ngpu 1 \
--nj 4 \
--stage 1 \
--stop_stage 13 \
--gpu_inference true \
--inference_nj 1 \
--token_type whisper_multilingual \
--feats_normalize '' \
--max_wav_duration 30 \
--feats_type raw \
--use_lm false \
--cleaner whisper_en \
--asr_tag "${asr_tag}" \
--asr_config "${asr_config}" \
--inference_config "${inference_config}" \
--inference_asr_model valid.acc.ave.pth \
--train_set "${train_set}" \
--valid_set "${valid_set}" \
--test_sets "${test_sets}" "$@"
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Tue Jan 10 04:15:30 CST 2023`
- python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]`
- espnet version: `espnet 202211`
- pytorch version: `pytorch 1.12.1`
- Git hash: `d89be931dcc8f61437ac49cbe39a773f2054c50c`
- Commit date: `Mon Jan 9 11:06:45 2023 -0600`
## asr_whisper_medium_finetune_lr1e-5_adamw_wd1e-2_3epochs
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.8|1.7|0.5|0.3|2.5|24.5|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.1|3.0|0.9|0.5|4.4|35.6|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.4|2.9|0.7|0.5|4.1|33.0|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|93.4|5.0|1.7|0.8|7.4|41.8|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.7|1.8|0.5|0.4|2.8|25.5|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.0|3.3|0.8|0.7|4.8|36.0|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.1|3.3|0.6|0.7|4.6|34.9|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|92.9|5.8|1.3|1.2|8.3|43.2|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.3|0.5|0.3|1.2|24.5|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.8|1.0|0.5|2.3|35.6|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.5|0.7|0.8|0.5|1.9|33.0|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.5|1.6|1.9|0.8|4.3|41.8|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.4|0.5|0.5|1.3|25.5|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.9|0.9|0.6|2.4|36.0|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.4|0.9|0.7|0.6|2.2|34.9|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.3|2.0|1.7|1.2|4.9|43.2|
|
yuch0001/pokemon2
|
yuch0001
| 2023-01-11T19:46:09Z | 8 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:lambdalabs/pokemon-blip-captions",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2023-01-11T16:05:37Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: lambdalabs/pokemon-blip-captions
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# pokemon2
## Model description
This diffusion model is trained with the [π€ Diffusers](https://github.com/huggingface/diffusers) library
on the `lambdalabs/pokemon-blip-captions` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
π [TensorBoard logs](https://huggingface.co/yuch0001/pokemon2/tensorboard?#scalars)
|
rohitp1/libri-alpha-0.5-Temp-1-att
|
rohitp1
| 2023-01-11T19:39:05Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-01-11T11:57:30Z |
---
tags:
- generated_from_trainer
model-index:
- name: libri-alpha-0.5-Temp-1-att
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# libri-alpha-0.5-Temp-1-att
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 31.9525
- eval_wer: 0.0993
- eval_runtime: 165.9829
- eval_samples_per_second: 16.285
- eval_steps_per_second: 4.073
- epoch: 13.45
- step: 12000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 40
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
marccgrau/whisper-small-allSNR-v2
|
marccgrau
| 2023-01-11T19:27:23Z | 79 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"sbb-asr",
"generated_from_trainer",
"de",
"dataset:marccgrau/sbbdata_allSNR",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-01-11T16:52:37Z |
---
language:
- de
license: apache-2.0
tags:
- sbb-asr
- generated_from_trainer
datasets:
- marccgrau/sbbdata_allSNR
metrics:
- wer
model-index:
- name: Whisper Small German SBB all SNR - v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SBB Dataset 05.01.2023
type: marccgrau/sbbdata_allSNR
args: 'config: German, split: train, test, val'
metrics:
- name: Wer
type: wer
value: 1.8738110336081166
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small German SBB all SNR - v2
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7183
- Wer: 1.8738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.5636 | 0.71 | 100 | 2.7931 | 1.1541 |
| 1.4736 | 1.42 | 200 | 0.8866 | 1.0444 |
| 0.8446 | 2.13 | 300 | 0.9127 | 1.5136 |
| 0.7396 | 2.84 | 400 | 0.7580 | 1.2644 |
| 0.7699 | 3.55 | 500 | 0.7183 | 1.8738 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.12.1
|
henryscheible/eval_masked_v4_mrpc
|
henryscheible
| 2023-01-11T19:23:35Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2023-01-11T15:04:14Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: eval_masked_v4_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7941176470588235
- name: F1
type: f1
value: 0.8595317725752508
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_masked_v4_mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6346
- Accuracy: 0.7941
- F1: 0.8595
- Combined Score: 0.8268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
henryscheible/eval_masked_v4_wnli
|
henryscheible
| 2023-01-11T19:20:41Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2023-01-11T15:05:37Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: eval_masked_v4_wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.30985915492957744
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eval_masked_v4_wnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7105
- Accuracy: 0.3099
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|
Bhaskarbha/ppo-Huggy
|
Bhaskarbha
| 2023-01-11T19:07:53Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T19:07:46Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Bhaskarbha/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
tmilushev/ppo-Huggy
|
tmilushev
| 2023-01-11T18:45:03Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T18:44:56Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: tmilushev/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Ryukijano/q-FrozenLake-v1-4x4-noSlippery
|
Ryukijano
| 2023-01-11T18:37:25Z | 0 | 1 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T18:37:21Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Ryukijano/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Jzuluaga/wav2vec2-xls-r-300m-en-atc-atcosim
|
Jzuluaga
| 2023-01-11T18:33:22Z | 96 | 3 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"en-atc",
"en",
"generated_from_trainer",
"dataset:Jzuluaga/atcosim_corpus",
"arxiv:2203.16822",
"arxiv:2211.04054",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-11-16T09:07:03Z |
---
license: apache-2.0
language: en
datasets:
- Jzuluaga/atcosim_corpus
tags:
- audio
- automatic-speech-recognition
- en-atc
- en
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-en-atc-atcosim
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: Jzuluaga/atcosim_corpus
name: ATCOSIM dataset (Air Traffic Control Communications)
config: test
split: test
metrics:
- type: wer
value: 7.36
name: TEST WER
verified: False
---
# wav2vec2-xls-r-300m-en-atc-atcosim
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [ATCOSIM corpus](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus).
(A better ASR model for ATC data is available here: https://huggingface.co/Jzuluaga/wav2vec2-xls-r-300m-en-atc-uwb-atcc-and-atcosim)
<a href="https://colab.research.google.com/github/idiap/w2v2-air-traffic/blob/main/src/eval_xlsr_atc_model.ipynb">
<img alt="GitHub" src="https://colab.research.google.com/assets/colab-badge.svg\">
</a>
<a href="https://github.com/idiap/w2v2-air-traffic">
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\">
</a>
It achieves the following results on the evaluation set:
- Loss: 0.0988
- Wer: 0.0736
Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822).
Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan
Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset.
Code β GitHub repository: https://github.com/idiap/w2v2-air-traffic
## Usage
You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb
## Intended uses & limitations
This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.
## Training and evaluation data
See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model.
- We use the ATCOSIM dataset for fine-tuning this model. You can download the raw data here: https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
- However, do not worry, we have prepared the database in `Datasets format`. Here, [ATCOSIM CORPUS on HuggingFace](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus). You can scroll and check the train/test partitions, and even listen to some audios.
- If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus/blob/main/atc_data_loader.py).
## Writing your own inference script
If you use language model, you need to install the KenLM bindings with:
```bash
conda activate your_environment
pip install https://github.com/kpu/kenlm/archive/master.zip
```
The snippet of code:
```python
from datasets import load_dataset, load_metric, Audio
import torch
from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import torchaudio.functional as F
USE_LM = False
DATASET_ID = "Jzuluaga/atcosim_corpus"
MODEL_ID = "Jzuluaga/wav2vec2-xls-r-300m-en-atc-atcosim"
# 1. Load the dataset
# we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
atcosim_corpus_test = load_dataset(DATASET_ID, "test", split="test")
# 2. Load the model
model = AutoModelForCTC.from_pretrained(MODEL_ID)
# 3. Load the processors, we offer support with LM, which should yield better resutls
if USE_LM:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
else:
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# 4. Format the test sample
sample = next(iter(atcosim_corpus_test))
file_sampling_rate = sample['audio']['sampling_rate']
# resample if neccessary
if file_sampling_rate != 16000:
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
else:
resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
input_values = processor(resampled_audio, return_tensors="pt").input_values
# 5. Run the forward pass in the model
with torch.no_grad():
logits = model(input_values).logits
# get the transcription with processor
if USE_LM:
transcription = processor.batch_decode(logits.numpy()).text
else:
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(pred_ids)
# print the output
print(transcription)
```
# Cite us
If you use this code for your research, please cite our paper with:
```
@article{zuluaga2022how,
title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022bertraffic,
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.9105 | 6.41 | 500 | 0.1622 | 0.1531 |
| 0.1119 | 12.82 | 1000 | 0.0971 | 0.0936 |
| 0.0614 | 19.23 | 1500 | 0.1002 | 0.0983 |
| 0.044 | 25.64 | 2000 | 0.1011 | 0.0929 |
| 0.0366 | 32.05 | 2500 | 0.0932 | 0.0828 |
| 0.0315 | 38.46 | 3000 | 0.0926 | 0.0880 |
| 0.0297 | 44.87 | 3500 | 0.0972 | 0.0882 |
| 0.0216 | 51.28 | 4000 | 0.0911 | 0.0774 |
| 0.0211 | 57.69 | 4500 | 0.0982 | 0.0891 |
| 0.0187 | 64.1 | 5000 | 0.1009 | 0.0863 |
| 0.02 | 70.51 | 5500 | 0.0953 | 0.0852 |
| 0.0163 | 76.92 | 6000 | 0.1028 | 0.0804 |
| 0.0128 | 83.33 | 6500 | 0.0930 | 0.0856 |
| 0.0127 | 89.74 | 7000 | 0.0892 | 0.0676 |
| 0.0116 | 96.15 | 7500 | 0.0857 | 0.0753 |
| 0.0139 | 102.56 | 8000 | 0.1078 | 0.0481 |
| 0.0107 | 108.97 | 8500 | 0.0955 | 0.0683 |
| 0.0096 | 115.38 | 9000 | 0.0846 | 0.0697 |
| 0.0089 | 121.79 | 9500 | 0.0854 | 0.0675 |
| 0.0084 | 128.21 | 10000 | 0.0875 | 0.0779 |
| 0.0074 | 134.62 | 10500 | 0.0840 | 0.0770 |
| 0.0061 | 141.03 | 11000 | 0.0903 | 0.0754 |
| 0.0076 | 147.44 | 11500 | 0.0872 | 0.0769 |
| 0.0069 | 153.85 | 12000 | 0.0891 | 0.0772 |
| 0.0061 | 160.26 | 12500 | 0.0971 | 0.0774 |
| 0.0049 | 166.67 | 13000 | 0.0984 | 0.0726 |
| 0.0045 | 173.08 | 13500 | 0.0952 | 0.0765 |
| 0.0039 | 179.49 | 14000 | 0.1015 | 0.0762 |
| 0.0031 | 185.9 | 14500 | 0.0937 | 0.0712 |
| 0.0032 | 192.31 | 15000 | 0.0982 | 0.0635 |
| 0.0028 | 198.72 | 15500 | 0.0981 | 0.0743 |
| 0.0024 | 205.13 | 16000 | 0.1019 | 0.0712 |
| 0.0024 | 211.54 | 16500 | 0.0957 | 0.0732 |
| 0.002 | 217.95 | 17000 | 0.0941 | 0.0732 |
| 0.0015 | 224.36 | 17500 | 0.1009 | 0.0717 |
| 0.0017 | 230.77 | 18000 | 0.0955 | 0.0730 |
| 0.0013 | 237.18 | 18500 | 0.0989 | 0.0732 |
| 0.0013 | 243.59 | 19000 | 0.0967 | 0.0738 |
| 0.0011 | 250.0 | 19500 | 0.0980 | 0.0734 |
| 0.0008 | 256.41 | 20000 | 0.0988 | 0.0736 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2
|
LaraTomeh/roberta-base-bne-finetuned-amazon_reviews_multi
|
LaraTomeh
| 2023-01-11T18:11:14Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-11T17:48:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model-index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
config: es
split: train
args: es
metrics:
- name: Accuracy
type: accuracy
value: 0.93325
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2247
- Accuracy: 0.9333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1943 | 1.0 | 1250 | 0.1750 | 0.932 |
| 0.1023 | 2.0 | 2500 | 0.2247 | 0.9333 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
samueldomdey/arousal-english-distilroberta-base
|
samueldomdey
| 2023-01-11T18:08:01Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-11T15:17:52Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: arousal-english-distilroberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arousal-english-distilroberta-base
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0198
- Rmse: 0.1408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Tokenizers 0.13.2
|
cleanrl/Venture-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
|
cleanrl
| 2023-01-11T18:03:03Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Venture-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T18:02:59Z |
---
tags:
- Venture-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Venture-v5
type: Venture-v5
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Venture-v5**
This is a trained model of a PPO agent playing Venture-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]"
python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Venture-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Venture-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py
curl -OL https://huggingface.co/cleanrl/Venture-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Venture-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock
poetry install --all-extras
python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 1
```
# Hyperparameters
```python
{'anneal_lr': True,
'async_batch_size': 16,
'batch_size': 2048,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Venture-v5',
'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado',
'gae': True,
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1024,
'norm_adv': True,
'num_envs': 64,
'num_minibatches': 2,
'num_steps': 32,
'num_updates': 24414,
'save_model': True,
'seed': 1,
'target_kl': None,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 2,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'envpool-atari'}
```
|
DiegoPolimeni/xlm-roberta-base-finetuned-panx-de
|
DiegoPolimeni
| 2023-01-11T17:56:22Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T17:25:02Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: train
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8638300289723342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
ahmad-alismail/ppo-Huggy
|
ahmad-alismail
| 2023-01-11T17:24:52Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T17:24:44Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: ahmad1289/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
alaaadr/dropboxLinking
|
alaaadr
| 2023-01-11T17:20:51Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-01-11T17:20:51Z |
---
license: bigscience-openrail-m
---
|
Arch4ngel/SnowballTarget1
|
Arch4ngel
| 2023-01-11T17:19:53Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-11T17:19:48Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: Arch4ngel/SnowballTarget1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
bjpsantos/ppo-Huggy
|
bjpsantos
| 2023-01-11T17:13:24Z | 9 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T17:13:16Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: bjpsantos/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
hasanalay/t5-base-news-summary-generation
|
hasanalay
| 2023-01-11T16:55:31Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-11T16:54:22Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: t5-base-news-summary-generation
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# t5-base-news-summary-generation
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gabella/bert-emotion
|
gabella
| 2023-01-11T16:51:12Z | 118 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-05T19:41:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- precision
- recall
model-index:
- name: bert-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: train
args: emotion
metrics:
- name: Precision
type: precision
value: 0.7350080900694398
- name: Recall
type: recall
value: 0.7334480130231172
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-emotion
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1951
- Precision: 0.7350
- Recall: 0.7334
- Fscore: 0.7341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.8468 | 1.0 | 815 | 0.7465 | 0.7116 | 0.6096 | 0.6325 |
| 0.5105 | 2.0 | 1630 | 0.9035 | 0.7532 | 0.7111 | 0.7276 |
| 0.2492 | 3.0 | 2445 | 1.1951 | 0.7350 | 0.7334 | 0.7341 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
marccgrau/whisper-small-allSNR
|
marccgrau
| 2023-01-11T16:49:22Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"sbb-asr",
"generated_from_trainer",
"de",
"dataset:marccgrau/sbbdata_allSNR",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-14T16:25:44Z |
---
language:
- de
license: apache-2.0
tags:
- sbb-asr
- generated_from_trainer
datasets:
- marccgrau/sbbdata_allSNR
metrics:
- wer
model-index:
- name: Whisper Small German SBB all SNR
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SBB Dataset 05.01.2023
type: marccgrau/sbbdata_allSNR
args: 'config: German, split: train, test, val'
metrics:
- name: Wer
type: wer
value: 0.02092580849714648
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small German SBB all SNR
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0274
- Wer: 0.0209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 800
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.3449 | 0.36 | 100 | 0.2161 | 0.0380 |
| 0.0653 | 0.71 | 200 | 0.0265 | 0.0178 |
| 0.0315 | 1.07 | 300 | 0.0291 | 0.0197 |
| 0.0194 | 1.42 | 400 | 0.0273 | 0.0197 |
| 0.0141 | 1.78 | 500 | 0.0278 | 0.0197 |
| 0.0088 | 2.14 | 600 | 0.0265 | 0.0159 |
| 0.0055 | 2.49 | 700 | 0.0273 | 0.0209 |
| 0.0047 | 2.85 | 800 | 0.0274 | 0.0209 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.12.1
|
CoreyMorris/ppo-ML-Agents-Pyramids
|
CoreyMorris
| 2023-01-11T16:46:44Z | 10 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T16:46:38Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: CoreyMorris/ppo-ML-Agents-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
yachty66/bert-base-cased-ner-jnlpba-strong-labelled
|
yachty66
| 2023-01-11T16:36:17Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T16:33:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-cased-ner-jnlpba-strong-labelled
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-ner-jnlpba-strong-labelled
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.7948
- eval_accuracy: 0.1970
- eval_runtime: 49.3802
- eval_samples_per_second: 156.217
- eval_steps_per_second: 9.781
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.8.0
- Tokenizers 0.13.2
|
saikiranp/ppo-PyramidsRND
|
saikiranp
| 2023-01-11T16:31:42Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T16:31:36Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: saikiranp/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
mikegarts/dqn-SpaceInvadersNoFrameskip-v4
|
mikegarts
| 2023-01-11T16:23:13Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T16:22:32Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 647.00 +/- 188.48
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mikegarts -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mikegarts -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mikegarts
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ahmad-alismail/ppo-LunarLander-v2
|
ahmad-alismail
| 2023-01-11T16:22:40Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T14:07:52Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 274.81 +/- 20.36
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from huggingface_hub import notebook_login
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)
model = PPO(
policy = 'MlpPolicy', # The policy to be optimized
env = env, # The environment in which the agent will act
n_steps = 2048, # The number of steps to run for each environment per update
batch_size = 64, # Minibatch size
n_epochs = 10, # Number of epoch when optimizing the surrogate loss
gamma = 0.999, # discount factor used to weigh future rewards in the total reward calculation
gae_lambda = 0.98, # parameter used in the Generalized Advantage Estimation (GAE) algorithm
ent_coef = 0.01, # Entropy coefficient for the loss calculation
verbose=0) # Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages
# Train it for 1,500,000 timesteps
model.learn(total_timesteps=1500000, progress_bar=True)
# Specify file name for model and save the model to file
model_name = "ppo-LunarLander-v2"
model.save(model_name)
# Create a new environment for evaluation
eval_env = gym.make("LunarLander-v2")
# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
# Print the results
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
```
|
DanGalt/ppo-Huggy
|
DanGalt
| 2023-01-11T16:22:40Z | 13 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T16:22:31Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: DanGalt/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
nabdan/sd-class-butterflies-32
|
nabdan
| 2023-01-11T16:18:00Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-01-11T16:16:11Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute π¦.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('nabdan/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
davidnai/DAVIDNAI-T5-HUG-93520798
|
davidnai
| 2023-01-11T16:12:19Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-11T16:11:57Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: DAVIDNAI-T5-HUG-93520798
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# DAVIDNAI-T5-HUG-93520798
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.9216
- Validation Loss: 2.5848
- Train Rougel: tf.Tensor(0.20213354, shape=(), dtype=float32)
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rougel | Epoch |
|:----------:|:---------------:|:----------------------------------------------:|:-----:|
| 2.9216 | 2.5848 | tf.Tensor(0.20213354, shape=(), dtype=float32) | 0 |
### Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Jbot/q-FrozenLake-v1-4x4-noSlippery
|
Jbot
| 2023-01-11T15:42:23Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T15:42:17Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Jbot/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
DanGalt/ppo-PyramidsTraining
|
DanGalt
| 2023-01-11T15:30:58Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T15:30:51Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: DanGalt/ppo-PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Fake-Person/photoreal
|
Fake-Person
| 2023-01-11T15:25:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-12-10T02:54:57Z |
I was told this came from
that from unstable diffusion discord
|
snu-nia-12/wav2vec2-xls-r-300m_nia12_phone-hiragana_japanese
|
snu-nia-12
| 2023-01-11T15:19:42Z | 78 | 1 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ja",
"dataset:common_voice",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-01-11T14:58:40Z |
---
language: ja
datasets:
- common_voice
metrics:
- cer
model-index:
- name: wav2vec2-xls-r-300m finetuned on Japanese Hiragana with no word boundaries
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Japanese
type: common_voice
args: ja
metrics:
- name: Test CER
type: cer
value: 9.34
---
# Wav2Vec2-XLS-R-300M-Japanese-Hiragana
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Japanese Hiragana characters using JSUT, JVS, Common Voice, and in-house dataset.
The sentence outputs do not contain word boundaries. Audio inputs should be sampled at 16kHz.
## Test Results
**CER:** 9.34%
## Training
Trained on JSUT, a subset of JVS, train+valid set of Common Voice Japanese, and in-house Japanese dataset. Tested on test set of Common Voice Japanese.
|
mrojas/spanish-disease-tagger
|
mrojas
| 2023-01-11T15:09:28Z | 112 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"dataset:disease",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T14:46:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- disease
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: spanish-disease-tagger
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: disease
type: disease
config: disease
split: train
args: disease
metrics:
- name: Precision
type: precision
value: 0.8385373870172556
- name: Recall
type: recall
value: 0.8711054204011951
- name: F1
type: f1
value: 0.8545111994975926
- name: Accuracy
type: accuracy
value: 0.9487721041951381
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spanish-disease-tagger
This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the disease dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1786
- Precision: 0.8385
- Recall: 0.8711
- F1: 0.8545
- Accuracy: 0.9488
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2217 | 1.0 | 502 | 0.1698 | 0.8142 | 0.8587 | 0.8359 | 0.9437 |
| 0.1203 | 2.0 | 1004 | 0.1735 | 0.8513 | 0.8528 | 0.8520 | 0.9473 |
| 0.093 | 3.0 | 1506 | 0.1786 | 0.8385 | 0.8711 | 0.8545 | 0.9488 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
charlemagne/distilbert-base-uncased-final2-mnli
|
charlemagne
| 2023-01-11T15:05:59Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-11T13:35:26Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-final2-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-final2-mnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1172
- Accuracy: 0.9714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 75 | 0.5516 | 0.8627 |
| No log | 2.0 | 150 | 0.2118 | 0.9553 |
| No log | 3.0 | 225 | 0.1482 | 0.9671 |
| No log | 4.0 | 300 | 0.1172 | 0.9714 |
| No log | 5.0 | 375 | 0.1240 | 0.9705 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.8.0+cu111
- Datasets 2.1.0
- Tokenizers 0.11.6
|
ayor-dns/q-Taxi-v3
|
ayor-dns
| 2023-01-11T15:01:03Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T14:49:41Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ayor-dns/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
yassin99/rubertForRussian
|
yassin99
| 2023-01-11T14:56:00Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"feature-extraction",
"ru",
"arxiv:1905.07213",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2023-01-11T13:44:47Z |
---
language:
- ru
---
# rubert-base-cased
RuBERT \(Russian, cased, 12βlayer, 768βhidden, 12βheads, 180M parameters\) was trained on the Russian part of Wikipedia and news data. We used this training data to build a vocabulary of Russian subtokens and took a multilingual version of BERTβbase as an initialization for RuBERT\[1\].
08.11.2021: upload model with MLM and NSP heads
\[1\]: Kuratov, Y., Arkhipov, M. \(2019\). Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv preprint [arXiv:1905.07213](https://arxiv.org/abs/1905.07213).
|
Fake-Person/ti_hevan
|
Fake-Person
| 2023-01-11T14:33:06Z | 0 | 1 | null |
[
"region:us"
] | null | 2022-12-06T14:21:38Z |
all the TI's i have
I have no idea where they come from or what they do
|
Closen/dqn-SpaceInvadersNoFrameskip-v4
|
Closen
| 2023-01-11T14:28:07Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T14:27:24Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 832.50 +/- 329.28
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Closen -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Closen -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Closen
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
slushily/ohana-hannah-128
|
slushily
| 2023-01-11T14:18:53Z | 7 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:huggan/smithsonian_butterflies_subset",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2023-01-11T06:14:33Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ohana-hannah-128
## Model description
This diffusion model is trained with the [π€ Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 7
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
π [TensorBoard logs](https://huggingface.co/slushily/ohana-hannah-128/tensorboard?#scalars)
|
kardosdrur/grc_homercy_treebanks_sm
|
kardosdrur
| 2023-01-11T14:16:15Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"grc",
"model-index",
"region:us"
] |
token-classification
| 2023-01-10T15:54:47Z |
---
tags:
- spacy
- token-classification
language:
- grc
model-index:
- name: grc_homercy_treebanks_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.0
- name: NER Recall
type: recall
value: 0.0
- name: NER F Score
type: f_score
value: 0.0
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.6590702552
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.8626354422
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.7597941892
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.7814819474
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6299106743
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.541285774
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.6277657267
---
| Feature | Description |
| --- | --- |
| **Name** | `grc_homercy_treebanks_sm` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.4.4,<3.5.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser`, `entity_ruler` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser`, `entity_ruler` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (2302 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `---------`, `--p---fa-`, `--s---ma-`, `-3paia---`, `-3paim---`, `-3siia---`, `A-`, `C-`, `Df`, `Dq`, `Du`, `F-`, `G-`, `I-`, `Ma`, `Mo`, `Nb`, `Ne`, `Pc`, `Pd`, `Pi`, `Pk`, `Pp`, `Pr`, `Ps`, `Px`, `R-`, `S-`, `V-`, `a--------`, `a-------s`, `a-d---fa-`, `a-d---fd-`, `a-d---fg-`, `a-d---fn-`, `a-d---ma-`, `a-d---md-`, `a-d---mg-`, `a-d---mn-`, `a-d---mnc`, `a-d---mv-`, `a-d---na-`, `a-d---ng-`, `a-d---nn-`, `a-p----dc`, `a-p---fa-`, `a-p---fac`, `a-p---fas`, `a-p---fd-`, `a-p---fdc`, `a-p---fds`, `a-p---fg-`, `a-p---fgc`, `a-p---fn-`, `a-p---fnc`, `a-p---fns`, `a-p---fv-`, `a-p---m--`, `a-p---m-c`, `a-p---ma-`, `a-p---mac`, `a-p---mas`, `a-p---md-`, `a-p---mdc`, `a-p---mds`, `a-p---mg-`, `a-p---mgc`, `a-p---mgs`, `a-p---mn-`, `a-p---mnc`, `a-p---mns`, `a-p---mv-`, `a-p---mvs`, `a-p---na-`, `a-p---nac`, `a-p---nas`, `a-p---nd-`, `a-p---ndc`, `a-p---nds`, `a-p---ng-`, `a-p---ngs`, `a-p---nn-`, `a-p---nnc`, `a-p---nns`, `a-p---nv-`, `a-s----d-`, `a-s----dc`, `a-s----g-`, `a-s----gc`, `a-s---fa-`, `a-s---fac`, `a-s---fas`, `a-s---fd-`, `a-s---fds`, `a-s---fg-`, `a-s---fgc`, `a-s---fgs`, `a-s---fn-`, `a-s---fnc`, `a-s---fns`, `a-s---fv-`, `a-s---m--`, `a-s---ma-`, `a-s---mac`, `a-s---mas`, `a-s---md-`, `a-s---mdc`, `a-s---mds`, `a-s---mg-`, `a-s---mgc`, `a-s---mgs`, `a-s---mn-`, `a-s---mnc`, `a-s---mns`, `a-s---mv-`, `a-s---mvc`, `a-s---mvs`, `a-s---na-`, `a-s---nac`, `a-s---nas`, `a-s---nd-`, `a-s---ndc`, `a-s---nds`, `a-s---ng-`, `a-s---nn-`, `a-s---nnc`, `a-s---nns`, `a-s---nv-`, `a-s---nvs`, `c--------`, `d--------`, `d-------c`, `d-------s`, `g--------`, `i--------`, `l--------`, `l-d---fa-`, `l-d---fg-`, `l-d---mg-`, `l-d---mn-`, `l-d---na-`, `l-d---nn-`, `l-p---fa-`, `l-p---fd-`, `l-p---fg-`, `l-p---fn-`, `l-p---ma-`, `l-p---md-`, `l-p---mg-`, `l-p---mn-`, `l-p---na-`, `l-p---nd-`, `l-p---ng-`, `l-p---nn-`, `l-s---fa-`, `l-s---fd-`, `l-s---fg-`, `l-s---fn-`, `l-s---ma-`, `l-s---md-`, `l-s---mg-`, `l-s---mn-`, `l-s---na-`, `l-s---nd-`, `l-s---ng-`, `l-s---nn-`, `m--------`, `m-p---m--`, `m-p---md-`, `m-p---nn-`, `n-----fg-`, `n-----na-`, `n-----nn-`, `n-d----a-`, `n-d---fa-`, `n-d---fd-`, `n-d---fg-`, `n-d---fn-`, `n-d---ma-`, `n-d---md-`, `n-d---mg-`, `n-d---mn-`, `n-d---mv-`, `n-d---na-`, `n-d---nn-`, `n-p----d-`, `n-p----g-`, `n-p---fa-`, `n-p---fd-`, `n-p---fg-`, `n-p---fn-`, `n-p---fv-`, `n-p---ma-`, `n-p---md-`, `n-p---mg-`, `n-p---mn-`, `n-p---mv-`, `n-p---na-`, `n-p---nd-`, `n-p---ng-`, `n-p---nn-`, `n-p---nv-`, `n-s----d-`, `n-s----g-`, `n-s----n-`, `n-s----v-`, `n-s---fa-`, `n-s---fd-`, `n-s---fg-`, `n-s---fn-`, `n-s---fv-`, `n-s---m--`, `n-s---ma-`, `n-s---md-`, `n-s---mg-`, `n-s---mn-`, `n-s---mv-`, `n-s---na-`, `n-s---nd-`, `n-s---ng-`, `n-s---nn-`, `n-s---nv-`, `p--------`, `p-d----d-`, `p-d----n-`, `p-d---fa-`, `p-d---fd-`, `p-d---fg-`, `p-d---fn-`, `p-d---ma-`, `p-d---md-`, `p-d---mg-`, `p-d---mn-`, `p-d---mv-`, `p-p----a-`, `p-p----d-`, `p-p----g-`, `p-p----n-`, `p-p---fa-`, `p-p---fd-`, `p-p---fg-`, `p-p---fn-`, `p-p---ma-`, `p-p---md-`, `p-p---mg-`, `p-p---mn-`, `p-p---na-`, `p-p---nd-`, `p-p---ng-`, `p-p---nn-`, `p-s----a-`, `p-s----d-`, `p-s----g-`, `p-s----n-`, `p-s---fa-`, `p-s---fd-`, `p-s---fg-`, `p-s---fn-`, `p-s---ma-`, `p-s---md-`, `p-s---mg-`, `p-s---mn-`, `p-s---mv-`, `p-s---na-`, `p-s---nd-`, `p-s---ng-`, `p-s---nn-`, `p1p---fa-`, `p1p---ma-`, `p1p---md-`, `p1p---mg-`, `p1p---mn-`, `p1s---fa-`, `p1s---fd-`, `p1s---fg-`, `p1s---fn-`, `p1s---ma-`, `p1s---md-`, `p1s---mg-`, `p1s---mn-`, `p2p----a-`, `p2p----d-`, `p2p---ma-`, `p2p---mg-`, `p2p---mn-`, `p2s----a-`, `p2s----d-`, `p2s----g-`, `p2s----n-`, `p2s---ma-`, `p2s---md-`, `p2s---mg-`, `p3s---fa-`, `p3s---ma-`, `r--------`, `u--------`, `v---na---`, `v--amm---`, `v--an----`, `v--ana---`, `v--ane---`, `v--anm---`, `v--anp---`, `v--fna---`, `v--fne---`, `v--fnm---`, `v--fnp---`, `v--pna---`, `v--pnd---`, `v--pne---`, `v--pnp---`, `v--ppefa-`, `v--ppemn-`, `v--rn----`, `v--rna---`, `v--rne---`, `v--rnp---`, `v--tna---`, `v-dapafn-`, `v-dapama-`, `v-dapamg-`, `v-dapamn-`, `v-dapmfn-`, `v-dapmmn-`, `v-dappma-`, `v-dappmn-`, `v-dppafg-`, `v-dppama-`, `v-dppamn-`, `v-dppefn-`, `v-dppema-`, `v-dppemd-`, `v-dppemn-`, `v-dpppmn-`, `v-drpama-`, `v-drpamn-`, `v-drpefn-`, `v-drpemn-`, `v-p-pmma-`, `v-pap-mn-`, `v-papafa-`, `v-papafg-`, `v-papafn-`, `v-papama-`, `v-papamd-`, `v-papamg-`, `v-papamn-`, `v-papana-`, `v-papand-`, `v-papann-`, `v-papefn-`, `v-papema-`, `v-papemn-`, `v-papmfa-`, `v-papmfg-`, `v-papmfn-`, `v-papmma-`, `v-papmmd-`, `v-papmmg-`, `v-papmmn-`, `v-papmna-`, `v-papmng-`, `v-papmnn-`, `v-pappfd-`, `v-pappfg-`, `v-pappfn-`, `v-pappma-`, `v-pappmd-`, `v-pappmg-`, `v-pappmn-`, `v-pappna-`, `v-pappng-`, `v-pappnn-`, `v-pfpama-`, `v-pfpamg-`, `v-pfpamn-`, `v-pfpema-`, `v-pfpemn-`, `v-pfpmfa-`, `v-pfpmfn-`, `v-pfpmma-`, `v-pfpmmd-`, `v-pfpmmg-`, `v-pfpmmn-`, `v-pfpmnn-`, `v-pfppmn-`, `v-ppp-mn-`, `v-pppafa-`, `v-pppafd-`, `v-pppafg-`, `v-pppafn-`, `v-pppafv-`, `v-pppama-`, `v-pppamd-`, `v-pppamg-`, `v-pppamn-`, `v-pppamv-`, `v-pppana-`, `v-pppand-`, `v-pppang-`, `v-pppann-`, `v-pppefa-`, `v-pppefd-`, `v-pppefg-`, `v-pppefn-`, `v-pppefv-`, `v-pppema-`, `v-pppemd-`, `v-pppemg-`, `v-pppemn-`, `v-pppemv-`, `v-pppena-`, `v-pppend-`, `v-pppeng-`, `v-pppenn-`, `v-ppppma-`, `v-ppppmd-`, `v-ppppmn-`, `v-prp-mn-`, `v-prpafa-`, `v-prpafd-`, `v-prpafn-`, `v-prpama-`, `v-prpamd-`, `v-prpamg-`, `v-prpamn-`, `v-prpana-`, `v-prpang-`, `v-prpefa-`, `v-prpefd-`, `v-prpefg-`, `v-prpefn-`, `v-prpema-`, `v-prpemd-`, `v-prpemg-`, `v-prpemn-`, `v-prpena-`, `v-prpend-`, `v-prpeng-`, `v-prpenn-`, `v-prppfn-`, `v-prppmn-`, `v-sagamn-`, `v-saiamn-`, `v-samp---`, `v-sap-mg-`, `v-sap-mn-`, `v-sapafa-`, `v-sapafd-`, `v-sapafg-`, `v-sapafn-`, `v-sapama-`, `v-sapamd-`, `v-sapamg-`, `v-sapamn-`, `v-sapamv-`, `v-sapana-`, `v-sapang-`, `v-sapann-`, `v-sapanv-`, `v-sapema-`, `v-sapemn-`, `v-sapmfa-`, `v-sapmfd-`, `v-sapmfg-`, `v-sapmfn-`, `v-sapmma-`, `v-sapmmd-`, `v-sapmmg-`, `v-sapmmn-`, `v-sapmna-`, `v-sapmng-`, `v-sapmnn-`, `v-sappfa-`, `v-sappfd-`, `v-sappfg-`, `v-sappfn-`, `v-sappma-`, `v-sappmd-`, `v-sappmg-`, `v-sappmn-`, `v-sappna-`, `v-sappng-`, `v-sappnn-`, `v-sappnv-`, `v-sfpafa-`, `v-sfpafd-`, `v-sfpafn-`, `v-sfpama-`, `v-sfpamd-`, `v-sfpamg-`, `v-sfpamn-`, `v-sfpmfa-`, `v-sfpmfd-`, `v-sfpmfg-`, `v-sfpmfn-`, `v-sfpmma-`, `v-sfpmmg-`, `v-sfpmmn-`, `v-sfpmna-`, `v-sfppma-`, `v-spiamn-`, `v-spp-mn-`, `v-spp-nn-`, `v-sppa---`, `v-sppafa-`, `v-sppafd-`, `v-sppafg-`, `v-sppafn-`, `v-sppafv-`, `v-sppama-`, `v-sppamd-`, `v-sppamg-`, `v-sppamn-`, `v-sppamv-`, `v-sppana-`, `v-sppand-`, `v-sppang-`, `v-sppann-`, `v-sppanv-`, `v-sppefa-`, `v-sppefd-`, `v-sppefg-`, `v-sppefn-`, `v-sppema-`, `v-sppemd-`, `v-sppemg-`, `v-sppemn-`, `v-sppemv-`, `v-sppena-`, `v-sppend-`, `v-sppeng-`, `v-sppenn-`, `v-spppfa-`, `v-spppfd-`, `v-spppfg-`, `v-spppfn-`, `v-spppma-`, `v-spppmn-`, `v-srp-mn-`, `v-srpafa-`, `v-srpafd-`, `v-srpafg-`, `v-srpafn-`, `v-srpama-`, `v-srpamd-`, `v-srpamg-`, `v-srpamn-`, `v-srpamv-`, `v-srpana-`, `v-srpand-`, `v-srpang-`, `v-srpann-`, `v-srpefa-`, `v-srpefd-`, `v-srpefg-`, `v-srpefn-`, `v-srpema-`, `v-srpemd-`, `v-srpemg-`, `v-srpemn-`, `v-srpemv-`, `v-srpena-`, `v-srpend-`, `v-srpeng-`, `v-srpenn-`, `v-srppfn-`, `v-srppma-`, `v-srppmn-`, `v-srppmv-`, `v1paia---`, `v1paim---`, `v1paip---`, `v1paoa---`, `v1paom---`, `v1paop---`, `v1pasa---`, `v1pase---`, `v1pasm---`, `v1pasp---`, `v1pfia---`, `v1pfim---`, `v1pfom---`, `v1piia---`, `v1piie---`, `v1plia---`, `v1plie---`, `v1ppia---`, `v1ppie---`, `v1ppip---`, `v1ppoa---`, `v1ppoe---`, `v1ppsa---`, `v1ppse---`, `v1pria---`, `v1prie---`, `v1prsa---`, `v1prse---`, `v1ptie---`, `v1s-sa---`, `v1sa-a---`, `v1saia---`, `v1saie---`, `v1saim---`, `v1saip---`, `v1sao----`, `v1saoa---`, `v1saoe---`, `v1saom---`, `v1saop---`, `v1sasa---`, `v1sase---`, `v1sasm---`, `v1sasp---`, `v1sfi----`, `v1sfia---`, `v1sfie---`, `v1sfim---`, `v1sfip---`, `v1siia---`, `v1siie---`, `v1slia---`, `v1slie---`, `v1slim---`, `v1spia---`, `v1spie---`, `v1spoa---`, `v1spoe---`, `v1spsa---`, `v1spse---`, `v1sria---`, `v1srie---`, `v1sroa---`, `v1sroe---`, `v1srsa---`, `v1stie---`, `v1stim---`, `v2daia---`, `v2dama---`, `v2dasa---`, `v2dase---`, `v2dfia---`, `v2dfim---`, `v2diia---`, `v2diie---`, `v2dpia---`, `v2dpma---`, `v2dpme---`, `v2dria---`, `v2drma---`, `v2paia---`, `v2paim---`, `v2paip---`, `v2pama---`, `v2pame---`, `v2pamm---`, `v2paoa---`, `v2paom---`, `v2paop---`, `v2pasa---`, `v2pase---`, `v2pasm---`, `v2pasp---`, `v2pfia---`, `v2pfim---`, `v2piia---`, `v2piie---`, `v2ppia---`, `v2ppie---`, `v2ppma---`, `v2ppme---`, `v2ppoa---`, `v2ppoe---`, `v2ppsa---`, `v2pria---`, `v2prie---`, `v2prma---`, `v2prmp---`, `v2proa---`, `v2prsa---`, `v2saia---`, `v2saie---`, `v2saim---`, `v2saip---`, `v2sam----`, `v2sama---`, `v2same---`, `v2samm---`, `v2samp---`, `v2saoa---`, `v2saoe---`, `v2saom---`, `v2saop---`, `v2sasa---`, `v2sase---`, `v2sasm---`, `v2sasp---`, `v2sfi----`, `v2sfia---`, `v2sfie---`, `v2sfim---`, `v2sfip---`, `v2siia---`, `v2siie---`, `v2siip---`, `v2slia---`, `v2slie---`, `v2slim---`, `v2spia---`, `v2spie---`, `v2spma---`, `v2spme---`, `v2spoa---`, `v2spoe---`, `v2spsa---`, `v2spse---`, `v2sria---`, `v2srie---`, `v2srma---`, `v2srme---`, `v2sroa---`, `v2srsa---`, `v2stie---`, `v3-roe---`, `v3daia---`, `v3daim---`, `v3daip---`, `v3daoa---`, `v3dfia---`, `v3dfim---`, `v3diia---`, `v3diie---`, `v3dlia---`, `v3dlie---`, `v3dlim---`, `v3dpia---`, `v3dpie---`, `v3dpma---`, `v3dpme---`, `v3dpsa---`, `v3dria---`, `v3pai----`, `v3paia---`, `v3paie---`, `v3paim---`, `v3paip---`, `v3pamm---`, `v3paoa---`, `v3paoe---`, `v3paom---`, `v3paop---`, `v3pasa---`, `v3pase---`, `v3pasm---`, `v3pasp---`, `v3pfia---`, `v3pfie---`, `v3pfim---`, `v3piia---`, `v3piie---`, `v3piip---`, `v3plia---`, `v3plie---`, `v3plim---`, `v3plip---`, `v3ppia---`, `v3ppie---`, `v3ppip---`, `v3ppma---`, `v3ppme---`, `v3ppoa---`, `v3ppoe---`, `v3ppsa---`, `v3ppse---`, `v3pria---`, `v3prie---`, `v3prip---`, `v3sai----`, `v3saia---`, `v3saie---`, `v3saim---`, `v3saip---`, `v3sama---`, `v3samm---`, `v3samp---`, `v3sana---`, `v3sao----`, `v3saoa---`, `v3saoe---`, `v3saom---`, `v3saop---`, `v3sas----`, `v3sasa---`, `v3sase---`, `v3sasm---`, `v3sasp---`, `v3sfi----`, `v3sfia---`, `v3sfie---`, `v3sfim---`, `v3sfip---`, `v3sfoa---`, `v3sii----`, `v3siia---`, `v3siie---`, `v3siip---`, `v3sli----`, `v3slia---`, `v3slie---`, `v3slim---`, `v3slip---`, `v3spia---`, `v3spie---`, `v3spip---`, `v3spma---`, `v3spme---`, `v3spoa---`, `v3spoe---`, `v3spop---`, `v3spsa---`, `v3spse---`, `v3sria---`, `v3srie---`, `v3srip---`, `v3srma---`, `v3sroa---`, `v3srsa---`, `v3stie---`, `v3stim---`, `v3stip---`, `x--------`, `x-p----d-`, `x-p---nn-` |
| **`morphologizer`** | `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=SCONJ`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid,Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Degree=Pos\|POS=ADV`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Pres\|VerbForm=Inf\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=INTJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Rel`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=DET`, `POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `POS=AUX\|Tense=Fut\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=VERB`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Gdv`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Voc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Opt\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Gdv`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Degree=Cmp\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=NUM`, `POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=X`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=DET`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=NUM`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=ADJ\|PronType=Dem`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Degree=Pos\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=2\|Poss=Yes`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=DET`, `Case=Dat\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem,Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem,Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem,Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem,Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=ADJ\|Person=1\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid,Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid,Pass`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Gender=Masc,Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc,Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|POS=AUX\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `POS=PUNCT`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Tense=Past\|VerbForm=Inf\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PART`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON`, `POS=DET`, `Case=Gen\|Number=Sing\|POS=PRON`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PRON`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Voc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=X`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=VERB\|Tense=Past\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Dual\|POS=PRON`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=PRON`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Nom\|Number=Dual\|POS=PRON`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Acc\|Gender=Neut\|POS=NOUN`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PRON`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Inf`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Dual\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=DET`, `Case=Nom\|Gender=Neut\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|POS=VERB\|Tense=Fut\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Opt\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Dual\|POS=PRON`, `Mood=Sub\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Mood=Imp\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Dual\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=X\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Voc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=PRON`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Opt\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1`, `Degree=Sup\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `Case=Voc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Mid`, `POS=VERB\|Tense=Pres\|VerbForm=Inf`, `Aspect=Perf\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Acc\|Number=Dual\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=X`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Mid`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Mid`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Mid`, `Mood=Opt\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`entity_ruler`** | `ETHNICITY`, `LOCATION`, `PERSON` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 65.91 |
| `POS_ACC` | 86.26 |
| `MORPH_ACC` | 75.98 |
| `LEMMA_ACC` | 78.15 |
| `DEP_UAS` | 62.99 |
| `DEP_LAS` | 54.13 |
| `SENTS_P` | 58.96 |
| `SENTS_R` | 67.12 |
| `SENTS_F` | 62.78 |
| `ENTS_F` | 0.00 |
| `ENTS_P` | 0.00 |
| `ENTS_R` | 0.00 |
| `ENTS_PER_TYPE` | 0.00 |
| `TOK2VEC_LOSS` | 5105059.07 |
| `TAGGER_LOSS` | 3119288.10 |
| `MORPHOLOGIZER_LOSS` | 3638836.67 |
| `TRAINABLE_LEMMATIZER_LOSS` | 2680350.80 |
| `PARSER_LOSS` | 7252141.29 |
|
BobMcDear/vit_base_patch8_224_dino
|
BobMcDear
| 2023-01-11T14:16:07Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-11T14:14:39Z |
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
|
Fake-Person/Top_CivitAI_models
|
Fake-Person
| 2023-01-11T14:12:51Z | 0 | 17 | null |
[
"region:us"
] | null | 2022-12-23T20:52:45Z |
I re-upload it for people who use google collab
including my self
because google collab cannot use Civitai links to download it
Hassanblends?
-
https://civitai.com/models/1173/hassanblend-1512-and-previous-versions
Anytwam
-
https://civitai.com/models/3745/anytwam-11-mixedmodel
Art & Eros (aEros) - A tribute to beauty
-
https://civitai.com/models/3950/art-and-eros-aeros-a-tribute-to-beauty
Darkberry
-
https://civitai.com/models/1845/darkberry-mix-99a1a2f6
Dreamlike
-
https://civitai.com/models/1274/dreamlike-diffusion-10
Gobgirlz
-
https://civitai.com/models/3660/gobgirlz
elldreth's dream mix
-
https://civitai.com/models/1254/elldreths-dream-mix
Healy's Anime blend
-
https://civitai.com/models/1400/healys-anime-blend
Jamix
https://civitai.com/models/3739/jamix
Model
-
https://civitai.com/models/2034/moedel
Mandarine
-
https://civitai.com/models/3521/mandarine
pfg_1111?
-
https://civitai.com/models/1227/pfg
allymix
-
https://civitai.com/models/1202/the-allys-mix
wildmix
-
https://civitai.com/models/3095/wilds-mix
uberporn
-
https://civitai.com/models/2661/uber-realistic-porn-merge-urpm
|
scorch12/IS-chatbot-model-2
|
scorch12
| 2023-01-11T14:06:53Z | 66 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-11T14:06:27Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: IS-chatbot-model-2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IS-chatbot-model-2
This model is a fine-tuned version of [esakrissa/IndoBERT-SQuAD](https://huggingface.co/esakrissa/IndoBERT-SQuAD) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 73060, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|
SegevC/ppo-LunarLander-v2
|
SegevC
| 2023-01-11T13:43:40Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T13:43:15Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 267.58 +/- 8.99
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mnavas/hf-rl-pyramidsv1
|
mnavas
| 2023-01-11T13:23:56Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:14:47Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: mnavas/hf-rl-pyramidsv1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
girinlp-i2i/biobert-finetuned-ner
|
girinlp-i2i
| 2023-01-11T13:23:37Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-11T03:00:38Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biobert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-finetuned-ner
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0280
- Precision: 0.9316
- Recall: 0.9303
- F1: 0.9310
- Accuracy: 0.9953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0311 | 1.0 | 6070 | 0.0278 | 0.8892 | 0.9098 | 0.8994 | 0.9939 |
| 0.0213 | 2.0 | 12140 | 0.0330 | 0.9133 | 0.9071 | 0.9102 | 0.9934 |
| 0.0132 | 3.0 | 18210 | 0.0224 | 0.9283 | 0.9194 | 0.9238 | 0.9952 |
| 0.0078 | 4.0 | 24280 | 0.0243 | 0.9231 | 0.9180 | 0.9205 | 0.9949 |
| 0.0068 | 5.0 | 30350 | 0.0222 | 0.9253 | 0.9303 | 0.9278 | 0.9957 |
| 0.0035 | 6.0 | 36420 | 0.0245 | 0.9243 | 0.9344 | 0.9293 | 0.9955 |
| 0.0039 | 7.0 | 42490 | 0.0282 | 0.9283 | 0.9372 | 0.9327 | 0.9954 |
| 0.0008 | 8.0 | 48560 | 0.0280 | 0.9316 | 0.9303 | 0.9310 | 0.9953 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Art-phys/ppo-LunarLander-120M-v2
|
Art-phys
| 2023-01-11T13:16:43Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T13:16:15Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 294.16 +/- 21.42
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Art-phys/poca-Huggy
|
Art-phys
| 2023-01-11T13:11:38Z | 13 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-11T13:11:28Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **poca** Agent playing **Huggy**
This is a trained model of a **poca** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Art-phys/poca-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
JasperDekoninck/q-Taxi-v3
|
JasperDekoninck
| 2023-01-11T12:50:30Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T12:50:09Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="OcelotBane/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
LarryAIDraw/anymono_basil
|
LarryAIDraw
| 2023-01-11T12:48:12Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-11T11:43:30Z |
---
license: creativeml-openrail-m
---
|
vicfeuga/q-FrozenLake-v1-4x4-noSlippery
|
vicfeuga
| 2023-01-11T12:44:25Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:25:17Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="vicfeuga/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
JasperDekoninck/q-FrozenLake-v1-4x4-noSlippery
|
JasperDekoninck
| 2023-01-11T12:44:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T12:29:57Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="OcelotBane/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
jason1i/Reinforce-CartPole-v1
|
jason1i
| 2023-01-11T12:32:16Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T12:32:04Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Agog/SpaceInvaders
|
Agog
| 2023-01-11T12:29:53Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-09T21:50:54Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 677.00 +/- 93.65
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Agog -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Agog -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Agog
```
## Hyperparameters
```python
OrderedDict([('batch_size', 8),
('buffer_size', 50000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 50000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
LarryAIDraw/anymonoko_AbyssOrangeMix2_nsfw
|
LarryAIDraw
| 2023-01-11T12:27:01Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-11T11:17:10Z |
---
license: creativeml-openrail-m
---
|
alvarobb/dqn-SpaceInvadersNoFrameskip-v4
|
alvarobb
| 2023-01-11T12:10:11Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T12:09:32Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 670.00 +/- 256.75
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alvarobb -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alvarobb -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alvarobb
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
4mosot/ppo-Pyramids
|
4mosot
| 2023-01-11T12:09:32Z | 15 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T12:08:47Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: 4mosot/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Abdelrahman123/q-FrozenLake-v1-4x4-noSlippery
|
Abdelrahman123
| 2023-01-11T11:54:00Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:53:56Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Abdelrahman123/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
tayfen/ppo_pyramids_baseline
|
tayfen
| 2023-01-11T11:43:02Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:42:55Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: tayfen/ppo_pyramids_baseline
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
4mosot/ppo-SnowballTarget
|
4mosot
| 2023-01-11T11:32:04Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:31:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: 4mosot/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
NathanaelM/Reinforce-Pixelcopter-PLE-v0
|
NathanaelM
| 2023-01-11T11:31:35Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-06T15:56:27Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 47.00 +/- 37.05
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
akum1343/results3
|
akum1343
| 2023-01-11T11:21:32Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-11T08:51:09Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: results3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results3
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 27 | 1.8564 | 35.5763 | 12.1495 | 24.0011 | 32.6505 | 93.5333 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cpu
- Datasets 2.6.1
- Tokenizers 0.12.1
|
samueldomdey/concreteness-english-distilroberta-base
|
samueldomdey
| 2023-01-11T11:08:39Z | 113 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"distilroberta",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-04T15:05:02Z |
---
language: en
tags:
- distilroberta
widget:
- text: animal
- text: love
- text: oh happy day
---
|
RajMoodley/PPO-SnowballTarget
|
RajMoodley
| 2023-01-11T11:06:10Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-11T11:06:03Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: RajMoodley/PPO-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
Harm/my_ppo_rl_lunarlander
|
Harm
| 2023-01-11T10:53:52Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-11T09:47:15Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 245.64 +/- 23.52
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.