modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
wooihen/dqn-SpaceInvadersNoFrameskip-v4
wooihen
2023-01-04T01:24:48Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-04T01:24:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 670.50 +/- 257.47 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wooihen -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga wooihen -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga wooihen ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/janieclone
huggingtweets
2023-01-04T01:06:20Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1536389142287892481/N6kCwACw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Columbine Janie</div> <div style="text-align: center; font-size: 14px;">@janieclone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Columbine Janie. | Data | Columbine Janie | | --- | --- | | Tweets downloaded | 3072 | | Retweets | 1211 | | Short tweets | 462 | | Tweets kept | 1399 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1divgffx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @janieclone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ic6ynmd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ic6ynmd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/janieclone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cleanrl/CartPole-v1-c51_jax-seed1
cleanrl
2023-01-04T01:02:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-01T19:19:43Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: C51 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **C51** Agent Playing **CartPole-v1** This is a trained model of a C51 agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[c51_jax]" python -m cleanrl_utils.enjoy --exp-name c51_jax --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CartPole-v1-c51_jax-seed1/raw/main/c51_jax.py curl -OL https://huggingface.co/cleanrl/CartPole-v1-c51_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CartPole-v1-c51_jax-seed1/raw/main/poetry.lock poetry install --all-extras python c51_jax.py --save-model --upload-model --hf-entity cleanrl --env-id CartPole-v1 ``` # Hyperparameters ```python {'batch_size': 128, 'buffer_size': 10000, 'capture_video': False, 'end_e': 0.05, 'env_id': 'CartPole-v1', 'exp_name': 'c51_jax', 'exploration_fraction': 0.5, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'learning_starts': 10000, 'n_atoms': 101, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 500, 'total_timesteps': 500000, 'track': False, 'train_frequency': 10, 'upload_model': True, 'v_max': 100, 'v_min': -100, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BreakoutNoFrameskip-v4-c51_atari_jax-seed1
cleanrl
2023-01-04T01:01:29Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BreakoutNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-02T23:37:05Z
--- tags: - BreakoutNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: C51 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BreakoutNoFrameskip-v4 type: BreakoutNoFrameskip-v4 metrics: - type: mean_reward value: 318.10 +/- 112.21 name: mean_reward verified: false --- # (CleanRL) **C51** Agent Playing **BreakoutNoFrameskip-v4** This is a trained model of a C51 agent playing BreakoutNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_atari_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[c51_atari_jax]" python -m cleanrl_utils.enjoy --exp-name c51_atari_jax --env-id BreakoutNoFrameskip-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/kinalmehta/BreakoutNoFrameskip-v4-c51_atari_jax-seed1/raw/main/c51_atari_jax.py curl -OL https://huggingface.co/kinalmehta/BreakoutNoFrameskip-v4-c51_atari_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/kinalmehta/BreakoutNoFrameskip-v4-c51_atari_jax-seed1/raw/main/poetry.lock poetry install --all-extras python c51_atari_jax.py --save-model --upload-model --hf-entity kinalmehta --env-id BreakoutNoFrameskip-v4 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'end_e': 0.01, 'env_id': 'BreakoutNoFrameskip-v4', 'exp_name': 'c51_atari_jax', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'kinalmehta', 'learning_rate': 0.00025, 'learning_starts': 80000, 'n_atoms': 51, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 10000, 'total_timesteps': 10000000, 'track': False, 'train_frequency': 4, 'upload_model': True, 'v_max': 10, 'v_min': -10, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/PongNoFrameskip-v4-c51_atari_jax-seed1
cleanrl
2023-01-04T01:00:41Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PongNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T05:14:18Z
--- tags: - PongNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: C51 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PongNoFrameskip-v4 type: PongNoFrameskip-v4 metrics: - type: mean_reward value: 17.40 +/- 6.18 name: mean_reward verified: false --- # (CleanRL) **C51** Agent Playing **PongNoFrameskip-v4** This is a trained model of a C51 agent playing PongNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_atari_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[c51_atari_jax]" python -m cleanrl_utils.enjoy --exp-name c51_atari_jax --env-id PongNoFrameskip-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/kinalmehta/PongNoFrameskip-v4-c51_atari_jax-seed1/raw/main/c51_atari_jax.py curl -OL https://huggingface.co/kinalmehta/PongNoFrameskip-v4-c51_atari_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/kinalmehta/PongNoFrameskip-v4-c51_atari_jax-seed1/raw/main/poetry.lock poetry install --all-extras python c51_atari_jax.py --save-model --upload-model --hf-entity kinalmehta --env-id PongNoFrameskip-v4 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'end_e': 0.01, 'env_id': 'PongNoFrameskip-v4', 'exp_name': 'c51_atari_jax', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'kinalmehta', 'learning_rate': 0.00025, 'learning_starts': 80000, 'n_atoms': 51, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 10000, 'total_timesteps': 10000000, 'track': False, 'train_frequency': 4, 'upload_model': True, 'v_max': 10, 'v_min': -10, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
bileldh/bert-finetuned-ner
bileldh
2023-01-04T00:26:03Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-24T19:18:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.937448149991704 - name: Recall type: recall value: 0.9508582968697409 - name: F1 type: f1 value: 0.9441056061492189 - name: Accuracy type: accuracy value: 0.9864308000235474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9374 - Recall: 0.9509 - F1: 0.9441 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.089 | 1.0 | 1756 | 0.0749 | 0.9104 | 0.9280 | 0.9191 | 0.9812 | | 0.0331 | 2.0 | 3512 | 0.0614 | 0.9299 | 0.9470 | 0.9384 | 0.9858 | | 0.0169 | 3.0 | 5268 | 0.0614 | 0.9374 | 0.9509 | 0.9441 | 0.9864 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
elRivx/megaPals2.1
elRivx
2023-01-04T00:09:22Z
0
1
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-04T00:00:04Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- **megaPals2.1** Hi guys! Do you remember the superhero vintage animated series? Do you like the 70s style? This Stable Diffusion 2.1 embedding is for you! Some recomendations: the magic word for your prompts is megaPals. If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/wZmw8Xr.png width=30% height=30%> <img src=https://imgur.com/JJGBmT8.png width=30% height=30%> <img src=https://imgur.com/0Nr4IJm.png width=30% height=30%> <img src=https://imgur.com/rRN9r1N.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
thiagoms7/q-FrozenLake-v1-4x4-noSlippery
thiagoms7
2023-01-03T23:30:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T23:30:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="thiagoms7/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saltacc/RandomPrompt-v1
saltacc
2023-01-03T23:06:16Z
18
2
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-01-03T22:31:03Z
--- license: mit --- # RandomPrompt-v1 A fine tuned GPT-neo 125M The purpose of this model is to autocomplete or generate danbooru-like prompts for generating images in Stable Diffusion derivatives that use danbooru tags for text conditioning. ## Usage THE HOSTED INTERFACE DOES NOT WORK, USE THE HUGGINGFACE SPACE ### Autocompletion Type in a few tags, and it will generate a completion of the prompt ### Generation Type in nothing, and it will generate a prompt ## Training Trained on 400k tags from danbooru posts for 600k steps, or around 0.25 epochs https://wandb.ai/saltacc/RandomPrompt/runs/2v2arf0u?workspace=user-saltacc I plan on doing further runs on better hardware to try to get more accurate prompt completion
0xid/qrdqn-SpaceInvadersNoFrameskip-v4
0xid
2023-01-03T22:39:39Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T22:38:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 1528.00 +/- 875.81 name: mean_reward verified: false --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga 0xid -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga 0xid -f logs/ rl_zoo3 enjoy --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga 0xid ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
jonathanybema/twitter-xlm-roberta-base-sentiment
jonathanybema
2023-01-03T22:38:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T21:52:24Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: twitter-xlm-roberta-base-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-xlm-roberta-base-sentiment This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6256 - Accuracy: 0.7297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
cheremushkin/ppo-LunarLander-v2
cheremushkin
2023-01-03T22:00:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T21:59:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.00 +/- 18.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kimata/my_awesome_billsum_model
Kimata
2023-01-03T21:52:03Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-03T21:44:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1362 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5474 - Rouge1: 0.1362 - Rouge2: 0.0419 - Rougel: 0.1111 - Rougelsum: 0.1112 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8519 | 0.1206 | 0.0274 | 0.0991 | 0.0992 | 19.0 | | No log | 2.0 | 124 | 2.6323 | 0.1315 | 0.0377 | 0.1066 | 0.1067 | 19.0 | | No log | 3.0 | 186 | 2.5643 | 0.1371 | 0.043 | 0.1117 | 0.1118 | 19.0 | | No log | 4.0 | 248 | 2.5474 | 0.1362 | 0.0419 | 0.1111 | 0.1112 | 19.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
UKP-SQuARE/roberta-base-pf-race-onnx
UKP-SQuARE
2023-01-03T21:42:59Z
0
0
adapter-transformers
[ "adapter-transformers", "onnx", "roberta", "adapterhub:rc/race", "en", "dataset:race", "arxiv:2104.08247", "region:us" ]
null
2023-01-03T21:39:49Z
--- inference: false tags: - onnx - adapterhub:rc/race - roberta - adapter-transformers datasets: - race language: - en --- # ONNX export of Adapter `AdapterHub/roberta-base-pf-race` for roberta-base ## Conversion of [AdapterHub/roberta-base-pf-race](https://huggingface.co/AdapterHub/roberta-base-pf-race) for UKP SQuARE ## Usage ```python onnx_path = hf_hub_download(repo_id='UKP-SQuARE/roberta-base-pf-race-onnx', filename='model.onnx') # or model_quant.onnx for quantization onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider']) context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.' question = 'What are advantages of ONNX?' choices = ["Cat", "Horse", "Tiger", "Fish"]tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/roberta-base-pf-race-onnx') raw_input = [[context, question + + choice] for choice in choices] inputs = tokenizer(raw_input, padding=True, truncation=True, return_tensors="np") inputs['token_type_ids'] = np.expand_dims(inputs['token_type_ids'], axis=0) inputs['input_ids'] = np.expand_dims(inputs['input_ids'], axis=0) inputs['attention_mask'] = np.expand_dims(inputs['attention_mask'], axis=0) outputs = onnx_model.run(input_feed=dict(inputs), output_names=None) ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
ScrappyCoco666/dqn-SpaceInvadersNoFrameskip-v4
ScrappyCoco666
2023-01-03T21:37:21Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T21:36:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 684.50 +/- 150.66 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ScrappyCoco666 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ScrappyCoco666 -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ScrappyCoco666 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
UKP-SQuARE/roberta-base-pf-multirc-onnx
UKP-SQuARE
2023-01-03T21:23:58Z
0
0
adapter-transformers
[ "adapter-transformers", "onnx", "roberta", "text-classification", "adapterhub:rc/multirc", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2023-01-03T21:20:43Z
--- inference: false tags: - onnx - text-classification - adapterhub:rc/multirc - roberta - adapter-transformers language: - en --- # ONNX export of Adapter `AdapterHub/roberta-base-pf-multirc` for roberta-base ## Conversion of [AdapterHub/roberta-base-pf-multirc](https://huggingface.co/AdapterHub/roberta-base-pf-multirc) for UKP SQuARE ## Usage ```python onnx_path = hf_hub_download(repo_id='UKP-SQuARE/roberta-base-pf-multirc-onnx', filename='model.onnx') # or model_quant.onnx for quantization onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider']) context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.' question = 'What are advantages of ONNX?' choices = ["Cat", "Horse", "Tiger", "Fish"]tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/roberta-base-pf-multirc-onnx') raw_input = [[context, question + + choice] for choice in choices] inputs = tokenizer(raw_input, padding=True, truncation=True, return_tensors="np") inputs['token_type_ids'] = np.expand_dims(inputs['token_type_ids'], axis=0) inputs['input_ids'] = np.expand_dims(inputs['input_ids'], axis=0) inputs['attention_mask'] = np.expand_dims(inputs['attention_mask'], axis=0) outputs = onnx_model.run(input_feed=dict(inputs), output_names=None) ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
UKP-SQuARE/bert-base-uncased-pf-cosmos_qa-onnx
UKP-SQuARE
2023-01-03T21:11:53Z
0
0
adapter-transformers
[ "adapter-transformers", "onnx", "bert", "adapterhub:comsense/cosmosqa", "en", "dataset:cosmos_qa", "arxiv:2104.08247", "region:us" ]
null
2023-01-03T21:09:01Z
--- inference: false tags: - onnx - bert - adapterhub:comsense/cosmosqa - adapter-transformers datasets: - cosmos_qa language: - en --- # ONNX export of Adapter `AdapterHub/bert-base-uncased-pf-cosmos_qa` for bert-base-uncased ## Conversion of [AdapterHub/bert-base-uncased-pf-cosmos_qa](https://huggingface.co/AdapterHub/bert-base-uncased-pf-cosmos_qa) for UKP SQuARE ## Usage ```python onnx_path = hf_hub_download(repo_id='UKP-SQuARE/bert-base-uncased-pf-cosmos_qa-onnx', filename='model.onnx') # or model_quant.onnx for quantization onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider']) context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.' question = 'What are advantages of ONNX?' choices = ["Cat", "Horse", "Tiger", "Fish"]tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/bert-base-uncased-pf-cosmos_qa-onnx') raw_input = [[context, question + + choice] for choice in choices] inputs = tokenizer(raw_input, padding=True, truncation=True, return_tensors="np") inputs['token_type_ids'] = np.expand_dims(inputs['token_type_ids'], axis=0) inputs['input_ids'] = np.expand_dims(inputs['input_ids'], axis=0) inputs['attention_mask'] = np.expand_dims(inputs['attention_mask'], axis=0) outputs = onnx_model.run(input_feed=dict(inputs), output_names=None) ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
RedPandaAINLP/dqn-SpaceInvadersNoFrameskip-v4_3
RedPandaAINLP
2023-01-03T21:09:46Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T20:57:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 11.50 +/- 12.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RedPandaAINLP -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RedPandaAINLP -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RedPandaAINLP ``` ## Hyperparameters ```python OrderedDict([('batch_size', 512), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.05), ('learning_starts', 100000), ('n_timesteps', 110000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
hroth/psais-paraphrase-multilingual-MiniLM-L12-v2-20shot
hroth
2023-01-03T21:07:20Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T21:06:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 605 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 605, "warmup_steps": 61, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/popbase-popcrave
huggingtweets
2023-01-03T21:03:29Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-03T21:03:20Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1268086791443230737/BRGz4AiW_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394266006395228162/qIjjvzl7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pop Base & Pop Crave</div> <div style="text-align: center; font-size: 14px;">@popbase-popcrave</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pop Base & Pop Crave. | Data | Pop Base | Pop Crave | | --- | --- | --- | | Tweets downloaded | 3240 | 3212 | | Retweets | 343 | 244 | | Short tweets | 306 | 89 | | Tweets kept | 2591 | 2879 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/231p93io/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @popbase-popcrave's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9st2g69y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9st2g69y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/popbase-popcrave') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vuiseng9/jpqd-bert-base-lt-15eph-r0.0150-s1e5
vuiseng9
2023-01-03T21:01:03Z
0
0
null
[ "onnx", "region:us" ]
null
2023-01-03T20:52:14Z
# Joint Pruning, Quantization and Distillation for BERT-large/SQuADv1.1 ## Setup ```bash git clone https://github.com/vuiseng9/optimum-intel cd optimum-intel pip install -e .[openvino,nncf] cd examples/openvino/question-answering/ pip install -r requirements.txt pip install wandb # optional ``` ## Run ```bash NNCFCFG=/path/to/openvino_config.json MASTER_PORT=<PORTID> RUNID=<RUN_IDENTIFIER> OUTDIR=/path/to/saved_model NEPOCH=15 python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --teacher_model_or_path bert-large-uncased-whole-word-masking-finetuned-squad \ --distillation_weight 0.9 \ --do_eval \ --fp16 \ --do_train \ --learning_rate 3e-5 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --logging_steps 1 \ --evaluation_strategy steps \ --eval_steps 250 \ --save_steps 500 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR \ --nncf_compression_config $NNCFCFG \ ``` ### Reference Results ``` Global Step: 80000 F1: 90.272 EM: 83.728 Structured Sparsity (linear): 52.18% ```
amal94/q-Taxi-v3
amal94
2023-01-03T20:30:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T20:20:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="amal94/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
amal94/q-FrozenLake-v1-4x4-noSlippery
amal94
2023-01-03T20:18:25Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T20:18:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="amal94/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hroth/psais-LaBSE-10shot
hroth
2023-01-03T20:12:30Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T20:11:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 303 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 303, "warmup_steps": 31, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rmn0ff/ppo-LunarLander-v2
rmn0ff
2023-01-03T19:36:47Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-07T14:31:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 221.75 +/- 81.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Slashy/krystal-test
Slashy
2023-01-03T19:24:38Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-03T19:22:28Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Krystal-Test Dreambooth model trained by Slashy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BKluwe2209/Taxi-v3
BKluwe2209
2023-01-03T19:21:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T19:19:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="BKluwe2209/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BhavyaMuni/taylor-swift-model-paragraphs
BhavyaMuni
2023-01-03T18:54:45Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-03T18:11:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: taylor-swift-model-paragraphs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # taylor-swift-model-paragraphs This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9316 | 1.0 | 59 | 3.8227 | | 3.824 | 2.0 | 118 | 3.7301 | | 3.5808 | 3.0 | 177 | 3.6658 | | 3.625 | 4.0 | 236 | 3.6205 | | 3.643 | 5.0 | 295 | 3.5862 | | 3.5443 | 6.0 | 354 | 3.5545 | | 3.4535 | 7.0 | 413 | 3.5274 | | 3.398 | 8.0 | 472 | 3.5072 | | 3.3253 | 9.0 | 531 | 3.4833 | | 3.4111 | 10.0 | 590 | 3.4688 | | 3.3461 | 11.0 | 649 | 3.4503 | | 3.3133 | 12.0 | 708 | 3.4373 | | 3.3921 | 13.0 | 767 | 3.4246 | | 3.2661 | 14.0 | 826 | 3.4102 | | 3.2257 | 15.0 | 885 | 3.4052 | | 3.1837 | 16.0 | 944 | 3.3911 | | 3.1935 | 17.0 | 1003 | 3.3849 | | 2.9369 | 18.0 | 1062 | 3.3774 | | 3.2486 | 19.0 | 1121 | 3.3721 | | 3.1542 | 20.0 | 1180 | 3.3681 | | 3.0771 | 21.0 | 1239 | 3.3624 | | 3.1206 | 22.0 | 1298 | 3.3581 | | 3.0358 | 23.0 | 1357 | 3.3585 | | 2.9207 | 24.0 | 1416 | 3.3568 | | 3.0496 | 25.0 | 1475 | 3.3564 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Eslam25/q-FrozenLake-v1-4x4-noSlippery
Eslam25
2023-01-03T18:07:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T18:07:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Eslam25/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
noctrog/q-FrozenLake-v1-4x4-noSlippery
noctrog
2023-01-03T17:49:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T17:49:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="noctrog/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sinsforeal/cityscape
sinsforeal
2023-01-03T17:42:36Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-01-03T17:22:36Z
--- license: openrail --- This is a model that improves the generation quality of cityscape landscapes into a more futuristic stype it was trained off of 38 768 images using photo bucketing with stable tuner at 16 batch size and 2e-5 lr. The images were randomly pulled from artstation after I searched for cityscape. try using "cityscape" "cyberpunk" "futuristc" "dystopian" "utopian" "skyscrapers" "nighttime" to trigger it. ![cityscape.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672767751543-63602a9f3605bd411c18b4e0.jpeg)
hroth/psais-multi-qa-mpnet-base-dot-v1-10shot
hroth
2023-01-03T17:25:36Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T17:25:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 303 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 303, "warmup_steps": 31, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sinsforeal/haruhisky
sinsforeal
2023-01-03T17:22:08Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-01-03T17:14:07Z
--- license: openrail --- trained with all the images by the artist haruhisky on danbooru. 768 res with 16 batch size and 2e-5 lr. you should be able to get his art style with "by haruhisky" this is 15 epochs ![xy_grid-0009-5454-masterpiece, best quality, by haruhisky, suzumiya haruhi, 1girl, d,bangs,blue sailor collar,blue skirt,breasts,brown eyes,brown.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672766523160-63602a9f3605bd411c18b4e0.jpeg)
sinsforeal/cardcaptorsakura
sinsforeal
2023-01-03T17:13:14Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-01-03T16:56:44Z
--- license: openrail --- ![ccstest.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672765891559-63602a9f3605bd411c18b4e0.jpeg) cardcaptor sakura model trained on anime screenshots all were 768 resolution images. 16 batch size and 1.6e-5 lr. the number indicates the epoch. you can really only do sakura tomoyo. something like kinomoto sakura, white beret, school bag, tomeda elementary school uniform, happy should give ok results when added to a normal prompt.
maixbach/swin-tiny-patch4-window7-224-finetuned-trash_classification
maixbach
2023-01-03T16:57:28Z
45
2
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-03T09:29:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-trash_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.882689556509299 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-trash_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3372 - Accuracy: 0.8827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4991 | 1.0 | 22 | 0.5482 | 0.7911 | | 0.4008 | 2.0 | 44 | 0.5193 | 0.7954 | | 0.3659 | 3.0 | 66 | 0.4464 | 0.8398 | | 0.372 | 4.0 | 88 | 0.4384 | 0.8398 | | 0.3388 | 5.0 | 110 | 0.4281 | 0.8455 | | 0.2654 | 6.0 | 132 | 0.3618 | 0.8712 | | 0.2326 | 7.0 | 154 | 0.3550 | 0.8755 | | 0.2354 | 8.0 | 176 | 0.3401 | 0.8798 | | 0.1774 | 9.0 | 198 | 0.3372 | 0.8827 | | 0.1849 | 10.0 | 220 | 0.3380 | 0.8827 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
sinsforeal/aokiume
sinsforeal
2023-01-03T16:45:58Z
0
0
null
[ "region:us" ]
null
2023-01-03T16:31:00Z
![aoi.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672764165320-63602a9f3605bd411c18b4e0.jpeg) this was trained off of all the images on danbooru tagged under the artist aoki ume the creator of hidamari sketch. all of the source images were 768 resolution and this was trained at 16 batch size with a lr of 1.6e-5. you should be able to prompt all of the hidamaris or you could try applying the style with "by aoki ume"
sinsforeal/horiguchiyukiko
sinsforeal
2023-01-03T16:34:42Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-01-03T16:18:19Z
--- license: openrail --- ![grid-0674.png](https://s3.amazonaws.com/moonup/production/uploads/1672763186418-63602a9f3605bd411c18b4e0.png) another quick finetune trained at 768 resoultion for 10 epochs based off of kani-anime trained at 16 batch size with 1.6e-5 learning rate in stable tuner. this one is based off all of the offical k-on artwork by the artist horiguchi yukiko. all i did was scrap the danbooru images so if you use the take horiguchi yukiko on there you can get a good idea of what kind of prompts you should use. generally you will want to use at least "by horiguchi yukiko" to generate images in his style
hroth/psais-multi-qa-mpnet-base-dot-v1-8shot
hroth
2023-01-03T16:25:56Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T16:25:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 240 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 240, "warmup_steps": 24, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aplnestrella/pegasus-samsum1
aplnestrella
2023-01-03T15:32:30Z
97
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-03T14:38:06Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum1 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6966 | 0.54 | 500 | 1.4877 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
jessietextstan/setfit_v0
jessietextstan
2023-01-03T15:26:28Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T15:26:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hroth/psais-all-mpnet-base-v2-8shot
hroth
2023-01-03T15:21:16Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T15:20:55Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 240 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 240, "warmup_steps": 24, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BiggieW/classification_tnews_100_per_class
BiggieW
2023-01-03T15:16:02Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T13:53:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy widget: - '全国高校科研质量排名,清华北大浙大无缘前五。' model-index: - name: classification_tnews_100_per_class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classification_tnews_100_per_class This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on a subset of TNEWS dataset. It achieves the following results on the evaluation set: - Loss: 1.0423 - Accuracy: 0.7133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8994 | 1.0 | 150 | 1.2250 | 0.6733 | | 0.9706 | 2.0 | 300 | 1.0644 | 0.6867 | | 0.622 | 3.0 | 450 | 1.0083 | 0.6933 | | 0.4115 | 4.0 | 600 | 1.0495 | 0.6867 | | 0.2959 | 5.0 | 750 | 1.0423 | 0.7133 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
tryolabs/long-t5-tglobal-base-blogpost-cqa
tryolabs
2023-01-03T15:14:01Z
6
6
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-15T14:46:54Z
# Fine-tuned LongT5 for Conversational QA This model is a fine-tuned version of [long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) for the task of Conversational QA. The model was fine-tuned on the [SQuADv2](https://huggingface.co/datasets/squad_v2) and [CoQA](https://huggingface.co/datasets/coqa) datasets and on Tryolabs' own custom dataset, [TryoCoQA](https://github.com/tryolabs/TryoCoQA). An export of this model to the ONNX format is available at [tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx](https://huggingface.co/tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx). You can find the details on how we fine-tuned the model and built TryoCoQA on our blog post! You can also play with the model on the following [space](https://huggingface.co/spaces/tryolabs/blogpost-cqa). ## Results * Fine-tuning for 3 epochs on SQuADv2 and CoQA combined achieved a 74.29 F1 score on the test set. * Fine-tuning for 166 epochs on TryoCoQA achieved a 54.77 F1 score on the test set.
tytfyhutrf/ducobumix
tytfyhutrf
2023-01-03T15:08:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-03T14:34:22Z
--- license: creativeml-openrail-m ---
echarlaix/t5-small-openvino
echarlaix
2023-01-03T14:58:52Z
5,341
4
transformers
[ "transformers", "openvino", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-29T15:49:15Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation - openvino license: apache-2.0 --- ## [t5-small](https://huggingface.co/t5-small) exported to the OpenVINO IR. ## Model description [T5](https://huggingface.co/docs/transformers/model_doc/t5#t5) is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. For more information, please take a look at the original paper. Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import AutoTokenizer, pipeline from optimum.intel.openvino import OVModelForSeq2SeqLM model_id = "echarlaix/t5-small-openvino" model = OVModelForSeq2SeqLM.from_pretrained(model_id, use_cache=False) tokenizer = AutoTokenizer.from_pretrained(model_id) # Create a pipeline translation_pipe = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer) text = "He never went out without a book under his arm, and he often came back with two." result = translation_pipe(text) ```
hroth/psais-all-MiniLM-L6-v2-10shot
hroth
2023-01-03T14:44:59Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T14:44:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 303 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 303, "warmup_steps": 31, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
malamasn/ppo-LunarLander-v2
malamasn
2023-01-03T14:40:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T14:40:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.94 +/- 17.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mamiksik/CodeBertaCLM
mamiksik
2023-01-03T14:31:20Z
31
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-01-01T13:38:07Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: CodeBertaCLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CodeBertaCLM This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5831 - Accuracy: 0.0144 - F1: 0.0144 - Bleu4: 0.0421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 3.6734 | 1.0 | 1673 | 3.6884 | 0.0159 | 0.0159 | 0.0131 | | 2.8139 | 2.0 | 3346 | 3.2517 | 0.0164 | 0.0164 | 0.0192 | | 2.4176 | 3.0 | 5019 | 3.0747 | 0.0178 | 0.0178 | 0.0332 | | 2.2785 | 4.0 | 6692 | 2.9695 | 0.0174 | 0.0174 | 0.0347 | | 2.1557 | 5.0 | 8365 | 2.8886 | 0.0171 | 0.0171 | 0.0377 | | 2.0357 | 6.0 | 10038 | 2.8313 | 0.0158 | 0.0158 | 0.0394 | | 1.9615 | 7.0 | 11711 | 2.7865 | 0.0158 | 0.0158 | 0.0393 | | 1.8982 | 8.0 | 13384 | 2.7498 | 0.0147 | 0.0147 | 0.0399 | | 1.8233 | 9.0 | 15057 | 2.7195 | 0.0149 | 0.0149 | 0.0430 | | 1.7866 | 10.0 | 16730 | 2.6925 | 0.0157 | 0.0157 | 0.0485 | | 1.7237 | 11.0 | 18403 | 2.6745 | 0.0146 | 0.0146 | 0.0419 | | 1.6757 | 12.0 | 20076 | 2.6616 | 0.0146 | 0.0146 | 0.0403 | | 1.6452 | 13.0 | 21749 | 2.6377 | 0.0147 | 0.0147 | 0.0403 | | 1.6036 | 14.0 | 23422 | 2.6216 | 0.0145 | 0.0145 | 0.0397 | | 1.5818 | 15.0 | 25095 | 2.6169 | 0.0150 | 0.0150 | 0.0413 | | 1.5389 | 16.0 | 26768 | 2.6047 | 0.0146 | 0.0146 | 0.0420 | | 1.5131 | 17.0 | 28441 | 2.5940 | 0.0153 | 0.0153 | 0.0433 | | 1.4822 | 18.0 | 30114 | 2.5899 | 0.0145 | 0.0145 | 0.0404 | | 1.4461 | 19.0 | 31787 | 2.5812 | 0.0150 | 0.0150 | 0.0423 | | 1.4149 | 20.0 | 33460 | 2.5841 | 0.0148 | 0.0148 | 0.0418 | | 1.3933 | 21.0 | 35133 | 2.5783 | 0.0139 | 0.0139 | 0.0386 | | 1.3752 | 22.0 | 36806 | 2.5730 | 0.0151 | 0.0151 | 0.0444 | | 1.3412 | 23.0 | 38479 | 2.5709 | 0.0149 | 0.0149 | 0.0419 | | 1.3307 | 24.0 | 40152 | 2.5699 | 0.0143 | 0.0143 | 0.0424 | | 1.2909 | 25.0 | 41825 | 2.5648 | 0.0144 | 0.0144 | 0.0416 | | 1.2679 | 26.0 | 43498 | 2.5615 | 0.0145 | 0.0145 | 0.0420 | | 1.2603 | 27.0 | 45171 | 2.5626 | 0.0148 | 0.0148 | 0.0433 | | 1.2203 | 28.0 | 46844 | 2.5670 | 0.0148 | 0.0148 | 0.0410 | | 1.2134 | 29.0 | 48517 | 2.5536 | 0.0147 | 0.0147 | 0.0422 | | 1.1907 | 30.0 | 50190 | 2.5701 | 0.0139 | 0.0139 | 0.0404 | | 1.1702 | 31.0 | 51863 | 2.5722 | 0.0143 | 0.0143 | 0.0424 | | 1.1555 | 32.0 | 53536 | 2.5679 | 0.0144 | 0.0144 | 0.0434 | | 1.1371 | 33.0 | 55209 | 2.5694 | 0.0146 | 0.0146 | 0.0431 | | 1.1189 | 34.0 | 56882 | 2.5692 | 0.0141 | 0.0141 | 0.0422 | | 1.0989 | 35.0 | 58555 | 2.5831 | 0.0144 | 0.0144 | 0.0421 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
hroth/psais-paraphrase-multilingual-MiniLM-L12-v2-8shot
hroth
2023-01-03T14:12:40Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T14:12:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 240 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 240, "warmup_steps": 24, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LuisQ/ddpm-celebahq-finetuned-butterflies-2epochs
LuisQ
2023-01-03T13:59:45Z
6
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-03T13:59:33Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('LuisQ/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
AkkyMa/LunarLander
AkkyMa
2023-01-03T13:36:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T13:35:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 171.84 +/- 51.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Maki7/alwe
Maki7
2023-01-03T13:10:27Z
0
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2023-01-02T10:56:26Z
--- license: apache-2.0 --- ## Anime Segmentation Models models of [https://github.com/SkyTNT/anime-segmentation](https://github.com/SkyTNT/anime-segmentation)
Aman6917/autotrain-tm3_model-2711480631
Aman6917
2023-01-03T13:02:37Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Aman6917/autotrain-data-tm3_model", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-01-03T12:54:16Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-tm3_model co2_eq_emissions: emissions: 9.180873432477254 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2711480631 - CO2 Emissions (in grams): 9.1809 ## Validation Metrics - Loss: 0.088 - Rouge1: 94.701 - Rouge2: 90.005 - RougeL: 93.006 - RougeLsum: 93.078 - Gen Len: 66.529 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-tm3_model-2711480631 ```
Aman6917/autotrain-tm3_model-2711480628
Aman6917
2023-01-03T13:02:33Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Aman6917/autotrain-data-tm3_model", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-01-03T12:54:09Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-tm3_model co2_eq_emissions: emissions: 9.38482304577412 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2711480628 - CO2 Emissions (in grams): 9.3848 ## Validation Metrics - Loss: 0.088 - Rouge1: 94.638 - Rouge2: 90.173 - RougeL: 93.188 - RougeLsum: 93.163 - Gen Len: 66.529 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-tm3_model-2711480628 ```
Aman6917/autotrain-tm3_model-2711480629
Aman6917
2023-01-03T13:02:29Z
9
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Aman6917/autotrain-data-tm3_model", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-01-03T12:54:11Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-tm3_model co2_eq_emissions: emissions: 8.016071286117265 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2711480629 - CO2 Emissions (in grams): 8.0161 ## Validation Metrics - Loss: 0.088 - Rouge1: 94.701 - Rouge2: 89.907 - RougeL: 92.992 - RougeLsum: 93.163 - Gen Len: 66.529 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-tm3_model-2711480629 ```
hroth/psais-all-MiniLM-L6-v2-5shot
hroth
2023-01-03T12:33:51Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-02T21:28:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} **This model was fine tuned with SetFit based on 5 utterances per intent and is used for an university project for intent detection. Other usage not tested** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 150 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 150, "warmup_steps": 15, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hroth/psais-all-mpnet-base-v2-1shot
hroth
2023-01-03T12:32:41Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-02T21:46:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} **This model was fine tuned with SetFit based on 1 utterances and is used for an university project for intent detection. Other usage not tested** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 30 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 30, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hroth/psais-multi-qa-mpnet-base-dot-v1-1shot
hroth
2023-01-03T12:31:29Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T10:10:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} **This model was fine tuned with SetFit based on 1 utterance and is used for an university project for intent detection. Other usage not tested** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 30 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 30, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hroth/psais-multi-qa-mpnet-base-dot-v1-5shot
hroth
2023-01-03T12:31:07Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-03T10:28:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} **This model was fine tuned with SetFit based on 5 utterances and is used for an university project for intent detection. Other usage not tested** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 150 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 150, "warmup_steps": 15, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cleanrl/BattleZone-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1
cleanrl
2023-01-03T12:25:57Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BattleZone-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T12:25:53Z
--- tags: - BattleZone-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BattleZone-v5 type: BattleZone-v5 metrics: - type: mean_reward value: 34400.00 +/- 6621.18 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BattleZone-v5** This is a trained model of a PPO agent playing BattleZone-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id BattleZone-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BattleZone-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/BattleZone-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BattleZone-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BattleZone-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
sd-concepts-library/egorey
sd-concepts-library
2023-01-03T12:16:13Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-01-03T12:16:02Z
--- license: mit --- ### egorey on Stable Diffusion This is the `<gorey>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<gorey> 0](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/0.jpeg) ![<gorey> 1](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/3.jpeg) ![<gorey> 2](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/2.jpeg) ![<gorey> 3](https://huggingface.co/sd-concepts-library/egorey/resolve/main/concept_images/1.jpeg)
LarryAIDraw/yakimashake020
LarryAIDraw
2023-01-03T12:07:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-03T08:53:19Z
--- license: creativeml-openrail-m --- anythingV30 sd1.5 merge 0.2=>fst fst NAInsfw NAIsfw add 0.3=>snd NAInsfw gape merge 0.6=>gapensfw snd gapensfw NAIsfw 1.0=>yakomashake020
TransLL/distilbert-base-uncased-distilled-clinc
TransLL
2023-01-03T12:05:49Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T11:50:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9503225806451613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3186 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 2.0524 | 0.7519 | | 2.4405 | 2.0 | 636 | 1.0364 | 0.8623 | | 2.4405 | 3.0 | 954 | 0.5867 | 0.9187 | | 0.921 | 4.0 | 1272 | 0.4271 | 0.9361 | | 0.417 | 5.0 | 1590 | 0.3687 | 0.9442 | | 0.417 | 6.0 | 1908 | 0.3438 | 0.9484 | | 0.2885 | 7.0 | 2226 | 0.3292 | 0.95 | | 0.2454 | 8.0 | 2544 | 0.3235 | 0.9490 | | 0.2454 | 9.0 | 2862 | 0.3206 | 0.95 | | 0.2309 | 10.0 | 3180 | 0.3186 | 0.9503 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Abdullah17/distill-bert-uncased-clickbait
Abdullah17
2023-01-03T11:42:53Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T10:32:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distill-bert-uncased-English-clickbait results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distill-bert-uncased-English-clickbait This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an Custom dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
sparanoid/milky-green-diff-svc
sparanoid
2023-01-03T11:33:25Z
3
2
null
[ "audio-to-audio", "zh", "en", "ja", "license:agpl-3.0", "region:us" ]
audio-to-audio
2022-12-17T09:23:40Z
--- language: - zh - en - ja tags: - audio-to-audio license: "agpl-3.0" --- # Milky Green Diff-SVC Model Milky Green (aka. [明前奶绿](https://space.bilibili.com/2132180406)) [Diff-SVC](https://github.com/prophesier/diff-svc) (Singing Voice Conversion via diffusion) model
adamf9898/9898-MTG
adamf9898
2023-01-03T10:39:40Z
0
1
null
[ "license:unknown", "region:us" ]
null
2023-01-03T10:34:28Z
--- license: unknown --- https://perchance.org/9898-mtg-card-generator-v3 --- background = {import:background-image-plugin} commentsPlugin = {import:comments-plugin} o = [output] ocn = [output_card_name.selectUnique(1)] tCT = [thisCardType] ocm = [output_card_mana] oct = [output_card_type] octst = [output_cardtype_subtype] octxt = [output_card_text] octxtkact = [output_card_text_keyword_action] octxtkab = [output_card_text_keyword_ability] ocr = [output_card_rarity] ocsc = [output_card_set_code] ocpt = [output_card_power_toughness] c = [colors] s = [scryfall.selectUnique(1).sentenceCase] r = <b>[ocn.selectUnique(1).titleCase]<p>[ocm.selectUnique(1)]<br>[tCT.selectUnique(1).titleCase]<br>[ocsc.selectUnique(1)] • [ocr.selectUnique(1)]<br>{{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)]|[octxtkact.selectUnique(1)]|[octxtkab.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]} [octxt.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)] [octxtkact.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxtkact.selectUnique(1)] [octxtkab.selectUnique(1)]}<br><b>[ocpt.selectUnique(1)] <br><br>— — — — — — — — — — — — — — — — — —<br> emo = {import:emotion} pageTitle = <u>9898-MTG Card Generator V3</u> pageSubtitle = 2023 © 9898-MTG ocbl = ocstbl = output_card_subtype_basic_land ocnbl = ocstnbl = output_card_subtype_nonbasic_land commentsOptions width = 400 title 9898-MTG Card Generator V3 $output = <b>[ocn.selectUnique(1).titleCase]<p>[ocm.selectUnique(1)]<br>[tCT.selectUnique(1).titleCase]<br>[ocsc.selectUnique(1)] • [ocr.selectUnique(1)]<br>{{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)]|[octxtkact.selectUnique(1)]|[octxtkab.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]} [octxt.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)] [octxtkact.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxtkact.selectUnique(1)] [octxtkab.selectUnique(1)]}<br><b>[ocpt.selectUnique(1)] <br>— — — — — — — — — — — — — — — — — —<br> output1 title = Name buttonText = Generate content = <b>[ocn.selectUnique(1).titleCase] output2 title = Cost buttonText = Generate content = <b>[ocm.selectUnique(1)] output3 title = Type — Subtype buttonText = Generate content = <b>{[tCT.selectUnique(1)]|[oct.selectUnique(1)] — [octst.selectUnique(1)]} output4 title = Set Code • Rartity buttonText = Generate content = <b>[ocsc.selectUnique(1)] • [ocr.selectUnique(1)] output5 title = Effects buttonText = Generate content = <b>{[octxt.selectUnique(1)]|[octxtkact.selectUnique(1)]|[octxtkab.selectUnique(1)]|[octxt.selectUnique(1)]|[octxt.selectUnique(1)], [octxtkact.selectUnique(1)]|[octxtkact.selectUnique(1)], [octxtkab.selectUnique(1)]} output6 title = Power/Toughness buttonText = Generate content = [ocpt.selectUnique(1)] output7 title = Results buttonText = Generate content = [r] output_card_name {{import:adjective}|{import:verb}} {{import:word}|{import:noun}} {import:adjective} {import:verb} {{import:word}|{import:noun}} {{import:adjective}|{import:verb}} {import:word} {import:noun} {import:adjective} {import:verb} {import:word} {import:noun} thisCardType [thisCardType = output_card_type] — [specificType] specificType [output_card_subtype_basic_land] ^[thisCardType == "Basic"] [output_card_subtype_nonbasic_land] ^[thisCardType == "NonBasic"] [output_card_subtype_creature] ^[thisCardType == "Creature"] [output_card_subtype_artifact] ^[thisCardType == "Artifact"] [output_card_subtype_enchantment] ^[thisCardType == "Enchantment"] [output_card_subtype_planeswalker] ^[thisCardType == "Planeswalker"] [output_card_subtype_instant] ^[thisCardType == "Instant"] [output_card_subtype_sorcery] ^[thisCardType == "Sorcery"] [output_card_subtype_creature] ^[thisCardType == "Creature"] [output_card_subtype_plane] ^[thisCardType == "Plane"] output_card_mana {{{0-12}|X}|{0-12}|X {0-6 [basic_mana]|[hybrid_mana]|[tri_hybrid_mana]|[four_color_mana]|[multicolor_mana]|[phyrexian_mana]|[prismatic_mana]}} basic_mana {W|U|B|R|G|C|X|S} hybrid_mana {{1-2}/{W|U|B|R|G}|{W|U|B|R|G}} tri_hybrid_mana {W/B/G|W/U/G|W/U/B|U/B/R|W/U/R|B/R/G|W/B/R|W/R/G|U/B/G|U/R/G} four_color_mana {U/B/R/G|W/B/R/G|W/U/B/G|W/U/B/R} multicolor_mana {BR|UB|BG|RG|GU|UR|WB|GW|RW|WU} phyrexian_mana -2 Life/{W|U|B|R|G|C|X|S} prismatic_mana WUBRG out [thisCardType = output_card_type] ocbl [ocbl = ocstbl = output_card_subtype_basic_land] ocnbl [ocnbl = ocstnbl = output_card_subtype_nonbasic_land] ocleg [ocleg = ocstleg = output_card_subtype_legendary] output_card_type Basic [if (output_card_type = "Basic") {output_card_subtype_basic_land} else {output_card_type}|{ocbl}] NonBasic [if (output_card_type = "NonBasic") {output_card_subtype_nonbasic_land} else {output_card_type}|{ocnbl}] Legendary [if (output_card_type = "Legendary") {output_card_subtype_legendary} else {output_card_type}|{ocstleg}] Token Tribal World Conspiracy Creature [if (output_card_type = "Creature") {output_card_subtype_creature} else {output_card_type}] Advertisement Artifact [if (output_card_type = "Artifact") {output_card_subtype_artifact} else {output_card_type}] Artifact Creature Artifact Land Enchantment [if (output_card_type = "Enchantment") {output_card_subtype_enchantment} else {output_card_type}] Enchantment Creature Instant [if (output_card_type = "Instant") {output_card_subtype_instant} else {output_card_type}] Sorcery [if (output_card_type = "Sorcery") {output_card_subtype_sorcery} else {output_card_type}] Land [if (output_card_type = "Land") {output_card_subtype_basic_land} else {output_card_subtype_basic_land} {output_card_type}] [if (output_card_type = "land") output_card_mana = ""] Planeswalker [if (output_card_type = "Planeswalker") {{{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)]|[octxtkact.selectUnique(1)]|[octxtkab.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]} [octxt.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxt.selectUnique(1)] [octxtkact.selectUnique(1)]|{[scry_keyword_abilities.selectUnique(1)]|[scry_keyword_actions.selectUnique(1)]|[scry_ability_words.selectUnique(1)]}|[octxtkact.selectUnique(1)] [octxtkab.selectUnique(1)]}}[if (output_card_type = "Planeswalker") {output_card_subtype_planeswalker} else {output_card_type}] Emblem Phenemonom Plane [if (output_card_type = "Plane") {output_card_subtype_plane} else {output_card_type}] Dungeon Scheme Vanguard output_cardtype_subtype {[output_card_subtype_artifact]|[output_card_subtype_enchantment]|[output_card_subtype_basic_land]|[output_card_subtype_nonbasic_land]|[output_card_subtype_planeswalker]|[output_card_subtype_instant]|[output_card_subtype_sorcery]|[output_card_subtype_creature]|[output_card_subtype_plane]} output_card_subtype_artifact Blood Clue Contraption Equipment Food Fortification Gold Powerstone Treasure Vehicle output_card_subtype_enchantment Aura Background Cartouche Class Curse Rune Saga Shard Shrine output_card_subtype_basic_land Plains Island Swamp Mountain Forest Waste Snow-Covered Plains Snow-Covered Island Snow-Covered Swamp Snow-Covered Mountain Snow-Covered Forest output_card_subtype_nonbasic_land Desert Gate Lair Locus Mine Power-Plant Tower Urza’s output_card_subtype_planeswalker Ajani Aminatou Angrath Arlinn Ashiok Bahamut Basri Bolas Calix Chandra Dack Dakkon Daretti Davriel Dihada Domri Dovin Ellywick Elminster Elspeth Estrid Freyalise Garruk Gideon Grist Huatli Jace Jaya Jeska Kaito Karn Kasmina Kaya Kiora Koth Liliana Lolth Lukka Minsc Mordenkainen Nahiri Narset Niko Nissa Nixilis Oko Ral Rowan Saheeli Samut Sarkhan Serra Sivitri Sorin Szat Tamiyo Tasha Teferi Teyo Tezzeret Tibalt Tyvar Ugin Venser Vivien Vraska Will Windgrace Wrenn Xenagos Yanggu Yanling Zariel output_card_subtype_instant Adventure Arcane Lesson Trap output_card_subtype_sorcery Adventure Arcane Lesson Trap output_card_subtype_creature Advisor Aetherborn Ally Angel Antelope Ape Archer Archon Army Artificer Assassin Assembly-Worker Atog Aurochs Avatar Azra Badger Barbarian Bard Basilisk Bat Bear Beast Beeble Beholder Berserker Bird, Blinkmoth Boar Bringer Brushwagg Camarid Camel Caribou Carrier Cat Centaur Cephalid Chimera Citizen Cleric Cockatrice Construct Coward Crab Crocodile Cyclops Dauthi Demigod Demon Deserter Devil Dinosaur Djinn Dog Dragon Drake Dreadnought Drone Druid Dryad Dwarf Efreet Egg Elder Eldrazi Elemental Elephant Elf Elk Eye Faerie Ferret Fish Flagbearer Fox Fractal Frog Fungus Gargoyle Germ Giant Gith Gnoll Gnome Goat Goblin God Golem Gorgon Graveborn Gremlin Griffin Hag Halfling Hamster Harpy Hellion Hippo Hippogriff Homarid Homunculus Horror Horse Human Hydra Hyena Illusion Imp Incarnation Inkling Insect Jackal Jellyfish Juggernaut Kavu Kirin Kithkin Knight Kobold Kor Kraken Lamia Lammasu Leech Leviathan Lhurgoyf Licid Lizard Manticore Masticore Mercenary Merfolk Metathran Minion Minotaur Mole Monger Mongoose Monk Monkey Moonfolk Mouse Mutant Myr Mystic Naga Nautilus Nephilim Nightmare Nightstalker Ninja Noble Noggle Nomad Nymph Octopus Ogre Ooze Orb Orc Orgg Otter Ouphe Ox Oyster Pangolin Peasant Pegasus Pentavite Pest Phelddagrif Phoenix Phyrexian Pilot Pincher Pirate Plant Praetor Prism Processor Rabbit Raccoon Ranger Rat Rebel Reflection Rhino Rigger Rogue Sable Salamander Samurai Sand Saproling Satyr Scarecrow Scion Scorpion Scout Sculpture Serf Serpent Servo Shade Shaman Shapeshifter Shark Sheep Siren Skeleton Slith Sliver Slug Snake Soldier Soltari Spawn Specter Spellshaper Sphinx Spider Spike Spirit Splinter Sponge Squid Squirrel Starfish Surrakar Survivor Tentacle Tetravite Thalakos Thopter Thrull Tiefling Treefolk Trilobite Triskelavite Troll Turtle Unicorn Vampire Vedalken Viashino Volver Wall Walrus Warlock Warrior Weird Werewolf Whale Wizard Wolf Wolverine Wombat Worm Wraith Wurm Yeti Zombie Zubera output_card_subtype_plane Alara Arkhos Azgol Belenon Bolas’s Meditation Realm Dominaria Equilor Ergamon Fabacin Innistrad Iquatana Ir Kaldheim Kamigawa Karsus Kephalai Kinshala Kolbahan Kyneth Lorwyn Luvion Mercadia Mirrodin Moag Mongseng Muraganda New Phyrexia Phyrexia Pyrulea Rabiah Rath Ravnica Regatha Segovia Serra’s Realm Shadowmoor Shandalar Ulgrotha Valla Vryn Wildfire Xerex Zendikar output_card_subtype_legendary Artifact Creature Enchantment Land Planeswalker Instant Sorcery Artifact Land Artifact Creature Enchantment Artifact Enchantment Artifact Creature Enchantment Creature Enchantment Land Instant Creature Land Creature output_card_set_code {A-Z}{A-Z}{A-Z} output_card_rarity {Common|Uncommon|Rare|Mythic Rare|Special|Masterpiece} output_card_text [output_card_text_keyword_action] [output_card_text_keyword_ability] [output_card_text_keyword_action] [output_card_text_keyword_ability] When ~this enters the battlefield, {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]} Whenever ~this enters the battlefield or attacks, {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]} When ~this dies, {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]} Whenever a card from [output_game_zones] is put into [output_game_zones], [output_card_text_keyword_action] When ~this is put into [output_game_zones], [output_card_text_keyword_action] target {[output_card_type]|[output_cardtype_subtype]|[output_card_type] [output_cardtype_subtype]} Whenever ~this deals damage to a player, {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]} Whenever ~this deals damage to a player, create a token thats a copy of ~this. Whenever ~this deals damage to a player, exile target {[output_card_type]|[output_cardtype_subtype]} Whenever you {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]}, {[output_card_text_keyword_action]|[output_card_text_keyword_ability]|[output_card_text_keyword_action], [output_card_text_keyword_ability]} Whenever you gain life, create a 1/1 colorless [output_card_subtype_creature] creature token. Whenever you roll a die, create a X/X colorless [output_card_subtype_creature] creature token where X equals the result of the die roll. [c] creatures get {+0/+1|+1/+0|+1/+1} [c] creatures you control get {+0/+1|+1+0|+1/+1} output_card_text_keyword_action Abandon Activate Adapt Amass Assemble Attach Bolster Cast Clash Connive Counter Create Destroy Detain Discard Double Exchange Exert Exile Explore Fateseal Fight Goad Investigate Learn Manifest Meld Mill Monstrosity Planeswalk Play Populate Proliferate Regenerate Reveal Sacrifice Scry Search Set in Motion Shuffle Support Surveil Tap Transform Untap Venture into the Dungeon Vote output_card_text_keyword_ability Deathtouch Defender Double Strike Enchant Equip First Strike Flash Flying Haste Hexproof Indestructible Intimidate Landwalk Lifelink Protection Reach Shroud Trample Vigilance Ward Banding Rampage Cumulative Upkeep Flanking Phasing Buyback Shadow Cycling Echo Horsemanship Fading Kicker Flashback Madness Fear Morph Amplify Provoke Storm Affinity Entwine Modular Sunburst Bushido Soulshift Splice Offering Ninjutsu Epic Convoke Dredge Transmute Bloodthirst Haunt Replicate Forecast Graft Recover Ripple Split Second Suspend Vanishing Absorb Aura Swap Delve Fortify Frenzy Gravestorm Poisonous Transfigure Champion Changeling Evoke Hideaway Prowl Reinforce Conspire Persist Wither Retrace Devour Exalted Unearth Cascade Annihilator Level Up Rebound Totem Armor Infect Battle Cry Living Weapon Undying Miracle Soulbond Overload Scavenge Unleash Cipher Evolve Extort Fuse Bestow Tribute Dethrone Hidden Agenda Outlast Prowess Dash Exploit Menace Renown Awaken Devoid Ingest Myriad Surge Skulk Emerge Escalate Melee Crew Fabricate Partner Undaunted Improvise Aftermath Embalm Eternalize Afflict Ascend Assist Jump-Start Mentor Afterlife Riot Spectacle Escape Companion Mutate Encore Boast Foretell Demonstrate Daybound Nightbound Disturb Decayed Cleave Training Compleated Reconfigure Blitz Casualty Enlist Read Ahead output_card_power_toughness {{0-12}/{1-12}|[scry_powers]/[scry_toughness]} output_game_zones Battlefield Command Exile Graveyard Hand Library Sideboard Stack Outside Of The Game word_types {import:noun} {import:pronoun} {import:verb} {import:adjective} {import:adverb} {import:preposition} {import:interjection} noun abbey absence absorption abstinence absurdity abundance acceptance accessibility accommodation accomplice accountability accounting accreditation accuracy acquiescence acreage actress actuality adage adaptation adherence adjustment adoption adultery advancement advert advertisement advertising advice aesthetics affinity aggression agriculture aircraft airtime allegation allegiance allegory allergy allies alligator allocation allotment altercation ambulance ammonia anatomy anemia ankle announcement annoyance annuity anomaly anthropology anxiety apartheid apologise apostle apparatus appeasement appellation appendix applause appointment appraisal archery archipelago architecture ardor arrears arrow artisan artistry ascent assembly assignment association asthma atheism attacker attraction attractiveness auspices authority avarice aversion aviation babbling backlash baker ballet balls banjo baron barrier barrister bases basin basis battery battling bedtime beginner begun bending bicycle billing bingo biography biology birthplace blackberry blather blossom boardroom boasting bodyguard boldness bomber bondage bonding bones bonus bookmark boomer booty bounds bowling brainstorming breadth breaker brewer brightness broccoli broth brotherhood browsing brunch brunt building bullion bureaucracy burglary buyout by-election cabal cabbage calamity campaign canonization captaincy carcass carrier cartridge cassette catfish caught celebrity cemetery certainty certification charade chasm check-in cheerleader cheesecake chemotherapy chili china chivalry cholera cilantro circus civilisation civility clearance clearing clerk climber closeness clothing clutches coaster coconut coding collaborator colleague college collision colors combustion comedian comer commander commemoration commenter commissioner commune competition completeness complexity computing comrade concur condominium conduit confidant configuration confiscation conflagration conflict consist consistency consolidation conspiracy constable consul consultancy contentment contents contractor conversation cornerstone corpus correlation councilman counselor countdown countryman coverage covering coyote cracker creator criminality crocodile cropping cross-examination crossover crossroads culprit cumin curator curfew cursor custard cutter cyclist cyclone cylinder cynicism daddy damsel darkness dawning daybreak dealing dedication deduction defection deference deficiency definition deflation degeneration delegation delicacy delirium deliverance demeanor demon demonstration denomination dentist departure depletion depression designation despotism detention developer devolution dexterity diagnosis dialect differentiation digger digress dioxide diploma disability disarmament discord discovery dishonesty dismissal disobedience dispatcher disservice distribution distributor diver diversity docking dollar dominance domination dominion donkey doorstep doorway dossier downside drafting drank drilling driver drumming drunkenness duchess ducking dugout dumps dwelling dynamics eagerness earnestness earnings eater editor effectiveness electricity elements eloquence emancipation embodiment embroidery emperor employment encampment enclosure encouragement endangerment enlightenment enthusiasm environment environs envoy epilepsy equation equator error espionage estimation evacuation exaggeration examination exclamation expediency exploitation extinction eyewitness falls fascism fastball feces feedback ferocity fertilization fetish finale firing fixing flashing flask flora fluke folklore follower foothold footing forefinger forefront forgiveness formality formation formula foyer fragmentation framework fraud freestyle frequency friendliness fries frigate fulfillment function functionality fundraiser fusion futility gallantry gallery genesis genitals girlfriend glamour glitter glucose google grandeur grappling greens gridlock grocer groundwork grouping gunman gusto habitation hacker hallway hamburger hammock handling hands handshake happiness hardship headcount header headquarters heads headset hearth hearts heath hegemony height hello helper helping helplessness hierarchy hoarding hockey homeland homer honesty horror horseman hostility housing humility hurricane iceberg ignition illness illustration illustrator immunity immunization imperialism imprisonment inaccuracy inaction inactivity inauguration indecency indicator inevitability infamy infiltration influx iniquity innocence innovation insanity inspiration instruction instructor insurer interact intercession intercourse intermission interpretation intersection interval intolerance intruder invasion investment involvement irrigation iteration jenny jogging jones joseph juggernaut juncture jurisprudence juror kangaroo kingdom knocking laborer larceny laurels layout leadership leasing legislation leopard liberation licence lifeblood lifeline ligament lighting likeness line-up lineage liner lineup liquidation listener literature litigation litre loathing locality lodging logic longevity lookout lordship lustre ma'am machinery madness magnificence mahogany mailing mainframe maintenance majority manga mango manifesto mantra manufacturer maple martin martyrdom mathematician matrix matron mayhem mayor means meantime measurement mechanics mediator medics melodrama memory mentality metaphysics method metre miner mirth misconception misery mishap misunderstanding mobility molasses momentum monarchy monument morale mortality motto mouthful mouthpiece mover movie mowing murderer musician mutation mythology narration narrator nationality negligence neighborhood neighbour nervousness networking nexus nightmare nobility nobody noodle normalcy notification nourishment novella nucleus nuisance nursery nutrition nylon oasis obscenity obscurity observer offense onslaught operation opportunity opposition oracle orchestra organisation organizer orientation originality ounce outage outcome outdoors outfield outing outpost outset overseer owner oxygen pairing panther paradox parliament parsley parson passenger pasta patchwork pathos patriotism pendulum penguin permission persona perusal pessimism peter philosopher phosphorus phrasing physique piles plateau playing plaza plethora plurality pneumonia pointer poker policeman polling poster posterity posting postponement potassium pottery poultry pounding pragmatism precedence precinct preoccupation pretense priesthood prisoner privacy probation proceeding proceedings processing processor progression projection prominence propensity prophecy prorogation prospectus protein prototype providence provider provocation proximity puberty publicist publicity publisher pundit putting quantity quart quilting quorum racism radiance ralph rancher ranger rapidity rapport ratification rationality reaction reader reassurance rebirth receptor recipe recognition recourse recreation rector recurrence redemption redistribution redundancy refinery reformer refrigerator regularity regulator reinforcement reins reinstatement relativism relaxation rendition repayment repentance repertoire repository republic reputation resentment residency resignation restaurant resurgence retailer retention retirement reviewer riches righteousness roadblock robber rocks rubbing runoff saloon salvation sarcasm saucer savior scarcity scenario scenery schism scholarship schoolboy schooner scissors scolding scooter scouring scrimmage scrum seating sediment seduction seeder seizure self-confidence self-control self-respect semicolon semiconductor semifinal senator sending serenity seriousness servitude sesame setup sewing sharpness shaving shoplifting shopping siding simplicity simulation sinking skate sloth slugger snack snail snapshot snark soccer solemnity solicitation solitude somewhere sophistication sorcery souvenir spaghetti specification specimen specs spectacle spectre speculation sperm spoiler squad squid staging stagnation staircase stairway stamina standpoint standstill stanza statement stillness stimulus stocks stole stoppage storey storyteller stylus subcommittee subscription subsidy suburb success sufferer supposition suspension sweater sweepstakes swimmer syndrome synopsis syntax system tablespoon taker tavern technology telephony template tempo tendency tendon terrier terror terry theater theology therapy thicket thoroughfare threshold thriller thunderstorm ticker tiger tights today tossing touchdown tourist tourney toxicity tracing tractor translation transmission transmitter trauma traveler treadmill trilogy trout tuning twenties tycoon tyrant ultimatum underdog underwear unhappiness unification university uprising vaccination validity vampire vanguard variation vegetation verification viability vicinity victory viewpoint villa vindication violation vista vocalist vogue volcano voltage vomiting vulnerability waistcoat waitress wardrobe warmth watchdog wealth weariness whereabouts whisky whiteness widget width windfall wiring witchcraft withholding womanhood words workman youngster pronoun all another any anybody anyone anything both each each other either everybody everyone everything few he her hers herself him himself his I it its itself many me mine more most much my myself neither no one nobody none one one another other others our ours ourselves several she some somebody someone something that their theirs them themselves these they this those uswe what whatever which whichever who whoever whom whomever whose you your yours yourself yourselves verb accept pastTense = accepted add pastTense = added admire pastTense = admired admit pastTense = admitted advise pastTense = advised afford pastTense = afforded agree pastTense = agreed alert pastTense = alerted allow pastTense = allowed amuse pastTense = amused analyse pastTense = analysed announce pastTense = announced annoy pastTense = annoyed answer pastTense = answered apologise pastTense = apologised appear pastTense = appeared applaud pastTense = applauded appreciate pastTense = appreciated approve pastTense = approved argue pastTense = argued arrange pastTense = arranged arrest pastTense = arrested arrive pastTense = arrived ask pastTense = asked attach pastTense = attached attack pastTense = attacked attempt pastTense = attempted attend pastTense = attended attract pastTense = attracted avoid pastTense = avoided back pastTense = backed bake pastTense = baked balance pastTense = balanced ban pastTense = banned bang pastTense = banged bare pastTense = bared bat pastTense = batted bathe pastTense = bathed battle pastTense = battled beam pastTense = beamed beg pastTense = begged behave pastTense = behaved belong pastTense = belonged bleach pastTense = bleached bless pastTense = blessed blind pastTense = blinded blink pastTense = blinked blot pastTense = blotted blush pastTense = blushed boast pastTense = boasted boil pastTense = boiled bolt pastTense = bolted bomb pastTense = bombed book pastTense = booked bore pastTense = bored borrow pastTense = borrowed bounce pastTense = bounced bow pastTense = bowed box pastTense = boxed brake pastTense = braked branch pastTense = branched breathe pastTense = breathed bruise pastTense = bruised brush pastTense = brushed bubble pastTense = bubbled bump pastTense = bumped burn pastTense = burned bury pastTense = buried buzz pastTense = buzzed calculate pastTense = calculated call pastTense = called camp pastTense = camped care pastTense = cared carry pastTense = carried carve pastTense = carved cause pastTense = caused challenge pastTense = challenged change pastTense = changed charge pastTense = charged chase pastTense = chased cheat pastTense = cheated check pastTense = checked cheer pastTense = cheered chew pastTense = chewed choke pastTense = choked chop pastTense = chopped claim pastTense = claimed clap pastTense = clapped clean pastTense = cleaned clear pastTense = cleared clip pastTense = clipped close pastTense = closed coach pastTense = coached coil pastTense = coiled collect pastTense = collected colour pastTense = coloured comb pastTense = combed command pastTense = commanded communicate pastTense = communicated compare pastTense = compared compete pastTense = competed complain pastTense = complained complete pastTense = completed concentrate pastTense = concentrated concern pastTense = concerned confess pastTense = confessed confuse pastTense = confused connect pastTense = connected consider pastTense = considered consist pastTense = consisted contain pastTense = contained continue pastTense = continued copy pastTense = copied correct pastTense = corrected cough pastTense = coughed count pastTense = counted cover pastTense = covered crack pastTense = cracked crash pastTense = crashed crawl pastTense = crawled cross pastTense = crossed crush pastTense = crushed cry pastTense = cried cure pastTense = cured curl pastTense = curled curve pastTense = curved cycle pastTense = cycled dam pastTense = dammed damage pastTense = damaged dance pastTense = danced dare pastTense = dared decay pastTense = decayed deceive pastTense = deceived decide pastTense = decided decorate pastTense = decorated delay pastTense = delayed delight pastTense = delighted deliver pastTense = delivered depend pastTense = depended describe pastTense = described desert pastTense = deserted deserve pastTense = deserved destroy pastTense = destroyed detect pastTense = detected develop pastTense = developed disagree pastTense = disagreed disappear pastTense = disappeared disapprove pastTense = disapproved disarm pastTense = disarmed discover pastTense = discovered dislike pastTense = disliked divide pastTense = divided double pastTense = doubled doubt pastTense = doubted drag pastTense = dragged drain pastTense = drained dream pastTense = dreamed dress pastTense = dressed drip pastTense = dripped drop pastTense = dropped drown pastTense = drowned drum pastTense = drummed dry pastTense = dried dust pastTense = dusted earn pastTense = earned educate pastTense = educated embarrass pastTense = embarrassed employ pastTense = employed empty pastTense = emptied encourage pastTense = encouraged end pastTense = ended enjoy pastTense = enjoyed enter pastTense = entered entertain pastTense = entertained escape pastTense = escaped examine pastTense = examined excite pastTense = excited excuse pastTense = excused exercise pastTense = exercised exist pastTense = existed expand pastTense = expand expect pastTense = expected explain pastTense = explained explode pastTense = exploded extend pastTense = extended face pastTense = faced fade pastTense = faded fail pastTense = failed fancy pastTense = fancied fasten pastTense = fastened fax pastTense = faxed fear pastTense = feared fence pastTense = fenced fetch pastTense = fetched file pastTense = filed fill pastTense = filled film pastTense = filmed fire pastTense = fired fit pastTense = fitted fix pastTense = fixed flap pastTense = flapped flash pastTense = flashed float pastTense = floated flood pastTense = flooded flow pastTense = flowed flower pastTense = flowered fold pastTense = folded follow pastTense = followed fool pastTense = fooled force pastTense = forced form pastTense = formed found pastTense = founded frame pastTense = framed frighten pastTense = frightened fry pastTense = fried gather pastTense = gathered gaze pastTense = gazed glow pastTense = glowed glue pastTense = glued grab pastTense = grabbed grate pastTense = grated grease pastTense = greased greet pastTense = greeted grin pastTense = grinned grip pastTense = gripped groan pastTense = groaned guarantee pastTense = guaranteed guard pastTense = guarded guess pastTense = guessed guide pastTense = guided hammer pastTense = hammered hand pastTense = handed handle pastTense = handled hang pastTense = hung happen pastTense = happened harass pastTense = harassed harm pastTense = harmed hate pastTense = hated haunt pastTense = haunted head pastTense = headed heal pastTense = healed heap pastTense = heaped heat pastTense = heated help pastTense = helped hook pastTense = hooked hop pastTense = hopped hope pastTense = hoped hover pastTense = hovered hug pastTense = hugged hum pastTense = hummed hunt pastTense = hunted hurry pastTense = hurried identify pastTense = identified ignore pastTense = ignored imagine pastTense = imagined impress pastTense = impressed improve pastTense = improved include pastTense = included increase pastTense = increased influence pastTense = influenced inform pastTense = informed inject pastTense = injected injure pastTense = injured instruct pastTense = instructed intend pastTense = intended interest pastTense = interested interfere pastTense = interfered interrupt pastTense = interrupted introduce pastTense = introduced invent pastTense = invented invite pastTense = invited irritate pastTense = irritated itch pastTense = itched jail pastTense = jailed jam pastTense = jammed jog pastTense = jogged join pastTense = joined joke pastTense = joked judge pastTense = judged juggle pastTense = juggled jump pastTense = jumped kick pastTense = kicked kill pastTense = killed kiss pastTense = kissed kneel pastTense = knelt knit pastTense = knitted knock pastTense = knocked knot pastTense = knotted label pastTense = labelled land pastTense = landed last pastTense = lasted laugh pastTense = laughed launch pastTense = launched learn pastTense = learned level pastTense = levelled license pastTense = licensed lick pastTense = licked lie pastTense = lied lighten pastTense = lightened like pastTense = liked list pastTense = listed listen pastTense = listened live pastTense = lived load pastTense = loaded lock pastTense = locked long pastTense = longed look pastTense = look love pastTense = loved man pastTense = manned manage pastTense = managed march pastTense = marched mark pastTense = marked marry pastTense = married match pastTense = matched mate pastTense = mated matter pastTense = mattered measure pastTense = measured meddle pastTense = meddled melt pastTense = melted memorise pastTense = memorised mend pastTense = mended mess up pastTense = messed up milk pastTense = milked mine pastTense = mined miss pastTense = missed mix pastTense = mixed moan pastTense = moaned moor pastTense = moored mourn pastTense = mourned move pastTense = moved muddle pastTense = muddled mug pastTense = mugged multiply pastTense = multiplied murder pastTense = murdered nail pastTense = nailed name pastTense = named need pastTense = needed nest pastTense = nested nod pastTense = nodded note pastTense = noted notice pastTense = noticed number pastTense = numbered obey pastTense = obeyed object pastTense = objected observe pastTense = observed obtain pastTense = obtained occur pastTense = occurred offend pastTense = offended offer pastTense = offered open pastTense = opened order pastTense = ordered overflow pastTense = overflowed owe pastTense = owed own pastTense = owned pack pastTense = packed paddle pastTense = paddled paint pastTense = painted park pastTense = parked part pastTense = parted pass pastTense = passed paste pastTense = pasted pat pastTense = patted pause pastTense = paused peck pastTense = pecked pedal pastTense = pedalled peel pastTense = peeled peep pastTense = peeped perform pastTense = performed permit pastTense = permitted phone pastTense = phoned pick pastTense = picked pinch pastTense = pinched pine pastTense = pined place pastTense = placed plan pastTense = planned plant pastTense = planted play pastTense = played please pastTense = pleased plug pastTense = plugged point pastTense = pointed poke pastTense = poked polish pastTense = polished pop pastTense = popped possess pastTense = possessed post pastTense = posted pour pastTense = poured practise pastTense = practised pray pastTense = prayed preach pastTense = preached precede pastTense = preceded prefer pastTense = preferred prepare pastTense = prepared present pastTense = presented preserve pastTense = preserved press pastTense = pressed pretend pastTense = pretended prevent pastTense = prevented prick pastTense = pricked print pastTense = printed produce pastTense = produced program pastTense = programmed promise pastTense = promised protect pastTense = protected provide pastTense = provided pull pastTense = pulled pump pastTense = pumped punch pastTense = punched puncture pastTense = punctured punish pastTense = punished push pastTense = pushed question pastTense = questioned queue pastTense = questioned race pastTense = raced radiate pastTense = radiated rain pastTense = rained raise pastTense = raised reach pastTense = reached realise pastTense = realised receive pastTense = received recognise pastTense = recognised record pastTense = recorded reduce pastTense = reduced reflect pastTense = reflected refuse pastTense = refused regret pastTense = regretted reign pastTense = reigned reject pastTense = rejected rejoice pastTense = rejoiced relax pastTense = relaxed release pastTense = released rely pastTense = relied remain pastTense = remained remember pastTense = remembered remind pastTense = reminded remove pastTense = removed repair pastTense = repaired repeat pastTense = repeated replace pastTense = replaced reply pastTense = replied report pastTense = reported reproduce pastTense = reproduced request pastTense = requested rescue pastTense = rescued retire pastTense = retired return pastTense = returned rhyme pastTense = rhyme rinse pastTense = rinsed risk pastTense = risked rob pastTense = robbed rock pastTense = rocked roll pastTense = rolled rot pastTense = rotted rub pastTense = rubbed ruin pastTense = ruined rule pastTense = ruled rush pastTense = rushed sack pastTense = sacked sail pastTense = sailed satisfy pastTense = satisfied save pastTense = saved saw pastTense = sawed scare pastTense = scared scatter pastTense = scattered scold pastTense = scolded scorch pastTense = scorched scrape pastTense = scraped scratch pastTense = scratched scream pastTense = screamed screw pastTense = screwed scribble pastTense = scribbled scrub pastTense = scrubbed seal pastTense = sealed search pastTense = searched separate pastTense = separate serve pastTense = served settle pastTense = settled shade pastTense = shaded share pastTense = shared shave pastTense = shaved shelter pastTense = sheltered shiver pastTense = shivered shock pastTense = shocked shop pastTense = shopped shrug pastTense = shrugged sigh pastTense = sighed sign pastTense = signed signal pastTense = signalled sin pastTense = sinned sip pastTense = sipped ski pastTense = skied skip pastTense = skipped slap pastTense = slapped slip pastTense = slipped slow pastTense = slowed smash pastTense = smashed smell pastTense = smelled smile pastTense = smiled smoke pastTense = smoked snatch pastTense = snatched sneeze pastTense = sneezed sniff pastTense = sniffed snore pastTense = snored snow pastTense = snowed soak pastTense = soaked soothe pastTense = soothed sound pastTense = sounded spare pastTense = spared spark pastTense = sparked sparkle pastTense = sparkled spell pastTense = spelled spill pastTense = spilled spoil pastTense = spoiled spot pastTense = spotted spray pastTense = sprayed sprout pastTense = sprouted squash pastTense = squashed squeak pastTense = squeaked squeal pastTense = squealed squeeze pastTense = squeezed stain pastTense = stained stamp pastTense = stamped stare pastTense = stared start pastTense = started stay pastTense = stayed steer pastTense = steered step pastTense = stepped stir pastTense = stirred stitch pastTense = stitched stop pastTense = stopped store pastTense = stored strap pastTense = strapped strengthen pastTense = strengthened stretch pastTense = stretched strip pastTense = stripped stroke pastTense = stroked stuff pastTense = stuffed subtract pastTense = subtracted succeed pastTense = succeeded suck pastTense = sucked suffer pastTense = suffered suggest pastTense = suggested suit pastTense = suited supply pastTense = supplied support pastTense = supported suppose pastTense = supposed surprise pastTense = surprised surround pastTense = surrounded suspect pastTense = suspected suspend pastTense = suspended switch pastTense = switched talk pastTense = talked tame pastTense = tamed tap pastTense = tapped taste pastTense = tasted tease pastTense = teased telephone pastTense = telephoned tempt pastTense = tempted terrify pastTense = terrified test pastTense = tested thank pastTense = thanked thaw pastTense = thawed tick pastTense = ticked tickle pastTense = tickled tie pastTense = tied time pastTense = timed tip pastTense = tipped tire pastTense = tired touch pastTense = touched tour pastTense = toured tow pastTense = towed trace pastTense = traced trade pastTense = traded train pastTense = trained transport pastTense = transported trap pastTense = trapped travel pastTense = travelled treat pastTense = treated tremble pastTense = trembled trick pastTense = tricked trip pastTense = tripped trot pastTense = trotted trouble pastTense = troubled trust pastTense = trusted try pastTense = tried tug pastTense = tugged tumble pastTense = tumbled turn pastTense = turned twist pastTense = twisted type pastTense = typed undress pastTense = undressed unfasten pastTense = unfastened unite pastTense = united unlock pastTense = unlocked unpack pastTense = unpacked use pastTense = used vanish pastTense = vanished visit pastTense = visited wail pastTense = wailed wait pastTense = waited walk pastTense = walked wander pastTense = wandered want pastTense = wanted warm pastTense = warmed warn pastTense = warned wash pastTense = washed waste pastTense = wasted watch pastTense = watched water pastTense = watered wave pastTense = waved weigh pastTense = weighed welcome pastTense = welcomed whine pastTense = whined whip pastTense = whipped whirl pastTense = whirled whisper pastTense = whispered whistle pastTense = whistled wink pastTense = winked wipe pastTense = wiped wish pastTense = wished wobble pastTense = wobbled wonder pastTense = wondered work pastTense = worked worry pastTense = worried wrap pastTense = wrapped wreck pastTense = wrecked wrestle pastTense = wrestled wriggle pastTense = wriggled x-ray pastTense = x-rayed yawn pastTense = yawned yell pastTense = yelled zip pastTense = zipped zoom pastTense = zoomed adjective abashed aberrant abhorrent abiding ablaze abnormal aboard aboriginal abortive abounding abrasive abrupt absent absolute absorbed absorbing abstracted absurd abundant abusive academic acceptable accessible accidental acclaimed accomplished accurate aching acidic acoustic acrid acrobatic active ad hoc adamant adaptable addicted adept adhesive adjoining admirable admired adolescent adorable adored advanced adventurous affectionate afraid aged aggravating aggressive agile agitated agonizing agreeable ahead ajar alarmed alarming alcoholic alert alienated alive alleged alluring aloof altruistic amazing ambiguous ambitious amiable amuck amused amusing anchored ancient angelic angry anguished animated annoyed annoying annual another antique antsy anxious apathetic appetizing apprehensive appropriate apt aquatic arctic arid aromatic arrogant artistic ashamed aspiring assorted assured astonishing athletic attached attentive attractive auspicious austere authentic authorized automatic available avaricious average awake aware awesome awful awkward axiomatic babyish bad baggy barbarous bare barren bashful basic batty bawdy beautiful beefy befitting belated belligerent beloved beneficial bent berserk better bewildered bewitched big big-hearted billowy biodegradable bite-sized biting bitter bizarre black black-and-white bland blank blaring bleak blind blissful blond bloody blue blue-eyed blushing bogus boiling bold bony boorish bored boring bossy both bouncy boundless bountiful bowed brainy brash brave brawny breakable breezy brief bright brilliant brisk broad broken bronze brown bruised bubbly bulky bumpy buoyant burdensome burly bustling busy buttery buzzing cagey calculating callous calm candid canine capable capital capricious carefree careful careless caring cautious cavernous ceaseless celebrated certain changeable charming cheap cheeky cheerful cheery chemical chief childlike chilly chivalrous chubby chunky circular clammy classic classy clean clear clear-cut clever cloistered closed cloudy clueless clumsy cluttered coarse coherent cold colorful colorless colossal colossal combative comfortable common compassionate competent complete complex complicated composed concerned concrete condemned condescending confused conscious considerate constant contemplative content conventional convincing convoluted cooing cooked cool cooperative coordinated corny corrupt costly courageous courteous cowardly crabby crafty craven crazy creamy creative creepy criminal crisp critical crooked crowded cruel crushing cuddly cultivated cultured cumbersome curious curly curved curvy cute cylindrical cynical daffy damaged damaging damp dangerous dapper dapper daring dark darling dashing dazzling dead deadly deadpan deafening dearest debonair decayed deceitful decent decimal decisive decorous deep defeated defective defenseless defensive defiant deficient definite delayed delectable delicate delicious delightful delirious demanding demonic dense dental dependable dependent depraved depressed deranged descriptive deserted despicable detailed determined devilish devoted didactic different difficult digital dilapidated diligent dim diminutive dimpled dimwitted direct direful dirty disagreeable disastrous discreet discrete disfigured disguised disgusted disgusting dishonest disillusioned disloyal dismal dispensable distant distinct distorted distraught distressed disturbed divergent dizzy domineering dopey doting double doubtful downright drab draconian drafty drained dramatic dreary droopy drunk dry dual dull dusty dutiful dynamic dysfunctional eager early earnest earsplitting earthy easy-going economic ecstatic edible educated efficacious efficient elaborate elastic elated elderly electric elegant elementary elfin elite elliptical emaciated embarrassed embellished eminent emotional empty enchanted enchanting encouraging endurable energetic enlightened enormous enraged entertaining enthusiastic entire envious envious equable equatorial erect erratic essential esteemed ethereal ethical euphoric evanescent evasive even evergreen everlasting evil exalted exasperated excellent excitable excited exciting exclusive exemplary exhausted exhilarated exotic expensive experienced expert extensive extra-large extraneous extra-small extroverted exuberant exultant fabulous faded failing faint fair faithful fake fallacious false familiar famous fanatical fancy fantastic faraway far-flung far-off fascinated fast fat fatal fatherly faulty favorable favorite fearful fearless feeble feigned feisty feline female feminine fertile festive fickle fierce filthy fine finicky finished firm first firsthand fitting fixed flagrant flaky flamboyant flashy flat flawed flawless flickering flimsy flippant floppy flowery fluffy fluid flustered fluttering foamy focused fond foolhardy foolish forceful foregoing forgetful forked formal forsaken forthright fortunate fragile fragrant frail frantic frayed free freezing French frequent fresh fretful friendly frightened frightening frigid frilly frivolous frizzy frosty frothy frozen frugal fruitful frustrating full fumbling fumbling functional funny furry furtive fussy future futuristic fuzzy gabby gainful gamy gaping gargantuan garrulous gaseous gaudy generous gentle genuine ghastly giant giddy gifted gigantic giving glamorous glaring gleaming gleeful glib glistening glittering gloomy glorious glossy glum godly golden good good-natured goofy gorgeous graceful gracious grand grandiose grandiose granular grateful grave gray greasy great greedy green gregarious grey grieving grim grimy gripping grizzled groovy gross grotesque grouchy grounded growing growling grown grubby gruesome grumpy guarded guiltless guilty gullible gummy gusty guttural habitual hairy hallowed halting handmade handsome handy hanging hapless happy happy-go-lucky hard hard-to-find harebrained harmful harmless harmonious harsh hasty hateful haunting heady healthy heartbreaking heartfelt hearty heavenly heavy hefty hellish helpful helpless hesitant hidden hideous high highfalutin high-level high-pitched hilarious hissing historical hoarse holistic hollow homeless homely honest honorable honored hopeful horrible horrific hospitable hot huge hulking humble humdrum humiliating humming humongous humorous hungry hurried hurt hurtful hushed husky hypnotic hysterical icky icy ideal ideal idealistic identical idiotic idle idolized ignorant ill illegal ill-fated ill-informed illiterate illustrious imaginary imaginative immaculate immaterial immediate immense imminent impartial impassioned impeccable imperfect imperturbable impish impolite important imported impossible impractical impressionable impressive improbable impure inborn incandescent incomparable incompatible incompetent incomplete inconclusive inconsequential incredible indelible indolent industrious inexpensive inexperienced infamous infantile infatuated inferior infinite informal innate innocent inquisitive insecure insidious insignificant insistent instinctive instructive insubstantial intelligent intentional interesting internal international intrepid intrigued invincible irate ironclad irresponsible irritable irritating itchy jaded jagged jam-packed jaunty jazzy jealous jittery jobless jolly jovial joyful joyous jubilant judicious juicy jumbled jumbo jumpy jumpy junior juvenile kaleidoscopic kaput keen kind kindhearted kindly klutzy knobby knotty knowing knowledgeable kooky kosher labored lackadaisical lacking lame lamentable languid lanky large lasting late laughable lavish lawful lazy leading leafy lean learned left legal legitimate lethal level lewd light lighthearted likable likeable likely limited limp limping linear lined liquid literate little live lively livid living loathsome lone lonely long longing long-term loose lopsided lost loud loutish lovable lovely loving low lowly loyal lucky ludicrous lumbering luminous lumpy lush lustrous luxuriant luxurious lying lyrical macabre macho mad maddening made-up magenta magical magnificent majestic major makeshift male malicious mammoth maniacal marked married marvelous masculine massive material materialistic mature meager mealy mean measly meaty medical mediocre medium meek melancholy mellow melodic melted memorable menacing merciful mere merry messy metallic mighty mild military milky mindless miniature minor minty minute miscreant miserable miserly misguided mistaken misty mixed moaning modern modest moist moldy momentous monstrous monumental moody moral mortified motherly motionless mountainous muddled muddy muffled multicolored mundane mundane murky mushy musty mute muted mysterious naive narrow nasty natural naughty nauseating nautical neat nebulous necessary needless needy negative neglected negligible neighboring neighborly nervous nervous new next nice nice nifty nimble nine nippy nocturnal noiseless noisy nonchalant nondescript nonsensical nonstop normal nostalgic nosy notable noted noteworthy novel noxious numb numberless numerous nutritious nutty oafish obedient obeisant obese oblivious oblong obnoxious obscene obsequious observant obsolete obtainable obvious occasional oceanic odd oddball offbeat offensive official oily old old-fashioned omniscient onerous open opposite optimal optimistic opulent orange orderly ordinary organic original ornate ornery ossified outgoing outlandish outlying outrageous outstanding oval overconfident overcooked overdue overjoyed overlooked overrated overt overwrought painful painstaking palatable pale paltry panicky panoramic parallel parched parsimonious partial passionate pastel pastoral pathetic peaceful penitent peppery perfect perfumed periodic perky permissible perpetual perplexed personal pertinent pesky pessimistic petite petty petty phobic phony physical picayune piercing pink piquant pitiful placid plain plaintive plant plastic plausible playful pleasant pleased pleasing plucky plump plush pointed pointless poised polished polite political pompous poor popular portly posh positive possessive possible potable powerful powerless practical precious premium present present prestigious pretty previous pricey prickly primary prime pristine private prize probable productive profitable profuse proper protective proud prudent psychedelic psychotic public puffy pumped punctual pungent puny pure purple purring pushy pushy putrid puzzled puzzling quack quaint quaint qualified quarrelsome quarterly queasy querulous questionable quick quickest quick-witted quiet quintessential quirky quixotic quixotic quizzical rabid racial radiant ragged rainy rambunctious rampant rapid rare rash raspy ratty raw ready real realistic reasonable rebel recent receptive reckless recondite rectangular red redundant reflecting reflective regal regular reliable relieved remarkable reminiscent remorseful remote repentant repulsive required resolute resonant respectful responsible responsive revolving rewarding rhetorical rich right righteous rightful rigid ringed ripe ritzy roasted robust romantic roomy rosy rotating rotten rotund rough round rowdy royal rubbery ruddy rude rundown runny rural rustic rusty ruthless sable sad safe salty sandy sane sarcastic sardonic sassy satisfied satisfying savory scaly scandalous scant scarce scared scary scattered scented scholarly scientific scintillating scornful scratchy scrawny screeching secondary second-hand secret secretive sedate seemly selective self-assured selfish self-reliant sentimental separate serene serious serpentine several severe shabby shadowy shady shaggy shaky shallow shameful shameless sharp shimmering shiny shivering shocked shocking shoddy short short-term showy shrill shy sick silent silky silly silver similar simple simplistic sincere sinful single six sizzling skeletal skillful skinny sleepy slight slim slimy slippery sloppy slow slushy small smarmy smart smelly smiling smoggy smooth smug snappy snarling sneaky sniveling snobbish snoopy snotty sociable soft soggy solid somber some sophisticated sordid sore sorrowful soulful soupy sour sour Spanish sparkling sparse special specific spectacular speedy spherical spicy spiffy spiky spirited spiritual spiteful splendid spooky spotless spotted spotty spry spurious squalid square squeaky squealing squeamish squiggly stable staid stained staking stale standard standing starchy stark starry statuesque steadfast steady steel steep stereotyped sticky stiff stimulating stingy stormy stout straight strange strict strident striking striped strong studious stunning stunning stupendous stupid sturdy stylish subdued submissive subsequent substantial subtle suburban successful succinct succulent sudden sugary sulky sunny super superb superficial superior supportive supreme sure-footed surprised suspicious svelte swanky sweaty sweet sweltering swift sympathetic symptomatic synonymous taboo tacit tacky talented talkative tall tame tan tangible tangy tart tasteful tasteless tasty tattered taut tawdry tearful tedious teeming teeny teeny-tiny telling temporary tempting tender tense tenuous tepid terrible terrific tested testy thankful therapeutic thick thin thinkable thirsty thorny thorough thoughtful thoughtless threadbare threatening thrifty thundering thunderous tidy tight tightfisted tinted tiny tired tiresome toothsome torn torpid total tough towering tragic trained tranquil trashy traumatic treasured tremendous triangular tricky trifling trite trivial troubled truculent true trusting trustworthy trusty truthful tubby turbulent twin two typical ubiquitous ugliest ugly ultimate ultra unaccountable unarmed unaware unbecoming unbiased uncomfortable uncommon unconscious uncovered understated understood undesirable unequal unequaled uneven unfinished unfit unfolded unfortunate unhappy unhealthy uniform unimportant uninterested unique united unkempt unknown unlawful unlined unlucky unnatural unpleasant unrealistic unripe unruly unselfish unsightly unsteady unsuitable unsung untidy untried untrue unused unusual unwelcome unwieldy unwitting unwritten upbeat uppity upright upset uptight urban usable used used useful useless utilized utopian utter uttermost vacant vacuous vagabond vague vain valid valuable vapid variable various vast velvety venerated vengeful venomous verdant verifiable versed vexed vibrant vicious victorious vigilant vigorous villainous violent violet virtual virtuous visible vital vivacious vivid voiceless volatile voluminous voracious vulgar wacky waggish waiting wakeful wandering wanting warlike warm warmhearted warped wary wasteful watchful waterlogged watery wavy weak wealthy weary webbed wee weekly weepy weighty weird welcome well-documented well-groomed well-informed well-lit well-made well-off well-to-do well-worn wet which whimsical whirlwind whispered whispering white whole wholesale whopping wicked wide wide-eyed wiggly wild willing wilted winding windy winged wiry wise wistful witty wobbly woebegone woeful womanly wonderful wooden woozy wordy workable worldly worn worried worrisome worse worst worthless worthwhile worthy wrathful wretched writhing wrong wry xenophobic yawning yearly yellow yellowish yielding young youthful yummy zany zealous zesty zigzag zippy zonked adverb abnormally absentmindedly accidentally acidly actually adventurously afterwards almost always angrily annually anxiously arrogantly awkwardly badly bashfully beautifully bitterly bleakly blindly blissfully boastfully boldly bravely briefly brightly briskly broadly busily calmly carefully carelessly cautiously certainly cheerfully clearly cleverly closely coaxingly colorfully commonly continually coolly correctly courageously crossly cruelly curiously daily daintily dearly deceivingly deeply defiantly deliberately delightfully diligently dimly doubtfully dreamily easily elegantly energetically enormously enthusiastically equally especially evenly eventually exactly excitedly extremely fairly faithfully famously fatally ferociously fervently fiercely fondly foolishly fortunately frankly frantically freely frenetically frightfully fully furiously generally generously gently gladly gleefully gracefully gratefully greatly greedily happily hastily healthily heavily helpfully helplessly highly honestly hopelessly hourly hungrily immediately innocently inquisitively instantly intensely intently interestingly inwardly irritably jaggedly jealously joshingly jovially joyfully joyously jubilantly judgementally justly keenly kiddingly kindheartedly kindly kissingly knavishly knottily knowingly knowledgeably kookily lazily lightly likely limply lively loftily longingly loosely loudly lovingly loyally madly majestically meaningfully mechanically merrily miserably mockingly monthly mortally mostly mysteriously naturally nearly neatly needily nervously nicely noisily obediently obnoxiously oddly offensively officially often only openly optimistically overconfidently owlishly painfully partially patiently perfectly physically playfully politely poorly positively potentially powerfully promptly properly punctually quaintly quarrelsomely queasily queerly questionably questioningly quicker quickly quietly quirkily quizzically rapidly rarely readily really reassuringly recklessly regularly reluctantly repeatedly reproachfully restfully righteously rightfully rigidly roughly rudely sadly safely scarcely scarily searchingly sedately seemingly seldom selfishly separately seriously shakily sharply sheepishly shrilly shyly silently sleepily slowly smoothly softly solemnly solidly sometimes soon speedily stealthily sternly strictly successfully suddenly surprisingly suspiciously sweetly swiftly sympathetically tenderly tensely terribly thankfully thoroughly thoughtfully tightly tomorrow tremendously triumphantly truly truthfully ultimately unabashedly unaccountably unbearably unethically unexpectedly unfortunately unimpressively unnaturally unnecessarily upbeat upliftingly upright upside-down upward upwardly urgently usefully uselessly usually utterly vacantly vaguely vainly valiantly vastly verbally viciously victoriously violently vivaciously voluntarily warmly weakly wearily wetly wholly wildly willfully wisely woefully wonderfully worriedly wrongly yawningly yearly yearningly yesterday yieldingly youthfully preposition as at but by down for from in into like near next of off on onto out over past plus minus since than to up with aboard about above across after against along around before behind below beneath beside between beyond during except following inside minus onto opposite outside round since through toward under underneath unlike until upon without according to along with alongside among apart from as for atop because of by means of concerning despite except for in addition to in back of in case of in front of in place of in spite of instead of on top of out of regarding throughout till up to via within worth interjection aah ack agreed ah aha ahem alas all right amen argh as if aw ay aye bah blast boo hoo bother boy brr by golly bye cheerio cheers chin up come on crikey curses dear me doggone drat duh easy does it eek egads er exactly fair enough fiddle-dee-dee fiddlesticks fie foo fooey gadzooks gah gangway g'day gee gee whiz geez gesundheit get lost get outta here go on good good golly good job gosh gracious great grr gulp ha ha-ha hah hallelujah harrumph haw hee here hey hmm ho hum hoo hooray hot dog how huh hum humbug hurray huzza I say ick is it ixnay jeez just kidding just a sec just wondering kapish la la-di-dah lo look look here long time lordy man meh mmm most certainly my my my my word nah naw never no no can do nooo not no thanks no way nuts oh oho oh-oh oh no okay okey-dokey om oof ooh oopsey over oy oyez peace pff pew phew pish posh psst ptui quite rah rats ready right right on roger roger that rumble say see ya shame shh shoo shucks sigh sleep tight snap sorry sssh sup ta ta-da ta ta take that tally ho tch thanks there there there time out toodles touche tsk tsk-tsk tut tut-tut ugh uh uh-oh um ur urgh very nice very well voila vroom wah well well done well, well what whatever whee when whoa whoo whoopee whoops whoopsey whew why word wow wuzzup ya yea yeah yech yikes yippee yo yoo-hoo you bet you don't say you know yow yum yummy zap zounds zowie zzz colors White Blue Black Red Green Colorless Multi-color scry_powers "-1", "?", "0", "∞", "*", "+0", "*²", ".5", "+1", "1+*", "1", "1.5", "+2", "2", "2+*", "2.5", "3", "+3", "3.5", "4", "+4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "15", "16", "20", "99" scry_toughness "-1", "+0", "*²", "-0", "?", "0", "*+1", "*", ".5", "+1", "1+*", "1", "1.5", "2+*", "+2", "2", "2.5", "+3", "3", "3.5", "4", "+4", "5", "6", "7-*", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "20", "99" scry_keyword_abilities "Living weapon", "Jump-start", "Basic landcycling", "Commander ninjutsu", "Legendary landwalk", "Nonbasic landwalk", "Totem armor", "Megamorph", "Haunt", "Forecast", "Graft", "Fortify", "Frenzy", "Gravestorm", "Hideaway", "Level Up", "Infect", "Reach", "Rampage", "Phasing", "Multikicker", "Morph", "Provoke", "Modular", "Ninjutsu", "Replicate", "Recover", "Poisonous", "Prowl", "Reinforce", "Persist", "Retrace", "Rebound", "Miracle", "Overload", "Outlast", "Prowess", "Renown", "Myriad", "Shroud", "Trample", "Vigilance", "Shadow", "Storm", "Soulshift", "Splice", "Transmute", "Ripple", "Suspend", "Vanishing", "Transfigure", "Wither", "Undying", "Soulbond", "Unleash", "Ascend", "Assist", "Afterlife", "Companion", "Fabricate", "Embalm", "Escape", "Fuse", "Menace", "Ingest", "Melee", "Improvise", "Mentor", "Partner", "Mutate", "Scavenge", "Tribute", "Surge", "Skulk", "Undaunted", "Riot", "Spectacle", "Forestwalk", "Islandwalk", "Mountainwalk", "Double strike", "Cumulative upkeep", "First strike", "Encore", "Sunburst", "Deathtouch", "Defender", "Foretell", "Amplify", "Affinity", "Bushido", "Convoke", "Bloodthirst", "Absorb", "Aura Swap", "Changeling", "Conspire", "Cascade", "Annihilator", "Battle Cry", "Cipher", "Bestow", "Dash", "Awaken", "Crew", "Aftermath", "Afflict", "Flanking", "Echo", "Fading", "Fear", "Eternalize", "Entwine", "Epic", "Dredge", "Delve", "Evoke", "Exalted", "Evolve", "Extort", "Dethrone", "Exploit", "Devoid", "Emerge", "Escalate", "Flying", "Haste", "Hexproof", "Indestructible", "Intimidate", "Lifelink", "Horsemanship", "Kicker", "Madness", "Hidden agenda", "Swampwalk", "Desertwalk", "Wizardcycling", "Slivercycling", "Cycling", "Landwalk", "Plainswalk", "Champion", "Enchant", "Plainscycling", "Islandcycling", "Swampcycling", "Mountaincycling", "Forestcycling", "Landcycling", "Typecycling", "Split second", "Flash", "Banding", "Augment", "Double agenda", "Partner with", "Hexproof from", "Boast", "Buyback", "Ward", "Demonstrate", "Devour", "Flashback", "Equip", "Reconfigure", "Compleated", "Daybound", "Nightbound", "Decayed", "Disturb", "Training", "Cleave", "Intensity", "Blitz", "Casualty", "Friends forever", "Protection", "Offering", "Enlist", "Read Ahead", "Squad", "Ravenous", "More Than Meets the Eye", "Living metal", "Unearth", "Prototype" scry_keyword_actions "Meld", "Bolster", "Clash", "Fateseal", "Manifest", "Monstrosity", "Populate", "Proliferate", "Scry", "Support", "Detain", "Explore", "Fight", "Amass", "Adapt", "Assemble", "Abandon", "Activate", "Attach", "Seek", "Cast", "Counter", "Create", "Destroy", "Discard", "Double", "Exchange", "Exile", "Investigate", "Play", "Regenerate", "Reveal", "Sacrifice", "Set in motion", "Shuffle", "Tap", "Untap", "Vote", "Transform", "Surveil", "Goad", "Planeswalk", "Mill", "Learn", "Conjure", "Exert", "Connive", "Venture into the dungeon", "Convert", "Open an Attraction", "Roll to Visit Your Attractions" scry_ability_words "Battalion", "Bloodrush", "Channel", "Chroma", "Cohort", "Constellation", "Converge", "Delirium", "Domain", "Fateful hour", "Ferocious", "Formidable", "Grandeur", "Hellbent", "Heroic", "Imprint", "Inspired", "Join forces", "Kinship", "Landfall", "Lieutenant", "Metalcraft", "Morbid", "Parley", "Radiance", "Raid", "Rally", "Spell mastery", "Strive", "Sweep", "Tempting offer", "Threshold", "Will of the council", "Adamant", "Addendum", "Council's dilemma", "Eminence", "Enrage", "Hero's Reward", "Kinfall", "Landship", "Legacy", "Revolt", "Underdog", "Undergrowth", "Magecraft", "Teamwork", "Pack tactics", "Coven", "Alliance
TransLL/distilbert-base-uncased-finetuned-clinc
TransLL
2023-01-03T10:31:44Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T10:21:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2890 | 0.7432 | | 3.7868 | 2.0 | 636 | 1.8756 | 0.8377 | | 3.7868 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.6929 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.9058 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
optimum/gpt2
optimum
2023-01-03T10:29:58Z
11,764
5
transformers
[ "transformers", "onnx", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T10:17:23Z
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use the ONNX models of gpt2 to get the features of a given text: Example using transformers.pipelines: ```python from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2") model = ORTModelForCausalLM.from_pretrained("gpt2", from_transformers=True) onnx_gen = pipeline("text-generation", model=model, tokenizer=tokenizer) text = "My name is Philipp and I live in Germany." gen = onnx_gen(text) ``` Example of text generation: ```python from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("optimum/gpt2") model = ORTModelForCausalLM.from_pretrained("optimum/gpt2") inputs = tokenizer("My name is Arthur and I live in", return_tensors="pt") gen_tokens = model.generate(**inputs,do_sample=True,temperature=0.9, min_length=20,max_length=20) tokenizer.batch_decode(gen_tokens) ```
Brainkite/PPO-LunarLander-v2
Brainkite
2023-01-03T10:29:21Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-02T17:23:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.27 +/- 20.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kuaaangwen/bert-base-cased-finetuned-revision-booklet-chemistry
Kuaaangwen
2023-01-03T10:19:22Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-03T10:05:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-revision-booklet-chemistry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-revision-booklet-chemistry This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 105 | 1.8484 | | No log | 2.0 | 210 | 1.6418 | | No log | 3.0 | 315 | 1.5820 | | No log | 4.0 | 420 | 1.4826 | | 1.8696 | 5.0 | 525 | 1.4521 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
emmyapi/distilbart-podimo-data-eval-1-2e
emmyapi
2023-01-03T10:18:34Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-03T09:08:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-podimo-data-eval-1-2e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-podimo-data-eval-1-2e This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7114 - Rouge1: 32.7887 - Rouge2: 6.5245 - Rougel: 16.9089 - Rougelsum: 29.6437 - Gen Len: 141.3408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:| | 4.2142 | 0.98 | 44 | 3.8082 | 32.7658 | 6.2506 | 16.7953 | 29.6922 | 140.5503 | | 3.6965 | 1.98 | 88 | 3.7114 | 32.7887 | 6.5245 | 16.9089 | 29.6437 | 141.3408 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
osanseviero/ppo-LunarLander-v2-AGAIN
osanseviero
2023-01-03T10:16:34Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T10:14:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -575.20 +/- 517.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Luvidi/ppo-LunarLander-v2
Luvidi
2023-01-03T10:05:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T08:21:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.34 +/- 24.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fxmarty/gpt2-tiny-onnx
fxmarty
2023-01-03T09:41:05Z
585
1
transformers
[ "transformers", "onnx", "gpt2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-01-03T09:39:43Z
--- license: apache-2.0 --- This model is meant for testing and will not return any meaningful output.
likejazz/distilbert-base-uncased-finetuned-emotion
likejazz
2023-01-03T09:07:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T08:28:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1766 - Accuracy: 0.9305 - F1: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 320 - eval_batch_size: 320 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 50 | 0.1837 | 0.929 | 0.9293 | | No log | 2.0 | 100 | 0.1766 | 0.9305 | 0.9308 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1+cu117 - Datasets 1.16.1 - Tokenizers 0.10.3
Botnoi/wav2vec2-xls-r-300m-th-v2
Botnoi
2023-01-03T09:05:23Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-03T02:24:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-th-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-th-v2 This model is a fine-tuned version of [Botnoi/wav2vec2-xls-r-300m-th-v1](https://huggingface.co/Botnoi/wav2vec2-xls-r-300m-th-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3630 - Wer: 0.3962 - Cer: 0.0942 - Clean Cer: 0.0767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.533e-08 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 9000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Clean Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | 0.3323 | 0.68 | 1000 | 0.3635 | 0.3961 | 0.0942 | 0.0767 | | 0.3386 | 1.36 | 2000 | 0.3632 | 0.3962 | 0.0943 | 0.0768 | | 0.3453 | 2.03 | 3000 | 0.3632 | 0.3964 | 0.0943 | 0.0768 | | 0.3392 | 2.71 | 4000 | 0.3632 | 0.3961 | 0.0943 | 0.0767 | | 0.3399 | 3.39 | 5000 | 0.3634 | 0.3961 | 0.0942 | 0.0768 | | 0.347 | 4.07 | 6000 | 0.3632 | 0.3961 | 0.0942 | 0.0767 | | 0.3414 | 4.74 | 7000 | 0.3631 | 0.3962 | 0.0942 | 0.0767 | | 0.3378 | 5.42 | 8000 | 0.3631 | 0.3961 | 0.0942 | 0.0767 | | 0.3421 | 6.1 | 9000 | 0.3630 | 0.3962 | 0.0942 | 0.0767 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
0xid/dqn-SpaceInvadersNoFrameskip-v4
0xid
2023-01-03T08:57:35Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T08:53:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 1051.50 +/- 365.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga 0xid -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga 0xid -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga 0xid ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
r10521708/distilbert-base-uncased-finetuned-cola
r10521708
2023-01-03T08:56:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T06:55:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.548847644400088 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Matthews Correlation: 0.5488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5258 | 1.0 | 535 | 0.5402 | 0.4315 | | 0.3464 | 2.0 | 1070 | 0.5117 | 0.4810 | | 0.2355 | 3.0 | 1605 | 0.5263 | 0.5488 | | 0.1718 | 4.0 | 2140 | 0.7802 | 0.5411 | | 0.1222 | 5.0 | 2675 | 0.8106 | 0.5469 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
PaulMest/ppo-Huggy
PaulMest
2023-01-03T08:49:06Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-03T08:48:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: PaulMest/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
swathysekar/donut-base-sroie
swathysekar
2023-01-03T08:30:37Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-29T10:18:39Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
yasu320001/xlm-roberta-base-finetuned-panx-all
yasu320001
2023-01-03T06:48:42Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-03T06:22:47Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1656 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 | | 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 | | 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
simonbronson/Old-Portraits
simonbronson
2023-01-03T06:33:53Z
3
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-28T21:08:49Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Old Portraits Using a set of 25 mainly old large format photos from the 19th and early 20th century I wanted to capture the lighting, expression and film artifacts from this era. Subjects range in age, gender & ethnicity with poses generally looking at the camera with a neutral expression. While only a couple of my source images had distressed frames, plenty of the generations contain them. Download ckpt: https://huggingface.co/simonbronson/Old-Portraits/blob/main/Old_Portraits.ckpt **Examples:** ![samples1](./images/kid_olbpt.png) ![image](https://huggingface.co/simonbronson/Old-Portraits/blob/main/Old_portraits_grid.png) ```
thesunshine36/fineturn_ViT5
thesunshine36
2023-01-03T06:11:19Z
61
1
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-03T03:42:38Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: fineturn_ViT5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # fineturn_ViT5 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6173 - Validation Loss: 0.9866 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8656 | 1.0455 | 0 | | 0.6173 | 0.9866 | 1 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2
yasu320001/xlm-roberta-base-finetuned-panx-it
yasu320001
2023-01-03T06:07:42Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-03T05:52:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8219402374130168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2564 - F1: 0.8219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8123 | 1.0 | 70 | 0.3267 | 0.7418 | | 0.2832 | 2.0 | 140 | 0.2694 | 0.8006 | | 0.1766 | 3.0 | 210 | 0.2564 | 0.8219 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
AliSab/dqn-SpaceInvadersNoFrameskip-v4
AliSab
2023-01-03T06:05:57Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T06:05:20Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 636.00 +/- 179.59 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AliSab -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AliSab -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AliSab ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
adam1brownell/u1_lunar
adam1brownell
2023-01-03T05:58:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T05:57:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.59 +/- 22.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
IzumiSatoshi/sketch2img-FashionMNIST
IzumiSatoshi
2023-01-03T05:54:13Z
2
6
diffusers
[ "diffusers", "license:apache-2.0", "diffusers:DDPMSketch2ImgPipeline", "region:us" ]
null
2022-12-30T13:29:06Z
--- license: apache-2.0 --- # sketch2img with diffusion models https://github.com/IzumiSatoshi/sketch2img
derenrich/psychiq2
derenrich
2023-01-03T05:36:24Z
3,411
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "wikipedia", "wikidata", "en", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-29T05:55:40Z
--- license: gpl-3.0 language: - en tags: - wikipedia - wikidata widget: - text: "Douglas Adams\n 1952 births\n 2001 deaths\n 20th-century atheists\n 21st-century atheists\n 20th-century English novelists\n 21st-century English novelists\n 20th-century English screenwriters\n Alumni of St John's College, Cambridge\n Apple Inc. people\n Audiobook narrators\n BBC radio producers\n British atheism activists\n British child writers\n Burials at Highgate Cemetery\n English atheists\n English comedy writers\n English essayists\n English humanists\n English humorists\n English radio writers\n English science fiction writers\n English social commentators\n English television writers\n Infocom\n Inkpot Award winners\n Interactive fiction writers\n British male television writers\n Monty Python\n Non-fiction environmental writers\n People educated at Brentwood School, Essex\n People from Cambridge\n Usenet people\n Weird fiction writers\n Douglas Adams" example_title: "Douglas Adams" - text: "Unincorporated communities in Minnesota\n Unincorporated communities in St. Louis County, Minnesota\n St. Louis County, Minnesota geography stubs\n Sturgeon, Minnesota" example_title: "Sturgeon, Minnesota" - text: "Araneus\n Spiders described in 1884\n Araneidae stubs\n Araneus pratensis" example_title: "Araneus pratensis" - text: "Mohammedan SC (Dhaka) seasons\n Bangladeshi football club records and statistics\n 2019 in Bangladeshi football\n 2020 in Bangladeshi football\n 2019–20 Mohammedan SC (Dhaka) season" example_title: "2019–20 Mohammedan SC (Dhaka) season" - text: "Waterfalls of Karnataka\n Tourist attractions in Dakshina Kannada district\n Geography of Dakshina Kannada district\n Bandaje Falls " example_title: "Bandaje Falls" --- Psychiq is a model that predicts the instance or subclass of a wikipedia article. The model accepts as input 1) the list of all categories the article is in separated by newlines followed by 2) the title of the article . It makes a guess at the top 1000 most common types or returns unknown. Take a look at the examples to see what the format should look like.
yasu320001/xlm-roberta-base-finetuned-panx-de-fr
yasu320001
2023-01-03T05:34:33Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-03T05:08:20Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1656 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 | | 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 | | 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
rohitp1/libri-alpha-0.5-Temp-1-mse
rohitp1
2023-01-03T05:14:04Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-02T20:20:43Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: libri-alpha-0.5-Temp-1-mse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # libri-alpha-0.5-Temp-1-mse This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 28.9681 - Wer: 0.1160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 212.5522 | 0.75 | 100 | 55.9161 | 0.1500 | | 171.0676 | 1.49 | 200 | 51.5701 | 0.1434 | | 159.3247 | 2.24 | 300 | 40.6680 | 0.1416 | | 147.7202 | 2.99 | 400 | 36.0320 | 0.1388 | | 136.0871 | 3.73 | 500 | 32.8709 | 0.1323 | | 126.3071 | 4.48 | 600 | 31.9204 | 0.1298 | | 126.9502 | 5.22 | 700 | 31.0903 | 0.1281 | | 117.0498 | 5.97 | 800 | 30.5398 | 0.1272 | | 117.0928 | 6.72 | 900 | 30.2616 | 0.1262 | | 116.35 | 7.46 | 1000 | 30.2445 | 0.1264 | | 116.784 | 8.21 | 1100 | 30.0181 | 0.1268 | | 111.6779 | 8.96 | 1200 | 29.6434 | 0.1252 | | 110.2514 | 9.7 | 1300 | 29.6900 | 0.1233 | | 112.603 | 10.45 | 1400 | 29.4023 | 0.1240 | | 110.4294 | 11.19 | 1500 | 29.5929 | 0.1239 | | 106.3693 | 11.94 | 1600 | 29.4228 | 0.1232 | | 102.5095 | 12.69 | 1700 | 29.6106 | 0.1236 | | 104.8351 | 13.43 | 1800 | 29.3908 | 0.1220 | | 103.6225 | 14.18 | 1900 | 29.5250 | 0.1216 | | 102.5769 | 14.93 | 2000 | 29.4744 | 0.1211 | | 102.7153 | 15.67 | 2100 | 29.3769 | 0.1203 | | 98.3215 | 16.42 | 2200 | 29.3692 | 0.1205 | | 100.0971 | 17.16 | 2300 | 29.0029 | 0.1183 | | 94.876 | 17.91 | 2400 | 28.9354 | 0.1181 | | 100.2511 | 18.66 | 2500 | 28.9513 | 0.1168 | | 95.3128 | 19.4 | 2600 | 29.0832 | 0.1166 | | 95.2151 | 20.15 | 2700 | 29.0161 | 0.1157 | | 92.6844 | 20.9 | 2800 | 29.0543 | 0.1152 | | 96.837 | 21.64 | 2900 | 29.2276 | 0.1164 | | 94.2866 | 22.39 | 3000 | 28.9697 | 0.1164 | | 92.1945 | 23.13 | 3100 | 29.0823 | 0.1169 | | 97.7153 | 23.88 | 3200 | 29.0628 | 0.1158 | | 95.3836 | 24.63 | 3300 | 28.9681 | 0.1160 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.11.0
KoichiYasuoka/deberta-base-chinese
KoichiYasuoka
2023-01-03T04:55:48Z
19
0
transformers
[ "transformers", "pytorch", "deberta-v2", "fill-mask", "chinese", "masked-lm", "wikipedia", "zh", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-28T04:07:51Z
--- language: - "zh" tags: - "chinese" - "masked-lm" - "wikipedia" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # deberta-base-chinese ## Model Description This is a DeBERTa(V2) model pre-trained on Chinese Wikipedia texts (both simplified and traditional). NVIDIA A100-SXM4-40GB took 102 hours 34 minutes for training. You can fine-tune `deberta-base-chinese` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-base-chinese-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-base-chinese-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-chinese") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-base-chinese") ```
halffried/midas_v3_1_dpt_swin2_large_384
halffried
2023-01-03T04:10:25Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-01-03T03:54:34Z
--- license: mit --- ## What is it? Just a mirror of a model from https://github.com/isl-org/MiDaS, to allow downloading with Huggingface Hub tools ## Citation ```bibtex @ARTICLE {Ranftl2022, author = "Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun", title = "Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer", journal = "IEEE Transactions on Pattern Analysis and Machine Intelligence", year = "2022", volume = "44", number = "3" } ``` ```bibtex @article{Ranftl2021, author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {ICCV}, year = {2021}, } ```
halffried/midas_v3_1_dpt_beit_large_512
halffried
2023-01-03T03:49:54Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-03T03:06:36Z
--- license: mit --- ## What is it? Just a mirror of a model from https://github.com/isl-org/MiDaS, to allow downloading with Huggingface Hub tools ## Citation ```bibtex @ARTICLE {Ranftl2022, author = "Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun", title = "Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer", journal = "IEEE Transactions on Pattern Analysis and Machine Intelligence", year = "2022", volume = "44", number = "3" } ``` ```bibtex @article{Ranftl2021, author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {ICCV}, year = {2021}, } ```
aj-ai/ppo-Huggy
aj-ai
2023-01-03T02:52:39Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-03T02:52:30Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: aj-ai/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vjkrish/lunarLander_2
vjkrish
2023-01-03T02:20:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T01:41:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.32 +/- 33.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gababas/ggaabboommeerr
gababas
2023-01-03T01:46:04Z
29
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-03T01:44:02Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### ggaabboommeerr Dreambooth model trained by gababas with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
TheMurusTeam/CoreML-Stable-Diffusion-1.5-ORIGINAL-img2img
TheMurusTeam
2023-01-03T01:36:43Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-03T01:09:30Z
--- license: creativeml-openrail-m ---
y1450/hf_hub_example-ff7aeda4-022b-47d2-bf00-0c241bc195f7
y1450
2023-01-03T01:06:12Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2023-01-03T01:06:06Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: skops-bo_9fb88.pkl widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------------------|----------------------------------------------------------| | aggressive_elimination | False | | cv | 5 | | error_score | nan | | estimator__categorical_features | | | estimator__early_stopping | auto | | estimator__l2_regularization | 0.0 | | estimator__learning_rate | 0.1 | | estimator__loss | log_loss | | estimator__max_bins | 255 | | estimator__max_depth | | | estimator__max_iter | 100 | | estimator__max_leaf_nodes | 31 | | estimator__min_samples_leaf | 20 | | estimator__monotonic_cst | | | estimator__n_iter_no_change | 10 | | estimator__random_state | | | estimator__scoring | loss | | estimator__tol | 1e-07 | | estimator__validation_fraction | 0.1 | | estimator__verbose | 0 | | estimator__warm_start | False | | estimator | HistGradientBoostingClassifier() | | factor | 3 | | max_resources | auto | | min_resources | exhaust | | n_jobs | -1 | | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} | | random_state | 42 | | refit | True | | resource | n_samples | | return_train_score | True | | scoring | | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">estimator: HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
TheMurusTeam/coreml-upscaler-gfpgan
TheMurusTeam
2023-01-03T01:03:46Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-03T01:01:08Z
--- license: creativeml-openrail-m ---
TheMurusTeam/coreml-upscaler-MPRNetDenoising
TheMurusTeam
2023-01-03T01:00:22Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-03T00:59:22Z
--- license: creativeml-openrail-m ---