modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
Noowads/flan-t5-large-financial-phrasebank-lora
Noowads
2023-10-09T09:07:18Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-09T09:07:14Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
kerwin7/ppo-Huggy
kerwin7
2023-10-09T09:01:11Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-09T09:01:00Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: kerwin7/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
haruyuu/MarianMT_zh-vi_Expanded_Vocab
haruyuu
2023-10-09T08:59:45Z
106
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "vi", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-10-02T02:29:17Z
--- license: apache-2.0 language: - vi - zh metrics: - bleu library_name: transformers pipeline_tag: translation --- # MarianMT for Chinese-Vietnamese translation <!-- Provide a quick summary of what the model is/does. --> Finetuned model from MarianMT for Chinese MMORPG translation. ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> 170k rows of system notifications, names and conversations translated from Chinese MMORPG games.
checkiejan/multi-qa-mpnet-base-dot-v1-covidqa-search-65-25-v2-1epoch-mean-pooling
checkiejan
2023-10-09T08:58:05Z
16
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-09T08:57:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 803 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 80, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gbarone77/llama-2-7b-camoscio10p-adapter
gbarone77
2023-10-09T08:52:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T07:58:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
FaryalS/Reinforce-CartPole-v1
FaryalS
2023-10-09T08:45:35Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-25T18:13:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
indiejoseph/mbart-translation-zh-yue
indiejoseph
2023-10-09T08:45:10Z
15
4
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "zh", "yue", "base_model:indiejoseph/mbart-translation-zh-yue", "base_model:finetune:indiejoseph/mbart-translation-zh-yue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-19T21:01:37Z
--- language: - zh - yue license: mit base_model: indiejoseph/mbart-translation-zh-yue tags: - generated_from_trainer model-index: - name: mbart-translation-zh-yue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-translation-zh-yue This model is a fine-tuned version of [indiejoseph/mbart-translation-zh-yue](https://huggingface.co/indiejoseph/mbart-translation-zh-yue) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
nommis/segformer-b0-scene-parse-150
nommis
2023-10-09T08:45:05Z
31
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/segformer-b0-finetuned-ade-512-512", "base_model:finetune:nvidia/segformer-b0-finetuned-ade-512-512", "license:other", "endpoints_compatible", "region:us" ]
null
2023-10-09T08:26:29Z
--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 0.5845 - Mean Iou: 0.3672 - Mean Accuracy: 0.5180 - Overall Accuracy: 0.8290 - Per Category Iou: [0.7471836875245966, 0.7577637085524198, 0.8895546109310157, 0.11085509472606246, 0.9216125389161993, 0.06317712705545406, 0.9563222390153204, 0.830028328611898, 0.9289316210582935, 0.9387814548102598, nan, 0.7060518731988472, 0.1376830208065759, 0.0, 0.0, 0.5381879054195439, 0.0, 0.527306967984934, nan, nan, 0.8465404640804165, 0.5976121816945779, 0.9477989695381, nan, nan, 0.6212450409224044, 0.4029468326443188, nan, nan, nan, nan, nan, 0.16078532846007051, nan, 0.0, nan, 0.434913217623498, nan, nan, nan, nan, nan, nan, 0.2213077571123064, nan, nan, 0.8266935514170852, nan, nan, nan, nan, nan, 0.5321733037486862, 0.1086237598575426, nan, nan, nan, 0.17764306053090842, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6124371859296482, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.013296011196641007, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] - Per Category Accuracy: [0.8046025215425907, 0.8330558233283674, 0.9275152014660044, 0.847081838930551, 0.9766833720148048, 0.9471424341131182, 0.9685170298752354, 0.9812570167259719, 0.9895076096687556, 0.9631904896312408, nan, 0.8260084286574353, 0.16703022748519789, nan, nan, 0.5728285077951002, nan, 0.6947890818858561, nan, nan, 0.9260856681921443, 0.5976838849585837, 0.9607825170660191, nan, nan, 0.877902764192298, 0.9764888095105207, nan, nan, nan, nan, nan, 0.16078532846007051, nan, 0.0, nan, 0.4390161725067385, nan, nan, nan, nan, nan, nan, 0.23217077979468353, nan, nan, 0.8289671974682272, nan, nan, nan, nan, nan, 0.8216732780382258, 0.1086237598575426, nan, nan, nan, 0.17764306053090842, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6153083303281645, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.013296011196641007, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.9318 | 1.0 | 20 | 0.2916 | 0.4543 | 0.6104 | 0.9030 | [0.757090402085336, 0.7731882375762819, 0.8908793360413805, 0.1527664054275354, 0.9195973891162452, 0.16413046640868223, 0.9279042647106907, 0.9158157876205901, 0.9211787977335971, 0.9482659144816975, nan, 0.7666795858479597, 0.27555311757176815, 0.0, 0.0, 0.6286692251841095, nan, 0.4524504084014002, 0.0, nan, 0.8171449046012361, 0.9924705069001888, 0.9540714444197914, nan, nan, 0.6286554799547224, 0.8838112472160357, nan, nan, nan, nan, nan, 0.6348761698605717, nan, 0.0, nan, 0.5885750962772786, nan, nan, nan, nan, nan, nan, 0.3801982667248582, nan, nan, 0.9391201792664229, nan, nan, nan, nan, nan, 0.3228922508700902, 0.06351626016260163, nan, nan, nan, 0.6948766948766949, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8541389504804139, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7224854716137684, 0.0, nan, nan, nan, 0.977742761473311, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.4930264993026499, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7718560177991242, 0.8195061445433893, 0.9355203570316918, 0.8516465601565048, 0.9854602318558662, 0.8352087651761919, 0.9375295944323926, 0.9898959146004985, 0.9839212175470009, 0.9823839014428265, nan, 0.8336544250451535, 0.4696167030227485, nan, nan, 0.6749443207126948, nan, 0.641439205955335, nan, nan, 0.9010305205281006, 0.9951784635074122, 0.9850185550006872, nan, nan, 0.9154711444408217, 0.8859323547468885, nan, nan, nan, nan, nan, 0.6450819937251351, nan, 0.0, nan, 0.6179245283018868, nan, nan, nan, nan, nan, nan, 0.41457610986470866, nan, nan, 1.0, nan, nan, nan, nan, nan, 0.8196898665705012, 0.0635970490969219, nan, nan, nan, 0.7013869752916322, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.9469436250409702, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7285430941218897, 0.0, nan, nan, nan, 0.9780509910548922, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.4947515745276417, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.358 | 2.0 | 40 | 0.2648 | 0.4367 | 0.5955 | 0.9083 | [0.7702341696432783, 0.768773656441056, 0.8885412077618897, 0.2813692748091603, 0.9139945857330831, 0.1786782345788557, 0.9448199240811036, 0.9165182705320892, 0.9358270651216372, 0.9491400452017247, nan, 0.7358159912376779, 0.08692919983242564, 0.0, 0.0, 0.6708966091117121, nan, 0.36234738085860574, 0.0, nan, 0.8197892588033983, 0.9910025820992201, 0.9578030508168607, nan, nan, 0.6293571794327393, 0.8798763248422724, nan, nan, nan, nan, nan, 0.8234798614794248, nan, 0.0, nan, 0.4612054612054612, nan, nan, 0.0, nan, nan, nan, 0.3806302188090449, nan, nan, 0.9435715132124659, nan, nan, nan, nan, nan, 0.43967181467181465, 0.008649198677181379, nan, nan, nan, 0.7387119355967798, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8496329263189928, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7909324208725407, 0.0, nan, nan, nan, 0.9716803930067909, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.43356643356643354, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7929439186325752, 0.8167186857485692, 0.9460989114566665, 0.7691555265731985, 0.9871055290722562, 0.8050044418122594, 0.9551981588133596, 0.9793541757844462, 0.9890778871978514, 0.9831476531239104, nan, 0.8089102950030103, 0.12932377687753194, nan, nan, 0.7182628062360802, nan, 0.380479735318445, nan, nan, 0.8990880057946202, 0.9926143837320914, 0.9723278508269574, nan, nan, 0.9127993334057892, 0.8815091812245354, nan, nan, nan, nan, nan, 0.8537374260115794, nan, 0.0, nan, 0.466644204851752, nan, nan, nan, nan, nan, nan, 0.42456999116187366, nan, nan, 1.0, nan, nan, nan, nan, nan, 0.8213126577713667, 0.008649198677181379, nan, nan, nan, 0.7754202259575641, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.9151098000655523, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8335737468445726, 0.0, nan, nan, nan, 0.9716803930067909, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.4338698390482855, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2793 | 3.0 | 60 | 0.2870 | 0.4162 | 0.5814 | 0.8955 | [0.713973155874427, 0.7965737195854968, 0.8779457965401705, 0.1786823866804748, 0.9031049407573143, 0.13306080011342422, 0.8949712104653629, 0.8798668772180055, 0.9140418210693488, 0.9444516025124818, nan, 0.7374674479166666, 0.16006959547629404, 0.0, 0.0, 0.6852987012987013, nan, 0.3823088455772114, 0.0, nan, 0.8192899264392972, 0.9923064302279692, 0.9578418621339193, nan, nan, 0.6603980053862435, 0.8805556329590102, nan, nan, nan, nan, nan, 0.7359250918572953, nan, 0.0, nan, 0.3828360710693932, nan, nan, 0.0, nan, nan, nan, 0.3880670308759438, nan, nan, 0.9488334405757728, nan, nan, nan, nan, nan, 0.23578881794113066, 0.014959432048681541, nan, nan, nan, 0.5399946375904907, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6331547809401983, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.8067641060503059, 0.0, nan, nan, nan, 0.9754239403134072, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.38838348495451364, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7274818124028818, 0.846467308872006, 0.9580452690232044, 0.7313335507010108, 0.9861562071385515, 0.8337281610897246, 0.906299897589499, 0.9860141190797861, 0.9892927484333035, 0.9736339637051918, nan, 0.818362432269717, 0.22935493923340605, nan, nan, 0.734521158129176, nan, 0.4218362282878412, nan, nan, 0.8873999934152043, 0.9944274592058019, 0.9784670362395199, nan, nan, 0.9127993334057892, 0.8818580119439638, nan, nan, nan, nan, nan, 0.8033120936701491, nan, 0.0, nan, 0.38477088948787064, nan, nan, nan, nan, nan, nan, 0.4298048813651506, nan, nan, 1.0, nan, nan, nan, nan, nan, 0.8189686260367832, 0.01500890358687357, nan, nan, nan, 0.5549738219895288, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6489265814487053, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8559322033898306, 0.0, nan, nan, nan, 0.9754239403134072, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.38838348495451364, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.3673 | 4.0 | 80 | 0.3017 | 0.4121 | 0.5854 | 0.8959 | [0.6930239160932594, 0.821582774329195, 0.8876895483450188, 0.13995459704880817, 0.9210232458111495, 0.13345570739003332, 0.8831808124129265, 0.8573353268816851, 0.9138272583201268, 0.9376992176180817, nan, 0.75151613601906, 0.19001189060642093, 0.0, 0.0, 0.6703730645328899, 0.0, 0.2974197360646051, 0.0, nan, 0.8290362731152204, 0.9922762279954571, 0.9575418994413408, nan, nan, 0.7112122728265695, 0.8889979946061821, nan, nan, nan, nan, nan, 0.38998091603053436, nan, 0.0, nan, 0.38600602611315704, nan, nan, 0.0, nan, nan, nan, 0.30914030661750436, nan, nan, 0.9430382763716098, nan, nan, nan, nan, nan, 0.20779339295491878, 0.3257726819541376, nan, nan, nan, 0.36047684548372305, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8134631618210015, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7669374274747836, 0.0, nan, nan, nan, 0.9710893065899567, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.4184744576627012, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7327217827376749, 0.8850805228423316, 0.9546915209357176, 0.8040430388001304, 0.9727492188478261, 0.8719277465205804, 0.8900518659633745, 0.9929024032881092, 0.9911548791405551, 0.9671088678211492, nan, 0.8355809753160747, 0.2489872234340916, nan, nan, 0.7183741648106904, nan, 0.6244830438378826, nan, nan, 0.9210482994765088, 0.9939341960254542, 0.9815824437623127, nan, nan, 0.9140854254972286, 0.8968995925657197, nan, nan, nan, nan, nan, 0.39657793446970924, nan, 0.0, nan, 0.3884770889487871, nan, nan, nan, nan, nan, nan, 0.32490312053844583, nan, nan, 0.9938212689003868, nan, nan, nan, nan, nan, 0.8211323476379373, 0.3324853726787077, nan, nan, nan, 0.36107283916597777, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.848840544083907, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7746123332131266, 0.0, nan, nan, nan, 0.9710893065899567, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.4184744576627012, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.3958 | 5.0 | 100 | 0.2844 | 0.4108 | 0.5785 | 0.8932 | [0.6971130499530577, 0.7759844211067662, 0.8892159728598072, 0.2810911731148221, 0.9235574071264019, 0.14931943394188182, 0.9214596712746272, 0.8290949347794696, 0.9015033696215656, 0.9425034743544165, nan, 0.7093385605146764, 0.1964597902097902, 0.0, 0.0, 0.5280968643278485, 0.0, 0.39581114660986866, 0.0, nan, 0.7903220919310365, 0.9904506342588486, 0.9590248266607023, nan, nan, 0.6430577721034153, 0.827307670881845, nan, nan, nan, nan, nan, 0.3877828875711001, nan, 0.0, nan, 0.45463675929025776, nan, nan, nan, nan, nan, nan, 0.33792841785759453, nan, nan, 0.9053883500665159, nan, nan, nan, nan, nan, 0.3064429889052266, 0.43461733400912317, nan, nan, nan, 0.15670065215394507, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8583444990323061, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8072214336408801, 0.0, nan, nan, nan, 0.9739396566444681, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.3331000699790063, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7604578683429863, 0.8340669933869478, 0.9468485727938695, 0.8835996087381807, 0.9747963762692813, 0.8186259994077584, 0.9322053495721884, 0.9832930565334044, 0.9963831692032229, 0.9683707184246791, nan, 0.8496688741721854, 0.2801495793081957, nan, nan, 0.5682628062360802, nan, 0.4611248966087676, nan, nan, 0.8587561320910019, 0.9923344235486509, 0.982223851193476, nan, nan, 0.9123555410643771, 0.8288776022771669, nan, nan, nan, nan, nan, 0.41456156806934696, nan, 0.0, nan, 0.45754716981132076, nan, nan, nan, nan, nan, nan, 0.36331497722482836, nan, nan, 1.0, nan, nan, nan, nan, nan, 0.8267219617742517, 0.43627575680488423, nan, nan, nan, 0.15670065215394507, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.9448541461815798, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8203209520375045, 0.0, nan, nan, nan, 0.9739396566444681, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.3331000699790063, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.4259 | 6.0 | 120 | 0.3058 | 0.4001 | 0.5730 | 0.8931 | [0.6985909995058325, 0.769530414879837, 0.8823505792125921, 0.13364543275929333, 0.9235814361253398, 0.1355318670893976, 0.9608289930555556, 0.859073263401338, 0.9031491190933664, 0.9501623220082929, nan, 0.7494519947391495, 0.14520255863539447, 0.0, 0.0, 0.6518163838867492, nan, 0.3726523133302794, 0.0, nan, 0.8326698033538424, 0.990911752182244, 0.9583520129113243, nan, nan, 0.6285787193786099, 0.8561691056910569, nan, nan, nan, nan, nan, 0.3058313253012048, nan, 0.0, nan, 0.4694694694694695, nan, nan, 0.0, nan, nan, nan, 0.27489356294084005, nan, nan, 0.9074867351409239, nan, nan, nan, nan, nan, 0.5608066312012866, 0.07498729028978139, nan, nan, nan, 0.3798442510306917, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7700660718206679, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.797708315780605, 0.0, nan, nan, nan, 0.9810270348341015, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2827151854443667, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.742632257380986, 0.8249900568277573, 0.9633586581500463, 0.781871535702641, 0.9755505921613964, 0.8038199585430856, 0.975102135203885, 0.9895534032310239, 0.9931244404655327, 0.9816035464643278, nan, 0.8233594220349187, 0.2122156435026488, nan, nan, 0.6973273942093541, nan, 0.6728701406120761, nan, nan, 0.90896519935469, 0.9927788047922074, 0.9793833325697531, nan, nan, 0.9147103575698293, 0.9183736116537367, nan, nan, nan, nan, nan, 0.3078888637319274, nan, 0.0, nan, 0.4740566037735849, nan, nan, nan, nan, nan, nan, 0.2941056496022843, nan, nan, 0.9364796302808057, nan, nan, nan, nan, nan, 0.8173458348359178, 0.07504451793436785, nan, nan, nan, 0.38082116285478096, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7902736807604064, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.853588171655247, 0.0, nan, nan, nan, 0.9814136160039931, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2827151854443667, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.184 | 7.0 | 140 | 0.2974 | 0.4207 | 0.5895 | 0.8928 | [0.7199834007677145, 0.7778380355408695, 0.8887971597402122, 0.18600773137269763, 0.9171883036583898, 0.15411919619854583, 0.9661967064577227, 0.9106459838504037, 0.9002978117311925, 0.9473658725547163, nan, 0.7332136249863968, 0.1433932451115939, 0.0, 0.0, 0.6779255871960091, 0.0, 0.2659248508305112, 0.0, nan, 0.8405688846395172, 0.897895937948151, 0.9592952884744699, nan, nan, 0.6414578123906418, 0.709452482088297, nan, nan, nan, nan, nan, 0.4352997145575642, nan, 0.0, nan, 0.4570664884731039, nan, nan, 0.0, nan, nan, nan, 0.3233139681737813, nan, nan, 0.951440399159919, nan, nan, nan, nan, nan, 0.7098207202919244, 0.1757743641400151, nan, nan, nan, 0.6909833927484567, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7902802706061024, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.804374844643301, 0.0, nan, nan, nan, 0.9738083041073938, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2232330300909727, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7659009040824976, 0.8315053625718773, 0.9581154127740539, 0.8001304206064558, 0.9762494794745532, 0.7971572401539828, 0.9746286242856042, 0.9785549825890054, 0.9959534467323187, 0.9745305417655946, nan, 0.8112582781456954, 0.22623870364599563, nan, nan, 0.726391982182628, nan, 0.6819685690653433, nan, nan, 0.9262502880848121, 0.8986899640939955, 0.9803912585330096, nan, nan, 0.913089156975691, 0.9298571189373221, nan, nan, nan, nan, nan, 0.44393052366012226, nan, 0.0, nan, 0.4609164420485175, nan, nan, nan, nan, nan, nan, 0.3480862057243864, nan, nan, 0.9842392123373688, nan, nan, nan, nan, nan, 0.8067075369635773, 0.17756296107860595, nan, nan, nan, 0.7299531551391568, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8207964601769911, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8752253876667869, 0.0, nan, nan, nan, 0.9738083041073938, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2232330300909727, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2589 | 8.0 | 160 | 0.2757 | 0.4402 | 0.6046 | 0.9058 | [0.7494836247418124, 0.7757339880725955, 0.8948167955362021, 0.17587661664015491, 0.9193940776219257, 0.16820850109106555, 0.9677794251019621, 0.8990195564410423, 0.9004855940433797, 0.9514046344091209, nan, 0.7424519179112496, 0.13446096019135487, 0.0, 0.0, 0.6579439252336449, 0.0, 0.45012644001123914, 0.0, nan, 0.8331806766139754, 0.9677237522469542, 0.9568646894437934, nan, nan, 0.6437899145454782, 0.8706945741259466, nan, nan, nan, nan, nan, 0.57135088448866, nan, 0.0, nan, 0.45193591455273696, nan, nan, 0.0, nan, nan, nan, 0.3413534789233113, nan, nan, 0.9682831504997991, nan, nan, nan, nan, nan, 0.6822727272727273, 0.5914169629253428, nan, nan, nan, 0.6238027669386307, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8359320320398165, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7558560947582428, 0.0, nan, nan, nan, 0.9781823435919664, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.22883135059482154, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7784865447097048, 0.8317008554498696, 0.9477166017106308, 0.8291490055428757, 0.986045549980635, 0.8103346165235416, 0.9811806939687924, 0.9788404087302343, 0.9960966875559535, 0.9823340915505819, nan, 0.8320288982540638, 0.24524774072919914, nan, nan, 0.7055679287305122, nan, 0.6625310173697271, nan, nan, 0.9284232706680275, 0.9688977567634826, 0.9726027397260274, nan, nan, 0.8965782704778467, 0.9368337333258916, nan, nan, nan, nan, nan, 0.5777080570559886, nan, 0.0, nan, 0.45619946091644203, nan, nan, nan, nan, nan, nan, 0.3655585015976613, nan, nan, 0.9987441603456071, nan, nan, nan, nan, nan, 0.8119365308330329, 0.5924701093869245, nan, nan, nan, 0.6460916689629834, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.8807972795804654, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7709159754778219, 0.0, nan, nan, nan, 0.9781823435919664, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.22883135059482154, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1675 | 9.0 | 180 | 0.3176 | 0.4169 | 0.5805 | 0.8947 | [0.7345716657349528, 0.7692312499414133, 0.8668217310538081, 0.17813902870357776, 0.9199850922485133, 0.15081353339838086, 0.9602279820871217, 0.9039625322317529, 0.8930710283984803, 0.9514323292592949, nan, 0.7358287619662257, 0.0801781737193764, 0.0, 0.0, 0.6477130977130977, 0.0, 0.5261121856866537, 0.0, nan, 0.8446311463023966, 0.9258387861461561, 0.9518799038505148, nan, nan, 0.6401409220364263, 0.7678351464916825, nan, nan, nan, nan, nan, 0.5576983282198986, nan, 0.0, nan, 0.3928452022734871, nan, nan, nan, nan, nan, nan, 0.3433964622788924, nan, nan, 0.9686649503493932, nan, nan, nan, nan, nan, 0.5423526604628967, 0.16128211650979393, nan, nan, nan, 0.6541748264197971, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6691467242855396, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6146253925527142, 0.0, nan, nan, nan, 0.9828467105349568, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.25892232330300907, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7656890097471394, 0.8297796323385667, 0.9655681863018023, 0.8539289207694816, 0.9847933768778957, 0.8467574770506366, 0.9739899351400161, 0.9806100508058532, 0.9932676812891674, 0.9848743960550566, nan, 0.8237206502107164, 0.10096603303209722, nan, nan, 0.6938752783964365, nan, 0.674937965260546, nan, nan, 0.9201593520561024, 0.926801521561378, 0.9615613689467174, nan, nan, 0.9018222656957577, 0.930652452977619, nan, nan, nan, nan, nan, 0.5761878578128538, nan, 0.0, nan, 0.39588948787061995, nan, nan, nan, nan, nan, nan, 0.37351281528316, nan, nan, 0.9922891445220274, nan, nan, nan, nan, nan, 0.8196898665705012, 0.16128211650979393, nan, nan, nan, 0.675025259483788, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6724639462471321, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6175622069960331, 0.0, nan, nan, nan, 0.9829241701803471, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.25892232330300907, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2161 | 10.0 | 200 | 0.3322 | 0.4249 | 0.5776 | 0.8853 | [0.7206124240435668, 0.7760577073859182, 0.865809804968437, 0.1756513626974079, 0.911514857881137, 0.13624416925153315, 0.9370541586390206, 0.890462830685554, 0.8943555398138906, 0.9489619516923823, nan, 0.7425758049390434, 0.14700339238597815, 0.0, 0.0, 0.6270483302219456, 0.0, 0.5200642054574639, 0.0, nan, 0.8321939466947749, 0.888232734506123, 0.956649982123704, nan, nan, 0.6452770748334452, 0.7136619762979565, nan, nan, nan, nan, nan, 0.5892282702168997, nan, 0.0, nan, 0.4864058355437666, nan, nan, nan, nan, nan, nan, 0.2877469351457791, nan, nan, 0.9710707377390367, nan, nan, nan, nan, nan, 0.39037848090352617, 0.048588145510048336, nan, nan, nan, 0.570629494806002, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5433319008738003, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7658210947930574, 0.0, nan, nan, nan, 0.9707477899935637, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.16864940517844645, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7465258157931911, 0.8340332877183285, 0.9668702296769441, 0.859471796543854, 0.9861474710471371, 0.8519395913532721, 0.9453039829976545, 0.9844347610983198, 0.9946642793196061, 0.9752112769596042, nan, 0.8580975316074654, 0.24306637581801185, nan, nan, 0.6732739420935412, nan, 0.6699751861042184, nan, nan, 0.9097882988180291, 0.8889669024849799, 0.9807119622485911, nan, nan, 0.9053001485345796, 0.9419266618295473, nan, nan, nan, nan, nan, 0.5983762978296729, nan, 0.0, nan, 0.4942722371967655, nan, nan, nan, nan, nan, nan, 0.30797470936161536, nan, nan, 0.9961194554679259, nan, nan, nan, nan, nan, 0.8164442841687702, 0.048588145510048336, nan, nan, nan, 0.5903370992927345, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5438995411340544, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7756941940137035, 0.0, nan, nan, nan, 0.9707477899935637, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.16864940517844645, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2867 | 11.0 | 220 | 0.3251 | 0.4367 | 0.5798 | 0.8946 | [0.6908364671638303, 0.7811886250132491, 0.8844631001150284, 0.14853779197194564, 0.9118543751676815, 0.12206634613273618, 0.9608279230513446, 0.8550465927515107, 0.8781107160995429, 0.9417482019050087, nan, 0.7406341565508581, 0.1685185185185185, 0.0, 0.0, 0.6777650608677557, 0.0, 0.5124835742444153, 0.0, nan, 0.8362949866650685, 0.9828237581741419, 0.9561372163659103, nan, nan, 0.6500238626037043, 0.9049626234517378, nan, nan, nan, nan, nan, 0.5171646535282899, nan, 0.0, nan, 0.5261255340124876, nan, nan, nan, nan, nan, nan, 0.27513328255902514, nan, nan, 0.9520947307803053, nan, nan, nan, nan, nan, 0.5688645145207528, 0.1190536759094378, nan, nan, nan, 0.37078445747800587, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6697260718048464, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8258586937177433, 0.0, nan, nan, nan, 0.976501031117416, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.244926522043387, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7176949427885294, 0.844613497097942, 0.9607019635866253, 0.7733941962830128, 0.979831276954482, 0.8232158720758069, 0.9704826507801918, 0.9934732555705669, 0.9906535362578335, 0.9652492985106842, nan, 0.8521974714027695, 0.2552196946089124, nan, nan, 0.7253897550111359, nan, 0.6451612903225806, nan, nan, 0.9188423929147598, 0.9837889722350599, 0.9807119622485911, nan, nan, 0.9005090026446401, 0.9256711503041803, nan, nan, nan, nan, nan, 0.5262476954426367, nan, 0.0, nan, 0.5394204851752021, nan, nan, nan, nan, nan, nan, 0.2947175198857842, nan, nan, 0.996621791329683, nan, nan, nan, nan, nan, 0.8229354489722323, 0.1190536759094378, nan, nan, nan, 0.37163589602277947, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6771345460504753, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8367291741795889, 0.0, nan, nan, nan, 0.976501031117416, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.244926522043387, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1295 | 12.0 | 240 | 0.3323 | 0.4194 | 0.5683 | 0.8848 | [0.7010788082853816, 0.7637095563396141, 0.8785136123592344, 0.15548340548340547, 0.9175356281036783, 0.13378924609889076, 0.9442461893312154, 0.8539986531544109, 0.885516711486746, 0.9395302915041355, nan, 0.7404405098394752, 0.07083438366523821, 0.0, 0.0, 0.6082108992393457, 0.0, 0.5076373090672733, 0.0, nan, 0.8392819108474061, 0.9144450121059997, 0.9499954747035931, nan, nan, 0.6311522253832482, 0.7531461652401036, nan, nan, nan, nan, nan, 0.45099949710837317, nan, 0.0, nan, 0.41029067824924825, nan, nan, nan, nan, nan, nan, 0.3048211508553655, nan, nan, 0.9626255406273094, nan, nan, nan, nan, nan, 0.3991655076495132, 0.03510557110150089, nan, nan, nan, 0.3435352332081004, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7266600554532392, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8336933045356372, 0.0, nan, nan, nan, 0.9783271160615773, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23722883135059483, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7390035668879785, 0.8229609755768725, 0.9582951561356055, 0.8431692207368764, 0.9754836154605522, 0.8429079064258217, 0.9557047053771018, 0.9893631191368714, 0.9905102954341988, 0.9637716050407611, nan, 0.8358819987959061, 0.08756622000623247, nan, nan, 0.65, nan, 0.6459884201819686, nan, nan, 0.9081420998913509, 0.9147010202993352, 0.9617904430292756, nan, nan, 0.9102180922363511, 0.9294106156164537, nan, nan, nan, nan, nan, 0.46411359446259337, nan, 0.0, nan, 0.4137466307277628, nan, nan, nan, nan, nan, nan, 0.3331293765721667, nan, nan, 0.997865072587532, nan, nan, nan, nan, nan, 0.8279841327082582, 0.03510557110150089, nan, nan, nan, 0.3443556535317351, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7355170435922649, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8699963937973314, 0.0, nan, nan, nan, 0.9783399666364556, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23722883135059483, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0919 | 13.0 | 260 | 0.3148 | 0.4263 | 0.5733 | 0.8992 | [0.767667025262455, 0.7688925066195115, 0.8805410795856655, 0.1402587954061217, 0.9193929356826759, 0.1418159509202454, 0.9500165940337648, 0.876767711229764, 0.8975355419540788, 0.9452446310350395, nan, 0.7395883453622026, 0.12275948311796582, 0.0, 0.0, 0.6027012987012987, 0.0, 0.5034057735971457, 0.0, nan, 0.8252400632065151, 0.9831381358716402, 0.9517680531093348, nan, nan, 0.6451857516499476, 0.8784358617459966, nan, nan, nan, nan, nan, 0.2855063557266229, nan, 0.0, nan, 0.35097119892833223, nan, nan, nan, nan, nan, nan, 0.22902813299232735, nan, nan, 0.9261085561102776, nan, nan, nan, nan, nan, 0.46154622527250705, 0.20605443907402696, nan, nan, nan, 0.4981389578163772, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6865898365503412, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7961016949152543, 0.0, nan, nan, nan, 0.9777488802196215, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.22673198040587825, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8221765079813533, 0.8309795541414156, 0.9600049100625595, 0.8800130420606456, 0.9861299988643081, 0.8556411015694403, 0.961414366101023, 0.9780031587159629, 0.9924798567591764, 0.9719404273688754, nan, 0.8328717639975918, 0.18354627609847304, nan, nan, 0.6459910913140312, nan, 0.6418527708850289, nan, nan, 0.8941164850360518, 0.9840556009811938, 0.9655472579832318, nan, nan, 0.9093033365938485, 0.9422336328626444, nan, nan, nan, nan, nan, 0.2855063557266229, nan, 0.0, nan, 0.353099730458221, nan, nan, nan, nan, nan, nan, 0.2435243728329594, nan, nan, 0.9458105189129452, nan, nan, nan, nan, nan, 0.8245582401730978, 0.20605443907402696, nan, nan, nan, 0.5163038486268026, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.6944239593575877, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.8469166967183556, 0.0, nan, nan, nan, 0.9777488802196215, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.22673198040587825, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2044 | 14.0 | 280 | 0.3544 | 0.4077 | 0.5653 | 0.8639 | [0.7105300015653707, 0.7583391059604715, 0.8882915513592707, 0.15015921818381464, 0.9189025285680875, 0.14528139405298618, 0.9345192788639279, 0.8767106883810045, 0.8664882360263911, 0.9431698929592018, nan, 0.738849487785658, 0.15073999634569707, 0.0, 0.0, 0.6473385012919897, 0.0, 0.526615333110144, nan, nan, 0.8257736973308202, 0.7232729550695083, 0.95317981469821, nan, nan, 0.628257861870396, 0.4960114106739797, nan, nan, nan, nan, nan, 0.27435574093833864, nan, 0.0, nan, 0.3640922768304915, nan, nan, 0.0, nan, nan, nan, 0.23656605959199434, nan, nan, 0.9229412051007495, nan, nan, nan, nan, nan, 0.36572724327826367, 0.16611549224116, nan, nan, nan, 0.5021714083133918, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7236747421443991, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6962286123801845, 0.0, nan, nan, nan, 0.9753713992985774, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23792862141357593, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7614246362480577, 0.8191522350228861, 0.9568966651030456, 0.8917508966416694, 0.9839663602239934, 0.849274503997631, 0.9464051711797029, 0.9751869541225049, 0.9970277529095792, 0.9699480316790915, nan, 0.8467188440698374, 0.2570894359613587, nan, nan, 0.6974387527839644, nan, 0.6505376344086021, nan, nan, 0.8943140289072532, 0.7234304454477586, 0.9709534063316076, nan, nan, 0.913025758069775, 0.9413406262209075, nan, nan, nan, nan, nan, 0.2744444803829608, nan, 0.0, nan, 0.3669137466307278, nan, nan, nan, nan, nan, nan, 0.24991501801618057, nan, nan, 0.9525669362535791, nan, nan, nan, nan, nan, 0.8142805625676163, 0.16611549224116, nan, nan, nan, 0.5204372187012033, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.7416420845624385, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.700685178507032, 0.0, nan, nan, nan, 0.9753713992985774, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23792862141357593, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1597 | 15.0 | 300 | 0.3508 | 0.3996 | 0.5614 | 0.8680 | [0.7327140434561054, 0.7598310684668459, 0.8749710747428644, 0.17029559250461862, 0.9015595608148672, 0.15086708124778805, 0.9450641788713352, 0.8656128478359679, 0.8924420471328581, 0.9417474157594189, nan, 0.6976988546810969, 0.1468602986295766, 0.0, 0.0, 0.6618178066646033, 0.0, 0.5279170845870946, 0.0, nan, 0.8204749600098438, 0.7411213749039158, 0.9501971269316174, nan, nan, 0.6324974106274128, 0.5135965621606635, nan, nan, nan, nan, nan, 0.4733572130471994, nan, 0.0, nan, 0.3347826086956522, nan, nan, nan, nan, nan, nan, 0.2527394611318809, nan, nan, 0.9449091749142815, nan, nan, nan, nan, nan, 0.44752904114983266, 0.049096921902823706, nan, nan, nan, 0.42811387900355874, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5918703150709976, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7231467473524962, 0.0, nan, nan, nan, 0.9784319134124075, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23093072078376486, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7743943353581014, 0.8162333241204506, 0.9614428569549721, 0.8415389631561787, 0.9839488880411644, 0.8836245188036719, 0.9660393564656264, 0.9784408121325139, 0.9953804834377797, 0.9665775623038736, nan, 0.7995183624322697, 0.2237457151760673, nan, nan, 0.7143652561247216, nan, 0.6530190239867659, nan, nan, 0.8781483554472722, 0.7412234704397597, 0.9606450726164841, nan, nan, 0.9125819657283628, 0.9305408271474019, nan, nan, nan, nan, nan, 0.4830028786751625, nan, 0.0, nan, 0.33726415094339623, nan, nan, nan, nan, nan, nan, 0.26657148684478893, nan, nan, 0.9759757874114633, nan, nan, nan, nan, nan, 0.8196898665705012, 0.049096921902823706, nan, nan, nan, 0.4419950399559107, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5968534906588004, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7326000721240534, 0.0, nan, nan, nan, 0.9784319134124075, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.23093072078376486, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0763 | 16.0 | 320 | 0.3851 | 0.4006 | 0.5551 | 0.8518 | [0.7153059778538027, 0.7569371103862725, 0.8680917334007922, 0.175148588410104, 0.9130648023953718, 0.15358483394307978, 0.9589653253216472, 0.8792287106292459, 0.9073221689028172, 0.9341358054652235, nan, 0.7209589188029604, 0.07477461552059396, 0.0, 0.0, 0.5719146303742654, 0.0, 0.47051921384570256, nan, nan, 0.8193126324518566, 0.6164846201018512, 0.9521290900941282, nan, nan, 0.6323551580322597, 0.42311201027696926, nan, nan, nan, nan, nan, 0.215643794865162, nan, 0.0, nan, 0.40680226742247416, nan, nan, 0.0, nan, nan, nan, 0.23530177745947, nan, nan, 0.9162390210204283, nan, nan, nan, nan, nan, 0.5884248517659191, 0.15899262274230475, nan, nan, nan, 0.5106901217861975, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5716360512212085, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7312365975696926, 0.0, nan, nan, nan, 0.9751349647318438, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.1728481455563331, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7799344893346518, 0.8189466304443082, 0.9628194280653916, 0.922399739158787, 0.9812436117331532, 0.9572105419010957, 0.9771338273997644, 0.9752440393507507, 0.9953088630259624, 0.9586411861395673, nan, 0.8093317278747743, 0.13181676534746026, nan, nan, 0.617706013363029, nan, 0.663358147229115, nan, nan, 0.8782800513614065, 0.6164900991858936, 0.973198332340679, nan, nan, 0.9118211788573706, 0.9513171847965619, nan, nan, nan, nan, nan, 0.21570656920141024, nan, 0.0, nan, 0.4110512129380054, nan, nan, nan, nan, nan, nan, 0.24569991161873683, nan, nan, 0.9327623449038027, nan, nan, nan, nan, nan, 0.8231157591056617, 0.15899262274230475, nan, nan, nan, 0.5199779553596032, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.5724557522123894, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7378290659935088, 0.0, nan, nan, nan, 0.9751349647318438, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.1728481455563331, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1299 | 17.0 | 340 | 0.4027 | 0.4042 | 0.5626 | 0.8684 | [0.711767437232596, 0.7603993344425957, 0.89004551116812, 0.16463737427210165, 0.917176195397922, 0.06863881126030945, 0.9566389648358192, 0.9064951197870452, 0.8942270562491955, 0.9379202223946211, nan, 0.722851997033584, 0.12831497348021215, 0.0, 0.0, 0.5855584415584416, 0.0, 0.5308362931869551, 0.0, nan, 0.8307268822408421, 0.8860878057442181, 0.9533040830945558, nan, nan, 0.6326260612216746, 0.6921050987903645, nan, nan, nan, nan, nan, 0.386464079486435, nan, 0.0, nan, 0.428285523682455, nan, nan, nan, nan, nan, nan, 0.2442772633744856, nan, nan, 0.9634067397066188, nan, nan, nan, nan, nan, 0.5607453416149069, 0.1912999236835411, nan, nan, nan, 0.6692953883079034, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.00272451655195018, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7687428420403488, 0.0, nan, nan, nan, 0.9761069735061932, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2330300909727082, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7578930639920893, 0.8179253486851419, 0.9490975568054782, 0.9126181936746006, 0.9819628832596105, 0.8945809890435298, 0.9728777350761472, 0.9719901813407418, 0.995129811996419, 0.9635059522821232, nan, 0.8215532811559302, 0.19601121844811467, nan, nan, 0.6276169265033408, nan, 0.6799007444168734, nan, nan, 0.904191222467323, 0.8870249564506382, 0.9755348879827737, nan, nan, 0.9138046589138862, 0.9276804152480884, nan, nan, nan, nan, nan, 0.3874890836756477, nan, 0.0, nan, 0.4326145552560647, nan, nan, nan, nan, nan, nan, 0.2582772452240125, nan, nan, 0.9905686441955092, nan, nan, nan, nan, nan, 0.8139199423007573, 0.1912999236835411, nan, nan, nan, 0.7171856342426748, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.00272451655195018, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7866931121529029, 0.0, nan, nan, nan, 0.9761069735061932, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.2330300909727082, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.4063 | 18.0 | 360 | 0.4278 | 0.3847 | 0.5355 | 0.8529 | [0.7143884223748995, 0.7623860471202557, 0.8895063117621785, 0.15164858769197723, 0.9184909290143108, 0.0688372957772665, 0.9465640969881484, 0.8664226591225802, 0.893223819301848, 0.9395075898414136, nan, 0.729230133732638, 0.1358986848514369, 0.0, 0.0, 0.5792752569826601, 0.0, 0.5139756658993752, nan, nan, 0.8304501431443017, 0.7691829484902309, 0.951791004578508, nan, nan, 0.6314232808579753, 0.5424600121150603, nan, nan, nan, nan, nan, 0.1745269426568053, nan, 0.0, nan, 0.3247491638795987, nan, nan, nan, nan, nan, nan, 0.2419600864370154, nan, nan, 0.9616261074079039, nan, nan, nan, nan, nan, 0.45268154731845267, 0.062325108114983464, nan, nan, nan, 0.40283363802559413, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0031137332022287776, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7143369496996324, 0.0, nan, nan, nan, 0.973532463779538, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.1630510846745976, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7807820666760842, 0.8247777111154554, 0.952999302946476, 0.9207694815780894, 0.9787887700456898, 0.8771098608232158, 0.9586448778231712, 0.9819610678743363, 0.9969561324977618, 0.9649338358598017, nan, 0.8502709211318483, 0.17388594577750077, nan, nan, 0.6212694877505568, nan, 0.6464019851116626, nan, nan, 0.8977381226747441, 0.7697571900885207, 0.9714573693132359, nan, nan, 0.9049016411259646, 0.9246525646034492, nan, nan, nan, nan, nan, 0.17631076753889446, nan, 0.0, nan, 0.32715633423180596, nan, nan, nan, nan, nan, nan, 0.25882112992045686, nan, nan, 0.9910081880745466, nan, nan, nan, nan, nan, 0.8081500180310134, 0.062325108114983464, nan, nan, nan, 0.4047947092863048, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0031137332022287776, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7182654165164082, 0.0, nan, nan, nan, 0.973532463779538, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.1630510846745976, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1576 | 19.0 | 380 | 0.3667 | 0.4123 | 0.5579 | 0.8813 | [0.7369791774663774, 0.760305204088702, 0.8775772628036934, 0.12495485734922354, 0.9146936169634731, 0.08435593985181303, 0.9592746971146828, 0.8654811680351956, 0.8989921829575555, 0.9431517031866072, nan, 0.6995826122365876, 0.1809192944949225, 0.0, 0.0, 0.571029198591841, 0.0, 0.5046865846514352, nan, nan, 0.8343263672743442, 0.9787524972253052, 0.9517319447588861, nan, nan, 0.6292906033328893, 0.8740046471555752, nan, nan, nan, nan, nan, 0.2864766956690494, nan, 0.0, nan, 0.3637274549098196, nan, nan, nan, nan, nan, nan, 0.2751251443973816, nan, nan, 0.9463486238532111, nan, nan, nan, nan, nan, 0.5693256165072974, 0.19893156957517172, nan, nan, nan, 0.40896714467235434, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.16664965604523466, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7574946466809421, 0.0, nan, nan, nan, 0.9765273016248309, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.21343596920923724, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7844946320101709, 0.8137930337124097, 0.9604170045987996, 0.9025105966742746, 0.9804369792925514, 0.858010068107788, 0.9769631432315469, 0.9807622780811752, 0.9966338406445837, 0.9690680569161035, nan, 0.8274533413606261, 0.21096914926768465, nan, nan, 0.6141425389755011, nan, 0.7125723738626965, nan, nan, 0.9266782998057486, 0.9797006647943404, 0.9629816282585788, nan, nan, 0.8984711806687679, 0.9342244795445667, nan, nan, nan, nan, nan, 0.2864766956690494, nan, 0.0, nan, 0.3669137466307278, nan, nan, nan, nan, nan, nan, 0.2914542117071181, nan, nan, 0.9715677902245441, nan, nan, nan, nan, nan, 0.8159033537684818, 0.19893156957517172, nan, nan, nan, 0.4138881234499862, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.16724024909865617, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7654165164082222, 0.0, nan, nan, nan, 0.9765273016248309, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.21343596920923724, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.373 | 20.0 | 400 | 0.4207 | 0.3755 | 0.5393 | 0.8527 | [0.7240509846710884, 0.7581390694096086, 0.8861693340006754, 0.12885037067975358, 0.9125215009409189, 0.07408590336510208, 0.9159343751352755, 0.848974497922722, 0.8975971617481051, 0.940194872458889, nan, 0.7025333122662875, 0.22879177377892032, 0.0, 0.0, 0.6402981983847588, 0.0, 0.5025380710659898, 0.0, nan, 0.8334283913187044, 0.7944852696312412, 0.9478126701760755, nan, nan, 0.6271092109590427, 0.5557530611063801, nan, nan, nan, nan, nan, 0.2435719137100165, nan, 0.0, nan, 0.3537278502173186, nan, nan, nan, nan, nan, nan, 0.2492418865733273, nan, nan, 0.9105508231181941, nan, nan, nan, nan, nan, 0.29468693167056376, 0.10175527855507505, nan, nan, nan, 0.298062865497076, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.008767617174696821, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7374251764495667, 0.0, nan, nan, nan, 0.9754370755671146, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.18264520643806859, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7821373075293121, 0.8170860775365201, 0.9547309767955704, 0.8046951418324095, 0.9856262175927409, 0.8586023097423748, 0.9320016297585094, 0.9837687667687858, 0.996598030438675, 0.9644689435321855, nan, 0.8030704394942806, 0.3328139607354316, nan, nan, 0.688641425389755, nan, 0.6960297766749379, nan, nan, 0.9141013400059264, 0.7951313590955953, 0.956888257662528, nan, nan, 0.898054559287034, 0.9379360383992856, nan, nan, nan, nan, nan, 0.24358767021379824, nan, 0.0, nan, 0.3564690026954178, nan, nan, nan, nan, nan, nan, 0.26262832279556736, nan, nan, 0.9356507761089065, nan, nan, nan, nan, nan, 0.8180670753696357, 0.10175527855507505, nan, nan, nan, 0.29962340405988797, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.008767617174696821, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7441399206635413, 0.0, nan, nan, nan, 0.9754370755671146, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.18264520643806859, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2412 | 21.0 | 420 | 0.4685 | 0.3629 | 0.5203 | 0.8294 | [0.7737332796198401, 0.7618948035293068, 0.8897191519313165, 0.1285204991087344, 0.9181924073891787, 0.06895820072140887, 0.9349274180042247, 0.8150776964542594, 0.9189700368318015, 0.9435114256563072, nan, 0.69593147751606, 0.16507475083056478, 0.0, 0.0, 0.6902061855670103, 0.0, 0.48291335864687607, 0.0, nan, 0.8250462639929618, 0.5118271542396005, 0.9468774059145872, nan, nan, 0.6267822449993868, 0.3619458279612461, nan, nan, nan, nan, nan, 0.3504480113453233, nan, 0.0, nan, 0.3302076356329538, nan, nan, nan, nan, nan, nan, 0.2151166569181777, nan, nan, 0.8895965506621497, nan, nan, nan, nan, nan, 0.3963979716733695, 0.1233782752480285, nan, nan, nan, 0.07798291540369248, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.008562766306129139, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7336859089279312, 0.0, nan, nan, nan, 0.9742286322260314, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.13296011196641008, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.830903905918915, 0.8350242343757374, 0.9531571263858871, 0.7052494294098468, 0.9778743924776429, 0.866153390583358, 0.9528361101628657, 0.9811238178600651, 0.9917636526410026, 0.9672915040927128, nan, 0.7826610475617098, 0.24774072919912746, nan, nan, 0.7455456570155902, nan, 0.5785773366418527, nan, nan, 0.8954005201988608, 0.5118294287034733, 0.9578961836257845, nan, nan, 0.8795058508133174, 0.9440196461461182, nan, nan, nan, nan, nan, 0.35168353980010997, nan, 0.0, nan, 0.33221024258760107, nan, nan, nan, nan, nan, nan, 0.22503229315385137, nan, nan, 0.9068794896267645, nan, nan, nan, nan, nan, 0.8175261449693473, 0.1233782752480285, nan, nan, nan, 0.07798291540369248, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.008562766306129139, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7379192210602236, 0.0, nan, nan, nan, 0.9742286322260314, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.13296011196641008, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0545 | 22.0 | 440 | 0.5040 | 0.3608 | 0.5181 | 0.8163 | [0.7232911433407024, 0.7690588095172654, 0.8900659365956327, 0.11912580072132206, 0.9191096782668666, 0.0635469122015971, 0.9414236549395303, 0.8360351260203001, 0.9050424818516227, 0.9375789371417468, nan, 0.692696151392728, 0.15131717597471023, 0.0, 0.0, 0.6046583850931677, 0.0, 0.4809134287661895, 0.0, nan, 0.8285566979043459, 0.4226720287955207, 0.9424728495478711, nan, nan, 0.6243991104837743, 0.32963119924788226, nan, nan, nan, nan, nan, 0.21801423027166883, nan, 0.0, nan, 0.32920294708640324, nan, nan, nan, nan, nan, nan, 0.23794732414417913, nan, nan, 0.9204450041981528, nan, nan, nan, nan, nan, 0.44425973009974573, 0.21750190791147292, nan, nan, nan, 0.2343161568843575, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.010521359998362434, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7325560538116592, 0.0, nan, nan, nan, 0.9740972796889572, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.09587123862841147, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7885868413617743, 0.848796370573603, 0.9492246923538927, 0.7215520052168243, 0.9779734015136734, 0.8931003849570625, 0.960913325478191, 0.9764428291439119, 0.9955953446732319, 0.9613807302130203, nan, 0.7845273931366646, 0.2237457151760673, nan, nan, 0.6504454342984409, nan, 0.5835401157981803, nan, nan, 0.899483093537023, 0.42267766362117387, 0.9502451092683374, nan, nan, 0.8493732565300873, 0.944201038120221, nan, nan, nan, nan, nan, 0.21803538506323383, nan, 0.0, nan, 0.33119946091644203, nan, nan, nan, nan, nan, nan, 0.2499830036032361, nan, nan, 0.9361656703672075, nan, nan, nan, nan, nan, 0.8191489361702128, 0.21750190791147292, nan, nan, nan, 0.2343161568843575, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.010529334644378892, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7363865849260729, 0.0, nan, nan, nan, 0.9740972796889572, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.09587123862841147, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1905 | 23.0 | 460 | 0.4807 | 0.3724 | 0.5352 | 0.8260 | [0.7278312873264919, 0.7678051974371366, 0.8910359987204829, 0.14236324095243405, 0.9219989372627081, 0.06286180631120783, 0.9410935050422311, 0.8664029214850882, 0.8960056648105829, 0.9392036257688572, nan, 0.7172094956106176, 0.1757188498402556, 0.0, 0.0, 0.6209367535569633, 0.0, 0.5044728434504793, 0.0, nan, 0.8347490347490347, 0.48493816627340147, 0.9454528911332515, nan, nan, 0.6319681893272888, 0.36002510998920056, nan, nan, nan, nan, nan, 0.299640253414409, nan, 0.0, nan, 0.39645958583834334, nan, nan, nan, nan, nan, nan, 0.2418979987088444, nan, nan, 0.9534181318141637, nan, nan, nan, nan, nan, 0.3949609035621199, 0.13228186212159757, nan, nan, nan, 0.434755276156264, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.006616005407509064, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.7548184670551322, 0.0, nan, nan, nan, 0.9723896967069919, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.10986703988803359, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7849228351462071, 0.8300425365537977, 0.9525170646593863, 0.8324095207042713, 0.9751865883524605, 0.8553449807521468, 0.9551926528724494, 0.9751298688942591, 0.9968845120859445, 0.9633897292002191, nan, 0.8312462372065021, 0.2228108444998442, nan, nan, 0.6658129175946548, nan, 0.6530190239867659, nan, nan, 0.9253613406644059, 0.4849532510931779, 0.9521235167453155, nan, nan, 0.8938974024562547, 0.9442847574928839, nan, nan, nan, nan, nan, 0.3044279846039396, nan, 0.0, nan, 0.3999326145552561, nan, nan, nan, nan, nan, nan, 0.2547419946971242, nan, nan, 0.9752097252222837, nan, nan, nan, nan, nan, 0.8196898665705012, 0.13228186212159757, nan, nan, nan, 0.4446587673371911, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.006616683054736152, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7591056617381897, 0.0, nan, nan, nan, 0.9723896967069919, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.10986703988803359, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2233 | 24.0 | 480 | 0.5327 | 0.3732 | 0.5320 | 0.8150 | [0.7304387937496396, 0.7671660907254384, 0.8900531080959065, 0.13089345532723365, 0.9200685409240942, 0.0639594661917936, 0.9317053812658668, 0.8385454782000618, 0.9080253362935876, 0.9391328246249353, nan, 0.7145314713620724, 0.2300458162527128, 0.0, 0.0, 0.6243628419848122, 0.0, 0.48096253426743835, 0.0, nan, 0.8382110469909316, 0.4168462683582554, 0.9436991222884169, nan, nan, 0.6313515710530284, 0.32885029389709974, nan, nan, nan, nan, nan, 0.27737531794326925, nan, 0.0, nan, 0.43829219479653103, nan, nan, nan, nan, nan, nan, 0.23342261710328607, nan, nan, 0.9124139714120385, nan, nan, nan, nan, nan, 0.33922926388679814, 0.3039938946832867, nan, nan, nan, 0.22975206611570248, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 2.0485086856768273e-05, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6817692445720438, 0.0, nan, nan, nan, 0.9702880561138039, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.07907627711686493, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.782914253425625, 0.8358264292888778, 0.9507327829971548, 0.8536028692533421, 0.9756874575935562, 0.8933965057743559, 0.9436632126064023, 0.9811618746788956, 0.9959176365264101, 0.9645021501270152, nan, 0.850210716435882, 0.29728887503895296, nan, nan, 0.6683741648106905, nan, 0.6530190239867659, nan, nan, 0.9373127448720904, 0.41685182551814853, 0.950703257433454, nan, nan, 0.8722512045792125, 0.9484707261260256, nan, nan, nan, nan, nan, 0.27864928680014234, nan, 0.0, nan, 0.44272237196765496, nan, nan, nan, nan, nan, nan, 0.2429125025494595, nan, nan, 0.9306902094740543, nan, nan, nan, nan, nan, 0.8126577713667508, 0.3039938946832867, nan, nan, nan, 0.22981537613667677, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 2.0485086856768273e-05, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6850883519653804, 0.0, nan, nan, nan, 0.9702880561138039, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.07907627711686493, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1711 | 25.0 | 500 | 0.5298 | 0.3593 | 0.5328 | 0.8233 | [0.7717828837162787, 0.7668056952936889, 0.8858525940371548, 0.1333056046584174, 0.9184760882541386, 0.06771366791851599, 0.9373192945911786, 0.8389624688319679, 0.9213019915550088, 0.9430745863495347, nan, 0.7104245138959585, 0.21391925050189606, 0.0, 0.0, 0.6666320058230217, 0.0, 0.4864623623921452, 0.0, nan, 0.8338013023478105, 0.4565378718865954, 0.9413290851160674, nan, nan, 0.6328667467766556, 0.33555309845705383, nan, nan, nan, nan, nan, 0.3767682613168724, nan, 0.0, nan, 0.4220367278797997, nan, nan, nan, nan, nan, nan, 0.2552573861437234, nan, nan, 0.8935682127654354, nan, nan, nan, nan, 0.0, 0.36667207002755714, 0.14678198931569575, nan, nan, nan, 0.21886480529022778, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6621209402476225, 0.0, nan, nan, nan, 0.9663212094941613, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.11686494051784464, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8176207797711541, 0.8297425561030854, 0.9538848678009496, 0.8359960873818063, 0.9768231494774361, 0.8809594314480308, 0.9513825417625618, 0.9859760622609556, 0.992300805729633, 0.9690514536186887, nan, 0.840276941601445, 0.29884699283265814, nan, nan, 0.7139198218262807, nan, 0.6761786600496278, nan, nan, 0.9190399367859612, 0.4565439581926126, 0.9474962202776378, nan, nan, 0.8824493714451328, 0.9315873193056874, nan, nan, nan, nan, nan, 0.3790471261765372, nan, 0.0, nan, 0.42587601078167114, nan, nan, nan, nan, nan, nan, 0.2690189679787885, nan, nan, 0.914766162656352, nan, nan, nan, nan, nan, 0.8157230436350523, 0.14678198931569575, nan, nan, nan, 0.218884908606595, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6653443923548503, 0.0, nan, nan, nan, 0.9663212094941613, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.11686494051784464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1064 | 26.0 | 520 | 0.5547 | 0.3501 | 0.5263 | 0.8080 | [0.7470273583796584, 0.7596318506288247, 0.8884138203746725, 0.12933705867411735, 0.9229628402170761, 0.06402471055451661, 0.958222732640657, 0.8332906242993049, 0.9030285286750593, 0.9394159640792067, nan, 0.7054126918291166, 0.18507268387936646, 0.0, 0.0, 0.6355110972178806, 0.0, 0.49351491569390404, 0.0, nan, 0.836078431372549, 0.335373006985549, 0.9512856432735325, nan, nan, 0.6171494711121114, 0.29505659495473724, nan, nan, 0.0, nan, nan, 0.39546615787601463, nan, 0.0, nan, 0.4333889816360601, nan, nan, nan, nan, nan, nan, 0.2178094739596964, nan, nan, 0.8946256112844961, nan, nan, nan, nan, 0.0, 0.5360605344052968, 0.16128211650979393, nan, nan, nan, 0.1855423900064297, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6936120581374484, 0.0, nan, nan, nan, 0.9718511513049874, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.11546536039188243, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7854260841926826, 0.8342928213666975, 0.9455465294187275, 0.8301271600912944, 0.9731743752966631, 0.9022801302931596, 0.9739238638490931, 0.9900291134664053, 0.9940913160250672, 0.9656975875408856, nan, 0.8191450933172787, 0.2658148956061078, nan, nan, 0.6791759465478842, nan, 0.62944582299421, nan, nan, 0.9125209890363152, 0.335378968324505, 0.964447702386952, nan, nan, 0.8692533420280404, 0.9336803036222582, nan, nan, nan, nan, nan, 0.3955429051977876, nan, 0.0, nan, 0.43733153638814015, nan, nan, nan, nan, nan, nan, 0.22632401930790672, nan, nan, 0.9143768523634902, nan, nan, nan, nan, nan, 0.8175261449693473, 0.16128211650979393, nan, nan, nan, 0.1855423900064297, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6969888207717274, 0.0, nan, nan, nan, 0.9718511513049874, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.11546536039188243, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1263 | 27.0 | 540 | 0.4958 | 0.3715 | 0.5212 | 0.8227 | [0.7622122950445686, 0.7522242153546104, 0.8918025796823367, 0.13244768800957865, 0.9252054809725452, 0.06880239312671745, 0.9440097666847531, 0.839881597463727, 0.8936026502846482, 0.9376979254184709, nan, 0.710828953530728, 0.14292967758314293, 0.0, 0.0, 0.6028598267404237, 0.0, 0.45043536503683856, 0.0, nan, 0.8413558084342482, 0.4568379049709616, 0.9470273699474352, nan, nan, 0.5979166935078656, 0.33917399941780596, nan, nan, nan, nan, nan, 0.41904088908874826, nan, 0.0, nan, 0.41382765531062127, nan, nan, nan, nan, nan, nan, 0.21008512573916432, nan, nan, 0.9313955191096793, nan, nan, nan, nan, nan, 0.41842984409799555, 0.15161536504706183, nan, nan, nan, 0.23878954607977992, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.002622091117666339, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6507267181051498, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0741777466759972, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8112065616612516, 0.8423990346696507, 0.9535867568598396, 0.7574176719921748, 0.9709291998031467, 0.8785904649096832, 0.9579291055048397, 0.9880311304778033, 0.9949149507609669, 0.9635889687691975, nan, 0.8223961468994582, 0.17544406357120598, nan, nan, 0.643207126948775, nan, 0.5562448304383788, nan, nan, 0.910413854410167, 0.45686835650040886, 0.9574838502771796, nan, nan, 0.840642321486795, 0.9266897360049116, nan, nan, nan, nan, nan, 0.4219684962965359, nan, 0.0, nan, 0.41745283018867924, nan, nan, nan, nan, nan, nan, 0.21979740295057448, nan, nan, 0.9585321746119455, nan, nan, nan, nan, nan, 0.8130183916336098, 0.15161536504706183, nan, nan, nan, 0.23918434830531826, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.002622091117666339, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6538946988820772, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0741777466759972, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1338 | 28.0 | 560 | 0.5189 | 0.3552 | 0.5213 | 0.8060 | [0.7641336800539343, 0.7669235627004126, 0.8928123290094582, 0.12575472631891518, 0.9216441115446635, 0.06773655919912584, 0.9097365555573613, 0.8380640347747105, 0.9187775239230489, 0.9439952226472345, nan, 0.7035067988958185, 0.2130331240528253, 0.0, 0.0, 0.5849253575529805, 0.0, 0.47883258499037845, 0.0, nan, 0.8306187929717341, 0.2920097583952861, 0.9483015966348546, nan, nan, 0.625896326041042, 0.29212208836732134, nan, nan, nan, nan, nan, 0.3975157283432812, nan, 0.0, nan, 0.38842422214787553, nan, nan, nan, nan, nan, nan, 0.22568771793878342, nan, nan, 0.9575582533777168, nan, nan, nan, nan, nan, 0.2686851829777089, 0.06614093106079878, nan, nan, nan, 0.23198095063650517, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0010857096034087184, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6822178359949758, 0.0, nan, nan, nan, 0.9685673378781311, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03219034289713086, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8055604605170221, 0.8432214529839629, 0.9513903806613679, 0.8284969025105967, 0.9753292778455633, 0.9086467278649689, 0.9246181629978747, 0.9831979144863281, 0.993661593554163, 0.9711102624981321, nan, 0.8285370258880193, 0.30663758180118417, nan, nan, 0.6239420935412027, nan, 0.6174524400330852, nan, nan, 0.8949395844993909, 0.2920162465782644, 0.9605534429834609, nan, nan, 0.8696065645038583, 0.9416196907964502, nan, nan, nan, nan, nan, 0.3985186143545622, nan, 0.0, nan, 0.3911725067385445, nan, nan, nan, nan, nan, nan, 0.23760962675912706, nan, nan, 0.9826191791832019, nan, nan, nan, nan, nan, 0.8128380815001803, 0.06614093106079878, nan, nan, nan, 0.23266280885459723, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0010857096034087184, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6855391272989542, 0.0, nan, nan, nan, 0.9685673378781311, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03219034289713086, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.121 | 29.0 | 580 | 0.5205 | 0.3730 | 0.5243 | 0.8166 | [0.7393700064285058, 0.7501469335860191, 0.8925518016900663, 0.12732170707500354, 0.9210242099953948, 0.0680527914528124, 0.9087242371158546, 0.8360235965253469, 0.9161887812273416, 0.9430380769292903, nan, 0.6958363467300341, 0.23164088036609284, 0.0, 0.0, 0.5418580375782881, 0.0, 0.4536802030456853, 0.0, nan, 0.8343651834456678, 0.46940253738307375, 0.9490845133940651, nan, nan, 0.592327031704052, 0.3505386594503726, nan, nan, nan, nan, nan, 0.32457871074166317, nan, 0.0, nan, 0.4567323755429335, nan, nan, nan, nan, nan, nan, 0.20620378247496893, nan, nan, 0.916198971690516, nan, nan, nan, nan, nan, 0.27076610493605835, 0.10429916051895192, nan, nan, nan, 0.21484339120051438, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0015158964274008522, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6853015075376885, 0.0, nan, nan, nan, 0.9670173779406549, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.044086773967809655, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7818989264020342, 0.8431877473153435, 0.946475934117482, 0.8783827844799479, 0.9784335023281684, 0.9619484749777909, 0.9254055125480394, 0.9815995280954465, 0.9954879140555059, 0.9692174865928374, nan, 0.810957254665864, 0.3312558429417264, nan, nan, 0.5780623608017817, nan, 0.5913978494623656, nan, nan, 0.9007342047212985, 0.4694087951935725, 0.964172813487882, nan, nan, 0.821523022859834, 0.9543310822124239, nan, nan, nan, nan, nan, 0.32457871074166317, nan, 0.0, nan, 0.46057951482479786, nan, nan, nan, nan, nan, nan, 0.21422258481201986, nan, nan, 0.9287059828201135, nan, nan, nan, nan, nan, 0.8169852145690588, 0.10429916051895192, nan, nan, nan, 0.21484339120051438, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0015158964274008522, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6885142445005409, 0.0, nan, nan, nan, 0.9670173779406549, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.044086773967809655, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1153 | 30.0 | 600 | 0.4982 | 0.3552 | 0.5072 | 0.8008 | [0.7667386072252623, 0.7327063027086672, 0.8846346406970453, 0.1478246355847335, 0.9220984554975982, 0.07594007793916696, 0.9382995180579521, 0.8147790885227236, 0.9259321127889883, 0.9418627197518097, nan, 0.6946953781512605, 0.14309327036599764, 0.0, 0.0, 0.5459391658827218, 0.0, 0.47314323607427056, 0.0, nan, 0.8329925849073876, 0.2911839596859127, 0.9473065798987708, nan, nan, 0.5423992673992674, 0.29088924342933914, nan, nan, nan, nan, nan, 0.3970201014706827, nan, 0.0, nan, 0.3996655518394649, nan, nan, nan, nan, nan, nan, 0.19646041075084197, nan, nan, 0.8822862694300518, nan, nan, nan, nan, nan, 0.40010669511869834, 0.07758839989824472, nan, nan, nan, 0.07081840727473133, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.006985414618157981, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.624102656137832, 0.0, nan, nan, nan, 0.969027071757891, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04758572428271519, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8170866294674389, 0.8460156529125068, 0.960535372178358, 0.8663188783827844, 0.9765377704912305, 0.8886585726976607, 0.955115569699706, 0.9804387951211159, 0.9924798567591764, 0.9678062063125736, nan, 0.7963275135460566, 0.18884387659707075, nan, nan, 0.5816258351893095, nan, 0.5901571546732837, nan, nan, 0.8987587660092846, 0.29118525365281384, 0.9603701837174142, nan, nan, 0.7510234394812159, 0.9667355025953005, nan, nan, nan, nan, nan, 0.39990943493870684, nan, 0.0, nan, 0.4026280323450135, nan, nan, nan, nan, nan, nan, 0.20225712149024408, nan, nan, 0.8895991359823178, nan, nan, nan, nan, nan, 0.8113956004327443, 0.07758839989824472, nan, nan, nan, 0.07081840727473133, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.006985414618157981, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6270284890010819, 0.0, nan, nan, nan, 0.969027071757891, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04758572428271519, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1334 | 31.0 | 620 | 0.4598 | 0.3664 | 0.5266 | 0.8349 | [0.7600503091919086, 0.7460795921326052, 0.8719402654341993, 0.15596769368830393, 0.9146058394957891, 0.08001224609323004, 0.9351090192335848, 0.8347202249188063, 0.9095788199103315, 0.9425698071108668, nan, 0.7024003361521088, 0.1247807567025808, 0.0, 0.0, 0.5938413361169103, 0.0, 0.4739010989010989, 0.0, nan, 0.8385410334346505, 0.569279035870454, 0.9480098943107713, nan, nan, 0.597444659798021, 0.40289379386884067, nan, nan, nan, nan, nan, 0.48777838131450296, nan, 0.0, nan, 0.47149049683227745, nan, nan, nan, nan, nan, nan, 0.19018323741483098, nan, nan, 0.9425041694978071, nan, nan, nan, nan, nan, 0.3835511797657444, 0.10022894937674892, nan, nan, nan, 0.2044640396803527, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.004527204195345788, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6230258435032304, 0.0, nan, nan, nan, 0.9696969696969697, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0741777466759972, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8003028323209492, 0.8325906851014203, 0.9660328886511795, 0.850016302575807, 0.9753118056627345, 0.8899911163754812, 0.949499509971259, 0.9830076303921755, 0.9953088630259624, 0.9679224293944777, nan, 0.8051173991571342, 0.15518853225303833, nan, nan, 0.6335189309576837, nan, 0.5707196029776674, nan, nan, 0.9083067197840187, 0.569279035870454, 0.9657305172492784, nan, nan, 0.8487120965112488, 0.9522939108109617, nan, nan, nan, nan, nan, 0.49377365203609663, nan, 0.0, nan, 0.47641509433962265, nan, nan, nan, nan, nan, nan, 0.19545856278468965, nan, nan, 0.9580926307329081, nan, nan, nan, nan, nan, 0.8148214929679048, 0.10022894937674892, nan, nan, nan, 0.2044640396803527, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.004527204195345788, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6259466282005048, 0.0, nan, nan, nan, 0.9696969696969697, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0741777466759972, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0582 | 32.0 | 640 | 0.4668 | 0.3797 | 0.5332 | 0.8510 | [0.7672225402489522, 0.756542566524216, 0.8918801669804372, 0.12513134014710098, 0.9212230186158148, 0.07101034301408286, 0.9319699499165276, 0.8339364761381628, 0.9294062173722677, 0.9406139257916795, nan, 0.7105563628814615, 0.17794928335170893, 0.0, 0.0, 0.5558107967004281, 0.0, 0.5188163396590544, nan, nan, 0.8339010888740191, 0.7231027484556868, 0.9488651776833349, nan, nan, 0.6194157056425178, 0.5115702416861331, nan, nan, nan, nan, nan, 0.37192722111103943, nan, 0.0, nan, 0.4285237140948564, nan, nan, nan, nan, nan, nan, 0.20902878170587463, nan, nan, 0.9574062301335029, nan, nan, nan, nan, nan, 0.3562329034779211, 0.04477232256423302, nan, nan, nan, 0.20391292367043262, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.71873317782164, 0.0, nan, nan, nan, 0.9690533422653058, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.06018194541637509, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8105576352592174, 0.8240328158389678, 0.9553666545376431, 0.8542549722856211, 0.9757340500811, 0.8996150429375185, 0.9466969860479457, 0.9822274656061499, 0.9881826320501342, 0.9651330754287801, nan, 0.824262492474413, 0.2514802119040199, nan, nan, 0.5927616926503341, nan, 0.6670802315963607, nan, nan, 0.9026767194547789, 0.7235815350705678, 0.9615155541302057, nan, nan, 0.8984983516284462, 0.9442149913489981, nan, nan, nan, nan, nan, 0.3729016398745027, nan, 0.0, nan, 0.43227762803234504, nan, nan, nan, nan, nan, nan, 0.21626215242368618, nan, nan, 0.983473150148189, nan, nan, nan, nan, nan, 0.8218535881716552, 0.04477232256423302, nan, nan, nan, 0.20391292367043262, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.7222322394518572, 0.0, nan, nan, nan, 0.9690533422653058, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.06018194541637509, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0811 | 33.0 | 660 | 0.4840 | 0.3762 | 0.5301 | 0.8580 | [0.7627208167071746, 0.7549441259772555, 0.895652823734063, 0.13903054076772206, 0.9204709940919741, 0.06561774230479867, 0.9537214180030675, 0.8317635125344153, 0.9277675121787334, 0.9368543764774456, nan, 0.7048375300386585, 0.13202185792349727, 0.0, 0.0, 0.5625980545967995, 0.0, 0.5168431183830606, nan, nan, 0.838258117525334, 0.7828351911888796, 0.9454438352440074, nan, nan, 0.6192107092096448, 0.5656764723371361, nan, nan, 0.0, nan, nan, 0.38528964647281433, nan, 0.0, nan, 0.4020066889632107, nan, nan, nan, nan, nan, nan, 0.21716514954486346, nan, nan, 0.955712328437853, nan, nan, nan, nan, nan, 0.5480396902226524, 0.058000508776392776, nan, nan, nan, 0.19041058142739048, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6510229720028715, 0.0, nan, nan, nan, 0.9689613954893539, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.07067879636109167, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8159565263455291, 0.8247574877142838, 0.9457788805934161, 0.8089338115422237, 0.9758971237875033, 0.8910275392360083, 0.9689024457389523, 0.9830076303921755, 0.988898836168308, 0.9606999950190108, nan, 0.8122817579771222, 0.18822062947958865, nan, nan, 0.5989977728285077, nan, 0.6662531017369727, nan, nan, 0.9069239126856089, 0.7833152618294287, 0.9559261465157832, nan, nan, 0.8956997427815817, 0.9291734107272422, nan, nan, nan, nan, nan, 0.38528964647281433, nan, 0.0, nan, 0.4049865229110512, nan, nan, nan, nan, nan, nan, 0.22707186076551772, nan, nan, 0.9986562515697995, nan, nan, nan, nan, nan, 0.8166245943021998, 0.058000508776392776, nan, nan, nan, 0.19041058142739048, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6540750090155066, 0.0, nan, nan, nan, 0.9689613954893539, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.07067879636109167, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1979 | 34.0 | 680 | 0.5273 | 0.3690 | 0.5275 | 0.8497 | [0.7361887307275058, 0.7553466913704463, 0.8934074386522095, 0.11533178813632071, 0.9225648929177093, 0.06224019887521395, 0.9488118586583159, 0.8314142880180616, 0.9208451172849775, 0.9383787452729565, nan, 0.7049095339312561, 0.14388311045071817, 0.0, 0.0, 0.5418930213121604, 0.0, 0.5, 0.0, nan, 0.8429259135910866, 0.7649717614463822, 0.949005424954792, nan, nan, 0.6159888154550076, 0.5454056570456224, nan, nan, nan, nan, nan, 0.18012743797910535, nan, 0.0, nan, 0.4447412353923205, nan, nan, nan, nan, nan, nan, 0.22157168878480354, nan, nan, 0.9460020896072767, nan, nan, nan, nan, nan, 0.4691243287897563, 0.13253625031798524, nan, nan, nan, 0.1894002020758703, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6284996410624551, 0.0, nan, nan, nan, 0.9677266816408558, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.06088173547935619, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7908647054668738, 0.829968384082835, 0.9471247638128389, 0.876100423866971, 0.9726822421469818, 0.9045010364228605, 0.964233407847067, 0.9810286758129888, 0.9910832587287377, 0.9640704643942287, nan, 0.8186032510535822, 0.18105328762854472, nan, nan, 0.5776169265033407, nan, 0.674937965260546, nan, nan, 0.9166364863530109, 0.7656244445234456, 0.961744628212764, nan, nan, 0.8779118211788574, 0.9481358486353743, nan, nan, nan, nan, nan, 0.18012743797910535, nan, 0.0, nan, 0.44878706199460916, nan, nan, nan, nan, nan, nan, 0.23155890951118363, nan, nan, 0.9665193148138845, nan, nan, nan, nan, nan, 0.8191489361702128, 0.13253625031798524, nan, nan, nan, 0.1894002020758703, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6314460872701045, 0.0, nan, nan, nan, 0.9677266816408558, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.06088173547935619, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.112 | 35.0 | 700 | 0.4803 | 0.3779 | 0.5268 | 0.8542 | [0.7485612827037905, 0.7485955783172517, 0.8970574231025616, 0.11843378794544655, 0.9209662185907573, 0.06654696071735443, 0.9500829241325486, 0.8326367934423056, 0.9140421890940205, 0.9409130589414465, nan, 0.7031992067219873, 0.1374733349134866, 0.0, 0.0, 0.5441161115171765, 0.0, 0.5035658914728682, nan, nan, 0.8403203300370078, 0.8157481014344717, 0.9504539090375321, nan, nan, 0.6060380359656377, 0.5850991171081126, nan, nan, nan, nan, nan, 0.27114532457871077, nan, 0.0, nan, 0.4269963247577681, nan, nan, nan, nan, nan, nan, 0.2132534826194506, nan, nan, 0.8645085285307866, nan, nan, nan, nan, nan, 0.48516129032258065, 0.10735181887560417, nan, nan, nan, 0.19270689813539083, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6325139063341109, 0.0, nan, nan, nan, 0.9681470097594935, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.018894331700489854, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7947052902952394, 0.8286841981084379, 0.9498340661893969, 0.8777306814476687, 0.9768056772946072, 0.894432928634883, 0.9651694178018082, 0.9818849542366753, 0.9946284691136974, 0.9663617194374803, nan, 0.811198073449729, 0.1807416640698037, nan, nan, 0.5802895322939866, nan, 0.6716294458229942, nan, nan, 0.9120600533368453, 0.8162483557893988, 0.9641269986713703, nan, nan, 0.8695975075172988, 0.9801724619076855, nan, nan, nan, nan, nan, 0.27114532457871077, nan, 0.0, nan, 0.4305929919137466, nan, nan, nan, nan, nan, nan, 0.22272078319396288, nan, nan, 0.8662781936002412, nan, nan, nan, nan, nan, 0.8135593220338984, 0.10735181887560417, nan, nan, nan, 0.19270689813539083, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.635593220338983, 0.0, nan, nan, nan, 0.9681470097594935, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.018894331700489854, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1137 | 36.0 | 720 | 0.5998 | 0.3441 | 0.5032 | 0.7896 | [0.736777443081168, 0.7505535302591466, 0.8984463748747077, 0.11536311648105947, 0.9227343906956519, 0.06314684580665476, 0.9513026790844925, 0.8316456924719355, 0.9196712619300106, 0.941566635390041, nan, 0.7071084149945559, 0.1096790497851908, 0.0, 0.0, 0.5237945821566782, 0.0, 0.4988647421342848, 0.0, nan, 0.845520801700577, 0.21572391604786853, 0.9476931452161684, nan, nan, 0.605464044331165, 0.27296944109368715, nan, nan, nan, nan, nan, 0.13390691205485655, nan, 0.0, nan, 0.4195056780227121, nan, nan, nan, nan, nan, nan, 0.21503837647977103, nan, nan, 0.8408783614602634, nan, nan, nan, nan, nan, 0.48806194880619486, 0.07453574154159247, nan, nan, nan, 0.19656471020483146, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6148600143575018, 0.0, nan, nan, nan, 0.9650864956456634, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.02099370188943317, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7968507204407402, 0.8306492385889459, 0.9431002661078548, 0.8747962178024128, 0.9763514005410553, 0.8907314184187148, 0.9661990287520235, 0.9783266416760223, 0.9938048343777977, 0.9663451161400655, nan, 0.8210716435881998, 0.13524462449361171, nan, nan, 0.5576837416481069, nan, 0.6360628618693135, nan, nan, 0.9167023343100781, 0.2157248746844893, 0.9570715169285747, nan, nan, 0.8648969314929537, 0.985139811352347, nan, nan, nan, nan, nan, 0.13390691205485655, nan, 0.0, nan, 0.42318059299191374, nan, nan, nan, nan, nan, nan, 0.2247603508056292, nan, nan, 0.8434972622695535, nan, nan, nan, nan, nan, 0.8182473855030653, 0.07453574154159247, nan, nan, nan, 0.19656471020483146, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6177425171294627, 0.0, nan, nan, nan, 0.9650864956456634, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.02099370188943317, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0789 | 37.0 | 740 | 0.5828 | 0.3551 | 0.5097 | 0.8256 | [0.723218907726155, 0.7585395161017704, 0.8937781853354605, 0.11309386929126615, 0.92243925941221, 0.05858434175499498, 0.9553108948657376, 0.8234586128317875, 0.9270341734444556, 0.9392806267806267, nan, 0.7031737773152965, 0.11183851609383524, 0.0, 0.0, 0.5486744210416011, 0.0, 0.527479674796748, 0.0, nan, 0.8464739111948004, 0.5722068423087349, 0.9432926552647098, nan, nan, 0.6260963724959394, 0.39379720501108045, nan, nan, nan, nan, nan, 0.1366562085583983, nan, 0.0, nan, 0.42499164717674576, nan, nan, nan, nan, nan, nan, 0.219196776709124, nan, nan, 0.8514094243968062, nan, nan, nan, nan, nan, 0.5356593731519811, 0.058000508776392776, nan, nan, nan, 0.15321025075778452, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.557619816908993, 0.0, nan, nan, nan, 0.965414876988349, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04548635409377187, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7894211753072468, 0.8319502773976527, 0.9357746281285209, 0.8017606781871536, 0.9756845455630848, 0.889546935149541, 0.9707854775302551, 0.9764047723250814, 0.99183527305282, 0.9634063324976341, nan, 0.8136664659843468, 0.12776565908382673, nan, nan, 0.5830734966592428, nan, 0.6708023159636063, nan, nan, 0.9176242057090179, 0.572229727327669, 0.9526274797269437, nan, nan, 0.8902474368728037, 0.9719540101579506, nan, nan, nan, nan, nan, 0.1366562085583983, nan, 0.0, nan, 0.42857142857142855, nan, nan, nan, nan, nan, nan, 0.22931538513835067, nan, nan, 0.8583915205706535, nan, nan, nan, nan, nan, 0.8166245943021998, 0.058000508776392776, nan, nan, nan, 0.15321025075778452, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5601334294987378, 0.0, nan, nan, nan, 0.965414876988349, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04548635409377187, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0993 | 38.0 | 760 | 0.5783 | 0.3647 | 0.5163 | 0.8217 | [0.744229631090945, 0.7515311812492002, 0.893370607028754, 0.11697511732931905, 0.922223077853929, 0.061180108733602676, 0.9493174951637794, 0.8273624007968383, 0.9331375725664911, 0.9382785956964892, nan, 0.7073576855031741, 0.16401715871814282, 0.0, 0.0, 0.5784977601833524, 0.0, 0.4937926753569212, nan, nan, 0.8459956448100653, 0.536201357134287, 0.9458333333333333, nan, nan, 0.6152431678397058, 0.37234376412891423, nan, nan, nan, nan, nan, 0.197399488954297, nan, 0.0, nan, 0.4300500834724541, nan, nan, nan, nan, nan, nan, 0.21321891785667496, nan, nan, 0.819296114985414, nan, nan, nan, nan, nan, 0.47766104213095617, 0.1480539302976342, nan, nan, nan, 0.16459998162946635, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.5617483396158679, 0.0, nan, nan, nan, 0.9657432583310347, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03778866340097971, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7993713801384377, 0.8313031285601612, 0.931662450734975, 0.8614281056406913, 0.9764737058208577, 0.908054486230382, 0.9618933829602141, 0.9799630848857344, 0.9900447627573858, 0.9629082335751881, nan, 0.8184226369656833, 0.20255531318167652, nan, nan, 0.6183741648106904, nan, 0.6579818031430935, nan, nan, 0.9209495275409081, 0.5362037399125458, 0.9567966280295047, nan, nan, 0.8787994058616817, 0.9767399676285092, nan, nan, nan, nan, nan, 0.197399488954297, nan, 0.0, nan, 0.4339622641509434, nan, nan, nan, nan, nan, nan, 0.22129308586579646, nan, nan, 0.8217963530416437, nan, nan, nan, nan, nan, 0.8115759105661738, 0.1480539302976342, nan, nan, nan, 0.16459998162946635, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5642805625676163, 0.0, nan, nan, nan, 0.9657432583310347, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03778866340097971, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.3402 | 39.0 | 780 | 0.5565 | 0.3831 | 0.5215 | 0.8438 | [0.7618681616782711, 0.7481570099257434, 0.8938716265253422, 0.11751506885476704, 0.9240094373504694, 0.062395446570647516, 0.9583671833533726, 0.8151943909294761, 0.9299090602896598, 0.9397572839067272, nan, 0.7031965874980252, 0.13659793814432988, 0.0, 0.0, 0.5774045482996036, 0.0, 0.4987088444157521, nan, nan, 0.8421036714449888, 0.7222799584299304, 0.9458114709607381, nan, nan, 0.6021759298304799, 0.49065952601838575, nan, nan, nan, nan, nan, 0.18077433127405634, nan, 0.0, nan, 0.43974700399467376, nan, nan, nan, nan, nan, nan, 0.20208990536277602, nan, nan, 0.8614589445561118, nan, nan, nan, nan, nan, 0.5874071177160736, 0.3108623759857543, nan, nan, nan, 0.06797097455681088, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.5313285457809694, 0.0, nan, nan, nan, 0.9685542026244237, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03778866340097971, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8182697061731883, 0.8452505342348476, 0.9287207971837284, 0.8708835996087382, 0.9739577114934931, 0.9056855196920344, 0.9742817500082589, 0.9823035792438111, 0.9886839749328559, 0.9655647611615666, nan, 0.8039133052378086, 0.1816765347460268, nan, nan, 0.6163697104677061, nan, 0.6389578163771712, nan, nan, 0.9167681822671452, 0.7226972163958904, 0.9579878132588079, nan, nan, 0.8406694924464732, 0.9741167606184071, nan, nan, nan, nan, nan, 0.18077433127405634, nan, 0.0, nan, 0.4450808625336927, nan, nan, nan, nan, nan, nan, 0.20905568019579848, nan, nan, 0.8665544783242075, nan, nan, nan, nan, nan, 0.8124774612333213, 0.3108623759857543, nan, nan, nan, 0.06797097455681088, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5336278398846015, 0.0, nan, nan, nan, 0.9685542026244237, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.03778866340097971, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0853 | 40.0 | 800 | 0.5029 | 0.3829 | 0.5218 | 0.8501 | [0.766705401440604, 0.7591361517264135, 0.8970119455070129, 0.1257673090649536, 0.9216664515827885, 0.0652215882277232, 0.956992683177808, 0.8262830457242472, 0.928487454233986, 0.9380904620163064, nan, 0.701473750458908, 0.13925570228091236, 0.0, 0.0, 0.5762888749739095, 0.0, 0.5176544766708702, nan, nan, 0.8428947288837814, 0.7494892520874045, 0.94684595253136, nan, nan, 0.6254142794748606, 0.5120569860454254, nan, nan, nan, nan, nan, 0.26108613384222273, nan, 0.0, nan, 0.41569282136894825, nan, nan, nan, nan, nan, nan, 0.215156056558285, nan, nan, 0.8447320702807478, nan, nan, nan, nan, nan, 0.553144807411019, 0.06334266090053421, nan, nan, nan, 0.1431983099109029, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.578711182911506, 0.0, nan, nan, nan, 0.9696312934284326, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.007697690692792162, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8213598318971607, 0.8375353066878788, 0.9375676777596086, 0.8617541571568308, 0.9774812683639922, 0.9003553449807521, 0.9729107707216086, 0.9831027724392518, 0.9898657117278424, 0.9628086137906988, nan, 0.8052378085490668, 0.1807416640698037, nan, nan, 0.6149220489977728, nan, 0.6790736145574855, nan, nan, 0.9176571296875514, 0.7499155675637242, 0.9613781096806707, nan, nan, 0.8818968952650075, 0.9789585310040744, nan, nan, nan, nan, nan, 0.26108613384222273, nan, 0.0, nan, 0.4194743935309973, nan, nan, nan, nan, nan, nan, 0.22448840845740703, nan, nan, 0.8483071281458784, nan, nan, nan, nan, nan, 0.8182473855030653, 0.06334266090053421, nan, nan, nan, 0.1431983099109029, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.581319870176704, 0.0, nan, nan, nan, 0.9696312934284326, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.007697690692792162, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.159 | 41.0 | 820 | 0.5570 | 0.3686 | 0.5222 | 0.8319 | [0.7522373552874894, 0.7688653153540742, 0.8954077346952489, 0.12210388639760837, 0.9212171314631614, 0.06570608142754589, 0.9486536373507057, 0.8355657526942528, 0.928545033090335, 0.9356612592796261, nan, 0.7038423022189427, 0.1521637971149372, 0.0, 0.0, 0.5656396866840732, 0.0, 0.5118413262285376, nan, nan, 0.8451802531341851, 0.6051439972626967, 0.9474750202538482, nan, nan, 0.639642178386526, 0.40312683390973886, nan, nan, nan, nan, nan, 0.2328168968528641, nan, 0.0, nan, 0.4279038718291055, nan, nan, nan, nan, nan, nan, 0.2237995551485019, nan, nan, 0.7813139235740729, nan, nan, nan, nan, nan, 0.4615930279691933, 0.06436021368608497, nan, nan, nan, 0.20740332506659317, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6137832017229002, 0.0, nan, nan, nan, 0.9738477098685161, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.05108467459762071, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8063020906907755, 0.8433090877223731, 0.9346347921772182, 0.8522986631887838, 0.976744524654706, 0.9486230381995854, 0.962119126537534, 0.9840351645005994, 0.989794091316025, 0.9605173587474473, nan, 0.8039735099337748, 0.2038018074166407, nan, nan, 0.6031180400890869, nan, 0.7150537634408602, nan, nan, 0.9277977150758898, 0.6051628212876391, 0.964447702386952, nan, nan, 0.8839890591602362, 0.9872467488976949, nan, nan, nan, nan, nan, 0.2328168968528641, nan, 0.0, nan, 0.43194070080862534, nan, nan, nan, nan, nan, nan, 0.2325786933170168, nan, nan, 0.7818732104284924, nan, nan, nan, nan, nan, 0.8213126577713667, 0.06436021368608497, nan, nan, nan, 0.20740332506659317, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6166606563288857, 0.0, nan, nan, nan, 0.9738477098685161, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.05108467459762071, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0892 | 42.0 | 840 | 0.5528 | 0.3809 | 0.5345 | 0.8409 | [0.7550132433091331, 0.7684195080221917, 0.891028117441548, 0.12294202695769788, 0.9174699749313205, 0.06435016780883861, 0.9546742363093658, 0.8348650525737729, 0.931799756789623, 0.9379775935759617, nan, 0.7003735602365881, 0.19900497512437812, 0.0, 0.0, 0.5782881002087683, 0.0, 0.5285456730769231, nan, nan, 0.8407328683052421, 0.6782295428599351, 0.9482487298232993, nan, nan, 0.640155314674001, 0.45160668380462726, nan, nan, nan, nan, nan, 0.24976550118058027, nan, 0.0, nan, 0.41750167000668004, nan, nan, nan, nan, nan, nan, 0.2526933746209922, nan, nan, 0.8163042797167742, nan, nan, nan, nan, nan, 0.5415925002966655, 0.2299669295344696, nan, nan, nan, 0.20271883898227244, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6668760093307016, 0.0, nan, nan, nan, 0.9728757010941667, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04618614415675298, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8066111032631728, 0.8295773983268506, 0.9302508077491308, 0.859471796543854, 0.9783607015663812, 0.9481788569736452, 0.9703119666119743, 0.983559454265218, 0.9878245299910474, 0.9619452423251258, nan, 0.8127031908488862, 0.28669367404175755, nan, nan, 0.6169265033407573, nan, 0.7274607113316791, nan, nan, 0.9246040891581339, 0.6784857264744569, 0.9662344802309066, nan, nan, 0.8959171104590081, 0.9804933861695596, nan, nan, nan, nan, nan, 0.24976550118058027, nan, 0.0, nan, 0.4211590296495957, nan, nan, nan, nan, nan, nan, 0.26629954449656673, nan, nan, 0.8180162756819209, nan, nan, nan, nan, nan, 0.8229354489722323, 0.2299669295344696, nan, nan, nan, 0.20271883898227244, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6701226108907321, 0.0, nan, nan, nan, 0.9728757010941667, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04618614415675298, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.2616 | 43.0 | 860 | 0.5823 | 0.3767 | 0.5197 | 0.8231 | [0.7426302692908415, 0.7599637848524602, 0.8876966796040002, 0.11714927938648684, 0.9210419232799578, 0.0629228223729942, 0.9544560801268821, 0.8332577499919018, 0.9320981404610037, 0.9367107052652031, nan, 0.7061555131314173, 0.15169471438729557, 0.0, 0.0, 0.5431944009192521, 0.0, 0.5342242503259452, nan, nan, 0.8439002267573696, 0.5388078139997867, 0.9476397178513294, nan, nan, 0.6305658612227113, 0.3739696661128678, nan, nan, nan, nan, nan, 0.17669890351586506, nan, 0.0, nan, 0.41438127090301, nan, nan, nan, nan, nan, nan, 0.22053927009205457, nan, nan, 0.8266629933880986, nan, nan, nan, nan, nan, 0.5370086176366426, 0.16713304502671075, nan, nan, nan, 0.20547441903187288, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.5899667952974962, 0.0, nan, nan, nan, 0.971220659127031, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04688593421973408, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.7997024650374347, 0.8317884901882798, 0.9284928299934678, 0.866644929898924, 0.9755127357652671, 0.95158424637252, 0.9675204545704815, 0.9789545791867258, 0.9890420769919427, 0.9605837719371068, nan, 0.8239614689945816, 0.19943907759426613, nan, nan, 0.579064587973274, nan, 0.6778329197684037, nan, nan, 0.9189740888288941, 0.5388078139997867, 0.9601869244513676, nan, nan, 0.8912799333405789, 0.9736423508399844, nan, nan, nan, nan, nan, 0.17669890351586506, nan, 0.0, nan, 0.41745283018867924, nan, nan, nan, nan, nan, nan, 0.22965531307362838, nan, nan, 0.8290299894509469, nan, nan, nan, nan, nan, 0.8202307969707897, 0.16713304502671075, nan, nan, nan, 0.20547441903187288, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5926794085827624, 0.0, nan, nan, nan, 0.971220659127031, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.04688593421973408, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0803 | 44.0 | 880 | 0.5941 | 0.3614 | 0.5122 | 0.8145 | [0.7365145567549886, 0.7578681545824772, 0.8921524446484752, 0.11852693794044102, 0.9205814314057479, 0.06186874895508591, 0.956313948688984, 0.8290704026220237, 0.927895584485304, 0.9377882048377963, nan, 0.7000672147251952, 0.15913461538461537, 0.0, 0.0, 0.5467084639498433, 0.0, 0.5263157894736842, nan, nan, 0.8438817294953631, 0.47381050779219047, 0.9492463442069742, nan, nan, 0.6261944984540847, 0.34422945706209185, nan, nan, nan, nan, nan, 0.17372319435909048, nan, 0.0, nan, 0.3866220735785953, nan, nan, nan, nan, nan, nan, 0.21884994452059264, nan, nan, 0.7817636578082261, nan, nan, nan, nan, nan, 0.5591331269349845, 0.09997456118036123, nan, nan, nan, 0.16671259300082666, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.5955671213208902, 0.0, nan, nan, nan, 0.9690927480264281, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0013995801259622112, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7951423223619155, 0.8304705985452634, 0.9286594214017352, 0.850016302575807, 0.9768988622696948, 0.931448030796565, 0.9695301230027199, 0.9819230110555058, 0.9903312444046554, 0.9623271181656677, nan, 0.8151715833835039, 0.20629479588656902, nan, nan, 0.5826280623608018, nan, 0.6947890818858561, nan, nan, 0.9227603463602542, 0.4738126133172171, 0.9665551839464883, nan, nan, 0.8896496757598812, 0.9855025953005525, nan, nan, nan, nan, nan, 0.17372319435909048, nan, 0.0, nan, 0.3894878706199461, nan, nan, nan, nan, nan, nan, 0.2279556733972398, nan, nan, 0.7824508966695133, nan, nan, nan, nan, nan, 0.8141002524341868, 0.09997456118036123, nan, nan, nan, 0.16671259300082666, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5983591777857915, 0.0, nan, nan, nan, 0.9690927480264281, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0013995801259622112, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1811 | 45.0 | 900 | 0.5887 | 0.3720 | 0.5271 | 0.8145 | [0.7542444627016928, 0.7627722067287723, 0.8906567550692875, 0.12084715720583557, 0.9185889258162186, 0.06365953058533054, 0.9565465173710805, 0.8364198530125942, 0.9256225973591844, 0.9409223999870586, nan, 0.6993454024751969, 0.1993627674101047, 0.0, 0.0, 0.5572710202378469, 0.0, 0.5315043714199578, nan, nan, 0.8408649681909143, 0.4381376870845035, 0.9484062668827661, nan, nan, 0.6295684020448129, 0.3303631338654354, nan, nan, nan, nan, nan, 0.3071449364427338, nan, 0.0, nan, 0.43922743922743923, nan, nan, nan, nan, nan, nan, 0.24880382775119617, nan, nan, 0.7801949640558545, nan, nan, nan, nan, nan, 0.5653153153153153, 0.17934367845331978, nan, nan, nan, 0.21158435836240133, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6932531849991028, 0.0, nan, nan, nan, 0.9710761713362493, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0006997900629811056, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.7983781254414465, 0.823244103193275, 0.93181150620553, 0.8669709814150636, 0.9771143525245848, 0.9505478235119929, 0.970350508198346, 0.9831788860769128, 0.9915846016114592, 0.9657307941357154, nan, 0.8232992173389524, 0.2729822374571518, nan, nan, 0.5948775055679287, nan, 0.729114971050455, nan, nan, 0.9269087676554835, 0.4381376870845035, 0.9651349246346268, nan, nan, 0.8967865811687136, 0.9823910252832505, nan, nan, nan, nan, nan, 0.3071449364427338, nan, 0.0, nan, 0.4444070080862534, nan, nan, nan, nan, nan, nan, 0.2616085389897342, nan, nan, 0.7809690058773295, nan, nan, nan, nan, nan, 0.8146411828344753, 0.17934367845331978, nan, nan, nan, 0.21172040047763388, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6966282005048684, 0.0, nan, nan, nan, 0.9710761713362493, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0006997900629811056, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1941 | 46.0 | 920 | 0.5889 | 0.3673 | 0.5214 | 0.8191 | [0.7483730306999355, 0.7579889930458026, 0.8906972188764645, 0.12141895342898268, 0.9214732070316911, 0.06487727281879871, 0.952691928839257, 0.8345655444647566, 0.926780273862533, 0.9395429329279141, nan, 0.7101980550888448, 0.1662119145065939, 0.0, 0.0, 0.5557758530731504, 0.0, 0.5298879202988792, nan, nan, 0.8438793077410975, 0.500193304981936, 0.9478852303950273, nan, nan, 0.6233292676729176, 0.3525994406776251, nan, nan, nan, nan, nan, 0.20286573729663293, nan, 0.0, nan, 0.44744744744744747, nan, nan, nan, nan, nan, nan, 0.22586073000258866, nan, nan, 0.7885857635622452, nan, nan, nan, nan, nan, 0.5053161723559038, 0.15136097685067412, nan, nan, nan, 0.2035268185157972, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6412419239052405, 0.0, nan, nan, nan, 0.968501661609594, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.005598320503848845, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8046113504732307, 0.8277134748522006, 0.9369144640798236, 0.8526247147049234, 0.9743246273329004, 0.9541012733195143, 0.963870015746991, 0.9816185565048617, 0.9912981199641898, 0.9645021501270152, nan, 0.8397953040337146, 0.22779682143970084, nan, nan, 0.5930957683741648, nan, 0.7038875103391232, nan, nan, 0.9198959602278339, 0.5001955277471648, 0.9641269986713703, nan, nan, 0.8886896351845814, 0.9781352905062232, nan, nan, nan, nan, nan, 0.20286573729663293, nan, 0.0, nan, 0.45181940700808626, nan, nan, nan, nan, nan, nan, 0.23726969882384935, nan, nan, 0.7895463907168333, nan, nan, nan, nan, nan, 0.8141002524341868, 0.15136097685067412, nan, nan, nan, 0.20354551299715257, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.644248106743599, 0.0, nan, nan, nan, 0.968501661609594, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.005598320503848845, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0397 | 47.0 | 940 | 0.5826 | 0.3722 | 0.5259 | 0.8301 | [0.7543159542047607, 0.7611848175957387, 0.8885425605303451, 0.12246522736851964, 0.921481054207353, 0.06353947926217306, 0.9528460413188534, 0.8337871567960063, 0.932409187493676, 0.9398647117843156, nan, 0.7088026912686681, 0.16915308698645856, 0.0, 0.0, 0.5536681950812838, 0.0, 0.5216331505179769, nan, nan, 0.8455520314151941, 0.5822902364352969, 0.9473091138555846, nan, nan, 0.6281395751669628, 0.39834434441287553, nan, nan, nan, nan, nan, 0.24161464566419769, nan, 0.0, nan, 0.437875751503006, nan, nan, nan, nan, nan, nan, 0.2386283214308692, nan, nan, 0.8440447192555118, nan, nan, nan, nan, nan, 0.4958479020979021, 0.12846603917578225, nan, nan, nan, 0.20857431377949143, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6230258435032304, 0.0, nan, nan, nan, 0.970077892054485, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.034289713086074175, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8085667113999152, 0.8313469459293664, 0.9260509506670233, 0.8526247147049234, 0.9769250705439382, 0.9542493337281611, 0.9647289425289888, 0.9788784655490648, 0.9899731423455684, 0.9642863072606219, nan, 0.8372065021071644, 0.2296665627921471, nan, nan, 0.5916481069042316, nan, 0.7080231596360629, nan, nan, 0.9216080071115793, 0.5823394006185787, 0.9628899986255555, nan, nan, 0.8867695540339818, 0.9742283864486242, nan, nan, nan, nan, nan, 0.24161464566419769, nan, 0.0, nan, 0.441711590296496, nan, nan, nan, nan, nan, nan, 0.25215854238901353, nan, nan, 0.8485708544733008, nan, nan, nan, nan, nan, 0.8182473855030653, 0.12846603917578225, nan, nan, nan, 0.2086892624230734, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6259466282005048, 0.0, nan, nan, nan, 0.970077892054485, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.034289713086074175, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.1314 | 48.0 | 960 | 0.5927 | 0.3630 | 0.5141 | 0.8196 | [0.7502280881913731, 0.7590688050299019, 0.8910077057631726, 0.11483274455929172, 0.9221333362696896, 0.06396252720689274, 0.9568111724078016, 0.8306528367021019, 0.9325250751409949, 0.9385486611115605, nan, 0.7058311575282855, 0.14699219733199093, 0.0, 0.0, 0.5370622059592264, 0.0, 0.5270981728089191, nan, nan, 0.8434542586750788, 0.503899428083881, 0.9486080404277399, nan, nan, 0.623828844972353, 0.35694982365245537, nan, nan, nan, nan, nan, 0.1631141443218941, nan, 0.0, nan, 0.39732441471571905, nan, nan, nan, nan, nan, nan, 0.22156659317857605, nan, nan, 0.8027879456450885, nan, nan, nan, nan, nan, 0.5537351754493214, 0.09310607987789367, nan, nan, nan, 0.1848994213281896, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.592964824120603, 0.0, nan, nan, nan, 0.967175000985144, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.00489853044086774, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8094937491171069, 0.8333827683139751, 0.9312021323700258, 0.8584936419954353, 0.9754603192167803, 0.9441812259401836, 0.9702238715574104, 0.9798298860198276, 0.9888272157564906, 0.9631074731441664, nan, 0.8300421432871764, 0.18198815830476783, nan, nan, 0.5720489977728285, nan, 0.7038875103391232, nan, nan, 0.9155170710828696, 0.5039016673184258, 0.9632107023411371, nan, nan, 0.8828478788537478, 0.978623653513423, nan, nan, nan, nan, nan, 0.1631141443218941, nan, 0.0, nan, 0.4002695417789757, nan, nan, nan, nan, nan, nan, 0.2323067509687946, nan, nan, 0.8042397146732305, nan, nan, nan, nan, nan, 0.8166245943021998, 0.09310607987789367, nan, nan, nan, 0.1848994213281896, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5957446808510638, 0.0, nan, nan, nan, 0.967175000985144, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.00489853044086774, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.0773 | 49.0 | 980 | 0.5931 | 0.3656 | 0.5183 | 0.8231 | [0.7494730094550116, 0.7586128250805959, 0.8910898955811202, 0.11396943485860261, 0.9215884404968075, 0.06435698280799414, 0.9525378930022352, 0.8325239977413891, 0.9279983887751334, 0.9375919786528665, nan, 0.7062682589308595, 0.15715622076707203, 0.0, 0.0, 0.5481613038027581, 0.0, 0.5298669142680285, nan, nan, 0.8440275812230887, 0.5403785222611794, 0.9478307879443169, nan, nan, 0.6218709833416053, 0.37128555706061633, nan, nan, nan, nan, nan, 0.20014878545783873, nan, 0.0, nan, 0.4174465240641711, nan, nan, nan, nan, nan, nan, 0.22923931292780575, nan, nan, 0.8003159438823485, nan, nan, nan, nan, nan, 0.5039475147336817, 0.08038667005850929, nan, nan, nan, 0.19132910811059062, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6223418573351278, 0.0, nan, nan, nan, 0.9677004111334411, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0244926522043387, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8051719875688657, 0.8296245862629177, 0.9341788577966971, 0.8291490055428757, 0.9747148394160796, 0.948326917382292, 0.9643435266652718, 0.9819420394649211, 0.9900089525514771, 0.9625927709243056, nan, 0.8296207104154124, 0.20941103147397944, nan, nan, 0.5842984409799554, nan, 0.7080231596360629, nan, nan, 0.9228920422743885, 0.5403809236019766, 0.9638979245888121, nan, nan, 0.885157410426403, 0.9790980632918458, nan, nan, nan, nan, nan, 0.20014878545783873, nan, 0.0, nan, 0.42082210242587603, nan, nan, nan, nan, nan, nan, 0.241348834047182, nan, nan, 0.801652684985181, nan, nan, nan, nan, nan, 0.8171655247024883, 0.08038667005850929, nan, nan, nan, 0.19132910811059062, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6253155427335017, 0.0, nan, nan, nan, 0.9677004111334411, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0244926522043387, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 0.3419 | 50.0 | 1000 | 0.5845 | 0.3672 | 0.5180 | 0.8290 | [0.7471836875245966, 0.7577637085524198, 0.8895546109310157, 0.11085509472606246, 0.9216125389161993, 0.06317712705545406, 0.9563222390153204, 0.830028328611898, 0.9289316210582935, 0.9387814548102598, nan, 0.7060518731988472, 0.1376830208065759, 0.0, 0.0, 0.5381879054195439, 0.0, 0.527306967984934, nan, nan, 0.8465404640804165, 0.5976121816945779, 0.9477989695381, nan, nan, 0.6212450409224044, 0.4029468326443188, nan, nan, nan, nan, nan, 0.16078532846007051, nan, 0.0, nan, 0.434913217623498, nan, nan, nan, nan, nan, nan, 0.2213077571123064, nan, nan, 0.8266935514170852, nan, nan, nan, nan, nan, 0.5321733037486862, 0.1086237598575426, nan, nan, nan, 0.17764306053090842, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.6124371859296482, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.013296011196641007, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0] | [0.8046025215425907, 0.8330558233283674, 0.9275152014660044, 0.847081838930551, 0.9766833720148048, 0.9471424341131182, 0.9685170298752354, 0.9812570167259719, 0.9895076096687556, 0.9631904896312408, nan, 0.8260084286574353, 0.16703022748519789, nan, nan, 0.5728285077951002, nan, 0.6947890818858561, nan, nan, 0.9260856681921443, 0.5976838849585837, 0.9607825170660191, nan, nan, 0.877902764192298, 0.9764888095105207, nan, nan, nan, nan, nan, 0.16078532846007051, nan, 0.0, nan, 0.4390161725067385, nan, nan, nan, nan, nan, nan, 0.23217077979468353, nan, nan, 0.8289671974682272, nan, nan, nan, nan, nan, 0.8216732780382258, 0.1086237598575426, nan, nan, nan, 0.17764306053090842, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.6153083303281645, 0.0, nan, nan, nan, 0.9673457592833405, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.013296011196641007, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
hasibul1ah/bloom3b-finetuned-LoRA-for-Bengali
hasibul1ah
2023-10-09T08:42:14Z
0
0
peft
[ "peft", "bloom", "region:us" ]
null
2023-10-06T05:12:49Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
checkiejan/multi-qa-mpnet-base-dot-v1-covidqa-search-65-25-v2-2epoch
checkiejan
2023-10-09T08:33:56Z
15
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-09T08:33:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 803 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 160, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RogerB/afro-xlmr-large-kinre-finetuned
RogerB
2023-10-09T08:32:52Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:Davlan/afro-xlmr-large", "base_model:finetune:Davlan/afro-xlmr-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-09T07:41:50Z
--- license: mit base_model: Davlan/afro-xlmr-large tags: - generated_from_trainer model-index: - name: afro-xlmr-large-kinre-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinre-finetuned This model is a fine-tuned version of [Davlan/afro-xlmr-large](https://huggingface.co/Davlan/afro-xlmr-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4816 | 1.0 | 1875 | 1.2862 | | 1.3458 | 2.0 | 3750 | 1.2337 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
suoluo/ddpm-celebahq-finetuned-butterflies-4epochs
suoluo
2023-10-09T08:28:20Z
46
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-10-09T08:27:17Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('suoluo/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
ishtikar/my-pet-dog
ishtikar
2023-10-09T08:24:47Z
4
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-09T08:18:34Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by ishtikar following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VCE-58 Sample pictures of this concept: ![0](https://huggingface.co/ishtikar/my-pet-dog/resolve/main/sample_images/xzg_(3).jpg)
sage-operator/llama2-qlora-7B-200it-v1
sage-operator
2023-10-09T08:22:05Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-09T08:21:57Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
mostafaashahin/wav2vec2-large-robust-libri-clean-100-voiced
mostafaashahin
2023-10-09T08:17:27Z
4
0
generic
[ "generic", "pytorch", "wav2vec2", "automatic-speech-recognition", "region:us" ]
automatic-speech-recognition
2023-10-04T20:03:53Z
--- tags: - automatic-speech-recognition library_name: generic --- # Automatic Speech Recognition repository template This is a template repository for Automatic Speech Recognition to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/pyctcdecode_asr ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/automatic-speech-recognition cd automatic-speech-recognition git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
mdana3474/RoBERTa-large-PM-M3-Voc-hf-finetuned-echosquad
mdana3474
2023-10-09T08:17:08Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-10-09T08:15:08Z
--- tags: - generated_from_trainer model-index: - name: RoBERTa-large-PM-M3-Voc-hf-finetuned-echosquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-large-PM-M3-Voc-hf-finetuned-echosquad This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
Daruni/DoraemonRVC2
Daruni
2023-10-09T07:59:22Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2023-09-02T12:59:30Z
--- license: cc-by-nc-4.0 --- [UPDATED] Doraemon (RVC v2, rmvpe, 425 epochs, 24000 steps). - Trained till overtraining was detected with approximately 25 minutes of Japanese decent-quality dataset from Youtube. Haven't tried other methods but rmvpe and mangio seems good. Bear in mind that when the vocal/acapella's pitch is too high or low, the voice will break terribly, otherwise it should work fine. You can combine both rmvpe and mangio audio outputs to get the best result, because in some places, mangio works better than rvmpe and vice versa. - My recommended settings: (This is just my own experiments, you can go wild as you like) + Search feature ratio/Feature retrieval rate: 0.6-0.8. + Protect voiceless consonants and breath sounds: 0.2-0.4. + Hop Length (For Mangio): 128-512.
seohyun03/flan-t5-large-financial-phrasebank-lora
seohyun03
2023-10-09T07:51:12Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-09T07:51:06Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Tiabet/Tiabet-tensorflow-finetuned-koGPT-complete_story-epoch-3
Tiabet
2023-10-09T07:50:41Z
62
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:skt/kogpt2-base-v2", "base_model:finetune:skt/kogpt2-base-v2", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-10-05T10:54:25Z
--- license: cc-by-nc-sa-4.0 base_model: skt/kogpt2-base-v2 tags: - generated_from_keras_callback model-index: - name: Tiabet-tensorflow-finetuned-koGPT-complete_story-epoch-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tiabet-tensorflow-finetuned-koGPT-complete_story-epoch-3 This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Tokenizers 0.14.1
Sageem/peshy
Sageem
2023-10-09T07:44:55Z
0
0
null
[ "peshy", "music", "finance", "art", "en", "dataset:fka/awesome-chatgpt-prompts", "dataset:lmsys/lmsys-chat-1m", "dataset:heliosbrahma/mental_health_chatbot_dataset", "dataset:knowrohit07/know_sql", "dataset:DavidMOBrien/8000-java", "region:us" ]
null
2023-10-09T07:41:51Z
--- datasets: - fka/awesome-chatgpt-prompts - lmsys/lmsys-chat-1m - heliosbrahma/mental_health_chatbot_dataset - knowrohit07/know_sql - DavidMOBrien/8000-java language: - en tags: - peshy - music - finance - art ---
Shiou0601/distilbert-base-uncased-flinetuned-emotion
Shiou0601
2023-10-09T07:42:25Z
104
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-09T07:33:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-flinetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235438455228105 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-flinetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.9235 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3119 | 0.908 | 0.9066 | | No log | 2.0 | 500 | 0.2186 | 0.9235 | 0.9235 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
juliensimon/stable-diffusion-v1-5-pokemon-lora
juliensimon
2023-10-09T07:41:10Z
14
4
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "dataset:lambdalabs/pokemon-blip-captions", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-10-06T13:34:59Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 datasets: - lambdalabs/pokemon-blip-captions tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- This model was fine-tuned using 4-bit QLoRa, following the instructions in https://huggingface.co/blog/lora. The training script and training log are included. I used a Amazon EC2 g4dn.xlarge instance (1xT4 GPU), with the Deep Learning AMI for PyTorch. Training time was about 6 hours. On-demand price is about $3, which can easily be reduced to about $1 with EC2 Spot Instances. # LoRA text2image fine-tuning - juliensimon/stable-diffusion-v1-5-pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
fancyerii/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
fancyerii
2023-10-09T07:35:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T07:35:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
GAIR/autoj-scenario-classifier
GAIR
2023-10-09T07:34:14Z
17
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-04T16:50:34Z
--- language: - en --- Please refer to our [github repo](https://github.com/GAIR-NLP/auto-j) for more details.
liwii/fluency-score-classification-ja
liwii
2023-10-09T07:28:38Z
192
0
transformers
[ "transformers", "pytorch", "distilbert", "generated_from_trainer", "base_model:line-corporation/line-distilbert-base-japanese", "base_model:finetune:line-corporation/line-distilbert-base-japanese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-10-06T08:58:35Z
--- license: apache-2.0 base_model: line-corporation/line-distilbert-base-japanese tags: - generated_from_trainer model-index: - name: fluency-score-classification-ja results: [] --- # fluency-score-classification-ja This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the ["日本語文法誤りデータセット"](https://github.com/liwii/ja_perturbed/tree/main). It achieves the following results on the evaluation set: - Loss: 0.1912 - ROC AUC: 0.9811 ## Model description This model wraps [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) with [DistilBertForSequenceClassification](https://huggingface.co/docs/transformers/v4.34.0/en/model_doc/distilbert#transformers.DistilBertForSequenceClassification) to make a binary classifier. ## Intended uses & limitations This model can be used to classify whether the given Japanese texts are fluent (i.e., not having grammactical errors). Example usage: ```python # Load the tokenizer & the model from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("line-corporation/line-distilbert-base-japanese", trust_remote_code=True) model = AutoModelForSequenceClassification.from_pretrained("liwii/fluency-score-classification-ja") # Make predictions input_tokens = tokenizer([ '黒い猫が', '黒い猫がいます', 'あっちの方で黒い猫があくびをしています', 'あっちの方でで黒い猫ががあくびをしています', 'ある日の暮方の事である。一人の下人が、羅生門の下で雨やみを待っていた。' ], return_tensors='pt', padding=True) output = model(**input_tokens) with torch.no_grad(): # Probabilities of [not_fluent, fluent] probs = torch.nn.functional.softmax( output.logits, dim=1) probs[:, 1] # => tensor([0.1007, 0.2416, 0.5635, 0.0453, 0.7701]) ``` The scores could be low for short sentences even if they do not contain any grammatical erros because the training dataset consist of long sentences. ## Training and evaluation data From ["日本語文法誤りデータセット"](https://github.com/liwii/ja_perturbed/tree/main), used 512 rows as the evaluation dataset and the rest of the dataset as the training dataset. For each dataset split, Used the "original" rows as the data with "fluent" label, and "perturbed" as the data with "not fluent" data. ## Training procedure Fine-tuned the model for 5 epochs. Freezed the params in the original DistilBERT during the fine-duning. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4582 | 1.0 | 647 | 0.2887 | 0.9679 | | 0.2664 | 2.0 | 1294 | 0.2224 | 0.9761 | | 0.2177 | 3.0 | 1941 | 0.2047 | 0.9793 | | 0.1899 | 4.0 | 2588 | 0.1944 | 0.9807 | | 0.1865 | 5.0 | 3235 | 0.1912 | 0.9811 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
SakataHalmi/rl_course_vizdoom_health_gathering_supreme
SakataHalmi
2023-10-09T07:24:33Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-09T07:24:25Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.94 +/- 5.68 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r SakataHalmi/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Gyummo/Gyummo
Gyummo
2023-10-09T07:22:33Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-09T05:47:52Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
calum/tinystories-gpt2-3M
calum
2023-10-09T07:21:52Z
665
6
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "en", "dataset:roneneldan/TinyStories", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-09T06:48:55Z
--- tags: - generated_from_trainer model-index: - name: out results: [] datasets: - roneneldan/TinyStories pipeline_tag: text-generation language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyStories-GPT2-3M This model is a tiny (3M trainable parameters) GPT-2 model pre-trained for 3 epochs on the [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories) V2 dataset. ## Model description TinyStories-GPT2-3M is a replication of the TinyStories model, using a GPT-2 architecture in place of GPT-Neo. This was a deliberate choice made to accelerate research, as the GPT-2 architecture is more widely supported across tooling. We do not contribute any performance improvements of note, though similarly to the original model, we find a surprising degree of coherency within the model, given its size. ## Intended uses & limitations Research use only - NOT suitable for commercial use per OpenAI TOS on using their APIs to source training data. Note that the vocabulary this model was trained on is quite minimal. Out of distribution inputs will not work as well as a larger, more general purpose model. To observe this behaviour, try generating a few tokens after a non-trivial word like "Biology". The model typically treats words that did not frequently appear in training as character names in a story. All training data is English. As such, input with other languages is out of distribution, and will result in the model treating previous input as character names, ignoring it entirely, or generating meaningless tokens. ## Training and evaluation data Trained for 3 epochs on the [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories) V2 dataset, produced by GPT-4. ## Training procedure Trained for 400k steps (~7 hours) on 2xH100 80GB PCIe with 32vCPU and 500GB RAM on Runpod. To replicate, download GPT-4 V2 version of the TinyStories dataset alongside HuggingFace's `train_clm.py` script. Then run the following: ```bash #! /bin/bash python train_clm.py \ --model_type=gpt2 \ --config_overrides=n_embd=64,n_layer=8,n_head=16 \ --tokenizer_name=gpt2 \ --train_file="data/TinyStoriesV2-GPT4-train.txt" \ --validation_file="data/TinyStoriesV2-GPT4-valid.txt" \ --block_size=256 \ --preprocessing_num_workers=8 \ --output_dir="out" \ --logging_dir="./log" \ --logging_steps=100 \ --logging_strategy=steps \ --save_steps=5000 \ --save_total_limit=10 \ --do_train ``` ### Training hyperparameters The following hyperparameters were used during training: - n_embd: 64 - n_layer: 8 - n_head: 16 - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Roy029/phi-1_5-finetuned-gsm8k
Roy029
2023-10-09T07:21:18Z
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-10-09T07:01:22Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
kerwin7/ppo-LunarLander-v2
kerwin7
2023-10-09T07:17:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-09T07:17:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.97 +/- 12.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mdana3474/RoBERTa-large-PM-M3-Voc-hf-finetuned-squad
mdana3474
2023-10-09T07:16:19Z
111
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-10-09T07:05:56Z
--- tags: - generated_from_trainer model-index: - name: RoBERTa-large-PM-M3-Voc-hf-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-large-PM-M3-Voc-hf-finetuned-squad This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
KangSoYeon/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
KangSoYeon
2023-10-09T07:14:49Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-08T18:14:36Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
generativex/Finance-Llama-2-70b-chat_LoRA
generativex
2023-10-09T07:10:17Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-21T15:38:39Z
--- library_name: peft --- GenerativeX Finance Llama2 model LoRA ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64043d36929304a3c808086c/B6NOrLsy4-ZN4AZouiBO7.png) お問合せ先 https://gen-x.jp/contact
AlvianKhairi/Scicite_classification_model
AlvianKhairi
2023-10-09T07:04:49Z
16
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:scicite", "base_model:allenai/scibert_scivocab_uncased", "base_model:finetune:allenai/scibert_scivocab_uncased", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-26T08:51:56Z
--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer datasets: - scicite metrics: - accuracy model-index: - name: Scicite_classification_model results: - task: name: Text Classification type: text-classification dataset: name: scicite type: scicite config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9224890829694323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Scicite_classification_model This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the scicite dataset. It achieves the following results on the evaluation set: - Loss: 0.4704 - Accuracy: 0.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2493 | 1.0 | 513 | 0.2034 | 0.9214 | | 0.1777 | 2.0 | 1026 | 0.1942 | 0.9247 | | 0.1385 | 3.0 | 1539 | 0.2552 | 0.9247 | | 0.1019 | 4.0 | 2052 | 0.2995 | 0.9258 | | 0.0705 | 5.0 | 2565 | 0.3964 | 0.9181 | | 0.0444 | 6.0 | 3078 | 0.4243 | 0.9203 | | 0.0331 | 7.0 | 3591 | 0.4904 | 0.9192 | | 0.0223 | 8.0 | 4104 | 0.4704 | 0.9225 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
tahreema-r-z/my_awesome_billsum_model
tahreema-r-z
2023-10-09T06:56:54Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-12T12:27:13Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.2001 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.1970 - Rouge1: 0.2001 - Rouge2: 0.1053 - Rougel: 0.1716 - Rougelsum: 0.1717 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 124 | 2.5355 | 0.1414 | 0.0544 | 0.1183 | 0.1182 | 19.0 | | No log | 2.0 | 248 | 2.3807 | 0.1674 | 0.0738 | 0.1416 | 0.1412 | 19.0 | | No log | 3.0 | 372 | 2.3128 | 0.1977 | 0.1007 | 0.1695 | 0.1697 | 19.0 | | No log | 4.0 | 496 | 2.2729 | 0.1987 | 0.1008 | 0.1695 | 0.1694 | 19.0 | | 2.8078 | 5.0 | 620 | 2.2460 | 0.1997 | 0.1025 | 0.1707 | 0.1707 | 19.0 | | 2.8078 | 6.0 | 744 | 2.2251 | 0.2011 | 0.1034 | 0.1715 | 0.1714 | 19.0 | | 2.8078 | 7.0 | 868 | 2.2133 | 0.2016 | 0.1049 | 0.172 | 0.172 | 19.0 | | 2.8078 | 8.0 | 992 | 2.2035 | 0.2018 | 0.1062 | 0.1723 | 0.1725 | 19.0 | | 2.4762 | 9.0 | 1116 | 2.1985 | 0.2008 | 0.1059 | 0.172 | 0.1723 | 19.0 | | 2.4762 | 10.0 | 1240 | 2.1970 | 0.2001 | 0.1053 | 0.1716 | 0.1717 | 19.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
krthk/kaps_model
krthk
2023-10-09T06:51:18Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-09T06:51:12Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
krthk/llama2-qlora-finetunined-french
krthk
2023-10-09T06:51:04Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-09-20T07:00:38Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
waiwai256/distilbert-base-uncased-finetuned-emotion
waiwai256
2023-10-09T06:43:59Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-09T05:41:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249648984209448 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8234 | 1.0 | 250 | 0.3223 | 0.905 | 0.9021 | | 0.252 | 2.0 | 500 | 0.2208 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
omarfaheem/chatbot
omarfaheem
2023-10-09T06:21:12Z
0
0
null
[ "region:us" ]
null
2023-10-09T06:18:54Z
--- title: Demo app_file: app.py sdk: gradio sdk_version: 3.41.2 ---
mesolitica/llama2-embedding-600m-8k
mesolitica
2023-10-09T06:11:30Z
17
1
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "custom_code", "ms", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-05T23:50:19Z
--- language: - ms --- # 600M 32768 context length Llama2 on Malaysian text embedding task Trained on truncated 8k context length, but infer able to scale up to 32k context length. README at https://github.com/mesolitica/llama2-embedding#finetune WandB, https://wandb.ai/mesolitica/llama2-embedding-600m?workspace=user-husein-mesolitica ## how-to ```python from transformers import AutoModel, AutoTokenizer from sklearn.metrics.pairwise import cosine_similarity model = AutoModel.from_pretrained('mesolitica/llama2-embedding-600m-8k', trust_remote_code = True) tokenizer = AutoTokenizer.from_pretrained('mesolitica/llama2-embedding-600m-8k') input_ids = tokenizer( [ 'tak suka ayam', 'Isu perkauman: Kerajaan didakwa terdesak kaitkan pemimpin PN', 'nasi ayam tu sedap', 'suka ikan goreng?', 'Kerajaan tidak akan berkompromi dengan isu perkauman dan agama yang dimanipulasi pihak tertentu untuk mengganggu-gugat kestabilan negara serta ketenteraman rakyat.', 'rasis bodo mamat tu', 'kerajaan sekarang xde otak', 'aku nak sukan olimpik ni', 'malaysia dapat x pingat kt sukan asia?', 'pingat gangsa menerusi terjun dan olahraga pada hari ke-10', 'Kerajaan negeri kini dibenarkan melaksanakan penerokaan awal unsur nadir bumi (REE) berdasarkan prosedur operasi standard (SOP) sedia ada untuk perlombongan nadir bumi dan mineral.', 'KONTINJEN Malaysia mendekati sasaran 27 pingat di Sukan Asia kali ini esok, selepas menuai dua lagi pingat gangsa menerusi terjun dan olahraga pada hari ke-10 pertandingan, pada Selasa.' ], return_tensors = 'pt', padding = True ) v = model.encode(input_ids).detach().numpy() v.shape ``` ``` (12, 1536) ```
St4n/wav2vec2-fine-tuning-960h-demo-google-colab
St4n
2023-10-09T05:42:10Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:St4n/wav2vec2-base-960h-demo-google-colab", "base_model:finetune:St4n/wav2vec2-base-960h-demo-google-colab", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T03:44:07Z
--- license: apache-2.0 base_model: St4n/wav2vec2-base-960h-demo-google-colab tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-fine-tuning-960h-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-fine-tuning-960h-demo-google-colab This model is a fine-tuned version of [St4n/wav2vec2-base-960h-demo-google-colab](https://huggingface.co/St4n/wav2vec2-base-960h-demo-google-colab) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6643 - Wer: 0.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8048 | 5.81 | 500 | 0.5176 | 1.0 | | 0.353 | 11.63 | 1000 | 0.5259 | 1.0 | | 0.2843 | 17.44 | 1500 | 0.5725 | 0.9985 | | 0.3374 | 23.26 | 2000 | 0.6190 | 0.9985 | | 0.1625 | 29.07 | 2500 | 0.6643 | 0.9985 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
distill-io/detr-v9
distill-io
2023-10-09T05:29:06Z
189
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-10-09T05:28:47Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-9 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | No log | 0.68 | 100 | 3.2412 | | 3.9658 | 1.36 | 200 | 3.0423 | | 3.063 | 2.04 | 300 | 2.8348 | | 3.063 | 2.72 | 400 | 2.8693 | | 2.8954 | 3.4 | 500 | 2.6293 | | 2.7743 | 4.08 | 600 | 2.6178 | | 2.7743 | 4.76 | 700 | 2.5513 | | 2.6323 | 5.44 | 800 | 2.5795 | | 2.6396 | 6.12 | 900 | 2.3751 | | 2.6396 | 6.8 | 1000 | 2.3357 | | 2.4932 | 7.48 | 1100 | 2.3184 | | 2.4299 | 8.16 | 1200 | 2.2754 | | 2.4299 | 8.84 | 1300 | 2.2419 | | 2.3508 | 9.52 | 1400 | 2.1568 | | 2.2593 | 10.2 | 1500 | 2.1253 | | 2.2593 | 10.88 | 1600 | 2.1364 | | 2.2376 | 11.56 | 1700 | 2.1320 | | 2.1749 | 12.24 | 1800 | 2.0464 | | 2.1749 | 12.93 | 1900 | 2.0201 | | 2.0878 | 13.61 | 2000 | 2.1603 | | 2.0701 | 14.29 | 2100 | 1.9910 | | 2.0701 | 14.97 | 2200 | 1.9665 | | 2.007 | 15.65 | 2300 | 1.8944 | | 1.9432 | 16.33 | 2400 | 1.8717 | | 1.9552 | 17.01 | 2500 | 1.9168 | | 1.9552 | 17.69 | 2600 | 1.8580 | | 1.905 | 18.37 | 2700 | 1.8306 | | 1.8821 | 19.05 | 2800 | 1.8386 | | 1.8821 | 19.73 | 2900 | 1.8215 | | 1.8569 | 20.41 | 3000 | 1.7825 | | 1.8083 | 21.09 | 3100 | 1.7335 | | 1.8083 | 21.77 | 3200 | 1.7117 | | 1.7617 | 22.45 | 3300 | 1.7170 | | 1.7304 | 23.13 | 3400 | 1.7235 | | 1.7304 | 23.81 | 3500 | 1.6907 | | 1.7165 | 24.49 | 3600 | 1.6281 | | 1.6793 | 25.17 | 3700 | 1.5950 | | 1.6793 | 25.85 | 3800 | 1.5856 | | 1.656 | 26.53 | 3900 | 1.6097 | | 1.6229 | 27.21 | 4000 | 1.5895 | | 1.6229 | 27.89 | 4100 | 1.6217 | | 1.6292 | 28.57 | 4200 | 1.5542 | | 1.5697 | 29.25 | 4300 | 1.6426 | | 1.5697 | 29.93 | 4400 | 1.6292 | | 1.6189 | 30.61 | 4500 | 1.5757 | | 1.573 | 31.29 | 4600 | 1.5476 | | 1.573 | 31.97 | 4700 | 1.5437 | | 1.5273 | 32.65 | 4800 | 1.5518 | | 1.5054 | 33.33 | 4900 | 1.4695 | | 1.4757 | 34.01 | 5000 | 1.5011 | | 1.4757 | 34.69 | 5100 | 1.4744 | | 1.4538 | 35.37 | 5200 | 1.4481 | | 1.4319 | 36.05 | 5300 | 1.4195 | | 1.4319 | 36.73 | 5400 | 1.5335 | | 1.3979 | 37.41 | 5500 | 1.3619 | | 1.3775 | 38.1 | 5600 | 1.4305 | | 1.3775 | 38.78 | 5700 | 1.3961 | | 1.3914 | 39.46 | 5800 | 1.3965 | | 1.3373 | 40.14 | 5900 | 1.3740 | | 1.3373 | 40.82 | 6000 | 1.4195 | | 1.3315 | 41.5 | 6100 | 1.4008 | | 1.3288 | 42.18 | 6200 | 1.3568 | | 1.3288 | 42.86 | 6300 | 1.3631 | | 1.2927 | 43.54 | 6400 | 1.3045 | | 1.2694 | 44.22 | 6500 | 1.3606 | | 1.2694 | 44.9 | 6600 | 1.3045 | | 1.2487 | 45.58 | 6700 | 1.3688 | | 1.2544 | 46.26 | 6800 | 1.2831 | | 1.2544 | 46.94 | 6900 | 1.2673 | | 1.2359 | 47.62 | 7000 | 1.2622 | | 1.2207 | 48.3 | 7100 | 1.2208 | | 1.2207 | 48.98 | 7200 | 1.2399 | | 1.2011 | 49.66 | 7300 | 1.2899 | | 1.1915 | 50.34 | 7400 | 1.2599 | | 1.1742 | 51.02 | 7500 | 1.1938 | | 1.1742 | 51.7 | 7600 | 1.2566 | | 1.1587 | 52.38 | 7700 | 1.1858 | | 1.1431 | 53.06 | 7800 | 1.2510 | | 1.1431 | 53.74 | 7900 | 1.1766 | | 1.1473 | 54.42 | 8000 | 1.1920 | | 1.1406 | 55.1 | 8100 | 1.3181 | | 1.1406 | 55.78 | 8200 | 1.2287 | | 1.1288 | 56.46 | 8300 | 1.1828 | | 1.1058 | 57.14 | 8400 | 1.3380 | | 1.1058 | 57.82 | 8500 | 1.3039 | | 1.1011 | 58.5 | 8600 | 1.1949 | | 1.0685 | 59.18 | 8700 | 1.1771 | | 1.0685 | 59.86 | 8800 | 1.1391 | | 1.077 | 60.54 | 8900 | 1.1271 | | 1.0787 | 61.22 | 9000 | 1.1005 | | 1.0787 | 61.9 | 9100 | 1.1096 | | 1.0493 | 62.59 | 9200 | 1.1689 | | 1.0428 | 63.27 | 9300 | 1.1353 | | 1.0428 | 63.95 | 9400 | 1.1348 | | 1.1068 | 64.63 | 9500 | 1.1882 | | 1.0131 | 65.31 | 9600 | 1.2055 | | 1.0131 | 65.99 | 9700 | 1.0887 | | 1.0127 | 66.67 | 9800 | 1.1398 | | 1.0163 | 67.35 | 9900 | 1.0899 | | 1.0039 | 68.03 | 10000 | 1.0990 | | 1.0039 | 68.71 | 10100 | 1.1135 | | 1.0104 | 69.39 | 10200 | 1.1319 | | 1.0014 | 70.07 | 10300 | 1.1386 | | 1.0014 | 70.75 | 10400 | 1.1442 | | 0.9976 | 71.43 | 10500 | 1.2050 | | 0.9616 | 72.11 | 10600 | 1.0659 | | 0.9616 | 72.79 | 10700 | 1.1428 | | 0.9801 | 73.47 | 10800 | 1.1244 | | 0.9548 | 74.15 | 10900 | 1.1127 | | 0.9548 | 74.83 | 11000 | 1.1491 | | 0.9669 | 75.51 | 11100 | 1.0919 | | 0.9556 | 76.19 | 11200 | 1.1382 | | 0.9556 | 76.87 | 11300 | 1.1156 | | 0.919 | 77.55 | 11400 | 1.0326 | | 0.9121 | 78.23 | 11500 | 1.1168 | | 0.9121 | 78.91 | 11600 | 1.1301 | | 0.9038 | 79.59 | 11700 | 1.1149 | | 0.8933 | 80.27 | 11800 | 1.0959 | | 0.8933 | 80.95 | 11900 | 1.1232 | | 0.8999 | 81.63 | 12000 | 1.0805 | | 0.8931 | 82.31 | 12100 | 1.1335 | | 0.8931 | 82.99 | 12200 | 1.1315 | | 0.8815 | 83.67 | 12300 | 1.0665 | | 0.8694 | 84.35 | 12400 | 1.0750 | | 0.8793 | 85.03 | 12500 | 1.0751 | | 0.8793 | 85.71 | 12600 | 1.0839 | | 0.9073 | 86.39 | 12700 | 1.1007 | | 0.8811 | 87.07 | 12800 | 1.0817 | | 0.8811 | 87.76 | 12900 | 1.0797 | | 0.8407 | 88.44 | 13000 | 1.1029 | | 0.8772 | 89.12 | 13100 | 1.0542 | | 0.8772 | 89.8 | 13200 | 1.0271 | | 0.8447 | 90.48 | 13300 | 1.0275 | | 0.8392 | 91.16 | 13400 | 0.9989 | | 0.8392 | 91.84 | 13500 | 1.0119 | | 0.8329 | 92.52 | 13600 | 1.0015 | | 0.8392 | 93.2 | 13700 | 1.0249 | | 0.8392 | 93.88 | 13800 | 1.0294 | | 0.8175 | 94.56 | 13900 | 1.0980 | | 0.8401 | 95.24 | 14000 | 1.0724 | | 0.8401 | 95.92 | 14100 | 1.0085 | | 0.8262 | 96.6 | 14200 | 1.0564 | | 0.8007 | 97.28 | 14300 | 1.0666 | | 0.8007 | 97.96 | 14400 | 1.0119 | | 0.8013 | 98.64 | 14500 | 1.1449 | | 0.7966 | 99.32 | 14600 | 1.0698 | | 0.7966 | 100.0 | 14700 | 1.0514 | | 0.7963 | 100.68 | 14800 | 0.9480 | | 0.7939 | 101.36 | 14900 | 0.9131 | | 0.7782 | 102.04 | 15000 | 0.9641 | | 0.7782 | 102.72 | 15100 | 0.9714 | | 0.7767 | 103.4 | 15200 | 1.0656 | | 0.7762 | 104.08 | 15300 | 1.0194 | | 0.7762 | 104.76 | 15400 | 1.0062 | | 0.7929 | 105.44 | 15500 | 1.0862 | | 0.7757 | 106.12 | 15600 | 1.0567 | | 0.7757 | 106.8 | 15700 | 0.9659 | | 0.7799 | 107.48 | 15800 | 0.9637 | | 0.7736 | 108.16 | 15900 | 0.9711 | | 0.7736 | 108.84 | 16000 | 1.0166 | | 0.7483 | 109.52 | 16100 | 1.0213 | | 0.7381 | 110.2 | 16200 | 0.9550 | | 0.7381 | 110.88 | 16300 | 0.9763 | | 0.7287 | 111.56 | 16400 | 0.9390 | | 0.7327 | 112.24 | 16500 | 1.0193 | | 0.7327 | 112.93 | 16600 | 0.9088 | | 0.7377 | 113.61 | 16700 | 0.9728 | | 0.7109 | 114.29 | 16800 | 1.0400 | | 0.7109 | 114.97 | 16900 | 1.0058 | | 0.717 | 115.65 | 17000 | 0.9745 | | 0.7187 | 116.33 | 17100 | 1.0387 | | 0.7097 | 117.01 | 17200 | 0.9599 | | 0.7097 | 117.69 | 17300 | 1.0639 | | 0.7072 | 118.37 | 17400 | 1.0272 | | 0.7124 | 119.05 | 17500 | 0.9891 | | 0.7124 | 119.73 | 17600 | 0.9851 | | 0.6856 | 120.41 | 17700 | 0.9980 | | 0.6781 | 121.09 | 17800 | 1.0234 | | 0.6781 | 121.77 | 17900 | 1.0307 | | 0.6827 | 122.45 | 18000 | 0.9978 | | 0.6793 | 123.13 | 18100 | 0.9692 | | 0.6793 | 123.81 | 18200 | 0.9417 | | 0.6867 | 124.49 | 18300 | 0.9869 | | 0.6744 | 125.17 | 18400 | 0.9923 | | 0.6744 | 125.85 | 18500 | 0.9756 | | 0.6593 | 126.53 | 18600 | 0.9938 | | 0.6488 | 127.21 | 18700 | 0.9382 | | 0.6488 | 127.89 | 18800 | 0.9534 | | 0.644 | 128.57 | 18900 | 0.9072 | | 0.6725 | 129.25 | 19000 | 1.0747 | | 0.6725 | 129.93 | 19100 | 0.9569 | | 0.656 | 130.61 | 19200 | 0.9673 | | 0.6653 | 131.29 | 19300 | 0.9582 | | 0.6653 | 131.97 | 19400 | 0.9470 | | 0.6719 | 132.65 | 19500 | 0.9331 | | 0.6665 | 133.33 | 19600 | 0.9860 | | 0.6533 | 134.01 | 19700 | 1.0467 | | 0.6533 | 134.69 | 19800 | 1.0140 | | 0.6489 | 135.37 | 19900 | 0.9366 | | 0.6546 | 136.05 | 20000 | 0.9923 | | 0.6546 | 136.73 | 20100 | 1.1226 | | 0.6501 | 137.41 | 20200 | 0.9184 | | 0.6487 | 138.1 | 20300 | 1.0354 | | 0.6487 | 138.78 | 20400 | 1.0149 | | 0.6462 | 139.46 | 20500 | 0.9540 | | 0.6413 | 140.14 | 20600 | 1.0019 | | 0.6413 | 140.82 | 20700 | 0.9481 | | 0.6563 | 141.5 | 20800 | 0.9663 | | 0.6485 | 142.18 | 20900 | 0.9496 | | 0.6485 | 142.86 | 21000 | 0.9743 | | 0.6489 | 143.54 | 21100 | 1.0144 | | 0.6493 | 144.22 | 21200 | 0.9667 | | 0.6493 | 144.9 | 21300 | 0.9665 | | 0.6385 | 145.58 | 21400 | 1.0027 | | 0.6337 | 146.26 | 21500 | 0.9546 | | 0.6337 | 146.94 | 21600 | 1.0924 | | 0.6199 | 147.62 | 21700 | 0.9781 | | 0.6389 | 148.3 | 21800 | 1.0117 | | 0.6389 | 148.98 | 21900 | 0.9892 | | 0.638 | 149.66 | 22000 | 0.9263 | | 0.615 | 150.34 | 22100 | 0.9498 | | 0.6052 | 151.02 | 22200 | 0.9727 | | 0.6052 | 151.7 | 22300 | 0.9810 | | 0.6144 | 152.38 | 22400 | 0.9167 | | 0.6024 | 153.06 | 22500 | 0.9862 | | 0.6024 | 153.74 | 22600 | 1.0106 | | 0.6015 | 154.42 | 22700 | 1.0130 | | 0.5847 | 155.1 | 22800 | 1.0303 | | 0.5847 | 155.78 | 22900 | 0.9814 | | 0.6149 | 156.46 | 23000 | 0.8867 | | 0.5985 | 157.14 | 23100 | 0.9578 | | 0.5985 | 157.82 | 23200 | 1.0177 | | 0.6023 | 158.5 | 23300 | 0.9790 | | 0.5924 | 159.18 | 23400 | 0.9915 | | 0.5924 | 159.86 | 23500 | 0.9732 | | 0.5974 | 160.54 | 23600 | 0.9765 | | 0.6002 | 161.22 | 23700 | 0.9913 | | 0.6002 | 161.9 | 23800 | 1.0328 | | 0.5858 | 162.59 | 23900 | 0.9185 | | 0.5894 | 163.27 | 24000 | 0.9617 | | 0.5894 | 163.95 | 24100 | 0.9610 | | 0.5677 | 164.63 | 24200 | 0.9228 | | 0.5782 | 165.31 | 24300 | 0.9632 | | 0.5782 | 165.99 | 24400 | 0.9346 | | 0.5772 | 166.67 | 24500 | 1.0165 | | 0.5823 | 167.35 | 24600 | 1.0094 | | 0.5719 | 168.03 | 24700 | 0.9632 | | 0.5719 | 168.71 | 24800 | 0.9426 | | 0.5629 | 169.39 | 24900 | 0.9430 | | 0.5665 | 170.07 | 25000 | 0.9907 | | 0.5665 | 170.75 | 25100 | 0.9612 | | 0.5634 | 171.43 | 25200 | 1.0117 | | 0.5662 | 172.11 | 25300 | 1.0252 | | 0.5662 | 172.79 | 25400 | 0.9665 | | 0.5645 | 173.47 | 25500 | 0.9646 | | 0.5567 | 174.15 | 25600 | 0.9745 | | 0.5567 | 174.83 | 25700 | 0.9662 | | 0.5676 | 175.51 | 25800 | 0.9624 | | 0.5614 | 176.19 | 25900 | 0.9740 | | 0.5614 | 176.87 | 26000 | 0.9564 | | 0.5498 | 177.55 | 26100 | 0.9050 | | 0.5664 | 178.23 | 26200 | 0.9700 | | 0.5664 | 178.91 | 26300 | 1.0037 | | 0.5471 | 179.59 | 26400 | 0.9914 | | 0.5366 | 180.27 | 26500 | 1.0204 | | 0.5366 | 180.95 | 26600 | 0.9942 | | 0.5436 | 181.63 | 26700 | 0.9809 | | 0.5703 | 182.31 | 26800 | 1.0165 | | 0.5703 | 182.99 | 26900 | 0.9786 | | 0.549 | 183.67 | 27000 | 1.0115 | | 0.5397 | 184.35 | 27100 | 1.0087 | | 0.5344 | 185.03 | 27200 | 0.9985 | | 0.5344 | 185.71 | 27300 | 0.9601 | | 0.5346 | 186.39 | 27400 | 0.9388 | | 0.5548 | 187.07 | 27500 | 0.9791 | | 0.5548 | 187.76 | 27600 | 0.9298 | | 0.5437 | 188.44 | 27700 | 1.0127 | | 0.5551 | 189.12 | 27800 | 0.9693 | | 0.5551 | 189.8 | 27900 | 0.9636 | | 0.5438 | 190.48 | 28000 | 0.9502 | | 0.5263 | 191.16 | 28100 | 0.9204 | | 0.5263 | 191.84 | 28200 | 0.9547 | | 0.5232 | 192.52 | 28300 | 0.9199 | | 0.525 | 193.2 | 28400 | 1.0316 | | 0.525 | 193.88 | 28500 | 0.9328 | | 0.5372 | 194.56 | 28600 | 0.9614 | | 0.5478 | 195.24 | 28700 | 0.9657 | | 0.5478 | 195.92 | 28800 | 0.9648 | | 0.5401 | 196.6 | 28900 | 0.9427 | | 0.5338 | 197.28 | 29000 | 0.9627 | | 0.5338 | 197.96 | 29100 | 0.9876 | | 0.5131 | 198.64 | 29200 | 0.9777 | | 0.522 | 199.32 | 29300 | 1.0747 | | 0.522 | 200.0 | 29400 | 1.0181 | | 0.5275 | 200.68 | 29500 | 0.9527 | | 0.5342 | 201.36 | 29600 | 1.0019 | | 0.5297 | 202.04 | 29700 | 0.9576 | | 0.5297 | 202.72 | 29800 | 0.9968 | | 0.5367 | 203.4 | 29900 | 0.9542 | | 0.5148 | 204.08 | 30000 | 0.9250 | | 0.5148 | 204.76 | 30100 | 1.0072 | | 0.5176 | 205.44 | 30200 | 0.9485 | | 0.5125 | 206.12 | 30300 | 0.9220 | | 0.5125 | 206.8 | 30400 | 0.9326 | | 0.5075 | 207.48 | 30500 | 0.9153 | | 0.5084 | 208.16 | 30600 | 0.9837 | | 0.5084 | 208.84 | 30700 | 0.9482 | | 0.503 | 209.52 | 30800 | 0.9677 | | 0.5001 | 210.2 | 30900 | 0.9626 | | 0.5001 | 210.88 | 31000 | 0.9106 | | 0.5115 | 211.56 | 31100 | 1.0392 | | 0.5012 | 212.24 | 31200 | 0.9873 | | 0.5012 | 212.93 | 31300 | 0.9727 | | 0.5122 | 213.61 | 31400 | 1.0177 | | 0.4997 | 214.29 | 31500 | 0.9833 | | 0.4997 | 214.97 | 31600 | 0.9190 | | 0.5147 | 215.65 | 31700 | 0.9619 | | 0.5122 | 216.33 | 31800 | 0.8989 | | 0.4964 | 217.01 | 31900 | 0.8954 | | 0.4964 | 217.69 | 32000 | 0.9823 | | 0.4953 | 218.37 | 32100 | 1.0035 | | 0.4951 | 219.05 | 32200 | 0.9277 | | 0.4951 | 219.73 | 32300 | 0.9064 | | 0.5088 | 220.41 | 32400 | 0.9687 | | 0.5003 | 221.09 | 32500 | 1.0024 | | 0.5003 | 221.77 | 32600 | 0.9359 | | 0.5013 | 222.45 | 32700 | 0.8833 | | 0.5002 | 223.13 | 32800 | 0.8583 | | 0.5002 | 223.81 | 32900 | 0.8660 | | 0.4936 | 224.49 | 33000 | 0.8381 | | 0.4919 | 225.17 | 33100 | 0.8624 | | 0.4919 | 225.85 | 33200 | 0.8423 | | 0.5002 | 226.53 | 33300 | 0.8991 | | 0.4781 | 227.21 | 33400 | 0.9186 | | 0.4781 | 227.89 | 33500 | 0.8910 | | 0.4823 | 228.57 | 33600 | 0.9290 | | 0.4899 | 229.25 | 33700 | 0.9599 | | 0.4899 | 229.93 | 33800 | 0.8219 | | 0.4986 | 230.61 | 33900 | 0.8769 | | 0.4837 | 231.29 | 34000 | 0.9619 | | 0.4837 | 231.97 | 34100 | 0.9140 | | 0.4838 | 232.65 | 34200 | 0.9978 | | 0.491 | 233.33 | 34300 | 0.9176 | | 0.4786 | 234.01 | 34400 | 0.9227 | | 0.4786 | 234.69 | 34500 | 0.9498 | | 0.4754 | 235.37 | 34600 | 0.9387 | | 0.476 | 236.05 | 34700 | 0.9002 | | 0.476 | 236.73 | 34800 | 0.9502 | | 0.4869 | 237.41 | 34900 | 0.9350 | | 0.4638 | 238.1 | 35000 | 0.9066 | | 0.4638 | 238.78 | 35100 | 0.8994 | | 0.4748 | 239.46 | 35200 | 0.9009 | | 0.4617 | 240.14 | 35300 | 0.9449 | | 0.4617 | 240.82 | 35400 | 0.9188 | | 0.47 | 241.5 | 35500 | 0.9288 | | 0.4572 | 242.18 | 35600 | 0.9002 | | 0.4572 | 242.86 | 35700 | 0.9040 | | 0.4687 | 243.54 | 35800 | 0.9652 | | 0.4808 | 244.22 | 35900 | 0.9639 | | 0.4808 | 244.9 | 36000 | 0.8987 | | 0.4647 | 245.58 | 36100 | 0.8977 | | 0.4728 | 246.26 | 36200 | 0.9150 | | 0.4728 | 246.94 | 36300 | 0.8753 | | 0.464 | 247.62 | 36400 | 0.9486 | | 0.4628 | 248.3 | 36500 | 0.8833 | | 0.4628 | 248.98 | 36600 | 0.9540 | | 0.4692 | 249.66 | 36700 | 0.8930 | | 0.4732 | 250.34 | 36800 | 0.9098 | | 0.4552 | 251.02 | 36900 | 0.9363 | | 0.4552 | 251.7 | 37000 | 0.9720 | | 0.458 | 252.38 | 37100 | 0.8646 | | 0.4576 | 253.06 | 37200 | 0.9070 | | 0.4576 | 253.74 | 37300 | 0.9384 | | 0.4575 | 254.42 | 37400 | 0.8082 | | 0.4673 | 255.1 | 37500 | 0.9216 | | 0.4673 | 255.78 | 37600 | 0.8547 | | 0.4685 | 256.46 | 37700 | 0.9245 | | 0.4593 | 257.14 | 37800 | 0.9047 | | 0.4593 | 257.82 | 37900 | 0.8846 | | 0.4549 | 258.5 | 38000 | 0.9293 | | 0.4573 | 259.18 | 38100 | 0.8907 | | 0.4573 | 259.86 | 38200 | 0.9024 | | 0.463 | 260.54 | 38300 | 0.9144 | | 0.4549 | 261.22 | 38400 | 0.9190 | | 0.4549 | 261.9 | 38500 | 0.8713 | | 0.4459 | 262.59 | 38600 | 0.8938 | | 0.4625 | 263.27 | 38700 | 0.8699 | | 0.4625 | 263.95 | 38800 | 0.8854 | | 0.4379 | 264.63 | 38900 | 0.8578 | | 0.4458 | 265.31 | 39000 | 0.9256 | | 0.4458 | 265.99 | 39100 | 0.9711 | | 0.4438 | 266.67 | 39200 | 0.9254 | | 0.4515 | 267.35 | 39300 | 0.9599 | | 0.4565 | 268.03 | 39400 | 0.9208 | | 0.4565 | 268.71 | 39500 | 0.9153 | | 0.4586 | 269.39 | 39600 | 0.8639 | | 0.4368 | 270.07 | 39700 | 0.8932 | | 0.4368 | 270.75 | 39800 | 0.9732 | | 0.4458 | 271.43 | 39900 | 1.0161 | | 0.4452 | 272.11 | 40000 | 0.9847 | | 0.4452 | 272.79 | 40100 | 0.9129 | | 0.4499 | 273.47 | 40200 | 0.9575 | | 0.4308 | 274.15 | 40300 | 0.9167 | | 0.4308 | 274.83 | 40400 | 0.9678 | | 0.4399 | 275.51 | 40500 | 0.9841 | | 0.4355 | 276.19 | 40600 | 0.9262 | | 0.4355 | 276.87 | 40700 | 0.9440 | | 0.4312 | 277.55 | 40800 | 0.9780 | | 0.4259 | 278.23 | 40900 | 0.9153 | | 0.4259 | 278.91 | 41000 | 0.9735 | | 0.4354 | 279.59 | 41100 | 0.9483 | | 0.4318 | 280.27 | 41200 | 0.9608 | | 0.4318 | 280.95 | 41300 | 0.9413 | | 0.438 | 281.63 | 41400 | 0.9569 | | 0.4388 | 282.31 | 41500 | 0.9049 | | 0.4388 | 282.99 | 41600 | 0.8986 | | 0.4438 | 283.67 | 41700 | 0.9700 | | 0.4368 | 284.35 | 41800 | 0.9049 | | 0.4371 | 285.03 | 41900 | 0.8275 | | 0.4371 | 285.71 | 42000 | 1.0013 | | 0.4497 | 286.39 | 42100 | 0.9242 | | 0.4601 | 287.07 | 42200 | 0.9197 | | 0.4601 | 287.76 | 42300 | 0.8905 | | 0.4428 | 288.44 | 42400 | 0.8584 | | 0.4369 | 289.12 | 42500 | 0.8881 | | 0.4369 | 289.8 | 42600 | 0.9121 | | 0.4325 | 290.48 | 42700 | 0.8598 | | 0.4266 | 291.16 | 42800 | 0.9031 | | 0.4266 | 291.84 | 42900 | 0.8444 | | 0.4218 | 292.52 | 43000 | 0.8966 | | 0.4252 | 293.2 | 43100 | 0.9224 | | 0.4252 | 293.88 | 43200 | 1.0000 | | 0.4231 | 294.56 | 43300 | 0.9438 | | 0.4204 | 295.24 | 43400 | 0.8706 | | 0.4204 | 295.92 | 43500 | 0.8563 | | 0.4207 | 296.6 | 43600 | 0.9680 | | 0.4247 | 297.28 | 43700 | 0.8682 | | 0.4247 | 297.96 | 43800 | 0.9071 | | 0.4247 | 298.64 | 43900 | 0.8642 | | 0.4183 | 299.32 | 44000 | 0.8874 | | 0.4183 | 300.0 | 44100 | 0.9027 | | 0.4352 | 300.68 | 44200 | 0.8447 | | 0.4241 | 301.36 | 44300 | 0.9028 | | 0.4266 | 302.04 | 44400 | 0.9055 | | 0.4266 | 302.72 | 44500 | 0.9251 | | 0.4183 | 303.4 | 44600 | 0.9440 | | 0.4148 | 304.08 | 44700 | 0.9566 | | 0.4148 | 304.76 | 44800 | 0.8994 | | 0.4217 | 305.44 | 44900 | 1.0046 | | 0.4165 | 306.12 | 45000 | 0.8346 | | 0.4165 | 306.8 | 45100 | 0.8727 | | 0.4129 | 307.48 | 45200 | 0.9284 | | 0.408 | 308.16 | 45300 | 0.9695 | | 0.408 | 308.84 | 45400 | 0.9798 | | 0.3986 | 309.52 | 45500 | 0.9456 | | 0.4219 | 310.2 | 45600 | 0.9017 | | 0.4219 | 310.88 | 45700 | 0.9370 | | 0.422 | 311.56 | 45800 | 0.8430 | | 0.415 | 312.24 | 45900 | 0.9242 | | 0.415 | 312.93 | 46000 | 0.9381 | | 0.4173 | 313.61 | 46100 | 0.8775 | | 0.4204 | 314.29 | 46200 | 0.9259 | | 0.4204 | 314.97 | 46300 | 0.9272 | | 0.4073 | 315.65 | 46400 | 0.8997 | | 0.4137 | 316.33 | 46500 | 0.9177 | | 0.4043 | 317.01 | 46600 | 0.9592 | | 0.4043 | 317.69 | 46700 | 0.9665 | | 0.4224 | 318.37 | 46800 | 0.8610 | | 0.415 | 319.05 | 46900 | 0.8602 | | 0.415 | 319.73 | 47000 | 0.9231 | | 0.4103 | 320.41 | 47100 | 0.9351 | | 0.4162 | 321.09 | 47200 | 0.9975 | | 0.4162 | 321.77 | 47300 | 0.9037 | | 0.4083 | 322.45 | 47400 | 0.8951 | | 0.4173 | 323.13 | 47500 | 0.9530 | | 0.4173 | 323.81 | 47600 | 0.8620 | | 0.4124 | 324.49 | 47700 | 0.9234 | | 0.413 | 325.17 | 47800 | 0.9347 | | 0.413 | 325.85 | 47900 | 0.9841 | | 0.4117 | 326.53 | 48000 | 0.9996 | | 0.4127 | 327.21 | 48100 | 0.9128 | | 0.4127 | 327.89 | 48200 | 0.8949 | | 0.3967 | 328.57 | 48300 | 0.9390 | | 0.4068 | 329.25 | 48400 | 0.9034 | | 0.4068 | 329.93 | 48500 | 0.9314 | | 0.4086 | 330.61 | 48600 | 0.9609 | | 0.4143 | 331.29 | 48700 | 0.9333 | | 0.4143 | 331.97 | 48800 | 0.9294 | | 0.4144 | 332.65 | 48900 | 0.8984 | | 0.4077 | 333.33 | 49000 | 1.0073 | | 0.3953 | 334.01 | 49100 | 0.9610 | | 0.3953 | 334.69 | 49200 | 0.9907 | | 0.3961 | 335.37 | 49300 | 0.9689 | | 0.4122 | 336.05 | 49400 | 0.9386 | | 0.4122 | 336.73 | 49500 | 0.9186 | | 0.3946 | 337.41 | 49600 | 0.9927 | | 0.4021 | 338.1 | 49700 | 1.0131 | | 0.4021 | 338.78 | 49800 | 1.0783 | | 0.4039 | 339.46 | 49900 | 0.9340 | | 0.3989 | 340.14 | 50000 | 0.9544 | | 0.3989 | 340.82 | 50100 | 0.9124 | | 0.4054 | 341.5 | 50200 | 0.9842 | | 0.4059 | 342.18 | 50300 | 0.9947 | | 0.4059 | 342.86 | 50400 | 0.9687 | | 0.403 | 343.54 | 50500 | 0.9740 | | 0.3969 | 344.22 | 50600 | 0.9313 | | 0.3969 | 344.9 | 50700 | 0.9186 | | 0.4034 | 345.58 | 50800 | 0.9666 | | 0.4101 | 346.26 | 50900 | 0.8962 | | 0.4101 | 346.94 | 51000 | 0.9590 | | 0.4141 | 347.62 | 51100 | 0.9583 | | 0.4029 | 348.3 | 51200 | 0.9203 | | 0.4029 | 348.98 | 51300 | 0.9875 | | 0.4141 | 349.66 | 51400 | 0.9645 | | 0.3974 | 350.34 | 51500 | 0.9310 | | 0.3881 | 351.02 | 51600 | 0.9739 | | 0.3881 | 351.7 | 51700 | 0.9420 | | 0.384 | 352.38 | 51800 | 0.9549 | | 0.3902 | 353.06 | 51900 | 0.9647 | | 0.3902 | 353.74 | 52000 | 0.9604 | | 0.3846 | 354.42 | 52100 | 0.9756 | | 0.3906 | 355.1 | 52200 | 0.9419 | | 0.3906 | 355.78 | 52300 | 0.9461 | | 0.3712 | 356.46 | 52400 | 0.9420 | | 0.3769 | 357.14 | 52500 | 0.9315 | | 0.3769 | 357.82 | 52600 | 0.9119 | | 0.3896 | 358.5 | 52700 | 0.9798 | | 0.3787 | 359.18 | 52800 | 0.9941 | | 0.3787 | 359.86 | 52900 | 0.9364 | | 0.3903 | 360.54 | 53000 | 0.9152 | | 0.3823 | 361.22 | 53100 | 0.9817 | | 0.3823 | 361.9 | 53200 | 0.9087 | | 0.378 | 362.59 | 53300 | 0.9299 | | 0.3882 | 363.27 | 53400 | 0.9989 | | 0.3882 | 363.95 | 53500 | 0.9168 | | 0.3787 | 364.63 | 53600 | 0.9464 | | 0.3835 | 365.31 | 53700 | 0.9010 | | 0.3835 | 365.99 | 53800 | 0.8880 | | 0.3751 | 366.67 | 53900 | 0.9004 | | 0.3745 | 367.35 | 54000 | 0.9491 | | 0.3776 | 368.03 | 54100 | 1.0176 | | 0.3776 | 368.71 | 54200 | 0.9734 | | 0.3744 | 369.39 | 54300 | 0.9464 | | 0.3659 | 370.07 | 54400 | 0.9967 | | 0.3659 | 370.75 | 54500 | 0.9905 | | 0.3671 | 371.43 | 54600 | 0.9456 | | 0.3747 | 372.11 | 54700 | 0.9371 | | 0.3747 | 372.79 | 54800 | 0.8921 | | 0.3728 | 373.47 | 54900 | 0.8826 | | 0.3776 | 374.15 | 55000 | 0.9630 | | 0.3776 | 374.83 | 55100 | 0.9353 | | 0.3694 | 375.51 | 55200 | 0.9479 | | 0.3768 | 376.19 | 55300 | 0.9303 | | 0.3768 | 376.87 | 55400 | 0.9540 | | 0.3747 | 377.55 | 55500 | 0.9383 | | 0.3737 | 378.23 | 55600 | 0.9170 | | 0.3737 | 378.91 | 55700 | 0.8026 | | 0.3757 | 379.59 | 55800 | 0.8989 | | 0.3678 | 380.27 | 55900 | 0.9248 | | 0.3678 | 380.95 | 56000 | 0.8190 | | 0.3738 | 381.63 | 56100 | 0.9005 | | 0.376 | 382.31 | 56200 | 0.8561 | | 0.376 | 382.99 | 56300 | 0.9408 | | 0.3714 | 383.67 | 56400 | 0.9226 | | 0.364 | 384.35 | 56500 | 0.9577 | | 0.3465 | 385.03 | 56600 | 0.9440 | | 0.3465 | 385.71 | 56700 | 0.9178 | | 0.374 | 386.39 | 56800 | 0.9044 | | 0.3727 | 387.07 | 56900 | 0.8633 | | 0.3727 | 387.76 | 57000 | 0.9078 | | 0.3735 | 388.44 | 57100 | 0.9021 | | 0.3655 | 389.12 | 57200 | 0.9499 | | 0.3655 | 389.8 | 57300 | 0.9290 | | 0.3615 | 390.48 | 57400 | 0.8906 | | 0.3588 | 391.16 | 57500 | 0.8692 | | 0.3588 | 391.84 | 57600 | 0.8857 | | 0.3639 | 392.52 | 57700 | 0.9569 | | 0.3557 | 393.2 | 57800 | 0.9146 | | 0.3557 | 393.88 | 57900 | 0.9878 | | 0.3532 | 394.56 | 58000 | 0.8703 | | 0.3745 | 395.24 | 58100 | 0.8679 | | 0.3745 | 395.92 | 58200 | 0.8823 | | 0.3566 | 396.6 | 58300 | 0.9611 | | 0.3642 | 397.28 | 58400 | 0.9327 | | 0.3642 | 397.96 | 58500 | 0.8587 | | 0.3623 | 398.64 | 58600 | 0.8746 | | 0.3629 | 399.32 | 58700 | 0.9093 | | 0.3629 | 400.0 | 58800 | 0.8858 | | 0.354 | 400.68 | 58900 | 0.8902 | | 0.3487 | 401.36 | 59000 | 0.8693 | | 0.3467 | 402.04 | 59100 | 1.0825 | | 0.3467 | 402.72 | 59200 | 0.9697 | | 0.3517 | 403.4 | 59300 | 0.9169 | | 0.3696 | 404.08 | 59400 | 0.9237 | | 0.3696 | 404.76 | 59500 | 0.9033 | | 0.3629 | 405.44 | 59600 | 0.9062 | | 0.3559 | 406.12 | 59700 | 0.9159 | | 0.3559 | 406.8 | 59800 | 0.8730 | | 0.3603 | 407.48 | 59900 | 0.8732 | | 0.3676 | 408.16 | 60000 | 0.8897 | | 0.3676 | 408.84 | 60100 | 0.7334 | | 0.3584 | 409.52 | 60200 | 0.8494 | | 0.3449 | 410.2 | 60300 | 0.8944 | | 0.3449 | 410.88 | 60400 | 0.8014 | | 0.3513 | 411.56 | 60500 | 0.8673 | | 0.3497 | 412.24 | 60600 | 0.9071 | | 0.3497 | 412.93 | 60700 | 0.8574 | | 0.3582 | 413.61 | 60800 | 0.9135 | | 0.3555 | 414.29 | 60900 | 0.8723 | | 0.3555 | 414.97 | 61000 | 0.8772 | | 0.3453 | 415.65 | 61100 | 0.9041 | | 0.3451 | 416.33 | 61200 | 0.8647 | | 0.3499 | 417.01 | 61300 | 0.9790 | | 0.3499 | 417.69 | 61400 | 0.9859 | | 0.3502 | 418.37 | 61500 | 0.8996 | | 0.3534 | 419.05 | 61600 | 0.9446 | | 0.3534 | 419.73 | 61700 | 0.8965 | | 0.3388 | 420.41 | 61800 | 0.9314 | | 0.3441 | 421.09 | 61900 | 0.8792 | | 0.3441 | 421.77 | 62000 | 0.9422 | | 0.3443 | 422.45 | 62100 | 0.9591 | | 0.3681 | 423.13 | 62200 | 0.9265 | | 0.3681 | 423.81 | 62300 | 0.8872 | | 0.3557 | 424.49 | 62400 | 0.8528 | | 0.3553 | 425.17 | 62500 | 0.9701 | | 0.3553 | 425.85 | 62600 | 0.9512 | | 0.3523 | 426.53 | 62700 | 0.9026 | | 0.3467 | 427.21 | 62800 | 0.9087 | | 0.3467 | 427.89 | 62900 | 1.0169 | | 0.3521 | 428.57 | 63000 | 0.9314 | | 0.3411 | 429.25 | 63100 | 0.9291 | | 0.3411 | 429.93 | 63200 | 0.9567 | | 0.3469 | 430.61 | 63300 | 0.9458 | | 0.3449 | 431.29 | 63400 | 0.9337 | | 0.3449 | 431.97 | 63500 | 0.9503 | | 0.3369 | 432.65 | 63600 | 0.8987 | | 0.3384 | 433.33 | 63700 | 0.8578 | | 0.3265 | 434.01 | 63800 | 0.9543 | | 0.3265 | 434.69 | 63900 | 0.9231 | | 0.3356 | 435.37 | 64000 | 0.9121 | | 0.3388 | 436.05 | 64100 | 0.9279 | | 0.3388 | 436.73 | 64200 | 0.8939 | | 0.3351 | 437.41 | 64300 | 0.8934 | | 0.3386 | 438.1 | 64400 | 0.9469 | | 0.3386 | 438.78 | 64500 | 0.9149 | | 0.3439 | 439.46 | 64600 | 0.8963 | | 0.3381 | 440.14 | 64700 | 0.8653 | | 0.3381 | 440.82 | 64800 | 0.8633 | | 0.3339 | 441.5 | 64900 | 0.8783 | | 0.3242 | 442.18 | 65000 | 0.9143 | | 0.3242 | 442.86 | 65100 | 0.9553 | | 0.3271 | 443.54 | 65200 | 0.8563 | | 0.3281 | 444.22 | 65300 | 0.9003 | | 0.3281 | 444.9 | 65400 | 0.8555 | | 0.3367 | 445.58 | 65500 | 0.9146 | | 0.3228 | 446.26 | 65600 | 0.9052 | | 0.3228 | 446.94 | 65700 | 0.9237 | | 0.3328 | 447.62 | 65800 | 0.9128 | | 0.324 | 448.3 | 65900 | 0.9159 | | 0.324 | 448.98 | 66000 | 0.8867 | | 0.3305 | 449.66 | 66100 | 0.9694 | | 0.3329 | 450.34 | 66200 | 0.9833 | | 0.3348 | 451.02 | 66300 | 0.9344 | | 0.3348 | 451.7 | 66400 | 0.9303 | | 0.321 | 452.38 | 66500 | 0.9275 | | 0.3335 | 453.06 | 66600 | 0.9419 | | 0.3335 | 453.74 | 66700 | 0.9502 | | 0.3189 | 454.42 | 66800 | 0.9341 | | 0.3386 | 455.1 | 66900 | 0.9404 | | 0.3386 | 455.78 | 67000 | 0.9660 | | 0.3273 | 456.46 | 67100 | 0.9323 | | 0.339 | 457.14 | 67200 | 0.9266 | | 0.339 | 457.82 | 67300 | 0.9289 | | 0.3326 | 458.5 | 67400 | 0.9248 | | 0.3207 | 459.18 | 67500 | 0.9374 | | 0.3207 | 459.86 | 67600 | 0.8996 | | 0.3339 | 460.54 | 67700 | 0.9271 | | 0.3198 | 461.22 | 67800 | 0.9627 | | 0.3198 | 461.9 | 67900 | 0.9429 | | 0.3208 | 462.59 | 68000 | 0.9561 | | 0.3147 | 463.27 | 68100 | 0.8795 | | 0.3147 | 463.95 | 68200 | 0.8876 | | 0.3222 | 464.63 | 68300 | 0.9007 | | 0.3241 | 465.31 | 68400 | 0.9475 | | 0.3241 | 465.99 | 68500 | 0.9403 | | 0.3312 | 466.67 | 68600 | 0.9368 | | 0.3302 | 467.35 | 68700 | 0.8937 | | 0.3201 | 468.03 | 68800 | 0.9319 | | 0.3201 | 468.71 | 68900 | 0.9094 | | 0.3217 | 469.39 | 69000 | 0.9517 | | 0.3193 | 470.07 | 69100 | 0.8895 | | 0.3193 | 470.75 | 69200 | 0.9202 | | 0.3352 | 471.43 | 69300 | 0.9320 | | 0.3249 | 472.11 | 69400 | 0.9640 | | 0.3249 | 472.79 | 69500 | 0.9452 | | 0.3097 | 473.47 | 69600 | 0.9311 | | 0.327 | 474.15 | 69700 | 0.9392 | | 0.327 | 474.83 | 69800 | 0.9525 | | 0.3271 | 475.51 | 69900 | 0.9064 | | 0.3165 | 476.19 | 70000 | 0.9455 | | 0.3165 | 476.87 | 70100 | 0.9435 | | 0.3103 | 477.55 | 70200 | 0.8891 | | 0.3189 | 478.23 | 70300 | 0.9199 | | 0.3189 | 478.91 | 70400 | 0.9362 | | 0.3264 | 479.59 | 70500 | 0.9289 | | 0.313 | 480.27 | 70600 | 0.9246 | | 0.313 | 480.95 | 70700 | 0.9549 | | 0.3289 | 481.63 | 70800 | 0.9513 | | 0.3189 | 482.31 | 70900 | 0.9798 | | 0.3189 | 482.99 | 71000 | 0.9027 | | 0.3177 | 483.67 | 71100 | 0.8823 | | 0.3219 | 484.35 | 71200 | 0.9269 | | 0.3175 | 485.03 | 71300 | 0.8984 | | 0.3175 | 485.71 | 71400 | 0.8696 | | 0.3167 | 486.39 | 71500 | 0.8722 | | 0.318 | 487.07 | 71600 | 0.8909 | | 0.318 | 487.76 | 71700 | 0.8783 | | 0.3128 | 488.44 | 71800 | 0.8144 | | 0.315 | 489.12 | 71900 | 0.8250 | | 0.315 | 489.8 | 72000 | 0.8791 | | 0.3085 | 490.48 | 72100 | 0.9192 | | 0.3081 | 491.16 | 72200 | 0.8403 | | 0.3081 | 491.84 | 72300 | 0.9223 | | 0.31 | 492.52 | 72400 | 0.8974 | | 0.3054 | 493.2 | 72500 | 0.9169 | | 0.3054 | 493.88 | 72600 | 0.8845 | | 0.3134 | 494.56 | 72700 | 0.9554 | | 0.3083 | 495.24 | 72800 | 0.9337 | | 0.3083 | 495.92 | 72900 | 0.9209 | | 0.3028 | 496.6 | 73000 | 0.9142 | | 0.3016 | 497.28 | 73100 | 0.9345 | | 0.3016 | 497.96 | 73200 | 0.9100 | | 0.3075 | 498.64 | 73300 | 0.8989 | | 0.3105 | 499.32 | 73400 | 0.8598 | | 0.3105 | 500.0 | 73500 | 0.9177 | | 0.3059 | 500.68 | 73600 | 0.9242 | | 0.3018 | 501.36 | 73700 | 0.9403 | | 0.3159 | 502.04 | 73800 | 0.9011 | | 0.3159 | 502.72 | 73900 | 0.9442 | | 0.2996 | 503.4 | 74000 | 0.9575 | | 0.3016 | 504.08 | 74100 | 0.9119 | | 0.3016 | 504.76 | 74200 | 0.9072 | | 0.3072 | 505.44 | 74300 | 0.9389 | | 0.3042 | 506.12 | 74400 | 0.9038 | | 0.3042 | 506.8 | 74500 | 0.8814 | | 0.3142 | 507.48 | 74600 | 0.9452 | | 0.3099 | 508.16 | 74700 | 0.9395 | | 0.3099 | 508.84 | 74800 | 0.9604 | | 0.3081 | 509.52 | 74900 | 0.9176 | | 0.3175 | 510.2 | 75000 | 0.8799 | | 0.3175 | 510.88 | 75100 | 0.8732 | | 0.3052 | 511.56 | 75200 | 0.8323 | | 0.2961 | 512.24 | 75300 | 0.8956 | | 0.2961 | 512.93 | 75400 | 0.8629 | | 0.3012 | 513.61 | 75500 | 0.8523 | | 0.2999 | 514.29 | 75600 | 0.8276 | | 0.2999 | 514.97 | 75700 | 0.9008 | | 0.298 | 515.65 | 75800 | 0.8051 | | 0.2968 | 516.33 | 75900 | 0.8240 | | 0.2907 | 517.01 | 76000 | 0.9271 | | 0.2907 | 517.69 | 76100 | 0.8934 | | 0.2859 | 518.37 | 76200 | 0.9044 | | 0.306 | 519.05 | 76300 | 0.8994 | | 0.306 | 519.73 | 76400 | 0.8539 | | 0.2947 | 520.41 | 76500 | 0.9063 | | 0.2977 | 521.09 | 76600 | 0.9074 | | 0.2977 | 521.77 | 76700 | 0.9297 | | 0.2991 | 522.45 | 76800 | 0.9109 | | 0.3013 | 523.13 | 76900 | 0.9491 | | 0.3013 | 523.81 | 77000 | 0.8518 | | 0.3 | 524.49 | 77100 | 0.9199 | | 0.3009 | 525.17 | 77200 | 0.9277 | | 0.3009 | 525.85 | 77300 | 0.9617 | | 0.3054 | 526.53 | 77400 | 0.9254 | | 0.2994 | 527.21 | 77500 | 0.8886 | | 0.2994 | 527.89 | 77600 | 0.8579 | | 0.2957 | 528.57 | 77700 | 0.9694 | | 0.3082 | 529.25 | 77800 | 0.9411 | | 0.3082 | 529.93 | 77900 | 0.8823 | | 0.2928 | 530.61 | 78000 | 0.8684 | | 0.2936 | 531.29 | 78100 | 0.9942 | | 0.2936 | 531.97 | 78200 | 0.8861 | | 0.2964 | 532.65 | 78300 | 0.8939 | | 0.2914 | 533.33 | 78400 | 0.9633 | | 0.2928 | 534.01 | 78500 | 0.8713 | | 0.2928 | 534.69 | 78600 | 0.8938 | | 0.2909 | 535.37 | 78700 | 0.8905 | | 0.2966 | 536.05 | 78800 | 0.9006 | | 0.2966 | 536.73 | 78900 | 0.9431 | | 0.2886 | 537.41 | 79000 | 0.9343 | | 0.2922 | 538.1 | 79100 | 0.9032 | | 0.2922 | 538.78 | 79200 | 0.9507 | | 0.2817 | 539.46 | 79300 | 0.9199 | | 0.2917 | 540.14 | 79400 | 0.9156 | | 0.2917 | 540.82 | 79500 | 0.9175 | | 0.29 | 541.5 | 79600 | 0.9104 | | 0.291 | 542.18 | 79700 | 0.9223 | | 0.291 | 542.86 | 79800 | 0.9622 | | 0.3055 | 543.54 | 79900 | 0.8998 | | 0.2842 | 544.22 | 80000 | 0.9216 | | 0.2842 | 544.9 | 80100 | 0.9475 | | 0.2952 | 545.58 | 80200 | 0.9345 | | 0.278 | 546.26 | 80300 | 0.9923 | | 0.278 | 546.94 | 80400 | 0.9217 | | 0.2882 | 547.62 | 80500 | 0.9385 | | 0.286 | 548.3 | 80600 | 0.9422 | | 0.286 | 548.98 | 80700 | 0.9100 | | 0.2828 | 549.66 | 80800 | 0.9751 | | 0.2903 | 550.34 | 80900 | 0.9360 | | 0.2803 | 551.02 | 81000 | 0.9827 | | 0.2803 | 551.7 | 81100 | 0.9771 | | 0.282 | 552.38 | 81200 | 1.0085 | | 0.2901 | 553.06 | 81300 | 0.9342 | | 0.2901 | 553.74 | 81400 | 1.0034 | | 0.2822 | 554.42 | 81500 | 0.9586 | | 0.281 | 555.1 | 81600 | 0.9590 | | 0.281 | 555.78 | 81700 | 0.9488 | | 0.2824 | 556.46 | 81800 | 0.9709 | | 0.287 | 557.14 | 81900 | 0.9507 | | 0.287 | 557.82 | 82000 | 0.9429 | | 0.2873 | 558.5 | 82100 | 0.9334 | | 0.2806 | 559.18 | 82200 | 0.9271 | | 0.2806 | 559.86 | 82300 | 0.9470 | | 0.2892 | 560.54 | 82400 | 0.9602 | | 0.2772 | 561.22 | 82500 | 0.9843 | | 0.2772 | 561.9 | 82600 | 0.9335 | | 0.2881 | 562.59 | 82700 | 0.9451 | | 0.2816 | 563.27 | 82800 | 0.9621 | | 0.2816 | 563.95 | 82900 | 0.9989 | | 0.2813 | 564.63 | 83000 | 0.9163 | | 0.2804 | 565.31 | 83100 | 0.9638 | | 0.2804 | 565.99 | 83200 | 0.9520 | | 0.2748 | 566.67 | 83300 | 0.9263 | | 0.2795 | 567.35 | 83400 | 0.9293 | | 0.2804 | 568.03 | 83500 | 0.9620 | | 0.2804 | 568.71 | 83600 | 0.9169 | | 0.2741 | 569.39 | 83700 | 0.9286 | | 0.2718 | 570.07 | 83800 | 0.9334 | | 0.2718 | 570.75 | 83900 | 0.9654 | | 0.2782 | 571.43 | 84000 | 0.9761 | | 0.2843 | 572.11 | 84100 | 0.9883 | | 0.2843 | 572.79 | 84200 | 0.9993 | | 0.2805 | 573.47 | 84300 | 0.9312 | | 0.2793 | 574.15 | 84400 | 0.9932 | | 0.2793 | 574.83 | 84500 | 0.9828 | | 0.2722 | 575.51 | 84600 | 0.9558 | | 0.273 | 576.19 | 84700 | 0.9739 | | 0.273 | 576.87 | 84800 | 0.9193 | | 0.2706 | 577.55 | 84900 | 0.9511 | | 0.2745 | 578.23 | 85000 | 0.9054 | | 0.2745 | 578.91 | 85100 | 0.9574 | | 0.2715 | 579.59 | 85200 | 0.9881 | | 0.2715 | 580.27 | 85300 | 0.9603 | | 0.2715 | 580.95 | 85400 | 1.0218 | | 0.2789 | 581.63 | 85500 | 0.9076 | | 0.274 | 582.31 | 85600 | 0.9393 | | 0.274 | 582.99 | 85700 | 0.8968 | | 0.2762 | 583.67 | 85800 | 0.9474 | | 0.2767 | 584.35 | 85900 | 0.9883 | | 0.2688 | 585.03 | 86000 | 0.9717 | | 0.2688 | 585.71 | 86100 | 1.0013 | | 0.2706 | 586.39 | 86200 | 0.9569 | | 0.2739 | 587.07 | 86300 | 0.9369 | | 0.2739 | 587.76 | 86400 | 0.8882 | | 0.2716 | 588.44 | 86500 | 0.9189 | | 0.2693 | 589.12 | 86600 | 0.9402 | | 0.2693 | 589.8 | 86700 | 0.9262 | | 0.2667 | 590.48 | 86800 | 0.9782 | | 0.268 | 591.16 | 86900 | 0.9457 | | 0.268 | 591.84 | 87000 | 0.9509 | | 0.2726 | 592.52 | 87100 | 0.9320 | | 0.275 | 593.2 | 87200 | 0.9357 | | 0.275 | 593.88 | 87300 | 0.9786 | | 0.2673 | 594.56 | 87400 | 0.9770 | | 0.2684 | 595.24 | 87500 | 0.9389 | | 0.2684 | 595.92 | 87600 | 0.9558 | | 0.2664 | 596.6 | 87700 | 0.9698 | | 0.2691 | 597.28 | 87800 | 1.0059 | | 0.2691 | 597.96 | 87900 | 0.9660 | | 0.2753 | 598.64 | 88000 | 0.9761 | | 0.2547 | 599.32 | 88100 | 0.9627 | | 0.2547 | 600.0 | 88200 | 0.9621 | | 0.2691 | 600.68 | 88300 | 0.9752 | | 0.266 | 601.36 | 88400 | 0.9677 | | 0.2675 | 602.04 | 88500 | 0.9663 | | 0.2675 | 602.72 | 88600 | 0.9749 | | 0.2747 | 603.4 | 88700 | 0.9452 | | 0.2674 | 604.08 | 88800 | 0.9587 | | 0.2674 | 604.76 | 88900 | 0.9693 | | 0.2801 | 605.44 | 89000 | 0.9513 | | 0.2722 | 606.12 | 89100 | 0.9783 | | 0.2722 | 606.8 | 89200 | 0.9452 | | 0.2731 | 607.48 | 89300 | 0.9678 | | 0.2723 | 608.16 | 89400 | 0.9786 | | 0.2723 | 608.84 | 89500 | 0.9852 | | 0.2651 | 609.52 | 89600 | 0.9570 | | 0.2811 | 610.2 | 89700 | 0.9567 | | 0.2811 | 610.88 | 89800 | 0.9049 | | 0.2688 | 611.56 | 89900 | 0.9634 | | 0.2624 | 612.24 | 90000 | 0.8975 | | 0.2624 | 612.93 | 90100 | 0.9899 | | 0.2616 | 613.61 | 90200 | 0.9626 | | 0.2603 | 614.29 | 90300 | 0.9310 | | 0.2603 | 614.97 | 90400 | 0.9788 | | 0.2721 | 615.65 | 90500 | 0.9413 | | 0.2622 | 616.33 | 90600 | 0.9807 | | 0.2683 | 617.01 | 90700 | 0.9218 | | 0.2683 | 617.69 | 90800 | 0.9893 | | 0.2573 | 618.37 | 90900 | 0.9086 | | 0.2654 | 619.05 | 91000 | 0.9373 | | 0.2654 | 619.73 | 91100 | 0.9583 | | 0.2647 | 620.41 | 91200 | 0.9232 | | 0.2616 | 621.09 | 91300 | 0.9738 | | 0.2616 | 621.77 | 91400 | 0.9405 | | 0.258 | 622.45 | 91500 | 0.9601 | | 0.2632 | 623.13 | 91600 | 0.9567 | | 0.2632 | 623.81 | 91700 | 0.9362 | | 0.2636 | 624.49 | 91800 | 0.9496 | | 0.2636 | 625.17 | 91900 | 1.0030 | | 0.2636 | 625.85 | 92000 | 0.9785 | | 0.2454 | 626.53 | 92100 | 0.9485 | | 0.2533 | 627.21 | 92200 | 0.9630 | | 0.2533 | 627.89 | 92300 | 0.9709 | | 0.2596 | 628.57 | 92400 | 0.9479 | | 0.256 | 629.25 | 92500 | 0.9214 | | 0.256 | 629.93 | 92600 | 0.9570 | | 0.255 | 630.61 | 92700 | 0.9472 | | 0.2613 | 631.29 | 92800 | 0.9457 | | 0.2613 | 631.97 | 92900 | 0.9615 | | 0.2703 | 632.65 | 93000 | 0.9583 | | 0.2582 | 633.33 | 93100 | 0.9601 | | 0.2634 | 634.01 | 93200 | 0.9444 | | 0.2634 | 634.69 | 93300 | 0.9499 | | 0.259 | 635.37 | 93400 | 0.9512 | | 0.2617 | 636.05 | 93500 | 0.9543 | | 0.2617 | 636.73 | 93600 | 0.9303 | | 0.2611 | 637.41 | 93700 | 0.9388 | | 0.2513 | 638.1 | 93800 | 0.9443 | | 0.2513 | 638.78 | 93900 | 0.9276 | | 0.2571 | 639.46 | 94000 | 0.9073 | | 0.2636 | 640.14 | 94100 | 0.9122 | | 0.2636 | 640.82 | 94200 | 0.9132 | | 0.2673 | 641.5 | 94300 | 0.9055 | | 0.2594 | 642.18 | 94400 | 0.9299 | | 0.2594 | 642.86 | 94500 | 0.9161 | | 0.2552 | 643.54 | 94600 | 0.9347 | | 0.254 | 644.22 | 94700 | 0.9239 | | 0.254 | 644.9 | 94800 | 0.9454 | | 0.2522 | 645.58 | 94900 | 0.9481 | | 0.2556 | 646.26 | 95000 | 0.9153 | | 0.2556 | 646.94 | 95100 | 0.9141 | | 0.2583 | 647.62 | 95200 | 0.9280 | | 0.2645 | 648.3 | 95300 | 0.9218 | | 0.2645 | 648.98 | 95400 | 0.9603 | | 0.2512 | 649.66 | 95500 | 0.9017 | | 0.2602 | 650.34 | 95600 | 0.9101 | | 0.255 | 651.02 | 95700 | 0.9184 | | 0.255 | 651.7 | 95800 | 0.9234 | | 0.2547 | 652.38 | 95900 | 0.9194 | | 0.2546 | 653.06 | 96000 | 0.9825 | | 0.2546 | 653.74 | 96100 | 0.9515 | | 0.2526 | 654.42 | 96200 | 0.9067 | | 0.261 | 655.1 | 96300 | 0.9282 | | 0.261 | 655.78 | 96400 | 0.9561 | | 0.2545 | 656.46 | 96500 | 0.9466 | | 0.2509 | 657.14 | 96600 | 0.9294 | | 0.2509 | 657.82 | 96700 | 0.9114 | | 0.2503 | 658.5 | 96800 | 1.0040 | | 0.2482 | 659.18 | 96900 | 0.9106 | | 0.2482 | 659.86 | 97000 | 0.9159 | | 0.2523 | 660.54 | 97100 | 0.9490 | | 0.2528 | 661.22 | 97200 | 0.9538 | | 0.2528 | 661.9 | 97300 | 0.9570 | | 0.2455 | 662.59 | 97400 | 0.8882 | | 0.2502 | 663.27 | 97500 | 0.9164 | | 0.2502 | 663.95 | 97600 | 0.9269 | | 0.2465 | 664.63 | 97700 | 0.9628 | | 0.2524 | 665.31 | 97800 | 0.8976 | | 0.2524 | 665.99 | 97900 | 0.9017 | | 0.2479 | 666.67 | 98000 | 0.9197 | | 0.249 | 667.35 | 98100 | 0.9282 | | 0.2533 | 668.03 | 98200 | 0.9342 | | 0.2533 | 668.71 | 98300 | 0.9494 | | 0.2501 | 669.39 | 98400 | 0.9430 | | 0.2444 | 670.07 | 98500 | 0.9252 | | 0.2444 | 670.75 | 98600 | 0.9799 | | 0.243 | 671.43 | 98700 | 0.9195 | | 0.249 | 672.11 | 98800 | 0.9142 | | 0.249 | 672.79 | 98900 | 0.9553 | | 0.2528 | 673.47 | 99000 | 0.9196 | | 0.244 | 674.15 | 99100 | 0.9640 | | 0.244 | 674.83 | 99200 | 0.9809 | | 0.2462 | 675.51 | 99300 | 0.9868 | | 0.247 | 676.19 | 99400 | 0.9640 | | 0.247 | 676.87 | 99500 | 0.9228 | | 0.2615 | 677.55 | 99600 | 0.9172 | | 0.2487 | 678.23 | 99700 | 0.9166 | | 0.2487 | 678.91 | 99800 | 0.8928 | | 0.242 | 679.59 | 99900 | 0.8830 | | 0.2448 | 680.27 | 100000 | 0.9209 | | 0.2448 | 680.95 | 100100 | 0.9139 | | 0.2488 | 681.63 | 100200 | 0.8970 | | 0.2504 | 682.31 | 100300 | 0.9254 | | 0.2504 | 682.99 | 100400 | 0.9437 | | 0.2381 | 683.67 | 100500 | 0.9419 | | 0.245 | 684.35 | 100600 | 0.9379 | | 0.2452 | 685.03 | 100700 | 0.9465 | | 0.2452 | 685.71 | 100800 | 0.9626 | | 0.2482 | 686.39 | 100900 | 0.9472 | | 0.2456 | 687.07 | 101000 | 0.9434 | | 0.2456 | 687.76 | 101100 | 0.9426 | | 0.2388 | 688.44 | 101200 | 0.9440 | | 0.2496 | 689.12 | 101300 | 0.9311 | | 0.2496 | 689.8 | 101400 | 0.9338 | | 0.2399 | 690.48 | 101500 | 0.9290 | | 0.2427 | 691.16 | 101600 | 0.9347 | | 0.2427 | 691.84 | 101700 | 0.9197 | | 0.2709 | 692.52 | 101800 | 0.9046 | | 0.2474 | 693.2 | 101900 | 0.9455 | | 0.2474 | 693.88 | 102000 | 0.9212 | | 0.2411 | 694.56 | 102100 | 0.9508 | | 0.242 | 695.24 | 102200 | 0.9558 | | 0.242 | 695.92 | 102300 | 0.9846 | | 0.2443 | 696.6 | 102400 | 0.9656 | | 0.2356 | 697.28 | 102500 | 0.9428 | | 0.2356 | 697.96 | 102600 | 0.9238 | | 0.2422 | 698.64 | 102700 | 0.9156 | | 0.2341 | 699.32 | 102800 | 0.9324 | | 0.2341 | 700.0 | 102900 | 0.9372 | | 0.2382 | 700.68 | 103000 | 0.9374 | | 0.2407 | 701.36 | 103100 | 0.9342 | | 0.2427 | 702.04 | 103200 | 0.9400 | | 0.2427 | 702.72 | 103300 | 0.9451 | | 0.2373 | 703.4 | 103400 | 0.9355 | | 0.2439 | 704.08 | 103500 | 0.9281 | | 0.2439 | 704.76 | 103600 | 0.9282 | | 0.247 | 705.44 | 103700 | 0.9186 | | 0.2391 | 706.12 | 103800 | 0.8933 | | 0.2391 | 706.8 | 103900 | 0.9392 | | 0.2467 | 707.48 | 104000 | 0.9764 | | 0.238 | 708.16 | 104100 | 0.9495 | | 0.238 | 708.84 | 104200 | 0.9409 | | 0.2436 | 709.52 | 104300 | 0.9296 | | 0.2396 | 710.2 | 104400 | 0.9472 | | 0.2396 | 710.88 | 104500 | 0.9574 | | 0.2476 | 711.56 | 104600 | 0.9231 | | 0.2397 | 712.24 | 104700 | 0.8930 | | 0.2397 | 712.93 | 104800 | 0.9173 | | 0.2448 | 713.61 | 104900 | 0.9187 | | 0.2448 | 714.29 | 105000 | 0.9194 | | 0.2448 | 714.97 | 105100 | 0.9242 | | 0.2365 | 715.65 | 105200 | 0.9254 | | 0.2374 | 716.33 | 105300 | 0.8915 | | 0.2417 | 717.01 | 105400 | 0.9117 | | 0.2417 | 717.69 | 105500 | 0.9284 | | 0.2355 | 718.37 | 105600 | 0.9527 | | 0.2344 | 719.05 | 105700 | 0.9486 | | 0.2344 | 719.73 | 105800 | 0.9683 | | 0.2387 | 720.41 | 105900 | 0.9552 | | 0.2395 | 721.09 | 106000 | 0.9223 | | 0.2395 | 721.77 | 106100 | 0.9092 | | 0.2433 | 722.45 | 106200 | 0.9380 | | 0.2353 | 723.13 | 106300 | 0.9535 | | 0.2353 | 723.81 | 106400 | 0.9584 | | 0.2375 | 724.49 | 106500 | 0.9346 | | 0.2325 | 725.17 | 106600 | 0.9275 | | 0.2325 | 725.85 | 106700 | 0.9382 | | 0.2335 | 726.53 | 106800 | 0.9199 | | 0.234 | 727.21 | 106900 | 0.9580 | | 0.234 | 727.89 | 107000 | 0.9703 | | 0.2324 | 728.57 | 107100 | 0.9901 | | 0.2303 | 729.25 | 107200 | 0.9820 | | 0.2303 | 729.93 | 107300 | 0.9646 | | 0.2291 | 730.61 | 107400 | 0.9548 | | 0.2415 | 731.29 | 107500 | 0.9346 | | 0.2415 | 731.97 | 107600 | 0.9242 | | 0.2385 | 732.65 | 107700 | 0.9535 | | 0.2324 | 733.33 | 107800 | 0.9393 | | 0.233 | 734.01 | 107900 | 0.9851 | | 0.233 | 734.69 | 108000 | 0.9890 | | 0.2324 | 735.37 | 108100 | 0.9940 | | 0.2332 | 736.05 | 108200 | 0.9818 | | 0.2332 | 736.73 | 108300 | 0.9922 | | 0.2317 | 737.41 | 108400 | 0.9977 | | 0.2343 | 738.1 | 108500 | 0.9593 | | 0.2343 | 738.78 | 108600 | 0.9995 | | 0.2288 | 739.46 | 108700 | 1.0020 | | 0.2291 | 740.14 | 108800 | 0.9864 | | 0.2291 | 740.82 | 108900 | 0.9740 | | 0.2308 | 741.5 | 109000 | 0.9993 | | 0.2347 | 742.18 | 109100 | 1.0078 | | 0.2347 | 742.86 | 109200 | 0.9762 | | 0.2309 | 743.54 | 109300 | 0.9776 | | 0.2264 | 744.22 | 109400 | 0.9629 | | 0.2264 | 744.9 | 109500 | 0.9830 | | 0.2312 | 745.58 | 109600 | 0.9737 | | 0.2253 | 746.26 | 109700 | 1.0124 | | 0.2253 | 746.94 | 109800 | 1.0121 | | 0.2275 | 747.62 | 109900 | 0.9924 | | 0.2331 | 748.3 | 110000 | 0.9456 | | 0.2331 | 748.98 | 110100 | 0.9486 | | 0.2275 | 749.66 | 110200 | 0.9388 | | 0.2303 | 750.34 | 110300 | 0.9762 | | 0.2322 | 751.02 | 110400 | 0.9643 | | 0.2322 | 751.7 | 110500 | 0.9878 | | 0.232 | 752.38 | 110600 | 0.9780 | | 0.2348 | 753.06 | 110700 | 0.9774 | | 0.2348 | 753.74 | 110800 | 1.0018 | | 0.2312 | 754.42 | 110900 | 0.9684 | | 0.2304 | 755.1 | 111000 | 0.9828 | | 0.2304 | 755.78 | 111100 | 0.9591 | | 0.2412 | 756.46 | 111200 | 0.9862 | | 0.2313 | 757.14 | 111300 | 0.9796 | | 0.2313 | 757.82 | 111400 | 0.9653 | | 0.2309 | 758.5 | 111500 | 0.9666 | | 0.2293 | 759.18 | 111600 | 1.0382 | | 0.2293 | 759.86 | 111700 | 1.0208 | | 0.235 | 760.54 | 111800 | 1.0372 | | 0.2337 | 761.22 | 111900 | 1.0057 | | 0.2337 | 761.9 | 112000 | 1.0245 | | 0.2309 | 762.59 | 112100 | 0.9766 | | 0.2275 | 763.27 | 112200 | 0.9449 | | 0.2275 | 763.95 | 112300 | 0.9659 | | 0.2263 | 764.63 | 112400 | 0.9614 | | 0.2325 | 765.31 | 112500 | 0.9605 | | 0.2325 | 765.99 | 112600 | 0.9494 | | 0.2292 | 766.67 | 112700 | 0.9632 | | 0.2246 | 767.35 | 112800 | 0.9762 | | 0.2268 | 768.03 | 112900 | 0.9754 | | 0.2268 | 768.71 | 113000 | 0.9704 | | 0.2274 | 769.39 | 113100 | 0.9722 | | 0.2234 | 770.07 | 113200 | 0.9678 | | 0.2234 | 770.75 | 113300 | 0.9736 | | 0.2238 | 771.43 | 113400 | 1.0298 | | 0.2242 | 772.11 | 113500 | 0.9642 | | 0.2242 | 772.79 | 113600 | 0.9844 | | 0.2257 | 773.47 | 113700 | 0.9649 | | 0.225 | 774.15 | 113800 | 0.9992 | | 0.225 | 774.83 | 113900 | 0.9868 | | 0.2262 | 775.51 | 114000 | 1.0092 | | 0.2266 | 776.19 | 114100 | 0.9961 | | 0.2266 | 776.87 | 114200 | 0.9714 | | 0.2314 | 777.55 | 114300 | 0.9864 | | 0.217 | 778.23 | 114400 | 0.9824 | | 0.217 | 778.91 | 114500 | 0.9910 | | 0.2248 | 779.59 | 114600 | 0.9945 | | 0.223 | 780.27 | 114700 | 0.9858 | | 0.223 | 780.95 | 114800 | 0.9657 | | 0.2312 | 781.63 | 114900 | 1.0191 | | 0.2223 | 782.31 | 115000 | 1.0089 | | 0.2223 | 782.99 | 115100 | 1.0103 | | 0.2222 | 783.67 | 115200 | 1.0265 | | 0.2231 | 784.35 | 115300 | 1.0014 | | 0.2276 | 785.03 | 115400 | 0.9888 | | 0.2276 | 785.71 | 115500 | 0.9721 | | 0.222 | 786.39 | 115600 | 0.9885 | | 0.2142 | 787.07 | 115700 | 0.9856 | | 0.2142 | 787.76 | 115800 | 0.9973 | | 0.2208 | 788.44 | 115900 | 0.9472 | | 0.223 | 789.12 | 116000 | 0.9729 | | 0.223 | 789.8 | 116100 | 0.9979 | | 0.2207 | 790.48 | 116200 | 0.9717 | | 0.2329 | 791.16 | 116300 | 0.9832 | | 0.2329 | 791.84 | 116400 | 0.9535 | | 0.2174 | 792.52 | 116500 | 0.9792 | | 0.219 | 793.2 | 116600 | 0.9819 | | 0.219 | 793.88 | 116700 | 1.0191 | | 0.2262 | 794.56 | 116800 | 1.0070 | | 0.2202 | 795.24 | 116900 | 0.9743 | | 0.2202 | 795.92 | 117000 | 0.9888 | | 0.2205 | 796.6 | 117100 | 0.9719 | | 0.2217 | 797.28 | 117200 | 0.9671 | | 0.2217 | 797.96 | 117300 | 0.9480 | | 0.226 | 798.64 | 117400 | 0.9839 | | 0.2181 | 799.32 | 117500 | 0.9551 | | 0.2181 | 800.0 | 117600 | 0.9727 | | 0.2178 | 800.68 | 117700 | 0.9849 | | 0.2226 | 801.36 | 117800 | 0.9799 | | 0.2151 | 802.04 | 117900 | 0.9489 | | 0.2151 | 802.72 | 118000 | 0.9519 | | 0.2284 | 803.4 | 118100 | 0.9786 | | 0.2168 | 804.08 | 118200 | 0.9589 | | 0.2168 | 804.76 | 118300 | 0.9683 | | 0.2161 | 805.44 | 118400 | 0.9861 | | 0.2113 | 806.12 | 118500 | 0.9648 | | 0.2113 | 806.8 | 118600 | 0.9970 | | 0.2201 | 807.48 | 118700 | 0.9777 | | 0.2105 | 808.16 | 118800 | 0.9693 | | 0.2105 | 808.84 | 118900 | 0.9831 | | 0.2139 | 809.52 | 119000 | 0.9316 | | 0.2263 | 810.2 | 119100 | 0.9245 | | 0.2263 | 810.88 | 119200 | 0.9254 | | 0.2275 | 811.56 | 119300 | 0.9750 | | 0.2133 | 812.24 | 119400 | 0.9973 | | 0.2133 | 812.93 | 119500 | 0.9579 | | 0.2132 | 813.61 | 119600 | 0.9847 | | 0.2167 | 814.29 | 119700 | 0.9638 | | 0.2167 | 814.97 | 119800 | 0.9713 | | 0.2161 | 815.65 | 119900 | 0.9488 | | 0.2224 | 816.33 | 120000 | 1.0207 | | 0.215 | 817.01 | 120100 | 0.9745 | | 0.215 | 817.69 | 120200 | 0.9800 | | 0.2142 | 818.37 | 120300 | 0.9843 | | 0.2146 | 819.05 | 120400 | 0.9693 | | 0.2146 | 819.73 | 120500 | 0.9966 | | 0.2169 | 820.41 | 120600 | 0.9695 | | 0.2137 | 821.09 | 120700 | 0.9613 | | 0.2137 | 821.77 | 120800 | 0.9962 | | 0.2141 | 822.45 | 120900 | 0.9930 | | 0.2185 | 823.13 | 121000 | 0.9766 | | 0.2185 | 823.81 | 121100 | 0.9663 | | 0.2104 | 824.49 | 121200 | 0.9545 | | 0.2167 | 825.17 | 121300 | 0.9401 | | 0.2167 | 825.85 | 121400 | 0.9651 | | 0.2123 | 826.53 | 121500 | 0.9568 | | 0.2174 | 827.21 | 121600 | 0.9756 | | 0.2174 | 827.89 | 121700 | 0.9679 | | 0.2195 | 828.57 | 121800 | 0.9835 | | 0.2204 | 829.25 | 121900 | 0.9675 | | 0.2204 | 829.93 | 122000 | 0.9839 | | 0.2139 | 830.61 | 122100 | 0.9765 | | 0.2218 | 831.29 | 122200 | 0.9590 | | 0.2218 | 831.97 | 122300 | 0.9659 | | 0.2178 | 832.65 | 122400 | 0.9701 | | 0.2113 | 833.33 | 122500 | 0.9306 | | 0.2159 | 834.01 | 122600 | 0.9616 | | 0.2159 | 834.69 | 122700 | 0.9466 | | 0.2158 | 835.37 | 122800 | 0.9510 | | 0.2145 | 836.05 | 122900 | 0.9692 | | 0.2145 | 836.73 | 123000 | 0.9628 | | 0.2117 | 837.41 | 123100 | 0.9403 | | 0.2118 | 838.1 | 123200 | 0.9518 | | 0.2118 | 838.78 | 123300 | 0.9710 | | 0.2114 | 839.46 | 123400 | 0.9493 | | 0.2141 | 840.14 | 123500 | 0.9499 | | 0.2141 | 840.82 | 123600 | 0.9426 | | 0.2091 | 841.5 | 123700 | 0.9513 | | 0.2104 | 842.18 | 123800 | 0.9460 | | 0.2104 | 842.86 | 123900 | 0.9268 | | 0.2076 | 843.54 | 124000 | 0.9714 | | 0.2069 | 844.22 | 124100 | 0.9622 | | 0.2069 | 844.9 | 124200 | 0.9883 | | 0.2093 | 845.58 | 124300 | 0.9668 | | 0.2098 | 846.26 | 124400 | 0.9509 | | 0.2098 | 846.94 | 124500 | 0.9675 | | 0.2106 | 847.62 | 124600 | 0.9406 | | 0.2176 | 848.3 | 124700 | 0.9220 | | 0.2176 | 848.98 | 124800 | 0.9003 | | 0.2068 | 849.66 | 124900 | 0.9253 | | 0.2101 | 850.34 | 125000 | 0.8712 | | 0.2164 | 851.02 | 125100 | 0.9273 | | 0.2164 | 851.7 | 125200 | 0.9093 | | 0.214 | 852.38 | 125300 | 0.9479 | | 0.2191 | 853.06 | 125400 | 0.9132 | | 0.2191 | 853.74 | 125500 | 0.9244 | | 0.2205 | 854.42 | 125600 | 0.9187 | | 0.2082 | 855.1 | 125700 | 0.9112 | | 0.2082 | 855.78 | 125800 | 0.9785 | | 0.206 | 856.46 | 125900 | 1.0037 | | 0.203 | 857.14 | 126000 | 1.0003 | | 0.203 | 857.82 | 126100 | 0.9682 | | 0.2121 | 858.5 | 126200 | 0.9759 | | 0.2079 | 859.18 | 126300 | 0.9583 | | 0.2079 | 859.86 | 126400 | 0.9627 | | 0.2064 | 860.54 | 126500 | 0.9796 | | 0.2132 | 861.22 | 126600 | 0.9863 | | 0.2132 | 861.9 | 126700 | 0.9890 | | 0.2132 | 862.59 | 126800 | 1.0000 | | 0.2108 | 863.27 | 126900 | 0.9936 | | 0.2108 | 863.95 | 127000 | 0.9510 | | 0.2075 | 864.63 | 127100 | 0.9674 | | 0.2081 | 865.31 | 127200 | 0.9562 | | 0.2081 | 865.99 | 127300 | 0.9576 | | 0.2165 | 866.67 | 127400 | 0.9516 | | 0.2103 | 867.35 | 127500 | 0.9649 | | 0.2078 | 868.03 | 127600 | 0.9543 | | 0.2078 | 868.71 | 127700 | 0.9340 | | 0.2001 | 869.39 | 127800 | 0.9447 | | 0.2086 | 870.07 | 127900 | 0.9299 | | 0.2086 | 870.75 | 128000 | 0.9294 | | 0.2034 | 871.43 | 128100 | 0.9396 | | 0.205 | 872.11 | 128200 | 0.9387 | | 0.205 | 872.79 | 128300 | 0.9331 | | 0.2083 | 873.47 | 128400 | 0.9292 | | 0.2118 | 874.15 | 128500 | 0.9468 | | 0.2118 | 874.83 | 128600 | 0.9398 | | 0.2061 | 875.51 | 128700 | 0.9466 | | 0.2117 | 876.19 | 128800 | 0.9093 | | 0.2117 | 876.87 | 128900 | 0.9129 | | 0.207 | 877.55 | 129000 | 0.9233 | | 0.2038 | 878.23 | 129100 | 0.9220 | | 0.2038 | 878.91 | 129200 | 0.9356 | | 0.207 | 879.59 | 129300 | 0.9280 | | 0.2088 | 880.27 | 129400 | 0.9434 | | 0.2088 | 880.95 | 129500 | 0.9478 | | 0.2077 | 881.63 | 129600 | 0.9528 | | 0.2027 | 882.31 | 129700 | 0.9433 | | 0.2027 | 882.99 | 129800 | 0.9510 | | 0.2054 | 883.67 | 129900 | 0.9538 | | 0.2049 | 884.35 | 130000 | 0.9634 | | 0.2022 | 885.03 | 130100 | 0.9260 | | 0.2022 | 885.71 | 130200 | 0.9655 | | 0.206 | 886.39 | 130300 | 0.9469 | | 0.2027 | 887.07 | 130400 | 0.9635 | | 0.2027 | 887.76 | 130500 | 0.9606 | | 0.2003 | 888.44 | 130600 | 0.9452 | | 0.2049 | 889.12 | 130700 | 0.9407 | | 0.2049 | 889.8 | 130800 | 0.9174 | | 0.2086 | 890.48 | 130900 | 0.9513 | | 0.2018 | 891.16 | 131000 | 0.9203 | | 0.2018 | 891.84 | 131100 | 0.9370 | | 0.2109 | 892.52 | 131200 | 0.9344 | | 0.2041 | 893.2 | 131300 | 0.9300 | | 0.2041 | 893.88 | 131400 | 0.9149 | | 0.2009 | 894.56 | 131500 | 0.9109 | | 0.2037 | 895.24 | 131600 | 0.9259 | | 0.2037 | 895.92 | 131700 | 0.9581 | | 0.2082 | 896.6 | 131800 | 0.9198 | | 0.2067 | 897.28 | 131900 | 0.9171 | | 0.2067 | 897.96 | 132000 | 0.8966 | | 0.2119 | 898.64 | 132100 | 0.9311 | | 0.2023 | 899.32 | 132200 | 0.9210 | | 0.2023 | 900.0 | 132300 | 0.9106 | | 0.2087 | 900.68 | 132400 | 0.9157 | | 0.2152 | 901.36 | 132500 | 0.9347 | | 0.2087 | 902.04 | 132600 | 0.9516 | | 0.2087 | 902.72 | 132700 | 0.9711 | | 0.2057 | 903.4 | 132800 | 0.9298 | | 0.2071 | 904.08 | 132900 | 0.9421 | | 0.2071 | 904.76 | 133000 | 0.9209 | | 0.2097 | 905.44 | 133100 | 0.9325 | | 0.2081 | 906.12 | 133200 | 0.9231 | | 0.2081 | 906.8 | 133300 | 0.9227 | | 0.2012 | 907.48 | 133400 | 0.9220 | | 0.1995 | 908.16 | 133500 | 0.9500 | | 0.1995 | 908.84 | 133600 | 0.9587 | | 0.2058 | 909.52 | 133700 | 0.9579 | | 0.2011 | 910.2 | 133800 | 0.9512 | | 0.2011 | 910.88 | 133900 | 0.9445 | | 0.2083 | 911.56 | 134000 | 0.9482 | | 0.2022 | 912.24 | 134100 | 0.9282 | | 0.2022 | 912.93 | 134200 | 0.9387 | | 0.2003 | 913.61 | 134300 | 0.9509 | | 0.212 | 914.29 | 134400 | 0.9609 | | 0.212 | 914.97 | 134500 | 0.9430 | | 0.2045 | 915.65 | 134600 | 0.9330 | | 0.2045 | 916.33 | 134700 | 0.9764 | | 0.2049 | 917.01 | 134800 | 0.9311 | | 0.2049 | 917.69 | 134900 | 0.9344 | | 0.2028 | 918.37 | 135000 | 0.9538 | | 0.1993 | 919.05 | 135100 | 0.9359 | | 0.1993 | 919.73 | 135200 | 0.9695 | | 0.2068 | 920.41 | 135300 | 0.9354 | | 0.2036 | 921.09 | 135400 | 0.9817 | | 0.2036 | 921.77 | 135500 | 0.9404 | | 0.2054 | 922.45 | 135600 | 0.9537 | | 0.2017 | 923.13 | 135700 | 0.9613 | | 0.2017 | 923.81 | 135800 | 0.9340 | | 0.1973 | 924.49 | 135900 | 0.9313 | | 0.216 | 925.17 | 136000 | 0.9541 | | 0.216 | 925.85 | 136100 | 0.9556 | | 0.2032 | 926.53 | 136200 | 0.9236 | | 0.1984 | 927.21 | 136300 | 0.9243 | | 0.1984 | 927.89 | 136400 | 0.9497 | | 0.195 | 928.57 | 136500 | 0.9485 | | 0.196 | 929.25 | 136600 | 0.9370 | | 0.196 | 929.93 | 136700 | 0.9294 | | 0.1991 | 930.61 | 136800 | 0.9510 | | 0.2008 | 931.29 | 136900 | 0.9445 | | 0.2008 | 931.97 | 137000 | 0.9428 | | 0.1997 | 932.65 | 137100 | 0.9718 | | 0.1998 | 933.33 | 137200 | 0.9620 | | 0.1962 | 934.01 | 137300 | 0.9388 | | 0.1962 | 934.69 | 137400 | 0.9578 | | 0.1932 | 935.37 | 137500 | 0.9383 | | 0.1989 | 936.05 | 137600 | 0.9285 | | 0.1989 | 936.73 | 137700 | 0.9671 | | 0.1965 | 937.41 | 137800 | 0.9572 | | 0.1988 | 938.1 | 137900 | 0.9487 | | 0.1988 | 938.78 | 138000 | 0.9369 | | 0.2006 | 939.46 | 138100 | 0.9343 | | 0.1995 | 940.14 | 138200 | 0.9488 | | 0.1995 | 940.82 | 138300 | 0.9242 | | 0.2047 | 941.5 | 138400 | 0.9214 | | 0.2118 | 942.18 | 138500 | 0.9054 | | 0.2118 | 942.86 | 138600 | 0.9391 | | 0.1934 | 943.54 | 138700 | 0.9256 | | 0.2012 | 944.22 | 138800 | 0.9372 | | 0.2012 | 944.9 | 138900 | 0.9355 | | 0.1984 | 945.58 | 139000 | 0.9284 | | 0.1953 | 946.26 | 139100 | 0.9206 | | 0.1953 | 946.94 | 139200 | 0.9281 | | 0.1974 | 947.62 | 139300 | 0.9300 | | 0.1919 | 948.3 | 139400 | 0.9566 | | 0.1919 | 948.98 | 139500 | 0.9674 | | 0.1951 | 949.66 | 139600 | 0.9739 | | 0.1986 | 950.34 | 139700 | 0.9548 | | 0.2041 | 951.02 | 139800 | 0.9510 | | 0.2041 | 951.7 | 139900 | 0.9621 | | 0.198 | 952.38 | 140000 | 0.9119 | | 0.1954 | 953.06 | 140100 | 0.9355 | | 0.1954 | 953.74 | 140200 | 0.9858 | | 0.1986 | 954.42 | 140300 | 0.9534 | | 0.2021 | 955.1 | 140400 | 0.9391 | | 0.2021 | 955.78 | 140500 | 0.9440 | | 0.2 | 956.46 | 140600 | 0.9461 | | 0.1928 | 957.14 | 140700 | 0.9493 | | 0.1928 | 957.82 | 140800 | 0.9452 | | 0.1953 | 958.5 | 140900 | 0.9946 | | 0.1982 | 959.18 | 141000 | 0.9450 | | 0.1982 | 959.86 | 141100 | 0.9513 | | 0.2022 | 960.54 | 141200 | 0.9530 | | 0.1939 | 961.22 | 141300 | 0.9312 | | 0.1939 | 961.9 | 141400 | 0.9523 | | 0.2007 | 962.59 | 141500 | 0.9353 | | 0.1884 | 963.27 | 141600 | 0.9613 | | 0.1884 | 963.95 | 141700 | 0.9531 | | 0.1993 | 964.63 | 141800 | 0.9392 | | 0.1971 | 965.31 | 141900 | 0.9484 | | 0.1971 | 965.99 | 142000 | 0.9328 | | 0.1961 | 966.67 | 142100 | 0.9410 | | 0.1977 | 967.35 | 142200 | 0.9437 | | 0.1998 | 968.03 | 142300 | 0.9449 | | 0.1998 | 968.71 | 142400 | 0.9371 | | 0.1982 | 969.39 | 142500 | 0.9450 | | 0.1996 | 970.07 | 142600 | 0.9448 | | 0.1996 | 970.75 | 142700 | 0.9493 | | 0.1964 | 971.43 | 142800 | 0.9377 | | 0.1938 | 972.11 | 142900 | 0.9306 | | 0.1938 | 972.79 | 143000 | 0.9513 | | 0.1897 | 973.47 | 143100 | 0.9496 | | 0.2045 | 974.15 | 143200 | 0.9461 | | 0.2045 | 974.83 | 143300 | 0.9329 | | 0.1946 | 975.51 | 143400 | 0.9688 | | 0.197 | 976.19 | 143500 | 0.9371 | | 0.197 | 976.87 | 143600 | 0.9512 | | 0.2004 | 977.55 | 143700 | 0.9373 | | 0.2002 | 978.23 | 143800 | 0.9569 | | 0.2002 | 978.91 | 143900 | 0.9513 | | 0.1916 | 979.59 | 144000 | 0.9457 | | 0.1959 | 980.27 | 144100 | 0.9251 | | 0.1959 | 980.95 | 144200 | 0.9330 | | 0.1934 | 981.63 | 144300 | 0.9382 | | 0.1954 | 982.31 | 144400 | 0.9553 | | 0.1954 | 982.99 | 144500 | 0.9498 | | 0.1919 | 983.67 | 144600 | 0.9558 | | 0.1883 | 984.35 | 144700 | 0.9484 | | 0.1928 | 985.03 | 144800 | 0.9310 | | 0.1928 | 985.71 | 144900 | 0.9282 | | 0.1872 | 986.39 | 145000 | 0.9351 | | 0.1868 | 987.07 | 145100 | 0.9457 | | 0.1868 | 987.76 | 145200 | 0.9444 | | 0.1906 | 988.44 | 145300 | 0.9478 | | 0.1957 | 989.12 | 145400 | 0.9691 | | 0.1957 | 989.8 | 145500 | 0.9437 | | 0.1959 | 990.48 | 145600 | 0.9576 | | 0.1912 | 991.16 | 145700 | 0.9539 | | 0.1912 | 991.84 | 145800 | 0.9463 | | 0.1977 | 992.52 | 145900 | 0.9703 | | 0.1955 | 993.2 | 146000 | 0.9462 | | 0.1955 | 993.88 | 146100 | 0.9621 | | 0.1923 | 994.56 | 146200 | 0.9568 | | 0.1959 | 995.24 | 146300 | 0.9650 | | 0.1959 | 995.92 | 146400 | 0.9668 | | 0.1921 | 996.6 | 146500 | 0.9588 | | 0.1968 | 997.28 | 146600 | 0.9510 | | 0.1968 | 997.96 | 146700 | 0.9430 | | 0.1927 | 998.64 | 146800 | 0.9672 | | 0.1995 | 999.32 | 146900 | 0.9508 | | 0.1995 | 1000.0 | 147000 | 0.9548 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230910+cu121 - Datasets 2.13.1 - Tokenizers 0.13.3
hasibul1ah/bloom1b7-finetuned-LoRA-for-Bengali
hasibul1ah
2023-10-09T05:25:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T05:07:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
pinot/wav2vec2-xls-r-300m-ja-phoneme-cv_13_test
pinot
2023-10-09T05:04:17Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_4", "base_model:finetune:pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_4", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T02:36:46Z
--- license: apache-2.0 base_model: pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_4 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ja-phoneme-cv_13_test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 1.0452119589468987 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ja-phoneme-cv_13_test This model is a fine-tuned version of [pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_4](https://huggingface.co/pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_4) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.3902 - Wer: 1.0452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4481 | 3.22 | 500 | 3.3902 | 1.0452 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
AmineAllo/table-transformer-azure-dust-65
AmineAllo
2023-10-09T04:53:50Z
189
0
transformers
[ "transformers", "pytorch", "table-transformer", "object-detection", "generated_from_trainer", "base_model:AmineAllo/MT-celestial-grass-58", "base_model:finetune:AmineAllo/MT-celestial-grass-58", "endpoints_compatible", "region:us" ]
object-detection
2023-10-09T04:39:39Z
--- base_model: toobiza/MT-celestial-grass-58 tags: - generated_from_trainer model-index: - name: table-transformer-azure-dust-65 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # table-transformer-azure-dust-65 This model is a fine-tuned version of [toobiza/MT-celestial-grass-58](https://huggingface.co/toobiza/MT-celestial-grass-58) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1439 - eval_loss_ce: 0.0014 - eval_loss_bbox: 0.0818 - eval_cardinality_error: 1.0 - eval_giou: 92.6646 - eval_runtime: 26.1327 - eval_samples_per_second: 3.061 - eval_steps_per_second: 1.531 - epoch: 4.17 - step: 350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Jackellie/QR_Bocca
Jackellie
2023-10-09T04:52:11Z
0
4
null
[ "stable diffusion", "control net", "qr code", "en", "zh", "license:cc-by-nc-4.0", "region:us" ]
null
2023-09-07T06:52:24Z
--- license: cc-by-nc-4.0 language: - en - zh tags: - stable diffusion - control net - qr code --- ** Controlnet QR Bocca for SD-1.5 **控制網QR Bocca適用於SD-1.5 ![](image/26309-1549464692-Art%20by%20Wadim%20Kashin%2Cmosaic%20style%2Cmosaic%20wilderness%2Cmosaic%20flowing%20mane%2Cin%20rich%2Cautumnal%20colors%2Ca%20work%20of%20art%2Cdetailed%20and%20meticu.png) ## Model Description The development of this model primarily focuses on beautification and scanning stability. While this model has good stability, it can still be influenced by the choice of models used in combination. ## How to Use 1、For QR codes, it is recommended to use version 5 or 6,and process the area outside the QR code into gray,This will extend the image more efficiently.. 2、You can set the parameters according to the original A1111 settings: Step 20 / CFG 7 / Use Euler A for sampling and DPM++ 2M SDE Karras for relative stability. 3、A smaller size might lead to a reduction in scanning rate or image quality. It is recommended to use a minimum size of 768x768. 4、Please try with low weights first, then gradually increase the control net weights using the same seed to achieve an excellent final product. 5、This is very important. Please input a QR code that has not been deformed to ensure stability in the output ## Example Outputs Here are some examples of creative, yet scannable QR codes produced by our model: If you have any other requests, feel free to let me know. YT: https://www.youtube.com/@JackEllie DC: https://discord.gg/TM5d89YNwA ## 模型說明 此模型的開發主要著重於多風格的美化及加強掃描穩定性 雖然這個模型的穩定性遠優於從前,但是依然會受到選擇使用搭配的模型影響 ## 如何使用 1、QRcode版本建議使用5或6,並將QR code以外的區域改成灰色,這將能更有效的將畫面延伸。 2、參數可依照A1111原始參數設定就好(步數 20 / CFG 7 / 取樣方式使用Euler a 和DPM++ 2M SDE Karras相對穩定) 3、較小的尺寸可能會導致掃描率或是畫面品質降低,建議最少使用768*768尺寸 4、請以低權重嘗試後再使用相同種子將控制網權重慢慢往上調整,以獲得優秀的成品 5、這非常的重要,請輸入沒有變形過的qrcode,以保證輸出的穩定度 ## 此模型製作範例圖 以下是我們的模型生成的一些美化且可掃描的二維碼示例: ![](image/26327-469306594-(Delicious%20morning%20delight)%2C(enticing%20breakfast%20scene)%2Ca%20modwatering%20tableau%20showcases%20a%20(scrumptious%20breakfast%20Sandwich)%20RESTIN.png) ![](image/26354-2501133561-(masterpiece_1%2C2)%2Cbest%20quality%2Chighres%2Cextremely%20detailed%208k%20wallpaper%2Cvery%20clear%2Chigh%20quality%2Cextremely%20detailed%20face%2Cextremely.png) ![](image/26394-4143055881-1girl%2Ctail%2Canimal%20ears%2Csquirrel%20tail%2Csquirrel%20ears%2Clooking%20at%20viewer%2Cdress%2Cmonochrome%2Cblush%2Clong%20sleeves%2Cfloral%20background%2Csolo%2C.png) 開心地玩耍吧!!!有任何有趣的想法記得到杰克艾粒的yt或dc找我們喔~~~ YT: https://www.youtube.com/@JackEllie DC: https://discord.gg/TM5d89YNwA
dvs/swin-tiny-patch4-window7-224-uploads-classifier-v2
dvs
2023-10-09T04:41:23Z
220
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-09T03:55:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-uploads-classifier-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.984313725490196 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-uploads-classifier-v2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0745 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2482 | 1.0 | 18 | 0.4781 | 0.8824 | | 0.3036 | 2.0 | 36 | 0.0936 | 0.9804 | | 0.1687 | 3.0 | 54 | 0.0745 | 0.9843 | | 0.1392 | 4.0 | 72 | 0.0980 | 0.9725 | | 0.14 | 5.0 | 90 | 0.0778 | 0.9765 | | 0.1186 | 6.0 | 108 | 0.0837 | 0.9725 | | 0.1088 | 7.0 | 126 | 0.0645 | 0.9804 | | 0.0789 | 8.0 | 144 | 0.0675 | 0.9765 | | 0.0644 | 9.0 | 162 | 0.0940 | 0.9686 | | 0.0582 | 10.0 | 180 | 0.0879 | 0.9725 | | 0.0591 | 11.0 | 198 | 0.0935 | 0.9686 | | 0.0538 | 12.0 | 216 | 0.0540 | 0.9804 | | 0.0588 | 13.0 | 234 | 0.0725 | 0.9686 | | 0.0538 | 14.0 | 252 | 0.0637 | 0.9765 | | 0.0462 | 15.0 | 270 | 0.0694 | 0.9725 | | 0.0352 | 16.0 | 288 | 0.0771 | 0.9686 | | 0.0536 | 17.0 | 306 | 0.0629 | 0.9804 | | 0.0403 | 18.0 | 324 | 0.0933 | 0.9686 | | 0.0412 | 19.0 | 342 | 0.0848 | 0.9725 | | 0.0305 | 20.0 | 360 | 0.0820 | 0.9725 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
saurastha/whisper-small-ne
saurastha
2023-10-09T04:40:59Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T04:39:09Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6003 - Wer Ortho: 72.9876 - Wer: 49.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 5 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 1.5813 | 0.04 | 5 | 1.2523 | 73.4580 | 94.3667 | | 0.9924 | 0.08 | 10 | 1.0420 | 76.0991 | 94.0559 | | 0.8522 | 0.12 | 15 | 0.9581 | 71.8012 | 91.8415 | | 0.7602 | 0.17 | 20 | 0.9154 | 64.7802 | 88.3450 | | 0.6813 | 0.21 | 25 | 0.8780 | 65.9285 | 87.9953 | | 0.7084 | 0.25 | 30 | 0.8520 | 63.5171 | 86.4413 | | 0.5974 | 0.29 | 35 | 0.8120 | 62.9593 | 85.5866 | | 0.5631 | 0.33 | 40 | 0.7904 | 59.9409 | 84.1492 | | 0.6962 | 0.38 | 45 | 0.7631 | 58.0709 | 82.6340 | | 0.4946 | 0.42 | 50 | 0.7486 | 60.7448 | 83.1779 | | 0.6118 | 0.46 | 55 | 0.7216 | 59.8097 | 84.4600 | | 0.5004 | 0.5 | 60 | 0.7018 | 58.8255 | 82.4786 | | 0.4357 | 0.54 | 65 | 0.6932 | 57.4311 | 81.2743 | | 0.4478 | 0.58 | 70 | 0.6839 | 55.8399 | 80.8469 | | 0.4561 | 0.62 | 75 | 0.6856 | 59.3012 | 80.8081 | | 0.429 | 0.67 | 80 | 0.6646 | 55.0853 | 79.9145 | | 0.4072 | 0.71 | 85 | 0.6601 | 52.2638 | 76.0684 | | 0.4096 | 0.75 | 90 | 0.6477 | 52.3950 | 76.8842 | | 0.4471 | 0.79 | 95 | 0.6393 | 51.2795 | 76.1072 | | 0.3282 | 0.83 | 100 | 0.6003 | 72.9876 | 49.5585 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
rlmjy/biogpt_test_2
rlmjy
2023-10-09T04:38:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T04:38:25Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
ssalbab/nlp-homework
ssalbab
2023-10-09T04:37:17Z
3
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-08T15:22:22Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
wangzhang/Llama2-sequoiaDB
wangzhang
2023-10-09T04:32:48Z
5
0
adapter-transformers
[ "adapter-transformers", "tensorboard", "autotrain", "text-generation", "dataset:wangzhang/sdb", "region:us" ]
text-generation
2023-10-01T08:11:46Z
--- tags: - autotrain - text-generation widget: - text: This is a private NLP model trained with data from SequioaDB datasets: - wangzhang/sdb library_name: adapter-transformers --- # This is a private NLP model trained with data from SequioaDB ``` import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "TinyPixel/Llama-2-7B-bf16-sharded" adapters_name = 'wangzhang/Llama2-sequoiaDB' model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
kaveshan/mistral-7b-kn
kaveshan
2023-10-09T04:24:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T04:23:23Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
anzorq/openai-whisper-large-v2-LORA-colab
anzorq
2023-10-09T04:19:22Z
1
0
peft
[ "peft", "base_model:openai/whisper-large-v2", "base_model:adapter:openai/whisper-large-v2", "region:us" ]
null
2023-10-08T23:17:34Z
--- library_name: peft base_model: openai/whisper-large-v2 --- Use language="Georgian" for inference. # Inference ```Python import torch import gradio as gr from transformers import ( AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor, ) from peft import PeftModel, PeftConfig from pytube import YouTube peft_model_id = "anzorq/openai-whisper-large-v2-LORA-colab" # peft_model_id = "/content/whisper_large_kbd_lora/checkpoint-64" language = "Georgian" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) def transcribe(path_to_audio): with torch.cuda.amp.autocast(): text = pipe(audio_path, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] return text transcribe(path_to_audio) ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
BAAI/AquilaSQL-7B
BAAI
2023-10-09T04:16:41Z
15
12
transformers
[ "transformers", "pytorch", "aquila", "custom_code", "license:other", "endpoints_compatible", "region:us" ]
null
2023-10-08T06:40:13Z
--- license: other --- ![Aquila_logo](./log.jpeg) <h4 align="center"> <p> <b>English</b> | <a href="https://huggingface.co/BAAI/AquilaSQL-7B/blob/main/README_zh.md">简体中文</a> </p> </h4> Aquila Language Model is the first open source language model that supports both Chinese and English knowledge, commercial license agreements, and compliance with domestic data regulations. - 🌟 **Supports open source commercial licenses**. The source code of the Aquila series models is based on the [Apache 2.0 agreement](https://www.apache.org/licenses/LICENSE-2.0), while the model weight is based on the [BAAI Aquila Model License Agreement](https://huggingface.co/BAAI/AquilaChat-7B/resolve/main/BAAI%20Aquila%20Model%20License%20Agreement.pdf). Users can use it for commercial purposes as long as they meet the licensing restrictions. - ✍️ **Possesses Chinese and English knowledge**. The Aquila series model is trained from scratch on a high-quality corpus of Chinese and English languages, with Chinese corpora accounting for about 40%, ensuring that the model accumulates native Chinese world knowledge during the pre-training phase, rather than translated knowledge. - 👮‍♀️ **Complies with domestic data regulations**. The Chinese corpora of the Aquila series models come from Intelligence Source's accumulated Chinese datasets over the years, including Chinese internet data from over 10,000 sources (more than 99% of which are domestic sources), as well as high-quality Chinese literature and book data supported by authoritative domestic organizations. We will continue to accumulate high-quality and diverse datasets and incorporate them into the subsequent training of the Aquila base models. - 🎯 **Continuous improvements and open sourcing**. We will continue to improve training data, optimize training methods, and enhance model performance, cultivate a flourishing "model tree" on a better base model foundation, and continuously update open-source versions. The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels, including the [FlagAI GitHub repository](https://github.com/FlagAI-Open/FlagAI/), [FlagAI's Zhihu account](https://www.zhihu.com/people/95-22-20-18) and [FlagAI's official technical communication group](https://github.com/FlagAI-Open/FlagAI/blob/master/wechat-qrcode.jpg). | Model | Model Type | Description | Status | GPUs Used | | ------------ | ---------- | ------------------------------------------------------------ | --------- | ----------- | | AquilaSQL-7B | chat model | text2sql model, cotinue traind from the AquilaCode-base model, AquilaSQL achieved sota on the cspider leadboard | published | Nvidia-A100 | We will continue to release improved versions of Aquila model as open source. (https://huggingface.co/BAAI/AquilaSQL-7B/blob/main/change_log.log). <!-- </table> --> ## Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch device = torch.device("cuda") model_info = "BAAI/AquilaSQL-7B" tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_info, trust_remote_code=True, torch_dtype=torch.float16, device_map='auto') model.eval() model.to(device) torch.manual_seed(123) text = "有多个数据库表,信息如下:\n表名为cars_data,包含的属性为cars_data.horsepower,cars_data.accelerate,cars_data.mpg,cars_data.id,cars_data.year;表名为continents,包含的属性为continents.contid,continents.continent;表名为countries,包含的属性为countries.continent,countries.countryname,countries.countryid;表名为model_list,包含的属性为model_list.model,model_list.maker,model_list.modelid,它们之间的关系为 countries.continent = continents.contid\n请为下面的问题编写sql查询语句:\n加速度比马力最大的汽车更大的汽车有多少辆? " def generate_prompt(input: str): prompt = f"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: {input}###Assistant:" return prompt stop_tokens = ["###", "[UNK]", "</s>","<|endoftext|>"] with torch.no_grad(): _input = generate_prompt(text) tokens = tokenizer.encode_plus(_input, None, max_length=None)['input_ids'] tokens = torch.tensor(tokens)[None,].to(device) out = model.generate(tokens, do_sample=False, max_length=1024, eos_token_id=100007,max_new_tokens=512, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0] out = tokenizer.decode(out.cpu().numpy().tolist()) print(out) ``` ## License AquilaSQL-7B open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat-7B/resolve/main/BAAI%20Aquila%20Model%20License%20Agreement.pdf)
saumyasinha0510/MT5
saumyasinha0510
2023-10-09T04:12:59Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-01T23:54:21Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: saumyasinha0510/MT5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # saumyasinha0510/MT5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 206848, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | nan | nan | 0 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
Mkmworld/original-regression
Mkmworld
2023-10-09T04:06:02Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-10-09T04:04:28Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 9.999999747378752e-05 | | decay | 1e-05 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
sanskarGupta551/bloomz-560m_Prompt_to_Dialog
sanskarGupta551
2023-10-09T04:04:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T04:03:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
AmineAllo/MT-radiant-spaceship-60
AmineAllo
2023-10-09T03:43:27Z
189
0
transformers
[ "transformers", "pytorch", "table-transformer", "object-detection", "generated_from_trainer", "base_model:AmineAllo/MT-celestial-grass-58", "base_model:finetune:AmineAllo/MT-celestial-grass-58", "endpoints_compatible", "region:us" ]
object-detection
2023-10-09T03:01:51Z
--- base_model: toobiza/MT-celestial-grass-58 tags: - generated_from_trainer model-index: - name: MT-radiant-spaceship-60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MT-radiant-spaceship-60 This model is a fine-tuned version of [toobiza/MT-celestial-grass-58](https://huggingface.co/toobiza/MT-celestial-grass-58) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6476 - Loss Ce: 0.0030 - Loss Bbox: 0.0949 - Cardinality Error: 1.0 - Giou: 91.4979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loss Ce | Loss Bbox | Cardinality Error | Giou | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:-----------------:|:-------:| | 0.4929 | 0.6 | 50 | 0.7752 | 0.0038 | 0.1130 | 1.0 | 89.6877 | | 0.4067 | 1.19 | 100 | 0.6803 | 0.0034 | 0.0994 | 1.0 | 91.0025 | | 0.3416 | 1.79 | 150 | 0.6697 | 0.0032 | 0.0980 | 1.0 | 91.1694 | | 0.3604 | 2.38 | 200 | 0.6478 | 0.0031 | 0.0949 | 1.0 | 91.4886 | | 0.3774 | 2.98 | 250 | 0.6476 | 0.0030 | 0.0949 | 1.0 | 91.4979 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-cls-detail-in-Non_OCR
ThuyNT03
2023-10-09T03:38:09Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base", "base_model:finetune:vinai/phobert-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-16T17:40:00Z
--- base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-cls-detail-in-Non_OCR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-cls-detail-in-Non_OCR This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2965 - Accuracy: 0.95 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5312 | 1.0 | 25 | 1.2681 | 0.55 | 0.4060 | | 1.1478 | 2.0 | 50 | 0.8709 | 0.82 | 0.7465 | | 0.7779 | 3.0 | 75 | 0.5259 | 0.92 | 0.8928 | | 0.528 | 4.0 | 100 | 0.3918 | 0.92 | 0.8928 | | 0.4236 | 5.0 | 125 | 0.3363 | 0.94 | 0.9254 | | 0.3641 | 6.0 | 150 | 0.3035 | 0.95 | 0.9359 | | 0.3356 | 7.0 | 175 | 0.2965 | 0.95 | 0.9359 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Rewcifer/teamyellow-llama7B-lora
Rewcifer
2023-10-09T03:21:12Z
1
0
peft
[ "peft", "arxiv:1910.09700", "region:us" ]
null
2023-10-07T00:11:12Z
--- library_name: peft base_model: decapoda-research/llama-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
casque/majicmixRealistic_v7
casque
2023-10-09T03:17:22Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-10-08T23:59:01Z
--- license: creativeml-openrail-m ---
qkrtnwls0/hw1
qkrtnwls0
2023-10-09T03:15:07Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-09T02:53:33Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
rmuema/kaggle-x-elo-finetune-v1.2
rmuema
2023-10-09T03:14:03Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-10-09T03:13:55Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
ttttdiva/rvc_okiba
ttttdiva
2023-10-09T03:01:17Z
0
4
null
[ "rvc", "audio-to-audio", "ja", "license:creativeml-openrail-m", "region:us" ]
audio-to-audio
2023-10-09T03:01:16Z
--- tags: - rvc pipeline_tag: audio-to-audio license: creativeml-openrail-m language: - ja --- <style> audio { width: 200px; height: 30px; } </style> # RVC okiba (随時モデルを追加しています: More models are uploaded regularly) しばらく忙しいので更新停止中です(I'm busy now, so currently update is stopped.) [人気投票・アンケートへご協力ください (Please participate in the popularity poll and survey.)](https://docs.google.com/forms/d/e/1FAIpQLSdUTaFcpNErkSs58e7zO9MtlC9F1LElI-ODjOX5LZEtYoMAIg/viewform?usp=sf_link) <details> <summary>English</summary> [**Text-to-Speech Demo here!**](https://huggingface.co/spaces/litagin/rvc_okiba_TTS) [Update History](https://huggingface.co/litagin/rvc_okiba/commits/main) A collection of [RVC v2](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) models (with index files) trained using approximately 1 hour (per model) of high-quality Japanese voice data of *moe* characters. **Samples can be found in the table below.** ([*Japanese voice-change samples here*](vc-samples.md)) - There are currently **63** girl voice models (A-K3) and 6 male voice models (man-A - man-F) (Will be updated regularly, and often epochs are updated to better version) - The model names are unordered and do not carry any meaning. - Epochs are adjusted for voice-changing purpose, but singing is maybe possible as samples at some quality. *Please use the data provided by this model at your own risk.* --- </details> # RVC置き場 [モデルのダウンロードはこちらから](https://huggingface.co/litagin/rvc_okiba/tree/main/models) [Text-to-Speech(テキストからの音声合成)のデモはこちら](https://huggingface.co/spaces/litagin/rvc_okiba_TTS) [更新履歴](https://huggingface.co/litagin/rvc_okiba/commits/main) [RVC v2](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)のモデル集(index付き)。 [**ボイチェンで実際に使用したサンプル(男声から変換)はこちらから**](vc-samples.md)、また**通常サンプルは下の表から聴けます**。 - 現在女性**63**モデル(A-K3)に男性6モデル(man-A - man-F)(随時更新します、またエポック数をたまにより良いバージョンに置き換えることもあります) - モデル名は順不同で意味はありません - 主にボイチェン用途を想定にエポックの調整をしています(が歌唱もサンプルの通りある程度はできると思われます) <details> <summary>学習詳細</summary> - 学習データ: 高品質な日本語発話データ、歌は無し。1ファイルの長さは4秒以上~多くても10数秒程度、無音カットやらの前処理はしていません。 - データセット量: 1モデルにつき基本は合計60分弱、素材が足りなかったときは30分~ - エポック数: 100-300エポックあたりから良さそうなものを選んだもの </details> ## 注意事項 使用は自己責任でお願いします。 ## 出力サンプルと雑感 (Samples and comments) [**ボイチェンで実際に使用したサンプル(男声から変換)は別ページにまとめてあります。**](vc-samples.md) <details> <summary>変換前音声 (Input data)</summary> - 発話 (Japanese speech) <audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/jvs002.wav"> 「また東寺のように五大明王と呼ばれる主要な明王の中央に配されることも多い」 - 歌 (Japanese child-song) <audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/input.wav"> でんでんむしむしかたつむり🐌 出典:[sample jvs002, JVS corpus](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus), [sample_jvs001, JVS-MuSiC](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_music) </details> <details> <summary>出力設定</summary> [RVC v2](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)の推論タブでの変換 - ピッチ抽出: harvest - ピッチ調整: 発話は[jvs-samples](https://huggingface.co/litagin/rvc_okiba/tree/main/jvs-samples)のファイル名に記載(記載なしはピッチ0)、歌唱は女性モデルは+12、男性モデルは0で統一 - index使用率: 発話は1、歌唱は0.75 - 何か保護するアレ: 0.33(デフォルト値のまま) </details> ### 女性モデル (Girl models) - ~正直声のコメントの語彙が尽きてきた~ - 「高め」「低め」は、(学習データの声の高さが高め・低めなので、)「高い声(ピッチ)と相性がいい」「低い声と相性がいい」程度の意味です。 - 正確な声質や詳しい個人的な感想・5段階評価は[ボイチェンサンプル音声](vc-samples.md)のページをご覧ください。 |Name| Speech |Song|Comment | |----| ---- |----|---- | |A|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/A.wav">|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/A.wav">| ハスキーダウナー系、低め | |B|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/B-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/B.wav">| 癖なく明るい | |C|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/C-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/C.wav">| 吐息混じり、ちょい低め | |D|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/D-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/D.wav">| 元気、高め | |E|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/E-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/E.wav">| ウィスパー、少し特徴的 | |F|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/F.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/F.wav">| ちょい低め、ちょい微妙かも | |G|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/G-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/G.wav">| ナレーターのような声、ちょい微妙かも | |H|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/H-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/H.wav">| さわやか、ツンデレ風味、ちょい高め | |I|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/I-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/I.wav">| 元気、やんちゃ、特徴的 | |J|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/J.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/J.wav">| ダウナー、低め、特徴的 | |K|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/K-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/K.wav">| 明るく朗らか、ちょい高め | |L|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/L-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/L.wav">| 明るく元気、ちょい高め、ちょい微妙かも | |M|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/M-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/M.wav">| Iと似てる、Iより癖無し | |N|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/N-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/N.wav">| Dと似てる、Dよりちょい幼い | |O|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/O-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/O.wav">| 高め、明るく元気 | |P|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/P.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/P.wav">| ショタボ | |Q|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/Q-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/Q.wav">| 朗らかで響く声 | |R|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/R.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/R.wav">| はっきりした声、ちょい低め | |S|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/S-minus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/S.wav">| 低め、ダウナー、ちょい微妙かも | |T|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/T.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/T.wav">| 低音に強い、ちょっと特徴的 | |U|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/U-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/U.wav">| 澄んだ声、ちょい高め、特徴的 | |V|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/V-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/V.wav">| 凛とした声、ちょい高め | |W|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/W-plus6.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/W.wav">| かなり高いロリ声 | |X|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/X-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/X.wav">| Oと似てるがOより低く落ち着いてる | |Y|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/Y-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/Y.wav">| 元気で明るい声、適度な高さ | |Z|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/Z.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/Z.wav">| Fと似ている、低く目で落ち着いてたぶんFより質高い | |AA|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/AA-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/AA.wav">| ほどほどの高さ、包容力のある声(?) | |BB|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/BB-plus4.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/BB.wav">| 高め(低めもイケる)、甘えた感じ | |CC|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/CC-minus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/CC.wav">| 低め、中性的な女子声 | |DD|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/DD-plus6.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/DD.wav">| かなり高くてたどたどしい声 | |EE|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/EE-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/EE.wav">| 適度な高さ、優しい声音 | |FF|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/FF-plus5.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/FF.wav">| Eと似てる、より高く幼い | |GG|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/GG-plus5.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/GG.wav">| ちょい高めの元気ではっきりした声 | |HH|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/HH-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/HH.wav">| ちょっと低めで大人なはっきり明朗とした声 | |II|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/II-plus4.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/II.wav">| ちょい高めで吐息混じりで特徴的 | |JJ|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/JJ-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/JJ.wav">| Uと似てる、より低めで落ち着いた感じ | |KK|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/KK-plus5.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/KK.wav">| 高く響くちょい特徴的 | |LL|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/LL-plus6.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/LL.wav">| Cと似てる、高め優しげ癖あり | |MM|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/MM-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/MM.wav">| ほどよい高さ、透明、飾らないけどかわいい | |NN|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/NN-plus4.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/NN.wav">| ちょい高め、舌っ足らず感 | |OO|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/OO-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/OO.wav">| 低めの大人のお姉さん | |PP|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/PP-plus4.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/PP.wav">| ちょい高め、特徴的舌っ足らず感 | |QQ|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/QQ-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/QQ.wav">| ちょい低め、ジト目声感 | |RR|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/RR-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/RR.wav">| ちょい低め、強気な感じの女の子 | |SS|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/SS-plus6.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/SS.wav">| 高め、儚げ、質微妙かも | |TT|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/TT-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/TT.wav">| ほどよい高さ、ちょい中性的? | |UU|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/UU-plus8.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/UU.wav">| 高め、包容力あるけど若い | |VV|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/VV-plus3.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/VV.wav">| ほどよい高さ、ツンデレ風味 | |WW|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/WW.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/WW.wav">| 低め、強気なお姉さん | |XX|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/XX-plus7.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/XX.wav">| 高めだけどしっかりした声 | |YY|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/YY.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/YY.wav">| 低めの女性のかわいい地声感 | |ZZ|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/ZZ-plus11.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/ZZ.wav">| すごく高め、おどおど声、極端に音域がせまい | |AAA|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/AAA-plus4.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/AAA.wav">| ほどよい高さ、ちょっと演技がかったかわいい | |BBB|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/BBB-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/BBB.wav">| 低い、D・Nと似た声、ボーイッシュ? | |CCC|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/CCC-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/CCC.wav">| ちょい低めだけど高め声もいける、落ち着いてるけど少女な声音 | |DDD|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/DDD-plus1.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/DDD.wav">| ちょい低め、ちょい強気な明朗な口調 | |EEE|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/EEE-plus7.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/EEE.wav">| 高め、柔らかく演技したふんわり声音 | |FFF|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/FFF-plus2.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/FFF.wav">| 低め、ダミ声演技声 | |GGG|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/GGG-plus5.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/GGG.wav">| 高め、アニメ声のような特徴的な声音 | |HHH|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/HHH-plus7.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/HHH.wav">| 高め、幼いロリ声ロリ発音 | |III|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/III-plus7.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/III.wav">| 高い元気なアニメ声 | |JJJ|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/JJJ.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/JJJ.wav">| 女性の演じる少し芝居がかった男性声 | |K3|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/K3-plus5.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/K3.wav">| 程よい高さ | ### 男性モデル (Male models) |Name|Speech|Song|Comment| |----| ---- |----|---- | |man-A|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-A-minus13.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-A.wav">| 渋いおっさん| |man-B|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-B-minus13.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-B.wav">| 低めの男 | |man-C|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-C-minus11.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-C.wav">| チャラそうなお兄さん | |man-D|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-D-minus14.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-D.wav">| 低め、ぶっきらぼう男 | |man-E|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-E-minus12.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-E.wav">| キザっぽい男 | |man-F|<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/jvs-samples/man-F-minus10.wav"> |<audio controls preload="none" src="https://huggingface.co/litagin/rvc_okiba/resolve/main/song-samples/man-F.wav">| 優しそうなお兄さん |
eclipsesnow/csat_model1
eclipsesnow
2023-10-09T02:58:02Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-09T02:42:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: csat_model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # csat_model1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
isshogirl/flan-t5-large-financial-phrasebank-lora
isshogirl
2023-10-09T02:57:03Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-08T18:38:19Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
mthxz/GwenRVCV2_V2
mthxz
2023-10-09T02:54:04Z
0
0
null
[ "license:other", "region:us" ]
null
2023-10-09T02:45:57Z
--- license: other license_name: me license_link: LICENSE ---
lofcz/mistral-7b-dolphin-ff-cs1
lofcz
2023-10-09T02:53:10Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:cognitivecomputations/dolphin-2.0-mistral-7b", "base_model:adapter:cognitivecomputations/dolphin-2.0-mistral-7b", "region:us" ]
null
2023-10-09T02:52:55Z
--- library_name: peft base_model: ehartford/dolphin-2.0-mistral-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
lmdeploy/internlm-chat-7b-w4
lmdeploy
2023-10-09T02:51:54Z
166
3
transformers
[ "transformers", "pytorch", "internlm", "feature-extraction", "text-generation-inference", "text-generation", "custom_code", "license:apache-2.0", "region:us" ]
text-generation
2023-08-04T11:23:19Z
--- license: apache-2.0 tags: - text-generation-inference pipeline_tag: text-generation --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/> English | [简体中文](README_zh-CN.md) </div> <p align="center"> 👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a> </p> # W4A16 LLM Model Deployment LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80. Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed. ```shell pip install lmdeploy ``` ## 4-bit LLM model Inference You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command. Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions. ```shell git-lfs install git clone https://huggingface.co/lmdeploy/internlm-chat-7b-w4 ``` As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal ```shell ## Convert the model's layout and store it in the default path, ./workspace. python3 -m lmdeploy.serve.turbomind.deploy \ --model-name internlm \ --model-path ./internlm-chat-7b-w4 \ --model-format awq \ --group-size 128 ## inference python3 -m lmdeploy.turbomind.chat ./workspace ``` ## Serve with gradio If you wish to interact with the model via web ui, please initiate the gradio server as indicated below: ```shell python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port} ``` Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model ## Inference Performance We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference. | model | llm-awq | mlc-llm | turbomind | | ----------- | ------- | ------- | --------- | | Llama 2 7B | 112.9 | 159.4 | 206.4 | | Llama 2 13B | N/A | 90.7 | 115.8 | ```shell python benchmark/profile_generation.py \ ./workspace \ --concurrency 1 --input_seqlen 1 --output_seqlen 512 ``` ## 4-bit Weight Quantization It includes two steps: - generate quantization parameter - quantize model according to the parameter ### Step 1: Generate Quantization Parameter ```shell python3 -m lmdeploy.lite.apis.calibrate \ --model $HF_MODEL \ --calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval --calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this --calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this --work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight ``` ### Step2: Quantize Weights LMDeploy employs AWQ algorithm for model weight quantization. ```shell python3 -m lmdeploy.lite.apis.auto_awq \ --model $HF_MODEL \ --w_bits 4 \ # Bit number for weight quantization --w_sym False \ # Whether to use symmetric quantization for weights --w_group_size 128 \ # Group size for weight quantization statistics --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1 ``` After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.
quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v3
quastrinos
2023-10-09T02:47:04Z
61
0
transformers
[ "transformers", "tf", "deberta-v2", "multiple-choice", "generated_from_keras_callback", "base_model:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU", "base_model:finetune:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-10-09T02:46:04Z
--- license: mit base_model: quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU tags: - generated_from_keras_callback model-index: - name: race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v3 This model is a fine-tuned version of [quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU](https://huggingface.co/quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7333 - Validation Loss: 0.9902 - Train Map3: 0.7764 - Train Lr: 5.0733553e-11 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 312, 'alpha': 5e-09, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Train Map3 | Train Lr | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 0.7333 | 0.9902 | 0.7764 | 5.0733553e-11 | 0 | ### Framework versions - Transformers 4.35.0.dev0 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.14.1
hasibirok0/whisper-large-v2-bengali-3000steps
hasibirok0
2023-10-09T02:42:40Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai/whisper-large-v2", "base_model:adapter:openai/whisper-large-v2", "region:us" ]
null
2023-10-09T02:41:12Z
--- library_name: peft base_model: openai/whisper-large-v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
rlmjy/biogpt_test
rlmjy
2023-10-09T02:42:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T02:42:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Kamal99919/llama2-qlora-finetunined-kamal
Kamal99919
2023-10-09T02:09:23Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-09T02:09:04Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
St4n/wav2vec2-base-960h-demo-google-colab
St4n
2023-10-09T02:08:18Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base-960h", "base_model:finetune:facebook/wav2vec2-base-960h", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T00:09:16Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-base-960h-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Wer: 0.1503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.7708 | 0.42 | 200 | 3.3194 | 0.9999 | | 3.0354 | 0.84 | 400 | 3.1933 | 0.9999 | | 2.796 | 1.26 | 600 | 1.4082 | 0.7669 | | 1.0912 | 1.68 | 800 | 0.8231 | 0.3675 | | 0.6568 | 2.1 | 1000 | 0.3944 | 0.2863 | | 0.4604 | 2.52 | 1200 | 0.3303 | 0.2421 | | 0.3932 | 2.94 | 1400 | 0.2730 | 0.2103 | | 0.3356 | 3.35 | 1600 | 0.2189 | 0.1789 | | 0.3117 | 3.77 | 1800 | 0.2189 | 0.1688 | | 0.2332 | 4.19 | 2000 | 0.1802 | 0.1563 | | 0.2283 | 4.61 | 2200 | 0.1495 | 0.1503 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Kamal99919/llama2-qlora-finetunined-french
Kamal99919
2023-10-09T02:06:59Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-09T02:06:40Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
xszhou/vit-base-patch16-224-in21k-finetuned-lora-food101
xszhou
2023-10-09T02:01:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T01:54:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
fancyerii/t5-large_PREFIX_TUNING_SEQ2SEQ
fancyerii
2023-10-09T01:57:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-09T01:57:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Shawaylaintown/d
Shawaylaintown
2023-10-09T01:50:15Z
0
0
allennlp
[ "allennlp", "license:apache-2.0", "region:us" ]
null
2023-09-23T23:40:59Z
--- license: apache-2.0 metrics: - character library_name: allennlp ---
quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v1
quastrinos
2023-10-09T01:50:12Z
59
0
transformers
[ "transformers", "tf", "deberta-v2", "multiple-choice", "generated_from_keras_callback", "base_model:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU", "base_model:finetune:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-10-08T20:50:27Z
--- license: mit base_model: quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU tags: - generated_from_keras_callback model-index: - name: race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v1 This model is a fine-tuned version of [quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU](https://huggingface.co/quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7361 - Validation Loss: 0.9878 - Train Map3: 0.7749 - Train Lr: 5.0733553e-11 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 312, 'alpha': 5e-09, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Train Map3 | Train Lr | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 0.7361 | 0.9878 | 0.7749 | 5.0733553e-11 | 0 | ### Framework versions - Transformers 4.35.0.dev0 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.14.1
pinot/wav2vec2-xls-r-300m-ja-phoneme-cv-14_bench
pinot
2023-10-09T01:39:02Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "base_model:pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3", "base_model:finetune:pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T01:14:13Z
--- license: apache-2.0 base_model: pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ja-phoneme-cv-14_bench results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.17938553022794845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ja-phoneme-cv-14_bench This model is a fine-tuned version of [pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3](https://huggingface.co/pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0125 - Wer: 0.1794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.97 | 9 | 5.2662 | 0.2116 | | No log | 1.95 | 18 | 2.0125 | 0.1794 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
sam-babayev/test__1
sam-babayev
2023-10-09T01:31:05Z
0
0
null
[ "ts", "model-index", "region:us" ]
null
2023-10-08T22:45:27Z
--- tags: - ts model-index: - name: new7 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 90.25373134328359 - type: ap value: 65.16915484773354 - type: f1 value: 86.23066728099059 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.974875 - type: ap value: 91.14317344009288 - type: f1 value: 93.9685240564202 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 55.77799999999999 - type: f1 value: 55.30626203111084 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 28.663 - type: map_at_10 value: 43.903 - type: map_at_100 value: 44.779 - type: map_at_1000 value: 44.799 - type: map_at_3 value: 39.486 - type: map_at_5 value: 42.199 - type: mrr_at_1 value: 28.663 - type: mrr_at_10 value: 43.903 - type: mrr_at_100 value: 44.779 - type: mrr_at_1000 value: 44.799 - type: mrr_at_3 value: 39.486 - type: mrr_at_5 value: 42.199 - type: ndcg_at_1 value: 28.663 - type: ndcg_at_10 value: 51.983999999999995 - type: ndcg_at_100 value: 55.981 - type: ndcg_at_1000 value: 56.474000000000004 - type: ndcg_at_3 value: 43.025000000000006 - type: ndcg_at_5 value: 47.916 - type: precision_at_1 value: 28.663 - type: precision_at_10 value: 7.76 - type: precision_at_100 value: 0.9570000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.757 - type: precision_at_5 value: 13.03 - type: recall_at_1 value: 28.663 - type: recall_at_10 value: 77.596 - type: recall_at_100 value: 95.661 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 53.272 - type: recall_at_5 value: 65.149 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 41.06284026514476 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.96711301401968 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 58.05094332005456 - type: mrr value: 70.90808160752759 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 93.67415724859552 - type: cos_sim_spearman value: 93.37019979249912 - type: euclidean_pearson value: 91.767368542047 - type: euclidean_spearman value: 92.75874007684216 - type: manhattan_pearson value: 91.7931347639689 - type: manhattan_spearman value: 92.94428647331738 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 91.6720779220779 - type: f1 value: 91.68597413806214 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 30.160011542775695 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 24.890267612946595 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.52 - type: map_at_10 value: 31.905 - type: map_at_100 value: 33.146 - type: map_at_1000 value: 33.315 - type: map_at_3 value: 29.567 - type: map_at_5 value: 30.729 - type: mrr_at_1 value: 28.469 - type: mrr_at_10 value: 37.884 - type: mrr_at_100 value: 38.757000000000005 - type: mrr_at_1000 value: 38.827 - type: mrr_at_3 value: 36.004000000000005 - type: mrr_at_5 value: 36.927 - type: ndcg_at_1 value: 28.469 - type: ndcg_at_10 value: 37.436 - type: ndcg_at_100 value: 42.754 - type: ndcg_at_1000 value: 45.744 - type: ndcg_at_3 value: 34.121 - type: ndcg_at_5 value: 35.315000000000005 - type: precision_at_1 value: 28.469 - type: precision_at_10 value: 7.167 - type: precision_at_100 value: 1.24 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 17.072000000000003 - type: precision_at_5 value: 11.731 - type: recall_at_1 value: 22.52 - type: recall_at_10 value: 47.61 - type: recall_at_100 value: 70.494 - type: recall_at_1000 value: 90.081 - type: recall_at_3 value: 37.012 - type: recall_at_5 value: 41.053 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.167 - type: map_at_10 value: 29.227999999999998 - type: map_at_100 value: 30.361 - type: map_at_1000 value: 30.483 - type: map_at_3 value: 27.046 - type: map_at_5 value: 28.253 - type: mrr_at_1 value: 27.961999999999996 - type: mrr_at_10 value: 34.474 - type: mrr_at_100 value: 35.257 - type: mrr_at_1000 value: 35.312 - type: mrr_at_3 value: 32.633 - type: mrr_at_5 value: 33.7 - type: ndcg_at_1 value: 27.961999999999996 - type: ndcg_at_10 value: 33.800000000000004 - type: ndcg_at_100 value: 38.435 - type: ndcg_at_1000 value: 40.753 - type: ndcg_at_3 value: 30.584 - type: ndcg_at_5 value: 32.036 - type: precision_at_1 value: 27.961999999999996 - type: precision_at_10 value: 6.338000000000001 - type: precision_at_100 value: 1.127 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 14.649999999999999 - type: precision_at_5 value: 10.408000000000001 - type: recall_at_1 value: 22.167 - type: recall_at_10 value: 41.735 - type: recall_at_100 value: 61.612 - type: recall_at_1000 value: 77.046 - type: recall_at_3 value: 31.985000000000003 - type: recall_at_5 value: 36.216 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.88 - type: map_at_10 value: 39.483000000000004 - type: map_at_100 value: 40.65 - type: map_at_1000 value: 40.727000000000004 - type: map_at_3 value: 36.095 - type: map_at_5 value: 38.138 - type: mrr_at_1 value: 33.292 - type: mrr_at_10 value: 42.655 - type: mrr_at_100 value: 43.505 - type: mrr_at_1000 value: 43.555 - type: mrr_at_3 value: 39.634 - type: mrr_at_5 value: 41.589999999999996 - type: ndcg_at_1 value: 33.292 - type: ndcg_at_10 value: 45.216 - type: ndcg_at_100 value: 50.029999999999994 - type: ndcg_at_1000 value: 51.795 - type: ndcg_at_3 value: 39.184000000000005 - type: ndcg_at_5 value: 42.416 - type: precision_at_1 value: 33.292 - type: precision_at_10 value: 7.661 - type: precision_at_100 value: 1.089 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 17.701 - type: precision_at_5 value: 12.878 - type: recall_at_1 value: 28.88 - type: recall_at_10 value: 59.148 - type: recall_at_100 value: 80.10300000000001 - type: recall_at_1000 value: 92.938 - type: recall_at_3 value: 43.262 - type: recall_at_5 value: 51.05800000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.732 - type: map_at_10 value: 24.104999999999997 - type: map_at_100 value: 25.085 - type: map_at_1000 value: 25.180000000000003 - type: map_at_3 value: 21.826999999999998 - type: map_at_5 value: 22.988 - type: mrr_at_1 value: 19.209 - type: mrr_at_10 value: 25.528000000000002 - type: mrr_at_100 value: 26.477 - type: mrr_at_1000 value: 26.56 - type: mrr_at_3 value: 23.315 - type: mrr_at_5 value: 24.427 - type: ndcg_at_1 value: 19.209 - type: ndcg_at_10 value: 28.055000000000003 - type: ndcg_at_100 value: 33.357 - type: ndcg_at_1000 value: 35.996 - type: ndcg_at_3 value: 23.526 - type: ndcg_at_5 value: 25.471 - type: precision_at_1 value: 19.209 - type: precision_at_10 value: 4.463 - type: precision_at_100 value: 0.756 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_3 value: 9.981 - type: precision_at_5 value: 7.119000000000001 - type: recall_at_1 value: 17.732 - type: recall_at_10 value: 39.086999999999996 - type: recall_at_100 value: 64.264 - type: recall_at_1000 value: 84.589 - type: recall_at_3 value: 26.668999999999997 - type: recall_at_5 value: 31.361 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 10.99 - type: map_at_10 value: 16.661 - type: map_at_100 value: 17.763 - type: map_at_1000 value: 17.892 - type: map_at_3 value: 14.813 - type: map_at_5 value: 15.678 - type: mrr_at_1 value: 13.930000000000001 - type: mrr_at_10 value: 20.25 - type: mrr_at_100 value: 21.233 - type: mrr_at_1000 value: 21.325 - type: mrr_at_3 value: 18.262999999999998 - type: mrr_at_5 value: 19.177 - type: ndcg_at_1 value: 13.930000000000001 - type: ndcg_at_10 value: 20.558 - type: ndcg_at_100 value: 26.137 - type: ndcg_at_1000 value: 29.54 - type: ndcg_at_3 value: 17.015 - type: ndcg_at_5 value: 18.314 - type: precision_at_1 value: 13.930000000000001 - type: precision_at_10 value: 3.9050000000000002 - type: precision_at_100 value: 0.782 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 8.333 - type: precision_at_5 value: 5.92 - type: recall_at_1 value: 10.99 - type: recall_at_10 value: 29.156 - type: recall_at_100 value: 54.06100000000001 - type: recall_at_1000 value: 78.69699999999999 - type: recall_at_3 value: 19.11 - type: recall_at_5 value: 22.609 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.351 - type: map_at_10 value: 29.961 - type: map_at_100 value: 31.214 - type: map_at_1000 value: 31.349 - type: map_at_3 value: 27.283 - type: map_at_5 value: 28.851 - type: mrr_at_1 value: 25.602000000000004 - type: mrr_at_10 value: 34.554 - type: mrr_at_100 value: 35.423 - type: mrr_at_1000 value: 35.492000000000004 - type: mrr_at_3 value: 31.97 - type: mrr_at_5 value: 33.399 - type: ndcg_at_1 value: 25.602000000000004 - type: ndcg_at_10 value: 35.339999999999996 - type: ndcg_at_100 value: 40.89 - type: ndcg_at_1000 value: 43.732 - type: ndcg_at_3 value: 30.657 - type: ndcg_at_5 value: 32.945 - type: precision_at_1 value: 25.602000000000004 - type: precision_at_10 value: 6.574000000000001 - type: precision_at_100 value: 1.095 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 14.629 - type: precision_at_5 value: 10.645 - type: recall_at_1 value: 21.351 - type: recall_at_10 value: 46.754 - type: recall_at_100 value: 70.247 - type: recall_at_1000 value: 89.653 - type: recall_at_3 value: 33.894000000000005 - type: recall_at_5 value: 39.667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.052999999999997 - type: map_at_10 value: 24.291999999999998 - type: map_at_100 value: 25.348 - type: map_at_1000 value: 25.487 - type: map_at_3 value: 21.922 - type: map_at_5 value: 23.256 - type: mrr_at_1 value: 20.776 - type: mrr_at_10 value: 28.17 - type: mrr_at_100 value: 28.99 - type: mrr_at_1000 value: 29.082 - type: mrr_at_3 value: 25.951 - type: mrr_at_5 value: 27.241 - type: ndcg_at_1 value: 20.776 - type: ndcg_at_10 value: 28.909000000000002 - type: ndcg_at_100 value: 33.917 - type: ndcg_at_1000 value: 37.173 - type: ndcg_at_3 value: 24.769 - type: ndcg_at_5 value: 26.698 - type: precision_at_1 value: 20.776 - type: precision_at_10 value: 5.445 - type: precision_at_100 value: 0.943 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 11.985999999999999 - type: precision_at_5 value: 8.699 - type: recall_at_1 value: 17.052999999999997 - type: recall_at_10 value: 38.922000000000004 - type: recall_at_100 value: 60.624 - type: recall_at_1000 value: 83.83 - type: recall_at_3 value: 27.35 - type: recall_at_5 value: 32.513999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.981 - type: map_at_10 value: 24.99583333333333 - type: map_at_100 value: 26.054083333333335 - type: map_at_1000 value: 26.180916666666672 - type: map_at_3 value: 22.802666666666667 - type: map_at_5 value: 24.00508333333333 - type: mrr_at_1 value: 21.373916666666666 - type: mrr_at_10 value: 28.53433333333333 - type: mrr_at_100 value: 29.404000000000003 - type: mrr_at_1000 value: 29.481999999999996 - type: mrr_at_3 value: 26.462999999999997 - type: mrr_at_5 value: 27.596083333333333 - type: ndcg_at_1 value: 21.373916666666666 - type: ndcg_at_10 value: 29.40908333333333 - type: ndcg_at_100 value: 34.43266666666666 - type: ndcg_at_1000 value: 37.334916666666665 - type: ndcg_at_3 value: 25.518250000000002 - type: ndcg_at_5 value: 27.286916666666666 - type: precision_at_1 value: 21.373916666666666 - type: precision_at_10 value: 5.265666666666667 - type: precision_at_100 value: 0.9175833333333334 - type: precision_at_1000 value: 0.13533333333333336 - type: precision_at_3 value: 11.92425 - type: precision_at_5 value: 8.532250000000001 - type: recall_at_1 value: 17.981 - type: recall_at_10 value: 39.14641666666667 - type: recall_at_100 value: 61.65433333333334 - type: recall_at_1000 value: 82.39216666666665 - type: recall_at_3 value: 28.15266666666667 - type: recall_at_5 value: 32.795 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.834 - type: map_at_10 value: 22.046 - type: map_at_100 value: 22.954 - type: map_at_1000 value: 23.051 - type: map_at_3 value: 20.602999999999998 - type: map_at_5 value: 21.387999999999998 - type: mrr_at_1 value: 19.172 - type: mrr_at_10 value: 24.558 - type: mrr_at_100 value: 25.439 - type: mrr_at_1000 value: 25.509999999999998 - type: mrr_at_3 value: 23.185 - type: mrr_at_5 value: 23.852 - type: ndcg_at_1 value: 19.172 - type: ndcg_at_10 value: 25.189 - type: ndcg_at_100 value: 29.918 - type: ndcg_at_1000 value: 32.677 - type: ndcg_at_3 value: 22.496 - type: ndcg_at_5 value: 23.677 - type: precision_at_1 value: 19.172 - type: precision_at_10 value: 3.834 - type: precision_at_100 value: 0.679 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 9.611 - type: precision_at_5 value: 6.4719999999999995 - type: recall_at_1 value: 16.834 - type: recall_at_10 value: 32.554 - type: recall_at_100 value: 54.416 - type: recall_at_1000 value: 75.334 - type: recall_at_3 value: 25.057000000000002 - type: recall_at_5 value: 28.155 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 10.778 - type: map_at_10 value: 15.885 - type: map_at_100 value: 16.716 - type: map_at_1000 value: 16.838 - type: map_at_3 value: 14.283999999999999 - type: map_at_5 value: 15.067 - type: mrr_at_1 value: 13.421 - type: mrr_at_10 value: 19.022 - type: mrr_at_100 value: 19.819 - type: mrr_at_1000 value: 19.912 - type: mrr_at_3 value: 17.366 - type: mrr_at_5 value: 18.18 - type: ndcg_at_1 value: 13.421 - type: ndcg_at_10 value: 19.375 - type: ndcg_at_100 value: 23.733999999999998 - type: ndcg_at_1000 value: 26.878 - type: ndcg_at_3 value: 16.383 - type: ndcg_at_5 value: 17.53 - type: precision_at_1 value: 13.421 - type: precision_at_10 value: 3.637 - type: precision_at_100 value: 0.681 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 7.983 - type: precision_at_5 value: 5.671 - type: recall_at_1 value: 10.778 - type: recall_at_10 value: 26.985999999999997 - type: recall_at_100 value: 47.143 - type: recall_at_1000 value: 69.842 - type: recall_at_3 value: 18.289 - type: recall_at_5 value: 21.459 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.077 - type: map_at_10 value: 23.31 - type: map_at_100 value: 24.351 - type: map_at_1000 value: 24.471 - type: map_at_3 value: 21.272 - type: map_at_5 value: 22.320999999999998 - type: mrr_at_1 value: 19.683 - type: mrr_at_10 value: 26.44 - type: mrr_at_100 value: 27.395000000000003 - type: mrr_at_1000 value: 27.479 - type: mrr_at_3 value: 24.549000000000003 - type: mrr_at_5 value: 25.477 - type: ndcg_at_1 value: 19.683 - type: ndcg_at_10 value: 27.33 - type: ndcg_at_100 value: 32.595 - type: ndcg_at_1000 value: 35.671 - type: ndcg_at_3 value: 23.536 - type: ndcg_at_5 value: 25.09 - type: precision_at_1 value: 19.683 - type: precision_at_10 value: 4.711 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.697 - type: precision_at_5 value: 7.5 - type: recall_at_1 value: 17.077 - type: recall_at_10 value: 36.532 - type: recall_at_100 value: 59.955999999999996 - type: recall_at_1000 value: 82.536 - type: recall_at_3 value: 25.982 - type: recall_at_5 value: 29.965999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.137 - type: map_at_10 value: 23.889 - type: map_at_100 value: 25.089 - type: map_at_1000 value: 25.284000000000002 - type: map_at_3 value: 21.844 - type: map_at_5 value: 23.185 - type: mrr_at_1 value: 20.552999999999997 - type: mrr_at_10 value: 27.996 - type: mrr_at_100 value: 28.921000000000003 - type: mrr_at_1000 value: 28.999999999999996 - type: mrr_at_3 value: 25.955000000000002 - type: mrr_at_5 value: 27.269 - type: ndcg_at_1 value: 20.552999999999997 - type: ndcg_at_10 value: 28.555000000000003 - type: ndcg_at_100 value: 34.035 - type: ndcg_at_1000 value: 37.466 - type: ndcg_at_3 value: 25.105 - type: ndcg_at_5 value: 27.13 - type: precision_at_1 value: 20.552999999999997 - type: precision_at_10 value: 5.534 - type: precision_at_100 value: 1.117 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_3 value: 12.253 - type: precision_at_5 value: 9.17 - type: recall_at_1 value: 17.137 - type: recall_at_10 value: 37.527 - type: recall_at_100 value: 62.905 - type: recall_at_1000 value: 85.839 - type: recall_at_3 value: 27.262999999999998 - type: recall_at_5 value: 32.735 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 13.253 - type: map_at_10 value: 19.185 - type: map_at_100 value: 19.972 - type: map_at_1000 value: 20.094 - type: map_at_3 value: 17.076 - type: map_at_5 value: 18.207 - type: mrr_at_1 value: 14.418000000000001 - type: mrr_at_10 value: 20.881 - type: mrr_at_100 value: 21.632 - type: mrr_at_1000 value: 21.73 - type: mrr_at_3 value: 18.731 - type: mrr_at_5 value: 19.914 - type: ndcg_at_1 value: 14.418000000000001 - type: ndcg_at_10 value: 23.146 - type: ndcg_at_100 value: 27.389999999999997 - type: ndcg_at_1000 value: 30.593999999999998 - type: ndcg_at_3 value: 18.843 - type: ndcg_at_5 value: 20.821 - type: precision_at_1 value: 14.418000000000001 - type: precision_at_10 value: 3.9190000000000005 - type: precision_at_100 value: 0.662 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 8.195 - type: precision_at_5 value: 6.174 - type: recall_at_1 value: 13.253 - type: recall_at_10 value: 33.745999999999995 - type: recall_at_100 value: 54.027 - type: recall_at_1000 value: 78.321 - type: recall_at_3 value: 21.959 - type: recall_at_5 value: 26.747 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: ndcg_at_1 value: 9.446 - type: ndcg_at_3 value: 8.708 - type: ndcg_at_5 value: 9.583 - type: ndcg_at_10 value: 11.324 - type: ndcg_at_100 value: 16.563 - type: ndcg_at_1000 value: 20.402 - type: map_at_1 value: 4.407 - type: map_at_3 value: 6.283999999999999 - type: map_at_5 value: 6.888 - type: map_at_10 value: 7.545 - type: map_at_100 value: 8.502 - type: map_at_1000 value: 8.677 - type: recall_at_1 value: 4.407 - type: recall_at_3 value: 8.341999999999999 - type: recall_at_5 value: 10.609 - type: recall_at_10 value: 14.572 - type: recall_at_100 value: 33.802 - type: recall_at_1000 value: 56.13 - type: precision_at_1 value: 9.446 - type: precision_at_3 value: 6.3839999999999995 - type: precision_at_5 value: 5.029 - type: precision_at_10 value: 3.655 - type: precision_at_100 value: 0.9169999999999999 - type: precision_at_1000 value: 0.159 - type: mrr_at_1 value: 9.446 - type: mrr_at_3 value: 12.975 - type: mrr_at_5 value: 14.102 - type: mrr_at_10 value: 15.223999999999998 - type: mrr_at_100 value: 16.378 - type: mrr_at_1000 value: 16.469 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 4.3839999999999995 - type: map_at_10 value: 8.92 - type: map_at_100 value: 12.509999999999998 - type: map_at_1000 value: 13.555 - type: map_at_3 value: 6.508 - type: map_at_5 value: 7.521 - type: mrr_at_1 value: 38.0 - type: mrr_at_10 value: 47.796 - type: mrr_at_100 value: 48.554 - type: mrr_at_1000 value: 48.579 - type: mrr_at_3 value: 44.708 - type: mrr_at_5 value: 46.521 - type: ndcg_at_1 value: 29.125 - type: ndcg_at_10 value: 22.126 - type: ndcg_at_100 value: 26.369999999999997 - type: ndcg_at_1000 value: 33.604 - type: ndcg_at_3 value: 24.102999999999998 - type: ndcg_at_5 value: 22.926 - type: precision_at_1 value: 38.0 - type: precision_at_10 value: 18.2 - type: precision_at_100 value: 6.208 - type: precision_at_1000 value: 1.3679999999999999 - type: precision_at_3 value: 26.5 - type: precision_at_5 value: 22.900000000000002 - type: recall_at_1 value: 4.3839999999999995 - type: recall_at_10 value: 13.520999999999999 - type: recall_at_100 value: 33.053 - type: recall_at_1000 value: 56.516 - type: recall_at_3 value: 7.515 - type: recall_at_5 value: 9.775 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 90.38999999999999 - type: f1 value: 87.12778738994012 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 70.132 - type: map_at_10 value: 79.527 - type: map_at_100 value: 79.81200000000001 - type: map_at_1000 value: 79.828 - type: map_at_3 value: 78.191 - type: map_at_5 value: 79.092 - type: mrr_at_1 value: 75.563 - type: mrr_at_10 value: 83.80199999999999 - type: mrr_at_100 value: 83.93 - type: mrr_at_1000 value: 83.933 - type: mrr_at_3 value: 82.818 - type: mrr_at_5 value: 83.505 - type: ndcg_at_1 value: 75.563 - type: ndcg_at_10 value: 83.692 - type: ndcg_at_100 value: 84.706 - type: ndcg_at_1000 value: 85.001 - type: ndcg_at_3 value: 81.51 - type: ndcg_at_5 value: 82.832 - type: precision_at_1 value: 75.563 - type: precision_at_10 value: 10.245 - type: precision_at_100 value: 1.0959999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 31.518 - type: precision_at_5 value: 19.772000000000002 - type: recall_at_1 value: 70.132 - type: recall_at_10 value: 92.204 - type: recall_at_100 value: 96.261 - type: recall_at_1000 value: 98.17399999999999 - type: recall_at_3 value: 86.288 - type: recall_at_5 value: 89.63799999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 7.688000000000001 - type: map_at_10 value: 13.839000000000002 - type: map_at_100 value: 15.082999999999998 - type: map_at_1000 value: 15.276 - type: map_at_3 value: 11.662 - type: map_at_5 value: 12.827 - type: mrr_at_1 value: 15.741 - type: mrr_at_10 value: 23.304 - type: mrr_at_100 value: 24.239 - type: mrr_at_1000 value: 24.319 - type: mrr_at_3 value: 20.962 - type: mrr_at_5 value: 22.243 - type: ndcg_at_1 value: 15.741 - type: ndcg_at_10 value: 18.914 - type: ndcg_at_100 value: 24.742 - type: ndcg_at_1000 value: 28.938000000000002 - type: ndcg_at_3 value: 16.181 - type: ndcg_at_5 value: 17.078 - type: precision_at_1 value: 15.741 - type: precision_at_10 value: 5.7410000000000005 - type: precision_at_100 value: 1.168 - type: precision_at_1000 value: 0.19 - type: precision_at_3 value: 11.368 - type: precision_at_5 value: 8.735 - type: recall_at_1 value: 7.688000000000001 - type: recall_at_10 value: 24.442 - type: recall_at_100 value: 47.288999999999994 - type: recall_at_1000 value: 73.49900000000001 - type: recall_at_3 value: 15.15 - type: recall_at_5 value: 18.858 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 40.412 - type: map_at_10 value: 66.376 - type: map_at_100 value: 67.217 - type: map_at_1000 value: 67.271 - type: map_at_3 value: 62.741 - type: map_at_5 value: 65.069 - type: mrr_at_1 value: 80.824 - type: mrr_at_10 value: 86.53 - type: mrr_at_100 value: 86.67399999999999 - type: mrr_at_1000 value: 86.678 - type: mrr_at_3 value: 85.676 - type: mrr_at_5 value: 86.256 - type: ndcg_at_1 value: 80.824 - type: ndcg_at_10 value: 74.332 - type: ndcg_at_100 value: 77.154 - type: ndcg_at_1000 value: 78.12400000000001 - type: ndcg_at_3 value: 69.353 - type: ndcg_at_5 value: 72.234 - type: precision_at_1 value: 80.824 - type: precision_at_10 value: 15.652 - type: precision_at_100 value: 1.7840000000000003 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 44.911 - type: precision_at_5 value: 29.221000000000004 - type: recall_at_1 value: 40.412 - type: recall_at_10 value: 78.25800000000001 - type: recall_at_100 value: 89.196 - type: recall_at_1000 value: 95.544 - type: recall_at_3 value: 67.367 - type: recall_at_5 value: 73.05199999999999 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.8228 - type: ap value: 84.52103126779862 - type: f1 value: 88.797782219813 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 8.461 - type: map_at_10 value: 14.979999999999999 - type: map_at_100 value: 16.032 - type: map_at_1000 value: 16.128 - type: map_at_3 value: 12.64 - type: map_at_5 value: 13.914000000000001 - type: mrr_at_1 value: 8.681999999999999 - type: mrr_at_10 value: 15.341 - type: mrr_at_100 value: 16.377 - type: mrr_at_1000 value: 16.469 - type: mrr_at_3 value: 12.963 - type: mrr_at_5 value: 14.262 - type: ndcg_at_1 value: 8.681999999999999 - type: ndcg_at_10 value: 19.045 - type: ndcg_at_100 value: 24.735 - type: ndcg_at_1000 value: 27.556000000000004 - type: ndcg_at_3 value: 14.154 - type: ndcg_at_5 value: 16.448 - type: precision_at_1 value: 8.681999999999999 - type: precision_at_10 value: 3.292 - type: precision_at_100 value: 0.623 - type: precision_at_1000 value: 0.087 - type: precision_at_3 value: 6.275 - type: precision_at_5 value: 4.92 - type: recall_at_1 value: 8.461 - type: recall_at_10 value: 31.729000000000003 - type: recall_at_100 value: 59.367000000000004 - type: recall_at_1000 value: 81.86 - type: recall_at_3 value: 18.234 - type: recall_at_5 value: 23.74 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 98.1623347013224 - type: f1 value: 97.95934123221338 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 93.0141358869129 - type: f1 value: 77.42161481798763 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 77.20242098184264 - type: f1 value: 73.64580701123289 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 88.38264963012777 - type: f1 value: 87.6445935642575 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 28.982276213044095 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 26.08731318128303 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.680164236394784 - type: mrr value: 30.60242075910688 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 4.35 - type: map_at_10 value: 10.03 - type: map_at_100 value: 12.61 - type: map_at_1000 value: 13.916999999999998 - type: map_at_3 value: 7.428 - type: map_at_5 value: 8.625 - type: mrr_at_1 value: 39.009 - type: mrr_at_10 value: 47.63 - type: mrr_at_100 value: 48.259 - type: mrr_at_1000 value: 48.302 - type: mrr_at_3 value: 45.408 - type: mrr_at_5 value: 46.971000000000004 - type: ndcg_at_1 value: 36.997 - type: ndcg_at_10 value: 28.781000000000002 - type: ndcg_at_100 value: 26.644000000000002 - type: ndcg_at_1000 value: 35.812 - type: ndcg_at_3 value: 34.056 - type: ndcg_at_5 value: 31.804 - type: precision_at_1 value: 38.080000000000005 - type: precision_at_10 value: 20.96 - type: precision_at_100 value: 6.808 - type: precision_at_1000 value: 1.991 - type: precision_at_3 value: 32.095 - type: precision_at_5 value: 27.43 - type: recall_at_1 value: 4.35 - type: recall_at_10 value: 14.396 - type: recall_at_100 value: 28.126 - type: recall_at_1000 value: 60.785 - type: recall_at_3 value: 9.001000000000001 - type: recall_at_5 value: 11.197 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 9.408 - type: map_at_10 value: 17.247 - type: map_at_100 value: 18.578 - type: map_at_1000 value: 18.683 - type: map_at_3 value: 14.424999999999999 - type: map_at_5 value: 15.967999999999998 - type: mrr_at_1 value: 10.718 - type: mrr_at_10 value: 18.974 - type: mrr_at_100 value: 20.153 - type: mrr_at_1000 value: 20.238 - type: mrr_at_3 value: 16.087 - type: mrr_at_5 value: 17.685000000000002 - type: ndcg_at_1 value: 10.718 - type: ndcg_at_10 value: 22.313 - type: ndcg_at_100 value: 28.810999999999996 - type: ndcg_at_1000 value: 31.495 - type: ndcg_at_3 value: 16.487 - type: ndcg_at_5 value: 19.252 - type: precision_at_1 value: 10.718 - type: precision_at_10 value: 4.256 - type: precision_at_100 value: 0.7979999999999999 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 7.976 - type: precision_at_5 value: 6.3149999999999995 - type: recall_at_1 value: 9.408 - type: recall_at_10 value: 36.364999999999995 - type: recall_at_100 value: 66.16499999999999 - type: recall_at_1000 value: 86.47399999999999 - type: recall_at_3 value: 20.829 - type: recall_at_5 value: 27.296 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 65.499 - type: map_at_10 value: 78.432 - type: map_at_100 value: 79.169 - type: map_at_1000 value: 79.199 - type: map_at_3 value: 75.476 - type: map_at_5 value: 77.28399999999999 - type: mrr_at_1 value: 75.55 - type: mrr_at_10 value: 82.16499999999999 - type: mrr_at_100 value: 82.37 - type: mrr_at_1000 value: 82.375 - type: mrr_at_3 value: 80.925 - type: mrr_at_5 value: 81.748 - type: ndcg_at_1 value: 75.58 - type: ndcg_at_10 value: 82.663 - type: ndcg_at_100 value: 84.526 - type: ndcg_at_1000 value: 84.843 - type: ndcg_at_3 value: 79.38300000000001 - type: ndcg_at_5 value: 81.133 - type: precision_at_1 value: 75.58 - type: precision_at_10 value: 12.562000000000001 - type: precision_at_100 value: 1.48 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 34.583000000000006 - type: precision_at_5 value: 22.858 - type: recall_at_1 value: 65.499 - type: recall_at_10 value: 90.71000000000001 - type: recall_at_100 value: 97.717 - type: recall_at_1000 value: 99.551 - type: recall_at_3 value: 81.273 - type: recall_at_5 value: 86.172 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 43.28689524907211 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 54.41734813535957 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 3.305 - type: map_at_10 value: 8.502 - type: map_at_100 value: 10.288 - type: map_at_1000 value: 10.599 - type: map_at_3 value: 6.146 - type: map_at_5 value: 7.207 - type: mrr_at_1 value: 16.400000000000002 - type: mrr_at_10 value: 26.054 - type: mrr_at_100 value: 27.319 - type: mrr_at_1000 value: 27.400000000000002 - type: mrr_at_3 value: 22.967000000000002 - type: mrr_at_5 value: 24.542 - type: ndcg_at_1 value: 16.400000000000002 - type: ndcg_at_10 value: 14.943000000000001 - type: ndcg_at_100 value: 22.596 - type: ndcg_at_1000 value: 28.345 - type: ndcg_at_3 value: 14.011000000000001 - type: ndcg_at_5 value: 12.065 - type: precision_at_1 value: 16.400000000000002 - type: precision_at_10 value: 7.93 - type: precision_at_100 value: 1.902 - type: precision_at_1000 value: 0.328 - type: precision_at_3 value: 13.233 - type: precision_at_5 value: 10.620000000000001 - type: recall_at_1 value: 3.305 - type: recall_at_10 value: 16.07 - type: recall_at_100 value: 38.592999999999996 - type: recall_at_1000 value: 66.678 - type: recall_at_3 value: 8.025 - type: recall_at_5 value: 10.743 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 94.03602783680165 - type: cos_sim_spearman value: 91.93466287712853 - type: euclidean_pearson value: 91.5804659261222 - type: euclidean_spearman value: 91.84239224991634 - type: manhattan_pearson value: 91.57789872896991 - type: manhattan_spearman value: 91.82031929038708 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 97.2530615783017 - type: cos_sim_spearman value: 95.61025838976805 - type: euclidean_pearson value: 95.41071037458771 - type: euclidean_spearman value: 95.6207550803838 - type: manhattan_pearson value: 95.39723545188045 - type: manhattan_spearman value: 95.61540593501014 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 95.27491458980685 - type: cos_sim_spearman value: 95.1521844663505 - type: euclidean_pearson value: 94.63883752108002 - type: euclidean_spearman value: 94.85954995945424 - type: manhattan_pearson value: 94.59749433419627 - type: manhattan_spearman value: 94.80626857571967 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 97.10518525877228 - type: cos_sim_spearman value: 96.85836209648471 - type: euclidean_pearson value: 95.8019730340664 - type: euclidean_spearman value: 96.78892865690494 - type: manhattan_pearson value: 95.79265816494754 - type: manhattan_spearman value: 96.7712534155723 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 96.66550105336606 - type: cos_sim_spearman value: 96.73134982392861 - type: euclidean_pearson value: 95.50375963201927 - type: euclidean_spearman value: 96.46785996403956 - type: manhattan_pearson value: 95.47555707089327 - type: manhattan_spearman value: 96.40825860300748 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 96.07365154052914 - type: cos_sim_spearman value: 96.1720485037732 - type: euclidean_pearson value: 95.58880196128803 - type: euclidean_spearman value: 96.02102007396296 - type: manhattan_pearson value: 95.60295336628664 - type: manhattan_spearman value: 96.03461694944212 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 96.14907313714893 - type: cos_sim_spearman value: 96.14822520805113 - type: euclidean_pearson value: 95.62140726773103 - type: euclidean_spearman value: 96.01818385482282 - type: manhattan_pearson value: 95.60795162280982 - type: manhattan_spearman value: 96.00703635484169 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.35513203366195 - type: cos_sim_spearman value: 64.92002333937089 - type: euclidean_pearson value: 67.06304516009153 - type: euclidean_spearman value: 65.3504536039936 - type: manhattan_pearson value: 67.22016756598737 - type: manhattan_spearman value: 65.64455991383844 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 96.59372149477922 - type: cos_sim_spearman value: 96.97247348665515 - type: euclidean_pearson value: 95.64890160850817 - type: euclidean_spearman value: 96.84619618958573 - type: manhattan_pearson value: 95.65581449537562 - type: manhattan_spearman value: 96.853383309355 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.9991957697061 - type: mrr value: 93.85864317236866 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 42.25 - type: map_at_10 value: 51.257 - type: map_at_100 value: 52.261 - type: map_at_1000 value: 52.309000000000005 - type: map_at_3 value: 48.759 - type: map_at_5 value: 50.413 - type: mrr_at_1 value: 44.0 - type: mrr_at_10 value: 52.367 - type: mrr_at_100 value: 53.181999999999995 - type: mrr_at_1000 value: 53.223 - type: mrr_at_3 value: 50.222 - type: mrr_at_5 value: 51.656 - type: ndcg_at_1 value: 44.0 - type: ndcg_at_10 value: 55.672 - type: ndcg_at_100 value: 59.779 - type: ndcg_at_1000 value: 61.114999999999995 - type: ndcg_at_3 value: 51.136 - type: ndcg_at_5 value: 53.822 - type: precision_at_1 value: 44.0 - type: precision_at_10 value: 7.6 - type: precision_at_100 value: 0.9730000000000001 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 20.111 - type: precision_at_5 value: 13.733 - type: recall_at_1 value: 42.25 - type: recall_at_10 value: 67.989 - type: recall_at_100 value: 85.56700000000001 - type: recall_at_1000 value: 96.267 - type: recall_at_3 value: 56.27799999999999 - type: recall_at_5 value: 62.678 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.75346534653465 - type: cos_sim_ap value: 92.92934020206276 - type: cos_sim_f1 value: 87.37373737373737 - type: cos_sim_precision value: 88.26530612244898 - type: cos_sim_recall value: 86.5 - type: dot_accuracy value: 99.7 - type: dot_ap value: 90.30253078505329 - type: dot_f1 value: 84.55696202531644 - type: dot_precision value: 85.64102564102564 - type: dot_recall value: 83.5 - type: euclidean_accuracy value: 99.75742574257426 - type: euclidean_ap value: 92.97542565802068 - type: euclidean_f1 value: 87.48083801737351 - type: euclidean_precision value: 89.44618599791013 - type: euclidean_recall value: 85.6 - type: manhattan_accuracy value: 99.75643564356436 - type: manhattan_ap value: 92.92733519229752 - type: manhattan_f1 value: 87.41044012282498 - type: manhattan_precision value: 89.51781970649894 - type: manhattan_recall value: 85.39999999999999 - type: max_accuracy value: 99.75742574257426 - type: max_ap value: 92.97542565802068 - type: max_f1 value: 87.48083801737351 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 46.968629347107225 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.76101811464947 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 47.838618465936364 - type: mrr value: 48.51134772090654 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.101149949190837 - type: cos_sim_spearman value: 30.99886288816569 - type: dot_pearson value: 28.905040829977978 - type: dot_spearman value: 28.101690957830428 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.129 - type: map_at_10 value: 0.6930000000000001 - type: map_at_100 value: 2.408 - type: map_at_1000 value: 4.731 - type: map_at_3 value: 0.314 - type: map_at_5 value: 0.43 - type: mrr_at_1 value: 44.0 - type: mrr_at_10 value: 55.132999999999996 - type: mrr_at_100 value: 56.455 - type: mrr_at_1000 value: 56.474000000000004 - type: mrr_at_3 value: 53.333 - type: mrr_at_5 value: 55.132999999999996 - type: ndcg_at_1 value: 40.0 - type: ndcg_at_10 value: 33.283 - type: ndcg_at_100 value: 18.892 - type: ndcg_at_1000 value: 17.457 - type: ndcg_at_3 value: 39.073 - type: ndcg_at_5 value: 35.609 - type: precision_at_1 value: 44.0 - type: precision_at_10 value: 33.800000000000004 - type: precision_at_100 value: 17.44 - type: precision_at_1000 value: 7.04 - type: precision_at_3 value: 40.666999999999994 - type: precision_at_5 value: 36.4 - type: recall_at_1 value: 0.129 - type: recall_at_10 value: 0.91 - type: recall_at_100 value: 4.449 - type: recall_at_1000 value: 16.091 - type: recall_at_3 value: 0.349 - type: recall_at_5 value: 0.518 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.189 - type: map_at_10 value: 5.196 - type: map_at_100 value: 8.984 - type: map_at_1000 value: 10.333 - type: map_at_3 value: 2.513 - type: map_at_5 value: 3.8089999999999997 - type: mrr_at_1 value: 14.285999999999998 - type: mrr_at_10 value: 26.295 - type: mrr_at_100 value: 28.285 - type: mrr_at_1000 value: 28.303 - type: mrr_at_3 value: 22.109 - type: mrr_at_5 value: 24.864 - type: ndcg_at_1 value: 12.245000000000001 - type: ndcg_at_10 value: 13.196 - type: ndcg_at_100 value: 24.189 - type: ndcg_at_1000 value: 36.015 - type: ndcg_at_3 value: 12.153 - type: ndcg_at_5 value: 13.459999999999999 - type: precision_at_1 value: 14.285999999999998 - type: precision_at_10 value: 12.653 - type: precision_at_100 value: 5.673 - type: precision_at_1000 value: 1.32 - type: precision_at_3 value: 12.925 - type: precision_at_5 value: 15.101999999999999 - type: recall_at_1 value: 1.189 - type: recall_at_10 value: 9.478 - type: recall_at_100 value: 36.076 - type: recall_at_1000 value: 71.88900000000001 - type: recall_at_3 value: 3.1710000000000003 - type: recall_at_5 value: 5.944 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 81.1632 - type: ap value: 21.801031224655016 - type: f1 value: 63.93057804886679 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 68.15789473684211 - type: f1 value: 68.55744497973521 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.77313771942972 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.79603027954938 - type: cos_sim_ap value: 73.19931192854375 - type: cos_sim_f1 value: 66.7699457784663 - type: cos_sim_precision value: 65.3690596562184 - type: cos_sim_recall value: 68.23218997361478 - type: dot_accuracy value: 84.72313286046374 - type: dot_ap value: 69.84066382008972 - type: dot_f1 value: 64.42618869803336 - type: dot_precision value: 60.98020735155514 - type: dot_recall value: 68.28496042216359 - type: euclidean_accuracy value: 85.81391190320082 - type: euclidean_ap value: 73.4051677083228 - type: euclidean_f1 value: 67.35092864125122 - type: euclidean_precision value: 62.721893491124256 - type: euclidean_recall value: 72.71767810026385 - type: manhattan_accuracy value: 85.81391190320082 - type: manhattan_ap value: 73.33759860950396 - type: manhattan_f1 value: 67.32576589771757 - type: manhattan_precision value: 62.63910969793323 - type: manhattan_recall value: 72.77044854881267 - type: max_accuracy value: 85.81391190320082 - type: max_ap value: 73.4051677083228 - type: max_f1 value: 67.35092864125122 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.17479722125199 - type: cos_sim_ap value: 84.37486145048878 - type: cos_sim_f1 value: 76.65294717365856 - type: cos_sim_precision value: 75.21304186735827 - type: cos_sim_recall value: 78.14906067138897 - type: dot_accuracy value: 87.72460899600264 - type: dot_ap value: 83.01188676406672 - type: dot_f1 value: 75.8810775054206 - type: dot_precision value: 72.58665541728186 - type: dot_recall value: 79.48875885432707 - type: euclidean_accuracy value: 88.16315442232313 - type: euclidean_ap value: 84.32021529803454 - type: euclidean_f1 value: 76.60147856804691 - type: euclidean_precision value: 72.67638725727316 - type: euclidean_recall value: 80.97474591931014 - type: manhattan_accuracy value: 88.19226141964528 - type: manhattan_ap value: 84.30111334073442 - type: manhattan_f1 value: 76.48944401459048 - type: manhattan_precision value: 73.34134105843285 - type: manhattan_recall value: 79.91992608561749 - type: max_accuracy value: 88.19226141964528 - type: max_ap value: 84.37486145048878 - type: max_f1 value: 76.65294717365856 ---
praneethvasarla/bert-finetuned-conll-ner
praneethvasarla
2023-10-09T01:14:53Z
109
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-06T02:11:20Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-conll-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9371267418712674 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.9438596491228071 - name: Accuracy type: accuracy value: 0.986504385706717 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-conll-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. This uses the Cased version of Bert, so keep the casing unchanged before using this model It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9371 - Recall: 0.9507 - F1: 0.9439 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0766 | 1.0 | 1756 | 0.0793 | 0.9100 | 0.9360 | 0.9228 | 0.9795 | | 0.0416 | 2.0 | 3512 | 0.0602 | 0.9283 | 0.9473 | 0.9377 | 0.9857 | | 0.0253 | 3.0 | 5268 | 0.0615 | 0.9371 | 0.9507 | 0.9439 | 0.9865 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
diwank/dfe-base-en-1
diwank
2023-10-09T00:55:54Z
1,257
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-09T00:55:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # diwank/dfe-base-en-1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('diwank/dfe-base-en-1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=diwank/dfe-base-en-1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2562 with parameters: ``` {'batch_size': 1320, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 1500, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>", "optimizer_params": { "lr": 0.0001, "weight_decay": 0.01 }, "scheduler": "WarmupCosine", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Asym( (dialog-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (dialog-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (dialog-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (fact-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (fact-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (fact-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Tural/bert-base-uncased-ml
Tural
2023-10-09T00:51:39Z
17
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-06T20:03:31Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-ml results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ml This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 150 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7729 | 1.0 | 14050 | 3.8005 | | 2.408 | 2.0 | 28100 | 2.3630 | | 2.1739 | 3.0 | 42150 | 2.1621 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.14.1
VuongQuoc/checkpoints_10_1_microsoft_deberta_V1.1_384
VuongQuoc
2023-10-09T00:32:38Z
66
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "generated_from_trainer", "base_model:VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384", "base_model:finetune:VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384", "endpoints_compatible", "region:us" ]
multiple-choice
2023-10-01T11:49:45Z
--- base_model: VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384 tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_10_1_microsoft_deberta_V1.1_384 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints_10_1_microsoft_deberta_V1.1_384 This model is a fine-tuned version of [VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384](https://huggingface.co/VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7688 - Map@3: 0.8458 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.5583 | 0.05 | 100 | 1.4269 | 0.7675 | 0.65 | | 1.1541 | 0.11 | 200 | 1.0838 | 0.7692 | 0.67 | | 1.0124 | 0.16 | 300 | 0.9475 | 0.8108 | 0.715 | | 0.9627 | 0.21 | 400 | 0.8969 | 0.8233 | 0.73 | | 0.9241 | 0.27 | 500 | 0.8473 | 0.8392 | 0.755 | | 0.885 | 0.32 | 600 | 0.8336 | 0.8333 | 0.745 | | 0.8606 | 0.37 | 700 | 0.7937 | 0.8508 | 0.76 | | 0.8495 | 0.43 | 800 | 0.7755 | 0.8517 | 0.76 | | 0.8787 | 0.48 | 900 | 0.7706 | 0.8475 | 0.75 | | 0.8535 | 0.53 | 1000 | 0.7714 | 0.8458 | 0.75 | | 0.8499 | 0.59 | 1100 | 0.7694 | 0.8458 | 0.75 | | 0.8353 | 0.64 | 1200 | 0.7688 | 0.8458 | 0.75 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3
paisanx/ppo-LunarLander-v2-test
paisanx
2023-10-09T00:28:31Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-09T00:27:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 115.31 +/- 85.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NysPsycho/TrailerParkSteve
NysPsycho
2023-10-09T00:28:30Z
0
0
null
[ "graph-ml", "en", "license:mit", "region:us" ]
graph-ml
2023-10-09T00:10:31Z
--- license: mit language: - en metrics: - accuracy - recall pipeline_tag: graph-ml --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64321be471bf2c8bcf6e6434/R5frjekEV0Sh34Sm5uLGj.png)
TanmaySah/jan
TanmaySah
2023-10-09T00:23:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-04T21:14:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
Brecon/bert_validation_model
Brecon
2023-10-09T00:18:42Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-04T20:43:15Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Brecon/bert_validation_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Brecon/bert_validation_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0222 - Validation Loss: 1.0468 - Train Accuracy: 0.3182 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 50, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0559 | 1.0606 | 0.4091 | 0 | | 1.0222 | 1.0468 | 0.3182 | 1 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.11.0
thevyasamit/t5-fine-tuned-with-25-yake-keywords
thevyasamit
2023-10-08T23:55:25Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-07T17:47:05Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-fine-tuned-with-25-yake-keywords results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-fine-tuned-with-25-yake-keywords This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7255 - Rouge1: 25.5531 - Rouge2: 11.1657 - Rougel: 20.7513 - Rougelsum: 24.054 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3097 | 1.0 | 604 | 1.3789 | 25.5146 | 11.2077 | 20.8249 | 23.9199 | 19.0 | | 1.1951 | 2.0 | 1208 | 1.3779 | 25.3347 | 11.2485 | 20.6781 | 23.7106 | 19.0 | | 1.1081 | 3.0 | 1812 | 1.3903 | 26.1109 | 11.8345 | 21.2205 | 24.551 | 18.994 | | 1.0272 | 4.0 | 2416 | 1.4042 | 26.027 | 11.5618 | 21.1159 | 24.3576 | 18.992 | | 0.919 | 5.0 | 3020 | 1.4225 | 25.8294 | 11.5972 | 21.0053 | 24.3003 | 18.992 | | 0.8643 | 6.0 | 3624 | 1.4410 | 25.9719 | 11.6151 | 21.0454 | 24.4411 | 18.99 | | 0.8215 | 7.0 | 4228 | 1.4599 | 25.68 | 11.2692 | 20.9075 | 24.2681 | 19.0 | | 0.7931 | 8.0 | 4832 | 1.4926 | 25.0808 | 10.9178 | 20.4053 | 23.6258 | 19.0 | | 0.7664 | 9.0 | 5436 | 1.5090 | 25.458 | 10.9978 | 20.6381 | 23.9113 | 19.0 | | 0.7053 | 10.0 | 6040 | 1.5259 | 25.4787 | 10.8938 | 20.5842 | 23.9459 | 18.998 | | 0.6725 | 11.0 | 6644 | 1.5481 | 25.2993 | 10.7172 | 20.5288 | 23.8319 | 19.0 | | 0.6462 | 12.0 | 7248 | 1.5710 | 25.6251 | 11.0816 | 20.7758 | 24.082 | 19.0 | | 0.6275 | 13.0 | 7852 | 1.5884 | 25.8573 | 11.0737 | 20.988 | 24.294 | 19.0 | | 0.5838 | 14.0 | 8456 | 1.6131 | 26.1096 | 11.3973 | 21.3659 | 24.6114 | 19.0 | | 0.5682 | 15.0 | 9060 | 1.6259 | 25.7213 | 11.1484 | 20.8604 | 24.1114 | 19.0 | | 0.5629 | 16.0 | 9664 | 1.6473 | 25.6197 | 11.2045 | 20.8956 | 24.1237 | 19.0 | | 0.5446 | 17.0 | 10268 | 1.6645 | 25.4284 | 10.7362 | 20.4946 | 23.9147 | 19.0 | | 0.5108 | 18.0 | 10872 | 1.6716 | 25.6986 | 11.2317 | 20.8851 | 24.272 | 19.0 | | 0.5358 | 19.0 | 11476 | 1.6882 | 25.8002 | 11.2396 | 21.0001 | 24.2643 | 19.0 | | 0.4959 | 20.0 | 12080 | 1.7027 | 25.636 | 11.2417 | 20.8785 | 24.1355 | 18.992 | | 0.4942 | 21.0 | 12684 | 1.7131 | 25.6154 | 11.1795 | 20.7925 | 24.1343 | 19.0 | | 0.4833 | 22.0 | 13288 | 1.7178 | 25.7708 | 11.2434 | 20.9096 | 24.1974 | 19.0 | | 0.4702 | 23.0 | 13892 | 1.7227 | 25.6977 | 11.2352 | 20.9147 | 24.1121 | 19.0 | | 0.4747 | 24.0 | 14496 | 1.7241 | 25.6248 | 11.2042 | 20.8192 | 24.1186 | 19.0 | | 0.4691 | 25.0 | 15100 | 1.7255 | 25.5531 | 11.1657 | 20.7513 | 24.054 | 19.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
euneeei/Finetune_flan_t5_large_bnb_peft.ipynb
euneeei
2023-10-08T23:51:46Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-10-08T23:26:11Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
hongyin/self-management-1.5b
hongyin
2023-10-08T23:47:15Z
153
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "zh", "arxiv:2302.13173", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-01T23:54:06Z
--- language: - en - zh pipeline_tag: text-generation --- ## hongyin/self-management-1.5b Warning: There are some problems with the tokenizer of this model, which will be corrected in the next version of the model (informer-1b). I am pleased to introduce to you an English-Chinese bilingual autoregressive language model. This model is trained from scratch and has a unique vocabulary and 150 million parameters based on the LLAMA2 model structure. Our goal is to provide a solution that is computationally cheap and easy to inference. It's important to note that this is a base model, not intended to be used as a chatbot, but rather for alchemy. We look forward to providing you with a practical model product. ```python ``` ## Bibtex entry and citation info Please cite if you find it helpful. ``` @article{zhu2023metaaid, title={MetaAID 2.0: An Extensible Framework for Developing Metaverse Applications via Human-controllable Pre-trained Models}, author={Zhu, Hongyin}, journal={arXiv preprint arXiv:2302.13173}, year={2023} } ``` --- license: other ---
hongyin/chat-self-management-1.5b
hongyin
2023-10-08T23:46:44Z
153
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "zh", "arxiv:2302.13173", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-08T09:25:05Z
--- language: - en - zh pipeline_tag: text-generation --- ## hongyin/chat-self-management-1.5b Warning: There are some problems with the tokenizer of this model, which will be corrected in the next version of the model (chat-informer-1b). We are honored to introduce a lightweight Chinese-English conversation assistant designed to reduce the cost of inference. It is trained from scratch, based on the LLAMA2 architecture, with 150 million parameters and a completely new vocabulary. The training process consists of two parts: (1) NTP task. (2) Instruction tuning. The model improves data quality for pre-training and instruction tuning. ```python Human: Paraphrasing the sentence: I love you. Assistant: Sure, I love you. ``` ## Bibtex entry and citation info Please cite if you find it helpful. ``` @article{zhu2023metaaid, title={MetaAID 2.0: An Extensible Framework for Developing Metaverse Applications via Human-controllable Pre-trained Models}, author={Zhu, Hongyin}, journal={arXiv preprint arXiv:2302.13173}, year={2023} } ``` --- license: other ---
pinot/wav2vec2-xls-r-300m-ja-phoneme_cv_14_3
pinot
2023-10-08T23:45:35Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-08T22:53:06Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ja-phoneme_cv_14_3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train[:50%] args: default metrics: - name: Wer type: wer value: 0.1460970338882424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ja-phoneme_cv_14_3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7558 - Wer: 0.1461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2909 | 0.44 | 400 | 2.8888 | 1.0 | | 1.7369 | 0.88 | 800 | 0.7558 | 0.1461 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
taufeeque/TokFSM_k1_codebook_model
taufeeque
2023-10-08T23:43:01Z
50
0
transformers
[ "transformers", "pytorch", "codebook", "generated_from_trainer", "dataset:toy_graph", "model-index", "endpoints_compatible", "region:us" ]
null
2023-10-02T17:31:55Z
--- tags: - generated_from_trainer datasets: - toy_graph metrics: - accuracy model-index: - name: output_toy results: - task: name: Causal Language Modeling type: text-generation dataset: name: toy_graph type: toy_graph metrics: - name: Accuracy type: accuracy value: 0.4525254617525837 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_toy This model is a fine-tuned version of [toy/model](https://huggingface.co/toy/model) on the toy_graph dataset. It achieves the following results on the evaluation set: - Loss: 1.2691 - Accuracy: 0.4525 - Transition Accuracy: 0.5634 - First Transition Accuracy: 0.88 - Multicode K: 1 - Dead Code Fraction/layer0: 0.9969 - Mse/layer0: 220380.4595 - Input Norm/layer0: 333.7717 - Output Norm/layer0: 12.9360 - Dead Code Fraction/layer1: 0.9535 - Mse/layer1: 132.7843 - Input Norm/layer1: 6.5450 - Output Norm/layer1: 13.1449 - Dead Code Fraction/layer2: 0.9349 - Mse/layer2: 365.9396 - Input Norm/layer2: 6.1370 - Output Norm/layer2: 18.3248 - Dead Code Fraction/layer3: 0.9819 - Mse/layer3: 415.9804 - Input Norm/layer3: 7.4097 - Output Norm/layer3: 18.4665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1024 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Transition Accuracy | First Transition Accuracy | Multicode K | Dead Code Fraction/layer0 | Mse/layer0 | Input Norm/layer0 | Output Norm/layer0 | Dead Code Fraction/layer1 | Mse/layer1 | Input Norm/layer1 | Output Norm/layer1 | Dead Code Fraction/layer2 | Mse/layer2 | Input Norm/layer2 | Output Norm/layer2 | Dead Code Fraction/layer3 | Mse/layer3 | Input Norm/layer3 | Output Norm/layer3 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------------:|:-------------------------:|:-----------:|:-------------------------:|:----------:|:-----------------:|:------------------:|:-------------------------:|:----------:|:-----------------:|:------------------:|:-------------------------:|:----------:|:-----------------:|:------------------:|:-------------------------:|:----------:|:-----------------:|:------------------:| | 2.2465 | 0.03 | 500 | 1.8386 | 0.3565 | 0.3555 | 0.31 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.5981 | 0.05 | 1000 | 1.4652 | 0.4204 | 0.5015 | 0.58 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.3928 | 0.07 | 1500 | 1.3541 | 0.4378 | 0.555 | 0.79 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.3405 | 0.1 | 2000 | 1.3264 | 0.4427 | 0.5756 | 0.82 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.3189 | 0.12 | 2500 | 1.3187 | 0.4446 | 0.5576 | 0.86 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.308 | 0.15 | 3000 | 1.3064 | 0.4468 | 0.5573 | 0.82 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.3009 | 0.17 | 3500 | 1.2963 | 0.4493 | 0.5763 | 0.87 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2965 | 0.2 | 4000 | 1.2922 | 0.4494 | 0.5677 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2919 | 0.23 | 4500 | 1.2880 | 0.4499 | 0.5821 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2889 | 0.25 | 5000 | 1.2856 | 0.4501 | 0.56 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2855 | 0.28 | 5500 | 1.2816 | 0.4503 | 0.6016 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2828 | 0.3 | 6000 | 1.2844 | 0.4502 | 0.5734 | 0.87 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2805 | 0.33 | 6500 | 1.2777 | 0.4516 | 0.6084 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2793 | 0.35 | 7000 | 1.2796 | 0.4511 | 0.5681 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2785 | 0.38 | 7500 | 1.2748 | 0.4519 | 0.5919 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2764 | 0.4 | 8000 | 1.2767 | 0.4518 | 0.5760 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2763 | 0.42 | 8500 | 1.2801 | 0.4507 | 0.5827 | 0.94 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2755 | 0.45 | 9000 | 1.2755 | 0.4516 | 0.5765 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2746 | 0.47 | 9500 | 1.2736 | 0.4523 | 0.5865 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2734 | 0.5 | 10000 | 1.2740 | 0.4519 | 0.5779 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2732 | 0.53 | 10500 | 1.2744 | 0.4516 | 0.5879 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2723 | 0.55 | 11000 | 1.2690 | 0.4525 | 0.5811 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2712 | 0.57 | 11500 | 1.2705 | 0.4526 | 0.5779 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2716 | 0.6 | 12000 | 1.2701 | 0.4527 | 0.5760 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2708 | 0.62 | 12500 | 1.2716 | 0.4522 | 0.5485 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2705 | 0.65 | 13000 | 1.2676 | 0.4529 | 0.5734 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2696 | 0.68 | 13500 | 1.2717 | 0.4519 | 0.5994 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2687 | 0.7 | 14000 | 1.2687 | 0.4524 | 0.5756 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2685 | 0.72 | 14500 | 1.2709 | 0.4521 | 0.6127 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2685 | 0.75 | 15000 | 1.2706 | 0.4519 | 0.5873 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2675 | 0.78 | 15500 | 1.2691 | 0.4527 | 0.6365 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2677 | 0.8 | 16000 | 1.2686 | 0.4526 | 0.5589 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2676 | 0.82 | 16500 | 1.2639 | 0.4529 | 0.5940 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2662 | 0.85 | 17000 | 1.2655 | 0.4530 | 0.5955 | 0.94 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2666 | 0.88 | 17500 | 1.2636 | 0.4526 | 0.6013 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2664 | 0.9 | 18000 | 1.2681 | 0.4526 | 0.6034 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.266 | 0.93 | 18500 | 1.2624 | 0.4527 | 0.5839 | 0.88 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2653 | 0.95 | 19000 | 1.2688 | 0.4519 | 0.5837 | 0.92 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2654 | 0.97 | 19500 | 1.2619 | 0.4534 | 0.5973 | 0.92 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 1.2649 | 1.0 | 20000 | 1.2647 | 0.4525 | 0.59 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
MoeenTB/Reinforce-PixelCopter
MoeenTB
2023-10-08T23:39:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-07T00:26:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 40.10 +/- 24.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Hishamds/Test
Hishamds
2023-10-08T23:07:45Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-10-08T23:07:45Z
--- license: bigscience-openrail-m ---
Brecon/training_bert_model
Brecon
2023-10-08T22:58:50Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-04T20:24:17Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: training_bert_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training_bert_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [fact verification](https://huggingface.co/datasets/Brecon/Train_Test) dataset. It achieves the following results on the evaluation set: - Loss: 1.0866 - Accuracy: 0.4318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 11 | 1.1001 | 0.3182 | | No log | 2.0 | 22 | 1.0924 | 0.3864 | | No log | 3.0 | 33 | 1.0881 | 0.4091 | | No log | 4.0 | 44 | 1.0866 | 0.4318 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.11.0
TheBloke/Athena-v4-GGUF
TheBloke
2023-10-08T22:25:56Z
289
10
transformers
[ "transformers", "gguf", "llama", "base_model:IkariDev/Athena-v4", "base_model:quantized:IkariDev/Athena-v4", "license:cc-by-nc-4.0", "region:us" ]
null
2023-10-08T22:10:06Z
--- base_model: IkariDev/Athena-v4 inference: false license: cc-by-nc-4.0 model_creator: IkariDev + Undi95 model_name: Athena v4 model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Athena v4 - GGUF - Model creator: [IkariDev + Undi95](https://huggingface.co/IkariDev) - Original model: [Athena v4](https://huggingface.co/IkariDev/Athena-v4) <!-- description start --> ## Description This repo contains GGUF format model files for [IkariDev + Undi95's Athena v4](https://huggingface.co/IkariDev/Athena-v4). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Athena-v4-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Athena-v4-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Athena-v4-GGUF) * [IkariDev + Undi95's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/IkariDev/Athena-v4) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [IkariDev + Undi95's Athena v4](https://huggingface.co/IkariDev/Athena-v4). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [athena-v4.Q2_K.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [athena-v4.Q3_K_S.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [athena-v4.Q3_K_M.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [athena-v4.Q3_K_L.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [athena-v4.Q4_0.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [athena-v4.Q4_K_S.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [athena-v4.Q4_K_M.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [athena-v4.Q5_0.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [athena-v4.Q5_K_S.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [athena-v4.Q5_K_M.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [athena-v4.Q6_K.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [athena-v4.Q8_0.gguf](https://huggingface.co/TheBloke/Athena-v4-GGUF/blob/main/athena-v4.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Athena-v4-GGUF and below it, a specific filename to download, such as: athena-v4.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Athena-v4-GGUF athena-v4.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Athena-v4-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Athena-v4-GGUF athena-v4.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m athena-v4.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Athena-v4-GGUF", model_file="athena-v4.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: IkariDev + Undi95's Athena v4 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/XKvu-iA8ZJaw2rRLm1sVn.png) Experimental Athena v4 model. Use Alpaca format. Suitable for RP, ERP and general stuff. I should state here that this is a HIGHLY experimental model! <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains fp16 files of Athena-V4. <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v3-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v3-GPTQ)--> <!-- [exl2 - by AzureBlack](https://huggingface.co/AzureBlack/Athena-v2-6.0bit-exl2) --> <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v3-AWQ)--> [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4) [GGUF - by IkariDev](https://huggingface.co/IkariDev/Athena-v4-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v3-GGUF)--> ## Ratings: Note: I have permission of all users to upload their ratings, i DONT screenshot random reviews without asking if i can put them here! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/8kA_i7BVItCTiUGRdHkoy.png) If you want your rating to be here, send me a message over on DC and ill put up a screenshot of it here. DC name is "ikaridev". <!-- description end --> <!-- description start --> ## Models+loras used and recipe - Athena-v3 - Xwin-LM/Xwin-LM-13B-V0.1 - Undi95/PsyMedRP-v1-13B - cgato/Thespis-13b-v0.2 - jondurbin/airoboros-l2-13b-3.0 ``` Athena-v4-tmp1 = [ Athena-v3(0.85)+Xwin-LM/Xwin-LM-13B-V0.1(0.15) ] Athena-v4-tmp2 = [ Undi95/PsyMedRP-v1-13B(0.55)+cgato/Thespis-13b-v0.2(0.45) ] Athena-v4-tmp3 = Athena-v4-tmp1(0.55) + Athena-v4-tmp2(0.35) Athena-v4 = Athena-v4-tmp3 + jondurbin/airoboros-l2-13b-3.0(0.1) ``` <!-- description end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` Thanks to [Undi95](https://huggingface.co/Undi95) for providing the machine for Athena v2 and Athena v3, and giving me infos about how things work. Going forward i will use a merging server provided by a friend. <!-- original-model-card end -->
paisanx/ppo-LunarLander-v2-linc2
paisanx
2023-10-08T22:22:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-08T22:22:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.52 +/- 23.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```