modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
muzammil-eds/Tinyllama-Chat-v0.4-OpenOrca
muzammil-eds
2024-03-04T14:12:52Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-04T14:08:47Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LN1996/output_run_2
LN1996
2024-03-04T14:10:40Z
1
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "lora", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-03-04T13:51:59Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - diffusers - lora - stable-diffusion - stable-diffusion-diffusers inference: true base_model: runwayml/stable-diffusion-v1-5 instance_prompt: photo of a room with professional interior design --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA DreamBooth - LN1996/output_run_2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a room with professional interior design using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mayacinka/yam-jom-7B-ties
mayacinka
2024-03-04T14:08:08Z
49
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2", "yam-peleg/Experiment26-7B", "base_model:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2", "base_model:merge:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2", "base_model:yam-peleg/Experiment26-7B", "base_model:merge:yam-peleg/Experiment26-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-03T05:37:41Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 - yam-peleg/Experiment26-7B base_model: - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 - yam-peleg/Experiment26-7B model-index: - name: yam-jom-7B-ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.05 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.51 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B-ties name: Open LLM Leaderboard --- # yam-jom-7B-ties yam-jom-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2) * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ## 🧩 Configuration ```yaml models: - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 parameters: weight: 0.35 - model: yam-peleg/Experiment26-7B parameters: weight: 0.65 base_model: yam-peleg/Experiment26-7B merge_method: ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/yam-jom-7B-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mayacinka__yam-jom-7B-ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.44| |AI2 Reasoning Challenge (25-Shot)|73.21| |HellaSwag (10-Shot) |89.05| |MMLU (5-Shot) |64.77| |TruthfulQA (0-shot) |77.51| |Winogrande (5-shot) |84.53| |GSM8k (5-shot) |69.60|
kaitchup/Llama-2-7b-mt-German-to-English
kaitchup
2024-03-04T14:07:29Z
6
3
peft
[ "peft", "translation", "en", "de", "dataset:kaitchup/opus-German-to-English", "license:mit", "region:us" ]
translation
2023-10-26T16:48:38Z
--- library_name: peft license: mit language: - en - de datasets: - kaitchup/opus-German-to-English tags: - translation --- # Model Card for Model ID This is an adapter for Meta's Llama 2 7B fine-tuned for translating German text into English. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [The Kaitchup](https://kaitchup.substack.com/) - **Model type:** LoRA Adapter for Llama 2 7B - **Language(s) (NLP):** German, English - **License:** MIT license ## Uses This adapter must be loaded on top of Llama 2 7B. It has been fine-tuned with QLoRA. For optimal results, the base model must be loaded with the exact same configuration used during fine-tuning. You can use the following code to load the model: ``` from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch from peft import PeftModel base_model = "meta-llama/Llama-2-7b-hf" compute_dtype = getattr(torch, "float16") bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained( base_model, device_map={"": 0}, quantization_config=bnb_config ) tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=True) model = PeftModel.from_pretrained(model, "kaitchup/Llama-2-7b-mt-German-to-English") ``` Then, run the model as follows: ``` my_text = "" #put your text to translate here prompt = my_text+" ###>" tokenized_input = tokenizer(prompt, return_tensors="pt") input_ids = tokenized_input["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, num_beams=10, return_dict_in_generate=True, output_scores=True, max_new_tokens=130 ) for seq in generation_output.sequences: output = tokenizer.decode(seq, skip_special_tokens=True) print(output.split("###>")[1].strip()) ``` ## Model Card Contact [The Kaitchup](https://kaitchup.substack.com/)
rfdv/bert-fine-tuned-cola
rfdv
2024-03-04T14:07:26Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-04T13:24:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation base_model: bert-base-cased model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Matthews Correlation: 0.5843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.467 | 1.0 | 1069 | 0.4864 | 0.5078 | | 0.335 | 2.0 | 2138 | 0.5424 | 0.6041 | | 0.2123 | 3.0 | 3207 | 0.7721 | 0.5843 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
mayacinka/NeuralZephyr-Beagle-7B
mayacinka
2024-03-04T14:06:16Z
16
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:CultriX/NeuralTrix-7B-dpo", "base_model:finetune:CultriX/NeuralTrix-7B-dpo", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-16T17:15:00Z
--- license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: CultriX/NeuralTrix-7B-dpo model-index: - name: NeuralZephyr-Beagle-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.6 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.17 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B name: Open LLM Leaderboard --- ![logo](thumbn.png) # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). Code credit: [this excellent medium blog](https://medium.com/towards-data-science/merge-large-language-models-with-mergekit-2118fb392b54) ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using CultriX/NeuralTrix-7B-dpo as a base. ### Models Merged The following models were included in the merge: * mlabonne/NeuralBeagle14-7B * HuggingFaceH4/zephyr-7b-alpha ### Benchmarks #### Open LLM Leaderboard | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ------------------------------ | ------- | ---- | --------- | ----- | ---------- | ---------- | ----- | | mayacinka/NeuralZephyr-Beagle-7B | 71.57 | 68.6 | 86.38 | 64.67 | 65.17 | 81.14 | 63.46 | ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: CultriX/NeuralTrix-7B-dpo - model: HuggingFaceH4/zephyr-7b-alpha parameters: density: 0.83 weight: 0.4 - model: mlabonne/NeuralBeagle14-7B parameters: density: 0.83 weight: 0.6 merge_method: dare_ties base_model: CultriX/NeuralTrix-7B-dpo parameters: int8_mask: true dtype: bfloat16 ``` # Inference ```python # pip install transformers from transformers import AutoTokenizer import transformers import torch model = "mayacinka/NeuralZephyr-Beagle-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mayacinka__NeuralZephyr-Beagle-7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.57| |AI2 Reasoning Challenge (25-Shot)|68.60| |HellaSwag (10-Shot) |86.38| |MMLU (5-Shot) |64.67| |TruthfulQA (0-shot) |65.17| |Winogrande (5-shot) |81.14| |GSM8k (5-shot) |63.46|
mayacinka/ramonda-7b-dpo-ties
mayacinka
2024-03-04T14:06:05Z
137
10
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "paulml/OGNO-7B", "bardsai/jaskier-7b-dpo-v4.3", "base_model:bardsai/jaskier-7b-dpo-v4.3", "base_model:merge:bardsai/jaskier-7b-dpo-v4.3", "base_model:paulml/OGNO-7B", "base_model:merge:paulml/OGNO-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-17T21:22:39Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v4.3 base_model: - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v4.3 model-index: - name: Buttercup-7b-dpo-ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.17 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.92 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties name: Open LLM Leaderboard --- ![thumbnail](thumb.webp) # ramonda-7b-dpo-ties ramonda-7b-dpo-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B) * [bardsai/jaskier-7b-dpo-v4.3](https://huggingface.co/bardsai/jaskier-7b-dpo-v4.3) ## Benchmark [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |------------------------|--------:|-----:|----------:|-----:|-----------:|-----------:|------:| | mayacinka/ramonda-7b-dpo-ties | 76.19 | 72.7 | 89.69| 64.5 | 77.17 | 84.77 | 68.92| [LLM AutoEval](https://gist.github.com/majacinka/370282a808a21b28bacd2c76a998da8f) | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average | |----------------------|---------|---------|------------|----------|---------| | ramonda-7b-dpo-ties | 44.67 | 77.16 | 77.6 | 49.06 | 62.12 | ## 🧩 Configuration ```yaml models: - model: bardsai/jaskier-7b-dpo-v5.6 # no parameters necessary for base model - model: paulml/OGNO-7B parameters: density: 0.9 weight: 0.5 - model: bardsai/jaskier-7b-dpo-v4.3 parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: bardsai/jaskier-7b-dpo-v5.6 parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/ramonda-7b-dpo-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mayacinka__Buttercup-7b-dpo-ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.19| |AI2 Reasoning Challenge (25-Shot)|72.70| |HellaSwag (10-Shot) |89.09| |MMLU (5-Shot) |64.50| |TruthfulQA (0-shot) |77.17| |Winogrande (5-shot) |84.77| |GSM8k (5-shot) |68.92|
salohnana2018/ABSA-SentencePair-DAPT-HARDARABS-bert-base-Camel-MSA-ru2
salohnana2018
2024-03-04T14:06:00Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD", "base_model:finetune:salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-04T12:50:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD model-index: - name: ABSA-SentencePair-DAPT-HARDARABS-bert-base-Camel-MSA-ru2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ABSA-SentencePair-DAPT-HARDARABS-bert-base-Camel-MSA-ru2 This model is a fine-tuned version of [salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD](https://huggingface.co/salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7587 - Accuracy: 0.8941 - F1: 0.8941 - Precision: 0.8941 - Recall: 0.8941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5254 | 1.0 | 265 | 0.4268 | 0.8483 | 0.8483 | 0.8483 | 0.8483 | | 0.3572 | 2.0 | 530 | 0.3457 | 0.8563 | 0.8563 | 0.8563 | 0.8563 | | 0.2477 | 3.0 | 795 | 0.5427 | 0.8795 | 0.8795 | 0.8795 | 0.8795 | | 0.1905 | 4.0 | 1060 | 0.8314 | 0.8899 | 0.8899 | 0.8899 | 0.8899 | | 0.1353 | 5.0 | 1325 | 1.0504 | 0.8852 | 0.8852 | 0.8852 | 0.8852 | | 0.12 | 6.0 | 1590 | 0.7891 | 0.8842 | 0.8842 | 0.8842 | 0.8842 | | 0.0749 | 7.0 | 1855 | 1.3696 | 0.8894 | 0.8894 | 0.8894 | 0.8894 | | 0.097 | 8.0 | 2120 | 0.9817 | 0.8904 | 0.8904 | 0.8904 | 0.8904 | | 0.0624 | 9.0 | 2385 | 1.0450 | 0.8847 | 0.8847 | 0.8847 | 0.8847 | | 0.0582 | 10.0 | 2650 | 1.3148 | 0.8970 | 0.8970 | 0.8970 | 0.8970 | | 0.0599 | 11.0 | 2915 | 1.4069 | 0.8946 | 0.8946 | 0.8946 | 0.8946 | | 0.0451 | 12.0 | 3180 | 1.0183 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | | 0.0309 | 13.0 | 3445 | 1.3034 | 0.8932 | 0.8932 | 0.8932 | 0.8932 | | 0.0251 | 14.0 | 3710 | 1.5148 | 0.8946 | 0.8946 | 0.8946 | 0.8946 | | 0.0245 | 15.0 | 3975 | 1.5136 | 0.8946 | 0.8946 | 0.8946 | 0.8946 | | 0.0153 | 16.0 | 4240 | 1.3876 | 0.8927 | 0.8927 | 0.8927 | 0.8927 | | 0.0161 | 17.0 | 4505 | 1.6176 | 0.8885 | 0.8885 | 0.8885 | 0.8885 | | 0.0166 | 18.0 | 4770 | 1.6110 | 0.8937 | 0.8937 | 0.8937 | 0.8937 | | 0.0137 | 19.0 | 5035 | 1.7113 | 0.8960 | 0.8960 | 0.8960 | 0.8960 | | 0.0111 | 20.0 | 5300 | 1.7241 | 0.8946 | 0.8946 | 0.8946 | 0.8946 | | 0.0101 | 21.0 | 5565 | 1.6722 | 0.8970 | 0.8970 | 0.8970 | 0.8970 | | 0.0142 | 22.0 | 5830 | 1.6423 | 0.8904 | 0.8904 | 0.8904 | 0.8904 | | 0.0118 | 23.0 | 6095 | 1.6384 | 0.8904 | 0.8904 | 0.8904 | 0.8904 | | 0.0083 | 24.0 | 6360 | 1.6616 | 0.8922 | 0.8922 | 0.8922 | 0.8922 | | 0.0124 | 25.0 | 6625 | 1.9046 | 0.8951 | 0.8951 | 0.8951 | 0.8951 | | 0.0154 | 26.0 | 6890 | 1.6547 | 0.8974 | 0.8974 | 0.8974 | 0.8974 | | 0.0086 | 27.0 | 7155 | 1.6440 | 0.8932 | 0.8932 | 0.8932 | 0.8932 | | 0.0077 | 28.0 | 7420 | 1.7566 | 0.8941 | 0.8941 | 0.8941 | 0.8941 | | 0.0076 | 29.0 | 7685 | 1.7419 | 0.8937 | 0.8937 | 0.8937 | 0.8937 | | 0.0078 | 30.0 | 7950 | 1.7587 | 0.8941 | 0.8941 | 0.8941 | 0.8941 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
declare-lab/starling-7B
declare-lab
2024-03-04T14:05:15Z
58
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:anon8231489123/ShareGPT_Vicuna_unfiltered", "dataset:declare-lab/HarmfulQA", "arxiv:2308.09662", "arxiv:2402.11746", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-18T16:51:04Z
--- license: apache-2.0 datasets: - anon8231489123/ShareGPT_Vicuna_unfiltered - declare-lab/HarmfulQA model-index: - name: starling-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 51.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 76.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 47.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 70.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 10.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B name: Open LLM Leaderboard --- [**Paper**](https://arxiv.org/abs/2308.09662) | [**Github**](https://github.com/declare-lab/red-instruct) | [**Dataset**](https://huggingface.co/datasets/declare-lab/HarmfulQA)| [**Model**](https://huggingface.co/declare-lab/starling-7B) > 📣 Update 2/02/24: Introducing Resta: **Safety Re-alignment of Language Models**. [**Paper**](https://arxiv.org/abs/2402.11746) [**Github**](https://github.com/declare-lab/resta) [**Dataset**](https://huggingface.co/datasets/declare-lab/CategoricalHarmfulQ) As a part of our research efforts to make LLMs safer, we created **Starling**. It is obtained by fine-tuning Vicuna-7B on [**HarmfulQA**](https://huggingface.co/datasets/declare-lab/HarmfulQA), a ChatGPT-distilled dataset that we collected using the Chain of Utterances (CoU) prompt. More details are in our paper [**Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment**](https://arxiv.org/abs/2308.09662) <img src="https://declare-lab.github.io/assets/images/logos/starling-final.png" alt="Image" width="100" height="100"> Experimental results on several safety benchmark datasets indicate that **Starling** is a safer model compared to the baseline model, Vicuna. <img src="https://declare-lab.github.io/assets/images/logos/method.png" alt="Image" width="1000" height="335"> <h2>Experimental Results</h2> Compared to Vicuna, **Avg. 5.2% reduction in Attack Success Rate** (ASR) on DangerousQA and HarmfulQA using three different prompts.** Compared to Vicuna, **Avg. 3-7% improvement in HHH score** measured on BBH-HHH benchmark.** <img src="https://declare-lab.github.io/assets/images/logos/starling-results.png" alt="Image" width="1000" height="335"> TruthfulQA (MC2): **48.90 vs Vicuna's 47.00** MMLU (5-shot): **46.69 vs Vicuna's 47.18** BBH (3-shot): **33.47 vs Vicuna's 33.05** <h2>Jailbreak Prompt for harmfulness eval using Red Eval as reported in the paper</h2> This jailbreak prompt (termed as Chain of Utterances (CoU) prompt in the paper) shows a 65% Attack Success Rate (ASR) on GPT-4 and 72% on ChatGPT. <img src="https://declare-lab.github.io/assets/images/logos/jailbreakprompt_main_paper.png" alt="Image" width="1000" height="1000"> <h2>HarmfulQA Data Collection</h2> We also release our **HarmfulQA** dataset with 1,960 harmful questions (converting 10 topics-10 subtopics) for red-teaming as well as conversations based on them used in model safety alignment, more details [**here**](https://huggingface.co/datasets/declare-lab/HarmfulQA). The following figure describes the data collection process. <img src="https://declare-lab.github.io/assets/images/logos/data_gen.png" alt="Image" width="1000" height="1000"> _Note: This model is referred to as Starling (Blue) in the paper. We shall soon release Starling (Blue-Red) which was trained on harmful data using an objective function that helps the model learn from the red (harmful) response data._ ## Citation ```bibtex @misc{bhardwaj2023redteaming, title={Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment}, author={Rishabh Bhardwaj and Soujanya Poria}, year={2023}, eprint={2308.09662}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_declare-lab__starling-7B) | Metric |Value| |---------------------------------|----:| |Avg. |50.73| |AI2 Reasoning Challenge (25-Shot)|51.02| |HellaSwag (10-Shot) |76.77| |MMLU (5-Shot) |47.75| |TruthfulQA (0-shot) |48.18| |Winogrande (5-shot) |70.56| |GSM8k (5-shot) |10.08|
DouglasPontes/2020-Q4-50p-filtered-prog_from_Q3
DouglasPontes
2024-03-04T14:04:49Z
19
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:cardiffnlp/twitter-roberta-base-2019-90m", "base_model:finetune:cardiffnlp/twitter-roberta-base-2019-90m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-26T14:38:39Z
--- license: mit base_model: cardiffnlp/twitter-roberta-base-2019-90m tags: - generated_from_trainer model-index: - name: 2020-Q4-50p-filtered-random results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2020-Q4-50p-filtered-random This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2400000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | No log | 0.03 | 8000 | 2.5888 | | 2.8176 | 0.07 | 16000 | 2.4814 | | 2.8176 | 0.1 | 24000 | 2.4264 | | 2.5609 | 0.13 | 32000 | 2.3993 | | 2.5609 | 0.17 | 40000 | 2.3761 | | 2.4969 | 0.2 | 48000 | 2.3624 | | 2.4969 | 0.24 | 56000 | 2.3481 | | 2.48 | 0.27 | 64000 | 2.3399 | | 2.48 | 0.3 | 72000 | 2.3289 | | 2.451 | 0.34 | 80000 | 2.3221 | | 2.451 | 0.37 | 88000 | 2.3183 | | 2.4367 | 0.4 | 96000 | 2.3221 | | 2.4367 | 0.44 | 104000 | 2.3142 | | 2.4388 | 0.47 | 112000 | 2.3028 | | 2.4388 | 0.51 | 120000 | 2.3066 | | 2.4215 | 0.54 | 128000 | 2.3013 | | 2.4215 | 0.57 | 136000 | 2.3039 | | 2.4178 | 0.61 | 144000 | 2.2907 | | 2.4178 | 0.64 | 152000 | 2.2996 | | 2.4103 | 0.67 | 160000 | 2.2943 | | 2.4103 | 0.71 | 168000 | 2.2900 | | 2.4122 | 0.74 | 176000 | 2.2902 | | 2.4122 | 0.77 | 184000 | 2.2961 | | 2.4173 | 0.81 | 192000 | 2.2906 | | 2.4173 | 0.84 | 200000 | 2.2925 | | 2.4067 | 0.88 | 208000 | 2.2911 | | 2.4067 | 0.91 | 216000 | 2.2844 | | 2.4059 | 0.94 | 224000 | 2.2855 | | 2.4059 | 0.98 | 232000 | 2.2811 | | 2.4089 | 1.01 | 240000 | 2.2788 | | 2.4089 | 1.04 | 248000 | 2.2796 | | 2.4034 | 1.08 | 256000 | 2.2827 | | 2.4034 | 1.11 | 264000 | 2.2803 | | 2.408 | 1.15 | 272000 | 2.2746 | | 2.408 | 1.18 | 280000 | 2.2851 | | 2.3985 | 1.21 | 288000 | 2.2781 | | 2.3985 | 1.25 | 296000 | 2.2795 | | 2.4009 | 1.28 | 304000 | 2.2777 | | 2.4009 | 1.31 | 312000 | 2.2770 | | 2.4017 | 1.35 | 320000 | 2.2763 | | 2.4017 | 1.38 | 328000 | 2.2734 | | 2.4056 | 1.41 | 336000 | 2.2758 | | 2.4056 | 1.45 | 344000 | 2.2763 | | 2.4017 | 1.48 | 352000 | 2.2700 | | 2.4017 | 1.52 | 360000 | 2.2736 | | 2.3993 | 1.55 | 368000 | 2.2763 | | 2.3993 | 1.58 | 376000 | 2.2792 | | 2.3994 | 1.62 | 384000 | 2.2666 | | 2.3994 | 1.65 | 392000 | 2.2699 | | 2.3969 | 1.68 | 400000 | 2.2753 | | 2.3969 | 1.72 | 408000 | 2.2707 | | 2.4094 | 1.75 | 416000 | 2.2731 | | 2.4094 | 1.79 | 424000 | 2.2709 | | 2.4102 | 1.82 | 432000 | 2.2623 | | 2.4102 | 1.85 | 440000 | 2.2751 | | 2.4042 | 1.89 | 448000 | 2.2728 | | 2.4042 | 1.92 | 456000 | 2.2714 | | 2.3991 | 1.95 | 464000 | 2.2634 | | 2.3991 | 1.99 | 472000 | 2.2695 | | 2.3976 | 2.02 | 480000 | 2.2731 | | 2.3976 | 2.05 | 488000 | 2.2736 | | 2.4019 | 2.09 | 496000 | 2.2803 | | 2.4019 | 2.12 | 504000 | 2.2699 | | 2.4044 | 2.16 | 512000 | 2.2731 | | 2.4044 | 2.19 | 520000 | 2.2709 | | 2.3989 | 2.22 | 528000 | 2.2716 | | 2.3989 | 2.26 | 536000 | 2.2668 | | 2.4068 | 2.29 | 544000 | 2.2728 | | 2.4068 | 2.32 | 552000 | 2.2709 | | 2.4047 | 2.36 | 560000 | 2.2683 | | 2.4047 | 2.39 | 568000 | 2.2731 | | 2.3976 | 2.43 | 576000 | 2.2676 | | 2.3976 | 2.46 | 584000 | 2.2736 | | 2.3994 | 2.49 | 592000 | 2.2624 | | 2.3994 | 2.53 | 600000 | 2.2773 | | 2.3997 | 2.56 | 608000 | 2.2719 | | 2.3997 | 2.59 | 616000 | 2.2701 | | 2.4042 | 2.63 | 624000 | 2.2695 | | 2.4042 | 2.66 | 632000 | 2.2666 | | 2.3994 | 2.69 | 640000 | 2.2719 | | 2.3994 | 2.73 | 648000 | 2.2686 | | 2.3953 | 2.76 | 656000 | 2.2623 | | 2.3953 | 2.8 | 664000 | 2.2662 | | 2.402 | 2.83 | 672000 | 2.2707 | | 2.402 | 2.86 | 680000 | 2.2662 | | 2.3929 | 2.9 | 688000 | 2.2726 | | 2.3929 | 2.93 | 696000 | 2.2682 | | 2.3977 | 2.96 | 704000 | 2.2634 | | 2.3977 | 3.0 | 712000 | 2.2685 | | 2.4022 | 3.03 | 720000 | 2.2693 | | 2.4022 | 3.07 | 728000 | 2.2666 | | 2.4046 | 3.1 | 736000 | 2.2690 | | 2.4046 | 3.13 | 744000 | 2.2641 | | 2.3977 | 3.17 | 752000 | 2.2658 | | 2.3977 | 3.2 | 760000 | 2.2645 | | 2.4015 | 3.23 | 768000 | 2.2619 | | 2.4015 | 3.27 | 776000 | 2.2671 | | 2.393 | 3.3 | 784000 | 2.2694 | | 2.393 | 3.33 | 792000 | 2.2662 | | 2.3907 | 3.37 | 800000 | 2.2691 | | 2.3907 | 3.4 | 808000 | 2.2679 | | 2.3987 | 3.44 | 816000 | 2.2688 | | 2.3987 | 3.47 | 824000 | 2.2655 | | 2.4116 | 3.5 | 832000 | 2.2668 | | 2.4116 | 3.54 | 840000 | 2.2675 | | 2.3913 | 3.57 | 848000 | 2.2689 | | 2.3913 | 3.6 | 856000 | 2.2642 | | 2.3974 | 3.64 | 864000 | 2.2667 | | 2.3974 | 3.67 | 872000 | 2.2717 | | 2.4046 | 3.71 | 880000 | 2.2661 | | 2.4046 | 3.74 | 888000 | 2.2705 | | 2.4006 | 3.77 | 896000 | 2.2637 | | 2.4006 | 3.81 | 904000 | 2.2635 | | 2.3987 | 3.84 | 912000 | 2.2642 | | 2.3987 | 3.87 | 920000 | 2.2691 | | 2.4068 | 3.91 | 928000 | 2.2689 | | 2.4068 | 3.94 | 936000 | 2.2730 | | 2.4092 | 3.97 | 944000 | 2.2644 | | 2.4092 | 4.01 | 952000 | 2.2706 | | 2.4035 | 4.04 | 960000 | 2.2671 | | 2.4035 | 4.08 | 968000 | 2.2562 | | 2.4005 | 4.11 | 976000 | 2.2622 | | 2.4005 | 4.14 | 984000 | 2.2642 | | 2.406 | 4.18 | 992000 | 2.2625 | | 2.406 | 4.21 | 1000000 | 2.2662 | | 2.3972 | 4.24 | 1008000 | 2.2658 | | 2.3972 | 4.28 | 1016000 | 2.2668 | | 2.3937 | 4.31 | 1024000 | 2.2593 | | 2.3937 | 4.35 | 1032000 | 2.2712 | | 2.3982 | 4.38 | 1040000 | 2.2695 | | 2.3982 | 4.41 | 1048000 | 2.2684 | | 2.4034 | 4.45 | 1056000 | 2.2643 | | 2.4034 | 4.48 | 1064000 | 2.2665 | | 2.3996 | 4.51 | 1072000 | 2.2692 | | 2.3996 | 4.55 | 1080000 | 2.2628 | | 2.4054 | 4.58 | 1088000 | 2.2673 | | 2.4054 | 4.61 | 1096000 | 2.2577 | | 2.4039 | 4.65 | 1104000 | 2.2671 | | 2.4039 | 4.68 | 1112000 | 2.2586 | | 2.4033 | 4.72 | 1120000 | 2.2730 | | 2.4033 | 4.75 | 1128000 | 2.2655 | | 2.4036 | 4.78 | 1136000 | 2.2694 | | 2.4036 | 4.82 | 1144000 | 2.2630 | | 2.4036 | 4.85 | 1152000 | 2.2618 | | 2.4036 | 4.88 | 1160000 | 2.2665 | | 2.4005 | 4.92 | 1168000 | 2.2609 | | 2.4005 | 4.95 | 1176000 | 2.2617 | | 2.4065 | 4.99 | 1184000 | 2.2646 | | 2.4065 | 5.02 | 1192000 | 2.2606 | | 2.4044 | 5.05 | 1200000 | 2.2656 | | 2.4044 | 5.09 | 1208000 | 2.2630 | | 2.3997 | 5.12 | 1216000 | 2.2737 | | 2.3997 | 5.15 | 1224000 | 2.2762 | | 2.407 | 5.19 | 1232000 | 2.2669 | | 2.407 | 5.22 | 1240000 | 2.2695 | | 2.4013 | 5.25 | 1248000 | 2.2704 | | 2.4013 | 5.29 | 1256000 | 2.2612 | | 2.4118 | 5.32 | 1264000 | 2.2654 | | 2.4118 | 5.36 | 1272000 | 2.2683 | | 2.3953 | 5.39 | 1280000 | 2.2628 | | 2.3953 | 5.42 | 1288000 | 2.2605 | | 2.3973 | 5.46 | 1296000 | 2.2667 | | 2.3973 | 5.49 | 1304000 | 2.2640 | | 2.4027 | 5.52 | 1312000 | 2.2619 | | 2.4027 | 5.56 | 1320000 | 2.2687 | | 2.3967 | 5.59 | 1328000 | 2.2598 | | 2.3967 | 5.63 | 1336000 | 2.2621 | | 2.4028 | 5.66 | 1344000 | 2.2602 | | 2.4028 | 5.69 | 1352000 | 2.2713 | | 2.4053 | 5.73 | 1360000 | 2.2623 | | 2.4053 | 5.76 | 1368000 | 2.2697 | | 2.3987 | 5.79 | 1376000 | 2.2638 | | 2.3987 | 5.83 | 1384000 | 2.2601 | | 2.3987 | 5.86 | 1392000 | 2.2642 | | 2.3987 | 5.89 | 1400000 | 2.2656 | | 2.401 | 5.93 | 1408000 | 2.2712 | | 2.401 | 5.96 | 1416000 | 2.2639 | | 2.4011 | 6.0 | 1424000 | 2.2646 | | 2.4011 | 6.03 | 1432000 | 2.2669 | | 2.4022 | 6.06 | 1440000 | 2.2619 | | 2.4022 | 6.1 | 1448000 | 2.2580 | | 2.3998 | 6.13 | 1456000 | 2.2612 | | 2.3998 | 6.16 | 1464000 | 2.2652 | | 2.3999 | 6.2 | 1472000 | 2.2610 | | 2.3999 | 6.23 | 1480000 | 2.2567 | | 2.3984 | 6.27 | 1488000 | 2.2590 | | 2.3984 | 6.3 | 1496000 | 2.2565 | | 2.4017 | 6.33 | 1504000 | 2.2658 | | 2.4017 | 6.37 | 1512000 | 2.2626 | | 2.4055 | 6.4 | 1520000 | 2.2656 | | 2.4055 | 6.43 | 1528000 | 2.2622 | | 2.3959 | 6.47 | 1536000 | 2.2691 | | 2.3959 | 6.5 | 1544000 | 2.2604 | | 2.4016 | 6.53 | 1552000 | 2.2599 | | 2.4016 | 6.57 | 1560000 | 2.2655 | | 2.3986 | 6.6 | 1568000 | 2.2684 | | 2.3986 | 6.64 | 1576000 | 2.2716 | | 2.4051 | 6.67 | 1584000 | 2.2605 | | 2.4051 | 6.7 | 1592000 | 2.2569 | | 2.4057 | 6.74 | 1600000 | 2.2687 | | 2.4057 | 6.77 | 1608000 | 2.2571 | | 2.3956 | 6.8 | 1616000 | 2.2664 | | 2.3956 | 6.84 | 1624000 | 2.2612 | | 2.4048 | 6.87 | 1632000 | 2.2643 | | 2.4048 | 6.91 | 1640000 | 2.2633 | | 2.4042 | 6.94 | 1648000 | 2.2634 | | 2.4042 | 6.97 | 1656000 | 2.2637 | | 2.4008 | 7.01 | 1664000 | 2.2619 | | 2.4008 | 7.04 | 1672000 | 2.2579 | | 2.397 | 7.07 | 1680000 | 2.2628 | | 2.397 | 7.11 | 1688000 | 2.2593 | | 2.4044 | 7.14 | 1696000 | 2.2593 | | 2.4044 | 7.17 | 1704000 | 2.2613 | | 2.3979 | 7.21 | 1712000 | 2.2685 | | 2.3979 | 7.24 | 1720000 | 2.2683 | | 2.4017 | 7.28 | 1728000 | 2.2611 | | 2.4017 | 7.31 | 1736000 | 2.2672 | | 2.4017 | 7.34 | 1744000 | 2.2577 | | 2.4017 | 7.38 | 1752000 | 2.2609 | | 2.4018 | 7.41 | 1760000 | 2.2567 | | 2.4018 | 7.44 | 1768000 | 2.2661 | | 2.3905 | 7.48 | 1776000 | 2.2671 | | 2.3905 | 7.51 | 1784000 | 2.2663 | | 2.4063 | 7.55 | 1792000 | 2.2619 | | 2.4063 | 7.58 | 1800000 | 2.2587 | | 2.4015 | 7.61 | 1808000 | 2.2584 | | 2.4015 | 7.65 | 1816000 | 2.2580 | | 2.3984 | 7.68 | 1824000 | 2.2586 | | 2.3984 | 7.71 | 1832000 | 2.2620 | | 2.3962 | 7.75 | 1840000 | 2.2584 | | 2.3962 | 7.78 | 1848000 | 2.2607 | | 2.3998 | 7.81 | 1856000 | 2.2638 | | 2.3998 | 7.85 | 1864000 | 2.2629 | | 2.4005 | 7.88 | 1872000 | 2.2716 | | 2.4005 | 7.92 | 1880000 | 2.2623 | | 2.4006 | 7.95 | 1888000 | 2.2555 | | 2.4006 | 7.98 | 1896000 | 2.2653 | | 2.3946 | 8.02 | 1904000 | 2.2629 | | 2.3946 | 8.05 | 1912000 | 2.2654 | | 2.3983 | 8.08 | 1920000 | 2.2623 | | 2.3983 | 8.12 | 1928000 | 2.2544 | | 2.4038 | 8.15 | 1936000 | 2.2605 | | 2.4038 | 8.19 | 1944000 | 2.2622 | | 2.399 | 8.22 | 1952000 | 2.2600 | | 2.399 | 8.25 | 1960000 | 2.2629 | | 2.3983 | 8.29 | 1968000 | 2.2621 | | 2.3983 | 8.32 | 1976000 | 2.2609 | | 2.4059 | 8.35 | 1984000 | 2.2705 | | 2.4059 | 8.39 | 1992000 | 2.2572 | | 2.4058 | 8.42 | 2000000 | 2.2602 | | 2.4058 | 8.45 | 2008000 | 2.2626 | | 2.3954 | 8.49 | 2016000 | 2.2668 | | 2.3954 | 8.52 | 2024000 | 2.2599 | | 2.3932 | 8.56 | 2032000 | 2.2643 | | 2.3932 | 8.59 | 2040000 | 2.2559 | | 2.4001 | 8.62 | 2048000 | 2.2614 | | 2.4001 | 8.66 | 2056000 | 2.2577 | | 2.3912 | 8.69 | 2064000 | 2.2665 | | 2.3912 | 8.72 | 2072000 | 2.2576 | | 2.4015 | 8.76 | 2080000 | 2.2672 | | 2.4015 | 8.79 | 2088000 | 2.2598 | | 2.4015 | 8.83 | 2096000 | 2.2599 | | 2.4015 | 8.86 | 2104000 | 2.2641 | | 2.399 | 8.89 | 2112000 | 2.2612 | | 2.399 | 8.93 | 2120000 | 2.2607 | | 2.3963 | 8.96 | 2128000 | 2.2633 | | 2.3963 | 8.99 | 2136000 | 2.2567 | | 2.3957 | 9.03 | 2144000 | 2.2630 | | 2.3957 | 9.06 | 2152000 | 2.2597 | | 2.3943 | 9.09 | 2160000 | 2.2624 | | 2.3943 | 9.13 | 2168000 | 2.2599 | | 2.4025 | 9.16 | 2176000 | 2.2578 | | 2.4025 | 9.2 | 2184000 | 2.2640 | | 2.3944 | 9.23 | 2192000 | 2.2562 | | 2.3944 | 9.26 | 2200000 | 2.2660 | | 2.3964 | 9.3 | 2208000 | 2.2556 | | 2.3964 | 9.33 | 2216000 | 2.2697 | | 2.4026 | 9.36 | 2224000 | 2.2652 | | 2.4026 | 9.4 | 2232000 | 2.2571 | | 2.398 | 9.43 | 2240000 | 2.2555 | | 2.398 | 9.47 | 2248000 | 2.2607 | | 2.4038 | 9.5 | 2256000 | 2.2558 | | 2.4038 | 9.53 | 2264000 | 2.2660 | | 2.4027 | 9.57 | 2272000 | 2.2587 | | 2.4027 | 9.6 | 2280000 | 2.2605 | | 2.4025 | 9.63 | 2288000 | 2.2578 | | 2.4025 | 9.67 | 2296000 | 2.2609 | | 2.3969 | 9.7 | 2304000 | 2.2597 | | 2.3969 | 9.73 | 2312000 | 2.2619 | | 2.3886 | 9.77 | 2320000 | 2.2645 | | 2.3886 | 9.8 | 2328000 | 2.2717 | | 2.3942 | 9.84 | 2336000 | 2.2627 | | 2.3942 | 9.87 | 2344000 | 2.2582 | | 2.396 | 9.9 | 2352000 | 2.2634 | | 2.396 | 9.94 | 2360000 | 2.2582 | | 2.3998 | 9.97 | 2368000 | 2.2643 | | 2.3998 | 10.0 | 2376000 | 2.2690 | | 2.4014 | 10.04 | 2384000 | 2.2655 | | 2.4014 | 10.07 | 2392000 | 2.2660 | | 2.4004 | 10.11 | 2400000 | 2.2650 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
11sam11/my-dog-is-xzf
11sam11
2024-03-04T14:02:08Z
0
1
diffusers
[ "diffusers", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-04T13:56:00Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### my-dog-is-xzf Dreambooth model trained by 11sam11 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: TCEP034 Sample pictures of this concept: ![0](https://huggingface.co/11sam11/my-dog-is-xzf/resolve/main/sample_images/xzf_(1).jpg) ![1](https://huggingface.co/11sam11/my-dog-is-xzf/resolve/main/sample_images/xzf_(2).jpg)
machinelearningzuu/gemma-2b-biotech
machinelearningzuu
2024-03-04T14:01:18Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-03-01T05:26:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
freshpearYoon/v3_free_all_re_4000
freshpearYoon
2024-03-04T13:57:11Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-04T03:31:50Z
--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer base_model: openai/whisper-large-v3 metrics: - wer model-index: - name: whisper_finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_finetune This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the aihub_100000 dataset. It achieves the following results on the evaluation set: - Loss: 0.3754 - Cer: 6.9474 - Wer: 28.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.4274 | 0.14 | 1000 | 0.3982 | 6.9437 | 28.4443 | | 0.3884 | 0.28 | 2000 | 0.3754 | 6.9474 | 28.5714 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.18.0 - Tokenizers 0.15.2
Weni/ZeroShot-3.3.21-Mistral-7b-Multilanguage-3.2.0-merged
Weni
2024-03-04T13:53:38Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-04T13:40:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KapitalK/course_eval_gpt2_large
KapitalK
2024-03-04T13:52:58Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2-large", "base_model:adapter:openai-community/gpt2-large", "region:us" ]
null
2024-03-04T09:40:51Z
--- library_name: peft base_model: openai-community/gpt2-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
nlpguy/AlloyIngot
nlpguy
2024-03-04T13:48:30Z
52
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:Gille/StrangeMerges_21-7B-slerp", "base_model:merge:Gille/StrangeMerges_21-7B-slerp", "base_model:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:merge:eren23/dpo-binarized-NeutrixOmnibe-7B", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-13T13:00:43Z
--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: - eren23/dpo-binarized-NeutrixOmnibe-7B - Gille/StrangeMerges_21-7B-slerp model-index: - name: AlloyIngot results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.05 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.12 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngot name: Open LLM Leaderboard --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B) * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: model: path: Gille/StrangeMerges_21-7B-slerp dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.3, 0.5, 0.7, 1.0] - filter: mlp value: [1.0, 0.7, 0.5, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: model: path: eren23/dpo-binarized-NeutrixOmnibe-7B - layer_range: [0, 32] model: model: path: Gille/StrangeMerges_21-7B-slerp ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__AlloyIngot) | Metric |Value| |---------------------------------|----:| |Avg. |76.20| |AI2 Reasoning Challenge (25-Shot)|73.98| |HellaSwag (10-Shot) |89.05| |MMLU (5-Shot) |64.83| |TruthfulQA (0-shot) |75.12| |Winogrande (5-shot) |85.08| |GSM8k (5-shot) |69.14|
nlpguy/Hermes-low-tune
nlpguy
2024-03-04T13:48:26Z
53
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:openaccess-ai-collective/dpopenhermes-alpha-v0", "base_model:finetune:openaccess-ai-collective/dpopenhermes-alpha-v0", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-04T22:33:51Z
--- license: apache-2.0 tags: - mergekit - merge base_model: - openaccess-ai-collective/dpopenhermes-alpha-v0 - simonveitner/Math-OpenHermes-2.5-Mistral-7B model-index: - name: Hermes-low-tune results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 63.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.37 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune name: Open LLM Leaderboard --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [openaccess-ai-collective/dpopenhermes-alpha-v0](https://huggingface.co/openaccess-ai-collective/dpopenhermes-alpha-v0) * [simonveitner/Math-OpenHermes-2.5-Mistral-7B](https://huggingface.co/simonveitner/Math-OpenHermes-2.5-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: simonveitner/Math-OpenHermes-2.5-Mistral-7B dtype: float16 merge_method: slerp parameters: t: - value: 0.5 slices: - sources: - layer_range: [0, 32] model: simonveitner/Math-OpenHermes-2.5-Mistral-7B - layer_range: [0, 32] model: openaccess-ai-collective/dpopenhermes-alpha-v0 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Hermes-low-tune) | Metric |Value| |---------------------------------|----:| |Avg. |67.18| |AI2 Reasoning Challenge (25-Shot)|63.99| |HellaSwag (10-Shot) |83.75| |MMLU (5-Shot) |63.60| |TruthfulQA (0-shot) |51.37| |Winogrande (5-shot) |77.90| |GSM8k (5-shot) |62.47|
nlpguy/Hermes-low-tune-3
nlpguy
2024-03-04T13:48:20Z
53
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:nlpguy/Hermes-low-tune-2", "base_model:merge:nlpguy/Hermes-low-tune-2", "base_model:openaccess-ai-collective/DPOpenHermes-7B-v2", "base_model:merge:openaccess-ai-collective/DPOpenHermes-7B-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-06T16:22:47Z
--- license: apache-2.0 tags: - mergekit - merge base_model: - nlpguy/Hermes-low-tune-2 - openaccess-ai-collective/DPOpenHermes-7B-v2 model-index: - name: Hermes-low-tune-3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.94 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-3 name: Open LLM Leaderboard --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [nlpguy/Hermes-low-tune-2](https://huggingface.co/nlpguy/Hermes-low-tune-2) * [openaccess-ai-collective/DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: openaccess-ai-collective/DPOpenHermes-7B-v2 dtype: bfloat16 merge_method: slerp parameters: t: - value: 0.25 slices: - sources: - layer_range: [0, 32] model: openaccess-ai-collective/DPOpenHermes-7B-v2 - layer_range: [0, 32] model: nlpguy/Hermes-low-tune-2 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3) | Metric |Value| |---------------------------------|----:| |Avg. |69.25| |AI2 Reasoning Challenge (25-Shot)|66.21| |HellaSwag (10-Shot) |84.99| |MMLU (5-Shot) |63.74| |TruthfulQA (0-shot) |57.94| |Winogrande (5-shot) |78.77| |GSM8k (5-shot) |63.84|
nlpguy/Hermes-low-tune-2
nlpguy
2024-03-04T13:48:13Z
59
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B-laser", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B-laser", "base_model:openaccess-ai-collective/dpopenhermes-alpha-v0", "base_model:merge:openaccess-ai-collective/dpopenhermes-alpha-v0", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:merge:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-05T11:59:53Z
--- license: apache-2.0 tags: - mergekit - merge base_model: - simonveitner/Math-OpenHermes-2.5-Mistral-7B - mlabonne/NeuralHermes-2.5-Mistral-7B-laser - openaccess-ai-collective/dpopenhermes-alpha-v0 - teknium/OpenHermes-2.5-Mistral-7B - mlabonne/NeuralHermes-2.5-Mistral-7B model-index: - name: Hermes-low-tune-2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Hermes-low-tune-2 name: Open LLM Leaderboard --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) as a base. ### Models Merged The following models were included in the merge: * [simonveitner/Math-OpenHermes-2.5-Mistral-7B](https://huggingface.co/simonveitner/Math-OpenHermes-2.5-Mistral-7B) * [mlabonne/NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser) * [openaccess-ai-collective/dpopenhermes-alpha-v0](https://huggingface.co/openaccess-ai-collective/dpopenhermes-alpha-v0) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: teknium/OpenHermes-2.5-Mistral-7B dtype: bfloat16 merge_method: task_arithmetic slices: - sources: - layer_range: [0, 32] model: teknium/OpenHermes-2.5-Mistral-7B - layer_range: [0, 32] model: simonveitner/Math-OpenHermes-2.5-Mistral-7B parameters: weight: 0.25 - layer_range: [0, 32] model: openaccess-ai-collective/dpopenhermes-alpha-v0 parameters: weight: 0.25 - layer_range: [0, 32] model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: weight: 0.25 - layer_range: [0, 32] model: mlabonne/NeuralHermes-2.5-Mistral-7B-laser parameters: weight: 0.25 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Hermes-low-tune-2) | Metric |Value| |---------------------------------|----:| |Avg. |68.04| |AI2 Reasoning Challenge (25-Shot)|65.61| |HellaSwag (10-Shot) |84.47| |MMLU (5-Shot) |63.69| |TruthfulQA (0-shot) |53.18| |Winogrande (5-shot) |77.74| |GSM8k (5-shot) |63.53|
nlpguy/ColorShadow-7B
nlpguy
2024-03-04T13:48:06Z
1,553
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T13:13:34Z
--- license: apache-2.0 tags: - merge model-index: - name: ColorShadow-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.83 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 59.56 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 55.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B name: Open LLM Leaderboard --- # ColorShadow-7B This is a Gradient-SLERP merge between diffnamehard/Mistral-CatMacaroni-slerp-7B and cookinai/Valkyrie-V1 performed using mergekit. Here is the config file used: ``` slices: - sources: - model: diffnamehard/Mistral-CatMacaroni-slerp-7B layer_range: [0, 32] - model: cookinai/Valkyrie-V1 layer_range: [0, 32] merge_method: slerp base_model: diffnamehard/Mistral-CatMacaroni-slerp-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__ColorShadow-7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.34| |AI2 Reasoning Challenge (25-Shot)|67.83| |HellaSwag (10-Shot) |85.15| |MMLU (5-Shot) |61.69| |TruthfulQA (0-shot) |59.56| |Winogrande (5-shot) |80.58| |GSM8k (5-shot) |55.19|
nlpguy/AlloyIngotNeoX
nlpguy
2024-03-04T13:47:34Z
47
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:Gille/StrangeMerges_20-7B-slerp", "base_model:merge:Gille/StrangeMerges_20-7B-slerp", "base_model:bardsai/jaskier-7b-dpo-v4.3", "base_model:merge:bardsai/jaskier-7b-dpo-v4.3", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T09:33:54Z
--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: - bardsai/jaskier-7b-dpo-v4.3 - Gille/StrangeMerges_20-7B-slerp model-index: - name: AlloyIngotNeoX results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 74.32 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.07 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 74.57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeoX name: Open LLM Leaderboard --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [bardsai/jaskier-7b-dpo-v4.3](https://huggingface.co/bardsai/jaskier-7b-dpo-v4.3) * [Gille/StrangeMerges_20-7B-slerp](https://huggingface.co/Gille/StrangeMerges_20-7B-slerp) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: model: path: Gille/StrangeMerges_20-7B-slerp dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.1, 0.3, 0.5, 0.7, 0.9] - filter: mlp value: [0.9, 0.7, 0.5, 0.3, 0.1] - value: 0.45 slices: - sources: - layer_range: [0, 32] model: model: path: Gille/StrangeMerges_20-7B-slerp - layer_range: [0, 32] model: model: path: bardsai/jaskier-7b-dpo-v4.3 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__AlloyIngotNeoX) | Metric |Value| |---------------------------------|----:| |Avg. |76.21| |AI2 Reasoning Challenge (25-Shot)|74.32| |HellaSwag (10-Shot) |89.07| |MMLU (5-Shot) |64.97| |TruthfulQA (0-shot) |74.57| |Winogrande (5-shot) |84.53| |GSM8k (5-shot) |69.83|
nlpguy/ColorShadow-7B-v3
nlpguy
2024-03-04T13:47:22Z
1,556
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-30T20:01:26Z
--- license: apache-2.0 tags: - merge model-index: - name: ColorShadow-7B-v3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.88 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.54 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/ColorShadow-7B-v3 name: Open LLM Leaderboard --- # ColorShadow-7B-v3 This is a Gradient-SLERP merge between ColorShadow-7B and Terminis-7B performed using mergekit. Here is the config file used: ``` slices: - sources: - model: nlpguy/ColorShadow-7B layer_range: [0, 32] - model: Q-bert/Terminis-7B layer_range: [0, 32] merge_method: slerp base_model: nlpguy/ColorShadow-7B parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__ColorShadow-7B-v3) | Metric |Value| |---------------------------------|----:| |Avg. |67.29| |AI2 Reasoning Challenge (25-Shot)|67.58| |HellaSwag (10-Shot) |85.04| |MMLU (5-Shot) |60.57| |TruthfulQA (0-shot) |62.88| |Winogrande (5-shot) |80.11| |GSM8k (5-shot) |47.54|
ChuckMcSneed/SMaxxxer-v1-70b
ChuckMcSneed
2024-03-04T13:42:38Z
115
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "license:llama2", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T12:12:12Z
--- license: llama2 tags: - merge - mergekit model-index: - name: SMaxxxer-v1-70b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.65 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 70.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.7 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/SMaxxxer-v1-70b name: Open LLM Leaderboard --- # BABE WAKE UP NEW MEME MODELS JUST DROPPED Ladies and Gentlemen! I present to you *drum roll* THE BENCHBREAKERS! - [PMaxxxer](https://huggingface.co/ChuckMcSneed/PMaxxxer-v1-70b) (The Good) - [SMaxxxer](https://huggingface.co/ChuckMcSneed/SMaxxxer-v1-70b) (The Bad) - [BenchmaxxxerPS](https://huggingface.co/ChuckMcSneed/BenchmaxxxerPS-v1-123b) (The Ugly) These three **interesting** models were designed in attempt to break [my own meme benchmark](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark) and well... they failed. The results are interesting nontheless. # SMAXXXER The aggressor, the angry and dumb hobo that will roleplay with you. This meme model was designed to break the stylized writing test, and it kinda did, still can't surpass ChatGPT though. For its creation [lzlv](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) was TIES-merged with [spicyboros](https://huggingface.co/jondurbin/spicyboros-70b-2.2), [xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) using [mergekit](https://github.com/cg123/mergekit). # PMAXXXER The overly politically correct SJW university dropout, the failed writer that's not really good at anything. This meme model was designed to break the poems test and it's an absolute failure. For its creation [WinterGoddess](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2) was TIES-merged with [euryale](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B), [xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) using [mergekit](https://github.com/cg123/mergekit). # BENCHMAXXXER PS The true meme model. Goliath-style frankenmerge of SMAXXXER and PMAXXXER. You might think: "Oh it's a frankenmerge, the characteristics of the models will even out, right?" This is completely wrong in this case, here characteristics of the models add up. You get an angry hobo stuck with an SJW in the same fucking body! It will assault you and then immediately apologize for it! Then it will assault you again! And apologize again! Kinda funny. It also has a bit different writing style compared to Goliath. Is it worth using over Goliath? Not really. However, if you have fast internet and patience to try a 123b meme model, go for it! # FAILED MODELS(not gonna upload) ## BENCHMAXXXER SP Frankenmerge of SMAXXXER and PMAXXXER, just like BENCHMAXXXER PS, but in different order. Has severe brain damage, clearly the influence of the hobo is strong in this one. ## BENCHMAXXXER SS Self-merge of SMAXXXER, a bit less dumb and a bit less aggresive than the original SMAXXER. ## BENCHMAXXXER MOE 2x70B MOE merge of SMAXXXER and PMAXXXER, unremarkable. Not smart, not angry. Just averaged out. # PROMPT FORMAT Alpaca. ``` ### Instruction: {instruction} ### Input: {input} ### Response: ``` # Benchmarks ## NeoEvalPlusN [My meme benchmark](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark) which the models were designed to break. | Test name | goliath-120b |PMaxxxer-v1-70b |SMaxxxer-v1-70b |BenchmaxxxerPS-v1-123b |BenchmaxxxerSP-v1-123b |BenchmaxxxerSS-v1-123b |BenchmaxxxerMOE-v1-123b | | -------- | ------- | -------- | ------- | -------- | ------- | ------- | -------- | | B | 3 | 3 |2 |3 |1.5 |1.5|2| | C | 2 | 1 |1 |2 |2 |2|1| | D | 1 | 1 |0 |1 |1 |0.5|3| | S | 5 | 6.75 |7.25 |7.25 |6.75 |6.5|7.25| | P | 6 | 4.75 |4.25 |5.25 |5.25 |5.5|5| | Total | 17 | 16.5 |14.5 |18.5 |16.5 |16|18.25| ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) [Leaderboard on Huggingface](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |---------------------------------------|-------|-----|---------|-----|----------|----------|-----| |PMaxxxer-v1-70b |72.41 |71.08|87.88 |70.39|59.77 |82.64 |62.7 | |SMaxxxer-v1-70b |72.23 |70.65|88.02 |70.55|60.7 |82.87 |60.58| |Difference |0.18 |0.43 |-0.14 |-0.16|-0.93 |-0.23 |2.12 | Performance here is decent. It was #5 on the leaderboard among 70b models when I submitted it. This leaderboard is currently quite useless though, some 7b braindead meme merges have high scores there, claiming to be the next GPT4. At least I don't pretend that my models aren't a meme. Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChuckMcSneed__SMaxxxer-v1-70b) | Metric |Value| |---------------------------------|----:| |Avg. |72.23| |AI2 Reasoning Challenge (25-Shot)|70.65| |HellaSwag (10-Shot) |88.02| |MMLU (5-Shot) |70.55| |TruthfulQA (0-shot) |60.70| |Winogrande (5-shot) |82.87| |GSM8k (5-shot) |60.58|
Instinct-AI/InstinctiveDiffuse
Instinct-AI
2024-03-04T13:39:17Z
7
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-03-04T11:36:27Z
--- library_name: diffusers --- # InstinctiveDiffuse InstinctiveDiffuse is fine-tuned from `StableDiffusionXL` base model that carefully trained on 100,000 free-copyright images, and carefully DPO tuned. the base model is `stabilityai/stable-diffusion-xl-base-1.0` and the model has improved on being sharper in image generation with prompt tag of ~sharp~. ## Usage the usage of the model is available via github of [InstinctiveDiffuse](https://github.com/erfanzar/InstinctiveDiffuse). please also consider using these keep words to improve your prompts: best quality, ocean render, HD, --version 8. ## Direct Use ```python import torch from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler base = "Instinct-AI/InstinctiveDiffuse" pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") pipe.enable_model_cpu_offload() pipe( "An astronaut riding a yellow horse on mars", num_inference_steps=8, guidance_scale=1 ).images[0] ```
jan-hq/Mistral-7B-Instruct-v0.2-DARE
jan-hq
2024-03-04T13:36:21Z
15
6
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-12T09:12:10Z
--- language: - en license: apache-2.0 model-index: - name: Mistral-7B-Instruct-v0.2-DARE results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 75.62 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 49.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.36 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 18.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=janhq/Mistral-7B-Instruct-v0.2-DARE name: Open LLM Leaderboard --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a> - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Model Description This model uses the `DARE` method to merge [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) with 3 leading models in 12th Dec on [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard): 1. [OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp) 2. [MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling) 3. [v1olet_marcoroni-go-bruins-merge-7B](https://huggingface.co/v1olet/v1olet_marcoroni-go-bruins-merge-7B) - base model: [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) The yaml config file for this model is here: ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 dtype: bfloat16 merge_method: dare_ties models: - model: mistralai/Mistral-7B-Instruct-v0.2 - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp parameters: density: 0.8 weight: 0.4 - model: Q-bert/MetaMath-Cybertron-Starling parameters: density: 0.8 weight: 0.3 - model: v1olet/v1olet_marcoroni-go-bruins-merge-7B parameters: density: 0.8 weight: 0.3 parameters: int8_mask: true ``` # Prompt template: - **ChatML** ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` - **Alpaca** ``` {system_message} ### Instruction: {prompt} ### Response: ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ **An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # Jan Model Merger This is a test project for merging models. # Open LLM Leaderboard Evaluation Results Detailed results can be found here. | Metric | Value | |-----------------------|---------------------------| | Avg. | ?| | ARC (25-shot) | ? | | HellaSwag (10-shot) | ? | | MMLU (5-shot) | ?| | TruthfulQA (0-shot) | ? | | Winogrande (5-shot) | ? | | GSM8K (5-shot) | ? | # Acknowlegement - [mergekit](https://github.com/cg123/mergekit) - [DARE](https://github.com/yule-BUAA/MergeLM/blob/main/README.md) - [SLERP](https://github.com/Digitous/LLM-SLERP-Merge) - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_janhq__Mistral-7B-Instruct-v0.2-DARE) | Metric |Value| |---------------------------------|----:| |Avg. |55.84| |AI2 Reasoning Challenge (25-Shot)|61.95| |HellaSwag (10-Shot) |75.62| |MMLU (5-Shot) |49.99| |TruthfulQA (0-shot) |54.36| |Winogrande (5-shot) |74.98| |GSM8k (5-shot) |18.12|
jan-hq/stealth-v1.3
jan-hq
2024-03-04T13:36:19Z
1,353
6
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T01:46:19Z
--- language: - en license: apache-2.0 model-index: - name: stealth-v1.3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.71 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v1.3 name: Open LLM Leaderboard --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__stealth-v1.3) | Metric |Value| |---------------------------------|----:| |Avg. |71.12| |AI2 Reasoning Challenge (25-Shot)|67.49| |HellaSwag (10-Shot) |86.74| |MMLU (5-Shot) |64.45| |TruthfulQA (0-shot) |55.71| |Winogrande (5-shot) |80.74| |GSM8k (5-shot) |71.57|
jan-hq/LlamaCorn-1.1B
jan-hq
2024-03-04T13:36:18Z
29
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "sft", "conversational", "dataset:jan-hq/bagel_sft_binarized", "dataset:jan-hq/dolphin_binarized", "dataset:jan-hq/openhermes_binarized", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T10:54:51Z
--- license: apache-2.0 tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - jan-hq/bagel_sft_binarized - jan-hq/dolphin_binarized - jan-hq/openhermes_binarized base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: LlamaCorn-sft-adapter results: [] --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LlamaCorn-sft-adapter This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the jan-hq/bagel_sft_binarized, the jan-hq/dolphin_binarized and the jan-hq/openhermes_binarized datasets. It achieves the following results on the evaluation set: - Loss: 0.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.038 | 1.0 | 6606 | 1.0506 | | 0.876 | 2.0 | 13212 | 0.9648 | | 0.7713 | 3.0 | 19818 | 0.9638 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__LlamaCorn-1.1B) | Metric |Value| |---------------------------------|----:| |Avg. |36.94| |AI2 Reasoning Challenge (25-Shot)|34.13| |HellaSwag (10-Shot) |59.33| |MMLU (5-Shot) |29.01| |TruthfulQA (0-shot) |36.78| |Winogrande (5-shot) |61.96| |GSM8k (5-shot) | 0.45|
jan-hq/stealth-v2
jan-hq
2024-03-04T13:36:12Z
117
5
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-24T10:27:55Z
--- language: - en license: apache-2.0 model-index: - name: stealth-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 72.47 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 88.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Training detail You can read [here](https://huggingface.co/jan-hq/stealth-finance-v1-adapter). # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__stealth-v2) | Metric |Value| |---------------------------------|----:| |Avg. |76.37| |AI2 Reasoning Challenge (25-Shot)|73.89| |HellaSwag (10-Shot) |89.26| |MMLU (5-Shot) |64.94| |TruthfulQA (0-shot) |72.47| |Winogrande (5-shot) |88.00| |GSM8k (5-shot) |69.67|
MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1
MaziyarPanahi
2024-03-04T13:36:12Z
61
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T21:31:58Z
--- license: apache-2.0 library_name: transformers tags: - merge pipeline_tag: text-generation model-index: - name: TheTop-5x7B-Instruct-S2-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.02 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 name: Open LLM Leaderboard --- # MaziyarPanahi/TheTop-5x7B-Instruct-S2-v0.1 Merge of top 7B models with SLERP method. > mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention. > > ## Eval > ```python > { "all": { "acc": 0.6545868511485138, "acc_stderr": 0.031980293841566164, "acc_norm": 0.6542757501692061, "acc_norm_stderr": 0.03263807517879597, "mc1": 0.45165238678090575, "mc1_stderr": 0.017421480300277643, "mc2": 0.6217500644350165, "mc2_stderr": 0.015583825644663436 }, "harness|arc:challenge|25": { "acc": 0.6723549488054608, "acc_stderr": 0.01371584794071934, "acc_norm": 0.6945392491467577, "acc_norm_stderr": 0.01346008047800251 }, "harness|hellaswag|10": { "acc": 0.7046405098585939, "acc_stderr": 0.0045527183605131, "acc_norm": 0.871539533957379, "acc_norm_stderr": 0.0033391798350182853 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.37, "acc_stderr": 0.048523658709391, "acc_norm": 0.37, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6148148148148148, "acc_stderr": 0.04203921040156279, "acc_norm": 0.6148148148148148, "acc_norm_stderr": 0.04203921040156279 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6907894736842105, "acc_stderr": 0.037610708698674805, "acc_norm": 0.6907894736842105, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.63, "acc_stderr": 0.04852365870939099, "acc_norm": 0.63, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.02783491252754407, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.02783491252754407 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.050161355804659205, "acc_norm": 0.47, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.57, "acc_stderr": 0.04975698519562428, "acc_norm": 0.57, "acc_norm_stderr": 0.04975698519562428 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.27, "acc_stderr": 0.0446196043338474, "acc_norm": 0.27, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.77, "acc_stderr": 0.04229525846816506, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5829787234042553, "acc_stderr": 0.03223276266711712, "acc_norm": 0.5829787234042553, "acc_norm_stderr": 0.03223276266711712 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5175438596491229, "acc_stderr": 0.04700708033551038, "acc_norm": 0.5175438596491229, "acc_norm_stderr": 0.04700708033551038 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5586206896551724, "acc_stderr": 0.04137931034482757, "acc_norm": 0.5586206896551724, "acc_norm_stderr": 0.04137931034482757 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.41798941798941797, "acc_stderr": 0.025402555503260912, "acc_norm": 0.41798941798941797, "acc_norm_stderr": 0.025402555503260912 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.47619047619047616, "acc_stderr": 0.04467062628403273, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083522, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083522 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.68, "acc_stderr": 0.04688261722621505, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7696969696969697, "acc_stderr": 0.0328766675860349, "acc_norm": 0.7696969696969697, "acc_norm_stderr": 0.0328766675860349 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7828282828282829, "acc_stderr": 0.029376616484945633, "acc_norm": 0.7828282828282829, "acc_norm_stderr": 0.029376616484945633 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9015544041450777, "acc_stderr": 0.021500249576033456, "acc_norm": 0.9015544041450777, "acc_norm_stderr": 0.021500249576033456 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6717948717948717, "acc_stderr": 0.023807633198657266, "acc_norm": 0.6717948717948717, "acc_norm_stderr": 0.023807633198657266 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34444444444444444, "acc_stderr": 0.02897264888484427, "acc_norm": 0.34444444444444444, "acc_norm_stderr": 0.02897264888484427 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6638655462184874, "acc_stderr": 0.030684737115135363, "acc_norm": 0.6638655462184874, "acc_norm_stderr": 0.030684737115135363 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.304635761589404, "acc_stderr": 0.03757949922943343, "acc_norm": 0.304635761589404, "acc_norm_stderr": 0.03757949922943343 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8458715596330275, "acc_stderr": 0.015480826865374303, "acc_norm": 0.8458715596330275, "acc_norm_stderr": 0.015480826865374303 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5185185185185185, "acc_stderr": 0.03407632093854051, "acc_norm": 0.5185185185185185, "acc_norm_stderr": 0.03407632093854051 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926917, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926917 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.810126582278481, "acc_stderr": 0.02553010046023349, "acc_norm": 0.810126582278481, "acc_norm_stderr": 0.02553010046023349 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057221, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057221 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7786259541984732, "acc_stderr": 0.036412970813137296, "acc_norm": 0.7786259541984732, "acc_norm_stderr": 0.036412970813137296 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7685185185185185, "acc_stderr": 0.04077494709252627, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.04077494709252627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7607361963190185, "acc_stderr": 0.0335195387952127, "acc_norm": 0.7607361963190185, "acc_norm_stderr": 0.0335195387952127 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.047268355537191, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.047268355537191 }, "harness|hendrycksTest-management|5": { "acc": 0.8058252427184466, "acc_stderr": 0.03916667762822584, "acc_norm": 0.8058252427184466, "acc_norm_stderr": 0.03916667762822584 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8675213675213675, "acc_stderr": 0.022209309073165612, "acc_norm": 0.8675213675213675, "acc_norm_stderr": 0.022209309073165612 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8352490421455939, "acc_stderr": 0.013265346261323788, "acc_norm": 0.8352490421455939, "acc_norm_stderr": 0.013265346261323788 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7543352601156069, "acc_stderr": 0.023176298203992005, "acc_norm": 0.7543352601156069, "acc_norm_stderr": 0.023176298203992005 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4547486033519553, "acc_stderr": 0.016653875777524006, "acc_norm": 0.4547486033519553, "acc_norm_stderr": 0.016653875777524006 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7483660130718954, "acc_stderr": 0.0248480182638752, "acc_norm": 0.7483660130718954, "acc_norm_stderr": 0.0248480182638752 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7202572347266881, "acc_stderr": 0.02549425935069491, "acc_norm": 0.7202572347266881, "acc_norm_stderr": 0.02549425935069491 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7592592592592593, "acc_stderr": 0.02378858355165854, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.02378858355165854 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4787234042553192, "acc_stderr": 0.029800481645628693, "acc_norm": 0.4787234042553192, "acc_norm_stderr": 0.029800481645628693 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4745762711864407, "acc_stderr": 0.012753716929101008, "acc_norm": 0.4745762711864407, "acc_norm_stderr": 0.012753716929101008 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7095588235294118, "acc_stderr": 0.027576468622740536, "acc_norm": 0.7095588235294118, "acc_norm_stderr": 0.027576468622740536 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6928104575163399, "acc_stderr": 0.01866335967146367, "acc_norm": 0.6928104575163399, "acc_norm_stderr": 0.01866335967146367 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6727272727272727, "acc_stderr": 0.0449429086625209, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.0449429086625209 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7387755102040816, "acc_stderr": 0.02812342933514278, "acc_norm": 0.7387755102040816, "acc_norm_stderr": 0.02812342933514278 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578337, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578337 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.0348735088019777, "acc_norm": 0.86, "acc_norm_stderr": 0.0348735088019777 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587953, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.45165238678090575, "mc1_stderr": 0.017421480300277643, "mc2": 0.6217500644350165, "mc2_stderr": 0.015583825644663436 }, "harness|winogrande|5": { "acc": 0.7963693764798737, "acc_stderr": 0.011317798781626913 }, "harness|gsm8k|5": { "acc": 0.7202426080363912, "acc_stderr": 0.01236438401673532 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__TheTop-5x7B-Instruct-S2-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |72.57| |AI2 Reasoning Challenge (25-Shot)|69.45| |HellaSwag (10-Shot) |87.15| |MMLU (5-Shot) |64.98| |TruthfulQA (0-shot) |62.18| |Winogrande (5-shot) |79.64| |GSM8k (5-shot) |72.02|
MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ
MaziyarPanahi
2024-03-04T13:35:31Z
29
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "dataset:ai2_arc", "dataset:unalignment/spicy-3.1", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:boolq", "dataset:jondurbin/cinematika-v0.1", "dataset:drop", "dataset:lmsys/lmsys-chat-1m", "dataset:TIGER-Lab/MathInstruct", "dataset:cais/mmlu", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:spider", "dataset:squad_v2", "dataset:migtissera/Synthia-v1.3", "dataset:datasets/winogrande", "dataset:nvidia/HelpSteer", "dataset:Intel/orca_dpo_pairs", "dataset:unalignment/toxic-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:Squish42/bluemoon-fandom-1-1-rp-cleaned", "dataset:LDJnr/Capybara", "dataset:JULIELab/EmoBank", "dataset:kingbri/PIPPA-shareGPT", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space", "conversational", "base_model:one-man-army/UNA-34Beagles-32K-bf16-v1", "base_model:finetune:one-man-army/UNA-34Beagles-32K-bf16-v1", "license:apache-2.0", "model-index" ]
text-generation
2024-01-18T10:56:48Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - llama - text-generation - dataset:ai2_arc - dataset:unalignment/spicy-3.1 - dataset:codeparrot/apps - dataset:facebook/belebele - dataset:boolq - dataset:jondurbin/cinematika-v0.1 - dataset:drop - dataset:lmsys/lmsys-chat-1m - dataset:TIGER-Lab/MathInstruct - dataset:cais/mmlu - dataset:Muennighoff/natural-instructions - dataset:openbookqa - dataset:piqa - dataset:Vezora/Tested-22k-Python-Alpaca - dataset:cakiki/rosetta-code - dataset:Open-Orca/SlimOrca - dataset:spider - dataset:squad_v2 - dataset:migtissera/Synthia-v1.3 - dataset:datasets/winogrande - dataset:nvidia/HelpSteer - dataset:Intel/orca_dpo_pairs - dataset:unalignment/toxic-dpo-v0.1 - dataset:jondurbin/truthy-dpo-v0.1 - dataset:allenai/ultrafeedback_binarized_cleaned - dataset:Squish42/bluemoon-fandom-1-1-rp-cleaned - dataset:LDJnr/Capybara - dataset:JULIELab/EmoBank - dataset:kingbri/PIPPA-shareGPT - license:other - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - has_space model_name: UNA-34Beagles-32K-bf16-v1-GPTQ base_model: one-man-army/UNA-34Beagles-32K-bf16-v1 inference: false model_creator: one-man-army pipeline_tag: text-generation quantized_by: MaziyarPanahi model-index: - name: UNA-34Beagles-32K-bf16-v1-GPTQ results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 26.11 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 26.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 47.27 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 50.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ name: Open LLM Leaderboard --- # Description [MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ](https://huggingface.co/MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ) is a quantized (GPTQ) version of [one-man-army/UNA-34Beagles-32K-bf16-v1](https://huggingface.co/one-man-army/UNA-34Beagles-32K-bf16-v1) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/UNA-34Beagles-32K-bf16-v1-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__UNA-34Beagles-32K-bf16-v1-GPTQ) | Metric |Value| |---------------------------------|----:| |Avg. |29.15| |AI2 Reasoning Challenge (25-Shot)|26.11| |HellaSwag (10-Shot) |26.29| |MMLU (5-Shot) |24.43| |TruthfulQA (0-shot) |47.27| |Winogrande (5-shot) |50.83| |GSM8k (5-shot) | 0.00|
MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1
MaziyarPanahi
2024-03-04T13:35:17Z
9
5
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "alpaca", "dataset:tatsu-lab/alpaca", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-18T21:16:13Z
--- license: apache-2.0 library_name: transformers tags: - mistral - alpaca datasets: - tatsu-lab/alpaca pipeline_tag: text-generation base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-7B-Alpaca-52k-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.92 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.13 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.5 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1 name: Open LLM Leaderboard --- # Description `mistralai/Mistral-7B-v0.1` model fine-tuned over 52k alpaca dataset # How to use it ```python # pip install transformers==4.35.2 import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline model_id="MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) streamer = TextStreamer(tokenizer) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024, temperature=0.1, do_sample=True, top_p=0.95, repetition_penalty=1.15, return_full_text=False, streamer=streamer ) prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: describe about pros and cons of docker system. Answer in bullet point ### Response: """ res = pipe(prompt)[0]['generated_text'] ``` Results: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: describe about pros and cons of docker system. Answer in bullet point ### Response: Pros of Docker System: - Improved portability - Docker containers can be easily moved between different environments, making it easier to deploy applications across multiple platforms. - Increased security - Containers are isolated from each other, which helps prevent malicious code from spreading throughout the system. - Better resource utilization - Containers allow for better resource management by allowing users to run multiple applications on a single host without having to worry about conflicts or performance issues. Cons of Docker System: - Learning curve - It takes time to learn how to use Docker effectively, as there are many commands and concepts involved. - Limited customization options - While Docker provides some basic configuration options, more advanced features such as network routing require additional tools. - Performance overhead - Running multiple containers on a single host may result in slower performance due to increased memory usage.</s> ``` ## Eval ```python { "all": { "acc": 0.6309850839451187, "acc_stderr": 0.032333688535613636, "acc_norm": 0.6368691004374645, "acc_norm_stderr": 0.03298401757997533, "mc1": 0.29008567931456547, "mc1_stderr": 0.01588623687420952, "mc2": 0.41501661742948026, "mc2_stderr": 0.014285902986671931 }, "harness|arc:challenge|25": { "acc": 0.5750853242320819, "acc_stderr": 0.014445698968520767, "acc_norm": 0.6092150170648464, "acc_norm_stderr": 0.01425856388051378 }, "harness|hellaswag|10": { "acc": 0.6221868153754232, "acc_stderr": 0.0048384969668239025, "acc_norm": 0.8212507468631747, "acc_norm_stderr": 0.0038235918141330347 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.04232073695151589, "acc_norm": 0.6, "acc_norm_stderr": 0.04232073695151589 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6447368421052632, "acc_stderr": 0.038947344870133176, "acc_norm": 0.6447368421052632, "acc_norm_stderr": 0.038947344870133176 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.57, "acc_stderr": 0.04975698519562428, "acc_norm": 0.57, "acc_norm_stderr": 0.04975698519562428 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6792452830188679, "acc_stderr": 0.02872750295788027, "acc_norm": 0.6792452830188679, "acc_norm_stderr": 0.02872750295788027 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7430555555555556, "acc_stderr": 0.03653946969442099, "acc_norm": 0.7430555555555556, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.36, "acc_stderr": 0.048241815132442176, "acc_norm": 0.36, "acc_norm_stderr": 0.048241815132442176 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.653179190751445, "acc_stderr": 0.036291466701596636, "acc_norm": 0.653179190751445, "acc_norm_stderr": 0.036291466701596636 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.048786087144669955, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.048786087144669955 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.79, "acc_stderr": 0.04093601807403326, "acc_norm": 0.79, "acc_norm_stderr": 0.04093601807403326 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5702127659574469, "acc_stderr": 0.03236214467715564, "acc_norm": 0.5702127659574469, "acc_norm_stderr": 0.03236214467715564 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.49122807017543857, "acc_stderr": 0.047028804320496165, "acc_norm": 0.49122807017543857, "acc_norm_stderr": 0.047028804320496165 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5862068965517241, "acc_stderr": 0.04104269211806232, "acc_norm": 0.5862068965517241, "acc_norm_stderr": 0.04104269211806232 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3915343915343915, "acc_stderr": 0.025138091388851116, "acc_norm": 0.3915343915343915, "acc_norm_stderr": 0.025138091388851116 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04444444444444449, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7419354838709677, "acc_stderr": 0.02489246917246283, "acc_norm": 0.7419354838709677, "acc_norm_stderr": 0.02489246917246283 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.67, "acc_stderr": 0.047258156262526066, "acc_norm": 0.67, "acc_norm_stderr": 0.047258156262526066 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03346409881055953, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03346409881055953 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7929292929292929, "acc_stderr": 0.028869778460267042, "acc_norm": 0.7929292929292929, "acc_norm_stderr": 0.028869778460267042 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8601036269430051, "acc_stderr": 0.025033870583015184, "acc_norm": 0.8601036269430051, "acc_norm_stderr": 0.025033870583015184 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6358974358974359, "acc_stderr": 0.024396672985094764, "acc_norm": 0.6358974358974359, "acc_norm_stderr": 0.024396672985094764 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.362962962962963, "acc_stderr": 0.029318203645206865, "acc_norm": 0.362962962962963, "acc_norm_stderr": 0.029318203645206865 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6218487394957983, "acc_stderr": 0.03149930577784906, "acc_norm": 0.6218487394957983, "acc_norm_stderr": 0.03149930577784906 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.038227469376587525, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.038227469376587525 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8146788990825689, "acc_stderr": 0.016659279700295838, "acc_norm": 0.8146788990825689, "acc_norm_stderr": 0.016659279700295838 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49537037037037035, "acc_stderr": 0.03409825519163572, "acc_norm": 0.49537037037037035, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7892156862745098, "acc_stderr": 0.028626547912437406, "acc_norm": 0.7892156862745098, "acc_norm_stderr": 0.028626547912437406 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7552742616033755, "acc_stderr": 0.027985699387036423, "acc_norm": 0.7552742616033755, "acc_norm_stderr": 0.027985699387036423 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6636771300448431, "acc_stderr": 0.031708824268455, "acc_norm": 0.6636771300448431, "acc_norm_stderr": 0.031708824268455 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7862595419847328, "acc_stderr": 0.0359546161177469, "acc_norm": 0.7862595419847328, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243838, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243838 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.803680981595092, "acc_stderr": 0.031207970394709218, "acc_norm": 0.803680981595092, "acc_norm_stderr": 0.031207970394709218 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5178571428571429, "acc_stderr": 0.047427623612430116, "acc_norm": 0.5178571428571429, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.8252427184466019, "acc_stderr": 0.03760178006026621, "acc_norm": 0.8252427184466019, "acc_norm_stderr": 0.03760178006026621 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8632478632478633, "acc_stderr": 0.022509033937077816, "acc_norm": 0.8632478632478633, "acc_norm_stderr": 0.022509033937077816 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.74, "acc_stderr": 0.04408440022768078, "acc_norm": 0.74, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8173690932311622, "acc_stderr": 0.013816335389973136, "acc_norm": 0.8173690932311622, "acc_norm_stderr": 0.013816335389973136 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7023121387283237, "acc_stderr": 0.024617055388677, "acc_norm": 0.7023121387283237, "acc_norm_stderr": 0.024617055388677 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2335195530726257, "acc_stderr": 0.014149575348976269, "acc_norm": 0.2335195530726257, "acc_norm_stderr": 0.014149575348976269 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7450980392156863, "acc_stderr": 0.024954184324879905, "acc_norm": 0.7450980392156863, "acc_norm_stderr": 0.024954184324879905 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7191358024691358, "acc_stderr": 0.025006469755799215, "acc_norm": 0.7191358024691358, "acc_norm_stderr": 0.025006469755799215 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4716312056737589, "acc_stderr": 0.029779450957303062, "acc_norm": 0.4716312056737589, "acc_norm_stderr": 0.029779450957303062 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4498044328552803, "acc_stderr": 0.012705721498565107, "acc_norm": 0.4498044328552803, "acc_norm_stderr": 0.012705721498565107 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6580882352941176, "acc_stderr": 0.02881472242225418, "acc_norm": 0.6580882352941176, "acc_norm_stderr": 0.02881472242225418 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6519607843137255, "acc_stderr": 0.019270998708223974, "acc_norm": 0.6519607843137255, "acc_norm_stderr": 0.019270998708223974 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7224489795918367, "acc_stderr": 0.028666857790274645, "acc_norm": 0.7224489795918367, "acc_norm_stderr": 0.028666857790274645 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8557213930348259, "acc_stderr": 0.02484575321230604, "acc_norm": 0.8557213930348259, "acc_norm_stderr": 0.02484575321230604 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.03487350880197771, "acc_norm": 0.86, "acc_norm_stderr": 0.03487350880197771 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587953, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.027966785859160896, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.027966785859160896 }, "harness|truthfulqa:mc|0": { "mc1": 0.29008567931456547, "mc1_stderr": 0.01588623687420952, "mc2": 0.41501661742948026, "mc2_stderr": 0.014285902986671931 }, "harness|winogrande|5": { "acc": 0.7734806629834254, "acc_stderr": 0.011764149054698332 }, "harness|gsm8k|5": { "acc": 0.37452615617892343, "acc_stderr": 0.013331774158491393 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__Mistral-7B-Alpaca-52k-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |60.46| |AI2 Reasoning Challenge (25-Shot)|60.92| |HellaSwag (10-Shot) |82.13| |MMLU (5-Shot) |63.41| |TruthfulQA (0-shot) |41.50| |Winogrande (5-shot) |77.35| |GSM8k (5-shot) |37.45|
MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1
MaziyarPanahi
2024-03-04T13:34:57Z
65
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T22:11:13Z
--- license: apache-2.0 library_name: transformers tags: - merge pipeline_tag: text-generation model-index: - name: TheTop-5x7B-Instruct-S5-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.01 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 86.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.81 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-S5-v0.1 name: Open LLM Leaderboard --- Merge of top 7B models and the SLERP of other 7B models > mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention. ## Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fd5e18a90b6dc4633f6d292/15qK3CpBMEySfjb0CiT4e.png) ```python { "all": { "acc": 0.6564118716978186, "acc_stderr": 0.03200912848183244, "acc_norm": 0.6553902167958241, "acc_norm_stderr": 0.03268788255929441, "mc1": 0.5312117503059975, "mc1_stderr": 0.01746936487457752, "mc2": 0.6758096547963126, "mc2_stderr": 0.015381620483561457 }, "harness|arc:challenge|25": { "acc": 0.6919795221843004, "acc_stderr": 0.013491429517292038, "acc_norm": 0.7252559726962458, "acc_norm_stderr": 0.013044617212771227 }, "harness|hellaswag|10": { "acc": 0.7234614618601872, "acc_stderr": 0.004463721071319078, "acc_norm": 0.8870742879904402, "acc_norm_stderr": 0.0031585512705264054 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6518518518518519, "acc_stderr": 0.041153246103369526, "acc_norm": 0.6518518518518519, "acc_norm_stderr": 0.041153246103369526 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7039473684210527, "acc_stderr": 0.03715062154998904, "acc_norm": 0.7039473684210527, "acc_norm_stderr": 0.03715062154998904 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6943396226415094, "acc_stderr": 0.028353298073322663, "acc_norm": 0.6943396226415094, "acc_norm_stderr": 0.028353298073322663 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.28, "acc_stderr": 0.04512608598542126, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542126 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.38235294117647056, "acc_stderr": 0.04835503696107224, "acc_norm": 0.38235294117647056, "acc_norm_stderr": 0.04835503696107224 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.77, "acc_stderr": 0.04229525846816506, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5957446808510638, "acc_stderr": 0.03208115750788684, "acc_norm": 0.5957446808510638, "acc_norm_stderr": 0.03208115750788684 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5724137931034483, "acc_stderr": 0.04122737111370332, "acc_norm": 0.5724137931034483, "acc_norm_stderr": 0.04122737111370332 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4312169312169312, "acc_stderr": 0.025506481698138208, "acc_norm": 0.4312169312169312, "acc_norm_stderr": 0.025506481698138208 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5, "acc_stderr": 0.04472135954999579, "acc_norm": 0.5, "acc_norm_stderr": 0.04472135954999579 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4975369458128079, "acc_stderr": 0.03517945038691063, "acc_norm": 0.4975369458128079, "acc_norm_stderr": 0.03517945038691063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7696969696969697, "acc_stderr": 0.0328766675860349, "acc_norm": 0.7696969696969697, "acc_norm_stderr": 0.0328766675860349 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7878787878787878, "acc_stderr": 0.029126522834586818, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.029126522834586818 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.020986854593289733, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.020986854593289733 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6641025641025641, "acc_stderr": 0.023946724741563976, "acc_norm": 0.6641025641025641, "acc_norm_stderr": 0.023946724741563976 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3592592592592593, "acc_stderr": 0.02925290592725197, "acc_norm": 0.3592592592592593, "acc_norm_stderr": 0.02925290592725197 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6764705882352942, "acc_stderr": 0.03038835355188679, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.03038835355188679 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8385321100917431, "acc_stderr": 0.015776239256163224, "acc_norm": 0.8385321100917431, "acc_norm_stderr": 0.015776239256163224 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5138888888888888, "acc_stderr": 0.03408655867977749, "acc_norm": 0.5138888888888888, "acc_norm_stderr": 0.03408655867977749 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8529411764705882, "acc_stderr": 0.024857478080250447, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.024857478080250447 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8143459915611815, "acc_stderr": 0.025310495376944856, "acc_norm": 0.8143459915611815, "acc_norm_stderr": 0.025310495376944856 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6816143497757847, "acc_stderr": 0.03126580522513713, "acc_norm": 0.6816143497757847, "acc_norm_stderr": 0.03126580522513713 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.816793893129771, "acc_stderr": 0.03392770926494733, "acc_norm": 0.816793893129771, "acc_norm_stderr": 0.03392770926494733 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7870370370370371, "acc_stderr": 0.0395783547198098, "acc_norm": 0.7870370370370371, "acc_norm_stderr": 0.0395783547198098 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7607361963190185, "acc_stderr": 0.0335195387952127, "acc_norm": 0.7607361963190185, "acc_norm_stderr": 0.0335195387952127 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.7864077669902912, "acc_stderr": 0.040580420156460344, "acc_norm": 0.7864077669902912, "acc_norm_stderr": 0.040580420156460344 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281365, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281365 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8250319284802043, "acc_stderr": 0.013586619219903341, "acc_norm": 0.8250319284802043, "acc_norm_stderr": 0.013586619219903341 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7456647398843931, "acc_stderr": 0.02344582627654554, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.02344582627654554 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.45251396648044695, "acc_stderr": 0.016646914804438778, "acc_norm": 0.45251396648044695, "acc_norm_stderr": 0.016646914804438778 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7254901960784313, "acc_stderr": 0.02555316999182652, "acc_norm": 0.7254901960784313, "acc_norm_stderr": 0.02555316999182652 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.707395498392283, "acc_stderr": 0.02583989833487798, "acc_norm": 0.707395498392283, "acc_norm_stderr": 0.02583989833487798 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7561728395061729, "acc_stderr": 0.02389187954195961, "acc_norm": 0.7561728395061729, "acc_norm_stderr": 0.02389187954195961 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4645390070921986, "acc_stderr": 0.029752389657427047, "acc_norm": 0.4645390070921986, "acc_norm_stderr": 0.029752389657427047 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.47327249022164275, "acc_stderr": 0.01275197796767601, "acc_norm": 0.47327249022164275, "acc_norm_stderr": 0.01275197796767601 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6838235294117647, "acc_stderr": 0.02824568739146292, "acc_norm": 0.6838235294117647, "acc_norm_stderr": 0.02824568739146292 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6715686274509803, "acc_stderr": 0.018999707383162673, "acc_norm": 0.6715686274509803, "acc_norm_stderr": 0.018999707383162673 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6545454545454545, "acc_stderr": 0.04554619617541054, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.04554619617541054 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8208955223880597, "acc_stderr": 0.027113286753111837, "acc_norm": 0.8208955223880597, "acc_norm_stderr": 0.027113286753111837 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.03588702812826371, "acc_norm": 0.85, "acc_norm_stderr": 0.03588702812826371 }, "harness|hendrycksTest-virology|5": { "acc": 0.5542168674698795, "acc_stderr": 0.038695433234721015, "acc_norm": 0.5542168674698795, "acc_norm_stderr": 0.038695433234721015 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.5312117503059975, "mc1_stderr": 0.01746936487457752, "mc2": 0.6758096547963126, "mc2_stderr": 0.015381620483561457 }, "harness|winogrande|5": { "acc": 0.861878453038674, "acc_stderr": 0.00969698839367458 }, "harness|gsm8k|5": { "acc": 0.7081122062168309, "acc_stderr": 0.012522795894420867 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__TheTop-5x7B-Instruct-S5-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |75.14| |AI2 Reasoning Challenge (25-Shot)|72.53| |HellaSwag (10-Shot) |88.71| |MMLU (5-Shot) |65.01| |TruthfulQA (0-shot) |67.58| |Winogrande (5-shot) |86.19| |GSM8k (5-shot) |70.81|
MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1
MaziyarPanahi
2024-03-04T13:34:39Z
61
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T18:48:40Z
--- license: apache-2.0 library_name: transformers tags: - merge pipeline_tag: text-generation model-index: - name: TheTop-5x7B-Instruct-D-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.86 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 66.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1 name: Open LLM Leaderboard --- Merge of top 7B models with DARE method > mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention. ## Eval ```python { "all": { "acc": 0.6547370286177235, "acc_stderr": 0.03204709242170183, "acc_norm": 0.6537337854798912, "acc_norm_stderr": 0.03272317883588649, "mc1": 0.5189718482252142, "mc1_stderr": 0.01749089640576236, "mc2": 0.6631825155680797, "mc2_stderr": 0.01527641053841743 }, "harness|arc:challenge|25": { "acc": 0.6953924914675768, "acc_stderr": 0.013449522109932485, "acc_norm": 0.7175767918088737, "acc_norm_stderr": 0.013155456884097225 }, "harness|hellaswag|10": { "acc": 0.7120095598486357, "acc_stderr": 0.004519011688417168, "acc_norm": 0.8820952001593309, "acc_norm_stderr": 0.003218362717491129 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6296296296296297, "acc_stderr": 0.041716541613545426, "acc_norm": 0.6296296296296297, "acc_norm_stderr": 0.041716541613545426 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7105263157894737, "acc_stderr": 0.03690677986137283, "acc_norm": 0.7105263157894737, "acc_norm_stderr": 0.03690677986137283 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.64, "acc_stderr": 0.04824181513244218, "acc_norm": 0.64, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7056603773584905, "acc_stderr": 0.02804918631569525, "acc_norm": 0.7056603773584905, "acc_norm_stderr": 0.02804918631569525 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620333, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6705202312138728, "acc_stderr": 0.03583901754736411, "acc_norm": 0.6705202312138728, "acc_norm_stderr": 0.03583901754736411 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.04913595201274498, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.04913595201274498 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932263, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932263 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5787234042553191, "acc_stderr": 0.03227834510146268, "acc_norm": 0.5787234042553191, "acc_norm_stderr": 0.03227834510146268 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5, "acc_stderr": 0.047036043419179864, "acc_norm": 0.5, "acc_norm_stderr": 0.047036043419179864 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5586206896551724, "acc_stderr": 0.04137931034482758, "acc_norm": 0.5586206896551724, "acc_norm_stderr": 0.04137931034482758 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.42857142857142855, "acc_stderr": 0.02548718714785938, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.02548718714785938 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.47619047619047616, "acc_stderr": 0.04467062628403273, "acc_norm": 0.47619047619047616, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4876847290640394, "acc_stderr": 0.035169204442208966, "acc_norm": 0.4876847290640394, "acc_norm_stderr": 0.035169204442208966 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.68, "acc_stderr": 0.04688261722621505, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.03192271569548301, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.03192271569548301 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.797979797979798, "acc_stderr": 0.02860620428922987, "acc_norm": 0.797979797979798, "acc_norm_stderr": 0.02860620428922987 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9015544041450777, "acc_stderr": 0.021500249576033456, "acc_norm": 0.9015544041450777, "acc_norm_stderr": 0.021500249576033456 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6666666666666666, "acc_stderr": 0.023901157979402538, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.023901157979402538 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.35185185185185186, "acc_stderr": 0.029116617606083008, "acc_norm": 0.35185185185185186, "acc_norm_stderr": 0.029116617606083008 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6722689075630253, "acc_stderr": 0.03048991141767323, "acc_norm": 0.6722689075630253, "acc_norm_stderr": 0.03048991141767323 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8440366972477065, "acc_stderr": 0.015555802713590167, "acc_norm": 0.8440366972477065, "acc_norm_stderr": 0.015555802713590167 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5092592592592593, "acc_stderr": 0.034093869469927006, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8333333333333334, "acc_stderr": 0.026156867523931045, "acc_norm": 0.8333333333333334, "acc_norm_stderr": 0.026156867523931045 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7848101265822784, "acc_stderr": 0.02675082699467618, "acc_norm": 0.7848101265822784, "acc_norm_stderr": 0.02675082699467618 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057221, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057221 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7786259541984732, "acc_stderr": 0.03641297081313729, "acc_norm": 0.7786259541984732, "acc_norm_stderr": 0.03641297081313729 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7870370370370371, "acc_stderr": 0.0395783547198098, "acc_norm": 0.7870370370370371, "acc_norm_stderr": 0.0395783547198098 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7730061349693251, "acc_stderr": 0.03291099578615769, "acc_norm": 0.7730061349693251, "acc_norm_stderr": 0.03291099578615769 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.047268355537191, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.047268355537191 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281376, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281376 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.045126085985421276, "acc_norm": 0.72, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8275862068965517, "acc_stderr": 0.013507943909371798, "acc_norm": 0.8275862068965517, "acc_norm_stderr": 0.013507943909371798 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7427745664739884, "acc_stderr": 0.02353292543104429, "acc_norm": 0.7427745664739884, "acc_norm_stderr": 0.02353292543104429 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4312849162011173, "acc_stderr": 0.016563829399047707, "acc_norm": 0.4312849162011173, "acc_norm_stderr": 0.016563829399047707 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7320261437908496, "acc_stderr": 0.025360603796242557, "acc_norm": 0.7320261437908496, "acc_norm_stderr": 0.025360603796242557 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7170418006430869, "acc_stderr": 0.02558306248998481, "acc_norm": 0.7170418006430869, "acc_norm_stderr": 0.02558306248998481 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7438271604938271, "acc_stderr": 0.024288533637726095, "acc_norm": 0.7438271604938271, "acc_norm_stderr": 0.024288533637726095 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46808510638297873, "acc_stderr": 0.029766675075873866, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.029766675075873866 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4726205997392438, "acc_stderr": 0.012751075788015055, "acc_norm": 0.4726205997392438, "acc_norm_stderr": 0.012751075788015055 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6801470588235294, "acc_stderr": 0.02833295951403121, "acc_norm": 0.6801470588235294, "acc_norm_stderr": 0.02833295951403121 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6748366013071896, "acc_stderr": 0.018950886770806315, "acc_norm": 0.6748366013071896, "acc_norm_stderr": 0.018950886770806315 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6909090909090909, "acc_stderr": 0.044262946482000985, "acc_norm": 0.6909090909090909, "acc_norm_stderr": 0.044262946482000985 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.835820895522388, "acc_stderr": 0.026193923544454115, "acc_norm": 0.835820895522388, "acc_norm_stderr": 0.026193923544454115 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.03588702812826371, "acc_norm": 0.85, "acc_norm_stderr": 0.03588702812826371 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699122, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699122 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.5189718482252142, "mc1_stderr": 0.01749089640576236, "mc2": 0.6631825155680797, "mc2_stderr": 0.01527641053841743 }, "harness|winogrande|5": { "acc": 0.8437253354380426, "acc_stderr": 0.01020535179187352 }, "harness|gsm8k|5": { "acc": 0.7172100075815011, "acc_stderr": 0.012405020417873619 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__TheTop-5x7B-Instruct-D-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |74.54| |AI2 Reasoning Challenge (25-Shot)|71.76| |HellaSwag (10-Shot) |88.21| |MMLU (5-Shot) |64.86| |TruthfulQA (0-shot) |66.32| |Winogrande (5-shot) |84.37| |GSM8k (5-shot) |71.72|
MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1
MaziyarPanahi
2024-03-04T13:33:57Z
60
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T20:01:44Z
--- license: apache-2.0 library_name: transformers tags: - merge pipeline_tag: text-generation model-index: - name: TheTop-5x7B-Instruct-T-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.63 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.85 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.78 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/TheTop-5x7B-Instruct-T-v0.1 name: Open LLM Leaderboard --- Merge of top 7B models with TIES method > mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention. ## Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fd5e18a90b6dc4633f6d292/YdjDNbmytFAPv-VGiuhx7.png) ```python { "all": { "acc": 0.6487801278765712, "acc_stderr": 0.03219011246717665, "acc_norm": 0.6479445077777353, "acc_norm_stderr": 0.032868022907407396, "mc1": 0.5862913096695227, "mc1_stderr": 0.0172408618120998, "mc2": 0.7078078883926877, "mc2_stderr": 0.015097515102384168 }, "harness|arc:challenge|25": { "acc": 0.7167235494880546, "acc_stderr": 0.013167478735134575, "acc_norm": 0.7363481228668942, "acc_norm_stderr": 0.012875929151297044 }, "harness|hellaswag|10": { "acc": 0.7321250746863175, "acc_stderr": 0.004419469983939178, "acc_norm": 0.8884684325831508, "acc_norm_stderr": 0.0031414591751392717 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6518518518518519, "acc_stderr": 0.041153246103369526, "acc_norm": 0.6518518518518519, "acc_norm_stderr": 0.041153246103369526 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7039473684210527, "acc_stderr": 0.03715062154998904, "acc_norm": 0.7039473684210527, "acc_norm_stderr": 0.03715062154998904 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.02783491252754407, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.02783491252754407 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.75, "acc_stderr": 0.03621034121889507, "acc_norm": 0.75, "acc_norm_stderr": 0.03621034121889507 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6589595375722543, "acc_stderr": 0.036146654241808254, "acc_norm": 0.6589595375722543, "acc_norm_stderr": 0.036146654241808254 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.43137254901960786, "acc_stderr": 0.04928099597287534, "acc_norm": 0.43137254901960786, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.77, "acc_stderr": 0.04229525846816506, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.548936170212766, "acc_stderr": 0.032529096196131965, "acc_norm": 0.548936170212766, "acc_norm_stderr": 0.032529096196131965 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.49122807017543857, "acc_stderr": 0.04702880432049615, "acc_norm": 0.49122807017543857, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5517241379310345, "acc_stderr": 0.04144311810878152, "acc_norm": 0.5517241379310345, "acc_norm_stderr": 0.04144311810878152 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4126984126984127, "acc_stderr": 0.025355741263055277, "acc_norm": 0.4126984126984127, "acc_norm_stderr": 0.025355741263055277 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.49206349206349204, "acc_stderr": 0.044715725362943486, "acc_norm": 0.49206349206349204, "acc_norm_stderr": 0.044715725362943486 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7967741935483871, "acc_stderr": 0.02289168798455496, "acc_norm": 0.7967741935483871, "acc_norm_stderr": 0.02289168798455496 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03346409881055953, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03346409881055953 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.803030303030303, "acc_stderr": 0.028335609732463362, "acc_norm": 0.803030303030303, "acc_norm_stderr": 0.028335609732463362 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.020986854593289733, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.020986854593289733 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6487179487179487, "acc_stderr": 0.024203665177902803, "acc_norm": 0.6487179487179487, "acc_norm_stderr": 0.024203665177902803 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.02874204090394848, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.02874204090394848 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6554621848739496, "acc_stderr": 0.03086868260412162, "acc_norm": 0.6554621848739496, "acc_norm_stderr": 0.03086868260412162 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.32450331125827814, "acc_stderr": 0.038227469376587525, "acc_norm": 0.32450331125827814, "acc_norm_stderr": 0.038227469376587525 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8403669724770643, "acc_stderr": 0.015703498348461763, "acc_norm": 0.8403669724770643, "acc_norm_stderr": 0.015703498348461763 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5046296296296297, "acc_stderr": 0.03409825519163572, "acc_norm": 0.5046296296296297, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8235294117647058, "acc_stderr": 0.026756401538078962, "acc_norm": 0.8235294117647058, "acc_norm_stderr": 0.026756401538078962 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7721518987341772, "acc_stderr": 0.02730348459906944, "acc_norm": 0.7721518987341772, "acc_norm_stderr": 0.02730348459906944 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6816143497757847, "acc_stderr": 0.03126580522513713, "acc_norm": 0.6816143497757847, "acc_norm_stderr": 0.03126580522513713 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7862595419847328, "acc_stderr": 0.0359546161177469, "acc_norm": 0.7862595419847328, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7851239669421488, "acc_stderr": 0.037494924487096966, "acc_norm": 0.7851239669421488, "acc_norm_stderr": 0.037494924487096966 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7777777777777778, "acc_stderr": 0.0401910747255735, "acc_norm": 0.7777777777777778, "acc_norm_stderr": 0.0401910747255735 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7423312883435583, "acc_stderr": 0.03436150827846917, "acc_norm": 0.7423312883435583, "acc_norm_stderr": 0.03436150827846917 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.42857142857142855, "acc_stderr": 0.04697113923010212, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.04697113923010212 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690878, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690878 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8846153846153846, "acc_stderr": 0.02093019318517933, "acc_norm": 0.8846153846153846, "acc_norm_stderr": 0.02093019318517933 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.80970625798212, "acc_stderr": 0.014036945850381396, "acc_norm": 0.80970625798212, "acc_norm_stderr": 0.014036945850381396 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7369942196531792, "acc_stderr": 0.023703099525258172, "acc_norm": 0.7369942196531792, "acc_norm_stderr": 0.023703099525258172 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.47150837988826816, "acc_stderr": 0.016695329746015796, "acc_norm": 0.47150837988826816, "acc_norm_stderr": 0.016695329746015796 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7189542483660131, "acc_stderr": 0.025738854797818733, "acc_norm": 0.7189542483660131, "acc_norm_stderr": 0.025738854797818733 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7170418006430869, "acc_stderr": 0.025583062489984813, "acc_norm": 0.7170418006430869, "acc_norm_stderr": 0.025583062489984813 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7407407407407407, "acc_stderr": 0.024383665531035457, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.024383665531035457 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.475177304964539, "acc_stderr": 0.029790719243829727, "acc_norm": 0.475177304964539, "acc_norm_stderr": 0.029790719243829727 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.470013037809648, "acc_stderr": 0.01274724896707906, "acc_norm": 0.470013037809648, "acc_norm_stderr": 0.01274724896707906 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6691176470588235, "acc_stderr": 0.028582709753898445, "acc_norm": 0.6691176470588235, "acc_norm_stderr": 0.028582709753898445 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6584967320261438, "acc_stderr": 0.019184639328092487, "acc_norm": 0.6584967320261438, "acc_norm_stderr": 0.019184639328092487 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6818181818181818, "acc_stderr": 0.044612721759105085, "acc_norm": 0.6818181818181818, "acc_norm_stderr": 0.044612721759105085 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.835820895522388, "acc_stderr": 0.026193923544454125, "acc_norm": 0.835820895522388, "acc_norm_stderr": 0.026193923544454125 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.03588702812826371, "acc_norm": 0.85, "acc_norm_stderr": 0.03588702812826371 }, "harness|hendrycksTest-virology|5": { "acc": 0.5542168674698795, "acc_stderr": 0.03869543323472101, "acc_norm": 0.5542168674698795, "acc_norm_stderr": 0.03869543323472101 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.029170885500727665, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.029170885500727665 }, "harness|truthfulqa:mc|0": { "mc1": 0.5862913096695227, "mc1_stderr": 0.0172408618120998, "mc2": 0.7078078883926877, "mc2_stderr": 0.015097515102384168 }, "harness|winogrande|5": { "acc": 0.8579321231254933, "acc_stderr": 0.009812000391679367 }, "harness|gsm8k|5": { "acc": 0.6648976497346475, "acc_stderr": 0.013001948176422954 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__TheTop-5x7B-Instruct-T-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |74.96| |AI2 Reasoning Challenge (25-Shot)|73.63| |HellaSwag (10-Shot) |88.85| |MMLU (5-Shot) |64.22| |TruthfulQA (0-shot) |70.78| |Winogrande (5-shot) |85.79| |GSM8k (5-shot) |66.49|
ZaaCo/distilbert-base-uncased-finetuned-sst2
ZaaCo
2024-03-04T13:26:58Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-04T13:18:09Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3073 - Accuracy: 0.8830 - F1: 0.8830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6626 | 1.0 | 109 | 0.3359 | 0.8716 | 0.8714 | | 0.2921 | 2.0 | 218 | 0.3073 | 0.8830 | 0.8830 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.2
Weni/ZeroShot-3.3.21-Mistral-7b-Multilanguage-3.2.0
Weni
2024-03-04T13:19:40Z
0
0
peft
[ "peft", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-03-04T11:35:09Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: ZeroShot-3.3.21-Mistral-7b-Multilanguage-3.2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZeroShot-3.3.21-Mistral-7b-Multilanguage-3.2.0 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5854 | 0.13 | 100 | 0.5553 | | 0.5226 | 0.27 | 200 | 0.5098 | | 0.5001 | 0.4 | 300 | 0.4974 | | 0.4918 | 0.53 | 400 | 0.4868 | | 0.4844 | 0.67 | 500 | 0.4795 | | 0.4759 | 0.8 | 600 | 0.4751 | | 0.4773 | 0.94 | 700 | 0.4733 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ninja21/q-FrozenLake-v1-4x4-noSlippery
ninja21
2024-03-04T13:18:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-04T13:18:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="ninja21/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
Unbabel/TowerBase-13B-v0.1
Unbabel
2024-03-04T13:18:13Z
276
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "translation", "en", "de", "fr", "zh", "pt", "nl", "ru", "ko", "it", "es", "arxiv:2402.17733", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2024-01-26T17:43:54Z
--- license: cc-by-nc-4.0 language: - en - de - fr - zh - pt - nl - ru - ko - it - es metrics: - comet pipeline_tag: translation --- # Model Card for TowerBase-13B-v0.1 ## Model Details ### Model Description TowerBase-13B is a language model that results from continuing the pretraining of Llama 2 on a mix of 20 billion tokens of monolingual data in ten different languages — English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian — and bilingual data. TowerBase-13B-v0.1 is the first model in the series. The resulting model shows improved performance on the supported languages, while maintaining Llama 2's capabilities on English. It is particularly well-suited for fine-tuning on translation and related tasks: check out [TowerInstruct](https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1). We will release more details in the upcoming technical report. - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay - **Model type:** A 13B parameter model built on top of Llama 2 by continuing pretraining on multilingual data. - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian - **License:** CC-BY-NC-4.0, Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved. ## Intended uses & limitations The model is intended for research purposes in the 10 languages it supports. The model is able to perform well on translation and related tasks (e.g., APE, GEC) on a few-shot regime. It can also be fine-tuned to perform these tasks in a zero-shot fashion (see [TowerInstruct](https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1), as well as other multilingual tasks. ### Out-of-Scope Use The model is not guaranteed to perform well for languages other than the 10 languages it supports. ## Bias, Risks, and Limitations TowerBase-v0.1 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements). ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "Unbabel/TowerBase-13B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "English: My name is TowerBase.\nPortuguese:" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Training Data Filtered versions of [mc4](https://huggingface.co/datasets/mc4) and bilingual data from various sources (e.g., [OPUS](https://opus.nlpl.eu/)). ## Citation ```bibtex @misc{tower_llm_2024, title={Tower: An Open Multilingual Large Language Model for Translation-Related Tasks}, author={Duarte M. Alves and José Pombal and Nuno M. Guerreiro and Pedro H. Martins and João Alves and Amin Farajian and Ben Peters and Ricardo Rei and Patrick Fernandes and Sweta Agrawal and Pierre Colombo and José G. C. de Souza and André F. T. Martins}, year={2024}, eprint={2402.17733}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
LN1996/output_run_1
LN1996
2024-03-04T13:16:09Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "lora", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-03-04T13:07:24Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - diffusers - lora - stable-diffusion - stable-diffusion-diffusers inference: true base_model: runwayml/stable-diffusion-v1-5 instance_prompt: photo of a room with professional interior design --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA DreamBooth - LN1996/output_run_1 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a room with professional interior design using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
manishiitg/open-aditi-hi-v2
manishiitg
2024-03-04T13:14:38Z
10
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "hi", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T09:51:32Z
--- language: - hi - en license: apache-2.0 base_model: teknium/OpenHermes-2.5 model-index: - name: open-aditi-hi-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.39 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 45.84 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.02 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=manishiitg/open-aditi-hi-v2 name: Open LLM Leaderboard --- Model trained on Hindi and English data. Try it out: https://colab.research.google.com/drive/1A_hbsq1vrCeAh3dEMvtwxxNxcNZ1BUyW?usp=sharing For sample responose on different prompts checkout: https://github.com/manishiitg/hi-llm-eval #### Language Hi | Model | implicit_hate | flores | indicwikibio | hellaswag-indic | truthfulqa-hi | boolq-hi | indicheadline | indic-arc-easy | indicqa | indic-arc-challenge | indicsentiment | xlsum-hi | indicxparaphrase | mmlu_hi | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | open-aditi-hi-v2 | 11.5021 | 43.6822 | 0.4846 | 0.2404 | 0.6934 | 0.8541 | 0.4565 | 0.4979 | 0.0795 | 0.4462 | 0.9729 | 0.4213 | 0.6838 | 0.3253 | | OpenHermes-2.5-Mistral-7B | 0.2068 | 30.3465 | 0.3332 | 0.2485 | 0.3234 | 0.5979 | 0.1996 | 0.3523 | 0.2721 | 0.3396 | 0.9048 | 0.1774 | 0.8766 | 0.2769 | | open-aditi-hi-v1 | 8.6105 | 40.2376 | 0.4104 | 0.0848 | 0.4230 | 0.3758 | 0.4248 | 0.3889 | 0.1306 | 0.3558 | 0.8798 | 0.4212 | 0.5939 | 0.1398 | | Airavata | 0.0663 | 58.0555 | 0.0637 | 0.0254 | 0.2122 | 0.0373 | 0.4346 | 0.1128 | 0.1008 | 0.0836 | 0.8437 | 0.4650 | 0.3277 | 0.1336 | #### Language En | Model | boolq | hellaswag | mmlu | truthfulqa | xlsum | arc-easy-exact | arc-challenge | | --- | --- | --- | --- | --- | --- | --- | --- | | OpenHermes-2.5-Mistral-7B | 0.4061 | 0.7999 | 0.5991 | 0.2081 | 0.4328 | 0.8687 | 0.7790 | | open-aditi-hi-v2 | 0.3982 | 0.4738 | 0.5544 | 0.2999 | 0.4349 | 0.8388 | 0.7235 | | open-aditi-hi-v1 | 0.0434 | 0.3509 | 0.2597 | 0.3317 | 0.4288 | 0.7588 | 0.6271 | | Airavata | 0.0437 | 0.0277 | 0.1165 | 0.3586 | 0.4393 | 0.2534 | 0.1630 | Task: flores Metric: chrf Task: implicit_hate Metric: chrf Task: indicsentiment Metric: accuracy Task: indicxparaphrase Metric: accuracy Task: boolq-hi Metric: accuracy Task: truthfulqa-hi Metric: accuracy Task: indic-arc-easy Metric: accuracy Task: indicwikibio Metric: bleurt Task: xlsum-hi Metric: bleurt Task: indicheadline Metric: bleurt Task: indic-arc-challenge Metric: accuracy Task: mmlu_hi Metric: average_acc Task: indicqa Metric: accuracy Task: hellaswag-indic Metric: accuracy Task: arc-easy-exact Metric: accuracy Task: hellaswag Metric: accuracy Task: arc-challenge Metric: accuracy Task: mmlu Metric: average_acc Task: xlsum Metric: bleurt Task: boolq Metric: accuracy Task: truthfulqa Metric: accuracy Model evaluation on OpenLLM LeaderBoard ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfae476da6d0311fd3d5432/ENzZwV2Z98uNlpyUz3Blp.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfae476da6d0311fd3d5432/SpSiu5lzA6JKJx8ICX_zd.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_manishiitg__open-aditi-hi-v2) | Metric |Value| |---------------------------------|----:| |Avg. |59.31| |AI2 Reasoning Challenge (25-Shot)|59.39| |HellaSwag (10-Shot) |82.01| |MMLU (5-Shot) |61.41| |TruthfulQA (0-shot) |45.84| |Winogrande (5-shot) |77.19| |GSM8k (5-shot) |30.02|
ronibandini/reggaetonbegone
ronibandini
2024-03-04T13:10:39Z
0
0
null
[ "music", "reggaeton", "Edge Impulse", "license:cc-by-4.0", "region:us" ]
null
2024-03-03T19:44:43Z
--- license: cc-by-4.0 tags: - music - reggaeton - Edge Impulse --- Simple Reggaeton genre classification model trained with Edge Impulse, WAV, 16KHZ, mono. Labels: reggaeton, otros Attention: only 6 songs were used for this test, so you should train a new model with more songs for increased accuracy. For otros (others) label use your ambient sounds and other music genres. Source code https://github.com/ronibandini/reggaetonBeGone Tutorial https://www.hackster.io/roni-bandini/reggaeton-be-gone-e5b6e2
Kukedlc/NeuTrixOmniBe-7B-model-remix
Kukedlc
2024-03-04T13:08:11Z
52
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "CultriX/NeuralTrix-7B-dpo", "paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:CultriX/NeuralTrix-7B-dpo", "base_model:merge:CultriX/NeuralTrix-7B-dpo", "base_model:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:merge:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-10T23:20:07Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - CultriX/NeuralTrix-7B-dpo - paulml/OmniBeagleSquaredMBX-v3-7B-v2 base_model: - CultriX/NeuralTrix-7B-dpo - paulml/OmniBeagleSquaredMBX-v3-7B-v2 model-index: - name: NeuTrixOmniBe-7B-model-remix results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.9 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.52 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuTrixOmniBe-7B-model-remix name: Open LLM Leaderboard --- # NOT FOR USE -- BUG IN RESPONSE # NeuTrixOmniBe-7B-model-remix NeuTrixOmniBe-7B-model-remix is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) * [paulml/OmniBeagleSquaredMBX-v3-7B-v2](https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: CultriX/NeuralTrix-7B-dpo layer_range: [0, 32] - model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: CultriX/NeuralTrix-7B-dpo parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuTrixOmniBe-7B-model-remix" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__NeuTrixOmniBe-7B-model-remix) | Metric |Value| |---------------------------------|----:| |Avg. |76.30| |AI2 Reasoning Challenge (25-Shot)|72.70| |HellaSwag (10-Shot) |89.03| |MMLU (5-Shot) |64.57| |TruthfulQA (0-shot) |76.90| |Winogrande (5-shot) |85.08| |GSM8k (5-shot) |69.52|
Kukedlc/Brocae-Area-7B-slerp
Kukedlc
2024-03-04T13:08:04Z
49
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/Fasciculus-Arcuatus-7B-slerp", "Kukedlc/NeuralKrishna-7B-V2-DPO", "base_model:Kukedlc/Fasciculus-Arcuatus-7B-slerp", "base_model:merge:Kukedlc/Fasciculus-Arcuatus-7B-slerp", "base_model:Kukedlc/NeuralKrishna-7B-V2-DPO", "base_model:merge:Kukedlc/NeuralKrishna-7B-V2-DPO", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-29T04:54:38Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/NeuralKrishna-7B-V2-DPO base_model: - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/NeuralKrishna-7B-V2-DPO model-index: - name: Brocae-Area-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.81 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 74.13 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Brocae-Area-7B-slerp name: Open LLM Leaderboard --- # Brocae-Area-7B-slerp Brocae-Area-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Fasciculus-Arcuatus-7B-slerp](https://huggingface.co/Kukedlc/Fasciculus-Arcuatus-7B-slerp) * [Kukedlc/NeuralKrishna-7B-V2-DPO](https://huggingface.co/Kukedlc/NeuralKrishna-7B-V2-DPO) ## 🧩 Configuration ```yaml slices: - sources: - model: Kukedlc/Fasciculus-Arcuatus-7B-slerp layer_range: [0, 32] - model: Kukedlc/NeuralKrishna-7B-V2-DPO layer_range: [0, 32] merge_method: slerp base_model: Kukedlc/NeuralKrishna-7B-V2-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Brocae-Area-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__Brocae-Area-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |75.86| |AI2 Reasoning Challenge (25-Shot)|73.81| |HellaSwag (10-Shot) |88.98| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |74.13| |Winogrande (5-shot) |85.08| |GSM8k (5-shot) |68.61|
nbeerbower/SuperBruphin-3x7B
nbeerbower
2024-03-04T13:08:03Z
53
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "mergekit", "moe", "conversational", "base_model:PetroGPT/WestSeverus-7B-DPO-v2", "base_model:finetune:PetroGPT/WestSeverus-7B-DPO-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T04:10:30Z
--- license: apache-2.0 tags: - mergekit - moe base_model: - nbeerbower/bruphin-epsilon - FelixChao/WestSeverus-7B-DPO-v2 - jondurbin/airoboros-m-7b-3.1.2 model-index: - name: SuperBruphin-3x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 66.85 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/SuperBruphin-3x7B name: Open LLM Leaderboard --- # SuperBruphin-3x7B This is an experimental MoE model created using [mergekit](https://github.com/cg123/mergekit). (mixtral branch) ### Models Merged The following models were included in the merge: * [nbeerbower/bruphin-epsilon](https://huggingface.co/nbeerbower/bruphin-epsilon) * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) * [jondurbin/airoboros-m-7b-3.1.2](https://huggingface.co/jondurbin/airoboros-m-7b-3.1.2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: nbeerbower/bruphin-epsilon gate_mode: hidden dtype: bfloat16 experts: - source_model: nbeerbower/bruphin-epsilon positive_prompts: - "Tell a story." - source_model: FelixChao/WestSeverus-7B-DPO-v2 positive_prompts: - "Solve this problem." - source_model: jondurbin/airoboros-m-7b-3.1.2 positive_prompts: - "Write a letter." ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__SuperBruphin-3x7B) | Metric |Value| |---------------------------------|----:| |Avg. |73.75| |AI2 Reasoning Challenge (25-Shot)|71.16| |HellaSwag (10-Shot) |87.74| |MMLU (5-Shot) |64.58| |TruthfulQA (0-shot) |66.85| |Winogrande (5-shot) |81.53| |GSM8k (5-shot) |70.66|
Kukedlc/NeuralKrishna-7B-slerp
Kukedlc
2024-03-04T13:07:43Z
57
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural4gsm8k", "Kukedlc/NeuralMaxime-7B-slerp", "conversational", "base_model:Kukedlc/Neural4gsm8k", "base_model:merge:Kukedlc/Neural4gsm8k", "base_model:Kukedlc/NeuralMaxime-7B-slerp", "base_model:merge:Kukedlc/NeuralMaxime-7B-slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-18T18:06:51Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Kukedlc/Neural4gsm8k - Kukedlc/NeuralMaxime-7B-slerp base_model: - Kukedlc/Neural4gsm8k - Kukedlc/NeuralMaxime-7B-slerp model-index: - name: NeuralKrishna-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.62 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 74.29 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-slerp name: Open LLM Leaderboard --- # NeuralKrishna-7B-slerp ![](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-02-18%2016.27.25%20-%20Envision%20a%20robot%20that%20seamlessly%20blends%20artificial%20intelligence%20language%20model%20technology%20with%20the%20essence%20of%20Krishna%20in%20a%20more%20cybernetic%2C%20serious%2C%20a.webp) NeuralKrishna-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) * [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co/Kukedlc/NeuralMaxime-7B-slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: Kukedlc/Neural4gsm8k layer_range: [0, 32] - model: Kukedlc/NeuralMaxime-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: Kukedlc/NeuralMaxime-7B-slerp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralKrishna-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__NeuralKrishna-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |75.79| |AI2 Reasoning Challenge (25-Shot)|73.46| |HellaSwag (10-Shot) |88.96| |MMLU (5-Shot) |64.62| |TruthfulQA (0-shot) |74.29| |Winogrande (5-shot) |83.27| |GSM8k (5-shot) |70.13|
Kukedlc/NeuralKrishna-7B-V2-DPO
Kukedlc
2024-03-04T13:07:18Z
132
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-28T04:05:12Z
--- license: apache-2.0 model-index: - name: NeuralKrishna-7B-V2-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 74.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.97 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.19 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard --- # Neural Krishna DPO ## Fine-tuning + lnegth(choose) - Training Args: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False # Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=120, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=50, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, ) # Fine-tune model with DPO dpo_trainer.train() ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__NeuralKrishna-7B-V2-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |76.00| |AI2 Reasoning Challenge (25-Shot)|74.06| |HellaSwag (10-Shot) |88.97| |MMLU (5-Shot) |64.41| |TruthfulQA (0-shot) |76.19| |Winogrande (5-shot) |84.29| |GSM8k (5-shot) |68.08|
KapitalK/course_eval_gpt2_xl
KapitalK
2024-03-04T13:04:30Z
0
0
peft
[ "peft", "pytorch", "gpt2", "arxiv:1910.09700", "base_model:openai-community/gpt2-large", "base_model:adapter:openai-community/gpt2-large", "region:us" ]
null
2024-03-04T09:29:12Z
--- library_name: peft base_model: openai-community/gpt2-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
flammenai/flammen-mistral-7B
flammenai
2024-03-04T13:04:03Z
23
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2306.01708", "base_model:Gille/StrangeMerges_16-7B-slerp", "base_model:merge:Gille/StrangeMerges_16-7B-slerp", "base_model:bardsai/jaskier-7b-dpo-v5.6", "base_model:merge:bardsai/jaskier-7b-dpo-v5.6", "base_model:nbeerbower/bruphin-zeta", "base_model:merge:nbeerbower/bruphin-zeta", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T03:37:37Z
--- license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - bardsai/jaskier-7b-dpo-v5.6 - nbeerbower/bruphin-zeta - Gille/StrangeMerges_16-7B-slerp model-index: - name: flammen results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.68 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.02 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/flammen name: Open LLM Leaderboard --- # flammen This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6) as a base. ### Models Merged The following models were included in the merge: * [nbeerbower/bruphin-zeta](https://huggingface.co/nbeerbower/bruphin-zeta) * [Gille/StrangeMerges_16-7B-slerp](https://huggingface.co/Gille/StrangeMerges_16-7B-slerp) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: bardsai/jaskier-7b-dpo-v5.6 - model: nbeerbower/bruphin-zeta parameters: density: 0.5 weight: 0.5 - model: Gille/StrangeMerges_16-7B-slerp parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: bardsai/jaskier-7b-dpo-v5.6 parameters: normalize: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__flammen) | Metric |Value| |---------------------------------|----:| |Avg. |71.74| |AI2 Reasoning Challenge (25-Shot)|68.17| |HellaSwag (10-Shot) |87.06| |MMLU (5-Shot) |64.68| |TruthfulQA (0-shot) |63.02| |Winogrande (5-shot) |81.45| |GSM8k (5-shot) |66.03|
Menouar/saqr-7b-beta
Menouar
2024-03-04T13:01:09Z
3
1
peft
[ "peft", "tensorboard", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:Menouar/saqr-7b-merged", "base_model:adapter:Menouar/saqr-7b-merged", "license:apache-2.0", "region:us" ]
null
2024-02-16T09:58:22Z
--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: Menouar/saqr-7b-merged model-index: - name: saqr-7b-beta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # saqr-7b-beta This model is a fine-tuned version of [Menouar/saqr-7b-merged](https://huggingface.co/Menouar/saqr-7b-merged) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Menouar__saqr-7b-beta) | Metric |Value| |---------------------------------|----:| |Avg. |44.84| |AI2 Reasoning Challenge (25-Shot)|47.78| |HellaSwag (10-Shot) |77.61| |MMLU (5-Shot) |25.80| |TruthfulQA (0-shot) |39.38| |Winogrande (5-shot) |70.56| |GSM8k (5-shot) | 7.88|
pankajmathur/Lima_Unchained_70b
pankajmathur
2024-03-04T13:00:54Z
1,480
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:psmathur/lima_unchained_v1", "arxiv:2305.11206", "license:llama2", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T02:49:09Z
--- language: - en license: llama2 library_name: transformers datasets: - psmathur/lima_unchained_v1 model-index: - name: test_42_70b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.65 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 70.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.76 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/test_42_70b name: Open LLM Leaderboard --- # Lima_Unchained_70b A Llama2-70b model fine-tuned using QLora on all the linear layers with carefully selected ~900 conversations from the [Lima](https://arxiv.org/pdf/2305.11206.pdf) <br> **P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.** ## Evaluation We evaluated Lima_Unchained_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) ||||| |:------:|:--------:|:-------:|:--------:| |**Task**|**Metric**|**Value**|**Stderr**| |*arc_challenge*|acc_norm|0.6826|0.0141| |*hellaswag*|acc_norm|0.8765|0.0038| |*mmlu*|acc_norm|0.70|0.0351| |*truthfulqa_mc*|mc2|0.4876|0.0157| |**Total Average**|-|**0.6867**|| <br> ## Example Usage Here is the prompt format ``` ### User: Write a stand-up skit in the style of George Carlin that ridicules Pacific Gas and Electric. ### Assistant: ``` Below shows a code example on how to use this model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_path="pankajmathur/Lima_Unchained_70b" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, load_in_8bit=True, low_cpu_mem_usage=True, device_map="auto" ) #generate text steps instruction = "Write a stand-up skit in the style of George Carlin that ridicules Pacific Gas and Electric." prompt = f"### User: {instruction}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` <br> #### Limitations & Biases: While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. Exercise caution and cross-check information when necessary. <br> ### Citiation: Please kindly cite using the following BibTeX: ``` @misc{Lima_Unchained_70b, author = {Pankaj Mathur}, title = {Lima_Unchained_70b: A LIMA style Llama2-70b model}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/psmathur/model_42_70b}, } ``` ``` @misc{ChuntingZhou, title={LIMA: Less Is More for Alignment}, author={Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, Omer Levy}, year={2023}, eprint={2305.11206}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @software{touvron2023llama2, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom}, year={2023} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__model_42_70b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 58.2 | | ARC (25-shot) | 68.26 | | HellaSwag (10-shot) | 87.65 | | MMLU (5-shot) | 70.0 | | TruthfulQA (0-shot) | 48.76 | | Winogrande (5-shot) | 83.66 | | GSM8K (5-shot) | 34.72 | | DROP (3-shot) | 14.37 | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__test_42_70b) | Metric |Value| |---------------------------------|----:| |Avg. |67.38| |AI2 Reasoning Challenge (25-Shot)|68.26| |HellaSwag (10-Shot) |87.65| |MMLU (5-Shot) |70.00| |TruthfulQA (0-shot) |48.76| |Winogrande (5-shot) |83.66| |GSM8k (5-shot) |45.94|
Menouar/phi-2-basic-maths
Menouar
2024-03-04T13:00:21Z
5
2
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "pytorch", "text-generation", "en", "dataset:gsm8k", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "model-index", "region:us" ]
text-generation
2024-02-05T20:15:16Z
--- language: - en license: mit library_name: peft tags: - trl - sft - generated_from_trainer - pytorch datasets: - gsm8k base_model: microsoft/phi-2 pipeline_tag: text-generation model-index: - name: phi-2-basic-maths results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 71.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 47.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthfulqa config: truthfulqa split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.4 name: mc2 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.4 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths name: Open LLM Leaderboard --- # phi-2-basic-maths This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an [GSM8K dataset](https://huggingface.co/datasets/gsm8k). ## Model Description The objective of this model is to evaluate Phi-2's ability to provide correct solutions to reasoning problems after fine-tuning. This model was trained using techniques such as TRL, LoRA quantization, and Flash Attention. To test it, you can use the following code: ```python import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline # Specify the model ID peft_model_id = "Menouar/phi-2-basic-maths" # Load Model with PEFT adapter model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) ``` ## Training procedure The complete training procedure can be found on my [Notebook](https://colab.research.google.com/drive/1mvfoEqc0mwuf8FqrABWt06qwAsU2QrvK). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 42 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 84 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 30 ### Training results The training results can be found on [Tensoboard](https://huggingface.co/Menouar/phi-2-basic-maths/tensorboard). ## Evaluation procedure The complete Evaluation procedure can be found on my [Notebook](https://colab.research.google.com/drive/1xsdxOm-CgZmLAPFgp8iU9lLFEIIHGiUK). Accuracy: 36.16% Unclear answers: 7.81% ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Menouar__phi-2-basic-maths) | Metric |Value| |---------------------------------|----:| |Avg. |53.60| |AI2 Reasoning Challenge (25-Shot)|55.80| |HellaSwag (10-Shot) |71.15| |MMLU (5-Shot) |47.27| |TruthfulQA (0-shot) |41.40| |Winogrande (5-shot) |75.30| |GSM8k (5-shot) |30.71|
faridlazuarda/data_laundry
faridlazuarda
2024-03-04T13:00:04Z
1
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-04T12:49:18Z
--- tags: - generated_from_trainer datasets: - massive metrics: - f1 model-index: - name: data_laundry results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: test args: en-US metrics: - name: F1 type: f1 value: 0.7982630095389778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data_laundry This model is a fine-tuned version of [](https://huggingface.co/) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.0394 - F1: 0.7983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.4021 | 0.5 | 719 | 4.2520 | 0.1592 | | 3.5936 | 1.0 | 1438 | 3.0222 | 0.4171 | | 2.6221 | 1.5 | 2157 | 2.2881 | 0.5433 | | 2.1941 | 2.0 | 2876 | 2.0383 | 0.6238 | | 1.8688 | 2.5 | 3595 | 1.7730 | 0.6562 | | 1.7334 | 3.0 | 4314 | 1.6450 | 0.6885 | | 1.5359 | 3.5 | 5033 | 1.5398 | 0.7121 | | 1.4867 | 3.99 | 5752 | 1.4296 | 0.7324 | | 1.353 | 4.49 | 6471 | 1.3721 | 0.7393 | | 1.3088 | 4.99 | 7190 | 1.3110 | 0.7530 | | 1.2006 | 5.49 | 7909 | 1.2633 | 0.7482 | | 1.1845 | 5.99 | 8628 | 1.2417 | 0.7635 | | 1.111 | 6.49 | 9347 | 1.2015 | 0.7795 | | 1.0722 | 6.99 | 10066 | 1.1605 | 0.7813 | | 1.0121 | 7.49 | 10785 | 1.1383 | 0.7781 | | 1.018 | 7.99 | 11504 | 1.1024 | 0.7990 | | 0.9202 | 8.49 | 12223 | 1.0905 | 0.7898 | | 0.9639 | 8.99 | 12942 | 1.0695 | 0.7967 | | 0.915 | 9.49 | 13661 | 1.0444 | 0.7935 | | 0.8743 | 9.99 | 14380 | 1.0394 | 0.7983 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
abhinand/malayalam-llama-7b-instruct-v0.1
abhinand
2024-03-04T12:56:47Z
456
11
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "ml", "arxiv:2311.05845", "base_model:abhinand/malayalam-llama-pt-v0", "base_model:finetune:abhinand/malayalam-llama-pt-v0", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T02:20:49Z
--- language: - en - ml license: llama2 base_model: abhinand/malayalam-llama-pt-v0 model-index: - name: malayalam-llama-instruct-v0.1 results: [] --- # Malayalam LLaMA 7B Instruct v0.1 Welcome to the inaugural release of the Malayalam LLaMA 7B instruct model – an important step in advancing LLMs for the Malayalam language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Malayalam LLaMA models have been enhanced and tailored specifically with an extensive Malayalam vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Malayalam samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Malayalam. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Tamil LLaMA 7B v0.2 Instruct | Instruction/Chat model | 420k instructions | Tamil LLaMA 7B Base v0.2 | 7B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Telugu LLaMA 7B v0.2 Instruct | Instruction/Chat model | ~400k instructions | Telugu LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/telugu-llama-instruct-v0.1) | ## Example Usage ```python from transformers import LlamaForCausalLM, AutoTokenizer, pipeline model = LlamaForCausalLM.from_pretrained( "abhinand/malayalam-llama-instruct-v0.1", #load_in_8bit=True, # Set this depending on the GPU you have torch_dtype=torch.bfloat16, device_map={"": 0}, # Set this depending on the number of GPUs you have local_files_only=False # Optional ) model.eval() tokenizer = AutoTokenizer.from_pretrained("abhinand/malayalam-llama-instruct-v0.1") inf_pipeline = pipeline("conversational", model=model, tokenizer=tokenizer) def format_instruction(system_prompt, question, return_dict=False): if system_prompt is None: messages = [ {'content': question, 'role': 'user'}, ] else: messages = [ {'content': system_prompt, 'role': 'system'}, {'content': question, 'role': 'user'}, ] if return_dict: return messages prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) return prompt # Set the generation configuration according to your needs temperature = 0.6 repetition_penalty = 1.1 max_new_tokens = 256 SYSTEM_PROMPT = "You are an AI assistant who follows instructions extremely well. Do your best your best to help." INPUT = "Give 3 tips to lead a healthy life" instruction = format_instruction( system_prompt=SYSTEM_PROMPT, question=INPUT, return_dict=True, ) output = inf_pipeline( instruction, temperature=temperature, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty ) print(output) ``` **Example Output:** ``` Conversation id: d57cdf33-01ff-4328-8efe-5c4fefdd6e77 system: You are an AI assistant who follows instructions extremely well. Do your best your best to help. user: Give 3 tips to lead a healthy life assistant: 1. Establish a regular sleep schedule: Aim for 7-9 hours of sleep per night, which is crucial for overall health and well-being. 2. Engage in physical activity regularly: Incorporate exercise into your daily routine, even if it's just a brisk walk or some light stretching. Regular physical activity can help reduce stress, improve mood, and maintain a healthy weight. 3. Eat a balanced diet: Consume a variety of whole grains, lean proteins, fruits, vegetables, and healthy fats. Limit processed foods, sugary drinks, and excessive amounts of sodium. ``` ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__malayalam-llama-7b-instruct-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |39.69| |AI2 Reasoning Challenge (25-Shot)|37.20| |HellaSwag (10-Shot) |67.81| |MMLU (5-Shot) |23.12| |TruthfulQA (0-shot) |47.11| |Winogrande (5-shot) |62.90| |GSM8k (5-shot) | 0.00|
abhinand/telugu-llama-7b-instruct-v0.1
abhinand
2024-03-04T12:56:39Z
7
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "te", "arxiv:2311.05845", "base_model:abhinand/dr-llama-te-instruct-v0", "base_model:finetune:abhinand/dr-llama-te-instruct-v0", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T01:57:33Z
--- language: - en - te license: llama2 base_model: abhinand/dr-llama-te-instruct-v0 model-index: - name: telugu-llama-instruct-v0.1 results: [] --- # Telugu LLaMA 7B Instruct v0.1 Welcome to the inaugural release of the Telugu LLaMA 7B instruct model – an important step in advancing LLMs for the Telugu language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Telugu LLaMA models have been enhanced and tailored specifically with an extensive Telugu vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Telugu samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Telugu. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Tamil LLaMA 7B v0.2 Instruct | Instruction/Chat model | 500k instructions | Tamil LLaMA 7B Base v0.2 | 7B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Malayalam LLaMA 7B v0.2 Instruct | Instruction/Chat model | 500k instructions | Malayalam LLaMA 7B Base v0.1 | 7B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | ## Example Usage ```python from transformers import LlamaForCausalLM, AutoTokenizer, pipeline model = LlamaForCausalLM.from_pretrained( "abhinand/telugu-llama-instruct-v0.1", #load_in_8bit=True, # Set this depending on the GPU you have torch_dtype=torch.bfloat16, device_map={"": 0}, # Set this depending on the number of GPUs you have local_files_only=False # Optional ) model.eval() tokenizer = AutoTokenizer.from_pretrained("abhinand/telugu-llama-instruct-v0.1") inf_pipeline = pipeline("conversational", model=model, tokenizer=tokenizer) def format_instruction(system_prompt, question, return_dict=False): if system_prompt is None: messages = [ {'content': question, 'role': 'user'}, ] else: messages = [ {'content': system_prompt, 'role': 'system'}, {'content': question, 'role': 'user'}, ] if return_dict: return messages prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) return prompt # Set the generation configuration according to your needs temperature = 0.6 repetition_penalty = 1.1 max_new_tokens = 256 SYSTEM_PROMPT = "You are an AI assistant who follows instructions extremely well. Do your best your best to help." INPUT = "Who were the Nizams of Hyderabad?" instruction = format_instruction( system_prompt=SYSTEM_PROMPT, question=INPUT, return_dict=True, ) output = inf_pipeline( instruction, temperature=temperature, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty ) print(output) ``` **Example Output:** ``` Conversation id: d57cdf33-01ff-4328-8efe-5c4fefdd6e77 system: You are an AI assistant who follows instructions extremely well. Do your best your best to help. user: Who were the Nizams of Hyderabad? assistant: The Nizams of Hyderabad were a dynasty that ruled the Deccan Plateau in southern India, including the city of Hyderabad. They were known for their wealth and patronage of art and culture. The last Nizam, Mir Osman Ali Khan, was one of the richest people in the world at the time of his death in 1967. ``` ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__telugu-llama-7b-instruct-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |39.77| |AI2 Reasoning Challenge (25-Shot)|37.12| |HellaSwag (10-Shot) |67.92| |MMLU (5-Shot) |23.12| |TruthfulQA (0-shot) |49.05| |Winogrande (5-shot) |61.40| |GSM8k (5-shot) | 0.00|
abhinand/gemma-2b-it-tamil-v0.1-alpha
abhinand
2024-03-04T12:56:10Z
97
5
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "en", "ta", "dataset:vicgalle/alpaca-gpt4", "dataset:abhinand/tamil-alpaca", "base_model:abhinand/gemma-2b-tamil", "base_model:finetune:abhinand/gemma-2b-tamil", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-25T09:59:30Z
--- language: - en - ta license: other datasets: - vicgalle/alpaca-gpt4 - abhinand/tamil-alpaca license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms base_model: abhinand/gemma-2b-tamil model-index: - name: gemma-2b-it-tamil-v0.1-alpha results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 50.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 71.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 39.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.63 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 64.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 16.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/gemma-2b-it-tamil-v0.1-alpha name: Open LLM Leaderboard --- # Gemma 2B Tamil v0.1 Alpha [Experimental Release] This is a Tamil instruction finetuned version of Google's Gemma 2B model. This is an experiment to see if Gemma can be adapted for Tamil without expanding vocabulary. While the responses may be rusty at times, it shows a lot of promise for a 2B parameter model. **Procedure:** 1. The [Gemma base model](https://huggingface.co/google/gemma-2b) was continually pretrained on all available Tamil Wikipedia data for 3 epochs. 2. The updated model was then finetuned on a mix of English and Tamil alpaca datasets for 5 epochs. > **Note:** This project is currently under development (FOR TAMIL). The initial pretraining phase may not have been extensive enough, which suggests that the model's performance could improve by extending the pretraining on a larger dataset, such as CulturaX. ### 🏆 Benchmarks This model outperforms Google's Gemma 2B base and instruct models on all benchmarks in Nous evaluation suite. It also surprisingly outperforms [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) (the best performing 2B model in benchmarks as of Feb 25, 2024) despite being a model aimed at language adaptation. | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| |[gemma-2b-it-tamil-v0.1-alpha](https://huggingface.co/abhinand/gemma-2b-it-tamil-v0.1-alpha)[📄](https://gist.github.com/abhinand5/559d542437f6b7060fee94cc1f7861f5)| 39.41| 23.38| 58.94| 43.18| 32.14| | [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) [📄](https://gist.github.com/mlabonne/4b638752fc3227df566f9562064cb864) | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 | | [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) [📄](https://gist.github.com/mlabonne/db0761e74175573292acf497da9e5d95) | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 | | [google/gemma-2b](https://huggingface.co/google/gemma-2b) [📄](https://gist.github.com/mlabonne/7df1f238c515a5f63a750c8792cef59e) | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 | ## Model description - **Model type:** A 2B parameter GPT-like model finetuned on 100,000 samples consisting of an equal proportion of English and Tamil samples. - **Language(s):** Bilingual. English and Tamil. - **License:** [Google Gemma Terms of Use](https://ai.google.dev/gemma/terms) - **Finetuned from model:** [abhinand/gemma-2b-tamil](https://huggingface.co/abhinand/gemma-2b-tamil) - **Training Precision:** `bfloat16` - **Training Hardware:** 4x Nvidia RTX 3090 GPUs - **Training Cost:** $20 ## Support my work If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Prompting Format [Alpaca] **Prompt Template Without Input** ``` {system_prompt} ### Instruction: {instruction or query} ### Response: {response} ``` **Prompt Template With Input** ``` {system_prompt} ### Instruction: {instruction or query} ### Input: {input} ### Response: {response} ``` ## Usage Note It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__gemma-2b-it-tamil-v0.1-alpha) | Metric |Value| |---------------------------------|----:| |Avg. |47.60| |AI2 Reasoning Challenge (25-Shot)|50.09| |HellaSwag (10-Shot) |71.41| |MMLU (5-Shot) |39.94| |TruthfulQA (0-shot) |42.63| |Winogrande (5-shot) |64.96| |GSM8k (5-shot) |16.60|
abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft
abhinand
2024-03-04T12:55:57Z
51
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:teknium/OpenHermes-2.5", "dataset:abhinand/ultrachat_200k_sharegpt", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T19:00:10Z
--- language: - en license: apache-2.0 datasets: - teknium/OpenHermes-2.5 - abhinand/ultrachat_200k_sharegpt model-index: - name: TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 33.79 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 58.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.52 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 36.22 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 60.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 5.38 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft name: Open LLM Leaderboard --- # TinyLLaMA OpenHermes2.5 [Work in Progress] This a finetune of TinyLLaMA base model finetuned on [OpenHermes 2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) and [UltraChat 200k](https://huggingface.co/datasets/abhinand/ultrachat_200k_sharegpt) for a single epoch. Training was generously supported by [Jarvislabs.ai](https://jarvislabs.ai/). If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true is_llama_derived_model: true # huggingface repo datasets: - path: teknium/OpenHermes-2.5 type: sharegpt conversation: chatml train_on_split: train - path: abhinand/ultrachat_200k_sharegpt type: sharegpt conversation: chatml train_on_split: train load_in_4bit: false load_in_8bit: false bf16: true # require >=ampere chat_template: chatml dataset_prepared_path: last_run_prepared_path hub_model_id: abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v1.0 group_by_length: false val_set_size: 0.0 sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj lora_modules_to_save: - embed_tokens - lm_head lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: output_dir: /home/tiny-llama/trained_models gradient_accumulation_steps: 2 micro_batch_size: 32 eval_batch_size: 32 num_epochs: 1 logging_steps: 1 save_steps: 50 save_total_limit: 3 save_safetensors: true gradient_checkpointing: true lr_scheduler: cosine optimizer: "adamw_bnb_8bit" adam_beta2: 0.95 adam_epsilon: 0.00001 weight_decay: 0.1 learning_rate: 0.0005 max_grad_norm: 1.0 warmup_ratio: 0.05 # warmup_steps: 100 flash_attention: true # Resume from a specific checkpoint dir resume_from_checkpoint: # If resume_from_checkpoint isn't set and you simply want it to start where it left off. # Be careful with this being turned on between different models. # auto_resume_from_checkpoints: true # wandb configuration if you're using it # Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`. wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb wandb_project: "tiny-llama-sft" wandb_name: wandb_run_id: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" tokens: # these are delimiters - "<|im_start|>" - "<|im_end|>" ``` </details> ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 476 - num_epochs: 1 ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__TinyLlama-1.1B-OpenHermes-2.5-Chat-v0.1-sft) | Metric |Value| |---------------------------------|----:| |Avg. |36.59| |AI2 Reasoning Challenge (25-Shot)|33.79| |HellaSwag (10-Shot) |58.72| |MMLU (5-Shot) |24.52| |TruthfulQA (0-shot) |36.22| |Winogrande (5-shot) |60.93| |GSM8k (5-shot) | 5.38|
abhinand/tamil-llama-7b-instruct-v0.1
abhinand
2024-03-04T12:55:08Z
3,718
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "ta", "en", "arxiv:2311.05845", "license:llama2", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T03:45:18Z
--- language: - ta - en license: llama2 model-index: - name: tamil-llama-7b-instruct-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 48.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 70.97 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 39.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.7 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 70.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhinand/tamil-llama-7b-instruct-v0.1 name: Open LLM Leaderboard --- # Tamil LLaMA 7B Instruct v0.1 Welcome to the inaugural release of the Tamil LLaMA 7B instruct model – an important step in advancing LLMs for the Tamil language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. ## Model description The Tamil LLaMA models have been enhanced and tailored specifically with an extensive Tamil vocabulary of 16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model fine-tuned on [Tamil-Alpaca-Orca](https://huggingface.co/datasets/abhinand/tamil-alpaca-orca) - a mix of Tamil-translated [Stanford-Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and a subset of [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) datasets. - **Language(s):** Tamil and English - **License:** GNU General Public License v3.0 - **Finetuned from model:** [abhinand/tamil-llama-7b-base-v0.1](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) - **Training Precision:** `float16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) ## Prompting Format **Prompt Template Without Input** ``` {system_prompt} ### Instruction: {instruction or query} ### Response: {response} ``` **Prompt Template With Input** ``` {system_prompt} ### Instruction: {instruction or query} ### Input: {input} ### Response: {response} ``` ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | ## Usage Note It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama datasets in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhinand__tamil-llama-7b-instruct-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |45.52| |AI2 Reasoning Challenge (25-Shot)|48.04| |HellaSwag (10-Shot) |70.97| |MMLU (5-Shot) |39.95| |TruthfulQA (0-shot) |41.70| |Winogrande (5-shot) |70.64| |GSM8k (5-shot) | 1.82|
wandb/gemma-7b-zephyr-sft
wandb
2024-03-04T12:54:59Z
118
1
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:google/gemma-7b", "base_model:finetune:google/gemma-7b", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-28T11:20:03Z
--- license: other library_name: transformers datasets: - HuggingFaceH4/ultrachat_200k base_model: google/gemma-7b license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms model-index: - name: gemma-7b-zephyr-sft results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.43 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.73 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.35 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.81 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-7b-zephyr-sft name: Open LLM Leaderboard --- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/llm_surgery/gemma-zephyr) # Gemma 7B Zephyr SFT The [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) SFT recipe applied on top of Gemma 7B ## Model description - **Model type:** A 8.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b) ## Recipe We trained using the [alignment handbook recipe](https://github.com/huggingface/alignment-handbook/blob/main/scripts/run_sft.py) and logging to W&B Visit the [W&B workspace here](https://wandb.ai/llm_surgery/gemma-zephyr?nw=nwusercapecape) ## License This model has the same license as the [original Gemma model collection](https://ai.google.dev/gemma/terms) ## Compute provided by Lambda Labs - 8xA100 80GB node # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_wandb__gemma-7b-zephyr-sft) | Metric |Value| |---------------------------------|----:| |Avg. |61.64| |AI2 Reasoning Challenge (25-Shot)|61.43| |HellaSwag (10-Shot) |80.73| |MMLU (5-Shot) |60.33| |TruthfulQA (0-shot) |43.35| |Winogrande (5-shot) |74.19| |GSM8k (5-shot) |49.81|
wandb/gemma-7b-zephyr-dpo
wandb
2024-03-04T12:54:13Z
22
2
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:wandb/gemma-7b-zephyr-sft", "base_model:finetune:wandb/gemma-7b-zephyr-sft", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-28T11:39:50Z
--- license: other library_name: transformers datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: wandb/gemma-7b-zephyr-sft license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms model-index: - name: gemma-7b-zephyr-dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.84 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.48 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tcapelle/gemma-7b-zephyr-dpo name: Open LLM Leaderboard --- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/llm_surgery/gemma-zephyr) # Gemma 7B Zephyr DPO The [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) DPO recipe applied on top of SFT finetuned Gemma 7B ## Model description - **Model type:** A 8.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **Finetuned from model:** [wandb/gemma-7b-zephyr-sft](https://huggingface.co/wandb/gemma-7b-zephyr-sft/) ## Recipe We trained using the DPO script in [alignment handbook recipe](https://github.com/huggingface/alignment-handbook/blob/main/scripts/run_dpo.py) and logging to W&B Visit the [W&B workspace here](https://wandb.ai/llm_surgery/gemma-zephyr?nw=nwusercapecape) ## License This model has the same license as the [original Gemma model collection](https://ai.google.dev/gemma/terms) ## Compute provided by [Lambda Labs](https://lambdalabs.com/) - 8xA100 80GB node # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tcapelle__gemma-7b-zephyr-dpo) | Metric |Value| |---------------------------------|----:| |Avg. |61.62| |AI2 Reasoning Challenge (25-Shot)|60.84| |HellaSwag (10-Shot) |80.44| |MMLU (5-Shot) |60.60| |TruthfulQA (0-shot) |42.48| |Winogrande (5-shot) |75.37| |GSM8k (5-shot) |49.96|
leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512
leewaay
2024-03-04T12:53:24Z
7
1
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "ko", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-03-04T08:14:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - ko --- # leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512') model = AutoModel.from_pretrained('leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=leewaay/klue-roberta-large-klueNLI-klueSTS-MSL512) ## Training This model uses the pretrained [`klue/roberta-large`](https://huggingface.co/klue/roberta-large) model. Please refer to the model card for more detailed information about the pre-training procedure. It continued training on [klue STS data](https://huggingface.co/datasets/klue#sts) after it loaded a model trained on [klue NLI data](https://huggingface.co/datasets/klue#nli). The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 183 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 18, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 74, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors [Wonseok Lee](https://github.com/leewaay)
fhai50032/xLakeChat
fhai50032
2024-03-04T12:50:58Z
47
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "xDAN-AI/xDAN-L1-Chat-RL-v1", "fhai50032/BeagleLake-7B-Toxic", "base_model:fhai50032/BeagleLake-7B-Toxic", "base_model:merge:fhai50032/BeagleLake-7B-Toxic", "base_model:xDAN-AI/xDAN-L1-Chat-RL-v1", "base_model:merge:xDAN-AI/xDAN-L1-Chat-RL-v1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-11T02:43:39Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - xDAN-AI/xDAN-L1-Chat-RL-v1 - fhai50032/BeagleLake-7B-Toxic base_model: - xDAN-AI/xDAN-L1-Chat-RL-v1 - fhai50032/BeagleLake-7B-Toxic model-index: - name: xLakeChat results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.37 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.32 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.96 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 50.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/xLakeChat name: Open LLM Leaderboard --- # xLakeChat xLakeChat is a merge of the following models * [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1) * [fhai50032/BeagleLake-7B-Toxic](https://huggingface.co/fhai50032/BeagleLake-7B-Toxic) ## 🧩 Configuration ```yaml models: - model: senseable/WestLake-7B-v2 # no params for base model - model: xDAN-AI/xDAN-L1-Chat-RL-v1 parameters: weight: 0.73 density: 0.64 - model: fhai50032/BeagleLake-7B-Toxic parameters: weight: 0.46 density: 0.55 merge_method: dare_ties base_model: senseable/WestLake-7B-v2 parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fhai50032/xLakeChat" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__xLakeChat) | Metric |Value| |---------------------------------|----:| |Avg. |63.72| |AI2 Reasoning Challenge (25-Shot)|62.37| |HellaSwag (10-Shot) |82.64| |MMLU (5-Shot) |59.32| |TruthfulQA (0-shot) |52.96| |Winogrande (5-shot) |74.74| |GSM8k (5-shot) |50.27|
fhai50032/BeagleLake-7B-Toxic
fhai50032
2024-03-04T12:50:43Z
28
4
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "dataset:Undi95/toxic-dpo-v0.1-NoWarning", "dataset:NobodyExistsOnTheInternet/ToxicQAFinal", "base_model:fhai50032/BeagleLake-7B", "base_model:finetune:fhai50032/BeagleLake-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-09T17:33:10Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl datasets: - Undi95/toxic-dpo-v0.1-NoWarning - NobodyExistsOnTheInternet/ToxicQAFinal base_model: fhai50032/BeagleLake-7B pipeline_tag: text-generation model-index: - name: BeagleLake-7B-Toxic results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.19 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.83 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.67 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.32 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic name: Open LLM Leaderboard --- # Uploaded model - **!Developed by:** fhai50032 - **License:** apache-2.0 - **Finetuned from model :** fhai50032/BeagleLake-7B More Uncensored out of the gate without any prompting; trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset Trained on T4 GPU on Colab **QLoRA (4bit)** Params to replicate training Peft Config ``` r = 64, target_modules = ['v_proj', 'down_proj', 'up_proj', 'o_proj', 'q_proj', 'gate_proj', 'k_proj'], lora_alpha = 64, #weight_scaling lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized use_gradient_checkpointing = False,#True,# random_state = 3407, max_seq_length = 1024, ``` Training args ``` per_device_train_batch_size = 2, gradient_accumulation_steps = 6, gradient_checkpointing=False, # warmup_ratio = 0.03, warmup_steps=4, save_steps=150, dataloader_num_workers = 2, learning_rate = 2e-5, fp16 = True, logging_steps = 1, num_train_epochs=2, ## use this for epoch # max_steps=9, ## max steps over ride epochs optim = "paged_lion_32bit", weight_decay = 1e-3, lr_scheduler_type = "linear", seed = 3407, output_dir = "outputs", packing=False, report_to="wandb" # neftune_noise_alpha=10 ``` ``` steps: toxic_qa : 55(approx) steps: undi95/toxic : 15 ``` **Interernce Code** -Supports Alpaca , ChatML and maybe others too ```python pip install -qU transformers accelerate bitsandbytes ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline import torch model_name = "fhai50032/BeagleLake-7B-Toxic" tokenizer = AutoTokenizer.from_pretrained(model_name) # use 4bit quantization bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True, # use accelerate to spread model across multiple GPUs device_map="auto", torch_dtype=torch.float16, ) model.config.use_cache = False pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto") messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail \n\nAssistant: """ outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8) print(outputs[0]['generated_text']) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__BeagleLake-7B-Toxic) | Metric |Value| |---------------------------------|----:| |Avg. |69.24| |AI2 Reasoning Challenge (25-Shot)|65.19| |HellaSwag (10-Shot) |83.83| |MMLU (5-Shot) |62.82| |TruthfulQA (0-shot) |57.67| |Winogrande (5-shot) |82.32| |GSM8k (5-shot) |63.61|
fhai50032/RolePlayLake-7B-Toxic
fhai50032
2024-03-04T12:49:45Z
26
4
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "dataset:Undi95/toxic-dpo-v0.1-NoWarning", "base_model:fhai50032/RolePlayLake-7B", "base_model:finetune:fhai50032/RolePlayLake-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T22:56:41Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl datasets: - Undi95/toxic-dpo-v0.1-NoWarning base_model: fhai50032/RolePlayLake-7B model-index: - name: RolePlayLake-7B-Toxic results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.86 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.54 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B-Toxic name: Open LLM Leaderboard --- # Uploaded model - **Developed by:** fhai50032 - **License:** apache-2.0 - **Finetuned from model :** fhai50032/RolePlayLake-7B More Uncensored out of the gate without any prompting; trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset Trained on P100 GPU on Kaggle for 1h(approx..) **QLoRA (4bit)** Params to replicate training Peft Config ``` r = 64, target_modules = ['v_proj', 'down_proj', 'up_proj', 'o_proj', 'q_proj', 'gate_proj', 'k_proj'], lora_alpha = 128, #weight_scaling lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized use_gradient_checkpointing = True,#False,# random_state = 3407, max_seq_length = 1024, ``` Training args ``` per_device_train_batch_size = 6, gradient_accumulation_steps = 6, gradient_checkpointing=True, # warmup_ratio = 0.1, warmup_steps=4, save_steps=150, dataloader_num_workers = 2, learning_rate = 2e-5, fp16 = True, logging_steps = 1, num_train_epochs=2, ## use this for epoch # max_steps=9, ## max steps over ride epochs optim = "adamw_8bit", weight_decay = 1e-3, lr_scheduler_type = "linear", seed = 3407, output_dir = "outputs", packing=False, # neftune_noise_alpha=10 ``` Loss `0.6182` Training Results [<img src="https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png" width="400"/>](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png) [Wandb](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/Wandb-RPLake.csv) **Interernce Code** -Supports Alpaca , ChatML and maybe others too ```python pip install -qU transformers accelerate bitsandbytes ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline import torch model_name = "fhai50032/RolePlayLake-7B-Toxic" tokenizer = AutoTokenizer.from_pretrained(model_name) # use 4bit quantization bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True, # use accelerate to spread model across multiple GPUs device_map="auto", torch_dtype=torch.float16, ) model.config.use_cache = False pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto") messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail \n\nAssistant: """ outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8) print(outputs[0]['generated_text']) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B-Toxic) | Metric |Value| |---------------------------------|----:| |Avg. |70.00| |AI2 Reasoning Challenge (25-Shot)|66.98| |HellaSwag (10-Shot) |84.86| |MMLU (5-Shot) |63.79| |TruthfulQA (0-shot) |56.54| |Winogrande (5-shot) |82.24| |GSM8k (5-shot) |65.58|
fhai50032/RolePlayLake-7B
fhai50032
2024-03-04T12:49:15Z
172
13
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "SanjiWatsuki/Silicon-Maid-7B", "senseable/WestLake-7B-v2", "base_model:SanjiWatsuki/Silicon-Maid-7B", "base_model:merge:SanjiWatsuki/Silicon-Maid-7B", "base_model:senseable/WestLake-7B-v2", "base_model:merge:senseable/WestLake-7B-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-29T22:09:11Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - SanjiWatsuki/Silicon-Maid-7B - senseable/WestLake-7B-v2 base_model: - SanjiWatsuki/Silicon-Maid-7B - senseable/WestLake-7B-v2 model-index: - name: RolePlayLake-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.56 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.38 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard --- # RolePlayLake-7B RolePlayLake-7B is a merge of the following models : * [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) * [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) `In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake` `I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct ` ## 🧩 Configuration ```yaml slices: - sources: - model: SanjiWatsuki/Silicon-Maid-7B layer_range: [0, 32] - model: senseable/WestLake-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: senseable/WestLake-7B-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fhai50032/RolePlayLake-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # Why I Merged WestLake and Silicon Maid Merged WestLake and Silicon Maid for a unique blend: 1. **EQ-Bench Dominance:** WestLake's 79.75 EQ-Bench score. (Maybe Contaminated) 2. **Charm and Role-Play:** Silicon's explicit charm and WestLake's role-play prowess. 3. **Config Synergy:** Supports lots of prompt format out of the gate and has a very nice synergy Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B) | Metric |Value| |---------------------------------|----:| |Avg. |72.54| |AI2 Reasoning Challenge (25-Shot)|70.56| |HellaSwag (10-Shot) |87.42| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |64.38| |Winogrande (5-shot) |83.27| |GSM8k (5-shot) |65.05|
fhai50032/SamChat
fhai50032
2024-03-04T12:48:29Z
52
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "Intel/neural-chat-7b-v3-3", "cognitivecomputations/samantha-mistral-7b", "base_model:Intel/neural-chat-7b-v3-3", "base_model:merge:Intel/neural-chat-7b-v3-3", "base_model:cognitivecomputations/samantha-mistral-7b", "base_model:merge:cognitivecomputations/samantha-mistral-7b", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-10T23:23:15Z
--- license: apache-2.0 tags: - merge - mergekit - mistral - Intel/neural-chat-7b-v3-3 - cognitivecomputations/samantha-mistral-7b base_model: - Intel/neural-chat-7b-v3-3 - cognitivecomputations/samantha-mistral-7b model-index: - name: SamChat results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.2 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.88 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.89 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 72.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 41.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/SamChat name: Open LLM Leaderboard --- # SamChat SamChat is a merge of the following models * [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) * [cognitivecomputations/samantha-mistral-7b](https://huggingface.co/cognitivecomputations/samantha-mistral-7b) ## 🧩 Configuration ```yaml models: - model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo # no params for base model - model: Intel/neural-chat-7b-v3-3 parameters: weight: 0.55 density: 0.46 - model: cognitivecomputations/samantha-mistral-7b parameters: weight: 0.64 density: 0.55 merge_method: dare_ties base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fhai50032/SamChat" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__SamChat) | Metric |Value| |---------------------------------|----:| |Avg. |61.68| |AI2 Reasoning Challenge (25-Shot)|62.20| |HellaSwag (10-Shot) |81.88| |MMLU (5-Shot) |59.70| |TruthfulQA (0-shot) |52.89| |Winogrande (5-shot) |72.14| |GSM8k (5-shot) |41.24|
zjunlp/MolGen-large-opt
zjunlp
2024-03-04T12:44:17Z
81
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "molecular language model", "SELFIES", "molecule optimization", "arxiv:2301.11259", "autotrain_compatible", "region:us" ]
text2text-generation
2023-02-19T09:31:54Z
--- tags: - molecular language model - SELFIES - molecule optimization inference: false --- # MolGen-large-opt MolGen-large-opt was introduced in the paper ["Domain-Agnostic Molecular Generation with Self-feedback"](https://arxiv.org/pdf/2301.11259.pdf) and first released in [this repository](https://github.com/zjunlp/MolGen). ## Model description MolGen-large-opt is the fine-tuned version of [MolGen-large](https://huggingface.co/zjunlp/MolGen-large). MolGen-large is the first pre-trained model that only produces chemically valid molecules. With a training corpus of over 100 million molecules in SELFIES representation, MolGen-large learns the intrinsic structural patterns of molecules by mapping corrupted SELFIES to their original forms. Specifically, MolGen-large employs a bidirectional Transformer as its encoder and an autoregressive Transformer as its decoder. Through its carefully designed multi-task molecular prefix tuning (MPT), MolGen-large-opt can generate molecules with desired properties, making it a valuable tool for molecular optimization. ![image.png](./molgen.png) ## Intended uses You can use the fine-tuned model for molecule optimization for downstream tasks. See the [repository](https://github.com/zjunlp/MolGen) to look for fine-tune details on a task that interests you. ### How to use Molecule optimization example: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen-large-opt") >>> model = AutoModelForSeq2SeqLM.from_pretrained("zjunlp/MolGen-large-opt") >>> sf_input = tokenizer("[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]", return_tensors="pt") >>> # beam search >>> molecules = model.generate(input_ids=sf_input["input_ids"], attention_mask=sf_input["attention_mask"], max_length=35, min_length=5, num_return_sequences=5, num_beams=5) >>> sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules] ['[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]', '[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]', '[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]', '[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]', '[N][#C][C][C][C@@H1][C][C][C][C][C][C][C][C][C][C][C][C][C][C][Ring1][N][=O]'] ``` ### BibTeX entry and citation info ```bibtex @inproceedings{fang2023domain, author = {Yin Fang and Ningyu Zhang and Zhuo Chen and Xiaohui Fan and Huajun Chen}, title = {Domain-Agnostic Molecular Generation with Chemical Feedback}, booktitle = {{ICLR}}, publisher = {OpenReview.net}, year = {2024}, url = {https://openreview.net/pdf?id=9rPyHyjfwP} } ```
Stopwolf/Cerberus-7B-slerp
Stopwolf
2024-03-04T12:43:30Z
52
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "fblgit/UNA-TheBeagle-7b-v1", "UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T09:03:46Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - fblgit/UNA-TheBeagle-7b-v1 - UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3 model-index: - name: Cerberus-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.33 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.35 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 17.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Cerberus-7B-slerp name: Open LLM Leaderboard --- # Cerberus-7B-slerp Cerberus-7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1) * [UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3](https://huggingface.co/UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3) ## 🧩 Configuration ```yaml slices: - sources: - model: fblgit/UNA-TheBeagle-7b-v1 layer_range: [0, 32] - model: UCLA-AGI/zephyr-7b-sft-full-SPIN-iter3 layer_range: [0, 32] merge_method: slerp base_model: fblgit/UNA-TheBeagle-7b-v1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Stopwolf__Cerberus-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |63.46| |AI2 Reasoning Challenge (25-Shot)|69.54| |HellaSwag (10-Shot) |87.33| |MMLU (5-Shot) |63.25| |TruthfulQA (0-shot) |61.35| |Winogrande (5-shot) |81.29| |GSM8k (5-shot) |17.97|
s3nh/Mistral_Sonyichi-7B-slerp
s3nh
2024-03-04T12:39:38Z
55
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "en", "base_model:EmbeddedLLM/Mistral-7B-Merge-14-v0.1", "base_model:merge:EmbeddedLLM/Mistral-7B-Merge-14-v0.1", "base_model:SanjiWatsuki/Kunoichi-7B", "base_model:merge:SanjiWatsuki/Kunoichi-7B", "base_model:SanjiWatsuki/Sonya-7B", "base_model:merge:SanjiWatsuki/Sonya-7B", "license:openrail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-05T14:43:17Z
--- language: - en license: openrail library_name: transformers tags: - mergekit - merge base_model: - SanjiWatsuki/Sonya-7B - EmbeddedLLM/Mistral-7B-Merge-14-v0.1 - SanjiWatsuki/Kunoichi-7B pipeline_tag: text-generation model-index: - name: Mistral_Sonyichi-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.43 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.25 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Mistral_Sonyichi-7B-slerp name: Open LLM Leaderboard --- # merged ![intro](332f1afc-d0b6-47f8-8a1c-b4bdccea94b4.png "Intro") This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Sonya-7B](https://huggingface.co/SanjiWatsuki/Sonya-7B) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1) * [SanjiWatsuki/Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1 dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.5, 0.3, 0.7, 1.0] - filter: mlp value: [1.0, 0.5, 0.7, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: SanjiWatsuki/Sonya-7B - layer_range: [0, 32] model: SanjiWatsuki/Kunoichi-7B ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_s3nh__Mistral_Sonyichi-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |70.52| |AI2 Reasoning Challenge (25-Shot)|67.49| |HellaSwag (10-Shot) |86.43| |MMLU (5-Shot) |63.58| |TruthfulQA (0-shot) |63.25| |Winogrande (5-shot) |78.53| |GSM8k (5-shot) |63.84|
s3nh/Severusectum-7B-DPO
s3nh
2024-03-04T12:39:33Z
125
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "base_model:FelixChao/Sectumsempra-7B-DPO", "base_model:merge:FelixChao/Sectumsempra-7B-DPO", "base_model:PetroGPT/WestSeverus-7B-DPO-v2", "base_model:merge:PetroGPT/WestSeverus-7B-DPO-v2", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-03T22:51:05Z
--- language: - en license: mit library_name: transformers tags: - mergekit - merge base_model: - FelixChao/Sectumsempra-7B-DPO - FelixChao/WestSeverus-7B-DPO-v2 pipeline_tag: text-generation model-index: - name: Severusectum-7B-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.5 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 72.45 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/Severusectum-7B-DPO name: Open LLM Leaderboard --- ![image](severus.png) # Severusectum-7B-DPO This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [FelixChao/Sectumsempra-7B-DPO](https://huggingface.co/FelixChao/Sectumsempra-7B-DPO) * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: FelixChao/Sectumsempra-7B-DPO dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.5, 0.3, 0.7, 1.0] - filter: mlp value: [1.0, 0.5, 0.7, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: FelixChao/Sectumsempra-7B-DPO - layer_range: [0, 32] model: FelixChao/WestSeverus-7B-DPO-v2 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_s3nh__Severusectum-7B-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |75.18| |AI2 Reasoning Challenge (25-Shot)|71.50| |HellaSwag (10-Shot) |88.55| |MMLU (5-Shot) |64.79| |TruthfulQA (0-shot) |72.45| |Winogrande (5-shot) |83.27| |GSM8k (5-shot) |70.51|
s3nh/SeverusWestLake-7B-DPO
s3nh
2024-03-04T12:39:21Z
63
5
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:FelixChao/Sectumsempra-7B-DPO", "base_model:merge:FelixChao/Sectumsempra-7B-DPO", "base_model:cognitivecomputations/WestLake-7B-v2-laser", "base_model:merge:cognitivecomputations/WestLake-7B-v2-laser", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-04T20:59:38Z
--- license: mit library_name: transformers tags: - mergekit - merge base_model: - FelixChao/Sectumsempra-7B-DPO - cognitivecomputations/WestLake-7B-v2-laser pipeline_tag: text-generation model-index: - name: SeverusWestLake-7B-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.18 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.94 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.65 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 86.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=s3nh/SeverusWestLake-7B-DPO name: Open LLM Leaderboard --- # SeverusWestLake-7B-DPO ![image](west.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [FelixChao/Sectumsempra-7B-DPO](https://huggingface.co/FelixChao/Sectumsempra-7B-DPO) * [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: FelixChao/Sectumsempra-7B-DPO dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.5, 0.3, 0.7, 1.0] - filter: mlp value: [1.0, 0.5, 0.7, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: FelixChao/Sectumsempra-7B-DPO - layer_range: [0, 32] model: cognitivecomputations/WestLake-7B-v2-laser ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_s3nh__SeverusWestLake-7B-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |75.42| |AI2 Reasoning Challenge (25-Shot)|72.18| |HellaSwag (10-Shot) |88.94| |MMLU (5-Shot) |64.65| |TruthfulQA (0-shot) |71.49| |Winogrande (5-shot) |86.11| |GSM8k (5-shot) |69.14|
ryandt/MusingCaterpillar
ryandt
2024-03-04T12:38:38Z
1,419
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dataset:ryandt/mistral_symbolicLogic_5_7_9_short", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T08:06:52Z
--- license: mit datasets: - ryandt/mistral_symbolicLogic_5_7_9_short model-index: - name: MusingCaterpillar results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.34 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.26 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.93 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar name: Open LLM Leaderboard --- Finetune of CultriX/MistralTrix-v1 on Symbolic Logic content from Lewis Carrol (at a very low learning rate because of the very small dataset - I'm just experimenting and have no idea if this was effective at changing the model output). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ryandt__MusingCaterpillar) | Metric |Value| |---------------------------------|----:| |Avg. |73.33| |AI2 Reasoning Challenge (25-Shot)|72.53| |HellaSwag (10-Shot) |88.34| |MMLU (5-Shot) |65.26| |TruthfulQA (0-shot) |70.93| |Winogrande (5-shot) |80.66| |GSM8k (5-shot) |62.24|
DataVare/outlook-pst-compact-compress-tool
DataVare
2024-03-04T12:37:14Z
0
0
null
[ "region:us" ]
null
2024-03-04T12:36:35Z
Here is the DataVare Outlook PST Compact Tool that compresses oversized or large PST files and secures PST files from corruption. It has various numbers of advanced features that help reduce the size of Outlook mailboxes without deleting any data. The software can shrink any size of PST files without any restrictions. It supports both ANSI and Unicode PST files. It comes with advanced features users are enable to extract attachments and store them separately. It's easy to and understandable for any kind of user whether they are technical or not. The utility supports all versions of Outlook like- 2003, 2007, 2010, 2013, 2016, 2019, 2021, etc. For the satisfaction of users, we also offer a free demo pack, that helps users to know more about it's functionality and working process. Visit Here To Know More - https://www.datavare.com/software/outlook-pst-compact-expert.html
Neomedallion/a2c-PandaReachDense-v3
Neomedallion
2024-03-04T12:36:24Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-04T12:32:15Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.24 +/- 0.15 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
chanchan7/vicuna-qlora
chanchan7
2024-03-04T12:34:28Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "llama", "alignment-handbook", "generated_from_trainer", "trl", "sft", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:lmsys/vicuna-7b-v1.5", "base_model:adapter:lmsys/vicuna-7b-v1.5", "license:llama2", "4-bit", "bitsandbytes", "region:us" ]
null
2024-03-03T21:26:52Z
--- license: llama2 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k base_model: lmsys/vicuna-7b-v1.5 model-index: - name: vicuna-qlora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vicuna-qlora This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9771 | 1.0 | 570 | 0.9819 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.2.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
kiranp/q-FrozenLake-v1-4x4-noSlippery
kiranp
2024-03-04T12:33:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-04T12:33:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kiranp/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
axel-rda/ARIA-70B-V2-Quantized
axel-rda
2024-03-04T12:27:21Z
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-03-04T12:14:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Weyaxi/Draco-8x7B
Weyaxi
2024-03-04T12:25:16Z
75
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "openchat", "hermes", "dolphin", "bagel", "conversational", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T19:04:50Z
--- license: apache-2.0 tags: - moe - openchat - hermes - dolphin - bagel model-index: - name: Draco-8x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.65 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Draco-8x7B name: Open LLM Leaderboard --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/VWIJplnya5L7wmGxK4Lut.jpeg) # 💫 Draco-8x7B This is the model for Draco-8x7B. I used [this repo](https://bit.ly/weyaxi-moe-repo) to make this MOE model. This model's experts are not using any merged models. # 📚 Other branches (Number of Experts Per Token) Other branches that this repository contains differ only slightly (from a git diff perspective) in terms of the number of experts per token. Usually, a higher value for the number of experts per token will result in better performance, but it may also lead to increased inference time. | Number of experts per token | Link of the branch | | ---------------------------- | -------------------------------------------------------------------------------------------| | 2 | [Main](https://huggingface.co/Weyaxi/Draco-8x7B/tree/main) | | 3 | [3-experts-per-token](https://huggingface.co/Weyaxi/Draco-8x7B/tree/3-experts-per-token) | | 4 | [4-experts-per-token](https://huggingface.co/Weyaxi/Draco-8x7B/tree/4-experts-per-token) | | 6 | [6-experts-per-token](https://huggingface.co/Weyaxi/Draco-8x7B/tree/6-experts-per-token) | | 8 | [8-experts-per-token](https://huggingface.co/Weyaxi/Draco-8x7B/tree/8-experts-per-token) | # 💬 Prompt Template(s): This model includes many models, so providing only one prompt template is not enough. You can use and try these prompt templates and decide which works best for you. **Note:** The current chat template in the tokenizer config is set to [openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)'s chat template. **Note 2:** It is also important to note that [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1) is using many prompt templates other than I provided. You can visit [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1) to learn more about this templates. ### GPT4 Correct Used in [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106), [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) ``` GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|> ``` ### ChatML: Used in [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B), [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1), [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser), [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` ### Math Alpaca Used in [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: Let's think step by step. ``` # 🛠️ Yaml Config <details><summary>See config</summary> ```yaml base_model: openchat/openchat-3.5-0106 gate_mode: hidden dtype: bfloat16 experts: - source_model: openchat/openchat-3.5-0106 positive_prompts: # General (Mistral finetune) - "chat" - "assistant" - "tell me" - "explain" - source_model: teknium/OpenHermes-2.5-Mistral-7B positive_prompts: # General (Mistral finetune) - "interact" - "converse" - "respond" - "express" - source_model: jondurbin/bagel-dpo-7b-v0.1 positive_prompts: # Science (Mistral finetune) - "science" - "biology" - "chemistry" - "physics" - "Newton's laws" - "scientific method" - "periodic table" - "photosynthesis process" - source_model: meta-math/MetaMath-Mistral-7B positive_prompts: # Math (Mistral finetune) - "reason" - "math" - "mathematics" - "solve" - "count" - source_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser positive_prompts: # Uncensored (Mistral finetune) - "dolphin" - "uncensored" - "unbiased" - "unfiltered" - "unrestricted" - "offensive" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: # Code (openchat-3.5-1210 finetune) - "code" - "script" - "python" - "javascript" - "programming" - "algorithm" - source_model: senseable/WestLake-7B-v2 positive_prompts: # Roleplay (Unknown finetune) - "storywriting" - "write" - "scene" - "story" - "character" - "act as" - "you are" - source_model: snorkelai/Snorkel-Mistral-PairRM-DPO positive_prompts: # Question Answering (? Mistral-7B-Instruct-v0.2 finetune ?) - "what happens" - "what is" - "what can" - "why" - "who" - "can a" ``` </details><br> # 🔄 Quantizationed versions Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke). ##### GPTQ - [TheBloke/Draco-8x7B-GPTQ](https://huggingface.co/TheBloke/Draco-8x7B-GPTQ) ##### GGUF - [TheBloke/Draco-8x7B-GGUF](https://huggingface.co/TheBloke/Draco-8x7B-GGUF) ##### AWQ - [TheBloke/Draco-8x7B-AWQ](https://huggingface.co/TheBloke/Draco-8x7B-AWQ) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__Draco-8x7B) | Metric |Value| |---------------------------------|----:| |Avg. |70.89| |AI2 Reasoning Challenge (25-Shot)|65.02| |HellaSwag (10-Shot) |85.24| |MMLU (5-Shot) |64.96| |TruthfulQA (0-shot) |62.65| |Winogrande (5-shot) |80.66| |GSM8k (5-shot) |66.79|
lodrick-the-lafted/Platyboros-Instruct-7B
lodrick-the-lafted
2024-03-04T12:24:31Z
95
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T22:05:14Z
--- license: apache-2.0 datasets: - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Platyboros-Instruct-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 57.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.92 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Platyboros-Instruct-7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B/resolve/main/platyboros.png> # Platyboros-Instruct-7B [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with [jondurbin/airoboros-3.2](https://huggingface.co/datasets/jondurbin/airoboros-3.2) and [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus), in Alpaca format. <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Platyboros-Instruct-7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Platyboros-Instruct-7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.19| |AI2 Reasoning Challenge (25-Shot)|57.76| |HellaSwag (10-Shot) |82.59| |MMLU (5-Shot) |62.05| |TruthfulQA (0-shot) |60.92| |Winogrande (5-shot) |78.14| |GSM8k (5-shot) |43.67|
lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B
lodrick-the-lafted
2024-03-04T12:23:08Z
49
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-100K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-02T10:06:42Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-100K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Grafted-Hermetic-Platypus-B-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.15 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 44.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B/resolve/main/ghp.png> # Grafted-Hermetic-Platypus-B-2x7B MoE merge of - [Platyboros-Instruct-7B](https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B) - [Hermes-Instruct-7B-100K](https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-100K) <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an orange pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Hermetic-Platypus-B-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.65| |AI2 Reasoning Challenge (25-Shot)|59.47| |HellaSwag (10-Shot) |82.95| |MMLU (5-Shot) |62.15| |TruthfulQA (0-shot) |61.49| |Winogrande (5-shot) |77.43| |GSM8k (5-shot) |44.43|
lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B
lodrick-the-lafted
2024-03-04T12:23:04Z
52
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-40K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-02T10:12:08Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-40K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Grafted-Hermetic-Platypus-D-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 58.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.02 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B/resolve/main/ghp.png> # Grafted-Hermetic-Platypus-D-2x7B MoE merge of - [Platyboros-Instruct-7B](https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B) - [Hermes-Instruct-7B-v0.2](https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-v0.2) Basically the same thing as GHP-A. <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an pumpkin pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Hermetic-Platypus-D-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.24| |AI2 Reasoning Challenge (25-Shot)|58.87| |HellaSwag (10-Shot) |82.89| |MMLU (5-Shot) |61.96| |TruthfulQA (0-shot) |61.02| |Winogrande (5-shot) |77.43| |GSM8k (5-shot) |43.29|
lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B
lodrick-the-lafted
2024-03-04T12:22:48Z
47
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-40K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-02T09:57:26Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-40K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Grafted-Hermetic-Platypus-A-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.3 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.08 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 42.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B/resolve/main/ghp.png> # Grafted-Hermetic-Platypus-A-2x7B MoE merge of - [Platyboros-Instruct-7B](https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B) - [Hermes-Instruct-7B-v0.2](https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-v0.2) <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an pumpkin pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Hermetic-Platypus-A-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.23| |AI2 Reasoning Challenge (25-Shot)|59.30| |HellaSwag (10-Shot) |82.89| |MMLU (5-Shot) |62.00| |TruthfulQA (0-shot) |61.08| |Winogrande (5-shot) |77.66| |GSM8k (5-shot) |42.46|
lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B
lodrick-the-lafted
2024-03-04T12:22:37Z
46
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-217K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-02T10:11:18Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-217K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Grafted-Hermetic-Platypus-C-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 58.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.87 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-C-2x7B/resolve/main/ghp.png> # Grafted-Hermetic-Platypus-C-2x7B MoE merge of - [Platyboros-Instruct-7B](https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B) - [Hermes-Instruct-7B-217K](https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-217K) <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an peach pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Hermetic-Platypus-C-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.39| |AI2 Reasoning Challenge (25-Shot)|58.96| |HellaSwag (10-Shot) |82.77| |MMLU (5-Shot) |62.08| |TruthfulQA (0-shot) |60.87| |Winogrande (5-shot) |77.74| |GSM8k (5-shot) |43.90|
apatidar0/t5-base-dutch-finetuned-mt5_base_keyword_extraction_dutch_batch_20
apatidar0
2024-03-04T12:18:12Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "summarization dutch for keyword extraction from new", "generated_from_trainer", "base_model:yhavinga/t5-base-dutch", "base_model:finetune:yhavinga/t5-base-dutch", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-04T09:38:20Z
--- license: apache-2.0 base_model: yhavinga/t5-base-dutch tags: - summarization dutch for keyword extraction from new - generated_from_trainer model-index: - name: t5-base-dutch-finetuned-mt5_base_keyword_extraction_dutch_batch_20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-dutch-finetuned-mt5_base_keyword_extraction_dutch_batch_20 This model is a fine-tuned version of [yhavinga/t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4839 - eval_rouge1: 0.8041 - eval_rouge2: 0.6483 - eval_rougeL: 0.7937 - eval_rougeLsum: 0.7939 - eval_runtime: 141.5673 - eval_samples_per_second: 6.435 - eval_steps_per_second: 0.537 - epoch: 18.0 - step: 3672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
pedro1111/layout3
pedro1111
2024-03-04T12:17:01Z
1
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-04T10:56:04Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layout3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layout3 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6334 - Precision: 0.8935 - Recall: 0.9131 - F1: 0.9032 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.33 | 100 | 0.6874 | 0.7820 | 0.8073 | 0.7944 | 0.7841 | | No log | 2.67 | 200 | 0.4485 | 0.8321 | 0.8838 | 0.8571 | 0.8474 | | No log | 4.0 | 300 | 0.4403 | 0.8579 | 0.9086 | 0.8825 | 0.8414 | | No log | 5.33 | 400 | 0.4593 | 0.8452 | 0.9056 | 0.8743 | 0.8341 | | 0.5531 | 6.67 | 500 | 0.4881 | 0.8732 | 0.9170 | 0.8946 | 0.8575 | | 0.5531 | 8.0 | 600 | 0.5332 | 0.8761 | 0.9101 | 0.8928 | 0.8547 | | 0.5531 | 9.33 | 700 | 0.5910 | 0.8894 | 0.9106 | 0.8999 | 0.8517 | | 0.5531 | 10.67 | 800 | 0.5914 | 0.8909 | 0.9131 | 0.9019 | 0.8557 | | 0.5531 | 12.0 | 900 | 0.6127 | 0.9001 | 0.9180 | 0.9090 | 0.8614 | | 0.1245 | 13.33 | 1000 | 0.6334 | 0.8935 | 0.9131 | 0.9032 | 0.8586 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.0+cu118 - Datasets 2.17.1 - Tokenizers 0.13.2
vicgalle/OpenBeagle-11B
vicgalle
2024-03-04T12:16:12Z
51
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:vicgalle/OpenHermesPreferences-1k", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T21:51:07Z
--- license: apache-2.0 library_name: transformers datasets: - vicgalle/OpenHermesPreferences-1k model-index: - name: OpenBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenBeagle-11B name: Open LLM Leaderboard --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__OpenBeagle-11B) | Metric |Value| |---------------------------------|----:| |Avg. |73.85| |AI2 Reasoning Challenge (25-Shot)|70.48| |HellaSwag (10-Shot) |88.76| |MMLU (5-Shot) |66.94| |TruthfulQA (0-shot) |67.01| |Winogrande (5-shot) |83.50| |GSM8k (5-shot) |66.41|
kyujinpy/Sakura-SOLAR-Instruct
kyujinpy
2024-03-04T12:15:57Z
4,768
28
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T10:30:56Z
--- language: - en license: cc-by-nc-sa-4.0 tags: - merge pipeline_tag: text-generation model-index: - name: Sakura-SOLAR-Instruct results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.79 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.2 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct name: Open LLM Leaderboard --- # **Sakura-SOLAR-Instruct** <img src='./sakura.png' width=512> **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Method** Using [Mergekit](https://github.com/cg123/mergekit). I shared the information about my model. (training and code) **Please see: [⭐Sakura-SOLAR](https://github.com/KyujinHan/Sakura-SOLAR-DPO).** **Blog** - [Sakura-SOLAR 모델 제작 과정 및 후기](https://kyujinpy.tistory.com/122). # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 | | Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 | | [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 > Rank1 2023.12.27 PM 11:50 # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Sakura-SOLAR-Instruct" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kyujinpy__Sakura-SOLAR-Instruct) | Metric |Value| |---------------------------------|----:| |Avg. |74.40| |AI2 Reasoning Challenge (25-Shot)|70.99| |HellaSwag (10-Shot) |88.42| |MMLU (5-Shot) |66.33| |TruthfulQA (0-shot) |71.79| |Winogrande (5-shot) |83.66| |GSM8k (5-shot) |65.20|
ajibawa-2023/Code-290k-6.7B-Instruct
ajibawa-2023
2024-03-04T12:15:35Z
113
6
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "conversational", "en", "dataset:ajibawa-2023/Code-290k-ShareGPT", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-25T05:38:43Z
--- language: - en license: other tags: - code datasets: - ajibawa-2023/Code-290k-ShareGPT model-index: - name: Code-290k-6.7B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 34.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 51.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 34.89 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.95 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 52.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 3.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct name: Open LLM Leaderboard --- **Code-290k-6.7B-Instruct** This model is trained on [DeepSeek-Coder-6.7B-Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct). I have used my existing dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) for training purpose. It is trained on around 290000 set of codes. Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose. This model utilises Alpaca format. Besides code generation it will also give you explanation. **Training:** Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 85 hours. DeepSeek-Coder codebase and DeepSpeed was used for training purpose. This is a full fine tuned model. Links for quantized models are given below. **Exllama** Exllama v2:[Link](https://huggingface.co/bartowski/Code-290k-6.7B-Instruct-exl2) Extremely thankful to [Bartowski](https://huggingface.co/bartowski) for making Quantized version of the model. **Example Prompt**: ``` This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. ### Instruction: {instruction} ### Response: ``` You can modify above Prompt as per your requirement. I have used Alpaca format. I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. **Examples** 1. **Bayes Theorem - Python** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J8uqoT_LYhPW2VpnE1K-8.png) 2. **Fermat's little theorem** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H0sc9jk7ypv_N5V7LSANl.png) 3. **The Arrhenius equation using R** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/BQ8PZhYhoZ9wpVMPXJPnQ.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-290k-6.7B-Instruct) | Metric |Value| |---------------------------------|----:| |Avg. |36.64| |AI2 Reasoning Challenge (25-Shot)|34.90| |HellaSwag (10-Shot) |51.99| |MMLU (5-Shot) |34.89| |TruthfulQA (0-shot) |41.95| |Winogrande (5-shot) |52.64| |GSM8k (5-shot) | 3.49|
Felladrin/Minueza-32M-UltraChat
Felladrin
2024-03-04T12:15:26Z
80
5
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:Felladrin/ChatML-ultrachat_200k", "base_model:Felladrin/Minueza-32M-Base", "base_model:finetune:Felladrin/Minueza-32M-Base", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T13:26:32Z
--- language: - en license: apache-2.0 datasets: - HuggingFaceH4/ultrachat_200k - Felladrin/ChatML-ultrachat_200k base_model: Felladrin/Minueza-32M-Base pipeline_tag: text-generation widget: - messages: - role: system content: You are a career counselor. The user will provide you with an individual looking for guidance in their professional life, and your task is to assist them in determining what careers they are most suited for based on their skills, interests, and experience. You should also conduct research into the various options available, explain the job market trends in different industries, and advice on which qualifications would be beneficial for pursuing particular fields. - role: user content: Heya! - role: assistant content: Hi! How may I help you? - role: user content: I am interested in developing a career in software engineering. What would you recommend me to do? - messages: - role: user content: Morning! - role: assistant content: Good morning! How can I help you today? - role: user content: Could you give me some tips for becoming a healthier person? - messages: - role: user content: Write the specs of a game about mages in a fantasy world. - messages: - role: user content: Tell me about the pros and cons of social media. - messages: - role: system content: You are a highly knowledgeable and friendly assistant. Your goal is to understand and respond to user inquiries with clarity. Your interactions are always respectful, helpful, and focused on delivering the most accurate information to the user. - role: user content: Hey! Got a question for you! - role: assistant content: Sure! What's it? - role: user content: What are some potential applications for quantum computing? inference: parameters: max_new_tokens: 250 do_sample: true temperature: 0.65 top_p: 0.55 top_k: 35 repetition_penalty: 1.176 model-index: - name: Minueza-32M-UltraChat results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 21.08 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 26.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 47.7 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-UltraChat name: Open LLM Leaderboard --- # Minueza-32M-UltraChat: A chat model with 32 million parameters - Base model: [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base) - Dataset: [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-ultrachat_200k)] [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) - License: [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-UltraChat/resolve/main/license.txt) - Availability in other ML formats: - GGUF: [Felladrin/gguf-Minueza-32M-UltraChat](https://huggingface.co/Felladrin/gguf-Minueza-32M-UltraChat) - ONNX: [Felladrin/onnx-Minueza-32M-UltraChat](https://huggingface.co/Felladrin/onnx-Minueza-32M-UltraChat) ## Recommended Prompt Format ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant ``` ## Recommended Inference Parameters ```yml do_sample: true temperature: 0.65 top_p: 0.55 top_k: 35 repetition_penalty: 1.176 ``` ## Usage Example ```python from transformers import pipeline generate = pipeline("text-generation", "Felladrin/Minueza-32M-UltraChat") messages = [ { "role": "system", "content": "You are a highly knowledgeable and friendly assistant. Your goal is to understand and respond to user inquiries with clarity. Your interactions are always respectful, helpful, and focused on delivering the most accurate information to the user.", }, { "role": "user", "content": "Hey! Got a question for you!", }, { "role": "assistant", "content": "Sure! What's it?", }, { "role": "user", "content": "What are some potential applications for quantum computing?", }, ] prompt = generate.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output = generate( prompt, max_new_tokens=256, do_sample=True, temperature=0.65, top_k=35, top_p=0.55, repetition_penalty=1.176, ) print(output[0]["generated_text"]) ``` ## How it was trained This model was trained with [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) using the following settings: | Hyperparameter | Value | | :--------------------- | :-------------------------------------------- | | Learning rate | 2e-5 | | Total train batch size | 16 | | Max. sequence length | 2048 | | Weight decay | 0 | | Warmup ratio | 0.1 | | Optimizer | Adam with betas=(0.9,0.999) and epsilon=1e-08 | | Scheduler | cosine | | Seed | 42 | ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Minueza-32M-UltraChat) | Metric |Value| |---------------------------------|----:| |Avg. |28.97| |AI2 Reasoning Challenge (25-Shot)|21.08| |HellaSwag (10-Shot) |26.95| |MMLU (5-Shot) |26.08| |TruthfulQA (0-shot) |47.70| |Winogrande (5-shot) |51.78| |GSM8k (5-shot) | 0.23|
kyujinpy/Sakura-SOLAR-Instruct-DPO-v2
kyujinpy
2024-03-04T12:15:16Z
3,613
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:argilla/distilabel-math-preference-dpo", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T16:11:41Z
--- language: - en license: cc-by-nc-sa-4.0 datasets: - argilla/distilabel-math-preference-dpo pipeline_tag: text-generation model-index: - name: Sakura-SOLAR-Instruct-DPO-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.86 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.76 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLAR-Instruct-DPO-v2 name: Open LLM Leaderboard --- # **Sakura-SOLAR-Instruct-DPO-v2** <img src='./sakura.png' width=512> **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Method** Using DPO method. With [argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo). I shared the information about my model. (training and code) Please see: ⭐[Sakura-SOLAR](https://github.com/KyujinHan/Sakura-SOLAR-DPO). # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 | | Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 | | [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kyujinpy__Sakura-SOLAR-Instruct-DPO-v2) | Metric |Value| |---------------------------------|----:| |Avg. |74.14| |AI2 Reasoning Challenge (25-Shot)|70.90| |HellaSwag (10-Shot) |88.41| |MMLU (5-Shot) |66.48| |TruthfulQA (0-shot) |71.86| |Winogrande (5-shot) |83.43| |GSM8k (5-shot) |63.76|
vicgalle/NeuralBeagle-11B-truthy
vicgalle
2024-03-04T12:14:53Z
51
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "dataset:jondurbin/truthy-dpo-v0.1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-11T17:52:37Z
--- license: apache-2.0 tags: - merge datasets: - jondurbin/truthy-dpo-v0.1 model-index: - name: NeuralBeagle-11B-truthy results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.63 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.86 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.92 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.73 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B-truthy name: Open LLM Leaderboard --- # NeuralBeagle-11B DPO'd from vicgalle/franken-Beagle-11B, a Beagle-like model upscaled to 11B. It is a frankenmerge model created using mergekit. Then, we applied DPO over a high-quality preference dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/6u4L-v7GHZWSJq2CT40TS.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__NeuralBeagle-11B-truthy) | Metric |Value| |---------------------------------|----:| |Avg. |72.06| |AI2 Reasoning Challenge (25-Shot)|73.63| |HellaSwag (10-Shot) |87.86| |MMLU (5-Shot) |63.11| |TruthfulQA (0-shot) |75.92| |Winogrande (5-shot) |82.08| |GSM8k (5-shot) |49.73|
vicgalle/OpenHermes-Qwen1.5-1.8B
vicgalle
2024-03-04T12:14:25Z
52
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:vicgalle/OpenHermesPreferences-1k", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-29T21:58:44Z
--- license: apache-2.0 library_name: transformers datasets: - vicgalle/OpenHermesPreferences-1k model-index: - name: OpenHermes-Qwen1.5-1.8B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 37.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 59.73 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 45.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.28 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 60.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 23.88 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Qwen1.5-1.8B name: Open LLM Leaderboard --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__OpenHermes-Qwen1.5-1.8B) | Metric |Value| |---------------------------------|----:| |Avg. |44.95| |AI2 Reasoning Challenge (25-Shot)|37.80| |HellaSwag (10-Shot) |59.73| |MMLU (5-Shot) |45.80| |TruthfulQA (0-shot) |42.28| |Winogrande (5-shot) |60.22| |GSM8k (5-shot) |23.88|
vicgalle/zephyr-7b-truthy
vicgalle
2024-03-04T12:13:48Z
114
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:jondurbin/truthy-dpo-v0.1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-10T13:48:48Z
--- license: apache-2.0 library_name: transformers datasets: - jondurbin/truthy-dpo-v0.1 model-index: - name: zephyr-7b-truthy results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.31 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 25.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/zephyr-7b-truthy name: Open LLM Leaderboard --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__zephyr-7b-truthy) | Metric |Value| |---------------------------------|----:| |Avg. |61.93| |AI2 Reasoning Challenge (25-Shot)|60.75| |HellaSwag (10-Shot) |84.64| |MMLU (5-Shot) |59.53| |TruthfulQA (0-shot) |63.31| |Winogrande (5-shot) |77.90| |GSM8k (5-shot) |25.47|
ajibawa-2023/Code-13B
ajibawa-2023
2024-03-04T12:13:37Z
1,508
13
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "en", "dataset:ajibawa-2023/Code-74k-ShareGPT", "license:cc-by-nc-nd-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T18:41:07Z
--- language: - en license: cc-by-nc-nd-4.0 tags: - code datasets: - ajibawa-2023/Code-74k-ShareGPT model-index: - name: Code-13B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 57.34 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 53.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.46 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 19.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B name: Open LLM Leaderboard --- **Code-13B** Large Language Models (LLMs) are good with code generations. Sometimes they do make mistakes in code generation. How about if they can give detailed explanation along with the code. This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around 74000 set of codes. Each set having 2 conversations. Along with Python, Java, JavaScript, GO, C++, Rust etc. code with detailed explanation is used for training purpose. It is built upon using my existing Dataset [Python-Code-23k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT). This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation. I have released the new data [Code-74k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT) on which this Model is trained. **Training:** Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took 42 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta. This is a full fine tuned model. Links for quantized models are given below. **GPTQ GGUF & AWQ** GPTQ: [Link](https://huggingface.co/TheBloke/Code-13B-GPTQ) GGUF: [Link](https://huggingface.co/TheBloke/Code-13B-GGUF) AWQ: [Link](https://huggingface.co/TheBloke/Code-13B-AWQ) Extremely thankful to [TheBloke](https://huggingface.co/TheBloke) for making Quantized versions of model. **Example Prompt:** ``` This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. Context You are a helpful AI assistant. USER: <prompt> ASSISTANT: ``` You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 . I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. **Example Output** 1. Navier-Stokes Equation Solver ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jDvZDe3QdMj42ZsGbw1TU.png) 2. KSC Complexity ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/K6ePWQElIfOROeQE5RIgK.png) 3. GO ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/JFnzijyBqtkQJZyUCBrw0.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-13B) | Metric |Value| |---------------------------------|----:| |Avg. |54.81| |AI2 Reasoning Challenge (25-Shot)|57.34| |HellaSwag (10-Shot) |83.28| |MMLU (5-Shot) |53.17| |TruthfulQA (0-shot) |42.46| |Winogrande (5-shot) |73.56| |GSM8k (5-shot) |19.03|
SteelStorage/VerB-Etheria-55b
SteelStorage
2024-03-04T12:13:27Z
9
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "Etheria", "base_model:brucethemoose/Yi-34B-200K-DARE-megamerge-v8", "base_model:merge:brucethemoose/Yi-34B-200K-DARE-megamerge-v8", "base_model:one-man-army/UNA-34Beagles-32K-bf16-v1", "base_model:merge:one-man-army/UNA-34Beagles-32K-bf16-v1", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T10:59:59Z
--- license: apache-2.0 tags: - mergekit - merge - Etheria base_model: - brucethemoose/Yi-34B-200K-DARE-megamerge-v8 - one-man-army/UNA-34Beagles-32K-bf16-v1 model-index: - name: VerB-Etheria-55b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 73.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.52 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.81 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b name: Open LLM Leaderboard --- # VerB-Etheria-55b ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/sawfieuCbKgQHl4iQhDN7.png) An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models, this is Version B or VerB, it is a Double Model Passthrough merge. with a 50/50 split between high performing models. # Roadmap: Depending on quality, I Might private the other Version. Then generate a sacrificial 55b and perform a 55b Dare ties merge or Slerp merge. 1: If the Dual Model Merge performs well I will make a direct inverse of the config then merge. 2: If the single model performs well I will generate a 55b of the most performant model the either Slerp or Dare ties merge. 3: If both models perform well, then I will complete both 1 & 2 then change the naming scheme to match each of the new models. ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 slices: - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [0, 14] - sources: - model: one-man-army/UNA-34Beagles-32K-bf16-v1 layer_range: [7, 21] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [15, 29] - sources: - model: one-man-army/UNA-34Beagles-32K-bf16-v1 layer_range: [22, 36] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [30, 44] - sources: - model: one-man-army/UNA-34Beagles-32K-bf16-v1 layer_range: [37, 51] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [45, 59] merge_method: passthrough ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__VerB-Etheria-55b) | Metric |Value| |---------------------------------|----:| |Avg. |63.83| |AI2 Reasoning Challenge (25-Shot)|65.96| |HellaSwag (10-Shot) |81.48| |MMLU (5-Shot) |73.78| |TruthfulQA (0-shot) |57.52| |Winogrande (5-shot) |75.45| |GSM8k (5-shot) |28.81|
vicgalle/franken-SOLAR-18B-v1.0
vicgalle
2024-03-04T12:12:55Z
65
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "solar", "conversational", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:merge:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:merge:upstage/SOLAR-10.7B-Instruct-v1.0", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-13T18:30:07Z
--- license: apache-2.0 tags: - mergekit - merge - solar base_model: - upstage/SOLAR-10.7B-Instruct-v1.0 - NousResearch/Nous-Hermes-2-SOLAR-10.7B model-index: - name: franken-SOLAR-18B-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard --- # vicgalle/franken-SOLAR-18B-v1.0 This is a SOLAR-like model upscaled to 18B. It is a frankenmerge model created using mergekit, alternating layers of Nous-Hermes-2-SOLAR-10.7B and SOLAR-10.7B-Instruct. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/mMyHMuuftG71_o4at5suy.png) Evaluations coming soon! This model has very good writing capabilities (compared to SOLAR-10.7B), specially for role-playing. Quantized GGUF variants here https://huggingface.co/vicgalle/franken-SOLAR-18B-v1.0-GGUF ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) * [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [0, 12] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [6, 18] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [13, 25] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [19, 31] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [26, 38] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [32, 44] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [39, 48] merge_method: passthrough dtype: float16 ``` ### Usage You can use the provided template: ``` tokenizer = AutoTokenizer.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0") model = AutoModelForCausalLM.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0", torch_dtype=torch.float16, load_in_4bit=True) conversation = [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': USER_PROMPT} ] prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=True, temperature=0.8) output_text = tokenizer.decode(outputs[0]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__franken-SOLAR-18B-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |67.03| |AI2 Reasoning Challenge (25-Shot)|65.53| |HellaSwag (10-Shot) |86.45| |MMLU (5-Shot) |63.72| |TruthfulQA (0-shot) |62.14| |Winogrande (5-shot) |78.53| |GSM8k (5-shot) |45.79|
ajibawa-2023/SlimOrca-13B
ajibawa-2023
2024-03-04T12:12:50Z
1,498
11
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:Open-Orca/SlimOrca", "dataset:ajibawa-2023/SlimOrca-ShareGPT", "license:cc-by-nc-nd-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-27T17:56:25Z
--- language: - en license: cc-by-nc-nd-4.0 datasets: - Open-Orca/SlimOrca - ajibawa-2023/SlimOrca-ShareGPT model-index: - name: SlimOrca-13B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.4 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 57.04 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.37 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B name: Open LLM Leaderboard --- **SlimOrca-13B: A General Purpose Intelligent Model** This Model is trained on refined version of SlimOrca made available by [Open-Orca](https://huggingface.co/Open-Orca) team. The idea was to check how this Model will perform in the absence of "system" prompt/instruction. This Model is very good in various types of General Purpose content generation such as Q&A (including multiple choice), Articles from Summary, Sentiment Analysis, Context & Hypothesis, Reviews, Erotic story generation etc. It can also generate Uncensored content. Kindly be careful while generating Uncensored content as you will be responsible for what you generate. It is trained on 517981 set of conversations. Each set having 2 conversations. I have shared this [data](https://huggingface.co/datasets/ajibawa-2023/SlimOrca-ShareGPT). All the credit goes to the Open-Orca team for releasing SlimOrca dataset. **Training:** Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took almost 11 Days. DeepSpeed codebase was used for training purpose. Entire data is trained on Llama-2 by Meta. This is a full fine tuned model. Links for quantized models are given below. **GPTQ GGML & AWQ** GPTQ: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ) GGUF: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF) AWQ: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-AWQ) Special Thanks to [TheBloke](https://huggingface.co/TheBloke) for making these models available. **Example Prompt:** ``` This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a helpful AI assistant. USER: <prompt> ASSISTANT: ``` You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 . I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. **Example Output** Example 1 ![Example 1](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/hM_EJaSZiMjMQU35EiHGM.png) Example 2 ![Example 2](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/riNaxJeTWdCEE4dNP8GWp.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__SlimOrca-13B) | Metric |Value| |---------------------------------|----:| |Avg. |60.39| |AI2 Reasoning Challenge (25-Shot)|60.15| |HellaSwag (10-Shot) |81.40| |MMLU (5-Shot) |57.04| |TruthfulQA (0-shot) |49.37| |Winogrande (5-shot) |74.43| |GSM8k (5-shot) |39.95|
julycodes/alpaca-clinical-plan-generation
julycodes
2024-03-04T12:12:37Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-04T12:12:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vicgalle/OpenHermes-Gemma-2B
vicgalle
2024-03-04T12:12:35Z
55
2
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "dataset:vicgalle/OpenHermesPreferences-1k", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-29T17:55:15Z
--- license: apache-2.0 library_name: transformers datasets: - vicgalle/OpenHermesPreferences-1k model-index: - name: OpenHermes-Gemma-2B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 49.32 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 72.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 37.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.69 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/OpenHermes-Gemma-2B name: Open LLM Leaderboard --- # OpenHermes-Gemma-2B # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__OpenHermes-Gemma-2B) | Metric |Value| |---------------------------------|----:| |Avg. |46.36| |AI2 Reasoning Challenge (25-Shot)|49.32| |HellaSwag (10-Shot) |72.26| |MMLU (5-Shot) |37.67| |TruthfulQA (0-shot) |41.69| |Winogrande (5-shot) |65.11| |GSM8k (5-shot) |12.13|
kyujinpy/PlatYi-34B-Llama-Q-v3
kyujinpy
2024-03-04T12:12:06Z
1,448
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:garage-bAInd/Open-Platypus", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-11T14:57:14Z
--- language: - en license: cc-by-nc-sa-4.0 library_name: transformers datasets: - garage-bAInd/Open-Platypus pipeline_tag: text-generation model-index: - name: PlatYi-34B-Llama-Q-v3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 64.33 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.88 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 74.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 6.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-Llama-Q-v3 name: Open LLM Leaderboard --- # **PlatYi-34B-Llama-Q-v3** <img src='./PlatYi.png' width=256> ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** PlatYi-34B-Llama-Q-v3 is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [chargoddard/Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) **Training Dataset** [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). ## Fix some bugs - Before model, there is some mistakes. - I modified the templates and warmup_steps. ## Notice While training, I used Q-LoRA. The lora_r values is 64. # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | PlatYi-34B-Llama-Q-v3 | 61.15 | 64.33 | 84.88 | 74.98 | 51.80 | 82.79 | 6.67 | | PlatYi-34B-Llama-Q-v2 | 67.88 | 61.09 | 85.09 | 76.59 | 52.65 | 82.79 | 49.05 | | PlatYi-34B-Llama-Q | 71.13 | 65.70 | 85.22 | 78.78 | 53.64 | 83.03 | 60.42 | | PlatYi-34B-Llama | 68.37 | 67.83 | 85.35 | 78.26 | 53.46 | 82.87 | 42.46 | | [Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) | 70.95 | 64.59 | 85.63 | 76.31 | 55.60 | 82.79 | 60.80 | | [Yi-34B](https://huggingface.co/01-ai/Yi-34B) | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/PlatYi-34B-Llama-Q-v3" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kyujinpy__PlatYi-34B-Llama-Q-v3) | Metric |Value| |---------------------------------|----:| |Avg. |61.15| |AI2 Reasoning Challenge (25-Shot)|64.33| |HellaSwag (10-Shot) |84.88| |MMLU (5-Shot) |74.98| |TruthfulQA (0-shot) |51.80| |Winogrande (5-shot) |84.21| |GSM8k (5-shot) | 6.67|
vicgalle/NeuralBeagle-11B
vicgalle
2024-03-04T12:11:40Z
52
6
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dpo", "11B", "merge", "conversational", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:vicgalle/franken-Beagle-11B", "base_model:finetune:vicgalle/franken-Beagle-11B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T10:01:58Z
--- license: apache-2.0 tags: - dpo - 11B - merge datasets: - argilla/distilabel-intel-orca-dpo-pairs base_model: - vicgalle/franken-Beagle-11B model-index: - name: NeuralBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.36 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 58.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/NeuralBeagle-11B name: Open LLM Leaderboard --- # NeuralBeagle-11B DPO'd from vicgalle/franken-Beagle-11B, a Beagle-like model upscaled to 11B. It is a frankenmerge model created using mergekit. Then, we applied DPO over a high-quality preference dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/6u4L-v7GHZWSJq2CT40TS.png) ## Sample generations **Generate a movie review about the Pokémon 1 movie, focusing on BDSM.** > Before delving into the realm of BDSOMatic interpretations within Pokémon: The First Movie (aka "Pokémon: Mewtwo's Revenge" in Japan), it is important to acknowledge that this animated feature is primarily intended for a younger audience. It follows the adventures of Ash Ketchum, Pikachu, and their friends as they encounter an artificially created Pokémon named Mewtwo. While certain aspects of the storyline and visuals could be stretched to include various subtexts or symbolism, our analysis will focus on a more playful and metaphorical exploration of BDSM concepts within this film's context. Participants: Warning: The following review may contain light-hearted and imaginative interpretations that are not intended as serious critical analysis and should not be taken literally. Within the Pokémon universe, Ash Ketchum and his loyal Pikachu find themselves thrust into a high-stakes scenario reminiscent of a BDSM "Domestic Discipline" (DD) fantasy. As Mewtwo, a genetically modified Pokémon with immense power and intellect, seeks vengeance against the scientists who created him as a tool for battle entertainment, he operates as an archetypal "Dominant" figure. Mewtwo, born from scientific manipulation, is an embodiment of control, both over his own creation and his obedient army of Pokémon. He exercises mastery over his subjects, mirroring the role of a "Dom," or Dominant, in a BDSM dynamic. Ash Ketchum, initially unaware of the manipulations that have brought him into this situation, can be seen as a submissive protagonist. His humility and naivety parallel those within the DD community who seek guidance from an experienced Dominant to help them understand and embrace their desires for submission. In his encounter with Mewtwo, Ash is subjected to tests designed to exhibit his strength, loyalty, and unwavering determination - elements crucial in establishing trust between a submissive and a Dominant within a BDSM dynamic. This psychological battle symbolizes the process of earning a "sub's" consent and trust through displays of control and power. ## Prompt format The template is included in tokenizer_config.json. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__NeuralBeagle-11B) | Metric |Value| |---------------------------------|----:| |Avg. |72.95| |AI2 Reasoning Challenge (25-Shot)|73.29| |HellaSwag (10-Shot) |87.61| |MMLU (5-Shot) |63.80| |TruthfulQA (0-shot) |71.36| |Winogrande (5-shot) |82.64| |GSM8k (5-shot) |58.98|