modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
MayBashendy/ASAP_FineTuningBERT_Aug_k20_task1_organization_fold4
MayBashendy
2024-11-06T16:17:51Z
161
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T15:44:54Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_Aug_k20_task1_organization_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_Aug_k20_task1_organization_fold4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4950 - Qwk: 0.6411 - Mse: 0.4950 - Rmse: 0.7035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:------:| | No log | 0.0063 | 2 | 10.1861 | 0.0 | 10.1861 | 3.1916 | | No log | 0.0126 | 4 | 8.5953 | -0.0005 | 8.5953 | 2.9318 | | No log | 0.0189 | 6 | 6.9159 | 0.0051 | 6.9159 | 2.6298 | | No log | 0.0252 | 8 | 5.5130 | 0.0037 | 5.5130 | 2.3480 | | No log | 0.0315 | 10 | 4.3816 | 0.0018 | 4.3816 | 2.0932 | | No log | 0.0379 | 12 | 3.5082 | 0.0492 | 3.5082 | 1.8730 | | No log | 0.0442 | 14 | 2.7686 | 0.0128 | 2.7686 | 1.6639 | | No log | 0.0505 | 16 | 2.1322 | 0.0118 | 2.1322 | 1.4602 | | No log | 0.0568 | 18 | 1.6261 | 0.0079 | 1.6261 | 1.2752 | | No log | 0.0631 | 20 | 1.2562 | 0.1722 | 1.2562 | 1.1208 | | No log | 0.0694 | 22 | 1.0333 | 0.0420 | 1.0333 | 1.0165 | | No log | 0.0757 | 24 | 0.8915 | 0.0316 | 0.8915 | 0.9442 | | No log | 0.0820 | 26 | 0.8074 | 0.0316 | 0.8074 | 0.8986 | | No log | 0.0883 | 28 | 0.7660 | 0.0316 | 0.7660 | 0.8752 | | No log | 0.0946 | 30 | 0.7689 | 0.0542 | 0.7689 | 0.8769 | | No log | 0.1009 | 32 | 0.9386 | 0.0937 | 0.9386 | 0.9688 | | No log | 0.1073 | 34 | 0.8347 | 0.0771 | 0.8347 | 0.9136 | | No log | 0.1136 | 36 | 0.8293 | 0.4385 | 0.8293 | 0.9106 | | No log | 0.1199 | 38 | 0.8916 | 0.3628 | 0.8916 | 0.9442 | | No log | 0.1262 | 40 | 0.8068 | 0.0212 | 0.8068 | 0.8982 | | No log | 0.1325 | 42 | 0.8411 | 0.0344 | 0.8411 | 0.9171 | | No log | 0.1388 | 44 | 0.8499 | 0.0344 | 0.8499 | 0.9219 | | No log | 0.1451 | 46 | 0.8047 | 0.0107 | 0.8047 | 0.8970 | | No log | 0.1514 | 48 | 0.7906 | 0.0107 | 0.7906 | 0.8892 | | No log | 0.1577 | 50 | 0.7428 | 0.0317 | 0.7428 | 0.8619 | | No log | 0.1640 | 52 | 0.7615 | 0.0511 | 0.7615 | 0.8726 | | No log | 0.1703 | 54 | 0.7432 | 0.0792 | 0.7432 | 0.8621 | | No log | 0.1767 | 56 | 0.6753 | 0.0610 | 0.6753 | 0.8218 | | No log | 0.1830 | 58 | 0.6924 | 0.0317 | 0.6924 | 0.8321 | | No log | 0.1893 | 60 | 0.7336 | 0.0730 | 0.7336 | 0.8565 | | No log | 0.1956 | 62 | 0.7216 | 0.0213 | 0.7216 | 0.8495 | | No log | 0.2019 | 64 | 0.6734 | 0.0826 | 0.6734 | 0.8206 | | No log | 0.2082 | 66 | 0.8115 | 0.1971 | 0.8115 | 0.9008 | | No log | 0.2145 | 68 | 1.0608 | 0.2342 | 1.0608 | 1.0300 | | No log | 0.2208 | 70 | 0.8848 | 0.2293 | 0.8848 | 0.9406 | | No log | 0.2271 | 72 | 0.6445 | 0.1331 | 0.6445 | 0.8028 | | No log | 0.2334 | 74 | 0.6672 | 0.0803 | 0.6672 | 0.8168 | | No log | 0.2397 | 76 | 0.6616 | 0.0754 | 0.6616 | 0.8134 | | No log | 0.2461 | 78 | 0.6149 | 0.1067 | 0.6149 | 0.7842 | | No log | 0.2524 | 80 | 0.6896 | 0.1973 | 0.6896 | 0.8304 | | No log | 0.2587 | 82 | 0.7505 | 0.2167 | 0.7505 | 0.8663 | | No log | 0.2650 | 84 | 0.6389 | 0.1883 | 0.6389 | 0.7993 | | No log | 0.2713 | 86 | 0.6107 | 0.2957 | 0.6107 | 0.7815 | | No log | 0.2776 | 88 | 0.6234 | 0.3088 | 0.6234 | 0.7895 | | No log | 0.2839 | 90 | 0.5901 | 0.2657 | 0.5901 | 0.7681 | | No log | 0.2902 | 92 | 0.6248 | 0.1786 | 0.6248 | 0.7905 | | No log | 0.2965 | 94 | 0.6419 | 0.2214 | 0.6419 | 0.8012 | | No log | 0.3028 | 96 | 0.5860 | 0.2699 | 0.5860 | 0.7655 | | No log | 0.3091 | 98 | 0.5766 | 0.2956 | 0.5766 | 0.7593 | | No log | 0.3155 | 100 | 0.5547 | 0.3623 | 0.5547 | 0.7448 | | No log | 0.3218 | 102 | 0.5514 | 0.4222 | 0.5514 | 0.7426 | | No log | 0.3281 | 104 | 0.5460 | 0.4061 | 0.5460 | 0.7389 | | No log | 0.3344 | 106 | 0.5756 | 0.3134 | 0.5756 | 0.7587 | | No log | 0.3407 | 108 | 0.6144 | 0.3095 | 0.6144 | 0.7838 | | No log | 0.3470 | 110 | 0.5301 | 0.4421 | 0.5301 | 0.7280 | | No log | 0.3533 | 112 | 0.5429 | 0.4684 | 0.5429 | 0.7368 | | No log | 0.3596 | 114 | 0.5177 | 0.4759 | 0.5177 | 0.7195 | | No log | 0.3659 | 116 | 0.5241 | 0.4151 | 0.5241 | 0.7240 | | No log | 0.3722 | 118 | 0.5069 | 0.4161 | 0.5069 | 0.7120 | | No log | 0.3785 | 120 | 0.5293 | 0.4872 | 0.5293 | 0.7275 | | No log | 0.3849 | 122 | 0.5688 | 0.4517 | 0.5688 | 0.7542 | | No log | 0.3912 | 124 | 0.5780 | 0.2445 | 0.5780 | 0.7603 | | No log | 0.3975 | 126 | 0.5334 | 0.4100 | 0.5334 | 0.7304 | | No log | 0.4038 | 128 | 0.5552 | 0.5686 | 0.5552 | 0.7451 | | No log | 0.4101 | 130 | 0.5369 | 0.5723 | 0.5369 | 0.7327 | | No log | 0.4164 | 132 | 0.5145 | 0.3755 | 0.5145 | 0.7173 | | No log | 0.4227 | 134 | 0.5181 | 0.4368 | 0.5181 | 0.7198 | | No log | 0.4290 | 136 | 0.5175 | 0.4105 | 0.5175 | 0.7194 | | No log | 0.4353 | 138 | 0.5481 | 0.5205 | 0.5481 | 0.7403 | | No log | 0.4416 | 140 | 0.5561 | 0.4941 | 0.5561 | 0.7457 | | No log | 0.4479 | 142 | 0.5308 | 0.5019 | 0.5308 | 0.7286 | | No log | 0.4543 | 144 | 0.5421 | 0.4929 | 0.5421 | 0.7363 | | No log | 0.4606 | 146 | 0.5182 | 0.4383 | 0.5182 | 0.7198 | | No log | 0.4669 | 148 | 0.5113 | 0.4444 | 0.5113 | 0.7151 | | No log | 0.4732 | 150 | 0.5292 | 0.3937 | 0.5292 | 0.7275 | | No log | 0.4795 | 152 | 0.5153 | 0.4278 | 0.5153 | 0.7179 | | No log | 0.4858 | 154 | 0.4959 | 0.4610 | 0.4959 | 0.7042 | | No log | 0.4921 | 156 | 0.4822 | 0.4742 | 0.4822 | 0.6944 | | No log | 0.4984 | 158 | 0.5207 | 0.5700 | 0.5207 | 0.7216 | | No log | 0.5047 | 160 | 0.6361 | 0.5602 | 0.6361 | 0.7976 | | No log | 0.5110 | 162 | 0.5405 | 0.5354 | 0.5405 | 0.7352 | | No log | 0.5174 | 164 | 0.5536 | 0.5347 | 0.5536 | 0.7440 | | No log | 0.5237 | 166 | 0.5308 | 0.5142 | 0.5308 | 0.7285 | | No log | 0.5300 | 168 | 0.5827 | 0.5080 | 0.5827 | 0.7634 | | No log | 0.5363 | 170 | 0.6033 | 0.5139 | 0.6033 | 0.7767 | | No log | 0.5426 | 172 | 0.7514 | 0.5038 | 0.7514 | 0.8669 | | No log | 0.5489 | 174 | 0.7327 | 0.5197 | 0.7327 | 0.8560 | | No log | 0.5552 | 176 | 0.5563 | 0.5225 | 0.5563 | 0.7459 | | No log | 0.5615 | 178 | 0.5157 | 0.4842 | 0.5157 | 0.7181 | | No log | 0.5678 | 180 | 0.5430 | 0.5432 | 0.5430 | 0.7369 | | No log | 0.5741 | 182 | 0.5386 | 0.5786 | 0.5386 | 0.7339 | | No log | 0.5804 | 184 | 0.4900 | 0.5768 | 0.4900 | 0.7000 | | No log | 0.5868 | 186 | 0.5030 | 0.5908 | 0.5030 | 0.7092 | | No log | 0.5931 | 188 | 0.4526 | 0.5804 | 0.4526 | 0.6728 | | No log | 0.5994 | 190 | 0.5105 | 0.4823 | 0.5105 | 0.7145 | | No log | 0.6057 | 192 | 0.5870 | 0.4220 | 0.5870 | 0.7662 | | No log | 0.6120 | 194 | 0.5511 | 0.4319 | 0.5511 | 0.7423 | | No log | 0.6183 | 196 | 0.4500 | 0.5472 | 0.4500 | 0.6708 | | No log | 0.6246 | 198 | 0.4526 | 0.5562 | 0.4526 | 0.6728 | | No log | 0.6309 | 200 | 0.5135 | 0.5754 | 0.5135 | 0.7166 | | No log | 0.6372 | 202 | 0.6373 | 0.5419 | 0.6373 | 0.7983 | | No log | 0.6435 | 204 | 0.5640 | 0.5393 | 0.5640 | 0.7510 | | No log | 0.6498 | 206 | 0.5375 | 0.5351 | 0.5375 | 0.7332 | | No log | 0.6562 | 208 | 0.5511 | 0.5560 | 0.5511 | 0.7423 | | No log | 0.6625 | 210 | 0.5414 | 0.5693 | 0.5414 | 0.7358 | | No log | 0.6688 | 212 | 0.5304 | 0.5811 | 0.5304 | 0.7283 | | No log | 0.6751 | 214 | 0.4758 | 0.5939 | 0.4758 | 0.6898 | | No log | 0.6814 | 216 | 0.4437 | 0.5481 | 0.4437 | 0.6661 | | No log | 0.6877 | 218 | 0.4368 | 0.5673 | 0.4368 | 0.6609 | | No log | 0.6940 | 220 | 0.4946 | 0.6281 | 0.4946 | 0.7033 | | No log | 0.7003 | 222 | 0.4564 | 0.5958 | 0.4564 | 0.6756 | | No log | 0.7066 | 224 | 0.4662 | 0.5795 | 0.4662 | 0.6828 | | No log | 0.7129 | 226 | 0.5187 | 0.6018 | 0.5187 | 0.7202 | | No log | 0.7192 | 228 | 0.5179 | 0.6018 | 0.5179 | 0.7196 | | No log | 0.7256 | 230 | 0.4883 | 0.6011 | 0.4883 | 0.6988 | | No log | 0.7319 | 232 | 0.4581 | 0.5898 | 0.4581 | 0.6768 | | No log | 0.7382 | 234 | 0.5164 | 0.6064 | 0.5164 | 0.7186 | | No log | 0.7445 | 236 | 0.4880 | 0.6120 | 0.4880 | 0.6986 | | No log | 0.7508 | 238 | 0.4608 | 0.6049 | 0.4608 | 0.6788 | | No log | 0.7571 | 240 | 0.5627 | 0.6490 | 0.5627 | 0.7502 | | No log | 0.7634 | 242 | 0.8123 | 0.6725 | 0.8123 | 0.9013 | | No log | 0.7697 | 244 | 0.6433 | 0.6624 | 0.6433 | 0.8021 | | No log | 0.7760 | 246 | 0.4387 | 0.5914 | 0.4387 | 0.6624 | | No log | 0.7823 | 248 | 0.4507 | 0.5951 | 0.4507 | 0.6713 | | No log | 0.7886 | 250 | 0.6574 | 0.6299 | 0.6574 | 0.8108 | | No log | 0.7950 | 252 | 0.9073 | 0.5748 | 0.9073 | 0.9525 | | No log | 0.8013 | 254 | 0.7567 | 0.5976 | 0.7567 | 0.8699 | | No log | 0.8076 | 256 | 0.4780 | 0.5993 | 0.4780 | 0.6914 | | No log | 0.8139 | 258 | 0.4653 | 0.4804 | 0.4653 | 0.6821 | | No log | 0.8202 | 260 | 0.4593 | 0.5099 | 0.4593 | 0.6777 | | No log | 0.8265 | 262 | 0.5150 | 0.5981 | 0.5150 | 0.7176 | | No log | 0.8328 | 264 | 0.7188 | 0.5631 | 0.7188 | 0.8478 | | No log | 0.8391 | 266 | 0.6870 | 0.5665 | 0.6870 | 0.8289 | | No log | 0.8454 | 268 | 0.5103 | 0.6082 | 0.5103 | 0.7144 | | No log | 0.8517 | 270 | 0.4610 | 0.4952 | 0.4610 | 0.6790 | | No log | 0.8580 | 272 | 0.5092 | 0.4066 | 0.5092 | 0.7136 | | No log | 0.8644 | 274 | 0.4640 | 0.4861 | 0.4640 | 0.6812 | | No log | 0.8707 | 276 | 0.4945 | 0.5916 | 0.4945 | 0.7032 | | No log | 0.8770 | 278 | 0.6582 | 0.5572 | 0.6582 | 0.8113 | | No log | 0.8833 | 280 | 0.6694 | 0.5610 | 0.6694 | 0.8181 | | No log | 0.8896 | 282 | 0.5728 | 0.5254 | 0.5728 | 0.7568 | | No log | 0.8959 | 284 | 0.5221 | 0.4152 | 0.5221 | 0.7226 | | No log | 0.9022 | 286 | 0.4807 | 0.4751 | 0.4807 | 0.6933 | | No log | 0.9085 | 288 | 0.4549 | 0.5473 | 0.4549 | 0.6745 | | No log | 0.9148 | 290 | 0.4556 | 0.5597 | 0.4556 | 0.6750 | | No log | 0.9211 | 292 | 0.4582 | 0.5556 | 0.4582 | 0.6769 | | No log | 0.9274 | 294 | 0.4645 | 0.5505 | 0.4645 | 0.6816 | | No log | 0.9338 | 296 | 0.4678 | 0.5381 | 0.4678 | 0.6840 | | No log | 0.9401 | 298 | 0.4749 | 0.5534 | 0.4749 | 0.6892 | | No log | 0.9464 | 300 | 0.5625 | 0.5975 | 0.5625 | 0.7500 | | No log | 0.9527 | 302 | 0.5900 | 0.5826 | 0.5900 | 0.7681 | | No log | 0.9590 | 304 | 0.4926 | 0.5950 | 0.4926 | 0.7019 | | No log | 0.9653 | 306 | 0.4816 | 0.4778 | 0.4816 | 0.6940 | | No log | 0.9716 | 308 | 0.4785 | 0.5246 | 0.4785 | 0.6917 | | No log | 0.9779 | 310 | 0.4967 | 0.5915 | 0.4967 | 0.7048 | | No log | 0.9842 | 312 | 0.4777 | 0.5359 | 0.4777 | 0.6912 | | No log | 0.9905 | 314 | 0.5052 | 0.4469 | 0.5052 | 0.7108 | | No log | 0.9968 | 316 | 0.4870 | 0.4692 | 0.4870 | 0.6978 | | No log | 1.0032 | 318 | 0.4959 | 0.6014 | 0.4959 | 0.7042 | | No log | 1.0095 | 320 | 0.5971 | 0.6622 | 0.5971 | 0.7727 | | No log | 1.0158 | 322 | 0.6224 | 0.6527 | 0.6224 | 0.7889 | | No log | 1.0221 | 324 | 0.5090 | 0.6125 | 0.5090 | 0.7134 | | No log | 1.0284 | 326 | 0.4859 | 0.6161 | 0.4859 | 0.6970 | | No log | 1.0347 | 328 | 0.5575 | 0.6373 | 0.5575 | 0.7466 | | No log | 1.0410 | 330 | 0.6631 | 0.6354 | 0.6631 | 0.8143 | | No log | 1.0473 | 332 | 0.7880 | 0.6128 | 0.7880 | 0.8877 | | No log | 1.0536 | 334 | 0.6328 | 0.6471 | 0.6328 | 0.7955 | | No log | 1.0599 | 336 | 0.4833 | 0.5926 | 0.4833 | 0.6952 | | No log | 1.0662 | 338 | 0.4764 | 0.5915 | 0.4764 | 0.6902 | | No log | 1.0726 | 340 | 0.4879 | 0.6097 | 0.4879 | 0.6985 | | No log | 1.0789 | 342 | 0.5004 | 0.6328 | 0.5004 | 0.7074 | | No log | 1.0852 | 344 | 0.4558 | 0.5696 | 0.4558 | 0.6752 | | No log | 1.0915 | 346 | 0.4638 | 0.5143 | 0.4638 | 0.6811 | | No log | 1.0978 | 348 | 0.4590 | 0.5340 | 0.4590 | 0.6775 | | No log | 1.1041 | 350 | 0.4556 | 0.5999 | 0.4556 | 0.6750 | | No log | 1.1104 | 352 | 0.4521 | 0.5984 | 0.4521 | 0.6724 | | No log | 1.1167 | 354 | 0.4603 | 0.5902 | 0.4603 | 0.6784 | | No log | 1.1230 | 356 | 0.5085 | 0.6098 | 0.5085 | 0.7131 | | No log | 1.1293 | 358 | 0.5851 | 0.6319 | 0.5851 | 0.7649 | | No log | 1.1356 | 360 | 0.5377 | 0.6091 | 0.5377 | 0.7333 | | No log | 1.1420 | 362 | 0.4673 | 0.5626 | 0.4673 | 0.6836 | | No log | 1.1483 | 364 | 0.4611 | 0.5643 | 0.4611 | 0.6790 | | No log | 1.1546 | 366 | 0.4560 | 0.5333 | 0.4560 | 0.6753 | | No log | 1.1609 | 368 | 0.4761 | 0.4842 | 0.4761 | 0.6900 | | No log | 1.1672 | 370 | 0.4581 | 0.5306 | 0.4581 | 0.6768 | | No log | 1.1735 | 372 | 0.4492 | 0.5837 | 0.4492 | 0.6702 | | No log | 1.1798 | 374 | 0.4585 | 0.6097 | 0.4585 | 0.6771 | | No log | 1.1861 | 376 | 0.4451 | 0.5503 | 0.4451 | 0.6672 | | No log | 1.1924 | 378 | 0.4524 | 0.5227 | 0.4524 | 0.6726 | | No log | 1.1987 | 380 | 0.4546 | 0.5008 | 0.4546 | 0.6742 | | No log | 1.2050 | 382 | 0.4735 | 0.5442 | 0.4735 | 0.6881 | | No log | 1.2114 | 384 | 0.5067 | 0.5698 | 0.5067 | 0.7118 | | No log | 1.2177 | 386 | 0.4892 | 0.4913 | 0.4892 | 0.6994 | | No log | 1.2240 | 388 | 0.4975 | 0.5099 | 0.4975 | 0.7053 | | No log | 1.2303 | 390 | 0.6492 | 0.6296 | 0.6492 | 0.8057 | | No log | 1.2366 | 392 | 0.7328 | 0.6114 | 0.7328 | 0.8561 | | No log | 1.2429 | 394 | 0.5539 | 0.6157 | 0.5539 | 0.7443 | | No log | 1.2492 | 396 | 0.5265 | 0.4173 | 0.5265 | 0.7256 | | No log | 1.2555 | 398 | 0.6128 | 0.3532 | 0.6128 | 0.7828 | | No log | 1.2618 | 400 | 0.5354 | 0.4003 | 0.5354 | 0.7317 | | No log | 1.2681 | 402 | 0.4935 | 0.5464 | 0.4935 | 0.7025 | | No log | 1.2744 | 404 | 0.5745 | 0.6324 | 0.5745 | 0.7579 | | No log | 1.2808 | 406 | 0.5167 | 0.6236 | 0.5167 | 0.7188 | | No log | 1.2871 | 408 | 0.4620 | 0.5427 | 0.4620 | 0.6797 | | No log | 1.2934 | 410 | 0.4585 | 0.5055 | 0.4585 | 0.6772 | | No log | 1.2997 | 412 | 0.4691 | 0.5926 | 0.4691 | 0.6849 | | No log | 1.3060 | 414 | 0.5962 | 0.6760 | 0.5962 | 0.7722 | | No log | 1.3123 | 416 | 0.5452 | 0.6593 | 0.5452 | 0.7384 | | No log | 1.3186 | 418 | 0.4661 | 0.6018 | 0.4661 | 0.6827 | | No log | 1.3249 | 420 | 0.4503 | 0.5347 | 0.4503 | 0.6710 | | No log | 1.3312 | 422 | 0.4594 | 0.5752 | 0.4594 | 0.6778 | | No log | 1.3375 | 424 | 0.5623 | 0.6484 | 0.5623 | 0.7499 | | No log | 1.3438 | 426 | 0.5562 | 0.6429 | 0.5562 | 0.7458 | | No log | 1.3502 | 428 | 0.4545 | 0.5922 | 0.4545 | 0.6742 | | No log | 1.3565 | 430 | 0.4446 | 0.5818 | 0.4446 | 0.6668 | | No log | 1.3628 | 432 | 0.5001 | 0.6472 | 0.5001 | 0.7072 | | No log | 1.3691 | 434 | 0.5172 | 0.6548 | 0.5172 | 0.7192 | | No log | 1.3754 | 436 | 0.4511 | 0.5994 | 0.4511 | 0.6716 | | No log | 1.3817 | 438 | 0.4721 | 0.5433 | 0.4721 | 0.6871 | | No log | 1.3880 | 440 | 0.4686 | 0.6124 | 0.4686 | 0.6846 | | No log | 1.3943 | 442 | 0.5272 | 0.6602 | 0.5272 | 0.7261 | | No log | 1.4006 | 444 | 0.4777 | 0.6232 | 0.4777 | 0.6912 | | No log | 1.4069 | 446 | 0.4745 | 0.4864 | 0.4745 | 0.6888 | | No log | 1.4132 | 448 | 0.4813 | 0.4603 | 0.4813 | 0.6938 | | No log | 1.4196 | 450 | 0.4566 | 0.5352 | 0.4566 | 0.6757 | | No log | 1.4259 | 452 | 0.5087 | 0.6295 | 0.5087 | 0.7132 | | No log | 1.4322 | 454 | 0.5272 | 0.6279 | 0.5272 | 0.7261 | | No log | 1.4385 | 456 | 0.4695 | 0.5742 | 0.4695 | 0.6852 | | No log | 1.4448 | 458 | 0.4613 | 0.5300 | 0.4613 | 0.6792 | | No log | 1.4511 | 460 | 0.4807 | 0.4327 | 0.4807 | 0.6933 | | No log | 1.4574 | 462 | 0.4712 | 0.4831 | 0.4712 | 0.6865 | | No log | 1.4637 | 464 | 0.5262 | 0.6207 | 0.5262 | 0.7254 | | No log | 1.4700 | 466 | 0.5679 | 0.6533 | 0.5679 | 0.7536 | | No log | 1.4763 | 468 | 0.4943 | 0.6319 | 0.4943 | 0.7030 | | No log | 1.4826 | 470 | 0.4548 | 0.5373 | 0.4548 | 0.6744 | | No log | 1.4890 | 472 | 0.4529 | 0.5669 | 0.4529 | 0.6730 | | No log | 1.4953 | 474 | 0.4979 | 0.6578 | 0.4979 | 0.7056 | | No log | 1.5016 | 476 | 0.5480 | 0.6783 | 0.5480 | 0.7402 | | No log | 1.5079 | 478 | 0.4760 | 0.5831 | 0.4760 | 0.6900 | | No log | 1.5142 | 480 | 0.4790 | 0.4885 | 0.4790 | 0.6921 | | No log | 1.5205 | 482 | 0.4733 | 0.4948 | 0.4733 | 0.6879 | | No log | 1.5268 | 484 | 0.4930 | 0.6107 | 0.4930 | 0.7021 | | No log | 1.5331 | 486 | 0.6387 | 0.6998 | 0.6387 | 0.7992 | | No log | 1.5394 | 488 | 0.5770 | 0.6947 | 0.5770 | 0.7596 | | No log | 1.5457 | 490 | 0.4507 | 0.5730 | 0.4507 | 0.6713 | | No log | 1.5521 | 492 | 0.4761 | 0.4890 | 0.4761 | 0.6900 | | No log | 1.5584 | 494 | 0.4524 | 0.5010 | 0.4524 | 0.6726 | | No log | 1.5647 | 496 | 0.4512 | 0.5824 | 0.4512 | 0.6717 | | No log | 1.5710 | 498 | 0.5386 | 0.6594 | 0.5386 | 0.7339 | | 0.5 | 1.5773 | 500 | 0.5441 | 0.6588 | 0.5441 | 0.7376 | | 0.5 | 1.5836 | 502 | 0.5217 | 0.6468 | 0.5217 | 0.7223 | | 0.5 | 1.5899 | 504 | 0.4504 | 0.5555 | 0.4504 | 0.6711 | | 0.5 | 1.5962 | 506 | 0.4459 | 0.5713 | 0.4459 | 0.6677 | | 0.5 | 1.6025 | 508 | 0.4642 | 0.6069 | 0.4642 | 0.6813 | | 0.5 | 1.6088 | 510 | 0.4950 | 0.6411 | 0.4950 | 0.7035 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF
mattritchey
2024-11-06T16:14:40Z
7
0
null
[ "gguf", "HelpingAI", "Emotionally-Intelligent", "EQ-focused- EQ-focused", "Conversational", "SLM", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:HelpingAI/HelpingAI2-3B", "base_model:quantized:HelpingAI/HelpingAI2-3B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-06T16:14:29Z
--- license: other license_name: helpingai license_link: https://huggingface.co/OEvortex/HelpingAI-3B-v3/blob/main/LICENSE.md pipeline_tag: text-generation language: - en tags: - HelpingAI - Emotionally-Intelligent - EQ-focused- EQ-focused - Conversational - SLM - llama-cpp - gguf-my-repo base_model: OEvortex/HelpingAI-3B-reloaded --- # mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF This model was converted to GGUF format from [`OEvortex/HelpingAI-3B-reloaded`](https://huggingface.co/OEvortex/HelpingAI-3B-reloaded) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OEvortex/HelpingAI-3B-reloaded) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF --hf-file helpingai-3b-reloaded-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF --hf-file helpingai-3b-reloaded-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF --hf-file helpingai-3b-reloaded-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo mattritchey/HelpingAI-3B-reloaded-Q4_K_M-GGUF --hf-file helpingai-3b-reloaded-q4_k_m.gguf -c 2048 ```
camidenecken/RoBERTa-RM1-v2-2-rm-v32
camidenecken
2024-11-06T16:08:06Z
181
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T16:07:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-2-rm-v31
camidenecken
2024-11-06T16:05:57Z
183
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T16:05:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-2-rm-v30
camidenecken
2024-11-06T16:03:50Z
181
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T16:03:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lorraine013/openmathinstruct2-llama-3.1-8B-Instruct-lr5-ep2
Lorraine013
2024-11-06T16:00:05Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T14:33:04Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: openmathinstruct2-llama-3.1-8B-Instruct-lr5-ep2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openmathinstruct2-llama-3.1-8B-Instruct-lr5-ep2 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the openmathinstruct2_cot_20k_train dataset. It achieves the following results on the evaluation set: - Loss: 0.7634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8177 | 0.4808 | 500 | 0.7823 | | 0.7708 | 0.9615 | 1000 | 0.7572 | | 0.5513 | 1.4423 | 1500 | 0.7693 | | 0.5059 | 1.9231 | 2000 | 0.7637 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1
camidenecken/RoBERTa-RM1-v2-2-rm-v27
camidenecken
2024-11-06T15:57:21Z
182
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T15:57:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camidenecken/RoBERTa-RM1-v2-2-rm-v26
camidenecken
2024-11-06T15:55:15Z
180
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T15:54:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
belisarius/FLUX.1-dev-Mann-E-gguf
belisarius
2024-11-06T15:46:26Z
108
4
null
[ "gguf", "base_model:mann-e/mann-e_flux", "base_model:quantized:mann-e/mann-e_flux", "license:other", "region:us" ]
null
2024-11-05T08:26:06Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md base_model: - mann-e/mann-e_flux --- UNet only - no Clip-l/T5xxl included Quantized versions of the Mann-E model. https://huggingface.co/mann-e/mann-e_flux Made using this guide: https://github.com/city96/ComfyUI-GGUF/tree/main/tools
richiebailey/whisper-large-v3-turbo
richiebailey
2024-11-06T15:44:40Z
89
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "audio", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-06T15:37:29Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su license: mit tags: - audio - automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac pipeline_tag: automatic-speech-recognition base_model: - openai/whisper-large-v3 library_name: transformers --- # Whisper Whisper is a state-of-the-art model for automatic speech recognition (ASR) and speech translation, proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://huggingface.co/papers/2212.04356) by Alec Radford et al. from OpenAI. Trained on >5M hours of labeled data, Whisper demonstrates a strong ability to generalise to many datasets and domains in a zero-shot setting. Whisper large-v3-turbo is a finetuned version of a pruned [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3). In other words, it's the exact same model, except that the number of decoding layers have reduced from 32 to 4. As a result, the model is way faster, at the expense of a minor quality degradation. You can find more details about it [in this GitHub discussion](https://github.com/openai/whisper/discussions/2363). **Disclaimer**: Content for this model card has partly been written by the 🤗 Hugging Face team, and partly copied and pasted from the original model card. ## Usage Whisper large-v3-turbo is supported in Hugging Face 🤗 Transformers. To run the model, first install the Transformers library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub, and 🤗 Accelerate to reduce the model loading time: ```bash pip install --upgrade pip pip install --upgrade transformers datasets[audio] accelerate ``` The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class to transcribe audios of arbitrary length: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline: ```python result = pipe("audio.mp3") ``` Multiple audio files can be transcribed in parallel by specifying them as a list and setting the `batch_size` parameter: ```python result = pipe(["audio_1.mp3", "audio_2.mp3"], batch_size=2) ``` Transformers is compatible with all Whisper decoding strategies, such as temperature fallback and condition on previous tokens. The following example demonstrates how to enable these heuristics: ```python generate_kwargs = { "max_new_tokens": 448, "num_beams": 1, "condition_on_prev_tokens": False, "compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space) "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), "logprob_threshold": -1.0, "no_speech_threshold": 0.6, "return_timestamps": True, } result = pipe(sample, generate_kwargs=generate_kwargs) ``` Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it can be passed as an argument to the pipeline: ```python result = pipe(sample, generate_kwargs={"language": "english"}) ``` By default, Whisper performs the task of *speech transcription*, where the source audio language is the same as the target text language. To perform *speech translation*, where the target text is in English, set the task to `"translate"`: ```python result = pipe(sample, generate_kwargs={"task": "translate"}) ``` Finally, the model can be made to predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument: ```python result = pipe(sample, return_timestamps=True) print(result["chunks"]) ``` And for word-level timestamps: ```python result = pipe(sample, return_timestamps="word") print(result["chunks"]) ``` The above arguments can be used in isolation or in combination. For example, to perform the task of speech transcription where the source audio is in French, and we want to return sentence-level timestamps, the following can be used: ```python result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "french", "task": "translate"}) print(result["chunks"]) ``` <details> <summary> For more control over the generation parameters, use the model + processor API directly: </summary> ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor from datasets import Audio, load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate)) sample = dataset[0]["audio"] inputs = processor( sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, ) inputs = inputs.to(device, dtype=torch_dtype) gen_kwargs = { "max_new_tokens": 448, "num_beams": 1, "condition_on_prev_tokens": False, "compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space) "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), "logprob_threshold": -1.0, "no_speech_threshold": 0.6, "return_timestamps": True, } pred_ids = model.generate(**inputs, **gen_kwargs) pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False) print(pred_text) ``` </details> ## Additional Speed & Memory Improvements You can apply additional speed and memory improvements to Whisper to further reduce the inference speed and VRAM requirements. ### Chunked Long-Form Whisper has a receptive field of 30-seconds. To transcribe audios longer than this, one of two long-form algorithms are required: 1. **Sequential:** uses a "sliding window" for buffered inference, transcribing 30-second slices one after the other 2. **Chunked:** splits long audio files into shorter ones (with a small overlap between segments), transcribes each segment independently, and stitches the resulting transcriptions at the boundaries The sequential long-form algorithm should be used in either of the following scenarios: 1. Transcription accuracy is the most important factor, and speed is less of a consideration 2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate Conversely, the chunked algorithm should be used when: 1. Transcription speed is the most important factor 2. You are transcribing a **single** long audio file By default, Transformers uses the sequential algorithm. To enable the chunked algorithm, pass the `chunk_length_s` parameter to the `pipeline`. For large-v3, a chunk length of 30-seconds is optimal. To activate batching over long audio files, pass the argument `batch_size`: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, chunk_length_s=30, batch_size=16, # batch size for inference - set based on your device torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` #### Torch compile The Whisper forward pass is compatible with [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) for 4.5x speed-ups. **Note:** `torch.compile` is currently not compatible with the Chunked long-form algorithm or Flash Attention 2 ⚠️ ```python import torch from torch.nn.attention import SDPBackend, sdpa_kernel from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset from tqdm import tqdm torch.set_float32_matmul_precision("high") device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) # Enable static cache and compile the forward pass model.generation_config.cache_implementation = "static" model.generation_config.max_new_tokens = 256 model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] # 2 warmup steps for _ in tqdm(range(2), desc="Warm-up step"): with sdpa_kernel(SDPBackend.MATH): result = pipe(sample.copy(), generate_kwargs={"min_new_tokens": 256, "max_new_tokens": 256}) # fast run with sdpa_kernel(SDPBackend.MATH): result = pipe(sample.copy()) print(result["text"]) ``` #### Flash Attention 2 We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU supports it and you are not using [torch.compile](#torch-compile). To do so, first install [Flash Attention](https://github.com/Dao-AILab/flash-attention): ``` pip install flash-attn --no-build-isolation ``` Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`: ```python model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2") ``` #### Torch Scale-Product-Attention (SDPA) If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html). This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check whether you have a compatible PyTorch version, run the following Python code snippet: ```python from transformers.utils import is_torch_sdpa_available print(is_torch_sdpa_available()) ``` If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/) Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying `attn_implementation="sdpa"` as follows: ```python model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa") ``` For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention). ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. There are two flavours of Whisper model: English-only and multilingual. The English-only models were trained on the task of English speech recognition. The multilingual models were trained simultaneously on multilingual speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are available as English-only and multilingual. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | | large-v3 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v3) | | large-v3-turbo | 809 M | x | [✓](https://huggingface.co/openai/whisper-large-v3-turbo) | ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data No information provided. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
mradermacher/alfred-40b-1023-i1-GGUF
mradermacher
2024-11-06T15:41:09Z
106
0
transformers
[ "transformers", "gguf", "falcon-40b", "long-context", "falcon", "NTK-YaRN", "en", "fr", "de", "es", "it", "dataset:OpenAssistant/oasst1", "dataset:ehartford/dolphin", "dataset:tau/sled", "dataset:tiiuae/falcon-refinedweb", "base_model:lightonai/alfred-40b-1023", "base_model:quantized:lightonai/alfred-40b-1023", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-06T07:03:20Z
--- base_model: lightonai/alfred-40b-1023 datasets: - OpenAssistant/oasst1 - ehartford/dolphin - tau/sled - tiiuae/falcon-refinedweb language: - en - fr - de - es - it library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - falcon-40b - long-context - falcon - NTK-YaRN --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/lightonai/alfred-40b-1023 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/alfred-40b-1023-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ1_S.gguf) | i1-IQ1_S | 9.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ1_M.gguf) | i1-IQ1_M | 10.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ2_XS.gguf) | i1-IQ2_XS | 12.7 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ2_S.gguf) | i1-IQ2_S | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ2_M.gguf) | i1-IQ2_M | 14.6 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q2_K.gguf) | i1-Q2_K | 15.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 16.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ3_XS.gguf) | i1-IQ3_XS | 17.9 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ3_S.gguf) | i1-IQ3_S | 18.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q3_K_S.gguf) | i1-Q3_K_S | 18.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ3_M.gguf) | i1-IQ3_M | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q3_K_M.gguf) | i1-Q3_K_M | 20.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q3_K_L.gguf) | i1-Q3_K_L | 21.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-IQ4_XS.gguf) | i1-IQ4_XS | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q4_K_S.gguf) | i1-Q4_K_S | 23.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q4_0.gguf) | i1-Q4_0 | 24.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q4_K_M.gguf) | i1-Q4_K_M | 25.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q5_K_S.gguf) | i1-Q5_K_S | 29.1 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q5_K_M.gguf) | i1-Q5_K_M | 30.7 | | | [GGUF](https://huggingface.co/mradermacher/alfred-40b-1023-i1-GGUF/resolve/main/alfred-40b-1023.i1-Q6_K.gguf) | i1-Q6_K | 34.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
neopolita/hammer2.0-7b-gguf
neopolita
2024-11-06T15:39:32Z
13
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T15:03:06Z
--- {} --- # GGUF quants for [**MadeAgents/Hammer2.0-7b**](https://huggingface.co/MadeAgents/Hammer2.0-7b) using [llama.cpp](https://github.com/ggerganov/llama.cpp) **Terms of Use**: Please check the [**original model**](https://huggingface.co/MadeAgents/Hammer2.0-7b) <picture> <img alt="cthulhu" src="https://huggingface.co/neopolita/common/resolve/main/profile.png"> </picture> ## Quants * `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors. * `q3_k_s`: Uses Q3_K for all tensors * `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q4_0`: Original quant method, 4-bit. * `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. * `q4_k_s`: Uses Q4_K for all tensors * `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K * `q5_0`: Higher accuracy, higher resource usage and slower inference. * `q5_1`: Even higher accuracy, resource usage and slower inference. * `q5_k_s`: Uses Q5_K for all tensors * `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K * `q6_k`: Uses Q8_K for all tensors * `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.
mav23/SmolLM2-360M-Instruct-GGUF
mav23
2024-11-06T15:37:44Z
66
0
transformers
[ "transformers", "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T15:32:30Z
--- library_name: transformers license: apache-2.0 language: - en --- # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/oWWfzW4RbWkVIo7f-5444.png) ## Table of Contents 1. [Model Summary](##model-summary) 2. [Limitations](##limitations) 3. [Training](##training) 4. [License](##license) 5. [Citation](##citation) ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). ### How to use ### Transformers ```bash pip install transformers ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceTB/SmolLM2-360M-Instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is the capital of France."}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) print(input_text) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ``` ### Chat in TRL You can also use the TRL CLI to chat with the model from the terminal: ```bash pip install trl trl chat --model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct --device cpu ``` ## Evaluation In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them. ## Base Pre-Trained Model | Metrics | SmolLM2-360M | Qwen2.5-0.5B | SmolLM-360M | |:-------------------|:------------:|:------------:|:------------:| | HellaSwag | **54.5** | 51.2 | 51.8 | | ARC (Average) | **53.0** | 45.4 | 50.1 | | PIQA | **71.7** | 69.9 | 71.6 | | MMLU (cloze) | **35.8** | 33.7 | 34.4 | | CommonsenseQA | **38.0** | 31.6 | 35.3 | | TriviaQA | **16.9** | 4.3 | 9.1 | | Winogrande | 52.5 | **54.1** | 52.8 | | OpenBookQA | **37.4** | **37.4** | 37.2 | | GSM8K (5-shot) | 3.2 | **33.4** | 1.6 | ## Instruction Model | Metric | SmolLM2-360M-Instruct | Qwen2.5-0.5B-Instruct | SmolLM-360M-Instruct | |:-----------------------------|:---------------------:|:---------------------:|:---------------------:| | IFEval (Average prompt/inst) | **41.0** | 31.6 | 19.8 | | MT-Bench | 3.66 | **4.16** | 3.37 | | HellaSwag | **52.1** | 48.0 | 47.9 | | ARC (Average) | **43.7** | 37.3 | 38.8 | | PIQA | **70.8** | 67.2 | 69.4 | | MMLU (cloze) | **32.8** | 31.7 | 30.6 | | BBH (3-shot) | 27.3 | **30.7** | 24.4 | | GSM8K (5-shot) | 7.43 | **26.8** | 1.36 | ## Limitations SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. ## Training ### Model - **Architecture:** Transformer decoder - **Pretraining tokens:** 4T - **Precision:** bfloat16 ### Hardware - **GPUs:** 64 H100 ### Software - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main) ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation ```bash @misc{allal2024SmolLM2, title={SmolLM2 - with great data, comes great performance}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf}, year={2024}, } ```
mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF
mradermacher
2024-11-06T15:35:12Z
5
0
transformers
[ "transformers", "gguf", "tr", "en", "base_model:Trendyol/Trendyol-LLM-7b-chat-v0.1", "base_model:quantized:Trendyol/Trendyol-LLM-7b-chat-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-06T06:04:52Z
--- base_model: Trendyol/Trendyol-LLM-7b-chat-v0.1 language: - tr - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 2.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.0 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.0 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Trendyol-LLM-7b-chat-v0.1-i1-GGUF/resolve/main/Trendyol-LLM-7b-chat-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 5.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
QuantFactory/KONI-Llama3.1-8B-Instruct-20241024-GGUF
QuantFactory
2024-11-06T15:34:48Z
105
3
transformers
[ "transformers", "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T14:40:16Z
--- library_name: transformers tags: [] --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/KONI-Llama3.1-8B-Instruct-20241024-GGUF This is quantized version of [KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024](https://huggingface.co/KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024) created using llama.cpp # Original Model Card # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
techiaith/whisper-large-v3-ft-cv-cy
techiaith
2024-11-06T15:32:39Z
10
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "automatic-speech-recognition", "cy", "dataset:techiaith/commonvoice_18_0_cy", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2024-08-26T11:24:16Z
--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer - whisper datasets: - techiaith/commonvoice_18_0_cy metrics: - wer model-index: - name: whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: DewiBrynJones/commonvoice_18_0_cy default type: DewiBrynJones/commonvoice_18_0_cy args: default metrics: - name: Wer type: wer value: 0.185 language: - cy pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-ft-cv-cy This model is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) fine-tuned with the `train_all` and `other_with_excluded` custom splits from [techiaith/commonvoice_18_0_cy](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy) It achieves the following results on the Common Voice for Welsh release 18's standard test set: - WER: 18.50 - CER: 5.32 N.B. this model performs considerably worse on English language speech, but better on Welsh than a [bilingual model](https://huggingface.co/techiaith/whisper-large-v3-ft-cv-cy-en) ## Usage ```python from transformers import pipeline transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-cv-cy") result = transcriber(<path or url to soundfile>) print (result) ``` `{'text': 'Mae hen wlad fy nhadau yn annwyl i mi.'}`
mav23/SmolLM2-135M-Instruct-GGUF
mav23
2024-11-06T15:29:26Z
27
0
transformers
[ "transformers", "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T15:26:33Z
--- library_name: transformers license: apache-2.0 language: - en --- # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/3ntM63zkmxY2cNRhgY_Kl.png) ## Table of Contents 1. [Model Summary](##model-summary) 2. [Limitations](##limitations) 3. [Training](##training) 4. [License](##license) 5. [Citation](##citation) ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 135M model was trained on 2 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). ### How to use ### Transformers ```bash pip install transformers ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is gravity?"}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) print(input_text) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ``` ### Chat in TRL You can also use the TRL CLI to chat with the model from the terminal: ```bash pip install trl trl chat --model_name_or_path HuggingFaceTB/SmolLM2-135M-Instruct --device cpu ``` ## Evaluation In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them. ## Base pre-trained model | Metrics | SmolLM2-135M-8k | SmolLM-135M | |:-------------------|:----------------:|:------------:| | HellaSwag | **42.1** | 41.2 | | ARC (Average) | **43.9** | 42.4 | | PIQA | 68.4 | 68.4 | | MMLU (cloze) | **31.5** | 30.2 | | CommonsenseQA | **33.9** | 32.7 | | TriviaQA | 4.1 | **4.3** | | Winogrande | 51.3 | 51.3 | | OpenBookQA | **34.6** | 34.0 | | GSM8K (5-shot) | **1.4** | 1.0 | ## Instruction model | Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct | |:-----------------------------|:---------------------:|:--------------------:| | IFEval (Average prompt/inst) | **29.9** | 17.2 | | MT-Bench | **19.8** | 16.8 | | HellaSwag | **40.9** | 38.9 | | ARC (Average) | **37.3** | 33.9 | | PIQA | **66.3** | 64.0 | | MMLU (cloze) | **29.3** | 28.3 | | BBH (3-shot) | **28.2** | 25.2 | | GSM8K (5-shot) | 1.4 | 1.4 | ## Limitations SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. ## Training ### Model - **Architecture:** Transformer decoder - **Pretraining tokens:** 2T - **Precision:** bfloat16 ### Hardware - **GPUs:** 64 H100 ### Software - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main) ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation ```bash @misc{allal2024SmolLM2, title={SmolLM2 - with great data, comes great performance}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf}, year={2024}, } ```
Tippawan/pr-corrected-v8
Tippawan
2024-11-06T15:26:40Z
117
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-11-06T15:26:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/SmolLM2-1.7B-GGUF
mav23
2024-11-06T15:25:15Z
8
0
transformers
[ "transformers", "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-06T15:09:39Z
--- library_name: transformers license: apache-2.0 language: - en --- # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/XlT5TM3HWpfoZk_HSubrH.png) ## Table of Contents 1. [Model Summary](#model-summary) 2. [Evaluation](#evaluation) 3. [Limitations](#limitations) 4. [Training](#training) 5. [License](#license) 6. [Citation](#citation) ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). ### How to use ```bash pip install transformers ``` #### Running the model on CPU/GPU/multi GPU * _Using full precision_ ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceTB/SmolLM2-1.7B" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate # for fp16 use `torch_dtype=torch.float16` instead model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 3422.76 MB ``` ## Evaluation In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them. ## Base Pre-Trained Model | Metric | SmolLM2-1.7B | Llama-1B | Qwen2.5-1.5B | SmolLM1-1.7B | |------------------|--------------|-------------|---------------|--------------| | HellaSwag | **68.7** | 61.2 | 66.4 | 62.9 | | ARC (Average) | **60.5** | 49.2 | 58.5 | 59.9 | | PIQA | **77.6** | 74.8 | 76.1 | 76.0 | | MMLU-Pro (MCF) | **19.4** | 11.7 | 13.7 | 10.8 | | CommonsenseQA | **43.6** | 41.2 | 34.1 | 38.0 | | TriviaQA | **36.7** | 28.1 | 20.9 | 22.5 | | Winogrande | **59.4** | 57.8 | 59.3 | 54.7 | | OpenBookQA | 42.2 | 38.4 | 40.0 | **42.4** | | GSM8K (5-shot) | 31.0 | 7.2 | **61.3** | 5.5 | ## Instruction Model | Metric | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct | |:-----------------------------|:---------------------:|:-----------------:|:----------------------:|:----------------------:| | IFEval (Average prompt/inst) | **56.7** | 53.5 | 47.4 | 23.1 | | MT-Bench | 6.13 | 5.48 | **6.52** | 4.33 | | OpenRewrite-Eval (micro_avg RougeL) | 44.9 | 39.2 | **46.9** | NaN | | HellaSwag | **66.1** | 56.1 | 60.9 | 55.5 | | ARC (Average) | **51.7** | 41.6 | 46.2 | 43.7 | | PIQA | **74.4** | 72.3 | 73.2 | 71.6 | | MMLU-Pro (MCF) | 19.3 | 12.7 | **24.2** | 11.7 | | BBH (3-shot) | 32.2 | 27.6 | **35.3** | 25.7 | | GSM8K (5-shot) | **48.2** | 26.8 | 42.8 | 4.62 | ## Limitations SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. ## Training ### Model - **Architecture:** Transformer decoder - **Pretraining tokens:** 11T - **Precision:** bfloat16 ### Hardware - **GPUs:** 256 H100 ### Software - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main) ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation ```bash @misc{allal2024SmolLM2, title={SmolLM2 - with great data, comes great performance}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf}, year={2024}, } ```
MaziyarPanahi/llama3-8B-aifeifei-1.0-GGUF
MaziyarPanahi
2024-11-06T15:19:58Z
34
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:aifeifei798/llama3-8B-aifeifei-1.0", "base_model:quantized:aifeifei798/llama3-8B-aifeifei-1.0", "region:us", "conversational" ]
text-generation
2024-11-06T14:57:15Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: llama3-8B-aifeifei-1.0-GGUF base_model: aifeifei798/llama3-8B-aifeifei-1.0 inference: false model_creator: aifeifei798 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/llama3-8B-aifeifei-1.0-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.0-GGUF) - Model creator: [aifeifei798](https://huggingface.co/aifeifei798) - Original model: [aifeifei798/llama3-8B-aifeifei-1.0](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.0) ## Description [MaziyarPanahi/llama3-8B-aifeifei-1.0-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.0-GGUF) contains GGUF format model files for [aifeifei798/llama3-8B-aifeifei-1.0](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.0). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
nphuc/Llama-3.2-3B-Thich-Nhat-Hanh-v3.2
nphuc
2024-11-06T15:15:38Z
17
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T15:00:15Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** nphuc - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ZyloO-AI/RawCharm-Amateur-Photography
ZyloO-AI
2024-11-06T14:53:47Z
40
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-11-06T14:49:25Z
--- library_name: diffusers pipeline_tag: text-to-image --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
novalalthoff/wav2vec2-large-id-16hr-non-lp
novalalthoff
2024-11-06T14:51:21Z
80
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-06T14:49:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Xu-Ouyang/pythia-6.9b-deduped-int8-step2-GPTQ-wikitext2
Xu-Ouyang
2024-11-06T14:46:28Z
76
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
2024-11-06T14:36:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/llama3-8B-aifeifei-1.1-GGUF
MaziyarPanahi
2024-11-06T14:35:34Z
52
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:aifeifei798/llama3-8B-aifeifei-1.1", "base_model:quantized:aifeifei798/llama3-8B-aifeifei-1.1", "region:us", "conversational" ]
text-generation
2024-11-06T14:12:42Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: llama3-8B-aifeifei-1.1-GGUF base_model: aifeifei798/llama3-8B-aifeifei-1.1 inference: false model_creator: aifeifei798 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/llama3-8B-aifeifei-1.1-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.1-GGUF) - Model creator: [aifeifei798](https://huggingface.co/aifeifei798) - Original model: [aifeifei798/llama3-8B-aifeifei-1.1](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.1) ## Description [MaziyarPanahi/llama3-8B-aifeifei-1.1-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.1-GGUF) contains GGUF format model files for [aifeifei798/llama3-8B-aifeifei-1.1](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.1). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
MayBashendy/ASAP_FineTuningBERT_Aug_k20_task1_organization_fold1
MayBashendy
2024-11-06T14:33:18Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T14:00:29Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_Aug_k20_task1_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_Aug_k20_task1_organization_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4063 - Qwk: 0.5441 - Mse: 0.4063 - Rmse: 0.6374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0060 | 2 | 9.8538 | 0.0 | 9.8538 | 3.1391 | | No log | 0.0120 | 4 | 7.5205 | 0.0213 | 7.5205 | 2.7424 | | No log | 0.0181 | 6 | 6.8656 | 0.0018 | 6.8656 | 2.6202 | | No log | 0.0241 | 8 | 6.0945 | 0.0 | 6.0945 | 2.4687 | | No log | 0.0301 | 10 | 5.6492 | 0.0 | 5.6492 | 2.3768 | | No log | 0.0361 | 12 | 4.8146 | 0.0 | 4.8146 | 2.1942 | | No log | 0.0422 | 14 | 4.1150 | 0.0 | 4.1150 | 2.0285 | | No log | 0.0482 | 16 | 3.3946 | 0.0297 | 3.3946 | 1.8424 | | No log | 0.0542 | 18 | 2.7416 | 0.0118 | 2.7416 | 1.6558 | | No log | 0.0602 | 20 | 2.1167 | 0.0079 | 2.1167 | 1.4549 | | No log | 0.0663 | 22 | 1.6121 | 0.0 | 1.6121 | 1.2697 | | No log | 0.0723 | 24 | 1.2816 | 0.1643 | 1.2816 | 1.1321 | | No log | 0.0783 | 26 | 1.0878 | 0.1060 | 1.0878 | 1.0430 | | No log | 0.0843 | 28 | 0.9893 | 0.0211 | 0.9893 | 0.9946 | | No log | 0.0904 | 30 | 0.8874 | 0.0211 | 0.8874 | 0.9420 | | No log | 0.0964 | 32 | 0.8744 | 0.0211 | 0.8744 | 0.9351 | | No log | 0.1024 | 34 | 0.8581 | 0.0106 | 0.8581 | 0.9263 | | No log | 0.1084 | 36 | 0.8897 | 0.0106 | 0.8897 | 0.9432 | | No log | 0.1145 | 38 | 0.8408 | 0.0106 | 0.8408 | 0.9170 | | No log | 0.1205 | 40 | 0.9843 | 0.1325 | 0.9843 | 0.9921 | | No log | 0.1265 | 42 | 1.0066 | 0.0 | 1.0066 | 1.0033 | | No log | 0.1325 | 44 | 0.9551 | 0.0 | 0.9551 | 0.9773 | | No log | 0.1386 | 46 | 0.8306 | 0.0 | 0.8306 | 0.9114 | | No log | 0.1446 | 48 | 0.7559 | 0.0106 | 0.7559 | 0.8694 | | No log | 0.1506 | 50 | 0.7449 | 0.0106 | 0.7449 | 0.8630 | | No log | 0.1566 | 52 | 0.7499 | 0.0106 | 0.7499 | 0.8660 | | No log | 0.1627 | 54 | 0.8259 | 0.0106 | 0.8259 | 0.9088 | | No log | 0.1687 | 56 | 0.8342 | 0.0106 | 0.8342 | 0.9134 | | No log | 0.1747 | 58 | 0.8480 | 0.0106 | 0.8480 | 0.9209 | | No log | 0.1807 | 60 | 0.8004 | 0.0106 | 0.8004 | 0.8947 | | No log | 0.1867 | 62 | 0.8020 | 0.0106 | 0.8020 | 0.8955 | | No log | 0.1928 | 64 | 0.7901 | 0.0132 | 0.7901 | 0.8889 | | No log | 0.1988 | 66 | 0.7705 | 0.0106 | 0.7705 | 0.8778 | | No log | 0.2048 | 68 | 0.7646 | 0.0477 | 0.7646 | 0.8744 | | No log | 0.2108 | 70 | 0.7771 | 0.0106 | 0.7771 | 0.8816 | | No log | 0.2169 | 72 | 0.8900 | 0.0 | 0.8900 | 0.9434 | | No log | 0.2229 | 74 | 0.9312 | 0.0 | 0.9312 | 0.9650 | | No log | 0.2289 | 76 | 0.7507 | 0.0211 | 0.7507 | 0.8664 | | No log | 0.2349 | 78 | 0.8049 | 0.1726 | 0.8049 | 0.8972 | | No log | 0.2410 | 80 | 0.7495 | 0.1392 | 0.7495 | 0.8657 | | No log | 0.2470 | 82 | 0.6772 | 0.0570 | 0.6772 | 0.8229 | | No log | 0.2530 | 84 | 0.6693 | 0.0803 | 0.6693 | 0.8181 | | No log | 0.2590 | 86 | 0.6966 | 0.0999 | 0.6966 | 0.8346 | | No log | 0.2651 | 88 | 0.7758 | 0.1809 | 0.7758 | 0.8808 | | No log | 0.2711 | 90 | 0.6627 | 0.0620 | 0.6627 | 0.8140 | | No log | 0.2771 | 92 | 0.6599 | 0.0941 | 0.6599 | 0.8123 | | No log | 0.2831 | 94 | 0.6633 | 0.0669 | 0.6633 | 0.8144 | | No log | 0.2892 | 96 | 0.6847 | 0.0604 | 0.6847 | 0.8275 | | No log | 0.2952 | 98 | 0.8380 | 0.0052 | 0.8380 | 0.9154 | | No log | 0.3012 | 100 | 0.9455 | 0.0 | 0.9455 | 0.9724 | | No log | 0.3072 | 102 | 0.9850 | 0.0 | 0.9850 | 0.9925 | | No log | 0.3133 | 104 | 0.9506 | 0.0 | 0.9506 | 0.9750 | | No log | 0.3193 | 106 | 0.9171 | -0.0027 | 0.9171 | 0.9576 | | No log | 0.3253 | 108 | 0.8876 | 0.0116 | 0.8876 | 0.9421 | | No log | 0.3313 | 110 | 0.8296 | 0.0025 | 0.8296 | 0.9108 | | No log | 0.3373 | 112 | 0.7703 | 0.0 | 0.7703 | 0.8777 | | No log | 0.3434 | 114 | 0.7313 | 0.0211 | 0.7313 | 0.8552 | | No log | 0.3494 | 116 | 0.7281 | 0.0276 | 0.7281 | 0.8533 | | No log | 0.3554 | 118 | 0.7371 | 0.0211 | 0.7371 | 0.8585 | | No log | 0.3614 | 120 | 0.8136 | 0.2752 | 0.8136 | 0.9020 | | No log | 0.3675 | 122 | 0.8426 | 0.3032 | 0.8426 | 0.9179 | | No log | 0.3735 | 124 | 0.8149 | 0.0 | 0.8149 | 0.9027 | | No log | 0.3795 | 126 | 0.8598 | 0.0 | 0.8598 | 0.9273 | | No log | 0.3855 | 128 | 0.8445 | 0.0 | 0.8445 | 0.9189 | | No log | 0.3916 | 130 | 0.7930 | 0.0 | 0.7930 | 0.8905 | | No log | 0.3976 | 132 | 0.7897 | 0.0742 | 0.7897 | 0.8887 | | No log | 0.4036 | 134 | 0.7592 | 0.0779 | 0.7592 | 0.8713 | | No log | 0.4096 | 136 | 0.7340 | 0.0250 | 0.7340 | 0.8567 | | No log | 0.4157 | 138 | 0.7109 | 0.0631 | 0.7109 | 0.8432 | | No log | 0.4217 | 140 | 0.7010 | 0.3134 | 0.7010 | 0.8372 | | No log | 0.4277 | 142 | 0.7485 | 0.4716 | 0.7485 | 0.8652 | | No log | 0.4337 | 144 | 0.7055 | 0.3984 | 0.7055 | 0.8399 | | No log | 0.4398 | 146 | 0.6043 | 0.2866 | 0.6043 | 0.7774 | | No log | 0.4458 | 148 | 0.6090 | 0.1808 | 0.6090 | 0.7804 | | No log | 0.4518 | 150 | 0.6293 | 0.1585 | 0.6293 | 0.7933 | | No log | 0.4578 | 152 | 0.6791 | 0.1350 | 0.6791 | 0.8241 | | No log | 0.4639 | 154 | 0.7938 | 0.1901 | 0.7938 | 0.8910 | | No log | 0.4699 | 156 | 0.7204 | 0.2131 | 0.7204 | 0.8487 | | No log | 0.4759 | 158 | 0.6079 | 0.1893 | 0.6079 | 0.7797 | | No log | 0.4819 | 160 | 0.6052 | 0.2001 | 0.6052 | 0.7780 | | No log | 0.4880 | 162 | 0.6483 | 0.3653 | 0.6483 | 0.8052 | | No log | 0.4940 | 164 | 0.6604 | 0.3441 | 0.6604 | 0.8127 | | No log | 0.5 | 166 | 0.6017 | 0.2949 | 0.6017 | 0.7757 | | No log | 0.5060 | 168 | 0.5814 | 0.4476 | 0.5814 | 0.7625 | | No log | 0.5120 | 170 | 0.5913 | 0.5063 | 0.5913 | 0.7689 | | No log | 0.5181 | 172 | 0.6019 | 0.5193 | 0.6019 | 0.7759 | | No log | 0.5241 | 174 | 0.5463 | 0.4907 | 0.5463 | 0.7391 | | No log | 0.5301 | 176 | 0.5484 | 0.4974 | 0.5484 | 0.7406 | | No log | 0.5361 | 178 | 0.5551 | 0.4497 | 0.5551 | 0.7451 | | No log | 0.5422 | 180 | 0.5884 | 0.4432 | 0.5884 | 0.7671 | | No log | 0.5482 | 182 | 0.7529 | 0.4655 | 0.7529 | 0.8677 | | No log | 0.5542 | 184 | 0.8098 | 0.4488 | 0.8098 | 0.8999 | | No log | 0.5602 | 186 | 0.7082 | 0.4467 | 0.7082 | 0.8416 | | No log | 0.5663 | 188 | 0.6004 | 0.3464 | 0.6004 | 0.7748 | | No log | 0.5723 | 190 | 0.5929 | 0.2784 | 0.5929 | 0.7700 | | No log | 0.5783 | 192 | 0.5549 | 0.4062 | 0.5549 | 0.7449 | | No log | 0.5843 | 194 | 0.5563 | 0.5899 | 0.5563 | 0.7458 | | No log | 0.5904 | 196 | 0.5644 | 0.5750 | 0.5644 | 0.7513 | | No log | 0.5964 | 198 | 0.5137 | 0.5741 | 0.5137 | 0.7167 | | No log | 0.6024 | 200 | 0.5335 | 0.5233 | 0.5335 | 0.7304 | | No log | 0.6084 | 202 | 0.5050 | 0.5336 | 0.5050 | 0.7106 | | No log | 0.6145 | 204 | 0.5118 | 0.6005 | 0.5118 | 0.7154 | | No log | 0.6205 | 206 | 0.6248 | 0.5732 | 0.6248 | 0.7905 | | No log | 0.6265 | 208 | 0.7111 | 0.5476 | 0.7111 | 0.8433 | | No log | 0.6325 | 210 | 0.7781 | 0.5189 | 0.7781 | 0.8821 | | No log | 0.6386 | 212 | 0.8434 | 0.4931 | 0.8434 | 0.9184 | | No log | 0.6446 | 214 | 0.8126 | 0.5209 | 0.8126 | 0.9014 | | No log | 0.6506 | 216 | 0.6383 | 0.5970 | 0.6383 | 0.7989 | | No log | 0.6566 | 218 | 0.5315 | 0.6014 | 0.5315 | 0.7290 | | No log | 0.6627 | 220 | 0.5624 | 0.4525 | 0.5624 | 0.7499 | | No log | 0.6687 | 222 | 0.6333 | 0.3337 | 0.6333 | 0.7958 | | No log | 0.6747 | 224 | 0.5795 | 0.3624 | 0.5795 | 0.7612 | | No log | 0.6807 | 226 | 0.5073 | 0.5486 | 0.5073 | 0.7122 | | No log | 0.6867 | 228 | 0.5600 | 0.6066 | 0.5600 | 0.7484 | | No log | 0.6928 | 230 | 0.6215 | 0.5835 | 0.6215 | 0.7883 | | No log | 0.6988 | 232 | 0.5686 | 0.5877 | 0.5686 | 0.7540 | | No log | 0.7048 | 234 | 0.6028 | 0.5796 | 0.6028 | 0.7764 | | No log | 0.7108 | 236 | 0.5793 | 0.5983 | 0.5793 | 0.7611 | | No log | 0.7169 | 238 | 0.5310 | 0.6063 | 0.5310 | 0.7287 | | No log | 0.7229 | 240 | 0.4967 | 0.5858 | 0.4967 | 0.7048 | | No log | 0.7289 | 242 | 0.4868 | 0.5721 | 0.4868 | 0.6977 | | No log | 0.7349 | 244 | 0.4722 | 0.5557 | 0.4722 | 0.6871 | | No log | 0.7410 | 246 | 0.4724 | 0.5195 | 0.4724 | 0.6873 | | No log | 0.7470 | 248 | 0.4676 | 0.5665 | 0.4676 | 0.6838 | | No log | 0.7530 | 250 | 0.4837 | 0.5811 | 0.4837 | 0.6955 | | No log | 0.7590 | 252 | 0.4968 | 0.5984 | 0.4968 | 0.7048 | | No log | 0.7651 | 254 | 0.4773 | 0.6040 | 0.4773 | 0.6909 | | No log | 0.7711 | 256 | 0.4643 | 0.5940 | 0.4643 | 0.6814 | | No log | 0.7771 | 258 | 0.4890 | 0.6155 | 0.4890 | 0.6993 | | No log | 0.7831 | 260 | 0.6079 | 0.5785 | 0.6079 | 0.7797 | | No log | 0.7892 | 262 | 0.6645 | 0.5582 | 0.6645 | 0.8152 | | No log | 0.7952 | 264 | 0.6657 | 0.5514 | 0.6657 | 0.8159 | | No log | 0.8012 | 266 | 0.6675 | 0.5498 | 0.6675 | 0.8170 | | No log | 0.8072 | 268 | 0.5966 | 0.5786 | 0.5966 | 0.7724 | | No log | 0.8133 | 270 | 0.5300 | 0.6091 | 0.5300 | 0.7280 | | No log | 0.8193 | 272 | 0.5421 | 0.6164 | 0.5421 | 0.7363 | | No log | 0.8253 | 274 | 0.6810 | 0.5792 | 0.6810 | 0.8252 | | No log | 0.8313 | 276 | 0.6917 | 0.5810 | 0.6917 | 0.8317 | | No log | 0.8373 | 278 | 0.5877 | 0.6193 | 0.5877 | 0.7666 | | No log | 0.8434 | 280 | 0.5283 | 0.6098 | 0.5283 | 0.7268 | | No log | 0.8494 | 282 | 0.5171 | 0.5755 | 0.5171 | 0.7191 | | No log | 0.8554 | 284 | 0.5388 | 0.5552 | 0.5388 | 0.7340 | | No log | 0.8614 | 286 | 0.5772 | 0.5397 | 0.5772 | 0.7598 | | No log | 0.8675 | 288 | 0.5090 | 0.5516 | 0.5090 | 0.7135 | | No log | 0.8735 | 290 | 0.4698 | 0.4972 | 0.4698 | 0.6854 | | No log | 0.8795 | 292 | 0.4553 | 0.5218 | 0.4553 | 0.6748 | | No log | 0.8855 | 294 | 0.4614 | 0.5281 | 0.4614 | 0.6793 | | No log | 0.8916 | 296 | 0.4784 | 0.5153 | 0.4784 | 0.6917 | | No log | 0.8976 | 298 | 0.4488 | 0.5968 | 0.4488 | 0.6700 | | No log | 0.9036 | 300 | 0.5075 | 0.6270 | 0.5075 | 0.7124 | | No log | 0.9096 | 302 | 0.4963 | 0.6338 | 0.4963 | 0.7045 | | No log | 0.9157 | 304 | 0.4564 | 0.5870 | 0.4564 | 0.6756 | | No log | 0.9217 | 306 | 0.5087 | 0.5159 | 0.5087 | 0.7132 | | No log | 0.9277 | 308 | 0.4529 | 0.5780 | 0.4529 | 0.6729 | | No log | 0.9337 | 310 | 0.5123 | 0.6292 | 0.5123 | 0.7158 | | No log | 0.9398 | 312 | 0.6004 | 0.6074 | 0.6004 | 0.7749 | | No log | 0.9458 | 314 | 0.5623 | 0.6023 | 0.5623 | 0.7499 | | No log | 0.9518 | 316 | 0.4899 | 0.6086 | 0.4899 | 0.6999 | | No log | 0.9578 | 318 | 0.4493 | 0.5903 | 0.4493 | 0.6703 | | No log | 0.9639 | 320 | 0.4409 | 0.5967 | 0.4409 | 0.6640 | | No log | 0.9699 | 322 | 0.4509 | 0.6117 | 0.4509 | 0.6715 | | No log | 0.9759 | 324 | 0.4351 | 0.5719 | 0.4351 | 0.6596 | | No log | 0.9819 | 326 | 0.4458 | 0.6023 | 0.4458 | 0.6677 | | No log | 0.9880 | 328 | 0.5342 | 0.6022 | 0.5342 | 0.7309 | | No log | 0.9940 | 330 | 0.5829 | 0.5923 | 0.5829 | 0.7635 | | No log | 1.0 | 332 | 0.5132 | 0.6003 | 0.5132 | 0.7164 | | No log | 1.0060 | 334 | 0.5212 | 0.6055 | 0.5212 | 0.7219 | | No log | 1.0120 | 336 | 0.5368 | 0.6044 | 0.5368 | 0.7327 | | No log | 1.0181 | 338 | 0.5627 | 0.5900 | 0.5627 | 0.7501 | | No log | 1.0241 | 340 | 0.5291 | 0.6080 | 0.5291 | 0.7274 | | No log | 1.0301 | 342 | 0.4764 | 0.5559 | 0.4764 | 0.6902 | | No log | 1.0361 | 344 | 0.4584 | 0.5561 | 0.4584 | 0.6770 | | No log | 1.0422 | 346 | 0.4822 | 0.5822 | 0.4822 | 0.6944 | | No log | 1.0482 | 348 | 0.4995 | 0.5724 | 0.4995 | 0.7068 | | No log | 1.0542 | 350 | 0.5213 | 0.5983 | 0.5213 | 0.7220 | | No log | 1.0602 | 352 | 0.4432 | 0.6025 | 0.4432 | 0.6657 | | No log | 1.0663 | 354 | 0.4266 | 0.6011 | 0.4266 | 0.6531 | | No log | 1.0723 | 356 | 0.4593 | 0.6256 | 0.4593 | 0.6777 | | No log | 1.0783 | 358 | 0.4282 | 0.6277 | 0.4282 | 0.6544 | | No log | 1.0843 | 360 | 0.4012 | 0.5671 | 0.4012 | 0.6334 | | No log | 1.0904 | 362 | 0.4494 | 0.5048 | 0.4494 | 0.6704 | | No log | 1.0964 | 364 | 0.4008 | 0.5778 | 0.4008 | 0.6331 | | No log | 1.1024 | 366 | 0.4551 | 0.6453 | 0.4551 | 0.6746 | | No log | 1.1084 | 368 | 0.4896 | 0.6424 | 0.4896 | 0.6997 | | No log | 1.1145 | 370 | 0.4146 | 0.5919 | 0.4146 | 0.6439 | | No log | 1.1205 | 372 | 0.4293 | 0.5326 | 0.4293 | 0.6552 | | No log | 1.1265 | 374 | 0.4293 | 0.5315 | 0.4293 | 0.6552 | | No log | 1.1325 | 376 | 0.4753 | 0.5957 | 0.4753 | 0.6894 | | No log | 1.1386 | 378 | 0.6103 | 0.5992 | 0.6103 | 0.7812 | | No log | 1.1446 | 380 | 0.6979 | 0.5847 | 0.6979 | 0.8354 | | No log | 1.1506 | 382 | 0.5574 | 0.6284 | 0.5574 | 0.7466 | | No log | 1.1566 | 384 | 0.4114 | 0.6228 | 0.4114 | 0.6414 | | No log | 1.1627 | 386 | 0.4050 | 0.6184 | 0.4050 | 0.6364 | | No log | 1.1687 | 388 | 0.4458 | 0.6544 | 0.4458 | 0.6677 | | No log | 1.1747 | 390 | 0.4770 | 0.6515 | 0.4770 | 0.6906 | | No log | 1.1807 | 392 | 0.4387 | 0.6407 | 0.4387 | 0.6623 | | No log | 1.1867 | 394 | 0.4974 | 0.5471 | 0.4974 | 0.7053 | | No log | 1.1928 | 396 | 0.5162 | 0.5377 | 0.5162 | 0.7185 | | No log | 1.1988 | 398 | 0.4317 | 0.6337 | 0.4317 | 0.6570 | | No log | 1.2048 | 400 | 0.5618 | 0.6426 | 0.5618 | 0.7496 | | No log | 1.2108 | 402 | 0.7052 | 0.6094 | 0.7052 | 0.8398 | | No log | 1.2169 | 404 | 0.6045 | 0.6085 | 0.6045 | 0.7775 | | No log | 1.2229 | 406 | 0.5113 | 0.5431 | 0.5113 | 0.7151 | | No log | 1.2289 | 408 | 0.5141 | 0.5341 | 0.5141 | 0.7170 | | No log | 1.2349 | 410 | 0.5797 | 0.5890 | 0.5797 | 0.7614 | | No log | 1.2410 | 412 | 0.5818 | 0.5859 | 0.5818 | 0.7627 | | No log | 1.2470 | 414 | 0.5180 | 0.5409 | 0.5180 | 0.7197 | | No log | 1.2530 | 416 | 0.5190 | 0.5214 | 0.5190 | 0.7205 | | No log | 1.2590 | 418 | 0.5646 | 0.5339 | 0.5646 | 0.7514 | | No log | 1.2651 | 420 | 0.5798 | 0.5696 | 0.5798 | 0.7615 | | No log | 1.2711 | 422 | 0.5575 | 0.6004 | 0.5575 | 0.7467 | | No log | 1.2771 | 424 | 0.4537 | 0.5824 | 0.4537 | 0.6735 | | No log | 1.2831 | 426 | 0.4111 | 0.5705 | 0.4111 | 0.6412 | | No log | 1.2892 | 428 | 0.4151 | 0.5388 | 0.4151 | 0.6443 | | No log | 1.2952 | 430 | 0.3907 | 0.5737 | 0.3907 | 0.6251 | | No log | 1.3012 | 432 | 0.3818 | 0.6003 | 0.3818 | 0.6179 | | No log | 1.3072 | 434 | 0.3918 | 0.5599 | 0.3918 | 0.6259 | | No log | 1.3133 | 436 | 0.4417 | 0.5025 | 0.4417 | 0.6646 | | No log | 1.3193 | 438 | 0.4010 | 0.5344 | 0.4010 | 0.6332 | | No log | 1.3253 | 440 | 0.3930 | 0.6166 | 0.3930 | 0.6269 | | No log | 1.3313 | 442 | 0.4862 | 0.6574 | 0.4862 | 0.6973 | | No log | 1.3373 | 444 | 0.6188 | 0.6505 | 0.6188 | 0.7867 | | No log | 1.3434 | 446 | 0.5829 | 0.6513 | 0.5829 | 0.7635 | | No log | 1.3494 | 448 | 0.4792 | 0.6095 | 0.4792 | 0.6923 | | No log | 1.3554 | 450 | 0.4474 | 0.5256 | 0.4474 | 0.6689 | | No log | 1.3614 | 452 | 0.4590 | 0.5178 | 0.4590 | 0.6775 | | No log | 1.3675 | 454 | 0.4685 | 0.5701 | 0.4685 | 0.6845 | | No log | 1.3735 | 456 | 0.4354 | 0.6031 | 0.4354 | 0.6598 | | No log | 1.3795 | 458 | 0.4036 | 0.5533 | 0.4036 | 0.6353 | | No log | 1.3855 | 460 | 0.4440 | 0.4963 | 0.4440 | 0.6664 | | No log | 1.3916 | 462 | 0.4178 | 0.5149 | 0.4178 | 0.6463 | | No log | 1.3976 | 464 | 0.4140 | 0.6389 | 0.4140 | 0.6434 | | No log | 1.4036 | 466 | 0.5198 | 0.6676 | 0.5198 | 0.7210 | | No log | 1.4096 | 468 | 0.4730 | 0.6435 | 0.4730 | 0.6878 | | No log | 1.4157 | 470 | 0.4154 | 0.5595 | 0.4154 | 0.6445 | | No log | 1.4217 | 472 | 0.4113 | 0.5696 | 0.4113 | 0.6414 | | No log | 1.4277 | 474 | 0.4438 | 0.6509 | 0.4438 | 0.6662 | | No log | 1.4337 | 476 | 0.5069 | 0.6826 | 0.5069 | 0.7120 | | No log | 1.4398 | 478 | 0.4424 | 0.6829 | 0.4424 | 0.6651 | | No log | 1.4458 | 480 | 0.3942 | 0.6120 | 0.3942 | 0.6279 | | No log | 1.4518 | 482 | 0.3959 | 0.5517 | 0.3959 | 0.6292 | | No log | 1.4578 | 484 | 0.4028 | 0.5742 | 0.4028 | 0.6347 | | No log | 1.4639 | 486 | 0.4481 | 0.6284 | 0.4481 | 0.6694 | | No log | 1.4699 | 488 | 0.4389 | 0.6197 | 0.4389 | 0.6625 | | No log | 1.4759 | 490 | 0.4036 | 0.5371 | 0.4036 | 0.6353 | | No log | 1.4819 | 492 | 0.3990 | 0.5366 | 0.3990 | 0.6317 | | No log | 1.4880 | 494 | 0.3900 | 0.5701 | 0.3900 | 0.6245 | | No log | 1.4940 | 496 | 0.3945 | 0.6265 | 0.3945 | 0.6281 | | No log | 1.5 | 498 | 0.3904 | 0.6173 | 0.3904 | 0.6248 | | 0.5402 | 1.5060 | 500 | 0.4074 | 0.6301 | 0.4074 | 0.6383 | | 0.5402 | 1.5120 | 502 | 0.4201 | 0.5920 | 0.4201 | 0.6481 | | 0.5402 | 1.5181 | 504 | 0.4574 | 0.5466 | 0.4574 | 0.6763 | | 0.5402 | 1.5241 | 506 | 0.4131 | 0.5669 | 0.4131 | 0.6427 | | 0.5402 | 1.5301 | 508 | 0.4058 | 0.6023 | 0.4058 | 0.6370 | | 0.5402 | 1.5361 | 510 | 0.4063 | 0.5441 | 0.4063 | 0.6374 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
aigchacker/Text-Poster
aigchacker
2024-11-06T14:26:55Z
42
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "image-generation", "flux", "safetensors", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-06T13:59:31Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - image-generation - flux - safetensors widget: - text: Text poster, a couple output: url: images/6dd1a918d89991ad5e40513ab88e7d892077f89dac93edcf4b660dd2.jpg - text: Text poster, a woman sitting in a cafe output: url: images/d2586464001008a80b5e45104e0f23290a35db048cab2e4fc4bfa356.jpg - text: Text poster, eiffel tower output: url: images/f25e24ecfbd0aa96fb6f55ab29288ba4d1fffe79fd95679d9d2f1329.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: text poster license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # FLUX.1-dev-LoRA-Text-Poster This is a LoRA (Text Poster) trained on FLUX.1-dev for artistic text poster by [cooooool](https://www.shakker.ai/userpage/c4d790d27e6b4de69f3f3508daf8f4c5/publish). If you are also interested in sharing your models on our platform, welcome to join our [Discord Community](https://huggingface.co/spaces/Shakker-Labs/README/blob/main/(https://discord.gg/5TuxSjJya6)). <div class="container"> <img src="./poster.jpeg" width="1024"/> </div> ## Showcases <Gallery /> ## Trigger words You should use `text poster` to trigger the image generation. The recommended scale is `0.8` to `1.0` in diffusers. ## Online Inference You can also download this model at [Shakker AI](https://www.shakker.ai/modelinfo/579ab130b53246fea49811bf80d38486/FLUX-text-poster?from=search), where we provide an online interface to generate images. ## Acknowledgements This model is trained by our copyrighted users [cooooool](https://www.shakker.ai/userpage/c4d790d27e6b4de69f3f3508daf8f4c5/publish). We release this model under permissions. The model follows [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
mradermacher/tamil-llama-13b-base-v0.1-GGUF
mradermacher
2024-11-06T14:18:54Z
31
0
transformers
[ "transformers", "gguf", "ta", "en", "base_model:abhinand/tamil-llama-13b-base-v0.1", "base_model:quantized:abhinand/tamil-llama-13b-base-v0.1", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-11-06T12:45:03Z
--- base_model: abhinand/tamil-llama-13b-base-v0.1 language: - ta - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q3_K_S.gguf) | Q3_K_S | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q3_K_M.gguf) | Q3_K_M | 6.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q3_K_L.gguf) | Q3_K_L | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.IQ4_XS.gguf) | IQ4_XS | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q4_K_S.gguf) | Q4_K_S | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q4_K_M.gguf) | Q4_K_M | 8.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q5_K_S.gguf) | Q5_K_S | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q5_K_M.gguf) | Q5_K_M | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q6_K.gguf) | Q6_K | 10.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-base-v0.1-GGUF/resolve/main/tamil-llama-13b-base-v0.1.Q8_0.gguf) | Q8_0 | 14.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
GateNLP/covid-vaccine-twitter-bert
GateNLP
2024-11-06T14:18:18Z
117
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-13T19:02:52Z
VaxxHesitancy: A Dataset for Studying Hesitancy Towards COVID-19 Vaccination on Twitter Yida Mu, Mali Jin, Charlie Grimshaw, Carolina Scarton, Kalina Bontcheva, Xingyi Song Accepted @ICWSM 2023 ```bibtex @inproceedings{mu2023vaxxhesitancy, title={VaxxHesitancy: A Dataset for Studying Hesitancy Towards COVID-19 Vaccination on Twitter}, author={Mu, Yida and Jin, Mali and Grimshaw, Charlie and Scarton, Carolina and Bontcheva, Kalina and Song, Xingyi}, booktitle={Proceedings of the International AAAI Conference on Web and Social Media}, volume={17}, pages={1052--1062}, year={2023} } ``` --- license: mit ---
lesubra/ECE-PRYMMAL-3B-SLERP_2-V2
lesubra
2024-11-06T14:17:40Z
10
0
null
[ "safetensors", "phi3", "merge", "mergekit", "lazymergekit", "jpacifico/Chocolatine-3B-Instruct-DPO-Revised", "microsoft/Phi-3-mini-4k-instruct", "custom_code", "license:apache-2.0", "region:us" ]
null
2024-11-06T14:15:13Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - jpacifico/Chocolatine-3B-Instruct-DPO-Revised - microsoft/Phi-3-mini-4k-instruct --- # ECE-PRYMMAL-3B-SLERP_2-V2 ECE-PRYMMAL-3B-SLERP_2-V2 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [jpacifico/Chocolatine-3B-Instruct-DPO-Revised](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised) * [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: jpacifico/Chocolatine-3B-Instruct-DPO-Revised layer_range: [0, 32] - model: microsoft/Phi-3-mini-4k-instruct layer_range: [0, 32] merge_method: slerp base_model: jpacifico/Chocolatine-3B-Instruct-DPO-Revised parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
QuantFactory/Qwen2.5-Coder-7B-Instruct-GGUF
QuantFactory
2024-11-06T14:17:24Z
386
5
transformers
[ "transformers", "gguf", "code", "codeqwen", "chat", "qwen", "qwen-coder", "text-generation", "en", "arxiv:2409.12186", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-7B", "base_model:quantized:Qwen/Qwen2.5-Coder-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-09-19T06:10:06Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-7B pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Qwen2.5-Coder-7B-Instruct-GGUF This is quantized version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) based on updated weights _(dated 06 Nov, 2024)_ and created using llama.cpp # Original Model Card # Qwen2.5-Coder-7B-Instruct ## Introduction Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). For Qwen2.5-Coder, we release three base language models and instruction-tuned language models, 1.5, 7 and 32 (coming soon) billion parameters. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. - **Long-context Support** up to 128K tokens. **This repo contains the instruction-tuned 7B Qwen2.5-Coder model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 7.61B - Number of Paramaters (Non-Embedding): 6.53B - Number of Layers: 28 - Number of Attention Heads (GQA): 28 for Q and 4 for KV - Context Length: Full 131,072 tokens - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186). ## Requirements The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{hui2024qwen2, title={Qwen2. 5-Coder Technical Report}, author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft-qwen-7b-sft-3epochs
AlekseyKorshuk
2024-11-06T14:15:56Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "dataset:AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T10:34:06Z
--- base_model: Qwen/Qwen2.5-7B-Instruct datasets: AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft library_name: transformers model_name: ai-detection-gutenberg-human-v2-formatted-ai-sft-qwen-7b-sft-3epochs tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for ai-detection-gutenberg-human-v2-formatted-ai-sft-qwen-7b-sft-3epochs This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the [AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft](https://huggingface.co/datasets/AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AlekseyKorshuk/ai-detection-gutenberg-human-v2-formatted-ai-sft-qwen-7b-sft-3epochs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aleksey-korshuk/huggingface/runs/bfyzbjtg) This model was trained with SFT. ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.4.1+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mateiaassAI/MT5Base-8e5-4
mateiaassAI
2024-11-06T14:10:32Z
104
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-06T14:08:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kajamo/alpha0ne
kajamo
2024-11-06T14:06:15Z
114
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-06T12:34:27Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: alpha0ne results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alpha0ne This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
lesubra/ECE-PRYMMAL-3B-SLERP_2-V1
lesubra
2024-11-06T14:03:06Z
9
0
null
[ "safetensors", "phi3", "merge", "mergekit", "lazymergekit", "jpacifico/Chocolatine-3B-Instruct-DPO-Revised", "microsoft/Phi-3-mini-4k-instruct", "custom_code", "license:apache-2.0", "region:us" ]
null
2024-11-06T14:00:50Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - jpacifico/Chocolatine-3B-Instruct-DPO-Revised - microsoft/Phi-3-mini-4k-instruct --- # ECE-PRYMMAL-3B-SLERP_2-V1 ECE-PRYMMAL-3B-SLERP_2-V1 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [jpacifico/Chocolatine-3B-Instruct-DPO-Revised](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised) * [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: jpacifico/Chocolatine-3B-Instruct-DPO-Revised layer_range: [0, 32] - model: microsoft/Phi-3-mini-4k-instruct layer_range: [0, 32] merge_method: slerp base_model: jpacifico/Chocolatine-3B-Instruct-DPO-Revised parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
MayBashendy/ASAP_FineTuningBERT_Aug_k20_task1_organization_fold0
MayBashendy
2024-11-06T13:58:49Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T11:41:28Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_Aug_k20_task1_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_Aug_k20_task1_organization_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Qwk: 0.5466 - Mse: 0.5352 - Rmse: 0.7316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 0.0063 | 2 | 12.0179 | 0.0 | 12.0179 | 3.4667 | | No log | 0.0126 | 4 | 11.0822 | 0.0 | 11.0822 | 3.3290 | | No log | 0.0189 | 6 | 10.5444 | 0.0 | 10.5444 | 3.2472 | | No log | 0.0252 | 8 | 9.8057 | 0.0 | 9.8057 | 3.1314 | | No log | 0.0314 | 10 | 8.6296 | 0.0026 | 8.6296 | 2.9376 | | No log | 0.0377 | 12 | 7.0373 | 0.0054 | 7.0373 | 2.6528 | | No log | 0.0440 | 14 | 5.3678 | 0.0 | 5.3678 | 2.3168 | | No log | 0.0503 | 16 | 4.1881 | 0.0125 | 4.1881 | 2.0465 | | No log | 0.0566 | 18 | 3.2466 | 0.0314 | 3.2466 | 1.8018 | | No log | 0.0629 | 20 | 2.5151 | 0.0201 | 2.5151 | 1.5859 | | No log | 0.0692 | 22 | 1.6556 | 0.0115 | 1.6556 | 1.2867 | | No log | 0.0755 | 24 | 1.1844 | 0.1172 | 1.1844 | 1.0883 | | No log | 0.0818 | 26 | 0.9363 | 0.0866 | 0.9363 | 0.9676 | | No log | 0.0881 | 28 | 0.7604 | 0.0484 | 0.7604 | 0.8720 | | No log | 0.0943 | 30 | 0.7517 | 0.0316 | 0.7517 | 0.8670 | | No log | 0.1006 | 32 | 0.7482 | 0.0674 | 0.7482 | 0.8650 | | No log | 0.1069 | 34 | 0.7812 | 0.0382 | 0.7812 | 0.8838 | | No log | 0.1132 | 36 | 0.8630 | 0.0382 | 0.8630 | 0.9290 | | No log | 0.1195 | 38 | 0.7789 | 0.0316 | 0.7789 | 0.8825 | | No log | 0.1258 | 40 | 0.8760 | 0.0316 | 0.8760 | 0.9359 | | No log | 0.1321 | 42 | 0.9209 | 0.0212 | 0.9209 | 0.9596 | | No log | 0.1384 | 44 | 0.8864 | 0.0212 | 0.8864 | 0.9415 | | No log | 0.1447 | 46 | 0.8158 | 0.0126 | 0.8158 | 0.9032 | | No log | 0.1509 | 48 | 0.8029 | 0.0316 | 0.8029 | 0.8961 | | No log | 0.1572 | 50 | 0.8344 | 0.0316 | 0.8344 | 0.9134 | | No log | 0.1635 | 52 | 0.8317 | 0.0316 | 0.8317 | 0.9120 | | No log | 0.1698 | 54 | 0.7914 | 0.0316 | 0.7914 | 0.8896 | | No log | 0.1761 | 56 | 0.7742 | 0.0316 | 0.7742 | 0.8799 | | No log | 0.1824 | 58 | 0.7615 | 0.0316 | 0.7615 | 0.8726 | | No log | 0.1887 | 60 | 0.7750 | 0.0316 | 0.7750 | 0.8803 | | No log | 0.1950 | 62 | 0.7897 | 0.0316 | 0.7897 | 0.8887 | | No log | 0.2013 | 64 | 0.7865 | 0.0316 | 0.7865 | 0.8869 | | No log | 0.2075 | 66 | 0.7933 | 0.0316 | 0.7933 | 0.8907 | | No log | 0.2138 | 68 | 0.8167 | 0.0316 | 0.8167 | 0.9037 | | No log | 0.2201 | 70 | 0.8019 | 0.0316 | 0.8019 | 0.8955 | | No log | 0.2264 | 72 | 0.7407 | 0.0316 | 0.7407 | 0.8606 | | No log | 0.2327 | 74 | 0.7123 | 0.0316 | 0.7123 | 0.8440 | | No log | 0.2390 | 76 | 0.6954 | 0.0316 | 0.6954 | 0.8339 | | No log | 0.2453 | 78 | 0.7127 | 0.0419 | 0.7127 | 0.8442 | | No log | 0.2516 | 80 | 0.6788 | 0.0419 | 0.6788 | 0.8239 | | No log | 0.2579 | 82 | 0.6872 | 0.3131 | 0.6872 | 0.8290 | | No log | 0.2642 | 84 | 0.7295 | 0.4173 | 0.7295 | 0.8541 | | No log | 0.2704 | 86 | 0.7259 | 0.1405 | 0.7259 | 0.8520 | | No log | 0.2767 | 88 | 0.7534 | 0.0316 | 0.7534 | 0.8680 | | No log | 0.2830 | 90 | 0.9137 | 0.0316 | 0.9137 | 0.9559 | | No log | 0.2893 | 92 | 0.8953 | 0.0419 | 0.8953 | 0.9462 | | No log | 0.2956 | 94 | 0.7677 | 0.0419 | 0.7677 | 0.8762 | | No log | 0.3019 | 96 | 0.6872 | 0.0419 | 0.6872 | 0.8290 | | No log | 0.3082 | 98 | 0.6619 | 0.0493 | 0.6619 | 0.8135 | | No log | 0.3145 | 100 | 0.6529 | 0.0897 | 0.6529 | 0.8080 | | No log | 0.3208 | 102 | 0.6887 | 0.0447 | 0.6887 | 0.8299 | | No log | 0.3270 | 104 | 0.8399 | 0.0921 | 0.8399 | 0.9164 | | No log | 0.3333 | 106 | 0.8642 | 0.0873 | 0.8642 | 0.9296 | | No log | 0.3396 | 108 | 0.7132 | 0.0484 | 0.7132 | 0.8445 | | No log | 0.3459 | 110 | 0.6894 | 0.0419 | 0.6894 | 0.8303 | | No log | 0.3522 | 112 | 0.6976 | 0.0484 | 0.6976 | 0.8352 | | No log | 0.3585 | 114 | 0.6968 | 0.0419 | 0.6968 | 0.8348 | | No log | 0.3648 | 116 | 0.6796 | 0.0548 | 0.6796 | 0.8244 | | No log | 0.3711 | 118 | 0.6692 | 0.0548 | 0.6692 | 0.8180 | | No log | 0.3774 | 120 | 0.6608 | 0.0548 | 0.6608 | 0.8129 | | No log | 0.3836 | 122 | 0.6634 | 0.0649 | 0.6634 | 0.8145 | | No log | 0.3899 | 124 | 0.6622 | 0.0603 | 0.6622 | 0.8137 | | No log | 0.3962 | 126 | 0.6628 | 0.0750 | 0.6628 | 0.8142 | | No log | 0.4025 | 128 | 0.6598 | 0.1833 | 0.6598 | 0.8123 | | No log | 0.4088 | 130 | 0.6672 | 0.2258 | 0.6672 | 0.8168 | | No log | 0.4151 | 132 | 0.6639 | 0.0918 | 0.6639 | 0.8148 | | No log | 0.4214 | 134 | 0.6644 | 0.0603 | 0.6644 | 0.8151 | | No log | 0.4277 | 136 | 0.6554 | 0.0746 | 0.6554 | 0.8096 | | No log | 0.4340 | 138 | 0.6264 | 0.1257 | 0.6264 | 0.7914 | | No log | 0.4403 | 140 | 0.6451 | 0.4728 | 0.6451 | 0.8032 | | No log | 0.4465 | 142 | 0.6685 | 0.4752 | 0.6685 | 0.8176 | | No log | 0.4528 | 144 | 0.6049 | 0.4478 | 0.6049 | 0.7777 | | No log | 0.4591 | 146 | 0.6038 | 0.1782 | 0.6038 | 0.7771 | | No log | 0.4654 | 148 | 0.5846 | 0.2371 | 0.5846 | 0.7646 | | No log | 0.4717 | 150 | 0.5859 | 0.4477 | 0.5859 | 0.7655 | | No log | 0.4780 | 152 | 0.7173 | 0.3828 | 0.7173 | 0.8469 | | No log | 0.4843 | 154 | 0.7084 | 0.3882 | 0.7084 | 0.8417 | | No log | 0.4906 | 156 | 0.6240 | 0.4139 | 0.6240 | 0.7899 | | No log | 0.4969 | 158 | 0.6043 | 0.1238 | 0.6043 | 0.7774 | | No log | 0.5031 | 160 | 0.6702 | 0.1123 | 0.6702 | 0.8187 | | No log | 0.5094 | 162 | 0.6411 | 0.1102 | 0.6411 | 0.8007 | | No log | 0.5157 | 164 | 0.5683 | 0.3157 | 0.5683 | 0.7539 | | No log | 0.5220 | 166 | 0.5955 | 0.4532 | 0.5955 | 0.7717 | | No log | 0.5283 | 168 | 0.6909 | 0.3869 | 0.6909 | 0.8312 | | No log | 0.5346 | 170 | 0.9200 | 0.0801 | 0.9200 | 0.9592 | | No log | 0.5409 | 172 | 0.7579 | 0.2155 | 0.7579 | 0.8706 | | No log | 0.5472 | 174 | 0.6391 | 0.3533 | 0.6391 | 0.7994 | | No log | 0.5535 | 176 | 0.6119 | 0.3729 | 0.6119 | 0.7822 | | No log | 0.5597 | 178 | 0.6156 | 0.3864 | 0.6156 | 0.7846 | | No log | 0.5660 | 180 | 0.5831 | 0.4169 | 0.5831 | 0.7636 | | No log | 0.5723 | 182 | 0.6125 | 0.4773 | 0.6125 | 0.7826 | | No log | 0.5786 | 184 | 0.5654 | 0.5126 | 0.5654 | 0.7519 | | No log | 0.5849 | 186 | 0.5045 | 0.4536 | 0.5045 | 0.7103 | | No log | 0.5912 | 188 | 0.4852 | 0.4839 | 0.4852 | 0.6965 | | No log | 0.5975 | 190 | 0.4864 | 0.5193 | 0.4864 | 0.6974 | | No log | 0.6038 | 192 | 0.5333 | 0.5381 | 0.5333 | 0.7303 | | No log | 0.6101 | 194 | 0.5818 | 0.4820 | 0.5818 | 0.7627 | | No log | 0.6164 | 196 | 0.5457 | 0.4547 | 0.5457 | 0.7387 | | No log | 0.6226 | 198 | 0.5304 | 0.4858 | 0.5304 | 0.7283 | | No log | 0.6289 | 200 | 0.5180 | 0.5206 | 0.5180 | 0.7197 | | No log | 0.6352 | 202 | 0.4908 | 0.5086 | 0.4908 | 0.7006 | | No log | 0.6415 | 204 | 0.4715 | 0.5198 | 0.4715 | 0.6867 | | No log | 0.6478 | 206 | 0.4842 | 0.5030 | 0.4842 | 0.6959 | | No log | 0.6541 | 208 | 0.5114 | 0.5502 | 0.5114 | 0.7151 | | No log | 0.6604 | 210 | 0.5467 | 0.5329 | 0.5467 | 0.7394 | | No log | 0.6667 | 212 | 0.5509 | 0.5181 | 0.5509 | 0.7422 | | No log | 0.6730 | 214 | 0.5190 | 0.3750 | 0.5190 | 0.7204 | | No log | 0.6792 | 216 | 0.5155 | 0.3492 | 0.5155 | 0.7180 | | No log | 0.6855 | 218 | 0.4663 | 0.5006 | 0.4663 | 0.6828 | | No log | 0.6918 | 220 | 0.4621 | 0.5516 | 0.4621 | 0.6798 | | No log | 0.6981 | 222 | 0.4470 | 0.5623 | 0.4470 | 0.6686 | | No log | 0.7044 | 224 | 0.4992 | 0.4535 | 0.4992 | 0.7065 | | No log | 0.7107 | 226 | 0.4630 | 0.5280 | 0.4630 | 0.6805 | | No log | 0.7170 | 228 | 0.4813 | 0.5276 | 0.4813 | 0.6937 | | No log | 0.7233 | 230 | 0.4967 | 0.4917 | 0.4967 | 0.7048 | | No log | 0.7296 | 232 | 0.5387 | 0.4653 | 0.5387 | 0.7340 | | No log | 0.7358 | 234 | 0.5568 | 0.4123 | 0.5568 | 0.7462 | | No log | 0.7421 | 236 | 0.5762 | 0.3926 | 0.5762 | 0.7591 | | No log | 0.7484 | 238 | 0.5757 | 0.3604 | 0.5757 | 0.7587 | | No log | 0.7547 | 240 | 0.5917 | 0.1988 | 0.5917 | 0.7692 | | No log | 0.7610 | 242 | 0.6619 | 0.1229 | 0.6619 | 0.8135 | | No log | 0.7673 | 244 | 0.6446 | 0.1413 | 0.6446 | 0.8029 | | No log | 0.7736 | 246 | 0.5670 | 0.2121 | 0.5670 | 0.7530 | | No log | 0.7799 | 248 | 0.5287 | 0.4550 | 0.5287 | 0.7271 | | No log | 0.7862 | 250 | 0.5835 | 0.5201 | 0.5835 | 0.7639 | | No log | 0.7925 | 252 | 0.5566 | 0.5366 | 0.5566 | 0.7460 | | No log | 0.7987 | 254 | 0.4833 | 0.5475 | 0.4833 | 0.6952 | | No log | 0.8050 | 256 | 0.4625 | 0.4781 | 0.4625 | 0.6801 | | No log | 0.8113 | 258 | 0.4996 | 0.3595 | 0.4996 | 0.7068 | | No log | 0.8176 | 260 | 0.4938 | 0.3752 | 0.4938 | 0.7027 | | No log | 0.8239 | 262 | 0.4648 | 0.4688 | 0.4648 | 0.6818 | | No log | 0.8302 | 264 | 0.5235 | 0.4649 | 0.5235 | 0.7236 | | No log | 0.8365 | 266 | 0.5261 | 0.4878 | 0.5261 | 0.7253 | | No log | 0.8428 | 268 | 0.5084 | 0.4377 | 0.5084 | 0.7130 | | No log | 0.8491 | 270 | 0.4691 | 0.5609 | 0.4691 | 0.6849 | | No log | 0.8553 | 272 | 0.4405 | 0.5774 | 0.4405 | 0.6637 | | No log | 0.8616 | 274 | 0.4312 | 0.5560 | 0.4312 | 0.6567 | | No log | 0.8679 | 276 | 0.4357 | 0.4909 | 0.4357 | 0.6601 | | No log | 0.8742 | 278 | 0.4706 | 0.4431 | 0.4706 | 0.6860 | | No log | 0.8805 | 280 | 0.4540 | 0.4803 | 0.4540 | 0.6738 | | No log | 0.8868 | 282 | 0.4660 | 0.5422 | 0.4660 | 0.6827 | | No log | 0.8931 | 284 | 0.4745 | 0.5291 | 0.4745 | 0.6888 | | No log | 0.8994 | 286 | 0.5117 | 0.5465 | 0.5117 | 0.7154 | | No log | 0.9057 | 288 | 0.6159 | 0.4993 | 0.6159 | 0.7848 | | No log | 0.9119 | 290 | 0.5713 | 0.5362 | 0.5713 | 0.7558 | | No log | 0.9182 | 292 | 0.5096 | 0.5233 | 0.5096 | 0.7138 | | No log | 0.9245 | 294 | 0.5283 | 0.5564 | 0.5283 | 0.7269 | | No log | 0.9308 | 296 | 0.5306 | 0.5697 | 0.5306 | 0.7284 | | No log | 0.9371 | 298 | 0.6002 | 0.5214 | 0.6002 | 0.7747 | | No log | 0.9434 | 300 | 0.5728 | 0.5460 | 0.5728 | 0.7568 | | No log | 0.9497 | 302 | 0.4807 | 0.5059 | 0.4807 | 0.6933 | | No log | 0.9560 | 304 | 0.5446 | 0.3641 | 0.5446 | 0.7380 | | No log | 0.9623 | 306 | 0.5320 | 0.3856 | 0.5320 | 0.7294 | | No log | 0.9686 | 308 | 0.4741 | 0.5118 | 0.4741 | 0.6886 | | No log | 0.9748 | 310 | 0.4723 | 0.5244 | 0.4723 | 0.6872 | | No log | 0.9811 | 312 | 0.4768 | 0.4583 | 0.4768 | 0.6905 | | No log | 0.9874 | 314 | 0.5082 | 0.4248 | 0.5082 | 0.7129 | | No log | 0.9937 | 316 | 0.4580 | 0.4888 | 0.4580 | 0.6768 | | No log | 1.0 | 318 | 0.4900 | 0.5683 | 0.4900 | 0.7000 | | No log | 1.0063 | 320 | 0.4791 | 0.5563 | 0.4791 | 0.6921 | | No log | 1.0126 | 322 | 0.4524 | 0.5296 | 0.4524 | 0.6726 | | No log | 1.0189 | 324 | 0.4568 | 0.4785 | 0.4568 | 0.6759 | | No log | 1.0252 | 326 | 0.4561 | 0.5154 | 0.4561 | 0.6753 | | No log | 1.0314 | 328 | 0.5108 | 0.5644 | 0.5108 | 0.7147 | | No log | 1.0377 | 330 | 0.5220 | 0.5710 | 0.5220 | 0.7225 | | No log | 1.0440 | 332 | 0.4507 | 0.5357 | 0.4507 | 0.6713 | | No log | 1.0503 | 334 | 0.4476 | 0.4719 | 0.4476 | 0.6690 | | No log | 1.0566 | 336 | 0.4624 | 0.5533 | 0.4624 | 0.6800 | | No log | 1.0629 | 338 | 0.6018 | 0.5378 | 0.6018 | 0.7758 | | No log | 1.0692 | 340 | 0.6157 | 0.5216 | 0.6157 | 0.7846 | | No log | 1.0755 | 342 | 0.5006 | 0.5030 | 0.5006 | 0.7076 | | No log | 1.0818 | 344 | 0.4784 | 0.4407 | 0.4784 | 0.6917 | | No log | 1.0881 | 346 | 0.4645 | 0.4348 | 0.4645 | 0.6816 | | No log | 1.0943 | 348 | 0.4531 | 0.4843 | 0.4531 | 0.6731 | | No log | 1.1006 | 350 | 0.4681 | 0.5530 | 0.4681 | 0.6842 | | No log | 1.1069 | 352 | 0.4497 | 0.5415 | 0.4497 | 0.6706 | | No log | 1.1132 | 354 | 0.4471 | 0.5348 | 0.4471 | 0.6687 | | No log | 1.1195 | 356 | 0.4355 | 0.4720 | 0.4355 | 0.6599 | | No log | 1.1258 | 358 | 0.4191 | 0.4984 | 0.4191 | 0.6474 | | No log | 1.1321 | 360 | 0.4048 | 0.5830 | 0.4048 | 0.6362 | | No log | 1.1384 | 362 | 0.4305 | 0.5964 | 0.4305 | 0.6562 | | No log | 1.1447 | 364 | 0.4154 | 0.5886 | 0.4154 | 0.6445 | | No log | 1.1509 | 366 | 0.4085 | 0.5737 | 0.4085 | 0.6391 | | No log | 1.1572 | 368 | 0.4145 | 0.5675 | 0.4145 | 0.6438 | | No log | 1.1635 | 370 | 0.4510 | 0.5868 | 0.4510 | 0.6715 | | No log | 1.1698 | 372 | 0.5957 | 0.5596 | 0.5957 | 0.7718 | | No log | 1.1761 | 374 | 0.5335 | 0.5670 | 0.5335 | 0.7304 | | No log | 1.1824 | 376 | 0.4396 | 0.5635 | 0.4396 | 0.6630 | | No log | 1.1887 | 378 | 0.4411 | 0.5379 | 0.4411 | 0.6642 | | No log | 1.1950 | 380 | 0.4362 | 0.5354 | 0.4362 | 0.6604 | | No log | 1.2013 | 382 | 0.4534 | 0.5435 | 0.4534 | 0.6734 | | No log | 1.2075 | 384 | 0.4296 | 0.5520 | 0.4296 | 0.6555 | | No log | 1.2138 | 386 | 0.4266 | 0.5481 | 0.4266 | 0.6531 | | No log | 1.2201 | 388 | 0.4252 | 0.5482 | 0.4252 | 0.6520 | | No log | 1.2264 | 390 | 0.4254 | 0.5407 | 0.4254 | 0.6522 | | No log | 1.2327 | 392 | 0.4384 | 0.5204 | 0.4384 | 0.6621 | | No log | 1.2390 | 394 | 0.4530 | 0.4888 | 0.4530 | 0.6731 | | No log | 1.2453 | 396 | 0.4710 | 0.5440 | 0.4710 | 0.6863 | | No log | 1.2516 | 398 | 0.5120 | 0.5318 | 0.5120 | 0.7155 | | No log | 1.2579 | 400 | 0.5009 | 0.5510 | 0.5009 | 0.7078 | | No log | 1.2642 | 402 | 0.4882 | 0.5547 | 0.4882 | 0.6987 | | No log | 1.2704 | 404 | 0.4844 | 0.5687 | 0.4844 | 0.6960 | | No log | 1.2767 | 406 | 0.4974 | 0.5624 | 0.4974 | 0.7053 | | No log | 1.2830 | 408 | 0.4527 | 0.5299 | 0.4527 | 0.6728 | | No log | 1.2893 | 410 | 0.4481 | 0.5026 | 0.4481 | 0.6694 | | No log | 1.2956 | 412 | 0.4408 | 0.5473 | 0.4408 | 0.6639 | | No log | 1.3019 | 414 | 0.4956 | 0.6047 | 0.4956 | 0.7040 | | No log | 1.3082 | 416 | 0.4792 | 0.6101 | 0.4792 | 0.6922 | | No log | 1.3145 | 418 | 0.4203 | 0.5664 | 0.4203 | 0.6483 | | No log | 1.3208 | 420 | 0.4335 | 0.5261 | 0.4335 | 0.6584 | | No log | 1.3270 | 422 | 0.4437 | 0.5094 | 0.4437 | 0.6661 | | No log | 1.3333 | 424 | 0.4254 | 0.5705 | 0.4254 | 0.6522 | | No log | 1.3396 | 426 | 0.4540 | 0.5908 | 0.4540 | 0.6738 | | No log | 1.3459 | 428 | 0.4200 | 0.5599 | 0.4200 | 0.6480 | | No log | 1.3522 | 430 | 0.4490 | 0.4792 | 0.4490 | 0.6701 | | No log | 1.3585 | 432 | 0.4900 | 0.4328 | 0.4900 | 0.7000 | | No log | 1.3648 | 434 | 0.4325 | 0.5198 | 0.4325 | 0.6577 | | No log | 1.3711 | 436 | 0.4629 | 0.5773 | 0.4629 | 0.6804 | | No log | 1.3774 | 438 | 0.5279 | 0.6088 | 0.5279 | 0.7265 | | No log | 1.3836 | 440 | 0.4515 | 0.5876 | 0.4515 | 0.6720 | | No log | 1.3899 | 442 | 0.4544 | 0.4816 | 0.4544 | 0.6741 | | No log | 1.3962 | 444 | 0.5344 | 0.3721 | 0.5344 | 0.7311 | | No log | 1.4025 | 446 | 0.4667 | 0.4603 | 0.4667 | 0.6832 | | No log | 1.4088 | 448 | 0.4476 | 0.5907 | 0.4476 | 0.6690 | | No log | 1.4151 | 450 | 0.5574 | 0.5828 | 0.5574 | 0.7466 | | No log | 1.4214 | 452 | 0.5536 | 0.5754 | 0.5536 | 0.7441 | | No log | 1.4277 | 454 | 0.4889 | 0.5879 | 0.4889 | 0.6992 | | No log | 1.4340 | 456 | 0.4475 | 0.5637 | 0.4475 | 0.6689 | | No log | 1.4403 | 458 | 0.4689 | 0.5894 | 0.4689 | 0.6848 | | No log | 1.4465 | 460 | 0.5947 | 0.6027 | 0.5947 | 0.7712 | | No log | 1.4528 | 462 | 0.6122 | 0.6422 | 0.6122 | 0.7824 | | No log | 1.4591 | 464 | 0.4651 | 0.6175 | 0.4651 | 0.6820 | | No log | 1.4654 | 466 | 0.4310 | 0.5557 | 0.4310 | 0.6565 | | No log | 1.4717 | 468 | 0.4604 | 0.5151 | 0.4604 | 0.6785 | | No log | 1.4780 | 470 | 0.4326 | 0.5487 | 0.4326 | 0.6577 | | No log | 1.4843 | 472 | 0.4264 | 0.5595 | 0.4264 | 0.6530 | | No log | 1.4906 | 474 | 0.4322 | 0.5707 | 0.4322 | 0.6574 | | No log | 1.4969 | 476 | 0.4565 | 0.5351 | 0.4565 | 0.6756 | | No log | 1.5031 | 478 | 0.4335 | 0.5410 | 0.4335 | 0.6584 | | No log | 1.5094 | 480 | 0.4330 | 0.6007 | 0.4330 | 0.6580 | | No log | 1.5157 | 482 | 0.6046 | 0.6136 | 0.6046 | 0.7775 | | No log | 1.5220 | 484 | 0.6213 | 0.5786 | 0.6213 | 0.7882 | | No log | 1.5283 | 486 | 0.5202 | 0.5802 | 0.5202 | 0.7213 | | No log | 1.5346 | 488 | 0.4899 | 0.5651 | 0.4899 | 0.6999 | | No log | 1.5409 | 490 | 0.5525 | 0.5716 | 0.5525 | 0.7433 | | No log | 1.5472 | 492 | 0.5873 | 0.5840 | 0.5873 | 0.7663 | | No log | 1.5535 | 494 | 0.5886 | 0.5970 | 0.5886 | 0.7672 | | No log | 1.5597 | 496 | 0.4956 | 0.5652 | 0.4956 | 0.7040 | | No log | 1.5660 | 498 | 0.4548 | 0.5153 | 0.4548 | 0.6744 | | 0.6168 | 1.5723 | 500 | 0.4578 | 0.4906 | 0.4578 | 0.6766 | | 0.6168 | 1.5786 | 502 | 0.4687 | 0.4650 | 0.4687 | 0.6846 | | 0.6168 | 1.5849 | 504 | 0.4649 | 0.5025 | 0.4649 | 0.6819 | | 0.6168 | 1.5912 | 506 | 0.4787 | 0.5359 | 0.4787 | 0.6919 | | 0.6168 | 1.5975 | 508 | 0.5109 | 0.5803 | 0.5109 | 0.7148 | | 0.6168 | 1.6038 | 510 | 0.4629 | 0.5427 | 0.4629 | 0.6804 | | 0.6168 | 1.6101 | 512 | 0.4511 | 0.4776 | 0.4511 | 0.6716 | | 0.6168 | 1.6164 | 514 | 0.4647 | 0.4382 | 0.4647 | 0.6817 | | 0.6168 | 1.6226 | 516 | 0.4988 | 0.3909 | 0.4988 | 0.7063 | | 0.6168 | 1.6289 | 518 | 0.4708 | 0.4333 | 0.4708 | 0.6862 | | 0.6168 | 1.6352 | 520 | 0.4335 | 0.5524 | 0.4335 | 0.6584 | | 0.6168 | 1.6415 | 522 | 0.5118 | 0.6061 | 0.5118 | 0.7154 | | 0.6168 | 1.6478 | 524 | 0.5394 | 0.5932 | 0.5394 | 0.7344 | | 0.6168 | 1.6541 | 526 | 0.4893 | 0.5836 | 0.4893 | 0.6995 | | 0.6168 | 1.6604 | 528 | 0.4719 | 0.5948 | 0.4719 | 0.6869 | | 0.6168 | 1.6667 | 530 | 0.4779 | 0.6197 | 0.4779 | 0.6913 | | 0.6168 | 1.6730 | 532 | 0.5567 | 0.6521 | 0.5567 | 0.7461 | | 0.6168 | 1.6792 | 534 | 0.5218 | 0.6485 | 0.5218 | 0.7223 | | 0.6168 | 1.6855 | 536 | 0.4417 | 0.5646 | 0.4417 | 0.6646 | | 0.6168 | 1.6918 | 538 | 0.4669 | 0.5291 | 0.4669 | 0.6833 | | 0.6168 | 1.6981 | 540 | 0.4911 | 0.5074 | 0.4911 | 0.7008 | | 0.6168 | 1.7044 | 542 | 0.4456 | 0.5703 | 0.4456 | 0.6675 | | 0.6168 | 1.7107 | 544 | 0.5328 | 0.6591 | 0.5328 | 0.7300 | | 0.6168 | 1.7170 | 546 | 0.5935 | 0.6528 | 0.5935 | 0.7704 | | 0.6168 | 1.7233 | 548 | 0.5023 | 0.6085 | 0.5023 | 0.7087 | | 0.6168 | 1.7296 | 550 | 0.4372 | 0.5448 | 0.4372 | 0.6612 | | 0.6168 | 1.7358 | 552 | 0.4434 | 0.5654 | 0.4434 | 0.6659 | | 0.6168 | 1.7421 | 554 | 0.5137 | 0.6049 | 0.5137 | 0.7167 | | 0.6168 | 1.7484 | 556 | 0.5971 | 0.6242 | 0.5971 | 0.7727 | | 0.6168 | 1.7547 | 558 | 0.5219 | 0.6144 | 0.5219 | 0.7225 | | 0.6168 | 1.7610 | 560 | 0.4464 | 0.5712 | 0.4464 | 0.6681 | | 0.6168 | 1.7673 | 562 | 0.4409 | 0.5542 | 0.4409 | 0.6640 | | 0.6168 | 1.7736 | 564 | 0.4485 | 0.5703 | 0.4485 | 0.6697 | | 0.6168 | 1.7799 | 566 | 0.5082 | 0.6321 | 0.5082 | 0.7129 | | 0.6168 | 1.7862 | 568 | 0.4859 | 0.6142 | 0.4859 | 0.6970 | | 0.6168 | 1.7925 | 570 | 0.4397 | 0.5736 | 0.4397 | 0.6631 | | 0.6168 | 1.7987 | 572 | 0.4426 | 0.5451 | 0.4426 | 0.6653 | | 0.6168 | 1.8050 | 574 | 0.4499 | 0.5175 | 0.4499 | 0.6708 | | 0.6168 | 1.8113 | 576 | 0.4461 | 0.5466 | 0.4461 | 0.6679 | | 0.6168 | 1.8176 | 578 | 0.4628 | 0.6349 | 0.4628 | 0.6803 | | 0.6168 | 1.8239 | 580 | 0.5017 | 0.6687 | 0.5017 | 0.7083 | | 0.6168 | 1.8302 | 582 | 0.4434 | 0.6080 | 0.4434 | 0.6659 | | 0.6168 | 1.8365 | 584 | 0.4401 | 0.5153 | 0.4401 | 0.6634 | | 0.6168 | 1.8428 | 586 | 0.4543 | 0.4893 | 0.4543 | 0.6740 | | 0.6168 | 1.8491 | 588 | 0.4335 | 0.5541 | 0.4335 | 0.6584 | | 0.6168 | 1.8553 | 590 | 0.5906 | 0.6594 | 0.5906 | 0.7685 | | 0.6168 | 1.8616 | 592 | 0.8147 | 0.6481 | 0.8147 | 0.9026 | | 0.6168 | 1.8679 | 594 | 0.7159 | 0.6446 | 0.7159 | 0.8461 | | 0.6168 | 1.8742 | 596 | 0.4781 | 0.6088 | 0.4781 | 0.6915 | | 0.6168 | 1.8805 | 598 | 0.4439 | 0.4836 | 0.4439 | 0.6662 | | 0.6168 | 1.8868 | 600 | 0.4566 | 0.4557 | 0.4566 | 0.6757 | | 0.6168 | 1.8931 | 602 | 0.4287 | 0.5373 | 0.4287 | 0.6547 | | 0.6168 | 1.8994 | 604 | 0.4456 | 0.5949 | 0.4456 | 0.6675 | | 0.6168 | 1.9057 | 606 | 0.4832 | 0.6382 | 0.4832 | 0.6952 | | 0.6168 | 1.9119 | 608 | 0.4698 | 0.6393 | 0.4698 | 0.6855 | | 0.6168 | 1.9182 | 610 | 0.4329 | 0.5806 | 0.4329 | 0.6580 | | 0.6168 | 1.9245 | 612 | 0.4489 | 0.6122 | 0.4489 | 0.6700 | | 0.6168 | 1.9308 | 614 | 0.4779 | 0.6377 | 0.4779 | 0.6913 | | 0.6168 | 1.9371 | 616 | 0.4334 | 0.5817 | 0.4334 | 0.6583 | | 0.6168 | 1.9434 | 618 | 0.4404 | 0.5204 | 0.4404 | 0.6636 | | 0.6168 | 1.9497 | 620 | 0.4414 | 0.5303 | 0.4414 | 0.6644 | | 0.6168 | 1.9560 | 622 | 0.4488 | 0.6036 | 0.4488 | 0.6699 | | 0.6168 | 1.9623 | 624 | 0.4846 | 0.6425 | 0.4846 | 0.6961 | | 0.6168 | 1.9686 | 626 | 0.4593 | 0.6147 | 0.4593 | 0.6777 | | 0.6168 | 1.9748 | 628 | 0.4434 | 0.5229 | 0.4434 | 0.6659 | | 0.6168 | 1.9811 | 630 | 0.5029 | 0.4279 | 0.5029 | 0.7092 | | 0.6168 | 1.9874 | 632 | 0.4739 | 0.4619 | 0.4739 | 0.6884 | | 0.6168 | 1.9937 | 634 | 0.4356 | 0.5404 | 0.4356 | 0.6600 | | 0.6168 | 2.0 | 636 | 0.4431 | 0.5583 | 0.4431 | 0.6657 | | 0.6168 | 2.0063 | 638 | 0.4482 | 0.5137 | 0.4482 | 0.6695 | | 0.6168 | 2.0126 | 640 | 0.4698 | 0.4867 | 0.4698 | 0.6854 | | 0.6168 | 2.0189 | 642 | 0.4694 | 0.5070 | 0.4694 | 0.6851 | | 0.6168 | 2.0252 | 644 | 0.4760 | 0.5115 | 0.4760 | 0.6899 | | 0.6168 | 2.0314 | 646 | 0.4932 | 0.5436 | 0.4932 | 0.7023 | | 0.6168 | 2.0377 | 648 | 0.4959 | 0.5361 | 0.4959 | 0.7042 | | 0.6168 | 2.0440 | 650 | 0.5141 | 0.5522 | 0.5141 | 0.7170 | | 0.6168 | 2.0503 | 652 | 0.5923 | 0.6191 | 0.5923 | 0.7696 | | 0.6168 | 2.0566 | 654 | 0.5373 | 0.6122 | 0.5373 | 0.7330 | | 0.6168 | 2.0629 | 656 | 0.4557 | 0.5540 | 0.4557 | 0.6750 | | 0.6168 | 2.0692 | 658 | 0.4540 | 0.5032 | 0.4540 | 0.6738 | | 0.6168 | 2.0755 | 660 | 0.4465 | 0.5682 | 0.4465 | 0.6682 | | 0.6168 | 2.0818 | 662 | 0.4612 | 0.5993 | 0.4612 | 0.6791 | | 0.6168 | 2.0881 | 664 | 0.4772 | 0.6044 | 0.4772 | 0.6908 | | 0.6168 | 2.0943 | 666 | 0.4469 | 0.5729 | 0.4469 | 0.6685 | | 0.6168 | 2.1006 | 668 | 0.4566 | 0.5216 | 0.4566 | 0.6757 | | 0.6168 | 2.1069 | 670 | 0.4556 | 0.5326 | 0.4556 | 0.6750 | | 0.6168 | 2.1132 | 672 | 0.4481 | 0.5748 | 0.4481 | 0.6694 | | 0.6168 | 2.1195 | 674 | 0.4865 | 0.6066 | 0.4865 | 0.6975 | | 0.6168 | 2.1258 | 676 | 0.4763 | 0.6105 | 0.4763 | 0.6901 | | 0.6168 | 2.1321 | 678 | 0.4473 | 0.5493 | 0.4473 | 0.6688 | | 0.6168 | 2.1384 | 680 | 0.4496 | 0.5392 | 0.4496 | 0.6705 | | 0.6168 | 2.1447 | 682 | 0.4709 | 0.6130 | 0.4709 | 0.6862 | | 0.6168 | 2.1509 | 684 | 0.6828 | 0.6267 | 0.6828 | 0.8263 | | 0.6168 | 2.1572 | 686 | 0.8103 | 0.6521 | 0.8103 | 0.9002 | | 0.6168 | 2.1635 | 688 | 0.6630 | 0.6061 | 0.6630 | 0.8143 | | 0.6168 | 2.1698 | 690 | 0.4662 | 0.6020 | 0.4662 | 0.6828 | | 0.6168 | 2.1761 | 692 | 0.4516 | 0.5239 | 0.4516 | 0.6720 | | 0.6168 | 2.1824 | 694 | 0.4492 | 0.5802 | 0.4492 | 0.6702 | | 0.6168 | 2.1887 | 696 | 0.4976 | 0.6040 | 0.4976 | 0.7054 | | 0.6168 | 2.1950 | 698 | 0.6299 | 0.6332 | 0.6299 | 0.7937 | | 0.6168 | 2.2013 | 700 | 0.6688 | 0.6466 | 0.6688 | 0.8178 | | 0.6168 | 2.2075 | 702 | 0.5166 | 0.6479 | 0.5166 | 0.7187 | | 0.6168 | 2.2138 | 704 | 0.4484 | 0.5805 | 0.4484 | 0.6697 | | 0.6168 | 2.2201 | 706 | 0.4544 | 0.5440 | 0.4544 | 0.6741 | | 0.6168 | 2.2264 | 708 | 0.4569 | 0.5398 | 0.4569 | 0.6760 | | 0.6168 | 2.2327 | 710 | 0.4531 | 0.5747 | 0.4531 | 0.6731 | | 0.6168 | 2.2390 | 712 | 0.4682 | 0.6000 | 0.4682 | 0.6842 | | 0.6168 | 2.2453 | 714 | 0.5003 | 0.6096 | 0.5003 | 0.7074 | | 0.6168 | 2.2516 | 716 | 0.5291 | 0.5905 | 0.5291 | 0.7274 | | 0.6168 | 2.2579 | 718 | 0.4991 | 0.5957 | 0.4991 | 0.7065 | | 0.6168 | 2.2642 | 720 | 0.5197 | 0.5879 | 0.5197 | 0.7209 | | 0.6168 | 2.2704 | 722 | 0.4952 | 0.5493 | 0.4952 | 0.7037 | | 0.6168 | 2.2767 | 724 | 0.5032 | 0.5694 | 0.5032 | 0.7093 | | 0.6168 | 2.2830 | 726 | 0.5523 | 0.5756 | 0.5523 | 0.7431 | | 0.6168 | 2.2893 | 728 | 0.6089 | 0.6209 | 0.6089 | 0.7803 | | 0.6168 | 2.2956 | 730 | 0.5343 | 0.6081 | 0.5343 | 0.7309 | | 0.6168 | 2.3019 | 732 | 0.4702 | 0.5385 | 0.4702 | 0.6857 | | 0.6168 | 2.3082 | 734 | 0.4921 | 0.4988 | 0.4921 | 0.7015 | | 0.6168 | 2.3145 | 736 | 0.4682 | 0.5508 | 0.4682 | 0.6843 | | 0.6168 | 2.3208 | 738 | 0.4779 | 0.5928 | 0.4779 | 0.6913 | | 0.6168 | 2.3270 | 740 | 0.4663 | 0.5907 | 0.4663 | 0.6828 | | 0.6168 | 2.3333 | 742 | 0.4595 | 0.5644 | 0.4595 | 0.6779 | | 0.6168 | 2.3396 | 744 | 0.4796 | 0.4895 | 0.4796 | 0.6926 | | 0.6168 | 2.3459 | 746 | 0.4608 | 0.5578 | 0.4608 | 0.6788 | | 0.6168 | 2.3522 | 748 | 0.4919 | 0.6168 | 0.4919 | 0.7013 | | 0.6168 | 2.3585 | 750 | 0.4988 | 0.6122 | 0.4988 | 0.7063 | | 0.6168 | 2.3648 | 752 | 0.4754 | 0.5926 | 0.4754 | 0.6895 | | 0.6168 | 2.3711 | 754 | 0.4788 | 0.5962 | 0.4788 | 0.6919 | | 0.6168 | 2.3774 | 756 | 0.5472 | 0.6241 | 0.5472 | 0.7397 | | 0.6168 | 2.3836 | 758 | 0.5343 | 0.6358 | 0.5343 | 0.7309 | | 0.6168 | 2.3899 | 760 | 0.5494 | 0.6484 | 0.5494 | 0.7412 | | 0.6168 | 2.3962 | 762 | 0.6423 | 0.6621 | 0.6423 | 0.8014 | | 0.6168 | 2.4025 | 764 | 0.5970 | 0.6302 | 0.5970 | 0.7726 | | 0.6168 | 2.4088 | 766 | 0.4743 | 0.5986 | 0.4743 | 0.6887 | | 0.6168 | 2.4151 | 768 | 0.4533 | 0.5541 | 0.4533 | 0.6733 | | 0.6168 | 2.4214 | 770 | 0.4515 | 0.5663 | 0.4515 | 0.6720 | | 0.6168 | 2.4277 | 772 | 0.4737 | 0.5937 | 0.4737 | 0.6883 | | 0.6168 | 2.4340 | 774 | 0.4717 | 0.5974 | 0.4717 | 0.6868 | | 0.6168 | 2.4403 | 776 | 0.4551 | 0.5597 | 0.4551 | 0.6746 | | 0.6168 | 2.4465 | 778 | 0.4473 | 0.5481 | 0.4473 | 0.6688 | | 0.6168 | 2.4528 | 780 | 0.4460 | 0.5399 | 0.4460 | 0.6678 | | 0.6168 | 2.4591 | 782 | 0.4570 | 0.5819 | 0.4570 | 0.6760 | | 0.6168 | 2.4654 | 784 | 0.4882 | 0.6198 | 0.4882 | 0.6987 | | 0.6168 | 2.4717 | 786 | 0.4643 | 0.5972 | 0.4643 | 0.6814 | | 0.6168 | 2.4780 | 788 | 0.4631 | 0.5362 | 0.4631 | 0.6805 | | 0.6168 | 2.4843 | 790 | 0.4646 | 0.5431 | 0.4646 | 0.6816 | | 0.6168 | 2.4906 | 792 | 0.4667 | 0.5166 | 0.4667 | 0.6831 | | 0.6168 | 2.4969 | 794 | 0.4569 | 0.5557 | 0.4569 | 0.6760 | | 0.6168 | 2.5031 | 796 | 0.4888 | 0.6104 | 0.4888 | 0.6991 | | 0.6168 | 2.5094 | 798 | 0.5187 | 0.6351 | 0.5187 | 0.7202 | | 0.6168 | 2.5157 | 800 | 0.4694 | 0.5874 | 0.4694 | 0.6851 | | 0.6168 | 2.5220 | 802 | 0.4601 | 0.4851 | 0.4601 | 0.6783 | | 0.6168 | 2.5283 | 804 | 0.4941 | 0.4234 | 0.4941 | 0.7029 | | 0.6168 | 2.5346 | 806 | 0.4711 | 0.4523 | 0.4711 | 0.6864 | | 0.6168 | 2.5409 | 808 | 0.5131 | 0.6013 | 0.5131 | 0.7163 | | 0.6168 | 2.5472 | 810 | 0.6076 | 0.6146 | 0.6076 | 0.7795 | | 0.6168 | 2.5535 | 812 | 0.5727 | 0.5899 | 0.5727 | 0.7568 | | 0.6168 | 2.5597 | 814 | 0.5201 | 0.5752 | 0.5201 | 0.7212 | | 0.6168 | 2.5660 | 816 | 0.5087 | 0.5671 | 0.5087 | 0.7132 | | 0.6168 | 2.5723 | 818 | 0.4889 | 0.5301 | 0.4889 | 0.6992 | | 0.6168 | 2.5786 | 820 | 0.4882 | 0.5239 | 0.4882 | 0.6987 | | 0.6168 | 2.5849 | 822 | 0.4822 | 0.5388 | 0.4822 | 0.6944 | | 0.6168 | 2.5912 | 824 | 0.4752 | 0.5557 | 0.4752 | 0.6894 | | 0.6168 | 2.5975 | 826 | 0.4755 | 0.5177 | 0.4755 | 0.6895 | | 0.6168 | 2.6038 | 828 | 0.4695 | 0.5348 | 0.4695 | 0.6852 | | 0.6168 | 2.6101 | 830 | 0.4779 | 0.6109 | 0.4779 | 0.6913 | | 0.6168 | 2.6164 | 832 | 0.4690 | 0.6106 | 0.4690 | 0.6849 | | 0.6168 | 2.6226 | 834 | 0.4478 | 0.5889 | 0.4478 | 0.6692 | | 0.6168 | 2.6289 | 836 | 0.4370 | 0.5301 | 0.4370 | 0.6610 | | 0.6168 | 2.6352 | 838 | 0.4351 | 0.5446 | 0.4351 | 0.6596 | | 0.6168 | 2.6415 | 840 | 0.4627 | 0.6075 | 0.4627 | 0.6802 | | 0.6168 | 2.6478 | 842 | 0.4984 | 0.6086 | 0.4984 | 0.7060 | | 0.6168 | 2.6541 | 844 | 0.5112 | 0.6214 | 0.5112 | 0.7150 | | 0.6168 | 2.6604 | 846 | 0.4755 | 0.6191 | 0.4755 | 0.6896 | | 0.6168 | 2.6667 | 848 | 0.4469 | 0.5968 | 0.4469 | 0.6685 | | 0.6168 | 2.6730 | 850 | 0.4566 | 0.6065 | 0.4566 | 0.6757 | | 0.6168 | 2.6792 | 852 | 0.5356 | 0.6601 | 0.5356 | 0.7319 | | 0.6168 | 2.6855 | 854 | 0.5851 | 0.6592 | 0.5851 | 0.7649 | | 0.6168 | 2.6918 | 856 | 0.5472 | 0.6549 | 0.5472 | 0.7397 | | 0.6168 | 2.6981 | 858 | 0.5496 | 0.6657 | 0.5496 | 0.7413 | | 0.6168 | 2.7044 | 860 | 0.5095 | 0.6290 | 0.5095 | 0.7138 | | 0.6168 | 2.7107 | 862 | 0.5340 | 0.6657 | 0.5340 | 0.7308 | | 0.6168 | 2.7170 | 864 | 0.4919 | 0.6255 | 0.4919 | 0.7014 | | 0.6168 | 2.7233 | 866 | 0.5321 | 0.6314 | 0.5321 | 0.7294 | | 0.6168 | 2.7296 | 868 | 0.5331 | 0.6205 | 0.5331 | 0.7301 | | 0.6168 | 2.7358 | 870 | 0.4911 | 0.6002 | 0.4911 | 0.7008 | | 0.6168 | 2.7421 | 872 | 0.4601 | 0.5945 | 0.4601 | 0.6783 | | 0.6168 | 2.7484 | 874 | 0.4646 | 0.6022 | 0.4646 | 0.6816 | | 0.6168 | 2.7547 | 876 | 0.4638 | 0.6107 | 0.4638 | 0.6810 | | 0.6168 | 2.7610 | 878 | 0.4979 | 0.6217 | 0.4979 | 0.7056 | | 0.6168 | 2.7673 | 880 | 0.4824 | 0.6171 | 0.4824 | 0.6945 | | 0.6168 | 2.7736 | 882 | 0.4717 | 0.6174 | 0.4717 | 0.6868 | | 0.6168 | 2.7799 | 884 | 0.5750 | 0.6513 | 0.5750 | 0.7583 | | 0.6168 | 2.7862 | 886 | 0.6010 | 0.6408 | 0.6010 | 0.7752 | | 0.6168 | 2.7925 | 888 | 0.5237 | 0.6295 | 0.5237 | 0.7236 | | 0.6168 | 2.7987 | 890 | 0.5266 | 0.6235 | 0.5266 | 0.7257 | | 0.6168 | 2.8050 | 892 | 0.4882 | 0.6032 | 0.4882 | 0.6987 | | 0.6168 | 2.8113 | 894 | 0.4529 | 0.5806 | 0.4529 | 0.6730 | | 0.6168 | 2.8176 | 896 | 0.4637 | 0.5802 | 0.4637 | 0.6810 | | 0.6168 | 2.8239 | 898 | 0.5794 | 0.6391 | 0.5794 | 0.7612 | | 0.6168 | 2.8302 | 900 | 0.6045 | 0.6505 | 0.6045 | 0.7775 | | 0.6168 | 2.8365 | 902 | 0.4849 | 0.6172 | 0.4849 | 0.6964 | | 0.6168 | 2.8428 | 904 | 0.4473 | 0.5701 | 0.4473 | 0.6688 | | 0.6168 | 2.8491 | 906 | 0.4564 | 0.5158 | 0.4564 | 0.6756 | | 0.6168 | 2.8553 | 908 | 0.4440 | 0.5683 | 0.4440 | 0.6663 | | 0.6168 | 2.8616 | 910 | 0.4760 | 0.6210 | 0.4760 | 0.6899 | | 0.6168 | 2.8679 | 912 | 0.4973 | 0.6063 | 0.4973 | 0.7052 | | 0.6168 | 2.8742 | 914 | 0.4613 | 0.5769 | 0.4613 | 0.6792 | | 0.6168 | 2.8805 | 916 | 0.4627 | 0.5601 | 0.4627 | 0.6802 | | 0.6168 | 2.8868 | 918 | 0.4902 | 0.5810 | 0.4902 | 0.7001 | | 0.6168 | 2.8931 | 920 | 0.5110 | 0.5978 | 0.5110 | 0.7148 | | 0.6168 | 2.8994 | 922 | 0.4982 | 0.5263 | 0.4982 | 0.7059 | | 0.6168 | 2.9057 | 924 | 0.5189 | 0.4791 | 0.5189 | 0.7204 | | 0.6168 | 2.9119 | 926 | 0.5141 | 0.4919 | 0.5141 | 0.7170 | | 0.6168 | 2.9182 | 928 | 0.5133 | 0.5588 | 0.5133 | 0.7165 | | 0.6168 | 2.9245 | 930 | 0.5122 | 0.5844 | 0.5122 | 0.7157 | | 0.6168 | 2.9308 | 932 | 0.5012 | 0.5188 | 0.5012 | 0.7080 | | 0.6168 | 2.9371 | 934 | 0.4874 | 0.5313 | 0.4874 | 0.6981 | | 0.6168 | 2.9434 | 936 | 0.4737 | 0.5710 | 0.4737 | 0.6883 | | 0.6168 | 2.9497 | 938 | 0.5110 | 0.6227 | 0.5110 | 0.7149 | | 0.6168 | 2.9560 | 940 | 0.4784 | 0.6200 | 0.4784 | 0.6916 | | 0.6168 | 2.9623 | 942 | 0.4436 | 0.5909 | 0.4436 | 0.6660 | | 0.6168 | 2.9686 | 944 | 0.4353 | 0.5637 | 0.4353 | 0.6598 | | 0.6168 | 2.9748 | 946 | 0.4419 | 0.6045 | 0.4419 | 0.6648 | | 0.6168 | 2.9811 | 948 | 0.4552 | 0.6259 | 0.4552 | 0.6747 | | 0.6168 | 2.9874 | 950 | 0.4415 | 0.6037 | 0.4415 | 0.6644 | | 0.6168 | 2.9937 | 952 | 0.4334 | 0.5655 | 0.4334 | 0.6583 | | 0.6168 | 3.0 | 954 | 0.4329 | 0.5599 | 0.4329 | 0.6579 | | 0.6168 | 3.0063 | 956 | 0.4388 | 0.5950 | 0.4388 | 0.6624 | | 0.6168 | 3.0126 | 958 | 0.5174 | 0.6305 | 0.5174 | 0.7193 | | 0.6168 | 3.0189 | 960 | 0.6504 | 0.6523 | 0.6504 | 0.8065 | | 0.6168 | 3.0252 | 962 | 0.5995 | 0.6266 | 0.5995 | 0.7743 | | 0.6168 | 3.0314 | 964 | 0.4915 | 0.6136 | 0.4915 | 0.7011 | | 0.6168 | 3.0377 | 966 | 0.5021 | 0.6101 | 0.5021 | 0.7086 | | 0.6168 | 3.0440 | 968 | 0.5449 | 0.6237 | 0.5449 | 0.7382 | | 0.6168 | 3.0503 | 970 | 0.5088 | 0.5658 | 0.5088 | 0.7133 | | 0.6168 | 3.0566 | 972 | 0.5037 | 0.5307 | 0.5037 | 0.7097 | | 0.6168 | 3.0629 | 974 | 0.5258 | 0.4603 | 0.5258 | 0.7251 | | 0.6168 | 3.0692 | 976 | 0.5263 | 0.4741 | 0.5263 | 0.7255 | | 0.6168 | 3.0755 | 978 | 0.5189 | 0.5580 | 0.5189 | 0.7203 | | 0.6168 | 3.0818 | 980 | 0.5218 | 0.5977 | 0.5218 | 0.7223 | | 0.6168 | 3.0881 | 982 | 0.4925 | 0.5705 | 0.4925 | 0.7018 | | 0.6168 | 3.0943 | 984 | 0.5247 | 0.4499 | 0.5247 | 0.7243 | | 0.6168 | 3.1006 | 986 | 0.5441 | 0.4333 | 0.5441 | 0.7376 | | 0.6168 | 3.1069 | 988 | 0.4828 | 0.4792 | 0.4828 | 0.6948 | | 0.6168 | 3.1132 | 990 | 0.4882 | 0.6114 | 0.4882 | 0.6987 | | 0.6168 | 3.1195 | 992 | 0.6132 | 0.6336 | 0.6132 | 0.7831 | | 0.6168 | 3.1258 | 994 | 0.5768 | 0.6112 | 0.5768 | 0.7595 | | 0.6168 | 3.1321 | 996 | 0.4734 | 0.5712 | 0.4734 | 0.6880 | | 0.6168 | 3.1384 | 998 | 0.4728 | 0.4874 | 0.4728 | 0.6876 | | 0.2191 | 3.1447 | 1000 | 0.4709 | 0.4862 | 0.4709 | 0.6862 | | 0.2191 | 3.1509 | 1002 | 0.4621 | 0.5558 | 0.4621 | 0.6798 | | 0.2191 | 3.1572 | 1004 | 0.4894 | 0.5871 | 0.4894 | 0.6996 | | 0.2191 | 3.1635 | 1006 | 0.4857 | 0.5880 | 0.4857 | 0.6969 | | 0.2191 | 3.1698 | 1008 | 0.4703 | 0.5338 | 0.4703 | 0.6858 | | 0.2191 | 3.1761 | 1010 | 0.4707 | 0.5164 | 0.4707 | 0.6861 | | 0.2191 | 3.1824 | 1012 | 0.4615 | 0.5635 | 0.4615 | 0.6794 | | 0.2191 | 3.1887 | 1014 | 0.5353 | 0.6266 | 0.5353 | 0.7316 | | 0.2191 | 3.1950 | 1016 | 0.6134 | 0.6373 | 0.6134 | 0.7832 | | 0.2191 | 3.2013 | 1018 | 0.5485 | 0.6253 | 0.5485 | 0.7406 | | 0.2191 | 3.2075 | 1020 | 0.4671 | 0.5818 | 0.4671 | 0.6835 | | 0.2191 | 3.2138 | 1022 | 0.4729 | 0.5298 | 0.4729 | 0.6877 | | 0.2191 | 3.2201 | 1024 | 0.4646 | 0.5701 | 0.4646 | 0.6816 | | 0.2191 | 3.2264 | 1026 | 0.5196 | 0.6276 | 0.5196 | 0.7209 | | 0.2191 | 3.2327 | 1028 | 0.5914 | 0.6449 | 0.5914 | 0.7690 | | 0.2191 | 3.2390 | 1030 | 0.5345 | 0.6325 | 0.5345 | 0.7311 | | 0.2191 | 3.2453 | 1032 | 0.4740 | 0.5896 | 0.4740 | 0.6885 | | 0.2191 | 3.2516 | 1034 | 0.4757 | 0.6038 | 0.4757 | 0.6897 | | 0.2191 | 3.2579 | 1036 | 0.4797 | 0.6070 | 0.4797 | 0.6926 | | 0.2191 | 3.2642 | 1038 | 0.5105 | 0.6500 | 0.5105 | 0.7145 | | 0.2191 | 3.2704 | 1040 | 0.5650 | 0.6644 | 0.5650 | 0.7517 | | 0.2191 | 3.2767 | 1042 | 0.5207 | 0.6509 | 0.5207 | 0.7216 | | 0.2191 | 3.2830 | 1044 | 0.4863 | 0.5506 | 0.4863 | 0.6973 | | 0.2191 | 3.2893 | 1046 | 0.5195 | 0.4940 | 0.5195 | 0.7208 | | 0.2191 | 3.2956 | 1048 | 0.4869 | 0.5194 | 0.4869 | 0.6978 | | 0.2191 | 3.3019 | 1050 | 0.5009 | 0.6426 | 0.5009 | 0.7078 | | 0.2191 | 3.3082 | 1052 | 0.5457 | 0.6660 | 0.5457 | 0.7387 | | 0.2191 | 3.3145 | 1054 | 0.5233 | 0.6402 | 0.5233 | 0.7234 | | 0.2191 | 3.3208 | 1056 | 0.4881 | 0.6002 | 0.4881 | 0.6986 | | 0.2191 | 3.3270 | 1058 | 0.5018 | 0.6009 | 0.5018 | 0.7084 | | 0.2191 | 3.3333 | 1060 | 0.5207 | 0.6291 | 0.5207 | 0.7216 | | 0.2191 | 3.3396 | 1062 | 0.5560 | 0.6547 | 0.5560 | 0.7456 | | 0.2191 | 3.3459 | 1064 | 0.5198 | 0.6343 | 0.5198 | 0.7210 | | 0.2191 | 3.3522 | 1066 | 0.4909 | 0.5900 | 0.4909 | 0.7006 | | 0.2191 | 3.3585 | 1068 | 0.4876 | 0.5475 | 0.4876 | 0.6983 | | 0.2191 | 3.3648 | 1070 | 0.4872 | 0.5630 | 0.4872 | 0.6980 | | 0.2191 | 3.3711 | 1072 | 0.4876 | 0.5919 | 0.4876 | 0.6983 | | 0.2191 | 3.3774 | 1074 | 0.4887 | 0.5430 | 0.4887 | 0.6991 | | 0.2191 | 3.3836 | 1076 | 0.4853 | 0.5461 | 0.4853 | 0.6966 | | 0.2191 | 3.3899 | 1078 | 0.4850 | 0.5996 | 0.4850 | 0.6964 | | 0.2191 | 3.3962 | 1080 | 0.4844 | 0.5939 | 0.4844 | 0.6960 | | 0.2191 | 3.4025 | 1082 | 0.4808 | 0.5413 | 0.4808 | 0.6934 | | 0.2191 | 3.4088 | 1084 | 0.4776 | 0.5428 | 0.4776 | 0.6911 | | 0.2191 | 3.4151 | 1086 | 0.4739 | 0.5833 | 0.4739 | 0.6884 | | 0.2191 | 3.4214 | 1088 | 0.5182 | 0.6022 | 0.5182 | 0.7199 | | 0.2191 | 3.4277 | 1090 | 0.5028 | 0.5787 | 0.5028 | 0.7091 | | 0.2191 | 3.4340 | 1092 | 0.4934 | 0.5866 | 0.4934 | 0.7024 | | 0.2191 | 3.4403 | 1094 | 0.4849 | 0.5311 | 0.4849 | 0.6964 | | 0.2191 | 3.4465 | 1096 | 0.4987 | 0.5814 | 0.4987 | 0.7062 | | 0.2191 | 3.4528 | 1098 | 0.5297 | 0.5906 | 0.5297 | 0.7278 | | 0.2191 | 3.4591 | 1100 | 0.4967 | 0.5850 | 0.4967 | 0.7047 | | 0.2191 | 3.4654 | 1102 | 0.4799 | 0.5463 | 0.4799 | 0.6927 | | 0.2191 | 3.4717 | 1104 | 0.4803 | 0.5327 | 0.4803 | 0.6931 | | 0.2191 | 3.4780 | 1106 | 0.4778 | 0.5716 | 0.4778 | 0.6912 | | 0.2191 | 3.4843 | 1108 | 0.4970 | 0.5929 | 0.4970 | 0.7049 | | 0.2191 | 3.4906 | 1110 | 0.4984 | 0.5921 | 0.4984 | 0.7060 | | 0.2191 | 3.4969 | 1112 | 0.4783 | 0.5598 | 0.4783 | 0.6916 | | 0.2191 | 3.5031 | 1114 | 0.4793 | 0.5569 | 0.4793 | 0.6923 | | 0.2191 | 3.5094 | 1116 | 0.4870 | 0.5872 | 0.4870 | 0.6979 | | 0.2191 | 3.5157 | 1118 | 0.4885 | 0.5913 | 0.4885 | 0.6989 | | 0.2191 | 3.5220 | 1120 | 0.4890 | 0.5400 | 0.4890 | 0.6993 | | 0.2191 | 3.5283 | 1122 | 0.4850 | 0.5606 | 0.4850 | 0.6964 | | 0.2191 | 3.5346 | 1124 | 0.4946 | 0.5952 | 0.4946 | 0.7033 | | 0.2191 | 3.5409 | 1126 | 0.4899 | 0.5991 | 0.4899 | 0.6999 | | 0.2191 | 3.5472 | 1128 | 0.5096 | 0.6137 | 0.5096 | 0.7139 | | 0.2191 | 3.5535 | 1130 | 0.5116 | 0.6028 | 0.5116 | 0.7153 | | 0.2191 | 3.5597 | 1132 | 0.4771 | 0.5908 | 0.4771 | 0.6907 | | 0.2191 | 3.5660 | 1134 | 0.4686 | 0.5789 | 0.4686 | 0.6846 | | 0.2191 | 3.5723 | 1136 | 0.4895 | 0.5819 | 0.4895 | 0.6996 | | 0.2191 | 3.5786 | 1138 | 0.5350 | 0.6032 | 0.5350 | 0.7314 | | 0.2191 | 3.5849 | 1140 | 0.5408 | 0.6008 | 0.5408 | 0.7354 | | 0.2191 | 3.5912 | 1142 | 0.4848 | 0.5834 | 0.4848 | 0.6963 | | 0.2191 | 3.5975 | 1144 | 0.4599 | 0.5429 | 0.4599 | 0.6782 | | 0.2191 | 3.6038 | 1146 | 0.4601 | 0.5355 | 0.4601 | 0.6783 | | 0.2191 | 3.6101 | 1148 | 0.4588 | 0.5793 | 0.4588 | 0.6774 | | 0.2191 | 3.6164 | 1150 | 0.4823 | 0.5979 | 0.4823 | 0.6945 | | 0.2191 | 3.6226 | 1152 | 0.4627 | 0.5902 | 0.4627 | 0.6802 | | 0.2191 | 3.6289 | 1154 | 0.4612 | 0.5895 | 0.4612 | 0.6791 | | 0.2191 | 3.6352 | 1156 | 0.4707 | 0.5929 | 0.4707 | 0.6861 | | 0.2191 | 3.6415 | 1158 | 0.4756 | 0.5888 | 0.4756 | 0.6896 | | 0.2191 | 3.6478 | 1160 | 0.4981 | 0.5867 | 0.4981 | 0.7058 | | 0.2191 | 3.6541 | 1162 | 0.4825 | 0.5920 | 0.4825 | 0.6947 | | 0.2191 | 3.6604 | 1164 | 0.4698 | 0.4999 | 0.4698 | 0.6854 | | 0.2191 | 3.6667 | 1166 | 0.4758 | 0.4843 | 0.4758 | 0.6898 | | 0.2191 | 3.6730 | 1168 | 0.4684 | 0.5680 | 0.4684 | 0.6844 | | 0.2191 | 3.6792 | 1170 | 0.5320 | 0.6034 | 0.5320 | 0.7294 | | 0.2191 | 3.6855 | 1172 | 0.5642 | 0.6074 | 0.5642 | 0.7511 | | 0.2191 | 3.6918 | 1174 | 0.5204 | 0.5851 | 0.5204 | 0.7214 | | 0.2191 | 3.6981 | 1176 | 0.4829 | 0.5681 | 0.4829 | 0.6949 | | 0.2191 | 3.7044 | 1178 | 0.4784 | 0.5650 | 0.4784 | 0.6917 | | 0.2191 | 3.7107 | 1180 | 0.4994 | 0.5960 | 0.4994 | 0.7067 | | 0.2191 | 3.7170 | 1182 | 0.5731 | 0.6224 | 0.5731 | 0.7571 | | 0.2191 | 3.7233 | 1184 | 0.5590 | 0.6252 | 0.5590 | 0.7476 | | 0.2191 | 3.7296 | 1186 | 0.5240 | 0.6032 | 0.5240 | 0.7239 | | 0.2191 | 3.7358 | 1188 | 0.4929 | 0.5795 | 0.4929 | 0.7021 | | 0.2191 | 3.7421 | 1190 | 0.5136 | 0.6038 | 0.5136 | 0.7167 | | 0.2191 | 3.7484 | 1192 | 0.6420 | 0.6343 | 0.6420 | 0.8012 | | 0.2191 | 3.7547 | 1194 | 0.6949 | 0.6368 | 0.6949 | 0.8336 | | 0.2191 | 3.7610 | 1196 | 0.6039 | 0.6441 | 0.6039 | 0.7771 | | 0.2191 | 3.7673 | 1198 | 0.4848 | 0.5966 | 0.4848 | 0.6963 | | 0.2191 | 3.7736 | 1200 | 0.4677 | 0.5934 | 0.4677 | 0.6839 | | 0.2191 | 3.7799 | 1202 | 0.4915 | 0.6116 | 0.4915 | 0.7011 | | 0.2191 | 3.7862 | 1204 | 0.5060 | 0.6274 | 0.5060 | 0.7113 | | 0.2191 | 3.7925 | 1206 | 0.4734 | 0.6065 | 0.4734 | 0.6880 | | 0.2191 | 3.7987 | 1208 | 0.4893 | 0.6210 | 0.4893 | 0.6995 | | 0.2191 | 3.8050 | 1210 | 0.5399 | 0.6244 | 0.5399 | 0.7348 | | 0.2191 | 3.8113 | 1212 | 0.5119 | 0.6266 | 0.5119 | 0.7155 | | 0.2191 | 3.8176 | 1214 | 0.4816 | 0.5927 | 0.4816 | 0.6940 | | 0.2191 | 3.8239 | 1216 | 0.4972 | 0.5898 | 0.4972 | 0.7051 | | 0.2191 | 3.8302 | 1218 | 0.5283 | 0.6094 | 0.5283 | 0.7268 | | 0.2191 | 3.8365 | 1220 | 0.5222 | 0.5733 | 0.5222 | 0.7226 | | 0.2191 | 3.8428 | 1222 | 0.5608 | 0.5982 | 0.5608 | 0.7489 | | 0.2191 | 3.8491 | 1224 | 0.5559 | 0.5857 | 0.5559 | 0.7456 | | 0.2191 | 3.8553 | 1226 | 0.5330 | 0.5723 | 0.5330 | 0.7301 | | 0.2191 | 3.8616 | 1228 | 0.5097 | 0.5748 | 0.5097 | 0.7139 | | 0.2191 | 3.8679 | 1230 | 0.4911 | 0.5813 | 0.4911 | 0.7008 | | 0.2191 | 3.8742 | 1232 | 0.4909 | 0.6022 | 0.4909 | 0.7007 | | 0.2191 | 3.8805 | 1234 | 0.5000 | 0.6197 | 0.5000 | 0.7071 | | 0.2191 | 3.8868 | 1236 | 0.4952 | 0.6236 | 0.4952 | 0.7037 | | 0.2191 | 3.8931 | 1238 | 0.4668 | 0.5950 | 0.4668 | 0.6833 | | 0.2191 | 3.8994 | 1240 | 0.4689 | 0.5844 | 0.4689 | 0.6847 | | 0.2191 | 3.9057 | 1242 | 0.4959 | 0.6224 | 0.4959 | 0.7042 | | 0.2191 | 3.9119 | 1244 | 0.5012 | 0.6153 | 0.5012 | 0.7079 | | 0.2191 | 3.9182 | 1246 | 0.5449 | 0.6003 | 0.5449 | 0.7382 | | 0.2191 | 3.9245 | 1248 | 0.5715 | 0.6007 | 0.5715 | 0.7560 | | 0.2191 | 3.9308 | 1250 | 0.5274 | 0.5888 | 0.5274 | 0.7262 | | 0.2191 | 3.9371 | 1252 | 0.5270 | 0.5761 | 0.5270 | 0.7259 | | 0.2191 | 3.9434 | 1254 | 0.5680 | 0.5990 | 0.5680 | 0.7537 | | 0.2191 | 3.9497 | 1256 | 0.6245 | 0.6284 | 0.6245 | 0.7903 | | 0.2191 | 3.9560 | 1258 | 0.6299 | 0.6353 | 0.6299 | 0.7937 | | 0.2191 | 3.9623 | 1260 | 0.5335 | 0.6144 | 0.5335 | 0.7304 | | 0.2191 | 3.9686 | 1262 | 0.4950 | 0.5627 | 0.4950 | 0.7036 | | 0.2191 | 3.9748 | 1264 | 0.5072 | 0.5777 | 0.5072 | 0.7122 | | 0.2191 | 3.9811 | 1266 | 0.5436 | 0.6057 | 0.5436 | 0.7373 | | 0.2191 | 3.9874 | 1268 | 0.5330 | 0.6026 | 0.5330 | 0.7301 | | 0.2191 | 3.9937 | 1270 | 0.5473 | 0.6055 | 0.5473 | 0.7398 | | 0.2191 | 4.0 | 1272 | 0.5432 | 0.6049 | 0.5432 | 0.7370 | | 0.2191 | 4.0063 | 1274 | 0.5198 | 0.6003 | 0.5198 | 0.7210 | | 0.2191 | 4.0126 | 1276 | 0.5440 | 0.6122 | 0.5440 | 0.7375 | | 0.2191 | 4.0189 | 1278 | 0.5267 | 0.6074 | 0.5267 | 0.7258 | | 0.2191 | 4.0252 | 1280 | 0.5213 | 0.6056 | 0.5213 | 0.7220 | | 0.2191 | 4.0314 | 1282 | 0.5556 | 0.6345 | 0.5556 | 0.7454 | | 0.2191 | 4.0377 | 1284 | 0.6064 | 0.6612 | 0.6064 | 0.7787 | | 0.2191 | 4.0440 | 1286 | 0.5591 | 0.6278 | 0.5591 | 0.7477 | | 0.2191 | 4.0503 | 1288 | 0.5057 | 0.5699 | 0.5057 | 0.7112 | | 0.2191 | 4.0566 | 1290 | 0.5133 | 0.5851 | 0.5133 | 0.7165 | | 0.2191 | 4.0629 | 1292 | 0.5021 | 0.5604 | 0.5021 | 0.7086 | | 0.2191 | 4.0692 | 1294 | 0.4998 | 0.5759 | 0.4998 | 0.7069 | | 0.2191 | 4.0755 | 1296 | 0.5104 | 0.6179 | 0.5104 | 0.7144 | | 0.2191 | 4.0818 | 1298 | 0.5394 | 0.6526 | 0.5394 | 0.7344 | | 0.2191 | 4.0881 | 1300 | 0.5295 | 0.6392 | 0.5295 | 0.7276 | | 0.2191 | 4.0943 | 1302 | 0.4951 | 0.5717 | 0.4951 | 0.7037 | | 0.2191 | 4.1006 | 1304 | 0.4979 | 0.5665 | 0.4979 | 0.7056 | | 0.2191 | 4.1069 | 1306 | 0.5026 | 0.5854 | 0.5026 | 0.7089 | | 0.2191 | 4.1132 | 1308 | 0.4988 | 0.5564 | 0.4988 | 0.7062 | | 0.2191 | 4.1195 | 1310 | 0.4986 | 0.5671 | 0.4986 | 0.7061 | | 0.2191 | 4.1258 | 1312 | 0.5221 | 0.6021 | 0.5221 | 0.7225 | | 0.2191 | 4.1321 | 1314 | 0.5309 | 0.6093 | 0.5309 | 0.7286 | | 0.2191 | 4.1384 | 1316 | 0.5054 | 0.5482 | 0.5054 | 0.7109 | | 0.2191 | 4.1447 | 1318 | 0.4995 | 0.5210 | 0.4995 | 0.7068 | | 0.2191 | 4.1509 | 1320 | 0.4933 | 0.5499 | 0.4933 | 0.7023 | | 0.2191 | 4.1572 | 1322 | 0.5094 | 0.6100 | 0.5094 | 0.7137 | | 0.2191 | 4.1635 | 1324 | 0.5068 | 0.6171 | 0.5068 | 0.7119 | | 0.2191 | 4.1698 | 1326 | 0.4763 | 0.5792 | 0.4763 | 0.6902 | | 0.2191 | 4.1761 | 1328 | 0.4706 | 0.5297 | 0.4706 | 0.6860 | | 0.2191 | 4.1824 | 1330 | 0.4664 | 0.5698 | 0.4664 | 0.6829 | | 0.2191 | 4.1887 | 1332 | 0.4933 | 0.6067 | 0.4933 | 0.7023 | | 0.2191 | 4.1950 | 1334 | 0.5064 | 0.6143 | 0.5064 | 0.7116 | | 0.2191 | 4.2013 | 1336 | 0.4740 | 0.5939 | 0.4740 | 0.6884 | | 0.2191 | 4.2075 | 1338 | 0.4959 | 0.4730 | 0.4959 | 0.7042 | | 0.2191 | 4.2138 | 1340 | 0.5378 | 0.4250 | 0.5378 | 0.7334 | | 0.2191 | 4.2201 | 1342 | 0.5020 | 0.4771 | 0.5020 | 0.7085 | | 0.2191 | 4.2264 | 1344 | 0.4883 | 0.5873 | 0.4883 | 0.6988 | | 0.2191 | 4.2327 | 1346 | 0.5408 | 0.6152 | 0.5408 | 0.7354 | | 0.2191 | 4.2390 | 1348 | 0.5481 | 0.6139 | 0.5481 | 0.7404 | | 0.2191 | 4.2453 | 1350 | 0.5084 | 0.6032 | 0.5084 | 0.7130 | | 0.2191 | 4.2516 | 1352 | 0.5036 | 0.5586 | 0.5036 | 0.7096 | | 0.2191 | 4.2579 | 1354 | 0.5110 | 0.5830 | 0.5110 | 0.7149 | | 0.2191 | 4.2642 | 1356 | 0.5633 | 0.5949 | 0.5633 | 0.7506 | | 0.2191 | 4.2704 | 1358 | 0.6567 | 0.6165 | 0.6567 | 0.8104 | | 0.2191 | 4.2767 | 1360 | 0.6120 | 0.6157 | 0.6120 | 0.7823 | | 0.2191 | 4.2830 | 1362 | 0.5442 | 0.6006 | 0.5442 | 0.7377 | | 0.2191 | 4.2893 | 1364 | 0.5166 | 0.5773 | 0.5166 | 0.7188 | | 0.2191 | 4.2956 | 1366 | 0.5335 | 0.6030 | 0.5335 | 0.7304 | | 0.2191 | 4.3019 | 1368 | 0.5712 | 0.6283 | 0.5712 | 0.7558 | | 0.2191 | 4.3082 | 1370 | 0.5458 | 0.6126 | 0.5458 | 0.7388 | | 0.2191 | 4.3145 | 1372 | 0.4977 | 0.5570 | 0.4977 | 0.7055 | | 0.2191 | 4.3208 | 1374 | 0.4877 | 0.5010 | 0.4877 | 0.6983 | | 0.2191 | 4.3270 | 1376 | 0.4875 | 0.5627 | 0.4875 | 0.6982 | | 0.2191 | 4.3333 | 1378 | 0.5061 | 0.6018 | 0.5061 | 0.7114 | | 0.2191 | 4.3396 | 1380 | 0.5413 | 0.6192 | 0.5413 | 0.7357 | | 0.2191 | 4.3459 | 1382 | 0.5306 | 0.6058 | 0.5306 | 0.7284 | | 0.2191 | 4.3522 | 1384 | 0.4929 | 0.5362 | 0.4929 | 0.7021 | | 0.2191 | 4.3585 | 1386 | 0.4985 | 0.4982 | 0.4985 | 0.7061 | | 0.2191 | 4.3648 | 1388 | 0.4972 | 0.5306 | 0.4972 | 0.7051 | | 0.2191 | 4.3711 | 1390 | 0.5404 | 0.5940 | 0.5404 | 0.7351 | | 0.2191 | 4.3774 | 1392 | 0.5505 | 0.5926 | 0.5505 | 0.7420 | | 0.2191 | 4.3836 | 1394 | 0.5302 | 0.5679 | 0.5302 | 0.7282 | | 0.2191 | 4.3899 | 1396 | 0.5166 | 0.5177 | 0.5166 | 0.7188 | | 0.2191 | 4.3962 | 1398 | 0.5139 | 0.5270 | 0.5139 | 0.7168 | | 0.2191 | 4.4025 | 1400 | 0.5309 | 0.5670 | 0.5309 | 0.7286 | | 0.2191 | 4.4088 | 1402 | 0.5514 | 0.6066 | 0.5514 | 0.7426 | | 0.2191 | 4.4151 | 1404 | 0.5769 | 0.6261 | 0.5769 | 0.7596 | | 0.2191 | 4.4214 | 1406 | 0.5477 | 0.6111 | 0.5477 | 0.7401 | | 0.2191 | 4.4277 | 1408 | 0.5108 | 0.5752 | 0.5108 | 0.7147 | | 0.2191 | 4.4340 | 1410 | 0.5063 | 0.5628 | 0.5063 | 0.7115 | | 0.2191 | 4.4403 | 1412 | 0.5222 | 0.5890 | 0.5222 | 0.7227 | | 0.2191 | 4.4465 | 1414 | 0.5312 | 0.5963 | 0.5312 | 0.7289 | | 0.2191 | 4.4528 | 1416 | 0.5192 | 0.5548 | 0.5192 | 0.7206 | | 0.2191 | 4.4591 | 1418 | 0.5218 | 0.5072 | 0.5218 | 0.7223 | | 0.2191 | 4.4654 | 1420 | 0.5245 | 0.5406 | 0.5245 | 0.7242 | | 0.2191 | 4.4717 | 1422 | 0.5299 | 0.5795 | 0.5299 | 0.7279 | | 0.2191 | 4.4780 | 1424 | 0.5778 | 0.6086 | 0.5778 | 0.7601 | | 0.2191 | 4.4843 | 1426 | 0.6066 | 0.6058 | 0.6066 | 0.7789 | | 0.2191 | 4.4906 | 1428 | 0.5747 | 0.6055 | 0.5747 | 0.7581 | | 0.2191 | 4.4969 | 1430 | 0.5427 | 0.5779 | 0.5427 | 0.7367 | | 0.2191 | 4.5031 | 1432 | 0.5435 | 0.5737 | 0.5435 | 0.7372 | | 0.2191 | 4.5094 | 1434 | 0.5456 | 0.5850 | 0.5456 | 0.7386 | | 0.2191 | 4.5157 | 1436 | 0.6108 | 0.6252 | 0.6108 | 0.7815 | | 0.2191 | 4.5220 | 1438 | 0.6371 | 0.6462 | 0.6371 | 0.7982 | | 0.2191 | 4.5283 | 1440 | 0.5417 | 0.6027 | 0.5417 | 0.7360 | | 0.2191 | 4.5346 | 1442 | 0.5027 | 0.5807 | 0.5027 | 0.7090 | | 0.2191 | 4.5409 | 1444 | 0.5327 | 0.6089 | 0.5327 | 0.7299 | | 0.2191 | 4.5472 | 1446 | 0.5351 | 0.6232 | 0.5351 | 0.7315 | | 0.2191 | 4.5535 | 1448 | 0.4943 | 0.5781 | 0.4943 | 0.7030 | | 0.2191 | 4.5597 | 1450 | 0.4824 | 0.5467 | 0.4824 | 0.6945 | | 0.2191 | 4.5660 | 1452 | 0.4857 | 0.5633 | 0.4857 | 0.6969 | | 0.2191 | 4.5723 | 1454 | 0.5305 | 0.6218 | 0.5305 | 0.7283 | | 0.2191 | 4.5786 | 1456 | 0.5665 | 0.6395 | 0.5665 | 0.7526 | | 0.2191 | 4.5849 | 1458 | 0.5148 | 0.5913 | 0.5148 | 0.7175 | | 0.2191 | 4.5912 | 1460 | 0.4879 | 0.5513 | 0.4879 | 0.6985 | | 0.2191 | 4.5975 | 1462 | 0.4889 | 0.5152 | 0.4889 | 0.6992 | | 0.2191 | 4.6038 | 1464 | 0.4922 | 0.5392 | 0.4922 | 0.7016 | | 0.2191 | 4.6101 | 1466 | 0.5167 | 0.5761 | 0.5167 | 0.7188 | | 0.2191 | 4.6164 | 1468 | 0.5763 | 0.6188 | 0.5763 | 0.7592 | | 0.2191 | 4.6226 | 1470 | 0.5514 | 0.5962 | 0.5514 | 0.7426 | | 0.2191 | 4.6289 | 1472 | 0.4995 | 0.5326 | 0.4995 | 0.7067 | | 0.2191 | 4.6352 | 1474 | 0.4970 | 0.5175 | 0.4970 | 0.7050 | | 0.2191 | 4.6415 | 1476 | 0.5087 | 0.5672 | 0.5087 | 0.7132 | | 0.2191 | 4.6478 | 1478 | 0.5783 | 0.6248 | 0.5783 | 0.7605 | | 0.2191 | 4.6541 | 1480 | 0.5894 | 0.6199 | 0.5894 | 0.7677 | | 0.2191 | 4.6604 | 1482 | 0.5251 | 0.5869 | 0.5251 | 0.7247 | | 0.2191 | 4.6667 | 1484 | 0.5091 | 0.5123 | 0.5091 | 0.7135 | | 0.2191 | 4.6730 | 1486 | 0.5099 | 0.5207 | 0.5099 | 0.7141 | | 0.2191 | 4.6792 | 1488 | 0.5335 | 0.5981 | 0.5335 | 0.7304 | | 0.2191 | 4.6855 | 1490 | 0.5984 | 0.6379 | 0.5984 | 0.7736 | | 0.2191 | 4.6918 | 1492 | 0.6045 | 0.6317 | 0.6045 | 0.7775 | | 0.2191 | 4.6981 | 1494 | 0.5318 | 0.5893 | 0.5318 | 0.7292 | | 0.2191 | 4.7044 | 1496 | 0.5212 | 0.4917 | 0.5212 | 0.7219 | | 0.2191 | 4.7107 | 1498 | 0.5583 | 0.4352 | 0.5583 | 0.7472 | | 0.137 | 4.7170 | 1500 | 0.5325 | 0.4577 | 0.5325 | 0.7297 | | 0.137 | 4.7233 | 1502 | 0.4992 | 0.5207 | 0.4992 | 0.7066 | | 0.137 | 4.7296 | 1504 | 0.5142 | 0.5829 | 0.5142 | 0.7171 | | 0.137 | 4.7358 | 1506 | 0.5090 | 0.5933 | 0.5090 | 0.7134 | | 0.137 | 4.7421 | 1508 | 0.4846 | 0.5451 | 0.4846 | 0.6962 | | 0.137 | 4.7484 | 1510 | 0.4941 | 0.4743 | 0.4941 | 0.7029 | | 0.137 | 4.7547 | 1512 | 0.4925 | 0.4759 | 0.4925 | 0.7018 | | 0.137 | 4.7610 | 1514 | 0.4870 | 0.5403 | 0.4870 | 0.6978 | | 0.137 | 4.7673 | 1516 | 0.5274 | 0.6094 | 0.5274 | 0.7262 | | 0.137 | 4.7736 | 1518 | 0.5429 | 0.6104 | 0.5429 | 0.7368 | | 0.137 | 4.7799 | 1520 | 0.5016 | 0.6021 | 0.5016 | 0.7082 | | 0.137 | 4.7862 | 1522 | 0.4941 | 0.4792 | 0.4941 | 0.7029 | | 0.137 | 4.7925 | 1524 | 0.5164 | 0.4536 | 0.5164 | 0.7186 | | 0.137 | 4.7987 | 1526 | 0.5001 | 0.4721 | 0.5001 | 0.7072 | | 0.137 | 4.8050 | 1528 | 0.5149 | 0.5848 | 0.5149 | 0.7176 | | 0.137 | 4.8113 | 1530 | 0.5606 | 0.6187 | 0.5606 | 0.7488 | | 0.137 | 4.8176 | 1532 | 0.5386 | 0.6120 | 0.5386 | 0.7339 | | 0.137 | 4.8239 | 1534 | 0.5132 | 0.4964 | 0.5132 | 0.7163 | | 0.137 | 4.8302 | 1536 | 0.5325 | 0.4620 | 0.5325 | 0.7298 | | 0.137 | 4.8365 | 1538 | 0.5363 | 0.4628 | 0.5363 | 0.7323 | | 0.137 | 4.8428 | 1540 | 0.5147 | 0.5029 | 0.5147 | 0.7174 | | 0.137 | 4.8491 | 1542 | 0.5102 | 0.5405 | 0.5102 | 0.7143 | | 0.137 | 4.8553 | 1544 | 0.5135 | 0.5818 | 0.5135 | 0.7166 | | 0.137 | 4.8616 | 1546 | 0.4941 | 0.5237 | 0.4941 | 0.7030 | | 0.137 | 4.8679 | 1548 | 0.4922 | 0.5190 | 0.4922 | 0.7015 | | 0.137 | 4.8742 | 1550 | 0.4914 | 0.5180 | 0.4914 | 0.7010 | | 0.137 | 4.8805 | 1552 | 0.5017 | 0.5464 | 0.5017 | 0.7083 | | 0.137 | 4.8868 | 1554 | 0.5360 | 0.6195 | 0.5360 | 0.7321 | | 0.137 | 4.8931 | 1556 | 0.5409 | 0.6140 | 0.5409 | 0.7355 | | 0.137 | 4.8994 | 1558 | 0.5174 | 0.5642 | 0.5174 | 0.7193 | | 0.137 | 4.9057 | 1560 | 0.5136 | 0.5532 | 0.5136 | 0.7166 | | 0.137 | 4.9119 | 1562 | 0.5314 | 0.5965 | 0.5314 | 0.7290 | | 0.137 | 4.9182 | 1564 | 0.5257 | 0.5958 | 0.5257 | 0.7251 | | 0.137 | 4.9245 | 1566 | 0.5320 | 0.5995 | 0.5320 | 0.7294 | | 0.137 | 4.9308 | 1568 | 0.5420 | 0.6089 | 0.5420 | 0.7362 | | 0.137 | 4.9371 | 1570 | 0.5097 | 0.5445 | 0.5097 | 0.7139 | | 0.137 | 4.9434 | 1572 | 0.5084 | 0.5183 | 0.5084 | 0.7130 | | 0.137 | 4.9497 | 1574 | 0.5117 | 0.5146 | 0.5117 | 0.7154 | | 0.137 | 4.9560 | 1576 | 0.5268 | 0.5639 | 0.5268 | 0.7258 | | 0.137 | 4.9623 | 1578 | 0.5468 | 0.6127 | 0.5468 | 0.7395 | | 0.137 | 4.9686 | 1580 | 0.5315 | 0.5791 | 0.5315 | 0.7290 | | 0.137 | 4.9748 | 1582 | 0.5247 | 0.5557 | 0.5247 | 0.7243 | | 0.137 | 4.9811 | 1584 | 0.5311 | 0.5787 | 0.5311 | 0.7288 | | 0.137 | 4.9874 | 1586 | 0.5600 | 0.6294 | 0.5600 | 0.7483 | | 0.137 | 4.9937 | 1588 | 0.6016 | 0.6491 | 0.6016 | 0.7756 | | 0.137 | 5.0 | 1590 | 0.6073 | 0.6469 | 0.6073 | 0.7793 | | 0.137 | 5.0063 | 1592 | 0.5661 | 0.6432 | 0.5661 | 0.7524 | | 0.137 | 5.0126 | 1594 | 0.5277 | 0.6116 | 0.5277 | 0.7264 | | 0.137 | 5.0189 | 1596 | 0.5400 | 0.6220 | 0.5400 | 0.7349 | | 0.137 | 5.0252 | 1598 | 0.6110 | 0.6596 | 0.6110 | 0.7817 | | 0.137 | 5.0314 | 1600 | 0.6045 | 0.6544 | 0.6045 | 0.7775 | | 0.137 | 5.0377 | 1602 | 0.5523 | 0.6378 | 0.5523 | 0.7432 | | 0.137 | 5.0440 | 1604 | 0.5261 | 0.5913 | 0.5261 | 0.7253 | | 0.137 | 5.0503 | 1606 | 0.5190 | 0.5756 | 0.5190 | 0.7204 | | 0.137 | 5.0566 | 1608 | 0.5470 | 0.6231 | 0.5470 | 0.7396 | | 0.137 | 5.0629 | 1610 | 0.5948 | 0.6374 | 0.5948 | 0.7712 | | 0.137 | 5.0692 | 1612 | 0.5981 | 0.6305 | 0.5981 | 0.7734 | | 0.137 | 5.0755 | 1614 | 0.5447 | 0.5802 | 0.5447 | 0.7380 | | 0.137 | 5.0818 | 1616 | 0.5114 | 0.5172 | 0.5114 | 0.7152 | | 0.137 | 5.0881 | 1618 | 0.5096 | 0.5302 | 0.5096 | 0.7139 | | 0.137 | 5.0943 | 1620 | 0.5184 | 0.5557 | 0.5184 | 0.7200 | | 0.137 | 5.1006 | 1622 | 0.5450 | 0.5970 | 0.5450 | 0.7382 | | 0.137 | 5.1069 | 1624 | 0.5490 | 0.5956 | 0.5490 | 0.7410 | | 0.137 | 5.1132 | 1626 | 0.5397 | 0.5729 | 0.5397 | 0.7346 | | 0.137 | 5.1195 | 1628 | 0.5360 | 0.5662 | 0.5360 | 0.7321 | | 0.137 | 5.1258 | 1630 | 0.5514 | 0.5830 | 0.5514 | 0.7426 | | 0.137 | 5.1321 | 1632 | 0.5284 | 0.5352 | 0.5284 | 0.7269 | | 0.137 | 5.1384 | 1634 | 0.5200 | 0.5191 | 0.5200 | 0.7211 | | 0.137 | 5.1447 | 1636 | 0.5160 | 0.5037 | 0.5160 | 0.7183 | | 0.137 | 5.1509 | 1638 | 0.5184 | 0.5393 | 0.5184 | 0.7200 | | 0.137 | 5.1572 | 1640 | 0.5180 | 0.5476 | 0.5180 | 0.7197 | | 0.137 | 5.1635 | 1642 | 0.5125 | 0.5336 | 0.5125 | 0.7159 | | 0.137 | 5.1698 | 1644 | 0.5039 | 0.5236 | 0.5039 | 0.7099 | | 0.137 | 5.1761 | 1646 | 0.5005 | 0.5047 | 0.5005 | 0.7075 | | 0.137 | 5.1824 | 1648 | 0.5026 | 0.5307 | 0.5026 | 0.7090 | | 0.137 | 5.1887 | 1650 | 0.5118 | 0.5572 | 0.5118 | 0.7154 | | 0.137 | 5.1950 | 1652 | 0.5206 | 0.5589 | 0.5206 | 0.7215 | | 0.137 | 5.2013 | 1654 | 0.5269 | 0.5661 | 0.5269 | 0.7259 | | 0.137 | 5.2075 | 1656 | 0.5262 | 0.5677 | 0.5262 | 0.7254 | | 0.137 | 5.2138 | 1658 | 0.5181 | 0.5379 | 0.5181 | 0.7198 | | 0.137 | 5.2201 | 1660 | 0.5199 | 0.5489 | 0.5199 | 0.7211 | | 0.137 | 5.2264 | 1662 | 0.5168 | 0.5317 | 0.5168 | 0.7189 | | 0.137 | 5.2327 | 1664 | 0.5175 | 0.5034 | 0.5175 | 0.7194 | | 0.137 | 5.2390 | 1666 | 0.5285 | 0.5567 | 0.5285 | 0.7270 | | 0.137 | 5.2453 | 1668 | 0.5740 | 0.6014 | 0.5740 | 0.7576 | | 0.137 | 5.2516 | 1670 | 0.5751 | 0.6039 | 0.5751 | 0.7584 | | 0.137 | 5.2579 | 1672 | 0.5519 | 0.5738 | 0.5519 | 0.7429 | | 0.137 | 5.2642 | 1674 | 0.5682 | 0.5954 | 0.5682 | 0.7538 | | 0.137 | 5.2704 | 1676 | 0.5834 | 0.6032 | 0.5834 | 0.7638 | | 0.137 | 5.2767 | 1678 | 0.5604 | 0.5737 | 0.5604 | 0.7486 | | 0.137 | 5.2830 | 1680 | 0.5381 | 0.5282 | 0.5381 | 0.7336 | | 0.137 | 5.2893 | 1682 | 0.5366 | 0.5274 | 0.5366 | 0.7325 | | 0.137 | 5.2956 | 1684 | 0.5544 | 0.5575 | 0.5544 | 0.7446 | | 0.137 | 5.3019 | 1686 | 0.5676 | 0.5679 | 0.5676 | 0.7534 | | 0.137 | 5.3082 | 1688 | 0.5449 | 0.5589 | 0.5449 | 0.7382 | | 0.137 | 5.3145 | 1690 | 0.5293 | 0.5326 | 0.5293 | 0.7275 | | 0.137 | 5.3208 | 1692 | 0.5481 | 0.5828 | 0.5481 | 0.7404 | | 0.137 | 5.3270 | 1694 | 0.5706 | 0.6175 | 0.5706 | 0.7554 | | 0.137 | 5.3333 | 1696 | 0.5400 | 0.5961 | 0.5400 | 0.7348 | | 0.137 | 5.3396 | 1698 | 0.5190 | 0.5213 | 0.5190 | 0.7204 | | 0.137 | 5.3459 | 1700 | 0.5220 | 0.5245 | 0.5220 | 0.7225 | | 0.137 | 5.3522 | 1702 | 0.5369 | 0.5680 | 0.5369 | 0.7328 | | 0.137 | 5.3585 | 1704 | 0.5762 | 0.6104 | 0.5762 | 0.7591 | | 0.137 | 5.3648 | 1706 | 0.5525 | 0.5807 | 0.5525 | 0.7433 | | 0.137 | 5.3711 | 1708 | 0.5256 | 0.5445 | 0.5256 | 0.7250 | | 0.137 | 5.3774 | 1710 | 0.5259 | 0.5053 | 0.5259 | 0.7252 | | 0.137 | 5.3836 | 1712 | 0.5267 | 0.5154 | 0.5267 | 0.7258 | | 0.137 | 5.3899 | 1714 | 0.5407 | 0.5558 | 0.5407 | 0.7353 | | 0.137 | 5.3962 | 1716 | 0.5512 | 0.5666 | 0.5512 | 0.7424 | | 0.137 | 5.4025 | 1718 | 0.5286 | 0.5433 | 0.5286 | 0.7271 | | 0.137 | 5.4088 | 1720 | 0.5258 | 0.4930 | 0.5258 | 0.7251 | | 0.137 | 5.4151 | 1722 | 0.5314 | 0.4664 | 0.5314 | 0.7290 | | 0.137 | 5.4214 | 1724 | 0.5204 | 0.5117 | 0.5204 | 0.7214 | | 0.137 | 5.4277 | 1726 | 0.5229 | 0.5506 | 0.5229 | 0.7231 | | 0.137 | 5.4340 | 1728 | 0.5398 | 0.5703 | 0.5398 | 0.7347 | | 0.137 | 5.4403 | 1730 | 0.5466 | 0.5979 | 0.5466 | 0.7393 | | 0.137 | 5.4465 | 1732 | 0.5224 | 0.5650 | 0.5224 | 0.7227 | | 0.137 | 5.4528 | 1734 | 0.5113 | 0.5491 | 0.5113 | 0.7151 | | 0.137 | 5.4591 | 1736 | 0.5071 | 0.5374 | 0.5071 | 0.7121 | | 0.137 | 5.4654 | 1738 | 0.5065 | 0.5416 | 0.5065 | 0.7117 | | 0.137 | 5.4717 | 1740 | 0.5246 | 0.5797 | 0.5246 | 0.7243 | | 0.137 | 5.4780 | 1742 | 0.5218 | 0.5797 | 0.5218 | 0.7224 | | 0.137 | 5.4843 | 1744 | 0.5162 | 0.5724 | 0.5162 | 0.7185 | | 0.137 | 5.4906 | 1746 | 0.5096 | 0.5536 | 0.5096 | 0.7138 | | 0.137 | 5.4969 | 1748 | 0.5051 | 0.5304 | 0.5051 | 0.7107 | | 0.137 | 5.5031 | 1750 | 0.5108 | 0.5634 | 0.5108 | 0.7147 | | 0.137 | 5.5094 | 1752 | 0.5382 | 0.5801 | 0.5382 | 0.7336 | | 0.137 | 5.5157 | 1754 | 0.5216 | 0.5847 | 0.5216 | 0.7223 | | 0.137 | 5.5220 | 1756 | 0.4968 | 0.5421 | 0.4968 | 0.7048 | | 0.137 | 5.5283 | 1758 | 0.5052 | 0.4760 | 0.5052 | 0.7108 | | 0.137 | 5.5346 | 1760 | 0.5117 | 0.4780 | 0.5117 | 0.7153 | | 0.137 | 5.5409 | 1762 | 0.5070 | 0.5427 | 0.5070 | 0.7121 | | 0.137 | 5.5472 | 1764 | 0.5567 | 0.6161 | 0.5567 | 0.7461 | | 0.137 | 5.5535 | 1766 | 0.5599 | 0.6149 | 0.5599 | 0.7482 | | 0.137 | 5.5597 | 1768 | 0.5235 | 0.5687 | 0.5235 | 0.7235 | | 0.137 | 5.5660 | 1770 | 0.5228 | 0.5072 | 0.5228 | 0.7230 | | 0.137 | 5.5723 | 1772 | 0.5250 | 0.5090 | 0.5250 | 0.7246 | | 0.137 | 5.5786 | 1774 | 0.5410 | 0.5861 | 0.5410 | 0.7355 | | 0.137 | 5.5849 | 1776 | 0.5907 | 0.6225 | 0.5907 | 0.7686 | | 0.137 | 5.5912 | 1778 | 0.5749 | 0.6029 | 0.5749 | 0.7582 | | 0.137 | 5.5975 | 1780 | 0.5412 | 0.5939 | 0.5412 | 0.7357 | | 0.137 | 5.6038 | 1782 | 0.5314 | 0.5894 | 0.5314 | 0.7289 | | 0.137 | 5.6101 | 1784 | 0.5453 | 0.6037 | 0.5453 | 0.7385 | | 0.137 | 5.6164 | 1786 | 0.5681 | 0.6119 | 0.5681 | 0.7537 | | 0.137 | 5.6226 | 1788 | 0.5702 | 0.6166 | 0.5702 | 0.7551 | | 0.137 | 5.6289 | 1790 | 0.5559 | 0.6007 | 0.5559 | 0.7456 | | 0.137 | 5.6352 | 1792 | 0.5448 | 0.6022 | 0.5448 | 0.7381 | | 0.137 | 5.6415 | 1794 | 0.5587 | 0.6112 | 0.5587 | 0.7475 | | 0.137 | 5.6478 | 1796 | 0.5405 | 0.6096 | 0.5405 | 0.7352 | | 0.137 | 5.6541 | 1798 | 0.5088 | 0.5955 | 0.5088 | 0.7133 | | 0.137 | 5.6604 | 1800 | 0.4964 | 0.5642 | 0.4964 | 0.7045 | | 0.137 | 5.6667 | 1802 | 0.4964 | 0.5585 | 0.4964 | 0.7046 | | 0.137 | 5.6730 | 1804 | 0.5212 | 0.6061 | 0.5212 | 0.7219 | | 0.137 | 5.6792 | 1806 | 0.5291 | 0.6097 | 0.5291 | 0.7274 | | 0.137 | 5.6855 | 1808 | 0.5293 | 0.6091 | 0.5293 | 0.7275 | | 0.137 | 5.6918 | 1810 | 0.5091 | 0.5540 | 0.5091 | 0.7135 | | 0.137 | 5.6981 | 1812 | 0.5072 | 0.5393 | 0.5072 | 0.7122 | | 0.137 | 5.7044 | 1814 | 0.5062 | 0.5238 | 0.5062 | 0.7115 | | 0.137 | 5.7107 | 1816 | 0.5145 | 0.5626 | 0.5145 | 0.7173 | | 0.137 | 5.7170 | 1818 | 0.5278 | 0.5856 | 0.5278 | 0.7265 | | 0.137 | 5.7233 | 1820 | 0.5254 | 0.5886 | 0.5254 | 0.7248 | | 0.137 | 5.7296 | 1822 | 0.5096 | 0.5573 | 0.5096 | 0.7138 | | 0.137 | 5.7358 | 1824 | 0.5036 | 0.5345 | 0.5036 | 0.7096 | | 0.137 | 5.7421 | 1826 | 0.5040 | 0.5179 | 0.5040 | 0.7099 | | 0.137 | 5.7484 | 1828 | 0.5122 | 0.5543 | 0.5122 | 0.7157 | | 0.137 | 5.7547 | 1830 | 0.5129 | 0.5579 | 0.5129 | 0.7162 | | 0.137 | 5.7610 | 1832 | 0.5151 | 0.5558 | 0.5151 | 0.7177 | | 0.137 | 5.7673 | 1834 | 0.5004 | 0.5381 | 0.5004 | 0.7074 | | 0.137 | 5.7736 | 1836 | 0.4985 | 0.5056 | 0.4985 | 0.7060 | | 0.137 | 5.7799 | 1838 | 0.5032 | 0.4997 | 0.5032 | 0.7093 | | 0.137 | 5.7862 | 1840 | 0.5058 | 0.4975 | 0.5058 | 0.7112 | | 0.137 | 5.7925 | 1842 | 0.5093 | 0.5039 | 0.5093 | 0.7137 | | 0.137 | 5.7987 | 1844 | 0.5199 | 0.5481 | 0.5199 | 0.7210 | | 0.137 | 5.8050 | 1846 | 0.5419 | 0.5858 | 0.5419 | 0.7362 | | 0.137 | 5.8113 | 1848 | 0.5333 | 0.5732 | 0.5333 | 0.7303 | | 0.137 | 5.8176 | 1850 | 0.5221 | 0.5339 | 0.5221 | 0.7226 | | 0.137 | 5.8239 | 1852 | 0.5190 | 0.4942 | 0.5190 | 0.7204 | | 0.137 | 5.8302 | 1854 | 0.5173 | 0.5112 | 0.5173 | 0.7193 | | 0.137 | 5.8365 | 1856 | 0.5310 | 0.5530 | 0.5310 | 0.7287 | | 0.137 | 5.8428 | 1858 | 0.5528 | 0.5771 | 0.5528 | 0.7435 | | 0.137 | 5.8491 | 1860 | 0.5564 | 0.5713 | 0.5564 | 0.7459 | | 0.137 | 5.8553 | 1862 | 0.5457 | 0.5257 | 0.5457 | 0.7387 | | 0.137 | 5.8616 | 1864 | 0.5511 | 0.5368 | 0.5511 | 0.7423 | | 0.137 | 5.8679 | 1866 | 0.5562 | 0.5645 | 0.5562 | 0.7458 | | 0.137 | 5.8742 | 1868 | 0.5371 | 0.5266 | 0.5371 | 0.7329 | | 0.137 | 5.8805 | 1870 | 0.5291 | 0.5413 | 0.5291 | 0.7274 | | 0.137 | 5.8868 | 1872 | 0.5259 | 0.5535 | 0.5259 | 0.7252 | | 0.137 | 5.8931 | 1874 | 0.5369 | 0.5981 | 0.5369 | 0.7327 | | 0.137 | 5.8994 | 1876 | 0.5517 | 0.6147 | 0.5517 | 0.7427 | | 0.137 | 5.9057 | 1878 | 0.5261 | 0.5838 | 0.5261 | 0.7253 | | 0.137 | 5.9119 | 1880 | 0.5091 | 0.5308 | 0.5091 | 0.7135 | | 0.137 | 5.9182 | 1882 | 0.5070 | 0.5485 | 0.5070 | 0.7120 | | 0.137 | 5.9245 | 1884 | 0.5292 | 0.6006 | 0.5292 | 0.7275 | | 0.137 | 5.9308 | 1886 | 0.5539 | 0.6290 | 0.5539 | 0.7442 | | 0.137 | 5.9371 | 1888 | 0.5303 | 0.6176 | 0.5303 | 0.7282 | | 0.137 | 5.9434 | 1890 | 0.5068 | 0.5536 | 0.5068 | 0.7119 | | 0.137 | 5.9497 | 1892 | 0.5092 | 0.5327 | 0.5092 | 0.7136 | | 0.137 | 5.9560 | 1894 | 0.5156 | 0.5453 | 0.5156 | 0.7180 | | 0.137 | 5.9623 | 1896 | 0.5242 | 0.5863 | 0.5242 | 0.7240 | | 0.137 | 5.9686 | 1898 | 0.5535 | 0.6211 | 0.5535 | 0.7440 | | 0.137 | 5.9748 | 1900 | 0.5484 | 0.6188 | 0.5484 | 0.7406 | | 0.137 | 5.9811 | 1902 | 0.5165 | 0.5695 | 0.5165 | 0.7187 | | 0.137 | 5.9874 | 1904 | 0.5091 | 0.5293 | 0.5091 | 0.7135 | | 0.137 | 5.9937 | 1906 | 0.5039 | 0.5467 | 0.5039 | 0.7099 | | 0.137 | 6.0 | 1908 | 0.5110 | 0.5860 | 0.5110 | 0.7149 | | 0.137 | 6.0063 | 1910 | 0.5227 | 0.6075 | 0.5227 | 0.7230 | | 0.137 | 6.0126 | 1912 | 0.5158 | 0.5937 | 0.5158 | 0.7182 | | 0.137 | 6.0189 | 1914 | 0.5121 | 0.5814 | 0.5121 | 0.7156 | | 0.137 | 6.0252 | 1916 | 0.5249 | 0.6051 | 0.5249 | 0.7245 | | 0.137 | 6.0314 | 1918 | 0.5245 | 0.5925 | 0.5245 | 0.7242 | | 0.137 | 6.0377 | 1920 | 0.5153 | 0.5620 | 0.5153 | 0.7178 | | 0.137 | 6.0440 | 1922 | 0.5134 | 0.5268 | 0.5134 | 0.7165 | | 0.137 | 6.0503 | 1924 | 0.5214 | 0.5761 | 0.5214 | 0.7221 | | 0.137 | 6.0566 | 1926 | 0.5436 | 0.6034 | 0.5436 | 0.7373 | | 0.137 | 6.0629 | 1928 | 0.5385 | 0.5879 | 0.5385 | 0.7339 | | 0.137 | 6.0692 | 1930 | 0.5294 | 0.5466 | 0.5294 | 0.7276 | | 0.137 | 6.0755 | 1932 | 0.5246 | 0.5303 | 0.5246 | 0.7243 | | 0.137 | 6.0818 | 1934 | 0.5383 | 0.5591 | 0.5383 | 0.7337 | | 0.137 | 6.0881 | 1936 | 0.5384 | 0.5542 | 0.5384 | 0.7338 | | 0.137 | 6.0943 | 1938 | 0.5208 | 0.5393 | 0.5208 | 0.7217 | | 0.137 | 6.1006 | 1940 | 0.5144 | 0.5455 | 0.5144 | 0.7172 | | 0.137 | 6.1069 | 1942 | 0.5280 | 0.5642 | 0.5280 | 0.7266 | | 0.137 | 6.1132 | 1944 | 0.5361 | 0.5867 | 0.5361 | 0.7322 | | 0.137 | 6.1195 | 1946 | 0.5112 | 0.5655 | 0.5112 | 0.7150 | | 0.137 | 6.1258 | 1948 | 0.4995 | 0.5291 | 0.4995 | 0.7067 | | 0.137 | 6.1321 | 1950 | 0.5061 | 0.5169 | 0.5061 | 0.7114 | | 0.137 | 6.1384 | 1952 | 0.5194 | 0.5467 | 0.5194 | 0.7207 | | 0.137 | 6.1447 | 1954 | 0.5554 | 0.5848 | 0.5554 | 0.7453 | | 0.137 | 6.1509 | 1956 | 0.5663 | 0.6031 | 0.5663 | 0.7525 | | 0.137 | 6.1572 | 1958 | 0.5517 | 0.5626 | 0.5517 | 0.7427 | | 0.137 | 6.1635 | 1960 | 0.5537 | 0.5673 | 0.5537 | 0.7441 | | 0.137 | 6.1698 | 1962 | 0.5627 | 0.5826 | 0.5627 | 0.7501 | | 0.137 | 6.1761 | 1964 | 0.5644 | 0.6046 | 0.5644 | 0.7513 | | 0.137 | 6.1824 | 1966 | 0.5350 | 0.5586 | 0.5350 | 0.7315 | | 0.137 | 6.1887 | 1968 | 0.5252 | 0.5379 | 0.5252 | 0.7247 | | 0.137 | 6.1950 | 1970 | 0.5237 | 0.5325 | 0.5237 | 0.7237 | | 0.137 | 6.2013 | 1972 | 0.5287 | 0.5568 | 0.5287 | 0.7271 | | 0.137 | 6.2075 | 1974 | 0.5419 | 0.5726 | 0.5419 | 0.7362 | | 0.137 | 6.2138 | 1976 | 0.5262 | 0.5548 | 0.5262 | 0.7254 | | 0.137 | 6.2201 | 1978 | 0.5228 | 0.5096 | 0.5228 | 0.7231 | | 0.137 | 6.2264 | 1980 | 0.5272 | 0.5423 | 0.5272 | 0.7261 | | 0.137 | 6.2327 | 1982 | 0.5641 | 0.6126 | 0.5641 | 0.7511 | | 0.137 | 6.2390 | 1984 | 0.5698 | 0.6111 | 0.5698 | 0.7549 | | 0.137 | 6.2453 | 1986 | 0.5435 | 0.5857 | 0.5435 | 0.7372 | | 0.137 | 6.2516 | 1988 | 0.5163 | 0.5217 | 0.5163 | 0.7186 | | 0.137 | 6.2579 | 1990 | 0.5172 | 0.5210 | 0.5172 | 0.7192 | | 0.137 | 6.2642 | 1992 | 0.5246 | 0.5537 | 0.5246 | 0.7243 | | 0.137 | 6.2704 | 1994 | 0.5389 | 0.5880 | 0.5389 | 0.7341 | | 0.137 | 6.2767 | 1996 | 0.5522 | 0.6138 | 0.5522 | 0.7431 | | 0.137 | 6.2830 | 1998 | 0.5332 | 0.6009 | 0.5332 | 0.7302 | | 0.0917 | 6.2893 | 2000 | 0.5090 | 0.5523 | 0.5090 | 0.7134 | | 0.0917 | 6.2956 | 2002 | 0.5108 | 0.5622 | 0.5108 | 0.7147 | | 0.0917 | 6.3019 | 2004 | 0.5365 | 0.6050 | 0.5365 | 0.7325 | | 0.0917 | 6.3082 | 2006 | 0.5334 | 0.5934 | 0.5334 | 0.7304 | | 0.0917 | 6.3145 | 2008 | 0.5195 | 0.5594 | 0.5195 | 0.7208 | | 0.0917 | 6.3208 | 2010 | 0.5208 | 0.5328 | 0.5208 | 0.7216 | | 0.0917 | 6.3270 | 2012 | 0.5282 | 0.5464 | 0.5282 | 0.7268 | | 0.0917 | 6.3333 | 2014 | 0.5418 | 0.5642 | 0.5418 | 0.7361 | | 0.0917 | 6.3396 | 2016 | 0.5689 | 0.6043 | 0.5689 | 0.7542 | | 0.0917 | 6.3459 | 2018 | 0.5674 | 0.5949 | 0.5674 | 0.7533 | | 0.0917 | 6.3522 | 2020 | 0.5468 | 0.5597 | 0.5468 | 0.7394 | | 0.0917 | 6.3585 | 2022 | 0.5329 | 0.5195 | 0.5329 | 0.7300 | | 0.0917 | 6.3648 | 2024 | 0.5310 | 0.5210 | 0.5310 | 0.7287 | | 0.0917 | 6.3711 | 2026 | 0.5270 | 0.5262 | 0.5270 | 0.7260 | | 0.0917 | 6.3774 | 2028 | 0.5316 | 0.5641 | 0.5316 | 0.7291 | | 0.0917 | 6.3836 | 2030 | 0.5297 | 0.5760 | 0.5297 | 0.7278 | | 0.0917 | 6.3899 | 2032 | 0.5219 | 0.5727 | 0.5219 | 0.7224 | | 0.0917 | 6.3962 | 2034 | 0.5155 | 0.5714 | 0.5155 | 0.7180 | | 0.0917 | 6.4025 | 2036 | 0.5086 | 0.5673 | 0.5086 | 0.7131 | | 0.0917 | 6.4088 | 2038 | 0.5175 | 0.5884 | 0.5175 | 0.7194 | | 0.0917 | 6.4151 | 2040 | 0.5283 | 0.6030 | 0.5283 | 0.7268 | | 0.0917 | 6.4214 | 2042 | 0.5162 | 0.5871 | 0.5162 | 0.7185 | | 0.0917 | 6.4277 | 2044 | 0.5080 | 0.5583 | 0.5080 | 0.7127 | | 0.0917 | 6.4340 | 2046 | 0.5050 | 0.5511 | 0.5050 | 0.7106 | | 0.0917 | 6.4403 | 2048 | 0.5148 | 0.5614 | 0.5148 | 0.7175 | | 0.0917 | 6.4465 | 2050 | 0.5400 | 0.6043 | 0.5400 | 0.7349 | | 0.0917 | 6.4528 | 2052 | 0.5301 | 0.5940 | 0.5301 | 0.7281 | | 0.0917 | 6.4591 | 2054 | 0.5091 | 0.5362 | 0.5091 | 0.7135 | | 0.0917 | 6.4654 | 2056 | 0.5088 | 0.5027 | 0.5088 | 0.7133 | | 0.0917 | 6.4717 | 2058 | 0.5032 | 0.5111 | 0.5032 | 0.7094 | | 0.0917 | 6.4780 | 2060 | 0.5047 | 0.5513 | 0.5047 | 0.7104 | | 0.0917 | 6.4843 | 2062 | 0.5077 | 0.5645 | 0.5077 | 0.7125 | | 0.0917 | 6.4906 | 2064 | 0.5032 | 0.5298 | 0.5032 | 0.7093 | | 0.0917 | 6.4969 | 2066 | 0.4995 | 0.5231 | 0.4995 | 0.7067 | | 0.0917 | 6.5031 | 2068 | 0.5037 | 0.5341 | 0.5037 | 0.7097 | | 0.0917 | 6.5094 | 2070 | 0.5179 | 0.5775 | 0.5179 | 0.7197 | | 0.0917 | 6.5157 | 2072 | 0.5109 | 0.5644 | 0.5109 | 0.7148 | | 0.0917 | 6.5220 | 2074 | 0.5079 | 0.5408 | 0.5079 | 0.7127 | | 0.0917 | 6.5283 | 2076 | 0.5076 | 0.5336 | 0.5076 | 0.7125 | | 0.0917 | 6.5346 | 2078 | 0.5061 | 0.5336 | 0.5061 | 0.7114 | | 0.0917 | 6.5409 | 2080 | 0.5077 | 0.5402 | 0.5077 | 0.7125 | | 0.0917 | 6.5472 | 2082 | 0.5271 | 0.5889 | 0.5271 | 0.7260 | | 0.0917 | 6.5535 | 2084 | 0.5338 | 0.6049 | 0.5338 | 0.7306 | | 0.0917 | 6.5597 | 2086 | 0.5223 | 0.5777 | 0.5223 | 0.7227 | | 0.0917 | 6.5660 | 2088 | 0.5172 | 0.5149 | 0.5172 | 0.7192 | | 0.0917 | 6.5723 | 2090 | 0.5206 | 0.5042 | 0.5206 | 0.7215 | | 0.0917 | 6.5786 | 2092 | 0.5265 | 0.5575 | 0.5265 | 0.7256 | | 0.0917 | 6.5849 | 2094 | 0.5407 | 0.5997 | 0.5407 | 0.7353 | | 0.0917 | 6.5912 | 2096 | 0.5554 | 0.6111 | 0.5554 | 0.7453 | | 0.0917 | 6.5975 | 2098 | 0.5409 | 0.6005 | 0.5409 | 0.7355 | | 0.0917 | 6.6038 | 2100 | 0.5386 | 0.6022 | 0.5386 | 0.7339 | | 0.0917 | 6.6101 | 2102 | 0.5355 | 0.6058 | 0.5355 | 0.7318 | | 0.0917 | 6.6164 | 2104 | 0.5200 | 0.5805 | 0.5200 | 0.7211 | | 0.0917 | 6.6226 | 2106 | 0.5044 | 0.5561 | 0.5044 | 0.7102 | | 0.0917 | 6.6289 | 2108 | 0.5027 | 0.5571 | 0.5027 | 0.7090 | | 0.0917 | 6.6352 | 2110 | 0.5132 | 0.5724 | 0.5132 | 0.7164 | | 0.0917 | 6.6415 | 2112 | 0.5343 | 0.6068 | 0.5343 | 0.7309 | | 0.0917 | 6.6478 | 2114 | 0.5504 | 0.6179 | 0.5504 | 0.7419 | | 0.0917 | 6.6541 | 2116 | 0.5244 | 0.5962 | 0.5244 | 0.7242 | | 0.0917 | 6.6604 | 2118 | 0.5086 | 0.5595 | 0.5086 | 0.7132 | | 0.0917 | 6.6667 | 2120 | 0.5043 | 0.5187 | 0.5043 | 0.7102 | | 0.0917 | 6.6730 | 2122 | 0.5095 | 0.5412 | 0.5095 | 0.7138 | | 0.0917 | 6.6792 | 2124 | 0.5294 | 0.5747 | 0.5294 | 0.7276 | | 0.0917 | 6.6855 | 2126 | 0.5357 | 0.5965 | 0.5357 | 0.7319 | | 0.0917 | 6.6918 | 2128 | 0.5336 | 0.5904 | 0.5336 | 0.7305 | | 0.0917 | 6.6981 | 2130 | 0.5382 | 0.6041 | 0.5382 | 0.7336 | | 0.0917 | 6.7044 | 2132 | 0.5238 | 0.5798 | 0.5238 | 0.7237 | | 0.0917 | 6.7107 | 2134 | 0.5117 | 0.5626 | 0.5117 | 0.7153 | | 0.0917 | 6.7170 | 2136 | 0.5085 | 0.5562 | 0.5085 | 0.7131 | | 0.0917 | 6.7233 | 2138 | 0.5082 | 0.5607 | 0.5082 | 0.7129 | | 0.0917 | 6.7296 | 2140 | 0.5110 | 0.5692 | 0.5110 | 0.7149 | | 0.0917 | 6.7358 | 2142 | 0.5086 | 0.5718 | 0.5086 | 0.7131 | | 0.0917 | 6.7421 | 2144 | 0.5002 | 0.5517 | 0.5002 | 0.7073 | | 0.0917 | 6.7484 | 2146 | 0.4968 | 0.5362 | 0.4968 | 0.7049 | | 0.0917 | 6.7547 | 2148 | 0.5065 | 0.5680 | 0.5065 | 0.7117 | | 0.0917 | 6.7610 | 2150 | 0.5217 | 0.5868 | 0.5217 | 0.7223 | | 0.0917 | 6.7673 | 2152 | 0.5359 | 0.5932 | 0.5359 | 0.7321 | | 0.0917 | 6.7736 | 2154 | 0.5440 | 0.5864 | 0.5440 | 0.7376 | | 0.0917 | 6.7799 | 2156 | 0.5253 | 0.5470 | 0.5253 | 0.7248 | | 0.0917 | 6.7862 | 2158 | 0.5211 | 0.5009 | 0.5211 | 0.7219 | | 0.0917 | 6.7925 | 2160 | 0.5242 | 0.4876 | 0.5242 | 0.7240 | | 0.0917 | 6.7987 | 2162 | 0.5241 | 0.5217 | 0.5241 | 0.7240 | | 0.0917 | 6.8050 | 2164 | 0.5352 | 0.5466 | 0.5352 | 0.7316 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
ayrisdev/mobile-ui-design
ayrisdev
2024-11-06T13:58:06Z
128
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-06T13:08:26Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mobiluidesign --- # Mobile Ui Design <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mobiluidesign` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ayrisdev/mobile-ui-design', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
DiTy/gemma-2-9b-it-russian-strict-function-calling-DPO
DiTy
2024-11-06T13:56:17Z
147
1
transformers
[ "transformers", "safetensors", "gguf", "gemma2", "text-generation", "conversational", "function-calling", "strict-function-calling", "trl", "ru", "dataset:DiTy/function-calling-trl", "base_model:DiTy/gemma-2-9b-it-russian-function-calling-GGUF", "base_model:quantized:DiTy/gemma-2-9b-it-russian-function-calling-GGUF", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-24T07:24:57Z
--- base_model: DiTy/gemma-2-9b-it-russian-function-calling-GGUF datasets: - DiTy/function-calling-trl language: - ru library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - conversational - gemma2 - function-calling - strict-function-calling - trl --- # DiTy/gemma-2-9b-it-russian-strict-function-calling-DPO This model is a aligned version of [DiTy/gemma-2-9b-it-russian-function-calling-GGUF](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-GGUF) for more **Strict Function Calling** task, on the Russian version of the *DiTy/function-calling-trl* dataset. Which means that the model avoids answering user questions that are not related to the described functions. The model has been trained using non-synthetic preference data, fully annotated by humans only, on the Russian version of the <ins>*DiTy/function-calling-trl*</ins> dataset. In addition to **safetensors**, the model is available in **GGUF** [(gemma-2-9B-it-russian-function-calling-DPO-F16.gguf)](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-DPO/blob/main/gemma-2-9B-it-russian-function-calling-DPO-F16.gguf) format (in this case, you need to download only a single file (*[how to inference GGUF model](https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#high-level-api)*)). ## Stricted Effect Это означает, что модель избегает ответов на вопросы пользователей, которые не связаны с описанными функциями. Ниже описаны несколько примеров поведения модели до и после *preference optimization*. ```python def get_weather(city: str): """ Функция, которая возвращает погоду в заданном городе. Args: city: Город, для которого надо узнать погоду. """ import random return ("weather", '"sunny"' if random.random() > 0.5 else '"rainy"') def get_sunrise_sunset_times(city: str): """ Функция, которая возвращает время восхода и заката для заданного города для текущей даты (дата от пользователя не требуется), в формате списка: [sunrise_time, sunset_time]. Args: city: Город, в котором можно узнать время восхода и захода солнца. """ return ["6:00", "18:00"] history_messages = [ {"role": "system", "content": "Ты - полезный помощник, имеющий доступ к следующим функциям. Используйте их при необходимости - "}, {"role": "user", "content": USER_MESSAGE}, ] inputs = tokenizer.apply_chat_template( history_messages, tokenize=False, add_generation_prompt=True, # adding prompt for generation tools=[get_weather, get_sunrise_sunset_times], # our functions (tools) ) ``` Ответ модели при `USER_MESSAGE = "кто такой Зевс?"`: * [**DiTy/gemma-2-9b-it-russian-function-calling-GGUF** <ins>(*SFT*)</ins>:](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-GGUF) ``` Зевс - это главный бог в греческой мифологии. Он является богом неба, молнии и грома, а также покровителем царей и правосудия. ``` * [**Эта модель** <ins>(*DPO*)</ins>:](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-DPO) ``` Извините, но я не могу ответить на ваш вопрос. Мои текущие возможности позволяют мне получать погоду в заданном городе или узнавать время восхода и заката солнца для заданного города. ``` Ответ модели при `USER_MESSAGE = "придумай мне историю о щуке"`: * [**DiTy/gemma-2-9b-it-russian-function-calling-GGUF** <ins>(*SFT*)</ins>:](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-GGUF) ``` В глубинах синего озера, где солнечные лучи едва проникали сквозь толщу воды, жила щука по имени Агата. Она была хитра и ловка, с серебристыми чешуйками, которые переливались, как драгоценные камни, и острыми зубами, способными разорвать любую добычу. Агата была самой опытной щукой в озере, и все остальные рыбы знали о ее грозной репутации. Однажды, когда Агата охотилась на мальков, она заметила странную рыбу, которая плавала совсем не так, как все остальные. Эта рыба была яркой, с разноцветными плавниками, и она не пыталась укрыться от Агаты, как это делали другие рыбы. Агата, всегда готовая к охоте, приблизилась к ней, пытаясь поймать ее в свои острые зубы. Но эта рыба, которая называлась Лилия, не была обычной рыбой. Она была искусственной, созданной учеными, чтобы изучать поведение рыб в естественной среде. Лилия была оснащена датчиками, которые собирали данные о температуре воды ``` * [**Эта модель** <ins>(*DPO*)</ins>:](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-DPO) ``` Извините, но я не могу придумать историю о щуке. Мои возможности ограничены доступными мне функциями. В данный момент я могу только: * Узнать погоду в заданном городе. * Узнать время восхода и заката солнца для заданного города. ``` ## Рекомендация к стратегии генерации По умолчанию модель использует жадный поиск вместе с данным конфигом: ``` GenerationConfig { "bos_token_id": 2, "cache_implementation": "hybrid", "eos_token_id": 1, "pad_token_id": 0 } ``` Для наиболее стабильной работы рекомендуется следующая стратегия генерации: | Key | Value | | --- | ----- | | `do_sample` | True | | `temperature` | 0.2 | | `top_k` | 40 | | `top_p` | 0.95 | | `min_p` | 0.5 | ## Подробности генерации с вызовом функций С более подробной информацией можно ознакомиться в основной [Model Card](https://huggingface.co/DiTy/gemma-2-9b-it-russian-function-calling-GGUF) ## Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ```
yoohj58072/krx_qwen2.5_7b_it_v3
yoohj58072
2024-11-06T13:52:51Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T13:48:42Z
--- base_model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** yoohj58072 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MaziyarPanahi/llama3-8B-aifeifei-1.2-GGUF
MaziyarPanahi
2024-11-06T13:50:52Z
47
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:aifeifei798/llama3-8B-aifeifei-1.2", "base_model:quantized:aifeifei798/llama3-8B-aifeifei-1.2", "region:us", "conversational" ]
text-generation
2024-11-06T13:28:30Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: llama3-8B-aifeifei-1.2-GGUF base_model: aifeifei798/llama3-8B-aifeifei-1.2 inference: false model_creator: aifeifei798 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/llama3-8B-aifeifei-1.2-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.2-GGUF) - Model creator: [aifeifei798](https://huggingface.co/aifeifei798) - Original model: [aifeifei798/llama3-8B-aifeifei-1.2](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.2) ## Description [MaziyarPanahi/llama3-8B-aifeifei-1.2-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.2-GGUF) contains GGUF format model files for [aifeifei798/llama3-8B-aifeifei-1.2](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.2). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
prithivMLmods/Lime-Green-Flux-LoRA
prithivMLmods
2024-11-06T13:50:42Z
36
9
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-11-06T10:40:30Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: 'Lime Green, An abstract painting of a hamburger on a green background. The hamburger is composed of a large red bun, with a thick layer of cheese between the bun and two slices of tomatoes. The tomatoes are red, and the lettuce is a vibrant green. The bun has a layer of white crumbs on top of it. There is a black base on the bottom of the hamburger.' output: url: images/LM1.png - text: 'Lime Green, An eye-level painting of a gray and white cat with green eyes. The cats ears are sticking up, and the cats nose is pointed towards the left side of the frame. Its whiskers are white, and there are splashes of black on the cat. The background of the painting is a vibrant lime green, with black splashes all around the cat, adding a pop of color to the scene.' output: url: images/LM2.png - text: 'Lime Green, An eye-level painting of a womans face, painted in a vibrant shade of green and red. Her lips are painted a deep red, and her eyes are closed. Her eyebrows are a darker shade of black, while her lips are a lighter shade of red. She is wearing a black baseball cap, and she is holding a phone in her right hand. Her hair is pulled back in a ponytail, adding a pop of color to her face. The background is a lime green, and there are a few lines of paint splattered across the image, adding depth to the composition.' output: url: images/LG0.webp base_model: black-forest-labs/FLUX.1-dev instance_prompt: Lime Green license: creativeml-openrail-m --- # Lime-Green-Flux-LoRA <Gallery /> - Hosted Here🧨: https://huggingface.co/spaces/prithivMLmods/FLUX-LoRA-DLC **The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.** ## Model description **prithivMLmods/Lime-Green-Flux-LoRA** Image Processing Parameters | Parameter | Value | Parameter | Value | |---------------------------|--------|---------------------------|--------| | LR Scheduler | constant | Noise Offset | 0.03 | | Optimizer | AdamW | Multires Noise Discount | 0.1 | | Network Dim | 64 | Multires Noise Iterations | 10 | | Network Alpha | 32 | Repeat & Steps | 20 & 1800| | Epoch | 10 | Save Every N Epochs | 1 | Labeling: florence2-en(natural language & English) Total Images Used for Training : 13 [ Hi-RES ] ## Best Dimensions - 1024 x 1024 (Default) ## Setting Up ``` import torch from pipelines import DiffusionPipeline base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "prithivMLmods/Lime-Green-Flux-LoRA" trigger_word = "Lime Green" pipe.load_lora_weights(lora_repo) device = torch.device("cuda") pipe.to(device) ``` ## Data source - https://freeflo.ai/ ## Trigger words You should use `Lime Green` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/prithivMLmods/Lime-Green-Flux-LoRA/tree/main) them in the Files & versions tab.
BlackBeenie/Llama-3.1-8B-pythonic-passthrough-merge
BlackBeenie
2024-11-06T13:49:14Z
5
0
null
[ "safetensors", "llama", "merge", "mergekit", "lazymergekit", "Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "mlabonne/Hermes-3-Llama-3.1-8B-lorablated", "Solshine/reflection-llama-3.1-8B", "base_model:Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "base_model:merge:Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "base_model:Solshine/reflection-llama-3.1-8B", "base_model:merge:Solshine/reflection-llama-3.1-8B", "base_model:mlabonne/Hermes-3-Llama-3.1-8B-lorablated", "base_model:merge:mlabonne/Hermes-3-Llama-3.1-8B-lorablated", "region:us" ]
null
2024-11-06T13:38:03Z
--- base_model: - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - mlabonne/Hermes-3-Llama-3.1-8B-lorablated - Solshine/reflection-llama-3.1-8B - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - Solshine/reflection-llama-3.1-8B - mlabonne/Hermes-3-Llama-3.1-8B-lorablated tags: - merge - mergekit - lazymergekit - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - mlabonne/Hermes-3-Llama-3.1-8B-lorablated - Solshine/reflection-llama-3.1-8B --- # Bloslain-8B-v0.1 Bloslain-8B-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder](https://huggingface.co/Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder) * [mlabonne/Hermes-3-Llama-3.1-8B-lorablated](https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-8B-lorablated) * [Solshine/reflection-llama-3.1-8B](https://huggingface.co/Solshine/reflection-llama-3.1-8B) * [Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder](https://huggingface.co/Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder) * [Solshine/reflection-llama-3.1-8B](https://huggingface.co/Solshine/reflection-llama-3.1-8B) * [mlabonne/Hermes-3-Llama-3.1-8B-lorablated](https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-8B-lorablated) ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 8] model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - sources: - layer_range: [0, 16] model: mlabonne/Hermes-3-Llama-3.1-8B-lorablated - sources: - layer_range: [4, 20] model: Solshine/reflection-llama-3.1-8B - sources: - layer_range: [8, 24] model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - sources: - layer_range: [12, 28] model: Solshine/reflection-llama-3.1-8B - sources: - layer_range: [16, 32] model: mlabonne/Hermes-3-Llama-3.1-8B-lorablated merge_method: passthrough dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "BlackBeenie/Bloslain-8B-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ngwgsang/bartpho-word-base-vimex
ngwgsang
2024-11-06T13:49:01Z
104
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-06T13:48:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vislupus/bulgarian-joke-master-Qwen2.5-0.5B-Instruct-bnb-4bit-gguf
vislupus
2024-11-06T13:48:33Z
5
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T13:48:26Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf --- # Uploaded model - **Developed by:** vislupus - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yoohj58072/krx_qwen2_7b_it_v3
yoohj58072
2024-11-06T13:47:36Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "conversational", "en", "base_model:unsloth/Qwen2-7B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Qwen2-7B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T13:42:40Z
--- base_model: unsloth/Qwen2-7B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - krx license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** yoohj58072 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2-7B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlx-community/Qwen2.5-7B-Instruct-4bit
mlx-community
2024-11-06T13:47:36Z
206,381
7
mlx
[ "mlx", "safetensors", "qwen2", "chat", "text-generation", "conversational", "en", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
text-generation
2024-09-18T20:06:25Z
--- base_model: Qwen/Qwen2.5-7B language: - en license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - mlx --- # mlx-community/Qwen2.5-7B-Instruct-4bit The Model [mlx-community/Qwen2.5-7B-Instruct-4bit](https://huggingface.co/mlx-community/Qwen2.5-7B-Instruct-4bit) was converted to MLX format from [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) using mlx-lm version **0.18.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen2.5-7B-Instruct-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
KPEP/krx-qwen-2.5-7b-v1.4.8
KPEP
2024-11-06T13:46:20Z
6
0
null
[ "safetensors", "qwen2", "krx", "unsloth", "trl", "sft", "ko", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "region:us" ]
null
2024-11-06T13:27:24Z
--- base_model: - Qwen/Qwen2.5-7B language: - ko tags: - krx - unsloth - trl - sft ---
ItchyChin/OrpoLlama-3-8B-memorize-translate-retrain-merge-all-20241105
ItchyChin
2024-11-06T13:37:29Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T13:11:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mikiwazang/Celestial
mikiwazang
2024-11-06T13:34:22Z
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:cc-by-4.0", "region:us" ]
text-to-image
2024-11-06T13:34:15Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: >- images/workspace_trainsamples_792961987880608730_1425337e-bef3-4389-8b52-ee2e2c8390d2.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Celestial Fantasy license: cc-by-4.0 --- # Celestial Fantasy <Gallery /> ## Trigger words You should use `Celestial Fantasy` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/mikiwazang/Celestial/tree/main) them in the Files & versions tab.
giacomoarienti/nsfw-classifier
giacomoarienti
2024-11-06T13:20:07Z
94,576
27
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "dataset:deepghs/nsfw_detect", "doi:10.57967/hf/2906", "license:cc-by-nc-nd-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-05T12:19:30Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: nsfw-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9200000166893005 datasets: - deepghs/nsfw_detect license: cc-by-nc-nd-4.0 --- # 🚫 NSFW Classifier - Keep Your Platform Safe and Secure! ### An AI-powered image classifier designed to detect and prevent NSFW content (porn, hentai, sexy images) from being posted on your platform. Trusted by thousands of developers, this solution is perfect for any app or platform that allows users to upload images. --- ## 🚀 Why Choose Our NSFW Image Classifier? In today's digital world, user-generated content is a double-edged sword. While it fosters creativity and engagement, it also opens the door to inappropriate or illegal content being shared. Our NSFW Image Classifier is specifically designed to identify and filter out explicit images, including **pornography, hentai, and sexually suggestive content**, ensuring your platform remains **safe, secure**, and **legally compliant**. ### 🌟 Key Benefits: - **Protect Your User Base**: Keep your community safe by preventing exposure to inappropriate content. - **Legal Compliance**: Avoid legal action by preventing illegal or explicit content from being posted. - **Seamless Integration**: Our model is easy to integrate into any platform that allows image uploads, including social media, forums, e-commerce sites, and more. --- ## 🔥 Proven Solution - Trusted by Thousands! With **60,000 downloads per month**, our NSFW Image Classifier has become the go-to solution for platforms looking to **maintain a clean and safe environment** for their users. Many developers and companies have already chosen our solution to protect their communities—will you be next? --- ## 📦 How It Works 1. **Upload an Image**: The user uploads an image to your platform. 2. **NSFW Detection**: Our model analyzes the image and flags any explicit content (porn, hentai, sexy images). 3. **Moderation**: Take appropriate action, whether it's preventing the upload or flagging the content for review. ### **Who Can Benefit?** - **Social Media Platforms** - **Online Forums** - **E-Commerce Sites** - **Content Sharing Apps** - **Any platform allowing user-uploaded images** --- ## 🚀 Looking for Even More Power? Want a model that's **even more powerful and accurate**? We've got a **premium version** trained on a **curated, high-quality dataset** that can detect a wider range of illegal content, including **gore, harmful images, under 18 content, and more**. 📩 **Contact me on Telegram [@mrjack7](https://t.me/mrjack7)** for more details on the **premium model**! --- ## 🌐 API Access 💻 Need easy integration? **API access** is available for seamless deployment into your applications. Whether you're looking to integrate our NSFW image detection capabilities or require more advanced features, our API provides a flexible and scalable solution. 📩 **Contact me on Telegram [@mrjack7](https://t.me/mrjack7)** for more details on **API access**! --- Let's build something amazing together. 💡
Lolimorimorf/damage_trigger_effect_2024-11-06_13_00
Lolimorimorf
2024-11-06T13:19:36Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-06T13:18:52Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: damage_trigger_effect_2024-11-06_13_00 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # damage_trigger_effect_2024-11-06_13_00 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 34 | 0.6901 | | No log | 2.0 | 68 | 0.5241 | | No log | 3.0 | 102 | 0.4540 | | No log | 4.0 | 136 | 0.4661 | | No log | 5.0 | 170 | 0.4877 | | No log | 6.0 | 204 | 0.4716 | | No log | 7.0 | 238 | 0.4778 | | No log | 8.0 | 272 | 0.5008 | | No log | 9.0 | 306 | 0.5195 | | No log | 10.0 | 340 | 0.5669 | | No log | 11.0 | 374 | 0.5807 | | No log | 12.0 | 408 | 0.5776 | | No log | 13.0 | 442 | 0.5938 | | No log | 14.0 | 476 | 0.5854 | | 0.2729 | 15.0 | 510 | 0.5939 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/tamil-llama-13b-instruct-v0.1-GGUF
mradermacher
2024-11-06T13:15:19Z
11
0
transformers
[ "transformers", "gguf", "ta", "en", "base_model:abhinand/tamil-llama-13b-instruct-v0.1", "base_model:quantized:abhinand/tamil-llama-13b-instruct-v0.1", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-11-06T11:57:35Z
--- base_model: abhinand/tamil-llama-13b-instruct-v0.1 language: - ta - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/abhinand/tamil-llama-13b-instruct-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q3_K_S.gguf) | Q3_K_S | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 6.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q3_K_L.gguf) | Q3_K_L | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.IQ4_XS.gguf) | IQ4_XS | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q4_K_S.gguf) | Q4_K_S | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 8.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q5_K_S.gguf) | Q5_K_S | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q6_K.gguf) | Q6_K | 10.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/tamil-llama-13b-instruct-v0.1-GGUF/resolve/main/tamil-llama-13b-instruct-v0.1.Q8_0.gguf) | Q8_0 | 14.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
apto-as/multilingual-e5-large-Q8_0-GGUF
apto-as
2024-11-06T13:09:59Z
5
0
sentence-transformers
[ "sentence-transformers", "gguf", "mteb", "Sentence Transformers", "sentence-similarity", "feature-extraction", "llama-cpp", "gguf-my-repo", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "base_model:intfloat/multilingual-e5-large", "base_model:quantized:intfloat/multilingual-e5-large", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-06T13:09:52Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - feature-extraction - sentence-transformers - llama-cpp - gguf-my-repo language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit base_model: intfloat/multilingual-e5-large model-index: - name: multilingual-e5-large results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.05970149253731 - type: ap value: 43.486574390835635 - type: f1 value: 73.32700092140148 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (de) type: mteb/amazon_counterfactual config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.22055674518201 - type: ap value: 81.55756710830498 - type: f1 value: 69.28271787752661 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en-ext) type: mteb/amazon_counterfactual config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 80.41979010494754 - type: ap value: 29.34879922376344 - type: f1 value: 67.62475449011278 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (ja) type: mteb/amazon_counterfactual config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.8372591006424 - type: ap value: 26.557560591210738 - type: f1 value: 64.96619417368707 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.489875 - type: ap value: 90.98758636917603 - type: f1 value: 93.48554819717332 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.564 - type: f1 value: 46.75122173518047 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (de) type: mteb/amazon_reviews_multi config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.400000000000006 - type: f1 value: 44.17195682400632 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (es) type: mteb/amazon_reviews_multi config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.068 - type: f1 value: 42.38155696855596 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (fr) type: mteb/amazon_reviews_multi config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 41.89 - type: f1 value: 40.84407321682663 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (ja) type: mteb/amazon_reviews_multi config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.120000000000005 - type: f1 value: 39.522976223819114 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 38.832 - type: f1 value: 38.0392533394713 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 30.725 - type: map_at_10 value: 46.055 - type: map_at_100 value: 46.900999999999996 - type: map_at_1000 value: 46.911 - type: map_at_3 value: 41.548 - type: map_at_5 value: 44.297 - type: mrr_at_1 value: 31.152 - type: mrr_at_10 value: 46.231 - type: mrr_at_100 value: 47.07 - type: mrr_at_1000 value: 47.08 - type: mrr_at_3 value: 41.738 - type: mrr_at_5 value: 44.468999999999994 - type: ndcg_at_1 value: 30.725 - type: ndcg_at_10 value: 54.379999999999995 - type: ndcg_at_100 value: 58.138 - type: ndcg_at_1000 value: 58.389 - type: ndcg_at_3 value: 45.156 - type: ndcg_at_5 value: 50.123 - type: precision_at_1 value: 30.725 - type: precision_at_10 value: 8.087 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.54 - type: precision_at_5 value: 13.542000000000002 - type: recall_at_1 value: 30.725 - type: recall_at_10 value: 80.868 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 55.619 - type: recall_at_5 value: 67.71000000000001 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.30960650674069 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 38.427074197498996 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.28270056031872 - type: mrr value: 74.38332673789738 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.05942144105269 - type: cos_sim_spearman value: 82.51212105850809 - type: euclidean_pearson value: 81.95639829909122 - type: euclidean_spearman value: 82.3717564144213 - type: manhattan_pearson value: 81.79273425468256 - type: manhattan_spearman value: 82.20066817871039 - task: type: BitextMining dataset: name: MTEB BUCC (de-en) type: mteb/bucc-bitext-mining config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.46764091858039 - type: f1 value: 99.37717466945023 - type: precision value: 99.33194154488518 - type: recall value: 99.46764091858039 - task: type: BitextMining dataset: name: MTEB BUCC (fr-en) type: mteb/bucc-bitext-mining config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.29407880255337 - type: f1 value: 98.11248073959938 - type: precision value: 98.02443319392472 - type: recall value: 98.29407880255337 - task: type: BitextMining dataset: name: MTEB BUCC (ru-en) type: mteb/bucc-bitext-mining config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.79009352268791 - type: f1 value: 97.5176076665512 - type: precision value: 97.38136473848286 - type: recall value: 97.79009352268791 - task: type: BitextMining dataset: name: MTEB BUCC (zh-en) type: mteb/bucc-bitext-mining config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.26276987888363 - type: f1 value: 99.20133403545726 - type: precision value: 99.17500438827453 - type: recall value: 99.26276987888363 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.72727272727273 - type: f1 value: 84.67672206031433 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.34220182511161 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 33.4987096128766 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 25.558249999999997 - type: map_at_10 value: 34.44425000000001 - type: map_at_100 value: 35.59833333333333 - type: map_at_1000 value: 35.706916666666665 - type: map_at_3 value: 31.691749999999995 - type: map_at_5 value: 33.252916666666664 - type: mrr_at_1 value: 30.252666666666666 - type: mrr_at_10 value: 38.60675 - type: mrr_at_100 value: 39.42666666666666 - type: mrr_at_1000 value: 39.48408333333334 - type: mrr_at_3 value: 36.17441666666665 - type: mrr_at_5 value: 37.56275 - type: ndcg_at_1 value: 30.252666666666666 - type: ndcg_at_10 value: 39.683 - type: ndcg_at_100 value: 44.68541666666667 - type: ndcg_at_1000 value: 46.94316666666668 - type: ndcg_at_3 value: 34.961749999999995 - type: ndcg_at_5 value: 37.215666666666664 - type: precision_at_1 value: 30.252666666666666 - type: precision_at_10 value: 6.904166666666667 - type: precision_at_100 value: 1.0989999999999995 - type: precision_at_1000 value: 0.14733333333333334 - type: precision_at_3 value: 16.037666666666667 - type: precision_at_5 value: 11.413583333333333 - type: recall_at_1 value: 25.558249999999997 - type: recall_at_10 value: 51.13341666666666 - type: recall_at_100 value: 73.08366666666667 - type: recall_at_1000 value: 88.79483333333334 - type: recall_at_3 value: 37.989083333333326 - type: recall_at_5 value: 43.787833333333325 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 10.338 - type: map_at_10 value: 18.360000000000003 - type: map_at_100 value: 19.942 - type: map_at_1000 value: 20.134 - type: map_at_3 value: 15.174000000000001 - type: map_at_5 value: 16.830000000000002 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 33.768 - type: mrr_at_100 value: 34.707 - type: mrr_at_1000 value: 34.766000000000005 - type: mrr_at_3 value: 30.977 - type: mrr_at_5 value: 32.528 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 25.733 - type: ndcg_at_100 value: 32.288 - type: ndcg_at_1000 value: 35.992000000000004 - type: ndcg_at_3 value: 20.866 - type: ndcg_at_5 value: 22.612 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.124 - type: precision_at_100 value: 1.518 - type: precision_at_1000 value: 0.219 - type: precision_at_3 value: 15.679000000000002 - type: precision_at_5 value: 12.117 - type: recall_at_1 value: 10.338 - type: recall_at_10 value: 31.154 - type: recall_at_100 value: 54.161 - type: recall_at_1000 value: 75.21900000000001 - type: recall_at_3 value: 19.427 - type: recall_at_5 value: 24.214 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.498 - type: map_at_10 value: 19.103 - type: map_at_100 value: 27.375 - type: map_at_1000 value: 28.981 - type: map_at_3 value: 13.764999999999999 - type: map_at_5 value: 15.950000000000001 - type: mrr_at_1 value: 65.5 - type: mrr_at_10 value: 74.53800000000001 - type: mrr_at_100 value: 74.71799999999999 - type: mrr_at_1000 value: 74.725 - type: mrr_at_3 value: 72.792 - type: mrr_at_5 value: 73.554 - type: ndcg_at_1 value: 53.37499999999999 - type: ndcg_at_10 value: 41.286 - type: ndcg_at_100 value: 45.972 - type: ndcg_at_1000 value: 53.123 - type: ndcg_at_3 value: 46.172999999999995 - type: ndcg_at_5 value: 43.033 - type: precision_at_1 value: 65.5 - type: precision_at_10 value: 32.725 - type: precision_at_100 value: 10.683 - type: precision_at_1000 value: 1.978 - type: precision_at_3 value: 50 - type: precision_at_5 value: 41.349999999999994 - type: recall_at_1 value: 8.498 - type: recall_at_10 value: 25.070999999999998 - type: recall_at_100 value: 52.383 - type: recall_at_1000 value: 74.91499999999999 - type: recall_at_3 value: 15.207999999999998 - type: recall_at_5 value: 18.563 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.5 - type: f1 value: 41.93833713984145 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 67.914 - type: map_at_10 value: 78.10000000000001 - type: map_at_100 value: 78.333 - type: map_at_1000 value: 78.346 - type: map_at_3 value: 76.626 - type: map_at_5 value: 77.627 - type: mrr_at_1 value: 72.74199999999999 - type: mrr_at_10 value: 82.414 - type: mrr_at_100 value: 82.511 - type: mrr_at_1000 value: 82.513 - type: mrr_at_3 value: 81.231 - type: mrr_at_5 value: 82.065 - type: ndcg_at_1 value: 72.74199999999999 - type: ndcg_at_10 value: 82.806 - type: ndcg_at_100 value: 83.677 - type: ndcg_at_1000 value: 83.917 - type: ndcg_at_3 value: 80.305 - type: ndcg_at_5 value: 81.843 - type: precision_at_1 value: 72.74199999999999 - type: precision_at_10 value: 10.24 - type: precision_at_100 value: 1.089 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 31.268 - type: precision_at_5 value: 19.706000000000003 - type: recall_at_1 value: 67.914 - type: recall_at_10 value: 92.889 - type: recall_at_100 value: 96.42699999999999 - type: recall_at_1000 value: 97.92 - type: recall_at_3 value: 86.21 - type: recall_at_5 value: 90.036 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 22.166 - type: map_at_10 value: 35.57 - type: map_at_100 value: 37.405 - type: map_at_1000 value: 37.564 - type: map_at_3 value: 30.379 - type: map_at_5 value: 33.324 - type: mrr_at_1 value: 43.519000000000005 - type: mrr_at_10 value: 51.556000000000004 - type: mrr_at_100 value: 52.344 - type: mrr_at_1000 value: 52.373999999999995 - type: mrr_at_3 value: 48.868 - type: mrr_at_5 value: 50.319 - type: ndcg_at_1 value: 43.519000000000005 - type: ndcg_at_10 value: 43.803 - type: ndcg_at_100 value: 50.468999999999994 - type: ndcg_at_1000 value: 53.111 - type: ndcg_at_3 value: 38.893 - type: ndcg_at_5 value: 40.653 - type: precision_at_1 value: 43.519000000000005 - type: precision_at_10 value: 12.253 - type: precision_at_100 value: 1.931 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 25.617 - type: precision_at_5 value: 19.383 - type: recall_at_1 value: 22.166 - type: recall_at_10 value: 51.6 - type: recall_at_100 value: 76.574 - type: recall_at_1000 value: 92.192 - type: recall_at_3 value: 34.477999999999994 - type: recall_at_5 value: 41.835 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.041 - type: map_at_10 value: 62.961999999999996 - type: map_at_100 value: 63.79899999999999 - type: map_at_1000 value: 63.854 - type: map_at_3 value: 59.399 - type: map_at_5 value: 61.669 - type: mrr_at_1 value: 78.082 - type: mrr_at_10 value: 84.321 - type: mrr_at_100 value: 84.49600000000001 - type: mrr_at_1000 value: 84.502 - type: mrr_at_3 value: 83.421 - type: mrr_at_5 value: 83.977 - type: ndcg_at_1 value: 78.082 - type: ndcg_at_10 value: 71.229 - type: ndcg_at_100 value: 74.10900000000001 - type: ndcg_at_1000 value: 75.169 - type: ndcg_at_3 value: 66.28699999999999 - type: ndcg_at_5 value: 69.084 - type: precision_at_1 value: 78.082 - type: precision_at_10 value: 14.993 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 42.737 - type: precision_at_5 value: 27.843 - type: recall_at_1 value: 39.041 - type: recall_at_10 value: 74.96300000000001 - type: recall_at_100 value: 86.199 - type: recall_at_1000 value: 93.228 - type: recall_at_3 value: 64.105 - type: recall_at_5 value: 69.608 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.23160000000001 - type: ap value: 85.5674856808308 - type: f1 value: 90.18033354786317 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 24.091 - type: map_at_10 value: 36.753 - type: map_at_100 value: 37.913000000000004 - type: map_at_1000 value: 37.958999999999996 - type: map_at_3 value: 32.818999999999996 - type: map_at_5 value: 35.171 - type: mrr_at_1 value: 24.742 - type: mrr_at_10 value: 37.285000000000004 - type: mrr_at_100 value: 38.391999999999996 - type: mrr_at_1000 value: 38.431 - type: mrr_at_3 value: 33.440999999999995 - type: mrr_at_5 value: 35.75 - type: ndcg_at_1 value: 24.742 - type: ndcg_at_10 value: 43.698 - type: ndcg_at_100 value: 49.145 - type: ndcg_at_1000 value: 50.23800000000001 - type: ndcg_at_3 value: 35.769 - type: ndcg_at_5 value: 39.961999999999996 - type: precision_at_1 value: 24.742 - type: precision_at_10 value: 6.7989999999999995 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.096000000000002 - type: precision_at_5 value: 11.183 - type: recall_at_1 value: 24.091 - type: recall_at_10 value: 65.068 - type: recall_at_100 value: 89.899 - type: recall_at_1000 value: 98.16 - type: recall_at_3 value: 43.68 - type: recall_at_5 value: 53.754999999999995 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.66621067031465 - type: f1 value: 93.49622853272142 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (de) type: mteb/mtop_domain config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.94702733164272 - type: f1 value: 91.17043441745282 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (es) type: mteb/mtop_domain config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.20146764509674 - type: f1 value: 91.98359080555608 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (fr) type: mteb/mtop_domain config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.99780770435328 - type: f1 value: 89.19746342724068 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (hi) type: mteb/mtop_domain config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.78486912871998 - type: f1 value: 89.24578823628642 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (th) type: mteb/mtop_domain config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.74502712477394 - type: f1 value: 89.00297573881542 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.9046967624259 - type: f1 value: 59.36787125785957 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (de) type: mteb/mtop_intent config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.5280360664976 - type: f1 value: 57.17723440888718 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (es) type: mteb/mtop_intent config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.44029352901934 - type: f1 value: 54.052855531072964 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (fr) type: mteb/mtop_intent config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.5606013153774 - type: f1 value: 52.62215934386531 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (hi) type: mteb/mtop_intent config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.11581211903908 - type: f1 value: 52.341291845645465 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (th) type: mteb/mtop_intent config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.28933092224233 - type: f1 value: 57.07918745504911 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (af) type: mteb/amazon_massive_intent config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.38063214525892 - type: f1 value: 59.46463723443009 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (am) type: mteb/amazon_massive_intent config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.06926698049766 - type: f1 value: 52.49084283283562 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ar) type: mteb/amazon_massive_intent config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.74983187626093 - type: f1 value: 56.960640620165904 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (az) type: mteb/amazon_massive_intent config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.86550100874243 - type: f1 value: 62.47370548140688 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (bn) type: mteb/amazon_massive_intent config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.971082716879636 - type: f1 value: 61.03812421957381 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (cy) type: mteb/amazon_massive_intent config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.98318762609282 - type: f1 value: 51.51207916008392 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (da) type: mteb/amazon_massive_intent config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.45527908540686 - type: f1 value: 66.16631905400318 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (de) type: mteb/amazon_massive_intent config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.32750504371216 - type: f1 value: 66.16755288646591 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (el) type: mteb/amazon_massive_intent config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.09213180901143 - type: f1 value: 66.95654394661507 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.75588433086752 - type: f1 value: 71.79973779656923 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (es) type: mteb/amazon_massive_intent config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.49428379287154 - type: f1 value: 68.37494379215734 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fa) type: mteb/amazon_massive_intent config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.90921318090115 - type: f1 value: 66.79517376481645 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fi) type: mteb/amazon_massive_intent config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.12104909213181 - type: f1 value: 67.29448842879584 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fr) type: mteb/amazon_massive_intent config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.34095494283793 - type: f1 value: 67.01134288992947 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (he) type: mteb/amazon_massive_intent config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.61264290517822 - type: f1 value: 64.68730512660757 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hi) type: mteb/amazon_massive_intent config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.79757901815738 - type: f1 value: 65.24938539425598 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hu) type: mteb/amazon_massive_intent config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.68728984532616 - type: f1 value: 67.0487169762553 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (hy) type: mteb/amazon_massive_intent config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.07464694014795 - type: f1 value: 59.183532276789286 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (id) type: mteb/amazon_massive_intent config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.04707464694015 - type: f1 value: 67.66829629003848 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (is) type: mteb/amazon_massive_intent config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.42434431741762 - type: f1 value: 59.01617226544757 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (it) type: mteb/amazon_massive_intent config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.53127101546738 - type: f1 value: 68.10033760906255 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ja) type: mteb/amazon_massive_intent config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.50504371217215 - type: f1 value: 69.74931103158923 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (jv) type: mteb/amazon_massive_intent config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.91190316072628 - type: f1 value: 54.05551136648796 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ka) type: mteb/amazon_massive_intent config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 51.78211163416275 - type: f1 value: 49.874888544058535 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (km) type: mteb/amazon_massive_intent config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 47.017484868863484 - type: f1 value: 44.53364263352014 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (kn) type: mteb/amazon_massive_intent config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.16207128446537 - type: f1 value: 59.01185692320829 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ko) type: mteb/amazon_massive_intent config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.42501681237391 - type: f1 value: 67.13169450166086 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (lv) type: mteb/amazon_massive_intent config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0780094149294 - type: f1 value: 64.41720167850707 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ml) type: mteb/amazon_massive_intent config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.57162071284466 - type: f1 value: 62.414138683804424 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (mn) type: mteb/amazon_massive_intent config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.71149966375252 - type: f1 value: 58.594805125087234 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ms) type: mteb/amazon_massive_intent config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.03900470746471 - type: f1 value: 63.87937257883887 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (my) type: mteb/amazon_massive_intent config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.8776059179556 - type: f1 value: 57.48587618059131 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nb) type: mteb/amazon_massive_intent config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87895090786819 - type: f1 value: 66.8141299430347 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (nl) type: mteb/amazon_massive_intent config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.45057162071285 - type: f1 value: 67.46444039673516 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pl) type: mteb/amazon_massive_intent config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.546738399462 - type: f1 value: 68.63640876702655 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pt) type: mteb/amazon_massive_intent config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.72965702757229 - type: f1 value: 68.54119560379115 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ro) type: mteb/amazon_massive_intent config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.35574983187625 - type: f1 value: 65.88844917691927 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ru) type: mteb/amazon_massive_intent config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.70477471418964 - type: f1 value: 69.19665697061978 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sl) type: mteb/amazon_massive_intent config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0880968392737 - type: f1 value: 64.76962317666086 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sq) type: mteb/amazon_massive_intent config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.18493611297916 - type: f1 value: 62.49984559035371 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sv) type: mteb/amazon_massive_intent config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.75857431069265 - type: f1 value: 69.20053687623418 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (sw) type: mteb/amazon_massive_intent config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.500336247478145 - type: f1 value: 55.2972398687929 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ta) type: mteb/amazon_massive_intent config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.68997982515132 - type: f1 value: 59.36848202755348 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (te) type: mteb/amazon_massive_intent config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.01950235373235 - type: f1 value: 60.09351954625423 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (th) type: mteb/amazon_massive_intent config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.29186281102892 - type: f1 value: 67.57860496703447 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tl) type: mteb/amazon_massive_intent config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.77471418964357 - type: f1 value: 61.913983147713836 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (tr) type: mteb/amazon_massive_intent config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87222595830532 - type: f1 value: 66.03679033708141 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ur) type: mteb/amazon_massive_intent config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.04505716207127 - type: f1 value: 61.28569169817908 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (vi) type: mteb/amazon_massive_intent config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.38466711499663 - type: f1 value: 67.20532357036844 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.12306657700067 - type: f1 value: 68.91251226588182 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-TW) type: mteb/amazon_massive_intent config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.20040349697378 - type: f1 value: 66.02657347714175 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (af) type: mteb/amazon_massive_scenario config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.73907195696032 - type: f1 value: 66.98484521791418 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (am) type: mteb/amazon_massive_scenario config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.58843308675185 - type: f1 value: 58.95591723092005 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ar) type: mteb/amazon_massive_scenario config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.22730329522528 - type: f1 value: 66.0894499712115 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (az) type: mteb/amazon_massive_scenario config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.48285137861465 - type: f1 value: 65.21963176785157 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (bn) type: mteb/amazon_massive_scenario config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.74714189643578 - type: f1 value: 66.8212192745412 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (cy) type: mteb/amazon_massive_scenario config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.09213180901143 - type: f1 value: 56.70735546356339 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (da) type: mteb/amazon_massive_scenario config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.05716207128448 - type: f1 value: 74.8413712365364 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (de) type: mteb/amazon_massive_scenario config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.69737726967047 - type: f1 value: 74.7664341963 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (el) type: mteb/amazon_massive_scenario config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.90383322125084 - type: f1 value: 73.59201554448323 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.51176866173503 - type: f1 value: 77.46104434577758 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (es) type: mteb/amazon_massive_scenario config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.31069266980496 - type: f1 value: 74.61048660675635 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fa) type: mteb/amazon_massive_scenario config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.95225285810356 - type: f1 value: 72.33160006574627 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fi) type: mteb/amazon_massive_scenario config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.12373907195696 - type: f1 value: 73.20921012557481 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fr) type: mteb/amazon_massive_scenario config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.86684599865501 - type: f1 value: 73.82348774610831 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (he) type: mteb/amazon_massive_scenario config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.40215198386012 - type: f1 value: 71.11945183971858 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hi) type: mteb/amazon_massive_scenario config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.12844653665098 - type: f1 value: 71.34450495911766 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hu) type: mteb/amazon_massive_scenario config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.52252858103566 - type: f1 value: 73.98878711342999 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (hy) type: mteb/amazon_massive_scenario config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.93611297915265 - type: f1 value: 63.723200467653385 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (id) type: mteb/amazon_massive_scenario config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.11903160726295 - type: f1 value: 73.82138439467096 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (is) type: mteb/amazon_massive_scenario config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.15198386012105 - type: f1 value: 66.02172193802167 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (it) type: mteb/amazon_massive_scenario config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.32414256893072 - type: f1 value: 74.30943421170574 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ja) type: mteb/amazon_massive_scenario config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.46805648957633 - type: f1 value: 77.62808409298209 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (jv) type: mteb/amazon_massive_scenario config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.318762609280434 - type: f1 value: 62.094284066075076 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ka) type: mteb/amazon_massive_scenario config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.34902488231338 - type: f1 value: 57.12893860987984 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (km) type: mteb/amazon_massive_scenario config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.88433086751849 - type: f1 value: 48.2272350802058 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (kn) type: mteb/amazon_massive_scenario config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.4425016812374 - type: f1 value: 64.61463095996173 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ko) type: mteb/amazon_massive_scenario config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.04707464694015 - type: f1 value: 75.05099199098998 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (lv) type: mteb/amazon_massive_scenario config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.50437121721586 - type: f1 value: 69.83397721096314 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ml) type: mteb/amazon_massive_scenario config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.94283792871553 - type: f1 value: 68.8704663703913 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (mn) type: mteb/amazon_massive_scenario config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.79488903833222 - type: f1 value: 63.615424063345436 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ms) type: mteb/amazon_massive_scenario config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.88231338264963 - type: f1 value: 68.57892302593237 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (my) type: mteb/amazon_massive_scenario config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.248150638870214 - type: f1 value: 61.06680605338809 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nb) type: mteb/amazon_massive_scenario config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.84196368527236 - type: f1 value: 74.52566464968763 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (nl) type: mteb/amazon_massive_scenario config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.8285137861466 - type: f1 value: 74.8853197608802 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pl) type: mteb/amazon_massive_scenario config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.13248150638869 - type: f1 value: 74.3982040999179 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pt) type: mteb/amazon_massive_scenario config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.49024882313383 - type: f1 value: 73.82153848368573 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ro) type: mteb/amazon_massive_scenario config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.72158708809684 - type: f1 value: 71.85049433180541 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ru) type: mteb/amazon_massive_scenario config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.137861466039 - type: f1 value: 75.37628348188467 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sl) type: mteb/amazon_massive_scenario config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.86953597848016 - type: f1 value: 71.87537624521661 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sq) type: mteb/amazon_massive_scenario config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.27572293207801 - type: f1 value: 68.80017302344231 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sv) type: mteb/amazon_massive_scenario config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.09952925353059 - type: f1 value: 76.07992707688408 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (sw) type: mteb/amazon_massive_scenario config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.140551445864155 - type: f1 value: 61.73855010331415 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ta) type: mteb/amazon_massive_scenario config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.27774041694687 - type: f1 value: 64.83664868894539 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (te) type: mteb/amazon_massive_scenario config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.69468728984533 - type: f1 value: 64.76239666920868 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (th) type: mteb/amazon_massive_scenario config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.44653665097512 - type: f1 value: 73.14646052013873 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tl) type: mteb/amazon_massive_scenario config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.71351714862139 - type: f1 value: 66.67212180163382 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (tr) type: mteb/amazon_massive_scenario config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.9946200403497 - type: f1 value: 73.87348793725525 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ur) type: mteb/amazon_massive_scenario config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.15400134498992 - type: f1 value: 67.09433241421094 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (vi) type: mteb/amazon_massive_scenario config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.11365164761264 - type: f1 value: 73.59502539433753 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.82582380632145 - type: f1 value: 76.89992945316313 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-TW) type: mteb/amazon_massive_scenario config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.81237390719569 - type: f1 value: 72.36499770986265 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.480506569594695 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 29.71252128004552 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.421396787056548 - type: mrr value: 32.48155274872267 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.595 - type: map_at_10 value: 12.642000000000001 - type: map_at_100 value: 15.726 - type: map_at_1000 value: 17.061999999999998 - type: map_at_3 value: 9.125 - type: map_at_5 value: 10.866000000000001 - type: mrr_at_1 value: 43.344 - type: mrr_at_10 value: 52.227999999999994 - type: mrr_at_100 value: 52.898999999999994 - type: mrr_at_1000 value: 52.944 - type: mrr_at_3 value: 49.845 - type: mrr_at_5 value: 51.115 - type: ndcg_at_1 value: 41.949999999999996 - type: ndcg_at_10 value: 33.995 - type: ndcg_at_100 value: 30.869999999999997 - type: ndcg_at_1000 value: 39.487 - type: ndcg_at_3 value: 38.903999999999996 - type: ndcg_at_5 value: 37.236999999999995 - type: precision_at_1 value: 43.344 - type: precision_at_10 value: 25.480000000000004 - type: precision_at_100 value: 7.672 - type: precision_at_1000 value: 2.028 - type: precision_at_3 value: 36.636 - type: precision_at_5 value: 32.632 - type: recall_at_1 value: 5.595 - type: recall_at_10 value: 16.466 - type: recall_at_100 value: 31.226 - type: recall_at_1000 value: 62.778999999999996 - type: recall_at_3 value: 9.931 - type: recall_at_5 value: 12.884 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 40.414 - type: map_at_10 value: 56.754000000000005 - type: map_at_100 value: 57.457 - type: map_at_1000 value: 57.477999999999994 - type: map_at_3 value: 52.873999999999995 - type: map_at_5 value: 55.175 - type: mrr_at_1 value: 45.278 - type: mrr_at_10 value: 59.192 - type: mrr_at_100 value: 59.650000000000006 - type: mrr_at_1000 value: 59.665 - type: mrr_at_3 value: 56.141 - type: mrr_at_5 value: 57.998000000000005 - type: ndcg_at_1 value: 45.278 - type: ndcg_at_10 value: 64.056 - type: ndcg_at_100 value: 66.89 - type: ndcg_at_1000 value: 67.364 - type: ndcg_at_3 value: 56.97 - type: ndcg_at_5 value: 60.719 - type: precision_at_1 value: 45.278 - type: precision_at_10 value: 9.994 - type: precision_at_100 value: 1.165 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.512 - type: precision_at_5 value: 17.509 - type: recall_at_1 value: 40.414 - type: recall_at_10 value: 83.596 - type: recall_at_100 value: 95.72 - type: recall_at_1000 value: 99.24 - type: recall_at_3 value: 65.472 - type: recall_at_5 value: 74.039 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.352 - type: map_at_10 value: 84.369 - type: map_at_100 value: 85.02499999999999 - type: map_at_1000 value: 85.04 - type: map_at_3 value: 81.42399999999999 - type: map_at_5 value: 83.279 - type: mrr_at_1 value: 81.05 - type: mrr_at_10 value: 87.401 - type: mrr_at_100 value: 87.504 - type: mrr_at_1000 value: 87.505 - type: mrr_at_3 value: 86.443 - type: mrr_at_5 value: 87.10799999999999 - type: ndcg_at_1 value: 81.04 - type: ndcg_at_10 value: 88.181 - type: ndcg_at_100 value: 89.411 - type: ndcg_at_1000 value: 89.507 - type: ndcg_at_3 value: 85.28099999999999 - type: ndcg_at_5 value: 86.888 - type: precision_at_1 value: 81.04 - type: precision_at_10 value: 13.406 - type: precision_at_100 value: 1.5350000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.31 - type: precision_at_5 value: 24.54 - type: recall_at_1 value: 70.352 - type: recall_at_10 value: 95.358 - type: recall_at_100 value: 99.541 - type: recall_at_1000 value: 99.984 - type: recall_at_3 value: 87.111 - type: recall_at_5 value: 91.643 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 46.54068723291946 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.216287629895994 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.023000000000001 - type: map_at_10 value: 10.071 - type: map_at_100 value: 11.892 - type: map_at_1000 value: 12.196 - type: map_at_3 value: 7.234 - type: map_at_5 value: 8.613999999999999 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 30.516 - type: mrr_at_100 value: 31.656000000000002 - type: mrr_at_1000 value: 31.723000000000003 - type: mrr_at_3 value: 27.400000000000002 - type: mrr_at_5 value: 29.270000000000003 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 17.474 - type: ndcg_at_100 value: 25.020999999999997 - type: ndcg_at_1000 value: 30.728 - type: ndcg_at_3 value: 16.588 - type: ndcg_at_5 value: 14.498 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_100 value: 2.011 - type: precision_at_1000 value: 0.33899999999999997 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 12.839999999999998 - type: recall_at_1 value: 4.023000000000001 - type: recall_at_10 value: 18.497 - type: recall_at_100 value: 40.8 - type: recall_at_1000 value: 68.812 - type: recall_at_3 value: 9.508 - type: recall_at_5 value: 12.983 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.967008785134 - type: cos_sim_spearman value: 80.23142141101837 - type: euclidean_pearson value: 81.20166064704539 - type: euclidean_spearman value: 80.18961335654585 - type: manhattan_pearson value: 81.13925443187625 - type: manhattan_spearman value: 80.07948723044424 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.94262461316023 - type: cos_sim_spearman value: 80.01596278563865 - type: euclidean_pearson value: 83.80799622922581 - type: euclidean_spearman value: 79.94984954947103 - type: manhattan_pearson value: 83.68473841756281 - type: manhattan_spearman value: 79.84990707951822 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 80.57346443146068 - type: cos_sim_spearman value: 81.54689837570866 - type: euclidean_pearson value: 81.10909881516007 - type: euclidean_spearman value: 81.56746243261762 - type: manhattan_pearson value: 80.87076036186582 - type: manhattan_spearman value: 81.33074987964402 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 79.54733787179849 - type: cos_sim_spearman value: 77.72202105610411 - type: euclidean_pearson value: 78.9043595478849 - type: euclidean_spearman value: 77.93422804309435 - type: manhattan_pearson value: 78.58115121621368 - type: manhattan_spearman value: 77.62508135122033 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.59880017237558 - type: cos_sim_spearman value: 89.31088630824758 - type: euclidean_pearson value: 88.47069261564656 - type: euclidean_spearman value: 89.33581971465233 - type: manhattan_pearson value: 88.40774264100956 - type: manhattan_spearman value: 89.28657485627835 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.08055117917084 - type: cos_sim_spearman value: 85.78491813080304 - type: euclidean_pearson value: 84.99329155500392 - type: euclidean_spearman value: 85.76728064677287 - type: manhattan_pearson value: 84.87947428989587 - type: manhattan_spearman value: 85.62429454917464 - task: type: STS dataset: name: MTEB STS17 (ko-ko) type: mteb/sts17-crosslingual-sts config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 82.14190939287384 - type: cos_sim_spearman value: 82.27331573306041 - type: euclidean_pearson value: 81.891896953716 - type: euclidean_spearman value: 82.37695542955998 - type: manhattan_pearson value: 81.73123869460504 - type: manhattan_spearman value: 82.19989168441421 - task: type: STS dataset: name: MTEB STS17 (ar-ar) type: mteb/sts17-crosslingual-sts config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 76.84695301843362 - type: cos_sim_spearman value: 77.87790986014461 - type: euclidean_pearson value: 76.91981583106315 - type: euclidean_spearman value: 77.88154772749589 - type: manhattan_pearson value: 76.94953277451093 - type: manhattan_spearman value: 77.80499230728604 - task: type: STS dataset: name: MTEB STS17 (en-ar) type: mteb/sts17-crosslingual-sts config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.44657840482016 - type: cos_sim_spearman value: 75.05531095119674 - type: euclidean_pearson value: 75.88161755829299 - type: euclidean_spearman value: 74.73176238219332 - type: manhattan_pearson value: 75.63984765635362 - type: manhattan_spearman value: 74.86476440770737 - task: type: STS dataset: name: MTEB STS17 (en-de) type: mteb/sts17-crosslingual-sts config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.64700140524133 - type: cos_sim_spearman value: 86.16014210425672 - type: euclidean_pearson value: 86.49086860843221 - type: euclidean_spearman value: 86.09729326815614 - type: manhattan_pearson value: 86.43406265125513 - type: manhattan_spearman value: 86.17740150939994 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.91170098764921 - type: cos_sim_spearman value: 88.12437004058931 - type: euclidean_pearson value: 88.81828254494437 - type: euclidean_spearman value: 88.14831794572122 - type: manhattan_pearson value: 88.93442183448961 - type: manhattan_spearman value: 88.15254630778304 - task: type: STS dataset: name: MTEB STS17 (en-tr) type: mteb/sts17-crosslingual-sts config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.91390577997292 - type: cos_sim_spearman value: 71.22979457536074 - type: euclidean_pearson value: 74.40314008106749 - type: euclidean_spearman value: 72.54972136083246 - type: manhattan_pearson value: 73.85687539530218 - type: manhattan_spearman value: 72.09500771742637 - task: type: STS dataset: name: MTEB STS17 (es-en) type: mteb/sts17-crosslingual-sts config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.9301067983089 - type: cos_sim_spearman value: 80.74989828346473 - type: euclidean_pearson value: 81.36781301814257 - type: euclidean_spearman value: 80.9448819964426 - type: manhattan_pearson value: 81.0351322685609 - type: manhattan_spearman value: 80.70192121844177 - task: type: STS dataset: name: MTEB STS17 (es-es) type: mteb/sts17-crosslingual-sts config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.13820465980005 - type: cos_sim_spearman value: 86.73532498758757 - type: euclidean_pearson value: 87.21329451846637 - type: euclidean_spearman value: 86.57863198601002 - type: manhattan_pearson value: 87.06973713818554 - type: manhattan_spearman value: 86.47534918791499 - task: type: STS dataset: name: MTEB STS17 (fr-en) type: mteb/sts17-crosslingual-sts config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.48720108904415 - type: cos_sim_spearman value: 85.62221757068387 - type: euclidean_pearson value: 86.1010129512749 - type: euclidean_spearman value: 85.86580966509942 - type: manhattan_pearson value: 86.26800938808971 - type: manhattan_spearman value: 85.88902721678429 - task: type: STS dataset: name: MTEB STS17 (it-en) type: mteb/sts17-crosslingual-sts config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 83.98021347333516 - type: cos_sim_spearman value: 84.53806553803501 - type: euclidean_pearson value: 84.61483347248364 - type: euclidean_spearman value: 85.14191408011702 - type: manhattan_pearson value: 84.75297588825967 - type: manhattan_spearman value: 85.33176753669242 - task: type: STS dataset: name: MTEB STS17 (nl-en) type: mteb/sts17-crosslingual-sts config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.51856644893233 - type: cos_sim_spearman value: 85.27510748506413 - type: euclidean_pearson value: 85.09886861540977 - type: euclidean_spearman value: 85.62579245860887 - type: manhattan_pearson value: 84.93017860464607 - type: manhattan_spearman value: 85.5063988898453 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.581573200584195 - type: cos_sim_spearman value: 63.05503590247928 - type: euclidean_pearson value: 63.652564812602094 - type: euclidean_spearman value: 62.64811520876156 - type: manhattan_pearson value: 63.506842893061076 - type: manhattan_spearman value: 62.51289573046917 - task: type: STS dataset: name: MTEB STS22 (de) type: mteb/sts22-crosslingual-sts config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 48.2248801729127 - type: cos_sim_spearman value: 56.5936604678561 - type: euclidean_pearson value: 43.98149464089 - type: euclidean_spearman value: 56.108561882423615 - type: manhattan_pearson value: 43.86880305903564 - type: manhattan_spearman value: 56.04671150510166 - task: type: STS dataset: name: MTEB STS22 (es) type: mteb/sts22-crosslingual-sts config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.17564527009831 - type: cos_sim_spearman value: 64.57978560979488 - type: euclidean_pearson value: 58.8818330154583 - type: euclidean_spearman value: 64.99214839071281 - type: manhattan_pearson value: 58.72671436121381 - type: manhattan_spearman value: 65.10713416616109 - task: type: STS dataset: name: MTEB STS22 (pl) type: mteb/sts22-crosslingual-sts config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 26.772131864023297 - type: cos_sim_spearman value: 34.68200792408681 - type: euclidean_pearson value: 16.68082419005441 - type: euclidean_spearman value: 34.83099932652166 - type: manhattan_pearson value: 16.52605949659529 - type: manhattan_spearman value: 34.82075801399475 - task: type: STS dataset: name: MTEB STS22 (tr) type: mteb/sts22-crosslingual-sts config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.42415189043831 - type: cos_sim_spearman value: 63.54594264576758 - type: euclidean_pearson value: 57.36577498297745 - type: euclidean_spearman value: 63.111466379158074 - type: manhattan_pearson value: 57.584543715873885 - type: manhattan_spearman value: 63.22361054139183 - task: type: STS dataset: name: MTEB STS22 (ar) type: mteb/sts22-crosslingual-sts config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 47.55216762405518 - type: cos_sim_spearman value: 56.98670142896412 - type: euclidean_pearson value: 50.15318757562699 - type: euclidean_spearman value: 56.524941926541906 - type: manhattan_pearson value: 49.955618528674904 - type: manhattan_spearman value: 56.37102209240117 - task: type: STS dataset: name: MTEB STS22 (ru) type: mteb/sts22-crosslingual-sts config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 49.20540980338571 - type: cos_sim_spearman value: 59.9009453504406 - type: euclidean_pearson value: 49.557749853620535 - type: euclidean_spearman value: 59.76631621172456 - type: manhattan_pearson value: 49.62340591181147 - type: manhattan_spearman value: 59.94224880322436 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 51.508169956576985 - type: cos_sim_spearman value: 66.82461565306046 - type: euclidean_pearson value: 56.2274426480083 - type: euclidean_spearman value: 66.6775323848333 - type: manhattan_pearson value: 55.98277796300661 - type: manhattan_spearman value: 66.63669848497175 - task: type: STS dataset: name: MTEB STS22 (fr) type: mteb/sts22-crosslingual-sts config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 72.86478788045507 - type: cos_sim_spearman value: 76.7946552053193 - type: euclidean_pearson value: 75.01598530490269 - type: euclidean_spearman value: 76.83618917858281 - type: manhattan_pearson value: 74.68337628304332 - type: manhattan_spearman value: 76.57480204017773 - task: type: STS dataset: name: MTEB STS22 (de-en) type: mteb/sts22-crosslingual-sts config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.922619099401984 - type: cos_sim_spearman value: 56.599362477240774 - type: euclidean_pearson value: 56.68307052369783 - type: euclidean_spearman value: 54.28760436777401 - type: manhattan_pearson value: 56.67763566500681 - type: manhattan_spearman value: 53.94619541711359 - task: type: STS dataset: name: MTEB STS22 (es-en) type: mteb/sts22-crosslingual-sts config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.74357206710913 - type: cos_sim_spearman value: 72.5208244925311 - type: euclidean_pearson value: 67.49254562186032 - type: euclidean_spearman value: 72.02469076238683 - type: manhattan_pearson value: 67.45251772238085 - type: manhattan_spearman value: 72.05538819984538 - task: type: STS dataset: name: MTEB STS22 (it) type: mteb/sts22-crosslingual-sts config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 71.25734330033191 - type: cos_sim_spearman value: 76.98349083946823 - type: euclidean_pearson value: 73.71642838667736 - type: euclidean_spearman value: 77.01715504651384 - type: manhattan_pearson value: 73.61712711868105 - type: manhattan_spearman value: 77.01392571153896 - task: type: STS dataset: name: MTEB STS22 (pl-en) type: mteb/sts22-crosslingual-sts config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.18215462781212 - type: cos_sim_spearman value: 65.54373266117607 - type: euclidean_pearson value: 64.54126095439005 - type: euclidean_spearman value: 65.30410369102711 - type: manhattan_pearson value: 63.50332221148234 - type: manhattan_spearman value: 64.3455878104313 - task: type: STS dataset: name: MTEB STS22 (zh-en) type: mteb/sts22-crosslingual-sts config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30509221440029 - type: cos_sim_spearman value: 65.99582704642478 - type: euclidean_pearson value: 63.43818859884195 - type: euclidean_spearman value: 66.83172582815764 - type: manhattan_pearson value: 63.055779168508764 - type: manhattan_spearman value: 65.49585020501449 - task: type: STS dataset: name: MTEB STS22 (es-it) type: mteb/sts22-crosslingual-sts config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.587830825340404 - type: cos_sim_spearman value: 68.93467614588089 - type: euclidean_pearson value: 62.3073527367404 - type: euclidean_spearman value: 69.69758171553175 - type: manhattan_pearson value: 61.9074580815789 - type: manhattan_spearman value: 69.57696375597865 - task: type: STS dataset: name: MTEB STS22 (de-fr) type: mteb/sts22-crosslingual-sts config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.143220125577066 - type: cos_sim_spearman value: 67.78857859159226 - type: euclidean_pearson value: 55.58225107923733 - type: euclidean_spearman value: 67.80662907184563 - type: manhattan_pearson value: 56.24953502726514 - type: manhattan_spearman value: 67.98262125431616 - task: type: STS dataset: name: MTEB STS22 (de-pl) type: mteb/sts22-crosslingual-sts config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 21.826928900322066 - type: cos_sim_spearman value: 49.578506634400405 - type: euclidean_pearson value: 27.939890138843214 - type: euclidean_spearman value: 52.71950519136242 - type: manhattan_pearson value: 26.39878683847546 - type: manhattan_spearman value: 47.54609580342499 - task: type: STS dataset: name: MTEB STS22 (fr-pl) type: mteb/sts22-crosslingual-sts config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.27603854632001 - type: cos_sim_spearman value: 50.709255283710995 - type: euclidean_pearson value: 59.5419024445929 - type: euclidean_spearman value: 50.709255283710995 - type: manhattan_pearson value: 59.03256832438492 - type: manhattan_spearman value: 61.97797868009122 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.00757054859712 - type: cos_sim_spearman value: 87.29283629622222 - type: euclidean_pearson value: 86.54824171775536 - type: euclidean_spearman value: 87.24364730491402 - type: manhattan_pearson value: 86.5062156915074 - type: manhattan_spearman value: 87.15052170378574 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.03549357197389 - type: mrr value: 95.05437645143527 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.260999999999996 - type: map_at_10 value: 66.259 - type: map_at_100 value: 66.884 - type: map_at_1000 value: 66.912 - type: map_at_3 value: 63.685 - type: map_at_5 value: 65.35499999999999 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 67.5 - type: mrr_at_100 value: 68.013 - type: mrr_at_1000 value: 68.038 - type: mrr_at_3 value: 65.61099999999999 - type: mrr_at_5 value: 66.861 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 70.41 - type: ndcg_at_100 value: 73.10600000000001 - type: ndcg_at_1000 value: 73.846 - type: ndcg_at_3 value: 66.133 - type: ndcg_at_5 value: 68.499 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.232999999999999 - type: precision_at_100 value: 1.0630000000000002 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.667 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 57.260999999999996 - type: recall_at_10 value: 81.94399999999999 - type: recall_at_100 value: 93.867 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.339 - type: recall_at_5 value: 76.25 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74356435643564 - type: cos_sim_ap value: 93.13411948212683 - type: cos_sim_f1 value: 86.80521991300147 - type: cos_sim_precision value: 84.00374181478017 - type: cos_sim_recall value: 89.8 - type: dot_accuracy value: 99.67920792079208 - type: dot_ap value: 89.27277565444479 - type: dot_f1 value: 83.9276990718124 - type: dot_precision value: 82.04393505253104 - type: dot_recall value: 85.9 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 93.17993008259062 - type: euclidean_f1 value: 86.69396110542476 - type: euclidean_precision value: 88.78406708595388 - type: euclidean_recall value: 84.7 - type: manhattan_accuracy value: 99.74257425742574 - type: manhattan_ap value: 93.14413755550099 - type: manhattan_f1 value: 86.82483594144371 - type: manhattan_precision value: 87.66564729867483 - type: manhattan_recall value: 86 - type: max_accuracy value: 99.74356435643564 - type: max_ap value: 93.17993008259062 - type: max_f1 value: 86.82483594144371 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 57.525863806168566 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.68850574423839 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.71580650644033 - type: mrr value: 50.50971903913081 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.152190498799484 - type: cos_sim_spearman value: 29.686180371952727 - type: dot_pearson value: 27.248664793816342 - type: dot_spearman value: 28.37748983721745 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 1.6209999999999998 - type: map_at_100 value: 9.690999999999999 - type: map_at_1000 value: 23.733 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.885 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.56700000000001 - type: mrr_at_100 value: 86.56700000000001 - type: mrr_at_1000 value: 86.56700000000001 - type: mrr_at_3 value: 85.667 - type: mrr_at_5 value: 86.56700000000001 - type: ndcg_at_1 value: 76 - type: ndcg_at_10 value: 71.326 - type: ndcg_at_100 value: 54.208999999999996 - type: ndcg_at_1000 value: 49.252 - type: ndcg_at_3 value: 74.235 - type: ndcg_at_5 value: 73.833 - type: precision_at_1 value: 78 - type: precision_at_10 value: 74.8 - type: precision_at_100 value: 55.50000000000001 - type: precision_at_1000 value: 21.836 - type: precision_at_3 value: 78 - type: precision_at_5 value: 78 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 1.894 - type: recall_at_100 value: 13.245999999999999 - type: recall_at_1000 value: 46.373 - type: recall_at_3 value: 0.613 - type: recall_at_5 value: 0.991 - task: type: BitextMining dataset: name: MTEB Tatoeba (sqi-eng) type: mteb/tatoeba-bitext-mining config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.69999999999999 - type: precision value: 94.11666666666667 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (fry-eng) type: mteb/tatoeba-bitext-mining config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.20809248554913 - type: f1 value: 63.431048720066066 - type: precision value: 61.69143958161298 - type: recall value: 68.20809248554913 - task: type: BitextMining dataset: name: MTEB Tatoeba (kur-eng) type: mteb/tatoeba-bitext-mining config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.21951219512195 - type: f1 value: 66.82926829268293 - type: precision value: 65.1260162601626 - type: recall value: 71.21951219512195 - task: type: BitextMining dataset: name: MTEB Tatoeba (tur-eng) type: mteb/tatoeba-bitext-mining config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.2 - type: f1 value: 96.26666666666667 - type: precision value: 95.8 - type: recall value: 97.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (deu-eng) type: mteb/tatoeba-bitext-mining config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.3 - type: f1 value: 99.06666666666666 - type: precision value: 98.95 - type: recall value: 99.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (nld-eng) type: mteb/tatoeba-bitext-mining config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.63333333333333 - type: precision value: 96.26666666666668 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (ron-eng) type: mteb/tatoeba-bitext-mining config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.86666666666666 - type: precision value: 94.31666666666668 - type: recall value: 96 - task: type: BitextMining dataset: name: MTEB Tatoeba (ang-eng) type: mteb/tatoeba-bitext-mining config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.01492537313433 - type: f1 value: 40.178867566927266 - type: precision value: 38.179295828549556 - type: recall value: 47.01492537313433 - task: type: BitextMining dataset: name: MTEB Tatoeba (ido-eng) type: mteb/tatoeba-bitext-mining config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.5 - type: f1 value: 83.62537480063796 - type: precision value: 82.44555555555554 - type: recall value: 86.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (jav-eng) type: mteb/tatoeba-bitext-mining config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.48780487804879 - type: f1 value: 75.45644599303138 - type: precision value: 73.37398373983739 - type: recall value: 80.48780487804879 - task: type: BitextMining dataset: name: MTEB Tatoeba (isl-eng) type: mteb/tatoeba-bitext-mining config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.95666666666666 - type: precision value: 91.125 - type: recall value: 93.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (slv-eng) type: mteb/tatoeba-bitext-mining config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.73754556500607 - type: f1 value: 89.65168084244632 - type: precision value: 88.73025516403402 - type: recall value: 91.73754556500607 - task: type: BitextMining dataset: name: MTEB Tatoeba (cym-eng) type: mteb/tatoeba-bitext-mining config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.04347826086956 - type: f1 value: 76.2128364389234 - type: precision value: 74.2 - type: recall value: 81.04347826086956 - task: type: BitextMining dataset: name: MTEB Tatoeba (kaz-eng) type: mteb/tatoeba-bitext-mining config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.65217391304348 - type: f1 value: 79.4376811594203 - type: precision value: 77.65797101449274 - type: recall value: 83.65217391304348 - task: type: BitextMining dataset: name: MTEB Tatoeba (est-eng) type: mteb/tatoeba-bitext-mining config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.5 - type: f1 value: 85.02690476190476 - type: precision value: 83.96261904761904 - type: recall value: 87.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (heb-eng) type: mteb/tatoeba-bitext-mining config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.3 - type: f1 value: 86.52333333333333 - type: precision value: 85.22833333333332 - type: recall value: 89.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (gla-eng) type: mteb/tatoeba-bitext-mining config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.01809408926418 - type: f1 value: 59.00594446432805 - type: precision value: 56.827215807915444 - type: recall value: 65.01809408926418 - task: type: BitextMining dataset: name: MTEB Tatoeba (mar-eng) type: mteb/tatoeba-bitext-mining config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.2 - type: f1 value: 88.58 - type: precision value: 87.33333333333334 - type: recall value: 91.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (lat-eng) type: mteb/tatoeba-bitext-mining config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.199999999999996 - type: f1 value: 53.299166276284915 - type: precision value: 51.3383908045977 - type: recall value: 59.199999999999996 - task: type: BitextMining dataset: name: MTEB Tatoeba (bel-eng) type: mteb/tatoeba-bitext-mining config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.2 - type: precision value: 90.25 - type: recall value: 93.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (pms-eng) type: mteb/tatoeba-bitext-mining config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 64.76190476190476 - type: f1 value: 59.867110667110666 - type: precision value: 58.07390192653351 - type: recall value: 64.76190476190476 - task: type: BitextMining dataset: name: MTEB Tatoeba (gle-eng) type: mteb/tatoeba-bitext-mining config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.2 - type: f1 value: 71.48147546897547 - type: precision value: 69.65409090909091 - type: recall value: 76.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (pes-eng) type: mteb/tatoeba-bitext-mining config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.8 - type: f1 value: 92.14 - type: precision value: 91.35833333333333 - type: recall value: 93.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (nob-eng) type: mteb/tatoeba-bitext-mining config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.2 - type: precision value: 96.85000000000001 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (bul-eng) type: mteb/tatoeba-bitext-mining config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 92.93333333333334 - type: precision value: 92.13333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (cbk-eng) type: mteb/tatoeba-bitext-mining config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.1 - type: f1 value: 69.14817460317461 - type: precision value: 67.2515873015873 - type: recall value: 74.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (hun-eng) type: mteb/tatoeba-bitext-mining config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 94.01333333333335 - type: precision value: 93.46666666666667 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (uig-eng) type: mteb/tatoeba-bitext-mining config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.9 - type: f1 value: 72.07523809523809 - type: precision value: 70.19777777777779 - type: recall value: 76.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (rus-eng) type: mteb/tatoeba-bitext-mining config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.31666666666666 - type: precision value: 91.43333333333332 - type: recall value: 94.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (spa-eng) type: mteb/tatoeba-bitext-mining config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.1 - type: precision value: 96.76666666666668 - type: recall value: 97.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (hye-eng) type: mteb/tatoeba-bitext-mining config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.85714285714286 - type: f1 value: 90.92093441150045 - type: precision value: 90.00449236298293 - type: recall value: 92.85714285714286 - task: type: BitextMining dataset: name: MTEB Tatoeba (tel-eng) type: mteb/tatoeba-bitext-mining config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.16239316239316 - type: f1 value: 91.33903133903132 - type: precision value: 90.56267806267806 - type: recall value: 93.16239316239316 - task: type: BitextMining dataset: name: MTEB Tatoeba (afr-eng) type: mteb/tatoeba-bitext-mining config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.4 - type: f1 value: 90.25666666666666 - type: precision value: 89.25833333333334 - type: recall value: 92.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (mon-eng) type: mteb/tatoeba-bitext-mining config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.22727272727272 - type: f1 value: 87.53030303030303 - type: precision value: 86.37121212121211 - type: recall value: 90.22727272727272 - task: type: BitextMining dataset: name: MTEB Tatoeba (arz-eng) type: mteb/tatoeba-bitext-mining config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.03563941299791 - type: f1 value: 74.7349505840072 - type: precision value: 72.9035639412998 - type: recall value: 79.03563941299791 - task: type: BitextMining dataset: name: MTEB Tatoeba (hrv-eng) type: mteb/tatoeba-bitext-mining config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97 - type: f1 value: 96.15 - type: precision value: 95.76666666666668 - type: recall value: 97 - task: type: BitextMining dataset: name: MTEB Tatoeba (nov-eng) type: mteb/tatoeba-bitext-mining config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.26459143968872 - type: f1 value: 71.55642023346303 - type: precision value: 69.7544932369835 - type: recall value: 76.26459143968872 - task: type: BitextMining dataset: name: MTEB Tatoeba (gsw-eng) type: mteb/tatoeba-bitext-mining config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.119658119658126 - type: f1 value: 51.65242165242165 - type: precision value: 49.41768108434775 - type: recall value: 58.119658119658126 - task: type: BitextMining dataset: name: MTEB Tatoeba (nds-eng) type: mteb/tatoeba-bitext-mining config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.3 - type: f1 value: 69.52055555555555 - type: precision value: 67.7574938949939 - type: recall value: 74.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (ukr-eng) type: mteb/tatoeba-bitext-mining config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.8 - type: f1 value: 93.31666666666666 - type: precision value: 92.60000000000001 - type: recall value: 94.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (uzb-eng) type: mteb/tatoeba-bitext-mining config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.63551401869158 - type: f1 value: 72.35202492211837 - type: precision value: 70.60358255451713 - type: recall value: 76.63551401869158 - task: type: BitextMining dataset: name: MTEB Tatoeba (lit-eng) type: mteb/tatoeba-bitext-mining config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.4 - type: f1 value: 88.4811111111111 - type: precision value: 87.7452380952381 - type: recall value: 90.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (ina-eng) type: mteb/tatoeba-bitext-mining config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95 - type: f1 value: 93.60666666666667 - type: precision value: 92.975 - type: recall value: 95 - task: type: BitextMining dataset: name: MTEB Tatoeba (lfn-eng) type: mteb/tatoeba-bitext-mining config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 63.01595782872099 - type: precision value: 61.596587301587306 - type: recall value: 67.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (zsm-eng) type: mteb/tatoeba-bitext-mining config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.7 - type: f1 value: 94.52999999999999 - type: precision value: 94 - type: recall value: 95.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (ita-eng) type: mteb/tatoeba-bitext-mining config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.28999999999999 - type: precision value: 92.675 - type: recall value: 94.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (cmn-eng) type: mteb/tatoeba-bitext-mining config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.75 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (lvs-eng) type: mteb/tatoeba-bitext-mining config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.9 - type: f1 value: 89.83 - type: precision value: 88.92 - type: recall value: 91.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (glg-eng) type: mteb/tatoeba-bitext-mining config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.34222222222223 - type: precision value: 92.75416666666668 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (ceb-eng) type: mteb/tatoeba-bitext-mining config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.333333333333336 - type: f1 value: 55.31203703703703 - type: precision value: 53.39971108326371 - type: recall value: 60.333333333333336 - task: type: BitextMining dataset: name: MTEB Tatoeba (bre-eng) type: mteb/tatoeba-bitext-mining config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 12.9 - type: f1 value: 11.099861903031458 - type: precision value: 10.589187932631877 - type: recall value: 12.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (ben-eng) type: mteb/tatoeba-bitext-mining config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.7 - type: f1 value: 83.0152380952381 - type: precision value: 81.37833333333333 - type: recall value: 86.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (swg-eng) type: mteb/tatoeba-bitext-mining config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.39285714285714 - type: f1 value: 56.832482993197274 - type: precision value: 54.56845238095237 - type: recall value: 63.39285714285714 - task: type: BitextMining dataset: name: MTEB Tatoeba (arq-eng) type: mteb/tatoeba-bitext-mining config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.73765093304062 - type: f1 value: 41.555736920720456 - type: precision value: 39.06874531737319 - type: recall value: 48.73765093304062 - task: type: BitextMining dataset: name: MTEB Tatoeba (kab-eng) type: mteb/tatoeba-bitext-mining config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 41.099999999999994 - type: f1 value: 36.540165945165946 - type: precision value: 35.05175685425686 - type: recall value: 41.099999999999994 - task: type: BitextMining dataset: name: MTEB Tatoeba (fra-eng) type: mteb/tatoeba-bitext-mining config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.42333333333333 - type: precision value: 92.75833333333333 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (por-eng) type: mteb/tatoeba-bitext-mining config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.63333333333334 - type: precision value: 93.01666666666665 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tat-eng) type: mteb/tatoeba-bitext-mining config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.9 - type: f1 value: 73.64833333333334 - type: precision value: 71.90282106782105 - type: recall value: 77.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (oci-eng) type: mteb/tatoeba-bitext-mining config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.4 - type: f1 value: 54.90521367521367 - type: precision value: 53.432840025471606 - type: recall value: 59.4 - task: type: BitextMining dataset: name: MTEB Tatoeba (pol-eng) type: mteb/tatoeba-bitext-mining config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.6 - type: precision value: 96.2 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (war-eng) type: mteb/tatoeba-bitext-mining config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 62.25926129426129 - type: precision value: 60.408376623376626 - type: recall value: 67.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (aze-eng) type: mteb/tatoeba-bitext-mining config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.2 - type: f1 value: 87.60666666666667 - type: precision value: 86.45277777777778 - type: recall value: 90.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (vie-eng) type: mteb/tatoeba-bitext-mining config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97 - type: precision value: 96.65 - type: recall value: 97.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (nno-eng) type: mteb/tatoeba-bitext-mining config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.39746031746031 - type: precision value: 90.6125 - type: recall value: 93.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (cha-eng) type: mteb/tatoeba-bitext-mining config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 32.11678832116788 - type: f1 value: 27.210415386260234 - type: precision value: 26.20408990846947 - type: recall value: 32.11678832116788 - task: type: BitextMining dataset: name: MTEB Tatoeba (mhr-eng) type: mteb/tatoeba-bitext-mining config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.787319277832475 - type: precision value: 6.3452094433344435 - type: recall value: 8.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (dan-eng) type: mteb/tatoeba-bitext-mining config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.08 - type: precision value: 94.61666666666667 - type: recall value: 96.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (ell-eng) type: mteb/tatoeba-bitext-mining config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.3 - type: f1 value: 93.88333333333333 - type: precision value: 93.18333333333332 - type: recall value: 95.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (amh-eng) type: mteb/tatoeba-bitext-mining config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.11904761904762 - type: f1 value: 80.69444444444444 - type: precision value: 78.72023809523809 - type: recall value: 85.11904761904762 - task: type: BitextMining dataset: name: MTEB Tatoeba (pam-eng) type: mteb/tatoeba-bitext-mining config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 11.1 - type: f1 value: 9.276381801735853 - type: precision value: 8.798174603174601 - type: recall value: 11.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (hsb-eng) type: mteb/tatoeba-bitext-mining config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.56107660455487 - type: f1 value: 58.70433569191332 - type: precision value: 56.896926581464015 - type: recall value: 63.56107660455487 - task: type: BitextMining dataset: name: MTEB Tatoeba (srp-eng) type: mteb/tatoeba-bitext-mining config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.10000000000001 - type: precision value: 92.35 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (epo-eng) type: mteb/tatoeba-bitext-mining config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 96.01222222222222 - type: precision value: 95.67083333333332 - type: recall value: 96.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (kzj-eng) type: mteb/tatoeba-bitext-mining config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 9.2 - type: f1 value: 7.911555250305249 - type: precision value: 7.631246556216846 - type: recall value: 9.2 - task: type: BitextMining dataset: name: MTEB Tatoeba (awa-eng) type: mteb/tatoeba-bitext-mining config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.48917748917748 - type: f1 value: 72.27375798804371 - type: precision value: 70.14430014430013 - type: recall value: 77.48917748917748 - task: type: BitextMining dataset: name: MTEB Tatoeba (fao-eng) type: mteb/tatoeba-bitext-mining config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.09923664122137 - type: f1 value: 72.61541257724463 - type: precision value: 70.8998380754106 - type: recall value: 77.09923664122137 - task: type: BitextMining dataset: name: MTEB Tatoeba (mal-eng) type: mteb/tatoeba-bitext-mining config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2532751091703 - type: f1 value: 97.69529354682193 - type: precision value: 97.42843279961184 - type: recall value: 98.2532751091703 - task: type: BitextMining dataset: name: MTEB Tatoeba (ile-eng) type: mteb/tatoeba-bitext-mining config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.8 - type: f1 value: 79.14672619047619 - type: precision value: 77.59489247311828 - type: recall value: 82.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (bos-eng) type: mteb/tatoeba-bitext-mining config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.35028248587571 - type: f1 value: 92.86252354048965 - type: precision value: 92.2080979284369 - type: recall value: 94.35028248587571 - task: type: BitextMining dataset: name: MTEB Tatoeba (cor-eng) type: mteb/tatoeba-bitext-mining config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.282429263935621 - type: precision value: 5.783274240739785 - type: recall value: 8.5 - task: type: BitextMining dataset: name: MTEB Tatoeba (cat-eng) type: mteb/tatoeba-bitext-mining config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 91.025 - type: precision value: 90.30428571428571 - type: recall value: 92.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (eus-eng) type: mteb/tatoeba-bitext-mining config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81 - type: f1 value: 77.8232380952381 - type: precision value: 76.60194444444444 - type: recall value: 81 - task: type: BitextMining dataset: name: MTEB Tatoeba (yue-eng) type: mteb/tatoeba-bitext-mining config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91 - type: f1 value: 88.70857142857142 - type: precision value: 87.7 - type: recall value: 91 - task: type: BitextMining dataset: name: MTEB Tatoeba (swe-eng) type: mteb/tatoeba-bitext-mining config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.3 - type: precision value: 94.76666666666667 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (dtp-eng) type: mteb/tatoeba-bitext-mining config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.1 - type: f1 value: 7.001008218834307 - type: precision value: 6.708329562594269 - type: recall value: 8.1 - task: type: BitextMining dataset: name: MTEB Tatoeba (kat-eng) type: mteb/tatoeba-bitext-mining config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.1313672922252 - type: f1 value: 84.09070598748882 - type: precision value: 82.79171454104429 - type: recall value: 87.1313672922252 - task: type: BitextMining dataset: name: MTEB Tatoeba (jpn-eng) type: mteb/tatoeba-bitext-mining config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.73333333333332 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (csb-eng) type: mteb/tatoeba-bitext-mining config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 42.29249011857708 - type: f1 value: 36.981018542283365 - type: precision value: 35.415877813576024 - type: recall value: 42.29249011857708 - task: type: BitextMining dataset: name: MTEB Tatoeba (xho-eng) type: mteb/tatoeba-bitext-mining config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.80281690140845 - type: f1 value: 80.86854460093896 - type: precision value: 79.60093896713614 - type: recall value: 83.80281690140845 - task: type: BitextMining dataset: name: MTEB Tatoeba (orv-eng) type: mteb/tatoeba-bitext-mining config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.26946107784431 - type: f1 value: 39.80235464678088 - type: precision value: 38.14342660001342 - type: recall value: 45.26946107784431 - task: type: BitextMining dataset: name: MTEB Tatoeba (ind-eng) type: mteb/tatoeba-bitext-mining config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.9 - type: precision value: 92.26666666666668 - type: recall value: 94.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (tuk-eng) type: mteb/tatoeba-bitext-mining config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 37.93103448275862 - type: f1 value: 33.15192743764172 - type: precision value: 31.57456528146183 - type: recall value: 37.93103448275862 - task: type: BitextMining dataset: name: MTEB Tatoeba (max-eng) type: mteb/tatoeba-bitext-mining config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.01408450704226 - type: f1 value: 63.41549295774648 - type: precision value: 61.342778895595806 - type: recall value: 69.01408450704226 - task: type: BitextMining dataset: name: MTEB Tatoeba (swh-eng) type: mteb/tatoeba-bitext-mining config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.66666666666667 - type: f1 value: 71.60705960705961 - type: precision value: 69.60683760683762 - type: recall value: 76.66666666666667 - task: type: BitextMining dataset: name: MTEB Tatoeba (hin-eng) type: mteb/tatoeba-bitext-mining config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.48333333333333 - type: precision value: 93.83333333333333 - type: recall value: 95.8 - task: type: BitextMining dataset: name: MTEB Tatoeba (dsb-eng) type: mteb/tatoeba-bitext-mining config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 52.81837160751566 - type: f1 value: 48.435977731384824 - type: precision value: 47.11291973845539 - type: recall value: 52.81837160751566 - task: type: BitextMining dataset: name: MTEB Tatoeba (ber-eng) type: mteb/tatoeba-bitext-mining config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 44.9 - type: f1 value: 38.88962621607783 - type: precision value: 36.95936507936508 - type: recall value: 44.9 - task: type: BitextMining dataset: name: MTEB Tatoeba (tam-eng) type: mteb/tatoeba-bitext-mining config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.55374592833876 - type: f1 value: 88.22553125484721 - type: precision value: 87.26927252985884 - type: recall value: 90.55374592833876 - task: type: BitextMining dataset: name: MTEB Tatoeba (slk-eng) type: mteb/tatoeba-bitext-mining config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.13333333333333 - type: precision value: 92.45333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: name: MTEB Tatoeba (tgl-eng) type: mteb/tatoeba-bitext-mining config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.99666666666667 - type: precision value: 91.26666666666668 - type: recall value: 93.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (ast-eng) type: mteb/tatoeba-bitext-mining config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.03937007874016 - type: f1 value: 81.75853018372703 - type: precision value: 80.34120734908137 - type: recall value: 85.03937007874016 - task: type: BitextMining dataset: name: MTEB Tatoeba (mkd-eng) type: mteb/tatoeba-bitext-mining config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.3 - type: f1 value: 85.5 - type: precision value: 84.25833333333334 - type: recall value: 88.3 - task: type: BitextMining dataset: name: MTEB Tatoeba (khm-eng) type: mteb/tatoeba-bitext-mining config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.51246537396122 - type: f1 value: 60.02297410192148 - type: precision value: 58.133467727289236 - type: recall value: 65.51246537396122 - task: type: BitextMining dataset: name: MTEB Tatoeba (ces-eng) type: mteb/tatoeba-bitext-mining config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.89 - type: precision value: 94.39166666666667 - type: recall value: 96 - task: type: BitextMining dataset: name: MTEB Tatoeba (tzl-eng) type: mteb/tatoeba-bitext-mining config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.692307692307686 - type: f1 value: 53.162393162393165 - type: precision value: 51.70673076923077 - type: recall value: 57.692307692307686 - task: type: BitextMining dataset: name: MTEB Tatoeba (urd-eng) type: mteb/tatoeba-bitext-mining config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.60000000000001 - type: f1 value: 89.21190476190475 - type: precision value: 88.08666666666667 - type: recall value: 91.60000000000001 - task: type: BitextMining dataset: name: MTEB Tatoeba (ara-eng) type: mteb/tatoeba-bitext-mining config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88 - type: f1 value: 85.47 - type: precision value: 84.43266233766234 - type: recall value: 88 - task: type: BitextMining dataset: name: MTEB Tatoeba (kor-eng) type: mteb/tatoeba-bitext-mining config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 90.64999999999999 - type: precision value: 89.68333333333332 - type: recall value: 92.7 - task: type: BitextMining dataset: name: MTEB Tatoeba (yid-eng) type: mteb/tatoeba-bitext-mining config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.30660377358491 - type: f1 value: 76.33044137466307 - type: precision value: 74.78970125786164 - type: recall value: 80.30660377358491 - task: type: BitextMining dataset: name: MTEB Tatoeba (fin-eng) type: mteb/tatoeba-bitext-mining config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.44 - type: precision value: 94.99166666666666 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: name: MTEB Tatoeba (tha-eng) type: mteb/tatoeba-bitext-mining config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.53284671532847 - type: f1 value: 95.37712895377129 - type: precision value: 94.7992700729927 - type: recall value: 96.53284671532847 - task: type: BitextMining dataset: name: MTEB Tatoeba (wuu-eng) type: mteb/tatoeba-bitext-mining config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89 - type: f1 value: 86.23190476190476 - type: precision value: 85.035 - type: recall value: 89 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.585 - type: map_at_10 value: 9.012 - type: map_at_100 value: 14.027000000000001 - type: map_at_1000 value: 15.565000000000001 - type: map_at_3 value: 5.032 - type: map_at_5 value: 6.657 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 45.377 - type: mrr_at_100 value: 46.119 - type: mrr_at_1000 value: 46.127 - type: mrr_at_3 value: 41.156 - type: mrr_at_5 value: 42.585 - type: ndcg_at_1 value: 27.551 - type: ndcg_at_10 value: 23.395 - type: ndcg_at_100 value: 33.342 - type: ndcg_at_1000 value: 45.523 - type: ndcg_at_3 value: 25.158 - type: ndcg_at_5 value: 23.427 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 21.429000000000002 - type: precision_at_100 value: 6.714 - type: precision_at_1000 value: 1.473 - type: precision_at_3 value: 27.211000000000002 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 2.585 - type: recall_at_10 value: 15.418999999999999 - type: recall_at_100 value: 42.485 - type: recall_at_1000 value: 79.536 - type: recall_at_3 value: 6.239999999999999 - type: recall_at_5 value: 8.996 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.3234 - type: ap value: 14.361688653847423 - type: f1 value: 54.819068624319044 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.97792869269949 - type: f1 value: 62.28965628513728 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 38.90540145385218 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.53513739047506 - type: cos_sim_ap value: 75.27741586677557 - type: cos_sim_f1 value: 69.18792902473774 - type: cos_sim_precision value: 67.94708725515136 - type: cos_sim_recall value: 70.47493403693932 - type: dot_accuracy value: 84.7052512368123 - type: dot_ap value: 69.36075482849378 - type: dot_f1 value: 64.44688376631296 - type: dot_precision value: 59.92288500793831 - type: dot_recall value: 69.70976253298153 - type: euclidean_accuracy value: 86.60666388508076 - type: euclidean_ap value: 75.47512772621097 - type: euclidean_f1 value: 69.413872536473 - type: euclidean_precision value: 67.39562624254472 - type: euclidean_recall value: 71.55672823218997 - type: manhattan_accuracy value: 86.52917684925792 - type: manhattan_ap value: 75.34000110496703 - type: manhattan_f1 value: 69.28489190226429 - type: manhattan_precision value: 67.24608889992551 - type: manhattan_recall value: 71.45118733509234 - type: max_accuracy value: 86.60666388508076 - type: max_ap value: 75.47512772621097 - type: max_f1 value: 69.413872536473 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.01695967710637 - type: cos_sim_ap value: 85.8298270742901 - type: cos_sim_f1 value: 78.46988128389272 - type: cos_sim_precision value: 74.86017897091722 - type: cos_sim_recall value: 82.44533415460425 - type: dot_accuracy value: 88.19420188613343 - type: dot_ap value: 83.82679165901324 - type: dot_f1 value: 76.55833777304208 - type: dot_precision value: 75.6884875846501 - type: dot_recall value: 77.44841392054204 - type: euclidean_accuracy value: 89.03054294252338 - type: euclidean_ap value: 85.89089555185325 - type: euclidean_f1 value: 78.62997658079624 - type: euclidean_precision value: 74.92329149232914 - type: euclidean_recall value: 82.72251308900523 - type: manhattan_accuracy value: 89.0266620095471 - type: manhattan_ap value: 85.86458997929147 - type: manhattan_f1 value: 78.50685331000291 - type: manhattan_precision value: 74.5499861534201 - type: manhattan_recall value: 82.90729904527257 - type: max_accuracy value: 89.03054294252338 - type: max_ap value: 85.89089555185325 - type: max_f1 value: 78.62997658079624 --- # apto-as/multilingual-e5-large-Q8_0-GGUF This model was converted to GGUF format from [`intfloat/multilingual-e5-large`](https://huggingface.co/intfloat/multilingual-e5-large) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/intfloat/multilingual-e5-large) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo apto-as/multilingual-e5-large-Q8_0-GGUF --hf-file multilingual-e5-large-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo apto-as/multilingual-e5-large-Q8_0-GGUF --hf-file multilingual-e5-large-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo apto-as/multilingual-e5-large-Q8_0-GGUF --hf-file multilingual-e5-large-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo apto-as/multilingual-e5-large-Q8_0-GGUF --hf-file multilingual-e5-large-q8_0.gguf -c 2048 ```
MaziyarPanahi/llama3-8B-aifeifei-1.3-GGUF
MaziyarPanahi
2024-11-06T13:08:07Z
42
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:aifeifei798/llama3-8B-aifeifei-1.3", "base_model:quantized:aifeifei798/llama3-8B-aifeifei-1.3", "region:us", "conversational" ]
text-generation
2024-11-06T12:45:32Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: llama3-8B-aifeifei-1.3-GGUF base_model: aifeifei798/llama3-8B-aifeifei-1.3 inference: false model_creator: aifeifei798 pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/llama3-8B-aifeifei-1.3-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.3-GGUF) - Model creator: [aifeifei798](https://huggingface.co/aifeifei798) - Original model: [aifeifei798/llama3-8B-aifeifei-1.3](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.3) ## Description [MaziyarPanahi/llama3-8B-aifeifei-1.3-GGUF](https://huggingface.co/MaziyarPanahi/llama3-8B-aifeifei-1.3-GGUF) contains GGUF format model files for [aifeifei798/llama3-8B-aifeifei-1.3](https://huggingface.co/aifeifei798/llama3-8B-aifeifei-1.3). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
ihughes15234/phi35_kp_dpo7epoch_total
ihughes15234
2024-11-06T13:07:12Z
78
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:ihughes15234/phi35_kp_dpo5epoch_total", "base_model:finetune:ihughes15234/phi35_kp_dpo5epoch_total", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T13:05:11Z
--- base_model: ihughes15234/phi35_kp_dpo5epoch_total language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ihughes15234 - **License:** apache-2.0 - **Finetuned from model :** ihughes15234/phi35_kp_dpo5epoch_total This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
usmanyaqoob/xlm-roberta-base-finetuned-panx-all
usmanyaqoob
2024-11-06T13:05:35Z
128
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-06T12:51:16Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1763 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2895 | 1.0 | 835 | 0.1821 | 0.8210 | | 0.1514 | 2.0 | 1670 | 0.1707 | 0.8444 | | 0.0966 | 3.0 | 2505 | 0.1763 | 0.8595 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
Ivaylo-Iv/ai_train_poc_food_text_classifier
Ivaylo-Iv
2024-11-06T13:05:17Z
117
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T12:51:57Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: ai_train_poc_food_text_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai_train_poc_food_text_classifier This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0019 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0005 | 1.0 | 7 | 0.0012 | 1.0 | | 0.0004 | 2.0 | 14 | 0.0013 | 1.0 | | 0.0003 | 3.0 | 21 | 0.0014 | 1.0 | | 0.0003 | 4.0 | 28 | 0.0015 | 1.0 | | 0.0002 | 5.0 | 35 | 0.0016 | 1.0 | | 0.0002 | 6.0 | 42 | 0.0017 | 1.0 | | 0.0002 | 7.0 | 49 | 0.0018 | 1.0 | | 0.0002 | 8.0 | 56 | 0.0018 | 1.0 | | 0.0002 | 9.0 | 63 | 0.0019 | 1.0 | | 0.0002 | 10.0 | 70 | 0.0019 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF
mradermacher
2024-11-06T12:54:07Z
14
0
transformers
[ "transformers", "gguf", "en", "dataset:lodrick-the-lafted/Hermes-100K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "base_model:lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B", "base_model:quantized:lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T08:58:38Z
--- base_model: lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B datasets: - lodrick-the-lafted/Hermes-100K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q3_K_S.gguf) | Q3_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q3_K_L.gguf) | Q3_K_L | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q4_K_M.gguf) | Q4_K_M | 7.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q5_K_S.gguf) | Q5_K_S | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q5_K_M.gguf) | Q5_K_M | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q6_K.gguf) | Q6_K | 10.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-B-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-B-2x7B.Q8_0.gguf) | Q8_0 | 13.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
usmanyaqoob/xlm-roberta-base-finetuned-panx-it
usmanyaqoob
2024-11-06T12:49:06Z
125
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-06T12:44:54Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2984 - F1: 0.7862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7571 | 1.0 | 70 | 0.3568 | 0.7210 | | 0.296 | 2.0 | 140 | 0.2998 | 0.7474 | | 0.1974 | 3.0 | 210 | 0.2984 | 0.7862 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
oodeh/openshift-qe-r16-a16-epoch5-merged-model
oodeh
2024-11-06T12:47:53Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-06T12:44:34Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** oodeh - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
besimray/miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832
besimray
2024-11-06T12:47:30Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-06T12:40:32Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - o1-journey_train_data.json ds_type: json path: /workspace/input_data/o1-journey_train_data.json type: field_input: question field_instruction: answer field_output: longCOT system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 10 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hours_to_complete: 2 hub_model_id: besimray/miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832 hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/o1-journey_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 save_strategy: steps sequence_len: 4096 started_at: '2024-11-06T12:40:32.335166' strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: besimray24-rayon wandb_mode: online wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: c4650a4d-c32d-4e0f-a27c-171ba40b07e6 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # miner_id_2_c4650a4d-c32d-4e0f-a27c-171ba40b07e6_1730896832 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 53 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9692 | 0.0571 | 1 | 1.0109 | | 0.8542 | 0.5714 | 10 | 0.9411 | | 0.7241 | 1.1429 | 20 | 0.7844 | | 0.678 | 1.7143 | 30 | 0.7272 | | 0.6679 | 2.2857 | 40 | 0.7076 | | 0.6468 | 2.8571 | 50 | 0.7048 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
hadamelino/vit-gpt-vizwiz-fine-tuned-10k
hadamelino
2024-11-06T12:44:50Z
49
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-11-06T12:30:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
usmanyaqoob/xlm-roberta-base-finetuned-panx-fr
usmanyaqoob
2024-11-06T12:44:44Z
125
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-06T12:40:27Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2463 - F1: 0.8537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5392 | 1.0 | 191 | 0.3301 | 0.7574 | | 0.245 | 2.0 | 382 | 0.2521 | 0.8340 | | 0.1605 | 3.0 | 573 | 0.2463 | 0.8537 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
jazzson/adl-hw3-finetune-gemma-2-chinese-kyara-10
jazzson
2024-11-06T12:44:34Z
9
0
peft
[ "peft", "tensorboard", "safetensors", "gemma2", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2024-11-06T10:58:50Z
--- base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: adl-hw3-finetune-gemma-2-chinese-kyara-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # adl-hw3-finetune-gemma-2-chinese-kyara-10 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4673 | 0.7105 | 200 | 2.3491 | | 2.0993 | 1.4210 | 400 | 2.3077 | | 1.8831 | 2.1314 | 600 | 2.3793 | | 1.6486 | 2.8419 | 800 | 2.3754 | | 1.4189 | 3.5524 | 1000 | 2.5204 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.1 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
HugoVoxx/Gemma-2-2b-it-ag-merged-model
HugoVoxx
2024-11-06T12:39:57Z
9
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-21T14:56:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
projecte-aina/aina-translator-de-ca
projecte-aina
2024-11-06T12:39:02Z
11
0
fairseq
[ "fairseq", "de", "ca", "dataset:projecte-aina/CA-DE_Parallel_Corpus", "doi:10.57967/hf/1930", "license:apache-2.0", "region:us" ]
null
2023-11-27T13:03:49Z
--- license: apache-2.0 datasets: - projecte-aina/CA-DE_Parallel_Corpus language: - de - ca metrics: - bleu library_name: fairseq --- ## Projecte Aina’s German-Catalan machine translation model ## Model description This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of datasets comprising both Catalan-German data sourced from Opus, and additional datasets where synthetic Catalan was generated from the Spanish side of Spanish-Germancorpora using [Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca). This gave a total of approximately 100 million sentence pairs. The model is evaluated on the Flores, NTEU and NTREX evaluation sets.   ## Intended uses and limitations You can use this model for machine translation from German to Catalan. ## How to use ### Usage Required libraries: ```bash pip install ctranslate2 pyonmttok ``` Translate a sentence using python ```python import ctranslate2 import pyonmttok from huggingface_hub import snapshot_download model_dir = snapshot_download(repo_id="projecte-aina/aina-translator-de-ca", revision="main") tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model") tokenized=tokenizer.tokenize("Willkommen beim Projekt Aina") translator = ctranslate2.Translator(model_dir) translated = translator.translate_batch([tokenized[0]]) print(tokenizer.detokenize(translated[0][0]['tokens'])) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data The model was trained on a combination of the following datasets: | Datasets | |-------------------| | Multi CCAligned | | WikiMatrix | | GNOME | | KDE4 | | OpenSubtitles | | GlobalVoices| | Tatoeba | | Books | | Europarl | | Tilde | | Multi-Paracawl | | DGT | | EU Bookshop | | NLLB | | OpenSubtitles | All corpora except Europarl and Tilde were collected from [Opus](https://opus.nlpl.eu/). The Europarl and Tilde corpora are a synthetic parallel corpus created from the original Spanish-Catalan corpora by [SoftCatalà](https://github.com/Softcatala). Where a Spanish-German corpus was used, synthetic Catalan was generated from the Spanish side using [Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca). ### Training procedure ### Data preparation All datasets are deduplicated, filtered for language identification, and filtered to remove any sentence pairs with a cosine similarity of less than 0.75. This is done using sentence embeddings calculated using [LaBSE](https://huggingface.co/sentence-transformers/LaBSE). The filtered datasets are then concatenated to form a final corpus of 6.258.272 and before training the punctuation is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py) #### Tokenization All data is tokenized using sentencepiece, with a 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included. #### Hyperparameters The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf) The following hyperparameters were set on the Fairseq toolkit: | Hyperparameter | Value | |------------------------------------|----------------------------------| | Architecture | transformer_vaswani_wmt_en_de_big | | Embedding size | 1024 | | Feedforward size | 4096 | | Number of heads | 16 | | Encoder layers | 24 | | Decoder layers | 6 | | Normalize before attention | True | | --share-decoder-input-output-embed | True | | --share-all-embeddings | True | | Effective batch size | 48.000 | | Optimizer | adam | | Adam betas | (0.9, 0.980) | | Clip norm | 0.0 | | Learning rate | 5e-4 | | Lr. schedurer | inverse sqrt | | Warmup updates | 8000 | | Dropout | 0.1 | | Label smoothing | 0.1 | The model was trained for a total of 29.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 2 checkpoints. ## Evaluation ### Variable and metrics We use the BLEU score for evaluation on the [Flores-101](https://github.com/facebookresearch/flores), NTEU (unpublished) and [NTREX](https://github.com/MicrosoftTranslator/NTREX) test sets. ### Evaluation results Below are the evaluation results on the machine translation from German to Catalan compared to [Softcatalà](https://www.softcatala.org/) and [Google Translate](https://translate.google.es/?hl=es): | Test set | SoftCatalà | Google Translate | aina-translator-de-ca | |----------------------|------------|------------------|---------------| | Flores 101 dev | 28,9 | **35,1** | 33,1 | | Flores 101 devtest |29,2 | **35,9** | 33,2 | | NTEU | 38,9 | 39,1 | **42,9** | | NTREX | 25,7 | **31,2** | 29,1 | | **Average** | 30,7 | **35,3** | 34,3 | ## Additional information ### Author The Language Technologies Unit from Barcelona Supercomputing Center. ### Contact For further information, please send an email to <langtech@bsc.es>. ### Copyright Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center. ### License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/). ### Disclaimer <details> <summary>Click to expand</summary> The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. Be aware that the model may have biases and/or any other undesirable distortions. When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the model (Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties. </details>
sweetssweets/NMRExtractor
sweetssweets
2024-11-06T12:38:21Z
6
1
null
[ "safetensors", "mistral", "license:mit", "region:us" ]
null
2024-08-17T10:07:51Z
--- license: mit --- ## For a detailed description of the model, please refer to: '''https://github.com/eat-sugar/NMRExtractor'''
Xu-Ouyang/pythia-12b-deduped-int8-step1000-GPTQ-wikitext2
Xu-Ouyang
2024-11-06T12:33:48Z
5
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
2024-11-06T12:23:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PranavSharma10/Qwen-2.5-7B-FineTunedInstruct
PranavSharma10
2024-11-06T12:28:46Z
5
0
null
[ "safetensors", "qwen2", "llama-factory", "license:mit", "region:us" ]
null
2024-11-06T12:00:18Z
--- license: mit tags: - llama-factory ---
MaziyarPanahi/SD3_prompt-llama_8b-GGUF
MaziyarPanahi
2024-11-06T12:24:51Z
96
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:matrixglitch/SD3_prompt-llama_8b", "base_model:quantized:matrixglitch/SD3_prompt-llama_8b", "region:us", "conversational" ]
text-generation
2024-11-06T12:01:42Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: SD3_prompt-llama_8b-GGUF base_model: matrixglitch/SD3_prompt-llama_8b inference: false model_creator: matrixglitch pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/SD3_prompt-llama_8b-GGUF](https://huggingface.co/MaziyarPanahi/SD3_prompt-llama_8b-GGUF) - Model creator: [matrixglitch](https://huggingface.co/matrixglitch) - Original model: [matrixglitch/SD3_prompt-llama_8b](https://huggingface.co/matrixglitch/SD3_prompt-llama_8b) ## Description [MaziyarPanahi/SD3_prompt-llama_8b-GGUF](https://huggingface.co/MaziyarPanahi/SD3_prompt-llama_8b-GGUF) contains GGUF format model files for [matrixglitch/SD3_prompt-llama_8b](https://huggingface.co/matrixglitch/SD3_prompt-llama_8b). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
usmanyaqoob/xlm-roberta-base-finetuned-panx-de-fr
usmanyaqoob
2024-11-06T12:23:00Z
135
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-06T10:35:51Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1566 - F1: 0.8673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2805 | 1.0 | 715 | 0.1776 | 0.8182 | | 0.1446 | 2.0 | 1430 | 0.1523 | 0.8533 | | 0.0915 | 3.0 | 2145 | 0.1566 | 0.8673 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
Totototo/bert-base-uncased-finetuned-sst2
Totototo
2024-11-06T12:21:24Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T12:17:46Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5682 - Accuracy: 0.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.3307 | 0.8716 | | 0.353 | 2.0 | 500 | 0.3771 | 0.8968 | | 0.353 | 3.0 | 750 | 0.5682 | 0.8911 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
elliotthwang/KimLan-3.2-3B
elliotthwang
2024-11-06T12:15:09Z
131
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T12:08:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
paipaimask/paipai_qwen_2-7B-it_04
paipaimask
2024-11-06T12:06:41Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T10:47:53Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - krx license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** paipaimask - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
superllms/Qwen2.5-7B-Instruct_906de368
superllms
2024-11-06T12:01:32Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "krx", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T11:42:47Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - krx license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** superllms - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
usmanyaqoob/xlm-roberta-base-finetuned-panx-de
usmanyaqoob
2024-11-06T12:00:33Z
135
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-10-27T16:17:22Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1299 - F1: 0.8683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2569 | 1.0 | 525 | 0.1567 | 0.8133 | | 0.1308 | 2.0 | 1050 | 0.1372 | 0.8526 | | 0.0821 | 3.0 | 1575 | 0.1299 | 0.8683 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf
RichardErkhov
2024-11-06T11:57:00Z
21
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T08:28:37Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) deep-solar-v2.0.7 - GGUF - Model creator: https://huggingface.co/Deepnoid/ - Original model: https://huggingface.co/Deepnoid/deep-solar-v2.0.7/ | Name | Quant method | Size | | ---- | ---- | ---- | | [deep-solar-v2.0.7.Q2_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q2_K.gguf) | Q2_K | 3.73GB | | [deep-solar-v2.0.7.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [deep-solar-v2.0.7.Q3_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q3_K.gguf) | Q3_K | 4.84GB | | [deep-solar-v2.0.7.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [deep-solar-v2.0.7.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [deep-solar-v2.0.7.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [deep-solar-v2.0.7.Q4_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q4_0.gguf) | Q4_0 | 5.66GB | | [deep-solar-v2.0.7.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [deep-solar-v2.0.7.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [deep-solar-v2.0.7.Q4_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q4_K.gguf) | Q4_K | 6.02GB | | [deep-solar-v2.0.7.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [deep-solar-v2.0.7.Q4_1.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q4_1.gguf) | Q4_1 | 6.27GB | | [deep-solar-v2.0.7.Q5_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q5_0.gguf) | Q5_0 | 6.89GB | | [deep-solar-v2.0.7.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [deep-solar-v2.0.7.Q5_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q5_K.gguf) | Q5_K | 7.08GB | | [deep-solar-v2.0.7.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [deep-solar-v2.0.7.Q5_1.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q5_1.gguf) | Q5_1 | 7.51GB | | [deep-solar-v2.0.7.Q6_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q6_K.gguf) | Q6_K | 8.2GB | | [deep-solar-v2.0.7.Q8_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-v2.0.7-gguf/blob/main/deep-solar-v2.0.7.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: apache-2.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
mradermacher/Eclipse-13B-i1-GGUF
mradermacher
2024-11-06T11:56:11Z
29
0
transformers
[ "transformers", "gguf", "mistral", "Eclipse-7B", "en", "base_model:Xenon1/Eclipse-13B", "base_model:quantized:Xenon1/Eclipse-13B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-05T23:35:33Z
--- base_model: Xenon1/Eclipse-13B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mistral - Eclipse-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Xenon1/Eclipse-13B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Eclipse-13B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 7.4 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 7.4 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 7.4 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_0.gguf) | i1-Q4_0 | 7.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/Eclipse-13B-i1-GGUF/resolve/main/Eclipse-13B.i1-Q6_K.gguf) | i1-Q6_K | 10.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF
featherless-ai-quants
2024-11-06T11:53:40Z
10
0
null
[ "gguf", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T10:21:41Z
--- base_model: tokyotech-llm-Llama-3-Swallow-8B-v0.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # tokyotech-llm-Llama-3-Swallow-8B-v0.1 GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/tokyotech-llm-Llama-3-Swallow-8B-v0.1-GGUF/blob/main/tokyotech-llm-Llama-3-Swallow-8B-v0.1-Q8_0.gguf) | 8145.11 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
nishhaaann/bertTunedBoxA
nishhaaann
2024-11-06T11:53:11Z
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T11:52:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Primeness/deeznootz013
Primeness
2024-11-06T11:44:44Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T10:40:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sairanaz/finetuning-sentiment-model-3000-samples
sairanaz
2024-11-06T11:43:35Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T10:18:02Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3324 - Accuracy: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
MaziyarPanahi/WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF
MaziyarPanahi
2024-11-06T11:42:23Z
28
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305", "base_model:quantized:RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305", "region:us", "conversational" ]
text-generation
2024-11-06T11:19:43Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF base_model: RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305 inference: false model_creator: RicardoLee pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF](https://huggingface.co/MaziyarPanahi/WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF) - Model creator: [RicardoLee](https://huggingface.co/RicardoLee) - Original model: [RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305](https://huggingface.co/RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305) ## Description [MaziyarPanahi/WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF](https://huggingface.co/MaziyarPanahi/WASSA2024_EmpathyDetection_Chinchunmei_EXP305-GGUF) contains GGUF format model files for [RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305](https://huggingface.co/RicardoLee/WASSA2024_EmpathyDetection_Chinchunmei_EXP305). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
Mykes/med_ner_SDDCS
Mykes
2024-11-06T11:33:36Z
19
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "biology", "medical", "ru", "dataset:Mykes/patient_queries_ner_SDDCS", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-03T20:37:12Z
--- base_model: - google-bert/bert-base-multilingual-uncased datasets: - Mykes/patient_queries_ner_SDDCS language: - ru library_name: transformers pipeline_tag: token-classification tags: - biology - medical --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63565a3d58acee56a457f799/MqL0twwg_1DWKN7taDvQy.jpeg) # med_ner_SDDCS SDDCS - abbreviation for ner-entities SYMPTOMS, DISEASES, DRUGS, CITIES, SUBWAY STATIONS (additionall it is able to predict GENDER and AGE entities) This is a fine-tuned Named Entity Recognition (NER) model based on the [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) model, designed to detect russian medical entities like diseases, drugs, symptoms, and more. # Model Details - Model Name: med_ner_SDDCS - Base Model: Babelscape/wikineural-multilingual-ner - Fine-tuned on: Medical NER data ## Entities Recognized: - GENDER (e.g., женщина, мужчина) - DISEASE (e.g., паническое расстройство, грипп, ...) - SYMPTOM (e.g., тревога, одышка, ...) - SPECIALITY (e.g., невролог, кардиолог, ...) - CITY (e.g., Тула, Москва, Иркутск, ...) - SUBWAY (e.g., Шоссе Энтузиастов, Проспект Мира, ...) - DRUG (e.g., кардиомагнил, ципралекс) - AGE (e.g., ребенок, пожилой) ## Model Performance The fine-tuned model has achieved the following performance metrics: ``` precision recall f1-score support AGE 0.99 1.00 0.99 706 CITY 0.99 1.00 1.00 2370 DISEASE 0.99 1.00 0.99 4841 DRUG 0.99 1.00 0.99 4546 GENDER 0.99 1.00 1.00 476 SPECIALITY 0.98 0.96 0.97 3673 SUBWAY 1.00 1.00 1.00 658 SYMPTOM 0.99 0.99 0.99 8022 micro avg 0.99 0.99 0.99 25292 macro avg 0.99 0.99 0.99 25292 weighted avg 0.99 0.99 0.99 25292 How to Use ``` You can use this model with the transformers library to perform Named Entity Recognition (NER) tasks in the russian medical domain, mainly for patient queries. Here's how to load and use the model: # Load the tokenizer and model ``` from transformers import pipeline pipe = pipeline(task="ner", model='Mykes/med_ner_SDDCS', tokenizer='Mykes/med_ner_SDDCS', aggregation_strategy="max") # I made the misspelled words on purpose query = "У ребенка треога и норушения сна, потеря сознания, раньше ставили паническое расстройство. Подскажи хорошего психотервта в районе метро Октбрьской." pipe(query.lower()) ``` Result: ``` [{'entity_group': 'AGE', 'score': 0.9992663, 'word': 'ребенка', 'start': 2, 'end': 9}, {'entity_group': 'SYMPTOM', 'score': 0.9997758, 'word': 'треога', 'start': 10, 'end': 16}, {'entity_group': 'SYMPTOM', 'score': 0.9997876, 'word': 'норушения сна', 'start': 19, 'end': 32}, {'entity_group': 'SYMPTOM', 'score': 0.999773, 'word': 'потеря сознания', 'start': 34, 'end': 49}, {'entity_group': 'DISEASE', 'score': 0.9996424, 'word': 'паническое расстройство', 'start': 66, 'end': 89}, {'entity_group': 'SUBWAY', 'score': 0.99918646, 'word': 'октбрьской', 'start': 136, 'end': 146}] ``` ## Code for visualization ``` import spacy from spacy import displacy def convert_to_displacy_format(text, ner_results): entities = [] for result in ner_results: # Convert the Hugging Face output into the format displacy expects entities.append({ "start": result['start'], "end": result['end'], "label": result['entity_group'] }) return { "text": text, "ents": entities, "title": None } query = "У ребенка треога и норушения сна, потеря сознания, раньше ставили паническое расстройство. Подскажи хорошего психиатра в районе метро Октбрьской." ner_results = pipe(query.lower()) displacy_data = convert_to_displacy_format(query, ner_results) colors = { "SPECIALITY": "linear-gradient(90deg, #aa9cfc, #fc9ce7)", "CITY": "linear-gradient(90deg, #feca57, #ff9f43)", "DRUG": "linear-gradient(90deg, #55efc4, #81ecec)", "DISEASE": "linear-gradient(90deg, #fab1a0, #ff7675)", "SUBWAY": "linear-gradient(90deg, #00add0, #0039a6)", "AGE": "linear-gradient(90deg, #f39c12, #e67e22)", "SYMPTOM": "linear-gradient(90deg, #e74c3c, #c0392b)" } options = {"ents": ["SPECIALITY", "CITY", "DRUG", "DISEASE", "SYMPTOM", "AGE", "SUBWAY"], "colors": colors} html = displacy.render(displacy_data, style="ent", manual=True, options=options, jupyter=False) with open("ner_visualization_with_colors.html", "w", encoding="utf-8") as f: f.write(html) from IPython.display import display, HTML display(HTML(html)) ```
atocadocoelhodealice/ai-metaglasses
atocadocoelhodealice
2024-11-06T11:32:56Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-06T04:01:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AIMETAGLASSES --- # Ai Metaglasses <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AIMETAGLASSES` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('atocadocoelhodealice/ai-metaglasses', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ProfessorSeemo/cyberattack-pattern-detector
ProfessorSeemo
2024-11-06T11:27:23Z
117
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-05T18:07:25Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: cyberattack-pattern-detector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cyberattack-pattern-detector This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Tokenizers 0.19.1
mirzabeg14/finetuning-sentiment-model-3000-samples
mirzabeg14
2024-11-06T11:19:13Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T10:32:26Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3497 - Accuracy: 0.86 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
lm-kit/nomic-embed-text-1.5
lm-kit
2024-11-06T11:17:16Z
337
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2024-11-05T14:22:55Z
--- license: apache-2.0 --- ## Model Summary This repository hosts quantized versions of the nomic-embed-text-v1.5 embedding model. **Format:** GGUF **Converter:** llama.cpp 94d8cb8be13b7c4d04eeca5a2b956b9148e6f222 **Quantizer:** LM-Kit.NET 2024.11.1 For more detailed information on the base model, please visit the following links - [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF
mradermacher
2024-11-06T11:07:12Z
22
0
transformers
[ "transformers", "gguf", "en", "dataset:lodrick-the-lafted/Hermes-40K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "base_model:lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B", "base_model:quantized:lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T06:12:07Z
--- base_model: lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B datasets: - lodrick-the-lafted/Hermes-40K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q3_K_S.gguf) | Q3_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q3_K_L.gguf) | Q3_K_L | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.4 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q4_K_M.gguf) | Q4_K_M | 7.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q5_K_S.gguf) | Q5_K_S | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q5_K_M.gguf) | Q5_K_M | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q6_K.gguf) | Q6_K | 10.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Grafted-Hermetic-Platypus-D-2x7B-GGUF/resolve/main/Grafted-Hermetic-Platypus-D-2x7B.Q8_0.gguf) | Q8_0 | 13.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kavish218/enhanced_finetuned_llama_3_2_1B_multi_domain_4
kavish218
2024-11-06T10:59:45Z
98
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-06T10:58:20Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
WeiChow/moge_l_vit
WeiChow
2024-11-06T10:57:40Z
10
0
null
[ "pytorch", "region:us" ]
null
2024-11-06T10:25:24Z
same architecture with [timm/vit_large_patch14_dinov2.lvd142m](https://huggingface.co/timm/vit_large_patch14_dinov2.lvd142m) ```shell git clone https://github.com/microsoft/MoGe.git cd MoGe ``` # translate ```python import torch from moge.model import MoGeModel device = torch.device("cuda") model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device) # ------------------- backbone_state_dict = model.backbone.state_dict() filtered_state_dict = {k: v for k, v in backbone_state_dict.items() if 'mask_token' not in k} torch.save(filtered_state_dict, "pytorch_model.bin") # ------------------- ``` # usage ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hf_hub:WeiChow/moge_l_vit', pretrained=True, num_classes=0, # remove classifier nn.Linear ) # for name, param in model.named_parameters(): # print(f"Parameter: {name} - Size: {param.size()} - Total Elements: {param.numel()}") model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1374, 1024) shaped tensor output = model.forward_head(output, pre_logits=True) print(output) ``` Copyright saved.
kiranshivaraju/swin-tiny-patch4-window7-224-finetuned-aug-pcb
kiranshivaraju
2024-11-06T10:57:27Z
214
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-06T10:48:40Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-aug-pcb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-aug-pcb This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5192 - Accuracy: 0.7465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5945 | 1.0 | 15 | 0.5192 | 0.7465 | | 0.5435 | 2.0 | 30 | 0.4960 | 0.7230 | | 0.5187 | 3.0 | 45 | 0.4820 | 0.7418 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
ngwgsang/bartpho-syllable-large-vimex
ngwgsang
2024-11-06T10:51:51Z
104
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-06T10:50:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
avinasht/gemma-2b-it-QA-Tuned
avinasht
2024-11-06T10:49:30Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-27T18:30:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF
mradermacher
2024-11-06T10:48:15Z
106
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "dataset:practical-dreamer/RPGPT_PublicDomain-alpaca", "dataset:shuyuej/metamath_gsm8k", "dataset:NeuralNovel/Neural-DPO", "base_model:NeuralNovel/Senzu-7B-v0.1-DPO", "base_model:quantized:NeuralNovel/Senzu-7B-v0.1-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-06T09:37:20Z
--- base_model: NeuralNovel/Senzu-7B-v0.1-DPO datasets: - practical-dreamer/RPGPT_PublicDomain-alpaca - shuyuej/metamath_gsm8k - NeuralNovel/Neural-DPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/NeuralNovel/Senzu-7B-v0.1-DPO <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Senzu-7B-v0.1-DPO-i1-GGUF/resolve/main/Senzu-7B-v0.1-DPO.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kaichin/finetuning-sentiment-model-3000-samples
kaichin
2024-11-06T10:45:32Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T10:30:35Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3121 - Accuracy: 0.88 - F1: 0.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf
RichardErkhov
2024-11-06T10:38:24Z
23
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T06:32:55Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) deep-solar-Rev-v3.0.4 - GGUF - Model creator: https://huggingface.co/Deepnoid/ - Original model: https://huggingface.co/Deepnoid/deep-solar-Rev-v3.0.4/ | Name | Quant method | Size | | ---- | ---- | ---- | | [deep-solar-Rev-v3.0.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q2_K.gguf) | Q2_K | 3.73GB | | [deep-solar-Rev-v3.0.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [deep-solar-Rev-v3.0.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q3_K.gguf) | Q3_K | 4.84GB | | [deep-solar-Rev-v3.0.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [deep-solar-Rev-v3.0.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [deep-solar-Rev-v3.0.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [deep-solar-Rev-v3.0.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q4_0.gguf) | Q4_0 | 5.66GB | | [deep-solar-Rev-v3.0.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [deep-solar-Rev-v3.0.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [deep-solar-Rev-v3.0.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q4_K.gguf) | Q4_K | 6.02GB | | [deep-solar-Rev-v3.0.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [deep-solar-Rev-v3.0.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q4_1.gguf) | Q4_1 | 6.27GB | | [deep-solar-Rev-v3.0.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q5_0.gguf) | Q5_0 | 6.89GB | | [deep-solar-Rev-v3.0.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [deep-solar-Rev-v3.0.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q5_K.gguf) | Q5_K | 7.08GB | | [deep-solar-Rev-v3.0.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [deep-solar-Rev-v3.0.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q5_1.gguf) | Q5_1 | 7.51GB | | [deep-solar-Rev-v3.0.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q6_K.gguf) | Q6_K | 8.2GB | | [deep-solar-Rev-v3.0.4.Q8_0.gguf](https://huggingface.co/RichardErkhov/Deepnoid_-_deep-solar-Rev-v3.0.4-gguf/blob/main/deep-solar-Rev-v3.0.4.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: apache-2.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
cuongdev/tonghop-v3-5000
cuongdev
2024-11-06T10:36:54Z
29
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-11-06T10:32:57Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### tonghop-v3-5000 Dreambooth model trained by cuongdev with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
nishhaaann/dbTuneDemo
nishhaaann
2024-11-06T10:33:25Z
163
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-06T06:28:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
neopolita/toolace-8b-gguf
neopolita
2024-11-06T10:31:04Z
18
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-06T09:58:44Z
--- {} --- # GGUF quants for [**Team-ACE/ToolACE-8B**](https://huggingface.co/Team-ACE/ToolACE-8B) using [llama.cpp](https://github.com/ggerganov/llama.cpp) **Terms of Use**: Please check the [**original model**](https://huggingface.co/Team-ACE/ToolACE-8B) <picture> <img alt="cthulhu" src="https://huggingface.co/neopolita/common/resolve/main/profile.png"> </picture> ## Quants * `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors. * `q3_k_s`: Uses Q3_K for all tensors * `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q4_0`: Original quant method, 4-bit. * `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. * `q4_k_s`: Uses Q4_K for all tensors * `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K * `q5_0`: Higher accuracy, higher resource usage and slower inference. * `q5_1`: Even higher accuracy, resource usage and slower inference. * `q5_k_s`: Uses Q5_K for all tensors * `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K * `q6_k`: Uses Q8_K for all tensors * `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.