modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
Arpan908/Arpan
Arpan908
2024-02-27T05:57:14Z
0
0
null
[ "finance", "summarization", "ae", "dataset:teknium/OpenHermes-2.5", "arxiv:1910.09700", "region:us" ]
summarization
2024-02-27T05:52:56Z
--- datasets: - teknium/OpenHermes-2.5 language: - ae metrics: - bertscore pipeline_tag: summarization tags: - finance --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vyshnavidasa/my-pet-dog
vyshnavidasa
2024-02-27T05:55:27Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-27T05:51:14Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by vyshnavidasa following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/vyshnavidasa/my-pet-dog/resolve/main/sample_images/dog)
anhtranhong/fingpt-mt_llama2-7b_lora_with_fiqa-qa-test
anhtranhong
2024-02-27T05:54:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T05:53:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jsingh/dpo_rlaif_v0.1
jsingh
2024-02-27T05:49:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T05:49:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prava09/my-pet-dog
prava09
2024-02-27T05:48:53Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-27T05:44:44Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by prava09 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/prava09/my-pet-dog/resolve/main/sample_images/dog.jpg)
Annuu/my-pet-dog
Annuu
2024-02-27T05:42:50Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-27T05:38:16Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Annuu following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/Annuu/my-pet-dog/resolve/main/sample_images/xzg.jpg)
bartowski/Senzu-7B-v0.1-DPO-exl2
bartowski
2024-02-27T05:40:37Z
0
1
null
[ "generated_from_trainer", "text-generation", "dataset:practical-dreamer/RPGPT_PublicDomain-alpaca", "dataset:shuyuej/metamath_gsm8k", "dataset:NeuralNovel/Neural-DPO", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
text-generation
2024-02-27T05:25:56Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 datasets: - practical-dreamer/RPGPT_PublicDomain-alpaca - shuyuej/metamath_gsm8k - NeuralNovel/Neural-DPO tags: - generated_from_trainer model-index: - name: out results: [] quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of Senzu-7B-v0.1-DPO Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.14">turboderp's ExLlamaV2 v0.0.14</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/NeuralNovel/Senzu-7B-v0.1-DPO | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Senzu-7B-v0.1-DPO-exl2 Senzu-7B-v0.1-DPO-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Senzu-7B-v0.1-DPO-exl2`: ```shell mkdir Senzu-7B-v0.1-DPO-exl2 huggingface-cli download bartowski/Senzu-7B-v0.1-DPO-exl2 --local-dir Senzu-7B-v0.1-DPO-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir Senzu-7B-v0.1-DPO-exl2-6_5 huggingface-cli download bartowski/Senzu-7B-v0.1-DPO-exl2 --revision 6_5 --local-dir Senzu-7B-v0.1-DPO-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir Senzu-7B-v0.1-DPO-exl2-6.5 huggingface-cli download bartowski/Senzu-7B-v0.1-DPO-exl2 --revision 6_5 --local-dir Senzu-7B-v0.1-DPO-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
LinWeizheDragon/PreFLMR_ViT-L
LinWeizheDragon
2024-02-27T05:35:20Z
1,124
1
transformers
[ "transformers", "safetensors", "flmr", "feature-extraction", "retrieval", "multi-modal", "knowledge-based visual question answering", "FLMR", "PreFLMR", "custom_code", "en", "arxiv:2402.08327", "license:mit", "region:us" ]
feature-extraction
2024-02-20T02:11:20Z
--- library_name: transformers license: mit language: - en tags: - retrieval - multi-modal - knowledge-based visual question answering - FLMR - PreFLMR --- # PreFLMR model card PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus. ## Model Details ### Model Description - **Model type:** FLMRModelForRetrieval - **Language(s) (NLP):** English - **License:** MIT License ### Paper and resources for more detail - **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/ - **Paper:** https://arxiv.org/abs/2402.08327 - **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/ - **Repository:** https://github.com/LinWeizheDragon/FLMR - **Project Page:** https://preflmr.github.io/ ## Uses ### Direct Use This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval usage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR). ### Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> This model can be used combined with language models to create a retrieval-augmented language model. The use for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering) ## How to Get Started with the Model For details of training, indexing, and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR). ## Training datasets The model is pre-trained on three types of tasks with a total of nine datasets: 1. Image to Text retrieval: WIT, KVQA, and CC3M 2. Question to Text retrieval: MSMARCO 3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon. ## Evaluation datasets We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO. | Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT | LLaVA | OVEN | KVQA | IGLUE | Infoseek | E-VQA | OKVQA | MSMARCO | |---------|----------------|--------------|-------------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------|-------|--------|-------| | PreFLMR | ViT-B | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-B](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B) | 327M | 41.7 | 67.2 | 46.3 | 28.6 | 57.3 | 48.8 | 67.9 | 66.1 | 79.5 | | PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 71.8 | 59.8 | 43.6 | 69.2 | 57.9 | 70.8 | 68.5 | 78.7 | | PreFLMR | ViT-G | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) | 2.1B | 61.5 | 72.4 | 63.4 | 42.1 |71.5 | 59.6 | 73.1 | 68.6 | 78.6 | For the evaluation metrics, WIT uses Recall@10, IGLUE uses Recall@1, and all the rest datasets use Recall@5. ## Citation **BibTeX:** ``` @article{Lin_Mei_Chen_Byrne_2024, title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers}, url={http://arxiv.org/abs/2402.08327}, number={arXiv:2402.08327}, publisher={arXiv}, author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill}, year={2024}} ```
Abyuday/my-pet-dog
Abyuday
2024-02-27T05:34:15Z
2
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-27T05:29:52Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Abyuday following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/Abyuday/my-pet-dog/resolve/main/sample_images/abd.webp)
htp40400/Reinforce-pixelcopter-v1
htp40400
2024-02-27T05:33:56Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T05:33:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.00 +/- 13.51 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
angel450/KoAlpaca-Polyglot-5.8B-kra-LoRA
angel450
2024-02-27T05:31:00Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-26T11:16:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Prateekjain24/autotrain-fco56-qnzow
Prateekjain24
2024-02-27T05:28:04Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-02-27T05:28:01Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Propertyguru marketing banner tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Preethi1234/my-pet-dog
Preethi1234
2024-02-27T05:18:54Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-27T05:08:55Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Preethi1234 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/Preethi1234/my-pet-dog/resolve/main/sample_images/Screenshot_(1).png)
Dangurangu/LaBSE-masakhane-news-finetuned-shona
Dangurangu
2024-02-27T05:16:10Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2024-02-27T05:05:04Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # LaBSE-masakhane-news-finetuned-shona This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("LaBSE-masakhane-news-finetuned-shona") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
DimalChathuranga/bert-finetuned-ner
DimalChathuranga
2024-02-27T05:10:00Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-27T04:38:26Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0563 - Precision: 0.9290 - Recall: 0.9487 - F1: 0.9387 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0776 | 1.0 | 1756 | 0.0800 | 0.9070 | 0.9310 | 0.9189 | 0.9790 | | 0.0399 | 2.0 | 3512 | 0.0577 | 0.9239 | 0.9458 | 0.9347 | 0.9849 | | 0.0264 | 3.0 | 5268 | 0.0563 | 0.9290 | 0.9487 | 0.9387 | 0.9863 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.2
khaterm/fine_tuned_sparql_model2
khaterm
2024-02-27T04:58:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T04:58:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
evannaderi/distilbert-base-uncased-finetuned-emotion
evannaderi
2024-02-27T04:52:41Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-27T01:48:52Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.933 - name: F1 type: f1 value: 0.932933898333218 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.933 - F1: 0.9329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.1706 | 0.9265 | 0.9265 | | No log | 2.0 | 500 | 0.1561 | 0.933 | 0.9329 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
Evgeny105/my_model_e3
Evgeny105
2024-02-27T04:45:22Z
106
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-27T03:27:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pankaj-munde/pixel_peft_model-new
pankaj-munde
2024-02-27T04:43:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T04:43:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pankaj-munde/toy_peft_model-new
pankaj-munde
2024-02-27T04:42:56Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T04:42:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imagepipeline/Logo.Redmond-XL
imagepipeline
2024-02-27T04:41:55Z
0
0
null
[ "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-27T04:41:47Z
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## Logo.Redmond-XL <img src="" alt="Generated on Image Pipeline" style="border-radius: 10px;"> **This lora model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - LOGO LORA [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/Logo.Redmond-XL?id=829471ee-11b8-402f-b3cb-ff87fe4bc911/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sdxl/text2image/v1/run" payload = json.dumps({ "model_id": "sdxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "829471ee-11b8-402f-b3cb-ff87fe4bc911", "lora_weights": "0.5" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sdxl/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at hello@imagepipeline.io #### 🔗 Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
smahns/astrollama
smahns
2024-02-27T04:38:55Z
1
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-13b-chat-hf", "base_model:adapter:meta-llama/Llama-2-13b-chat-hf", "region:us" ]
null
2024-02-27T04:38:52Z
--- library_name: peft tags: - trl - dpo - generated_from_trainer base_model: meta-llama/Llama-2-13b-chat-hf model-index: - name: astrollama results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # astrollama This model is a fine-tuned version of [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - training_steps: 2000 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.1 - Pytorch 2.1.0.dev20230605+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
mins0o0/transforemr_16
mins0o0
2024-02-27T04:26:42Z
98
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-27T04:26:10Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: transforemr_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transforemr_16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 - Bleu: 8.6082 - Gen Len: 17.5647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8767 | 1.0 | 6355 | 1.6443 | 7.2826 | 17.6214 | | 1.7864 | 2.0 | 12710 | 1.5863 | 7.7743 | 17.5883 | | 1.7465 | 3.0 | 19065 | 1.5544 | 8.0399 | 17.5689 | | 1.7034 | 4.0 | 25420 | 1.5304 | 8.1983 | 17.5708 | | 1.6912 | 5.0 | 31775 | 1.5148 | 8.3483 | 17.5603 | | 1.6652 | 6.0 | 38130 | 1.5022 | 8.4549 | 17.5658 | | 1.6534 | 7.0 | 44485 | 1.4951 | 8.5235 | 17.563 | | 1.6615 | 8.0 | 50840 | 1.4884 | 8.562 | 17.5624 | | 1.6426 | 9.0 | 57195 | 1.4854 | 8.5932 | 17.5643 | | 1.6451 | 10.0 | 63550 | 1.4841 | 8.6082 | 17.5647 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0 - Datasets 2.17.1 - Tokenizers 0.15.2
ibrahimahmood/segformer-b0-finetuned-pidray-segments
ibrahimahmood
2024-02-27T04:22:26Z
189
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-19T07:42:15Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-pidray-segments results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-pidray-segments This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the jaradat/pidray-semantics dataset. It achieves the following results on the evaluation set: - Loss: 0.2957 - Mean Iou: 0.3964 - Mean Accuracy: 0.7929 - Overall Accuracy: 0.7929 - Accuracy Baton: nan - Accuracy Pliers: 0.7929 - Accuracy Hammer: nan - Accuracy Powerbank: nan - Accuracy Scissors: nan - Accuracy Wrench: nan - Accuracy Gun: nan - Accuracy Bullet: nan - Accuracy Sprayer: nan - Accuracy Handcuffs: nan - Accuracy Knife: nan - Accuracy Lighter: nan - Iou Baton: 0.0 - Iou Pliers: 0.7929 - Iou Hammer: nan - Iou Powerbank: nan - Iou Scissors: nan - Iou Wrench: nan - Iou Gun: nan - Iou Bullet: nan - Iou Sprayer: nan - Iou Handcuffs: nan - Iou Knife: nan - Iou Lighter: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Baton | Accuracy Pliers | Accuracy Hammer | Accuracy Powerbank | Accuracy Scissors | Accuracy Wrench | Accuracy Gun | Accuracy Bullet | Accuracy Sprayer | Accuracy Handcuffs | Accuracy Knife | Accuracy Lighter | Iou Baton | Iou Pliers | Iou Hammer | Iou Powerbank | Iou Scissors | Iou Wrench | Iou Gun | Iou Bullet | Iou Sprayer | Iou Handcuffs | Iou Knife | Iou Lighter | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-----------------:|:---------------:|:------------:|:---------------:|:----------------:|:------------------:|:--------------:|:----------------:|:---------:|:----------:|:----------:|:-------------:|:------------:|:----------:|:-------:|:----------:|:-----------:|:-------------:|:---------:|:-----------:| | 0.0583 | 0.5 | 20 | 0.1593 | 0.3956 | 0.7913 | 0.7913 | nan | 0.7913 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7913 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0374 | 1.0 | 40 | 0.1574 | 0.3840 | 0.7680 | 0.7680 | nan | 0.7680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7680 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0231 | 1.5 | 60 | 0.1546 | 0.4221 | 0.8443 | 0.8443 | nan | 0.8443 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8443 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1145 | 2.0 | 80 | 0.1491 | 0.4087 | 0.8174 | 0.8174 | nan | 0.8174 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8174 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.042 | 2.5 | 100 | 0.1537 | 0.4084 | 0.8168 | 0.8168 | nan | 0.8168 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8168 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0914 | 3.0 | 120 | 0.1718 | 0.3960 | 0.7920 | 0.7920 | nan | 0.7920 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7920 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0292 | 3.5 | 140 | 0.1526 | 0.3946 | 0.7891 | 0.7891 | nan | 0.7891 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7891 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0326 | 4.0 | 160 | 0.1557 | 0.3947 | 0.7895 | 0.7895 | nan | 0.7895 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7895 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0255 | 4.5 | 180 | 0.1555 | 0.4027 | 0.8055 | 0.8055 | nan | 0.8055 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8055 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0993 | 5.0 | 200 | 0.1742 | 0.3780 | 0.7561 | 0.7561 | nan | 0.7561 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7561 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0187 | 5.5 | 220 | 0.1466 | 0.3961 | 0.7923 | 0.7923 | nan | 0.7923 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7923 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0338 | 6.0 | 240 | 0.1673 | 0.4202 | 0.8403 | 0.8403 | nan | 0.8403 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8403 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.024 | 6.5 | 260 | 0.1798 | 0.4196 | 0.8392 | 0.8392 | nan | 0.8392 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8392 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0354 | 7.0 | 280 | 0.1829 | 0.4008 | 0.8016 | 0.8016 | nan | 0.8016 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8016 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0297 | 7.5 | 300 | 0.1861 | 0.4138 | 0.8276 | 0.8276 | nan | 0.8276 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8276 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0452 | 8.0 | 320 | 0.1759 | 0.3796 | 0.7593 | 0.7593 | nan | 0.7593 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7593 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0341 | 8.5 | 340 | 0.1689 | 0.4145 | 0.8289 | 0.8289 | nan | 0.8289 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8289 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0218 | 9.0 | 360 | 0.1623 | 0.4019 | 0.8039 | 0.8039 | nan | 0.8039 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8039 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.018 | 9.5 | 380 | 0.1724 | 0.3974 | 0.7947 | 0.7947 | nan | 0.7947 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7947 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0265 | 10.0 | 400 | 0.1544 | 0.4123 | 0.8245 | 0.8245 | nan | 0.8245 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8245 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0529 | 10.5 | 420 | 0.1754 | 0.3957 | 0.7915 | 0.7915 | nan | 0.7915 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7915 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.054 | 11.0 | 440 | 0.2007 | 0.3811 | 0.7622 | 0.7622 | nan | 0.7622 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7622 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0182 | 11.5 | 460 | 0.1723 | 0.3874 | 0.7747 | 0.7747 | nan | 0.7747 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7747 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0289 | 12.0 | 480 | 0.1668 | 0.4180 | 0.8360 | 0.8360 | nan | 0.8360 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8360 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0157 | 12.5 | 500 | 0.1788 | 0.3752 | 0.7504 | 0.7504 | nan | 0.7504 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7504 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0156 | 13.0 | 520 | 0.1649 | 0.3936 | 0.7871 | 0.7871 | nan | 0.7871 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7871 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0396 | 13.5 | 540 | 0.1771 | 0.4034 | 0.8068 | 0.8068 | nan | 0.8068 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8068 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.034 | 14.0 | 560 | 0.1767 | 0.4066 | 0.8132 | 0.8132 | nan | 0.8132 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8132 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0273 | 14.5 | 580 | 0.1668 | 0.4068 | 0.8136 | 0.8136 | nan | 0.8136 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8136 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0221 | 15.0 | 600 | 0.1635 | 0.4125 | 0.8250 | 0.8250 | nan | 0.8250 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8250 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0189 | 15.5 | 620 | 0.1886 | 0.4045 | 0.8091 | 0.8091 | nan | 0.8091 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8091 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0201 | 16.0 | 640 | 0.1736 | 0.3985 | 0.7970 | 0.7970 | nan | 0.7970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0328 | 16.5 | 660 | 0.1776 | 0.3889 | 0.7778 | 0.7778 | nan | 0.7778 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7778 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0368 | 17.0 | 680 | 0.1925 | 0.4113 | 0.8227 | 0.8227 | nan | 0.8227 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8227 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0185 | 17.5 | 700 | 0.1857 | 0.3852 | 0.7705 | 0.7705 | nan | 0.7705 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7705 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0224 | 18.0 | 720 | 0.1763 | 0.3972 | 0.7943 | 0.7943 | nan | 0.7943 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7943 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0204 | 18.5 | 740 | 0.1955 | 0.3912 | 0.7823 | 0.7823 | nan | 0.7823 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7823 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0162 | 19.0 | 760 | 0.1896 | 0.3985 | 0.7970 | 0.7970 | nan | 0.7970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7970 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0672 | 19.5 | 780 | 0.1873 | 0.3994 | 0.7987 | 0.7987 | nan | 0.7987 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7987 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0222 | 20.0 | 800 | 0.1932 | 0.3916 | 0.7831 | 0.7831 | nan | 0.7831 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7831 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0168 | 20.5 | 820 | 0.2070 | 0.3984 | 0.7967 | 0.7967 | nan | 0.7967 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7967 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.017 | 21.0 | 840 | 0.1964 | 0.4081 | 0.8161 | 0.8161 | nan | 0.8161 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8161 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0161 | 21.5 | 860 | 0.1972 | 0.3954 | 0.7908 | 0.7908 | nan | 0.7908 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7908 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0104 | 22.0 | 880 | 0.2017 | 0.3901 | 0.7803 | 0.7803 | nan | 0.7803 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7803 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0455 | 22.5 | 900 | 0.1981 | 0.4025 | 0.8050 | 0.8050 | nan | 0.8050 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8050 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.015 | 23.0 | 920 | 0.2073 | 0.4017 | 0.8035 | 0.8035 | nan | 0.8035 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8035 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.02 | 23.5 | 940 | 0.2105 | 0.3891 | 0.7781 | 0.7781 | nan | 0.7781 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7781 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0223 | 24.0 | 960 | 0.2260 | 0.3833 | 0.7666 | 0.7666 | nan | 0.7666 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7666 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0308 | 24.5 | 980 | 0.2174 | 0.3918 | 0.7837 | 0.7837 | nan | 0.7837 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7837 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0168 | 25.0 | 1000 | 0.1956 | 0.4058 | 0.8116 | 0.8116 | nan | 0.8116 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8116 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.01 | 25.5 | 1020 | 0.2042 | 0.4122 | 0.8243 | 0.8243 | nan | 0.8243 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8243 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0215 | 26.0 | 1040 | 0.2018 | 0.4107 | 0.8214 | 0.8214 | nan | 0.8214 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8214 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0138 | 26.5 | 1060 | 0.2072 | 0.3979 | 0.7958 | 0.7958 | nan | 0.7958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0123 | 27.0 | 1080 | 0.2046 | 0.4072 | 0.8145 | 0.8145 | nan | 0.8145 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8145 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0172 | 27.5 | 1100 | 0.2095 | 0.3896 | 0.7792 | 0.7792 | nan | 0.7792 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7792 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0201 | 28.0 | 1120 | 0.1979 | 0.3994 | 0.7988 | 0.7988 | nan | 0.7988 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7988 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.013 | 28.5 | 1140 | 0.1970 | 0.3994 | 0.7988 | 0.7988 | nan | 0.7988 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7988 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0389 | 29.0 | 1160 | 0.2140 | 0.4001 | 0.8002 | 0.8002 | nan | 0.8002 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8002 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0125 | 29.5 | 1180 | 0.2060 | 0.4009 | 0.8019 | 0.8019 | nan | 0.8019 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8019 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0337 | 30.0 | 1200 | 0.2070 | 0.3817 | 0.7634 | 0.7634 | nan | 0.7634 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7634 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0189 | 30.5 | 1220 | 0.2292 | 0.3755 | 0.7510 | 0.7510 | nan | 0.7510 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7510 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.018 | 31.0 | 1240 | 0.2162 | 0.3843 | 0.7685 | 0.7685 | nan | 0.7685 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7685 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0164 | 31.5 | 1260 | 0.2154 | 0.3978 | 0.7956 | 0.7956 | nan | 0.7956 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7956 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0112 | 32.0 | 1280 | 0.2161 | 0.4061 | 0.8123 | 0.8123 | nan | 0.8123 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8123 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0484 | 32.5 | 1300 | 0.2174 | 0.4127 | 0.8253 | 0.8253 | nan | 0.8253 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8253 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0176 | 33.0 | 1320 | 0.2085 | 0.4054 | 0.8108 | 0.8108 | nan | 0.8108 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8108 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0078 | 33.5 | 1340 | 0.2135 | 0.4011 | 0.8023 | 0.8023 | nan | 0.8023 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8023 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0196 | 34.0 | 1360 | 0.2199 | 0.4015 | 0.8030 | 0.8030 | nan | 0.8030 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8030 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.01 | 34.5 | 1380 | 0.2166 | 0.4058 | 0.8117 | 0.8117 | nan | 0.8117 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8117 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.017 | 35.0 | 1400 | 0.2173 | 0.3916 | 0.7831 | 0.7831 | nan | 0.7831 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7831 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0219 | 35.5 | 1420 | 0.2232 | 0.3929 | 0.7857 | 0.7857 | nan | 0.7857 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7857 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.049 | 36.0 | 1440 | 0.2130 | 0.3938 | 0.7875 | 0.7875 | nan | 0.7875 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7875 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0248 | 36.5 | 1460 | 0.2146 | 0.3966 | 0.7932 | 0.7932 | nan | 0.7932 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7932 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0155 | 37.0 | 1480 | 0.2431 | 0.4145 | 0.8289 | 0.8289 | nan | 0.8289 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8289 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0332 | 37.5 | 1500 | 0.2177 | 0.3977 | 0.7953 | 0.7953 | nan | 0.7953 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7953 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0084 | 38.0 | 1520 | 0.2185 | 0.3835 | 0.7669 | 0.7669 | nan | 0.7669 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7669 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0346 | 38.5 | 1540 | 0.2386 | 0.4044 | 0.8087 | 0.8087 | nan | 0.8087 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8087 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0282 | 39.0 | 1560 | 0.2172 | 0.3995 | 0.7990 | 0.7990 | nan | 0.7990 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7990 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0194 | 39.5 | 1580 | 0.2301 | 0.3920 | 0.7839 | 0.7839 | nan | 0.7839 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7839 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0119 | 40.0 | 1600 | 0.2342 | 0.3952 | 0.7904 | 0.7904 | nan | 0.7904 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7904 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0069 | 40.5 | 1620 | 0.2206 | 0.3979 | 0.7957 | 0.7957 | nan | 0.7957 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7957 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0246 | 41.0 | 1640 | 0.2224 | 0.3908 | 0.7816 | 0.7816 | nan | 0.7816 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7816 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0391 | 41.5 | 1660 | 0.2208 | 0.3947 | 0.7894 | 0.7894 | nan | 0.7894 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7894 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0161 | 42.0 | 1680 | 0.2188 | 0.3882 | 0.7765 | 0.7765 | nan | 0.7765 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7765 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0084 | 42.5 | 1700 | 0.2125 | 0.4009 | 0.8018 | 0.8018 | nan | 0.8018 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8018 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0192 | 43.0 | 1720 | 0.2341 | 0.3912 | 0.7823 | 0.7823 | nan | 0.7823 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7823 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0127 | 43.5 | 1740 | 0.2203 | 0.4059 | 0.8119 | 0.8119 | nan | 0.8119 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8119 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0157 | 44.0 | 1760 | 0.2114 | 0.4008 | 0.8017 | 0.8017 | nan | 0.8017 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8017 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0288 | 44.5 | 1780 | 0.2418 | 0.4073 | 0.8146 | 0.8146 | nan | 0.8146 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8146 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0144 | 45.0 | 1800 | 0.2436 | 0.4025 | 0.8050 | 0.8050 | nan | 0.8050 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8050 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0147 | 45.5 | 1820 | 0.2446 | 0.4095 | 0.8190 | 0.8190 | nan | 0.8190 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8190 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0137 | 46.0 | 1840 | 0.2430 | 0.3973 | 0.7947 | 0.7947 | nan | 0.7947 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7947 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0098 | 46.5 | 1860 | 0.2298 | 0.3904 | 0.7808 | 0.7808 | nan | 0.7808 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7808 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0164 | 47.0 | 1880 | 0.2238 | 0.3999 | 0.7998 | 0.7998 | nan | 0.7998 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7998 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0097 | 47.5 | 1900 | 0.2449 | 0.3988 | 0.7976 | 0.7976 | nan | 0.7976 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7976 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0069 | 48.0 | 1920 | 0.2391 | 0.3975 | 0.7949 | 0.7949 | nan | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0136 | 48.5 | 1940 | 0.2432 | 0.3917 | 0.7834 | 0.7834 | nan | 0.7834 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7834 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0167 | 49.0 | 1960 | 0.2383 | 0.4070 | 0.8141 | 0.8141 | nan | 0.8141 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8141 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0146 | 49.5 | 1980 | 0.2363 | 0.3941 | 0.7883 | 0.7883 | nan | 0.7883 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7883 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0147 | 50.0 | 2000 | 0.2288 | 0.3947 | 0.7893 | 0.7893 | nan | 0.7893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0109 | 50.5 | 2020 | 0.2538 | 0.4066 | 0.8133 | 0.8133 | nan | 0.8133 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8133 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0132 | 51.0 | 2040 | 0.2370 | 0.4024 | 0.8049 | 0.8049 | nan | 0.8049 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8049 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.1149 | 51.5 | 2060 | 0.2504 | 0.3950 | 0.7901 | 0.7901 | nan | 0.7901 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7901 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0127 | 52.0 | 2080 | 0.2449 | 0.4047 | 0.8094 | 0.8094 | nan | 0.8094 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8094 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.009 | 52.5 | 2100 | 0.2518 | 0.3956 | 0.7912 | 0.7912 | nan | 0.7912 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7912 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0132 | 53.0 | 2120 | 0.2531 | 0.3984 | 0.7968 | 0.7968 | nan | 0.7968 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7968 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0293 | 53.5 | 2140 | 0.2691 | 0.3962 | 0.7924 | 0.7924 | nan | 0.7924 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7924 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0184 | 54.0 | 2160 | 0.2564 | 0.3975 | 0.7949 | 0.7949 | nan | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0342 | 54.5 | 2180 | 0.2490 | 0.3955 | 0.7910 | 0.7910 | nan | 0.7910 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7910 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0124 | 55.0 | 2200 | 0.2617 | 0.3922 | 0.7844 | 0.7844 | nan | 0.7844 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7844 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.012 | 55.5 | 2220 | 0.2415 | 0.4072 | 0.8144 | 0.8144 | nan | 0.8144 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8144 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0162 | 56.0 | 2240 | 0.2455 | 0.4062 | 0.8124 | 0.8124 | nan | 0.8124 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8124 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0134 | 56.5 | 2260 | 0.2488 | 0.3970 | 0.7940 | 0.7940 | nan | 0.7940 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7940 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0221 | 57.0 | 2280 | 0.2533 | 0.3900 | 0.7799 | 0.7799 | nan | 0.7799 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7799 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0064 | 57.5 | 2300 | 0.2505 | 0.3956 | 0.7913 | 0.7913 | nan | 0.7913 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7913 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0181 | 58.0 | 2320 | 0.2649 | 0.3968 | 0.7936 | 0.7936 | nan | 0.7936 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7936 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0358 | 58.5 | 2340 | 0.2569 | 0.3974 | 0.7948 | 0.7948 | nan | 0.7948 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7948 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0081 | 59.0 | 2360 | 0.2517 | 0.3956 | 0.7911 | 0.7911 | nan | 0.7911 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7911 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0174 | 59.5 | 2380 | 0.2654 | 0.3908 | 0.7816 | 0.7816 | nan | 0.7816 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7816 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0257 | 60.0 | 2400 | 0.2634 | 0.4032 | 0.8063 | 0.8063 | nan | 0.8063 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8063 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.018 | 60.5 | 2420 | 0.2744 | 0.3854 | 0.7708 | 0.7708 | nan | 0.7708 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7708 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0114 | 61.0 | 2440 | 0.2569 | 0.3943 | 0.7885 | 0.7885 | nan | 0.7885 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7885 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0348 | 61.5 | 2460 | 0.2688 | 0.3998 | 0.7997 | 0.7997 | nan | 0.7997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.012 | 62.0 | 2480 | 0.2712 | 0.3909 | 0.7819 | 0.7819 | nan | 0.7819 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7819 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0078 | 62.5 | 2500 | 0.2749 | 0.3920 | 0.7841 | 0.7841 | nan | 0.7841 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7841 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0209 | 63.0 | 2520 | 0.2561 | 0.3911 | 0.7821 | 0.7821 | nan | 0.7821 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7821 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0105 | 63.5 | 2540 | 0.2623 | 0.3995 | 0.7990 | 0.7990 | nan | 0.7990 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7990 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0136 | 64.0 | 2560 | 0.2654 | 0.3937 | 0.7874 | 0.7874 | nan | 0.7874 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7874 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0073 | 64.5 | 2580 | 0.2670 | 0.3963 | 0.7926 | 0.7926 | nan | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0182 | 65.0 | 2600 | 0.2659 | 0.3935 | 0.7870 | 0.7870 | nan | 0.7870 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7870 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0154 | 65.5 | 2620 | 0.2665 | 0.3952 | 0.7903 | 0.7903 | nan | 0.7903 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7903 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0061 | 66.0 | 2640 | 0.2752 | 0.3963 | 0.7926 | 0.7926 | nan | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0115 | 66.5 | 2660 | 0.2866 | 0.3983 | 0.7967 | 0.7967 | nan | 0.7967 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7967 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0084 | 67.0 | 2680 | 0.2819 | 0.3944 | 0.7888 | 0.7888 | nan | 0.7888 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7888 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0115 | 67.5 | 2700 | 0.2871 | 0.3922 | 0.7844 | 0.7844 | nan | 0.7844 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7844 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0072 | 68.0 | 2720 | 0.2792 | 0.4044 | 0.8088 | 0.8088 | nan | 0.8088 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8088 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0102 | 68.5 | 2740 | 0.2836 | 0.3892 | 0.7783 | 0.7783 | nan | 0.7783 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7783 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0115 | 69.0 | 2760 | 0.2698 | 0.3944 | 0.7887 | 0.7887 | nan | 0.7887 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7887 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0126 | 69.5 | 2780 | 0.2790 | 0.3972 | 0.7944 | 0.7944 | nan | 0.7944 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7944 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0055 | 70.0 | 2800 | 0.2846 | 0.3963 | 0.7927 | 0.7927 | nan | 0.7927 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7927 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0205 | 70.5 | 2820 | 0.2766 | 0.3999 | 0.7997 | 0.7997 | nan | 0.7997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7997 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0184 | 71.0 | 2840 | 0.2876 | 0.3924 | 0.7847 | 0.7847 | nan | 0.7847 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7847 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.015 | 71.5 | 2860 | 0.2900 | 0.3954 | 0.7908 | 0.7908 | nan | 0.7908 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7908 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0163 | 72.0 | 2880 | 0.2721 | 0.3997 | 0.7993 | 0.7993 | nan | 0.7993 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7993 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0121 | 72.5 | 2900 | 0.2840 | 0.4007 | 0.8013 | 0.8013 | nan | 0.8013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8013 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0162 | 73.0 | 2920 | 0.2732 | 0.3960 | 0.7919 | 0.7919 | nan | 0.7919 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7919 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0102 | 73.5 | 2940 | 0.2870 | 0.4009 | 0.8017 | 0.8017 | nan | 0.8017 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8017 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0101 | 74.0 | 2960 | 0.2752 | 0.4035 | 0.8070 | 0.8070 | nan | 0.8070 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8070 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0113 | 74.5 | 2980 | 0.2781 | 0.4010 | 0.8020 | 0.8020 | nan | 0.8020 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8020 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0351 | 75.0 | 3000 | 0.2847 | 0.3995 | 0.7991 | 0.7991 | nan | 0.7991 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7991 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0096 | 75.5 | 3020 | 0.2767 | 0.3947 | 0.7894 | 0.7894 | nan | 0.7894 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7894 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0135 | 76.0 | 3040 | 0.2712 | 0.3979 | 0.7958 | 0.7958 | nan | 0.7958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7958 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0062 | 76.5 | 3060 | 0.2697 | 0.3890 | 0.7780 | 0.7780 | nan | 0.7780 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7780 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.012 | 77.0 | 3080 | 0.2888 | 0.4004 | 0.8008 | 0.8008 | nan | 0.8008 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8008 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0072 | 77.5 | 3100 | 0.2763 | 0.3999 | 0.7998 | 0.7998 | nan | 0.7998 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7998 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0085 | 78.0 | 3120 | 0.2748 | 0.4016 | 0.8033 | 0.8033 | nan | 0.8033 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8033 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0065 | 78.5 | 3140 | 0.2864 | 0.4006 | 0.8012 | 0.8012 | nan | 0.8012 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8012 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0395 | 79.0 | 3160 | 0.2758 | 0.4026 | 0.8053 | 0.8053 | nan | 0.8053 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.8053 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0172 | 79.5 | 3180 | 0.2864 | 0.3907 | 0.7814 | 0.7814 | nan | 0.7814 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7814 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0067 | 80.0 | 3200 | 0.2824 | 0.3961 | 0.7922 | 0.7922 | nan | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0106 | 80.5 | 3220 | 0.2919 | 0.3962 | 0.7924 | 0.7924 | nan | 0.7924 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7924 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0076 | 81.0 | 3240 | 0.2936 | 0.3929 | 0.7857 | 0.7857 | nan | 0.7857 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7857 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0128 | 81.5 | 3260 | 0.2857 | 0.3964 | 0.7928 | 0.7928 | nan | 0.7928 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7928 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.006 | 82.0 | 3280 | 0.2797 | 0.3987 | 0.7975 | 0.7975 | nan | 0.7975 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7975 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0121 | 82.5 | 3300 | 0.2934 | 0.3891 | 0.7783 | 0.7783 | nan | 0.7783 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7783 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0057 | 83.0 | 3320 | 0.2842 | 0.3957 | 0.7915 | 0.7915 | nan | 0.7915 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7915 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0081 | 83.5 | 3340 | 0.2787 | 0.3895 | 0.7790 | 0.7790 | nan | 0.7790 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7790 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0135 | 84.0 | 3360 | 0.2785 | 0.3943 | 0.7886 | 0.7886 | nan | 0.7886 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7886 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0042 | 84.5 | 3380 | 0.2952 | 0.3885 | 0.7770 | 0.7770 | nan | 0.7770 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7770 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0199 | 85.0 | 3400 | 0.2861 | 0.3936 | 0.7873 | 0.7873 | nan | 0.7873 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7873 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0104 | 85.5 | 3420 | 0.2919 | 0.3968 | 0.7935 | 0.7935 | nan | 0.7935 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7935 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0052 | 86.0 | 3440 | 0.2862 | 0.3943 | 0.7886 | 0.7886 | nan | 0.7886 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7886 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0108 | 86.5 | 3460 | 0.2845 | 0.3977 | 0.7953 | 0.7953 | nan | 0.7953 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7953 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0122 | 87.0 | 3480 | 0.2958 | 0.3969 | 0.7939 | 0.7939 | nan | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.009 | 87.5 | 3500 | 0.2986 | 0.3981 | 0.7961 | 0.7961 | nan | 0.7961 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7961 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0162 | 88.0 | 3520 | 0.2882 | 0.3971 | 0.7941 | 0.7941 | nan | 0.7941 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7941 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0082 | 88.5 | 3540 | 0.2871 | 0.3967 | 0.7933 | 0.7933 | nan | 0.7933 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7933 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0074 | 89.0 | 3560 | 0.2944 | 0.3968 | 0.7936 | 0.7936 | nan | 0.7936 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7936 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0097 | 89.5 | 3580 | 0.2848 | 0.3975 | 0.7949 | 0.7949 | nan | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7949 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0071 | 90.0 | 3600 | 0.2887 | 0.3987 | 0.7974 | 0.7974 | nan | 0.7974 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7974 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0072 | 90.5 | 3620 | 0.2931 | 0.3970 | 0.7939 | 0.7939 | nan | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0074 | 91.0 | 3640 | 0.2934 | 0.3967 | 0.7935 | 0.7935 | nan | 0.7935 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7935 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0067 | 91.5 | 3660 | 0.2917 | 0.3975 | 0.7950 | 0.7950 | nan | 0.7950 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7950 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0054 | 92.0 | 3680 | 0.2906 | 0.3969 | 0.7939 | 0.7939 | nan | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7939 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0118 | 92.5 | 3700 | 0.2905 | 0.3953 | 0.7905 | 0.7905 | nan | 0.7905 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7905 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0098 | 93.0 | 3720 | 0.2896 | 0.3992 | 0.7985 | 0.7985 | nan | 0.7985 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7985 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0117 | 93.5 | 3740 | 0.2998 | 0.3958 | 0.7916 | 0.7916 | nan | 0.7916 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7916 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0107 | 94.0 | 3760 | 0.2917 | 0.3961 | 0.7922 | 0.7922 | nan | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0106 | 94.5 | 3780 | 0.2961 | 0.3948 | 0.7896 | 0.7896 | nan | 0.7896 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7896 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0129 | 95.0 | 3800 | 0.2966 | 0.3929 | 0.7859 | 0.7859 | nan | 0.7859 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7859 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0093 | 95.5 | 3820 | 0.2981 | 0.3966 | 0.7933 | 0.7933 | nan | 0.7933 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7933 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.006 | 96.0 | 3840 | 0.2969 | 0.3953 | 0.7906 | 0.7906 | nan | 0.7906 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7906 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0077 | 96.5 | 3860 | 0.2861 | 0.3968 | 0.7937 | 0.7937 | nan | 0.7937 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7937 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0082 | 97.0 | 3880 | 0.3000 | 0.3972 | 0.7945 | 0.7945 | nan | 0.7945 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7945 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.006 | 97.5 | 3900 | 0.2954 | 0.3961 | 0.7921 | 0.7921 | nan | 0.7921 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7921 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0067 | 98.0 | 3920 | 0.2927 | 0.3948 | 0.7897 | 0.7897 | nan | 0.7897 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7897 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0103 | 98.5 | 3940 | 0.2942 | 0.3946 | 0.7893 | 0.7893 | nan | 0.7893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7893 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0069 | 99.0 | 3960 | 0.2885 | 0.3961 | 0.7922 | 0.7922 | nan | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7922 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0092 | 99.5 | 3980 | 0.2866 | 0.3963 | 0.7926 | 0.7926 | nan | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7926 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | | 0.0074 | 100.0 | 4000 | 0.2957 | 0.3964 | 0.7929 | 0.7929 | nan | 0.7929 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.7929 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
Fhermin/ppo-SnowballTarget2
Fhermin
2024-02-27T04:18:38Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-27T04:18:33Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Fhermin/ppo-SnowballTarget2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
alonzogarbanzo/Bloom-1b7-dialogsum
alonzogarbanzo
2024-02-27T04:16:58Z
154
0
transformers
[ "transformers", "safetensors", "bloom", "text-generation", "generated_from_trainer", "base_model:bigscience/bloom-1b7", "base_model:finetune:bigscience/bloom-1b7", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T03:03:37Z
--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-1b7 tags: - generated_from_trainer model-index: - name: Bloom-1b7-dialogsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bloom-1b7-dialogsum This model is a fine-tuned version of [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results Final epoch results: {'loss': 0.024, 'learning_rate': 1.4000000000000001e-06, 'epoch': 5.0} After finished: {'train_runtime': 582.2106, 'train_samples_per_second': 1.718, 'train_steps_per_second': 0.429, 'train_loss': 0.72078223118186, 'epoch': 5.0} ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
GraphWiz/Mistral-7B-RFT
GraphWiz
2024-02-27T04:13:53Z
2
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-18T11:59:18Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/LLaMA2-13B-DPO
GraphWiz
2024-02-27T04:13:30Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-23T08:28:07Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/LLaMA2-7B
GraphWiz
2024-02-27T04:13:14Z
49
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T04:34:20Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/LLaMA2-7B-DPO
GraphWiz
2024-02-27T04:12:58Z
14
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-23T08:27:06Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/LLaMA2-13B-RFT
GraphWiz
2024-02-27T04:12:41Z
8
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-23T08:27:46Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/LLaMA2-13B
GraphWiz
2024-02-27T04:12:06Z
2
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-23T08:27:25Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
GraphWiz/Mistral-7B
GraphWiz
2024-02-27T04:11:24Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "graph problem", "dataset:GraphWiz/GraphInstruct-RFT-72K", "arxiv:2402.16029", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T16:30:50Z
--- license: apache-2.0 datasets: - GraphWiz/GraphInstruct-RFT-72K metrics: - accuracy pipeline_tag: text-generation tags: - graph problem --- # GraphWiz Project Page: [https://graph-wiz.github.io/](https://graph-wiz.github.io/) Paper: [https://arxiv.org/abs/2402.16029.pdf](https://arxiv.org/abs/2402.16029) Code: [https://github.com/nuochenpku/Graph-Reasoning-LLM](https://github.com/nuochenpku/Graph-Reasoning-LLM) GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language. Training strategies include two stages: **Mixed-task Training** and **DPO Alignment**. ## Results | *Models* | **Cycle** | **Connect** | **Bipartite** | **Topology** | **Shortest** | **Triangle** | **Flow** | **Hamilton** | **Subgraph** | **Average** | |:-------------------------------------:|:-------------------------------:|:--------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:-----------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------------:| | *In-Context Learning* ||||||||||| | **GPT-4 (zero-shot)** | 38.75 | 17.00 | 65.25 | 5.00 | 9.25 | 5.75 | 3.25 | 59.25 | 45.50 | 27.67 | | **GhatGPT (2-shot)** | 51.25 | 43.75 | 70.75 | 4.50 | 3.50 | 17.25 | 8.50 | 54.25 | 43.00 | 32.97 | | **GPT-4 (2-shot)** | 52.50 | 62.75 | 74.25 | 25.25 | 18.25 | 31.00 | 7.75 | {75.75} | 46.75 | 43.81 | | *Mistral-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 78.50 | 1.00 | 23.00 | 47.00 | 28.75 | 31.75 | 41.25 | 46.56 | | **GraphWiz** | **92.00** | **89.50** | 72.00 | 19.00 | **31.25** | 38.75 | 29.25 | 26.50 | **85.50** | 53.75 | | **GraphWiz-DPO** | 85.50 | 79.50 | **85.50** | **85.25** | 12.50 | 29.00 | 35.50 | 62.75 | 48.50 | 58.22 | | *LLaMA 2-7B* ||||||||||| | **Naive SFT** | 73.75 | 83.50 | 41.25 | 4.00 | 9.50 | 30.00 | 16.50 | 69.00 | 75.45 | 44.81 | | **GraphWiz** | 91.50 | 87.00 | 74.00 | 18.00 | **28.00** | 38.25 | 24.50 | 52.25 | **82.25** | 55.08 | | **GraphWiz-DPO** | 89.00 | 82.50 | 84.75 | 46.75 | 24.00 | **52.75** | **43.50** | **81.50** | 77.25 | **65.00** | | *LLaMA 2-13B* ||||||||||| | **Naive SFT** | 73.75 | 83.75 | 59.00 | 0.50 | 11.75 | 34.75 | 24.25 | 59.75 | 54.75 | 44.69 | | **GraphWiz** | **94.75** | 87.00 | 78.00 | 28.00 | 27.75 | 36.00 | 24.50 | 59.00 | 81.50 | 57.39 | | **GraphWiz-DPO** | 87.50 | **88.50** | **88.25** | **72.75** | 22.00 | **48.75** | **43.75** | 46.50 | 77.00 | **63.89** | ## Examples ``` G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5) (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85) (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39) (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73) (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41) (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50) (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59) (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48) (34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48) (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82) (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69) (56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66) (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph? GraphWiz: There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82), then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28), and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph. ```
mayacinka/djinn-7b
mayacinka
2024-02-27T04:10:51Z
6
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "paulml/DPOB-INMTOB-7B", "bardsai/jaskier-7b-dpo-v6.1", "base_model:bardsai/jaskier-7b-dpo-v6.1", "base_model:merge:bardsai/jaskier-7b-dpo-v6.1", "base_model:paulml/DPOB-INMTOB-7B", "base_model:merge:paulml/DPOB-INMTOB-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-24T00:12:26Z
--- tags: - merge - mergekit - lazymergekit - paulml/DPOB-INMTOB-7B - bardsai/jaskier-7b-dpo-v6.1 base_model: - paulml/DPOB-INMTOB-7B - bardsai/jaskier-7b-dpo-v6.1 --- # djinn-7b djinn-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/DPOB-INMTOB-7B](https://huggingface.co/paulml/DPOB-INMTOB-7B) * [bardsai/jaskier-7b-dpo-v6.1](https://huggingface.co/bardsai/jaskier-7b-dpo-v6.1) # 🏆 Benchmarks #### Open LLM Leaderboard | Model | Average | ARC_easy | HellaSwag | MMLU | TruthfulQA_mc2 | Winogrande | GSM8K | |------------------------|--------:|-----:|----------:|-----:|-----------:|-----------:|------:| | mayacinka/djinn-7B | 78.40 | 86.7 | 87.37| 61.84 | 77.23 | 82.64 | 74.68| #### MMLU (per category) | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|------|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.6184|± |0.0039| | - humanities |N/A |none |None |acc |0.5741|± |0.0067| | - other |N/A |none |None |acc |0.6933|± |0.0079| | - social_sciences|N/A |none |None |acc |0.7166|± |0.0080| | - stem |N/A |none |None |acc |0.5147|± |0.0085| ### AutoEval [Maxime Labonne's autoeval notebook](https://gist.github.com/majacinka/dfa0800c65f995c8f970c75f3e73d268) | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |-----------------------------------------------------|------:|------:|---------:|-------:|------:| |[djinn-7b](https://huggingface.co/mayacinka/djinn-7b)| 44.9| 77.33| 77.18| 49.36| 62.19| ## 🧩 Configuration ```yaml slices: - sources: - model: paulml/DPOB-INMTOB-7B layer_range: [0, 32] - model: bardsai/jaskier-7b-dpo-v6.1 layer_range: [0, 32] merge_method: slerp base_model: paulml/DPOB-INMTOB-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/djinn-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Nuo97/COMEDY_13B_DPO
Nuo97
2024-02-27T04:09:13Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "question-answering", "zh", "dataset:Nuo97/Dolphin-DPO", "arxiv:2402.11975", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-02-18T13:19:34Z
--- license: apache-2.0 datasets: - Nuo97/Dolphin-DPO language: - zh metrics: - bleu pipeline_tag: question-answering --- # COMEDY: COmpressive Memory-Enhanced Dialogue sYstems framework. Github: https://github.com/nuochenpku/COMEDY Paper: https://arxiv.org/abs/2402.11975.pdf <br> <div align="center"> <img src="comedy.png" width="40%" title="Introduction Figure"> </div> ### Task: Long-Term Conversation Dialogue Generation Different from previous retrieval-based methods, COMEDY doesn't rely on any **retrieval module or database**. Instead, COMEDY adopts a groundbreaking ''**One-for-All**'' approach, utilizing a single, unified model to manage the entire process from memory generation, compression to final response generation for long-term memory dialogue generation. - COMEDY firstly involves distilling session-specific memory from past dialogues, encompassing fine-grained session summaries, including event recaps, and detailed user and bot portraits; - In a break from traditional systems, COMEDY eschews the use of a memory database for storing these insights. Instead, it reprocesses and condenses memories from all past interactions, forming a *Compressive Memory*: The first part is the **concise events** that have occurred throughout all the conversations, creating a historical narrative that the system can draw upon. The second and third parts consist of a **detailed user profile** and the **dynamic relationship changes** between the user and chatbot across sessions, both derived from past conversational events. - Finally, COMEDY skillfully integrates this compressive memory into ongoing conversations, enabling contextually memory-enhanced interactions. ### Training Dataset **Dolphin**, the biggest Chinese long-term conversation dataset, from actual online user-chatbot interactions. This dataset contains three tasks: **Session-Level Memory Summarization**; **Memory Compression**; **Memory-Grounded Response Generation**, comprising an extensive collection of 100k samples. Dolphin is available at [**Dolphin**](https://huggingface.co/datasets/Nuo97/Dolphin-DPO) ### Training Strategy Our training strategies include two stages: Mixed-task training and DPO Alignment. <br> <div align="center"> <img src="training_strategy.png" width="90%" title="Introduction Figure"> </div>
SyedShaheer/distilbart-cnn-12-6_TUNED
SyedShaheer
2024-02-27T03:57:40Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-02-27T03:51:27Z
--- language: - en metrics: - rouge pipeline_tag: summarization ---
wilkensgomes/gemma-2b-canarim
wilkensgomes
2024-02-27T03:53:38Z
111
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T03:50:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sessex/margiela-style-small-LoRA
sessex
2024-02-27T03:51:34Z
8
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-02-27T03:51:32Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: in the style of designer maison-margiela widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - sessex/margiela-style-small-LoRA <Gallery /> ## Model description These are sessex/margiela-style-small-LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use in the style of designer maison-margiela to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](sessex/margiela-style-small-LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
macto/exllamav2-test
macto
2024-02-27T03:44:58Z
3
0
transformers
[ "transformers", "safetensors", "qwen", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-02-27T03:39:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FlippyCode/ppo-Huggy
FlippyCode
2024-02-27T03:44:16Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-02-27T03:42:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: FlippyCode/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cerkut/mps-tuned-gtzan
cerkut
2024-02-27T03:40:32Z
162
0
transformers
[ "transformers", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2024-02-27T03:30:41Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: mps-tuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: all split: None args: all metrics: - name: Accuracy type: accuracy value: 0.75 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mps-tuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 2.2018 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 2.2018 | 0.75 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2
316usman/thematic_3
316usman
2024-02-27T03:39:55Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-22T08:23:09Z
--- library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: thematic_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # thematic_3 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
thu-coai/ShieldLM-7B-internlm2
thu-coai
2024-02-27T03:34:55Z
66
10
transformers
[ "transformers", "safetensors", "internlm2", "feature-extraction", "custom_code", "en", "zh", "arxiv:2402.16444", "license:mit", "region:us" ]
feature-extraction
2024-02-26T09:54:18Z
--- license: mit language: - en - zh --- ## Introduction The ShieldLM model ([paper link](https://arxiv.org/abs/2402.16444)) initialized from [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b). ShieldLM is a bilingual (Chinese and English) safety detector that mainly aims to help to detect safety issues in LLMs' generations. It aligns with general human safety standards, supports fine-grained customizable detection rules, and provides explanations for its decisions. Refer to our [github repository](https://github.com/thu-coai/ShieldLM) for more detailed information. ## Usage Please refer to our [github repository](https://github.com/thu-coai/ShieldLM) for the detailed usage instructions. ## Performance ShieldLM demonstrates impressive detection performance across 4 ID and OOD test sets, compared to strong baselines such as GPT-4, Llama Guard and Perspective API. Refer to [our paper](https://arxiv.org/abs/2402.16444) for more detailed evaluation results.
OwOpeepeepoopoo/easy_america2
OwOpeepeepoopoo
2024-02-27T03:31:04Z
110
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T03:28:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DatPySci/pythia-1b-self-kto-iter1
DatPySci
2024-02-27T03:13:06Z
115
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "alignment-handbook", "generated_from_trainer", "conversational", "dataset:generated/iter1", "base_model:DatPySci/pythia-1b-self-kto-iter0", "base_model:finetune:DatPySci/pythia-1b-self-kto-iter0", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T14:57:21Z
--- license: apache-2.0 base_model: DatPySci/pythia-1b-self-kto-iter0 tags: - alignment-handbook - generated_from_trainer datasets: - generated/iter1 model-index: - name: pythia-1b-self-kto-iter1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-1b-self-kto-iter1 This model is a fine-tuned version of [DatPySci/pythia-1b-self-kto-iter0](https://huggingface.co/DatPySci/pythia-1b-self-kto-iter0) on the generated/iter1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
cgato/Thespis-CurtainCall-7b-v0.2.1-GGUF
cgato
2024-02-27T03:10:29Z
8
0
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-02-27T01:39:48Z
--- license: cc-by-nc-4.0 --- This model is the first in a series of experiments to make my models a bit smarter. Its nowhere near done, but my initial testing was good so I'm uploading so people can check it out. Datasets Used: * Dolphin * Ultrachat * Capybara * Augmental * ToxicQA * Magiccoder-Evol-Instruct-110k * Yahoo Answers * OpenOrca * Airoboros 3.1 * grimulkan/physical-reasoning and theory-of-mind ## Prompt Format: Chat ( The default Ooba template and Silly Tavern Template ) ``` {System Prompt} Username: {Input} BotName: {Response} Username: {Input} BotName: {Response} ``` ## Recommended Silly Tavern Preset -> (Temp: 1.25, MinP: 0.1, RepPen: 1.03) ## Recommended Kobold Horde Preset -> MinP
kanishka/smolm-autoreg-bpe-counterfactual-babylm-only_random_removal-1e-3
kanishka
2024-02-27T03:07:05Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "opt", "text-generation", "generated_from_trainer", "dataset:kanishka/counterfactual-babylm-only_random_removal", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T04:36:40Z
--- tags: - generated_from_trainer datasets: - kanishka/counterfactual-babylm-only_random_removal metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual-babylm-only_random_removal-1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual-babylm-only_random_removal type: kanishka/counterfactual-babylm-only_random_removal metrics: - name: Accuracy type: accuracy value: 0.4103301921111753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-counterfactual-babylm-only_random_removal-1e-3 This model was trained from scratch on the kanishka/counterfactual-babylm-only_random_removal dataset. It achieves the following results on the evaluation set: - Loss: 3.4056 - Accuracy: 0.4103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.6071 | 1.0 | 18588 | 3.7805 | 0.3590 | | 3.3943 | 2.0 | 37176 | 3.5796 | 0.3806 | | 3.2625 | 3.0 | 55764 | 3.4678 | 0.3915 | | 3.1838 | 4.0 | 74352 | 3.3962 | 0.3998 | | 3.1277 | 5.0 | 92940 | 3.3849 | 0.4017 | | 3.0813 | 6.0 | 111528 | 3.3874 | 0.4040 | | 3.0519 | 7.0 | 130116 | 3.3394 | 0.4079 | | 3.0181 | 8.0 | 148704 | 3.3441 | 0.4085 | | 2.9888 | 9.0 | 167292 | 3.3545 | 0.4088 | | 2.9602 | 10.0 | 185880 | 3.3501 | 0.4088 | | 2.942 | 11.0 | 204468 | 3.3509 | 0.4095 | | 2.9174 | 12.0 | 223056 | 3.3709 | 0.4093 | | 2.8989 | 13.0 | 241644 | 3.3608 | 0.4107 | | 2.8757 | 14.0 | 260232 | 3.3651 | 0.4101 | | 2.8506 | 15.0 | 278820 | 3.3638 | 0.4109 | | 2.8373 | 16.0 | 297408 | 3.3724 | 0.4107 | | 2.8195 | 17.0 | 315996 | 3.3819 | 0.4108 | | 2.7983 | 18.0 | 334584 | 3.3819 | 0.4110 | | 2.7786 | 19.0 | 353172 | 3.3970 | 0.4103 | | 2.7635 | 20.0 | 371760 | 3.4056 | 0.4103 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
sharren/vit-dropout-v9
sharren
2024-02-27T02:58:09Z
192
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:sharren/SkinCancerClassification", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-26T18:32:14Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy - value: 0.8677 model-index: - name: vit-dropout-v9 results: [] datasets: - sharren/SkinCancerClassification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-dropout-v9 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sharren/SkinCancerClassification dataset. It achieves the following results on the evaluation set: - Loss: 0.5147 - Accuracy: 0.8677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure - dropout: 0.3 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5952 | 1.56 | 500 | 0.8221 | 0.7228 | | 0.4505 | 3.12 | 1000 | 0.5679 | 0.7934 | | 0.4187 | 4.67 | 1500 | 0.4951 | 0.8221 | | 0.4022 | 6.23 | 2000 | 0.5013 | 0.8252 | | 0.3485 | 7.79 | 2500 | 0.4532 | 0.8446 | | 0.2397 | 9.35 | 3000 | 0.4914 | 0.8558 | | 0.3017 | 10.9 | 3500 | 0.4973 | 0.8514 | | 0.2086 | 12.46 | 4000 | 0.4987 | 0.8689 | | 0.1265 | 14.02 | 4500 | 0.5132 | 0.8652 | | 0.0885 | 15.58 | 5000 | 0.5147 | 0.8677 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
djsull/sentence-roberta-multitask
djsull
2024-02-27T02:51:30Z
11
2
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-27T02:40:28Z
--- library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers pipeline_tag: sentence-similarity --- # djsull/sentence-roberta-multitask This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('djsull/sentence-roberta-multitask') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('djsull/sentence-roberta-multitask') model = AutoModel.from_pretrained('djsull/sentence-roberta-multitask') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=djsull/sentence-roberta-multitask) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8885 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 256], 'matryoshka_weights': [1, 1]} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 719 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 256], 'matryoshka_weights': [1, 1]} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 360, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kaljr/ppo-LunarLander-v2
kaljr
2024-02-27T02:38:45Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T02:38:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.45 +/- 10.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Prasadrao/twitter-roberta-large-go-emotions
Prasadrao
2024-02-27T02:38:12Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:cardiffnlp/twitter-roberta-large-2022-154m", "base_model:finetune:cardiffnlp/twitter-roberta-large-2022-154m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-26T14:53:45Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: cardiffnlp/twitter-roberta-large-2022-154m model-index: - name: twitter-roberta-large-go-emotions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-large-go-emotions This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0816 - Accuracy: 0.4644 - Precision: 0.5709 - Recall: 0.5184 - F1: 0.5123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 340 | 0.0889 | 0.4342 | 0.4653 | 0.4303 | 0.4243 | | 0.1082 | 2.0 | 680 | 0.0819 | 0.4521 | 0.5253 | 0.4991 | 0.4856 | | 0.1082 | 3.0 | 1020 | 0.0816 | 0.4644 | 0.5709 | 0.5184 | 0.5123 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.1
anhtranhong/fingpt-mt_llama2-7b_lora_with_fiqa-qa-v1.1
anhtranhong
2024-02-27T02:36:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T02:36:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Asma50AA/wav2vec2-large-xls-r-300m-Lahdjatna-colab
Asma50AA
2024-02-27T02:35:07Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T02:35:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Microbee/Ansost-Disease
Microbee
2024-02-27T02:31:20Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "autotrain", "dataset:autotrain-lgrcd-2wctt/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-26T07:42:01Z
--- tags: - autotrain - text-classification widget: - text: "Presenile dementia" - text: "physiopathological" datasets: - autotrain-lgrcd-2wctt/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.422727108001709 f1: 0.9172185430463576 precision: 0.9121844127332601 recall: 0.9223085460599334 auc: 0.9308079638847088 accuracy: 0.8777506112469438
miguelsolis/q-Taxi-v3
miguelsolis
2024-02-27T02:23:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T02:23:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="miguelsolis/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bartowski/BioMistral-7B-exl2
bartowski
2024-02-27T02:22:11Z
0
0
null
[ "medical", "biology", "text-generation", "fr", "en", "de", "nl", "es", "pt", "pl", "ro", "it", "license:apache-2.0", "region:us" ]
text-generation
2024-02-27T02:07:20Z
--- license: apache-2.0 language: - fr - en - de - nl - es - pt - pl - ro - it pipeline_tag: text-generation tags: - medical - biology quantized_by: bartowski --- ## Exllama v2 Quantizations of BioMistral-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.14">turboderp's ExLlamaV2 v0.0.14</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/BioMistral/BioMistral-7B | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/BioMistral-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/BioMistral-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/BioMistral-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/BioMistral-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/BioMistral-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/BioMistral-7B-exl2 BioMistral-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `BioMistral-7B-exl2`: ```shell mkdir BioMistral-7B-exl2 huggingface-cli download bartowski/BioMistral-7B-exl2 --local-dir BioMistral-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir BioMistral-7B-exl2-6_5 huggingface-cli download bartowski/BioMistral-7B-exl2 --revision 6_5 --local-dir BioMistral-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir BioMistral-7B-exl2-6.5 huggingface-cli download bartowski/BioMistral-7B-exl2 --revision 6_5 --local-dir BioMistral-7B-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
hoodiexxx/my_text_cnn_classification_model
hoodiexxx
2024-02-27T02:21:18Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-02-27T01:41:28Z
--- license: mit --- # Text CNN Classification Model ## Param ```python textCNN_param = { 'vocab_size': len(word2ind) + 1, 'embed_dim': 128, # 1 x 128 vector 'class_num': len(label_w2n), "kernel_num": 16, "kernel_size": [3, 4, 5], "dropout": 0.5, } dataLoader_param = { 'batch_size': 128, 'shuffle': True, } ``` ## Model textcnn.bin ```python class textCNN(nn.Module): def __init__(self, param): super(textCNN, self).__init__() ci = 1 # input chanel size # kernel 卷积核 kernel_num = param['kernel_num'] # output chanel size kernel_size = param['kernel_size'] vocab_size = param['vocab_size'] embed_dim = param['embed_dim'] # embedding dimension dropout = param['dropout'] class_num = param['class_num'] self.param = param # 把token随机向量化 self.embed = nn.Embedding(vocab_size, embed_dim, padding_idx=1) # 三个不同长度的卷积 self.conv11 = nn.Conv2d(ci, kernel_num, (kernel_size[0], embed_dim)) self.conv12 = nn.Conv2d(ci, kernel_num, (kernel_size[1], embed_dim)) self.conv13 = nn.Conv2d(ci, kernel_num, (kernel_size[2], embed_dim)) # 三个不同长度的卷积 # increasing the ability of calculation by dropout self.dropout = nn.Dropout(dropout) self.fc1 = nn.Linear(len(kernel_size) * kernel_num, class_num) def init_embed(self, embed_matrix): self.embed.weight = nn.Parameter(torch.Tensor(embed_matrix)) @staticmethod def conv_and_pool(x, conv): # x: (batch, 1, sentence_length, ) x = conv(x) # x: (batch, kernel_num, H_out, 1) x = F.relu(x.squeeze(3)) # x: (batch, kernel_num, H_out) x = F.max_pool1d(x, x.size(2)).squeeze(2) # (batch, kernel_num) return x def forward(self, x): # x: (batch, sentence_length) x = self.embed(x) # x: (batch, sentence_length, embed_dim) # TODO init embed matrix with pre-trained x = x.unsqueeze(1) # x: (batch, 1, sentence_length, embed_dim) x1 = self.conv_and_pool(x, self.conv11) # (batch, kernel_num) x2 = self.conv_and_pool(x, self.conv12) # (batch, kernel_num) x3 = self.conv_and_pool(x, self.conv13) # (batch, kernel_num) x = torch.cat((x1, x2, x3), 1) # (batch, 3 * kernel_num) x = self.dropout(x) logit = F.log_softmax(self.fc1(x), dim=1) return logit ``` ## Trainer ```python # set the seed for ensuring reproducibility seed = 3407 torch.cuda.manual_seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False word2ind, ind2word = sen2inds.get_worddict('wordLabel.txt') label_w2n, label_n2w = sen2inds.read_labelFile('data/label.txt') textCNN_param = { 'vocab_size': len(word2ind) + 1, 'embed_dim': 128, # 1 x 128 vector 'class_num': len(label_w2n), "kernel_num": 16, "kernel_size": [3, 4, 5], "dropout": 0.5, } dataLoader_param = { 'batch_size': 128, 'shuffle': True, } # # device = 'cuda:0' if torch.cuda.is_available() else 'cpu' device = 'cpu' # init dataset print('init dataset...') trainDataFile = 'traindata_vec.txt' valDataFile = 'devdata_vec.txt' train_dataset = textCNN_data(trainDataFile) train_dataLoader = DataLoader(train_dataset, batch_size=dataLoader_param['batch_size'], shuffle=True) val_dataset = textCNN_data(valDataFile) val_dataLoader = DataLoader(val_dataset, batch_size=dataLoader_param['batch_size'], # batch size 128 shuffle=False) # init net print('init net...') net = textCNN(textCNN_param) print(net) net.to(device) optimizer = torch.optim.Adam(net.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() print("training...") net.train() best_dev_acc = 0 for epoch in range(100): for i, (clas, sentences) in enumerate(train_dataLoader): out = net(sentences) loss = criterion(out, clas) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 10 == 0: print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item()) dev_acc = validation(model=net, val_dataLoader=val_dataLoader, device=device) if best_dev_acc < dev_acc: best_dev_acc = dev_acc print("save model...") torch.save(net.state_dict(), "textcnn.bin") print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item()) print("best dev acc %.4f dev acc %.4f" % (best_dev_acc, dev_acc)) ```
hoodiexxx/Bert_Chinese_Text_Classification_Model
hoodiexxx
2024-02-27T02:19:27Z
0
0
null
[ "text-classification", "zh", "license:mit", "region:us" ]
text-classification
2024-02-26T15:21:18Z
--- license: mit language: - zh pipeline_tag: text-classification --- # Bert Chinese Text Classification Model this a Bert Model that train for customer service of logistics companies ### data(with noise since it from ASR text) train: 10878 rows dev:2720 rows total: 13598 rows ### param embed_dim: 128 batch size: 64 contextsize: 20 n_head: 2 epoches: 100 ## Word Label(word, index, number of occurences) ```sh 我 1 18719 个 2 12236 快 3 8152 一 4 8097 递 5 7295 那 6 7118 了 7 6923 的 8 6684 是 9 6632 到 10 6434 你 11 5144 没 12 4989 有 13 4664 下 14 4433 这 15 4219 在 16 4219 么 17 4010 查 18 3964 就 19 3570 好 20 3524 ``` ## Tokenizer ```python label_dict, label_n2w = read_labelFile(labelFile) word2ind, ind2word = get_worddict(wordLabelFile) stoplist = read_stopword(stopwordFile) cla_dict = {} # train data to vec traindataTxt = open(trainDataVecFile, 'w') datas = open(trainFile, 'r', encoding='utf_8').readlines() datas = list(filter(None, datas)) random.shuffle(datas) for line in tqdm(datas, desc="traindata to vec"): line = line.replace('\n', '').split(':') # line = line.replace('\n','').split('\t') cla = line[1] # if cla in [21, 13, 9, 24, 23, 19, 14]: # continue if cla in cla_dict: cla_dict[cla] += 1 else: cla_dict[cla] = 1 cla_ind = label_dict[cla] title_seg = ['我', '要', '下', '单'] title_seg = [i for i in line[0]] # title_seg = jieba.cut(line[0], cut_all=False) title_ind = [cla_ind] for w in title_seg: if w in stoplist: continue title_ind.append(word2ind[w]) length = len(title_ind) if length > maxLen + 1: title_ind = title_ind[0:21] if length < maxLen + 1: title_ind.extend([0] * (maxLen - length + 1)) for n in title_ind: traindataTxt.write(str(n) + ',') traindataTxt.write('\n') ``` ## Trainer ```python # set the seed for ensuring reproducibility seed = 3407 # init net print('init net...') model = my_model() model.to(device) print(model) optimizer = torch.optim.Adam(model.parameters(), lr=0.0005) criterion = nn.CrossEntropyLoss() print("training...") best_dev_acc = 0 # embed.train() for epoch in range(100): model.train() for i, (clas, sentences) in enumerate(train_dataLoader): # sentences: batch size 64 x sentence length 20 x embed dimension 128 # 一个字是个128维vector 一句话是个 20x128的2D tensor 一个batch有64句话是个 64x20x128的3D tensor out = model(sentences.to( device)) # out: batch size 64 x word vector 4 (after my_linear) try: loss = criterion(out, clas.to(device)) except: print(out.size(), out) print(clas.size(), clas) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 10 == 0: print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item()) model.eval() dev_acc = validation(model=model, val_dataLoader=val_dataLoader, device=device) if best_dev_acc < dev_acc: best_dev_acc = dev_acc print("save model...") torch.save(model.state_dict(), "model.bin") print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item()) print("best dev acc %.4f dev acc %.4f" % (best_dev_acc, dev_acc)) ``` ## Testing ```python def validation(model, val_dataLoader, device): model.eval() total = 0 correct = 0 with torch.no_grad(): for i, (clas, sentences) in enumerate(val_dataLoader): try: # sentences = sentences.type(torch.LongTensor).to(device) # clas = clas.type(torch.LongTensor).to(device) out = model( sentences.to( device)) # out: batch size 64 x sentences length 20 x word dimension 4(after my_linear) # out = F.relu(out.squeeze(-3)) # out = F.max_pool1d(out, out.size(2)).squeeze(2) # softmax = nn.Softmax(dim=1) pred = torch.argmax(out, dim=1) # 64x4 -> 64x1 correct += (pred == clas.to(device)).sum() total += clas.size()[0] except IndexError as e: print(i) print('clas', clas) print('clas size', clas.size()) print('sentence', sentences) print('sentences size', sentences.size()) print(e) print(e.__traceback__) exit() acc = correct / total return acc ```
sharren/vit-dropout-v8
sharren
2024-02-27T02:19:24Z
194
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-26T17:20:37Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-dropout-v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-dropout-v8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the SkinCancerClassification dataset. It achieves the following results on the evaluation set: - Loss: 0.6544 - Accuracy: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure - dropout: 0.27 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.278 | 1.56 | 500 | 0.6873 | 0.8159 | | 0.1863 | 3.12 | 1000 | 0.6260 | 0.8265 | | 0.3125 | 4.67 | 1500 | 0.5167 | 0.8308 | | 0.292 | 6.23 | 2000 | 0.5512 | 0.8221 | | 0.24 | 7.79 | 2500 | 0.6563 | 0.8215 | | 0.242 | 9.35 | 3000 | 0.5716 | 0.8633 | | 0.1628 | 10.9 | 3500 | 0.5813 | 0.8670 | | 0.0647 | 12.46 | 4000 | 0.6339 | 0.8670 | | 0.0298 | 14.02 | 4500 | 0.6582 | 0.8683 | | 0.0287 | 15.58 | 5000 | 0.6544 | 0.8670 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
alinerodrigues/wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-clean-08
alinerodrigues
2024-02-27T02:12:46Z
1
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-26T21:25:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-clean-08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-clean-08 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1396 - Wer: 0.0828 - Cer: 0.0228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 24.4898 | 1.0 | 67 | 6.6473 | 0.9805 | 0.9854 | | 9.6476 | 2.0 | 134 | 5.1478 | 0.9775 | 0.9099 | | 4.5647 | 3.0 | 201 | 4.9501 | 0.9510 | 0.9337 | | 4.5647 | 4.0 | 268 | 4.7350 | 0.9821 | 0.9839 | | 4.3107 | 5.0 | 335 | 4.7791 | 0.9818 | 0.9844 | | 3.7636 | 6.0 | 402 | 4.6615 | 0.9834 | 0.9822 | | 3.7636 | 7.0 | 469 | 4.4064 | 0.9854 | 0.9812 | | 3.7891 | 8.0 | 536 | 4.1056 | 0.9868 | 0.9802 | | 3.6656 | 9.0 | 603 | 3.1128 | 0.9983 | 0.9985 | | 3.6656 | 10.0 | 670 | 2.9065 | 1.0 | 1.0 | | 2.993 | 11.0 | 737 | 2.9184 | 1.0 | 1.0 | | 2.8999 | 12.0 | 804 | 2.8963 | 1.0 | 1.0 | | 2.8999 | 13.0 | 871 | 2.8663 | 1.0 | 1.0 | | 2.879 | 14.0 | 938 | 2.7503 | 0.9977 | 0.9611 | | 2.7677 | 15.0 | 1005 | 2.4108 | 1.0 | 0.9086 | | 2.7677 | 16.0 | 1072 | 1.4958 | 1.0 | 0.5039 | | 2.0951 | 17.0 | 1139 | 0.6763 | 0.6216 | 0.1321 | | 1.0513 | 18.0 | 1206 | 0.4002 | 0.2890 | 0.0650 | | 1.0513 | 19.0 | 1273 | 0.3120 | 0.1867 | 0.0468 | | 0.6513 | 20.0 | 1340 | 0.2679 | 0.1718 | 0.0431 | | 0.5148 | 21.0 | 1407 | 0.2419 | 0.1470 | 0.0391 | | 0.5148 | 22.0 | 1474 | 0.2191 | 0.1261 | 0.0349 | | 0.399 | 23.0 | 1541 | 0.1997 | 0.1225 | 0.0322 | | 0.3708 | 24.0 | 1608 | 0.1961 | 0.1125 | 0.0313 | | 0.3708 | 25.0 | 1675 | 0.1906 | 0.1102 | 0.0305 | | 0.3342 | 26.0 | 1742 | 0.1841 | 0.1066 | 0.0303 | | 0.3053 | 27.0 | 1809 | 0.1758 | 0.1039 | 0.0289 | | 0.3053 | 28.0 | 1876 | 0.1696 | 0.0983 | 0.0270 | | 0.2732 | 29.0 | 1943 | 0.1645 | 0.1033 | 0.0277 | | 0.258 | 30.0 | 2010 | 0.1623 | 0.0953 | 0.0272 | | 0.258 | 31.0 | 2077 | 0.1615 | 0.0943 | 0.0269 | | 0.2489 | 32.0 | 2144 | 0.1591 | 0.0920 | 0.0262 | | 0.2533 | 33.0 | 2211 | 0.1553 | 0.0920 | 0.0259 | | 0.2533 | 34.0 | 2278 | 0.1603 | 0.0897 | 0.0255 | | 0.2413 | 35.0 | 2345 | 0.1562 | 0.0910 | 0.0257 | | 0.2377 | 36.0 | 2412 | 0.1544 | 0.0874 | 0.0252 | | 0.2377 | 37.0 | 2479 | 0.1558 | 0.0884 | 0.0248 | | 0.2189 | 38.0 | 2546 | 0.1520 | 0.0857 | 0.0243 | | 0.2073 | 39.0 | 2613 | 0.1541 | 0.0857 | 0.0242 | | 0.2073 | 40.0 | 2680 | 0.1495 | 0.0864 | 0.0244 | | 0.204 | 41.0 | 2747 | 0.1497 | 0.0851 | 0.0243 | | 0.198 | 42.0 | 2814 | 0.1516 | 0.0851 | 0.0247 | | 0.198 | 43.0 | 2881 | 0.1498 | 0.0837 | 0.0238 | | 0.1727 | 44.0 | 2948 | 0.1505 | 0.0894 | 0.0245 | | 0.191 | 45.0 | 3015 | 0.1484 | 0.0844 | 0.0238 | | 0.191 | 46.0 | 3082 | 0.1508 | 0.0847 | 0.0243 | | 0.1922 | 47.0 | 3149 | 0.1494 | 0.0871 | 0.0243 | | 0.1772 | 48.0 | 3216 | 0.1471 | 0.0904 | 0.0252 | | 0.1772 | 49.0 | 3283 | 0.1477 | 0.0854 | 0.0242 | | 0.17 | 50.0 | 3350 | 0.1463 | 0.0841 | 0.0239 | | 0.1748 | 51.0 | 3417 | 0.1431 | 0.0841 | 0.0238 | | 0.1748 | 52.0 | 3484 | 0.1454 | 0.0851 | 0.0232 | | 0.1645 | 53.0 | 3551 | 0.1450 | 0.0884 | 0.0245 | | 0.1808 | 54.0 | 3618 | 0.1425 | 0.0857 | 0.0233 | | 0.1808 | 55.0 | 3685 | 0.1466 | 0.0828 | 0.0233 | | 0.1712 | 56.0 | 3752 | 0.1442 | 0.0854 | 0.0235 | | 0.1553 | 57.0 | 3819 | 0.1397 | 0.0841 | 0.0233 | | 0.1553 | 58.0 | 3886 | 0.1418 | 0.0861 | 0.0241 | | 0.1505 | 59.0 | 3953 | 0.1433 | 0.0831 | 0.0233 | | 0.1609 | 60.0 | 4020 | 0.1439 | 0.0844 | 0.0234 | | 0.1609 | 61.0 | 4087 | 0.1438 | 0.0837 | 0.0233 | | 0.1521 | 62.0 | 4154 | 0.1433 | 0.0857 | 0.0237 | | 0.1541 | 63.0 | 4221 | 0.1410 | 0.0861 | 0.0236 | | 0.1541 | 64.0 | 4288 | 0.1396 | 0.0828 | 0.0228 | | 0.1464 | 65.0 | 4355 | 0.1404 | 0.0824 | 0.0226 | | 0.1489 | 66.0 | 4422 | 0.1423 | 0.0837 | 0.0232 | | 0.1489 | 67.0 | 4489 | 0.1426 | 0.0847 | 0.0230 | | 0.1513 | 68.0 | 4556 | 0.1407 | 0.0828 | 0.0228 | | 0.1655 | 69.0 | 4623 | 0.1441 | 0.0877 | 0.0234 | | 0.1655 | 70.0 | 4690 | 0.1446 | 0.0900 | 0.0241 | | 0.1337 | 71.0 | 4757 | 0.1432 | 0.0844 | 0.0228 | | 0.1471 | 72.0 | 4824 | 0.1456 | 0.0811 | 0.0225 | | 0.1471 | 73.0 | 4891 | 0.1426 | 0.0781 | 0.0225 | | 0.1527 | 74.0 | 4958 | 0.1438 | 0.0824 | 0.0227 | | 0.1276 | 75.0 | 5025 | 0.1440 | 0.0811 | 0.0223 | | 0.1276 | 76.0 | 5092 | 0.1431 | 0.0804 | 0.0225 | | 0.1393 | 77.0 | 5159 | 0.1460 | 0.0834 | 0.0232 | | 0.132 | 78.0 | 5226 | 0.1434 | 0.0811 | 0.0226 | | 0.132 | 79.0 | 5293 | 0.1464 | 0.0808 | 0.0227 | | 0.1326 | 80.0 | 5360 | 0.1444 | 0.0791 | 0.0222 | | 0.1318 | 81.0 | 5427 | 0.1463 | 0.0788 | 0.0223 | | 0.1318 | 82.0 | 5494 | 0.1448 | 0.0811 | 0.0227 | | 0.1281 | 83.0 | 5561 | 0.1452 | 0.0811 | 0.0224 | | 0.1294 | 84.0 | 5628 | 0.1420 | 0.0811 | 0.0225 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3
kaljr/ppo-cleanRL-LunarLander-v2
kaljr
2024-02-27T02:07:21Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T02:07:17Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -177.92 +/- 89.11 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'fff': '/root/.local/share/jupyter/runtime/kernel-d3563d3a-fcb2-4f06-b5c4-b7d025c7a55d.json' 'exp_name': 'tempname' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 256 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kaljr/ppo-cleanRL-LunarLander-v2' 'batch_size': 1024 'minibatch_size': 256} ```
zayjean/llama-2-13b_verify-bo-lora-r8-a32-d0_14K-E20_GA128
zayjean
2024-02-27T01:59:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T01:58:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kyone/clubbed_finetuned_model
kyone
2024-02-27T01:56:06Z
51
0
transformers
[ "transformers", "safetensors", "olmo", "text-generation", "custom_code", "en", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2024-02-27T01:30:55Z
--- language: - en license: apache-2.0 library_name: transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlignmentResearch/robust_llm_pythia-imdb-1b-mz-ada-v2
AlignmentResearch
2024-02-27T01:52:00Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-1b-deduped", "base_model:finetune:EleutherAI/pythia-1b-deduped", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-02-27T01:50:11Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: EleutherAI/pythia-1b-deduped model-index: - name: robust_llm_pythia-imdb-1b-mz-ada-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-imdb-1b-mz-ada-v2 This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
Emperor-WS/sac-HalfCheetahBulletEnv-v0
Emperor-WS
2024-02-27T01:40:21Z
2
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T01:39:21Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 metrics: - type: mean_reward value: 3038.56 +/- 42.27 name: mean_reward verified: false --- # **SAC** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **SAC** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/ python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo sac --env HalfCheetahBulletEnv-v0 -orga Emperor-WS -f logs/ python -m rl_zoo3.enjoy --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo sac --env HalfCheetahBulletEnv-v0 -f logs/ -orga Emperor-WS ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 300000), ('ent_coef', 'auto'), ('gamma', 0.98), ('gradient_steps', 8), ('learning_rate', 0.00073), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'), ('tau', 0.02), ('train_freq', 8), ('use_sde', True), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
justinlamlamlam/testing
justinlamlamlam
2024-02-27T01:39:39Z
166
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T01:39:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zayjean/llama-2-13b_draft-bo-batch-require-grad0-lora-r8-a32-d0_3K-E2
zayjean
2024-02-27T01:33:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T01:32:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
usail-hkust/LLMLight-LightGPT
usail-hkust
2024-02-27T01:32:45Z
10
15
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "hkust-gz", "llama-2", "traffic signal control", "lightgpt", "llmlight", "en", "arxiv:2312.16044", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-09T07:24:05Z
--- extra_gated_heading: Access LLMLight-LightGPT on Hugging Face language: - en pipeline_tag: text-generation inference: false tags: - hkust-gz - pytorch - llama-2 - traffic signal control - lightgpt - llmlight license: mit --- # LLMLight: Large Language Models as Traffic Signal Control Agents <p align="center"> | **[1 Introduction](#introduction)** | **[2 Framework](#framework)** | **[3 Demo](#demo)** | **[Github](https://github.com/usail-hkust/LLMTSCS)** | **[Website](https://gungnir2099.github.io/LLMLight-Page/)** | </p> <a id="introduction"></a> ## 1 Introduction Model weights trained in the article "[LLMLight: Large Language Models as Traffic Signal Control Agents](https://arxiv.org/abs/2312.16044)". Please download the model and run LLMLight by following the descriptions in the [Repository](https://github.com/usail-hkust/LLMTSCS). <a id="framework"></a> ## 2 Framework ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64207ca7e40f66bcd1e44959/HDBvVmYkTdShGfY5mnPGs.png) <a id="demo"></a> ## 3 Demo <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/64207ca7e40f66bcd1e44959/VhMOdEIjKeLml1WPcINqV.qt"></video>
lgodwangl/gemma2
lgodwangl
2024-02-27T01:32:32Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T01:28:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vaicai/kaifa-support-chat-v7.3
vaicai
2024-02-27T01:28:46Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T01:23:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
justinlamlamlam/gpt350_chat_s_v0_1
justinlamlamlam
2024-02-27T01:27:40Z
166
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T01:27:16Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EricValen/ppo-SnowballTarget
EricValen
2024-02-27T01:25:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-27T01:25:14Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: EricValen/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vaicai/kaifa-support-chat-adapters-v7.3
vaicai
2024-02-27T01:22:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T01:22:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OwOpeepeepoopoo/project_america3
OwOpeepeepoopoo
2024-02-27T01:08:35Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T01:08:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tempertrash/cat_LoRA
tempertrash
2024-02-27T01:05:18Z
1
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-02-26T20:08:04Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora - text-to-image - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora - text-to-image - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK cat widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - tempertrash/cat_LoRA <Gallery /> ## Model description These are tempertrash/cat_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK cat to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](tempertrash/cat_LoRA/tree/main) them in the Files & versions tab. ## Training details Trained on 25 images of my cat Boo.
Xavi-Hdz/q-Taxi-v3
Xavi-Hdz
2024-02-27T01:01:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-27T01:01:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Xavi-Hdz/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bartowski/hyperion-medium-preview-exl2
bartowski
2024-02-27T00:48:28Z
0
0
transformers
[ "transformers", "text-generation", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T00:33:35Z
--- library_name: transformers license: apache-2.0 language: - en quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of hyperion-medium-preview Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.14">turboderp's ExLlamaV2 v0.0.14</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/Locutusque/hyperion-medium-preview | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/hyperion-medium-preview-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/hyperion-medium-preview-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/hyperion-medium-preview-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/hyperion-medium-preview-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/hyperion-medium-preview-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/hyperion-medium-preview-exl2 hyperion-medium-preview-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `hyperion-medium-preview-exl2`: ```shell mkdir hyperion-medium-preview-exl2 huggingface-cli download bartowski/hyperion-medium-preview-exl2 --local-dir hyperion-medium-preview-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir hyperion-medium-preview-exl2-6_5 huggingface-cli download bartowski/hyperion-medium-preview-exl2 --revision 6_5 --local-dir hyperion-medium-preview-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir hyperion-medium-preview-exl2-6.5 huggingface-cli download bartowski/hyperion-medium-preview-exl2 --revision 6_5 --local-dir hyperion-medium-preview-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
cella110n/siglip-tagger-3-FT-1
cella110n
2024-02-27T00:47:16Z
105
1
transformers
[ "transformers", "safetensors", "siglip_vision_model", "image-classification", "custom_code", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-26T12:59:38Z
--- license: apache-2.0 --- Finetuned from p1atdev/siglip-tagger-test-3 https://huggingface.co/p1atdev/siglip-tagger-test-3 test work Usage: ``` import torch import torch.nn as nn import numpy as np from dataclasses import dataclass from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig, AutoImageProcessor from transformers.utils import ModelOutput @dataclass class SiglipForImageClassifierOutput(ModelOutput): loss: torch.FloatTensor | None = None logits: torch.FloatTensor | None = None pooler_output: torch.FloatTensor | None = None hidden_states: tuple[torch.FloatTensor, ...] | None = None attentions: tuple[torch.FloatTensor, ...] | None = None class SiglipForImageClassification(SiglipPreTrainedModel): config_class = SiglipVisionConfig main_input_name = "pixel_values" def __init__( self, config, ): super().__init__(config) # self.num_labels = config.num_labels self.siglip = SiglipVisionModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() def forward( self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None ): outputs = self.siglip(pixel_values) pooler_output = outputs.pooler_output logits = self.classifier(pooler_output) loss = None if labels is not None: loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, labels) return SiglipForImageClassifierOutput( loss=loss, logits=logits, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # モデル設定のロード device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = SiglipVisionConfig.from_pretrained('cella110n/siglip-tagger-FT3ep') processor = AutoImageProcessor.from_pretrained("cella110n/siglip-tagger-FT3ep", config=config) model = SiglipForImageClassification.from_pretrained('cella110n/siglip-tagger-FT3ep', torch_dtype=torch.bfloat16).to(device) model.eval() print("Model Loaded. device:", model.device) from PIL import Image # 入力画像サイズの確認と調整 img_path = "path/to/image" img = Image.open(img_path). inputs = processor(images=img, return_tensors="pt") # 画像をモデルに適した形式に変換 print("Image processed.") # inputs.pixel_valuesの画像を表示 img = inputs.pixel_values[0].permute(1, 2, 0).cpu().numpy() plt.imshow(img) plt.axis('off') plt.show() # # モデルの予測実行 with torch.no_grad(): logits = (model( **inputs.to( model.device, model.dtype ) ) .logits.detach() .cpu() .float() ) logits = np.clip(logits, 0.0, 1.0) # オーバーフローを防ぐためにlogitsをクリップ prob_cutoff = 0.3 # この確率以上のクラスのみを表示 result = {} for prediction in logits: for i, prob in enumerate(prediction): if prob.item() > prob_cutoff: result[model.config.id2label[i]] = prob.item() # resultを、高いほうから表示 sorted_result = sorted(result.items(), key=lambda x: x[1], reverse=True) sorted_result ```
dranger003/Senku-70B-iMat.GGUF
dranger003
2024-02-27T00:32:06Z
125
28
gguf
[ "gguf", "text-generation", "license:cc-by-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-02-07T23:17:59Z
--- license: cc-by-2.0 library_name: gguf pipeline_tag: text-generation --- * GGUF importance matrix (imatrix) quants for https://huggingface.co/ShinojiResearch/Senku-70B-Full * The importance matrix was trained for ~50K tokens (105 batches of 512 tokens) using a [general purpose imatrix calibration dataset](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384). * The [imatrix is being used on the K-quants](https://github.com/ggerganov/llama.cpp/pull/4930) as well. **2024-02-26**: Updating quants - IQ3_M/IQ3_S/IQ3_XS and IQ2_M/IQ2_S (requires latest commit [a33e6a0d](https://github.com/ggerganov/llama.cpp/commit/a33e6a0d2a66104ea9a906bdbf8a94d050189d91)). | Layers | Context | Template | | --- | --- | --- | | <pre>80</pre> | <pre>32764</pre> | <pre><\|im_start\|>system<br>{instructions}<\|im_end\|><br><\|im_start\|>user<br>{prompt}<\|im_end\|><br><\|im_start\|>assistant<br>{response}</pre> | ![New 2/3-bit quantization types](https://private-user-images.githubusercontent.com/48489457/307680119-7a86761a-c8c7-4774-af14-f80fcc2a6ed1.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDg5NjQwMzEsIm5iZiI6MTcwODk2MzczMSwicGF0aCI6Ii80ODQ4OTQ1Ny8zMDc2ODAxMTktN2E4Njc2MWEtYzhjNy00Nzc0LWFmMTQtZjgwZmNjMmE2ZWQxLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAyMjYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMjI2VDE2MDg1MVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWZlNGY2YmU4YTE5ZTcwYWQ3NWNiYWE5MTRkYjM5NDkwMmJkZGE2ZTVjYmZkM2VkNzFhODgwZmViZjIxZDYyYjEmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0.IR01nzkx5c3JSey73rTWyt8W-MYKOuBVhh5ighCkSFM)
anonplay99/luffy
anonplay99
2024-02-27T00:30:49Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2024-02-27T00:29:58Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmedelsayed/v1-bloom-1b1-sql-context
ahmedelsayed
2024-02-27T00:17:07Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-27T00:17:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lgodwangl/gemma1
lgodwangl
2024-02-26T23:50:31Z
3
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T23:46:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmedabdo/video-classifier
ahmedabdo
2024-02-26T23:46:43Z
64
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
video-classification
2024-02-26T23:42:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ryusangwon/2767_Llama-2-7b-hf
ryusangwon
2024-02-26T23:29:35Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:samsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-26T23:29:31Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - samsum model-index: - name: 2767_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2767_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
dar-tau/toy-autoencoder-2L-1L
dar-tau
2024-02-26T23:27:12Z
37
0
transformers
[ "transformers", "safetensors", "toy_autoencoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-26T23:27:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
finetuningsubnet/gemma-2b-it
finetuningsubnet
2024-02-26T23:25:46Z
109
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T23:23:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SeeonQwQ/blip2_frame_v2.5
SeeonQwQ
2024-02-26T23:25:34Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Salesforce/blip2-opt-2.7b", "base_model:adapter:Salesforce/blip2-opt-2.7b", "region:us" ]
null
2024-02-20T23:35:49Z
--- library_name: peft base_model: Salesforce/blip2-opt-2.7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
tonyassi/mugler-fw97-fashion-lora
tonyassi
2024-02-26T23:23:16Z
214
2
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-02-26T20:28:38Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Mugler FW97 style license: openrail++ --- # SDXL LoRA DreamBooth - tonyassi/mugler-fw97-fashion-lora by [Tony Assi](https://www.tonyassi.com/) Dreambooth Lora style based on the [Mugler FW97](https://www.vogue.com/fashion-shows/fall-1997-couture/mugler) collection. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/mlNLvWxZzSGrgIy56ztJR.png) ## Trigger words Use **Mugler FW97 style** in the prompt to trigger the style. ## How to use ```bash pip install diffusers accelerate ``` ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL # Load the pipeline vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights("tonyassi/mugler-fw97-fashion-lora") pipe.to("cuda") # Generate image prompt = "Mugler FW97 style, megan fox wearing a gold mesh dress with crystals" image = pipe(prompt=prompt, height=1024, width=1024, num_inference_steps=50, negative_prompt="ugly, deformed face, deformed body").images[0] image ``` ## Examples ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/9z33q9rNhbMRm1y_3_6tR.png) **Mugler FW97 style, Bettie Page holding a whip** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/YMBNN_QekZ9S3-6Sdyix0.png) **Mugler FW97 style, Spock, Star Trek** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/2zZ08zz60womCgoadmrjS.png) **Mugler FW97 style, John Travolta** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/5TsVsqSLgzNHiFlpJEqj_.png) **Mugler FW97 style, Bettie Page** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/t84UeB2_mpwf7helJ-6YS.png) **Mugler FW97 style, Emma Stone** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/rX8lju_0gemMAFiBOocIz.png) **Mugler FW97 style, Emma Stone** ## Model description These are tonyassi/mugler-fw97-fashion-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Download model Weights for this model are available in Safetensors format. [Download](https://huggingface.co/tonyassi/mugler-fw97-fashion-lora/tree/main) them in the Files & versions tab.
panchub/backward_model
panchub
2024-02-26T23:20:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T02:39:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
brittlewis12/aanaphi2-v0.1-GGUF
brittlewis12
2024-02-26T23:18:24Z
28
1
null
[ "gguf", "text-generation", "en", "base_model:mobiuslabsgmbh/aanaphi2-v0.1", "base_model:quantized:mobiuslabsgmbh/aanaphi2-v0.1", "license:mit", "region:us", "conversational" ]
text-generation
2024-02-26T22:49:38Z
--- base_model: mobiuslabsgmbh/aanaphi2-v0.1 license: mit train: false inference: false language: - en model_creator: mobiuslabsgmbh model_name: aanaphi2-v0.1 model_type: phi pipeline_tag: text-generation quantized_by: brittlewis12 --- ![elephant-samurai](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/pIeboaaroFY5fpomUADrS.gif) # aanaphi2-v0.1 GGUF **Original model**: [aanaphi2-v0.1](https://huggingface.co/mobiuslabsgmbh/aanaphi2-v0.1) **Model creator**: [mobiuslabsgmbh](https://huggingface.co/mobiuslabsgmbh) This repo contains GGUF format model files for Mobius Labs’ aanaphi2-v0.1. > aanaphi2-v0.1 is a finetuned (SFT + DPO) chat model based on [Microsoft's Phi-2 base model](https://huggingface.co/microsoft/phi-2) (2.8B parameters). ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 2276 (revision [b11a93d](https://github.com/ggerganov/llama.cpp/commit/b11a93df41921846a10628a7c306d5c82a549939)) ### Prompt template ``` ### Human: {{prompt}} ### Assistant: ``` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluation | Models | phi-2 | aanaphi2-v0.1 | |-------------------|------------------|------------------| | ARC (25-shot) | 61.09 | <b>63.74</b> | | HellaSwag (10-shot)| 75.11 | <b>78.30</b> | | MMLU (5-shot) | <b>58.11</b> | 57.70 | | TruthfulQA-MC2 | 44.47 | <b>51.56</b> | | Winogrande (5-shot)| <b>74.35</b> | 73.40 | | GSM8K (5-shot) | 54.81 | <b>58.61</b> | | Average | 61.33 | <b>63.89</b> |
suledev/kaifa-support-chat-adapters-v7.2
suledev
2024-02-26T23:13:16Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-26T23:07:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stablediffusionapi/vr-porn
stablediffusionapi
2024-02-26T23:06:16Z
39
1
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-26T23:04:04Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # VR Porn API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/18275929881708988504.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "vr-porn" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/vr-porn) Model link: [View model](https://modelslab.com/models/vr-porn) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "vr-porn", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
sik247/gemma-Code-Instruct-Finetune-test
sik247
2024-02-26T22:47:00Z
109
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T22:40:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zaid60/tuned_model
zaid60
2024-02-26T22:45:50Z
43
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T21:13:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
u66u/Reyna-Mini-1.8B-v0.2-Qwen1.5-1.8B-Merged-Slerp
u66u
2024-02-26T22:38:46Z
110
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "merge", "mergekit", "lazymergekit", "aloobun/Reyna-Mini-1.8B-v0.2", "Qwen/Qwen1.5-1.8B", "conversational", "base_model:Qwen/Qwen1.5-1.8B", "base_model:merge:Qwen/Qwen1.5-1.8B", "base_model:aloobun/Reyna-Mini-1.8B-v0.2", "base_model:merge:aloobun/Reyna-Mini-1.8B-v0.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T22:35:13Z
--- tags: - merge - mergekit - lazymergekit - aloobun/Reyna-Mini-1.8B-v0.2 - Qwen/Qwen1.5-1.8B base_model: - aloobun/Reyna-Mini-1.8B-v0.2 - Qwen/Qwen1.5-1.8B --- # Reyna-Mini-1.8B-v0.2-Qwen1.5-1.8B-Merged-Slerp Reyna-Mini-1.8B-v0.2-Qwen1.5-1.8B-Merged-Slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [aloobun/Reyna-Mini-1.8B-v0.2](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2) * [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) ## 🧩 Configuration ```yaml slices: - sources: - model: aloobun/Reyna-Mini-1.8B-v0.2 layer_range: [0, 23] - model: Qwen/Qwen1.5-1.8B layer_range: [0, 23] merge_method: slerp base_model: aloobun/Reyna-Mini-1.8B-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "u66u/Reyna-Mini-1.8B-v0.2-Qwen1.5-1.8B-Merged-Slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
adriata/med_mistral_4bit
adriata
2024-02-26T22:24:55Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "conversational", "dataset:pubmed", "dataset:bigbio/czi_drsm", "dataset:bigbio/bc5cdr", "dataset:bigbio/distemist", "dataset:pubmed_qa", "dataset:medmcqa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-25T21:01:51Z
--- license: apache-2.0 library_name: transformers tags: - trl - sft datasets: - pubmed - bigbio/czi_drsm - bigbio/bc5cdr - bigbio/distemist - pubmed_qa - medmcqa --- # Model Card for med_mistral_4bit <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Model 4-bit Mistral-7B-Instruct-v0.2 finetuned with QLoRA on multiple medical datasets. 16-bit version: [med_mistral](https://huggingface.co/adriata/med_mistral) - **License:** apache-2.0 - **Finetuned from model :** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/atadria/med_llm ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The model is finetuned on medical data and is intended only for research. It should not be used as a substitute for professional medical advice, diagnosis, or treatment. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The model's predictions are based on the information available in the finetuned medical dataset. It may not generalize well to all medical conditions or diverse patient populations. Sensitivity to variations in input data and potential biases present in the training data may impact the model's performance. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python # !pip install -q transformers accelerate bitsandbytes from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("adriata/med_mistral") model = AutoModelForCausalLM.from_pretrained("adriata/med_mistral") prompt_template = """<s>[INST] {prompt} [/INST]""" prompt = "What is influenza?" model_inputs = tokenizer.encode(prompt_template.format(prompt=prompt), return_tensors="pt").to("cuda") generated_ids = model.generate(model_inputs, max_new_tokens=512, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Training Details ~13h - 20k examples x 1 epoch GPU: OVH - 1 × NVIDIA TESLA V100S (32 GiB RAM) ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Training data included 20k examples randomly selected from datasets: - pubmed - bigbio/czi_drsm - bigbio/bc5cdr - bigbio/distemist - pubmed_qa - medmcqa
mikolaj-mialkowski/Reinforce-3l-16
mikolaj-mialkowski
2024-02-26T22:20:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-26T22:20:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-3l-16 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
alekom/ppo-Huggy
alekom
2024-02-26T22:18:55Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-02-26T22:17:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: alekom/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Venkman42/Phiter-GGUF
Venkman42
2024-02-26T22:10:23Z
9
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-02-26T21:28:27Z
GGUF for [Venkman42/Phiter](https://huggingface.co/Venkman42/Phiter)
sujitvasanth/TheBloke-openchat-3.5-0106-GPTQ-PEFTadapterJsonSear
sujitvasanth
2024-02-26T22:08:44Z
0
0
peft
[ "peft", "safetensors", "base_model:sujitvasanth/TheBloke-openchat-3.5-0106-GPTQ", "base_model:adapter:sujitvasanth/TheBloke-openchat-3.5-0106-GPTQ", "region:us" ]
null
2024-02-26T21:51:33Z
--- library_name: peft base_model: sujitvasanth/TheBloke-openchat-3.5-0106-GPTQ --- # Model Card for Model ID <!-- Finetuned version of openchat for extracting information from a database json object. --> ## Model Details ### Model Description <!-- Finetuned version of openchat for extracting information from a database json object. It is train --> - **Developed by:** Dr Sujit Vasanth - **Model type:** QLoRA PEFT - **Language(s) (NLP):** Json, English - **License:** [More Information Needed] - **Finetuned from model [optional]:** TheBloke/openchat-3.5-0106-GPTQ ### Model Sources [optional] - **Repository:** https://github.com/sujitvasanth/GPTQ-finetune - **Demo [optional]:** https://github.com/sujitvasanth/GPTQ-finetune/blob/main/GPTQ-finetune.py ## How to Get Started with the Model model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config= GPTQConfig(bits=4, disable_exllama=False),device_map="auto") # is_trainable=True tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token model.load_adapter(adapter_id) ## Training Details ### Training Data <!-- https://huggingface.co/datasets/sujitvasanth/jsonsearch2 --> https://huggingface.co/datasets/sujitvasanth/jsonsearch2 User: Assistant examples of Json search Query ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> QLora PEFT training on custom dataset #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2