modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
jgriffi/pegasus-samsum
jgriffi
2022-06-23T11:18:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-23T09:29:19Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7073 | 0.54 | 500 | 1.4841 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
transZ/M2M_Vi_Ba
transZ
2022-06-23T11:01:27Z
5
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "translation", "vi", "ba", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T15:26:10Z
--- language: - vi - ba tags: - translation datasets: - custom dataset metrics: - bleu - sacrebleu --- # How to run the model ```python from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer model = M2M100ForConditionalGeneration.from_pretrained("transZ/M2M_Vi_Ba") tokenizer = M2M100Tokenizer.from_pretrained("transZ/M2M_Vi_Ba") tokenizer.src_lang = "vi" vi_text = "Hôm nay ba đi chợ." encoded_vi = tokenizer(vi_text, return_tensors="pt") generated_tokens = model.generate(**encoded_vi, forced_bos_token_id=tokenizer.get_lang_id("ba")) translate = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] print(translate) ```
Homayoon83/Carball
Homayoon83
2022-06-23T09:55:39Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-23T09:55:38Z
--- license: bigscience-bloom-rail-1.0 ---
Saraswati/TEST2ppo-LunarLander-v2
Saraswati
2022-06-23T08:54:21Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T11:28:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 195.82 +/- 82.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="Saraswati/TEST2ppo-LunarLander-v2", filename="{MODEL FILENAME}.zip", ) ... ```
cjbarrie/autotrain-atc2
cjbarrie
2022-06-23T08:01:58Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:cjbarrie/autotrain-data-traintest-sentiment-split", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T07:59:46Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - cjbarrie/autotrain-data-traintest-sentiment-split co2_eq_emissions: 3.1566482249518177 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1024534825 - CO2 Emissions (in grams): 3.1566482249518177 ## Validation Metrics - Loss: 0.5167999267578125 - Accuracy: 0.7523809523809524 - Precision: 0.7377049180327869 - Recall: 0.5555555555555556 - AUC: 0.8142525600535937 - F1: 0.6338028169014086 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-traintest-sentiment-split-1024534825 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sun1638650145/dqn-SpaceInvadersNoFrameskip-v4
sun1638650145
2022-06-23T07:01:36Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-23T07:00:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 544.50 +/- 176.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sun1638650145 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sun1638650145 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huawei-noah/SPIRAL-base-MCT
huawei-noah
2022-06-23T03:29:31Z
0
0
null
[ "region:us" ]
null
2022-06-17T09:19:20Z
SPIRAL: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training ======== This is the pretrained model of **SPIRAL Base with Multi-Condition Training**, trained with 960-hour LibriSpeech data, and noise dataset from [ICASSP 2021 DNS Challenge](https://github.com/microsoft/DNS-Challenge/tree/icassp2021-final) for noise robustness. Citation ======== If you find SPIRAL useful in your research, please cite the following paper: ``` @inproceedings{huang2022spiral, title={{SPIRAL}: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training}, author={Wenyong Huang and Zhenhe Zhang and Yu Ting Yeung and Xin Jiang and Qun Liu}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=TBpg4PnXhYH} } ```
huawei-noah/SPIRAL-base
huawei-noah
2022-06-23T03:26:09Z
0
0
null
[ "region:us" ]
null
2022-06-14T09:40:29Z
SPIRAL: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training ======== This is the pretrained model of **SPIRAL Base**, trained with 960-hour LibriSpeech data Citation ======== If you find SPIRAL useful in your research, please cite the following paper: ``` @inproceedings{huang2022spiral, title={{SPIRAL}: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training}, author={Wenyong Huang and Zhenhe Zhang and Yu Ting Yeung and Xin Jiang and Qun Liu}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=TBpg4PnXhYH} } ```
martin-ha/text_image_dual_encoder
martin-ha
2022-06-23T03:23:43Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-20T16:19:19Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamW', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay': 0.001, 'exclude_from_weight_decay': None} - training_precision: float32 ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
akraut/test_model
akraut
2022-06-23T01:04:38Z
0
0
null
[ "image-classification", "license:afl-3.0", "region:us" ]
image-classification
2022-06-22T21:56:23Z
--- tags: - image-classification license: afl-3.0 ---
Popppoogtcdcr/H
Popppoogtcdcr
2022-06-23T00:33:17Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-06-23T00:33:17Z
--- license: cc-by-nc-sa-4.0 ---
tals/albert-base-vitaminc-fever
tals
2022-06-22T23:57:17Z
6
1
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
tals/albert-base-vitaminc_flagging
tals
2022-06-22T23:56:43Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
tals/albert-base-vitaminc
tals
2022-06-22T23:56:01Z
5
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
wwbproj/empathic_conversations_self_disclosure
wwbproj
2022-06-22T19:37:17Z
23
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T01:47:16Z
--- language: - en --- # Empathic Conversations: Self Disclosure Model owner(s): Ryan Guan, [rguan@seas.upenn.edu](mailto:rguan@seas.upenn.edu) Associated paper: ## Model description ### Related models - wwbproj/empathic_conversations_empathy - wwbproj/empathic_conversations_emotion - wwbproj/empathic_conversations_emotional_polarity - wwbproj/empathic_conversations_dialog_acts ## Intended uses & limitations ## How to use Code: https://github.com/wwbp/models/tree/master/neural_model_code/empathic_conversations ## Training data ## Training procedure
mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented
mmillet
2022-06-22T18:01:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T17:23:58Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4650 - Accuracy: 0.8820 - F1: 0.8814 - Precision: 0.8871 - Recall: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8868 | 1.0 | 69 | 0.4939 | 0.8403 | 0.8376 | 0.8431 | 0.8403 | | 0.4248 | 2.0 | 138 | 0.3969 | 0.8779 | 0.8768 | 0.8798 | 0.8779 | | 0.3197 | 3.0 | 207 | 0.4019 | 0.8758 | 0.8757 | 0.8758 | 0.8758 | | 0.2737 | 4.0 | 276 | 0.3915 | 0.8831 | 0.8827 | 0.8847 | 0.8831 | | 0.2053 | 5.0 | 345 | 0.4445 | 0.8643 | 0.8650 | 0.8714 | 0.8643 | | 0.1705 | 6.0 | 414 | 0.4650 | 0.8820 | 0.8814 | 0.8871 | 0.8820 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
atendstowards0/codeparrot-ds
atendstowards0
2022-06-22T17:56:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-22T17:45:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
jamesmarcel/xlm-roberta-base-finetuned-panx-de
jamesmarcel
2022-06-22T17:26:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-22T17:03:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
mmazuecos/q-Taxi-v3
mmazuecos
2022-06-22T16:24:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T16:01:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mmazuecos/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
mayoughi/where_am_I_hospital-balcony-hallway-airport-coffee-house
mayoughi
2022-06-22T16:00:57Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-22T16:00:45Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: where_am_I_hospital-balcony-hallway-airport-coffee-house results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8839285969734192 --- # where_am_I_hospital-balcony-hallway-airport-coffee-house Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### airport ![airport](images/airport.jpg) #### balcony ![balcony](images/balcony.jpg) #### coffee house indoors ![coffee house indoors](images/coffee_house_indoors.jpg) #### hallway ![hallway](images/hallway.jpg) #### hospital ![hospital](images/hospital.jpg)
mmazuecos/q-FrozenLake-v1-4x4-noSlippery
mmazuecos
2022-06-22T15:57:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T15:57:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mmazuecos/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ericntay/bio_bert_ft
ericntay
2022-06-22T15:24:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-22T14:35:26Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bio_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bio_bert_ft This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0747 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0879 | 1.0 | 170 | 0.0400 | 0.8312 | | 0.0211 | 2.0 | 340 | 0.0454 | 0.8413 | | 0.0105 | 3.0 | 510 | 0.0503 | 0.8603 | | 0.0045 | 4.0 | 680 | 0.0497 | 0.8496 | | 0.0028 | 5.0 | 850 | 0.0759 | 0.8387 | | 0.0019 | 6.0 | 1020 | 0.0654 | 0.8598 | | 0.0011 | 7.0 | 1190 | 0.0667 | 0.8654 | | 0.0005 | 8.0 | 1360 | 0.0702 | 0.8621 | | 0.0003 | 9.0 | 1530 | 0.0739 | 0.8596 | | 0.0002 | 10.0 | 1700 | 0.0747 | 0.8621 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fgmckee/q-Taxi-v3
fgmckee
2022-06-22T14:37:45Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T14:37:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.50 +/- 2.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fgmckee/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sasha/dog-food-convnext-tiny-224
sasha
2022-06-22T13:56:32Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "huggingpics", "dataset:sasha/dog-food", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T14:10:13Z
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-convnext-tiny-224 results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-food-convnext-tiny-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/image2.jpg) #### food ![food](images/image1.jpg)
sasha/dog-food-swin-tiny-patch4-window7-224
sasha
2022-06-22T13:56:12Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "huggingpics", "dataset:sasha/dog-food", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T13:40:48Z
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-swin-tiny-patch4-window7-224 results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-food-swin-tiny-patch4-window7-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/dog.jpg) #### food ![food](images/food.jpg)
flood/xlm-roberta-base-finetuned-panx-en
flood
2022-06-22T13:43:46Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:25:36Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4025 - F1: 0.6778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1069 | 1.0 | 50 | 0.5201 | 0.5010 | | 0.4975 | 2.0 | 100 | 0.4503 | 0.6198 | | 0.3705 | 3.0 | 150 | 0.4025 | 0.6778 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
flood/xlm-roberta-base-finetuned-panx-it
flood
2022-06-22T13:40:36Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:20:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8085969180859691 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2527 - F1: 0.8086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8319 | 1.0 | 70 | 0.3179 | 0.7474 | | 0.2959 | 2.0 | 140 | 0.2695 | 0.7916 | | 0.2036 | 3.0 | 210 | 0.2527 | 0.8086 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
flood/xlm-roberta-base-finetuned-panx-fr
flood
2022-06-22T13:37:27Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:14:32Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8375924680564896 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - F1: 0.8376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5774 | 1.0 | 191 | 0.3212 | 0.7894 | | 0.2661 | 2.0 | 382 | 0.2737 | 0.8292 | | 0.1756 | 3.0 | 573 | 0.2794 | 0.8376 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
flood/xlm-roberta-base-finetuned-panx-de-fr
flood
2022-06-22T13:33:30Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:06:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1612 - F1: 0.8618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2874 | 1.0 | 715 | 0.1764 | 0.8343 | | 0.1475 | 2.0 | 1430 | 0.1561 | 0.8508 | | 0.0936 | 3.0 | 2145 | 0.1612 | 0.8618 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fouad-shammary/distilbert-base-uncased-finetuned-emotion
fouad-shammary
2022-06-22T12:48:04Z
13
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T00:27:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9165 - name: F1 type: f1 value: 0.9164107076814402 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2349 - Accuracy: 0.9165 - F1: 0.9164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.837 | 1.0 | 250 | 0.3317 | 0.9015 | 0.8999 | | 0.2563 | 2.0 | 500 | 0.2349 | 0.9165 | 0.9164 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ml4pubmed/xtremedistil-l12-h384-uncased_pub_section
ml4pubmed
2022-06-22T12:29:07Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "document sections", "sentence classification", "document classification", "medical", "health", "biomedical", "en", "dataset:pubmed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-04T01:32:45Z
--- language: - en datasets: - pubmed metrics: - f1 tags: - text-classification - document sections - sentence classification - document classification - medical - health - biomedical pipeline_tag: text-classification widget: - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "background example" - text: "a total of 192 mi patients and 140 control persons were included." example_title: "methods example" - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "results example" - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "conclusions example" - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995." example_title: "objective example" --- # xtremedistil-l12-h384-uncased_pub_section - original model file name: textclassifer_xtremedistil-l12-h384-uncased_pubmed_20k - This is a fine-tuned checkpoint of `microsoft/xtremedistil-l12-h384-uncased` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## usage in python install transformers as needed: `pip install -U transformers` run the following, changing the example text to your use case: ``` from transformers import pipeline model_tag = "ml4pubmed/xtremedistil-l12-h384-uncased_pub_section" classifier = pipeline( 'text-classification', model=model_tag, ) prompt = """ Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. """ classifier( prompt, ) # classify the sentence ``` ## metadata ### training_parameters - date_run: Apr-24-2022_t-12 - huggingface_tag: microsoft/xtremedistil-l12-h384-uncased
Mizew/autotrain-avar-1016534299
Mizew
2022-06-22T12:12:07Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "translation", "en", "es", "dataset:Mizew/autotrain-data-avar", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T11:55:38Z
--- tags: - autotrain - translation language: - en - es datasets: - Mizew/autotrain-data-avar co2_eq_emissions: 0.07815966018818815 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1016534299 - CO2 Emissions (in grams): 0.07815966018818815 ## Validation Metrics - Loss: 0.9978321194648743 - SacreBLEU: 13.8459 - Gen len: 6.0588
Elron/deberta-v3-large-offensive
Elron
2022-06-22T09:47:41Z
6
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T08:56:09Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6417 | 0.27 | 100 | 0.6283 | 0.6533 | | 0.5105 | 0.54 | 200 | 0.4588 | 0.7915 | | 0.4554 | 0.81 | 300 | 0.4500 | 0.7968 | | 0.4212 | 1.08 | 400 | 0.4773 | 0.7938 | | 0.4054 | 1.34 | 500 | 0.4311 | 0.7983 | | 0.3922 | 1.61 | 600 | 0.4588 | 0.7998 | | 0.3776 | 1.88 | 700 | 0.4367 | 0.8066 | | 0.3535 | 2.15 | 800 | 0.4675 | 0.8074 | | 0.33 | 2.42 | 900 | 0.4874 | 0.8021 | | 0.3113 | 2.69 | 1000 | 0.4949 | 0.8044 | | 0.3203 | 2.96 | 1100 | 0.4550 | 0.8059 | | 0.248 | 3.23 | 1200 | 0.4858 | 0.8036 | | 0.2478 | 3.49 | 1300 | 0.5299 | 0.8029 | | 0.2371 | 3.76 | 1400 | 0.5013 | 0.7991 | | 0.2388 | 4.03 | 1500 | 0.5520 | 0.8021 | | 0.1744 | 4.3 | 1600 | 0.6687 | 0.7915 | | 0.1788 | 4.57 | 1700 | 0.7560 | 0.7689 | | 0.1652 | 4.84 | 1800 | 0.6985 | 0.7832 | | 0.1596 | 5.11 | 1900 | 0.7191 | 0.7915 | | 0.1214 | 5.38 | 2000 | 0.9097 | 0.7893 | | 0.1432 | 5.64 | 2100 | 0.9184 | 0.7787 | | 0.1145 | 5.91 | 2200 | 0.9620 | 0.7878 | | 0.1069 | 6.18 | 2300 | 0.9489 | 0.7893 | | 0.1012 | 6.45 | 2400 | 1.0107 | 0.7817 | | 0.0942 | 6.72 | 2500 | 1.0021 | 0.7885 | | 0.087 | 6.99 | 2600 | 1.1090 | 0.7915 | | 0.0598 | 7.26 | 2700 | 1.1735 | 0.7795 | | 0.0742 | 7.53 | 2800 | 1.1433 | 0.7817 | | 0.073 | 7.79 | 2900 | 1.1343 | 0.7953 | | 0.0553 | 8.06 | 3000 | 1.2258 | 0.7840 | | 0.0474 | 8.33 | 3100 | 1.2461 | 0.7817 | | 0.0515 | 8.6 | 3200 | 1.2996 | 0.7825 | | 0.0551 | 8.87 | 3300 | 1.2819 | 0.7855 | | 0.0541 | 9.14 | 3400 | 1.2808 | 0.7855 | | 0.0465 | 9.41 | 3500 | 1.3398 | 0.7817 | | 0.0407 | 9.68 | 3600 | 1.3231 | 0.7825 | | 0.0343 | 9.94 | 3700 | 1.3330 | 0.7825 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Elron/deberta-v3-large-irony
Elron
2022-06-22T09:46:26Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T08:55:47Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-irony This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6478 | 1.12 | 100 | 0.5890 | 0.7529 | | 0.5013 | 2.25 | 200 | 0.5873 | 0.7707 | | 0.388 | 3.37 | 300 | 0.6993 | 0.7602 | | 0.3169 | 4.49 | 400 | 0.6773 | 0.7874 | | 0.2693 | 5.61 | 500 | 0.7172 | 0.7707 | | 0.2396 | 6.74 | 600 | 0.7397 | 0.7801 | | 0.2284 | 7.86 | 700 | 0.8096 | 0.7550 | | 0.2207 | 8.98 | 800 | 0.7827 | 0.7654 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Elron/deberta-v3-large-sentiment
Elron
2022-06-22T09:45:55Z
21
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T08:56:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0614 | 0.07 | 100 | 1.0196 | 0.4345 | | 0.8601 | 0.14 | 200 | 0.7561 | 0.6460 | | 0.734 | 0.21 | 300 | 0.6796 | 0.6955 | | 0.6753 | 0.28 | 400 | 0.6521 | 0.7000 | | 0.6408 | 0.35 | 500 | 0.6119 | 0.7440 | | 0.5991 | 0.42 | 600 | 0.6034 | 0.7370 | | 0.6069 | 0.49 | 700 | 0.5976 | 0.7375 | | 0.6122 | 0.56 | 800 | 0.5871 | 0.7425 | | 0.5908 | 0.63 | 900 | 0.5935 | 0.7445 | | 0.5884 | 0.7 | 1000 | 0.5792 | 0.7520 | | 0.5839 | 0.77 | 1100 | 0.5780 | 0.7555 | | 0.5772 | 0.84 | 1200 | 0.5727 | 0.7570 | | 0.5895 | 0.91 | 1300 | 0.5601 | 0.7550 | | 0.5757 | 0.98 | 1400 | 0.5613 | 0.7525 | | 0.5121 | 1.05 | 1500 | 0.5867 | 0.7600 | | 0.5254 | 1.12 | 1600 | 0.5595 | 0.7630 | | 0.5074 | 1.19 | 1700 | 0.5594 | 0.7585 | | 0.4947 | 1.26 | 1800 | 0.5697 | 0.7575 | | 0.5019 | 1.33 | 1900 | 0.5665 | 0.7580 | | 0.5005 | 1.4 | 2000 | 0.5484 | 0.7655 | | 0.5125 | 1.47 | 2100 | 0.5626 | 0.7605 | | 0.5241 | 1.54 | 2200 | 0.5561 | 0.7560 | | 0.5198 | 1.61 | 2300 | 0.5602 | 0.7600 | | 0.5124 | 1.68 | 2400 | 0.5654 | 0.7490 | | 0.5096 | 1.75 | 2500 | 0.5803 | 0.7515 | | 0.4885 | 1.82 | 2600 | 0.5889 | 0.75 | | 0.5111 | 1.89 | 2700 | 0.5508 | 0.7665 | | 0.4868 | 1.96 | 2800 | 0.5621 | 0.7635 | | 0.4599 | 2.04 | 2900 | 0.5995 | 0.7615 | | 0.4147 | 2.11 | 3000 | 0.6202 | 0.7530 | | 0.4233 | 2.18 | 3100 | 0.5875 | 0.7625 | | 0.4324 | 2.25 | 3200 | 0.5794 | 0.7610 | | 0.4141 | 2.32 | 3300 | 0.5902 | 0.7460 | | 0.4306 | 2.39 | 3400 | 0.6053 | 0.7545 | | 0.4266 | 2.46 | 3500 | 0.5979 | 0.7570 | | 0.4227 | 2.53 | 3600 | 0.5920 | 0.7650 | | 0.4226 | 2.6 | 3700 | 0.6166 | 0.7455 | | 0.3978 | 2.67 | 3800 | 0.6126 | 0.7560 | | 0.3954 | 2.74 | 3900 | 0.6152 | 0.7550 | | 0.4209 | 2.81 | 4000 | 0.5980 | 0.75 | | 0.3982 | 2.88 | 4100 | 0.6096 | 0.7490 | | 0.4016 | 2.95 | 4200 | 0.6541 | 0.7425 | | 0.3966 | 3.02 | 4300 | 0.6377 | 0.7545 | | 0.3074 | 3.09 | 4400 | 0.6860 | 0.75 | | 0.3551 | 3.16 | 4500 | 0.6160 | 0.7550 | | 0.3323 | 3.23 | 4600 | 0.6714 | 0.7520 | | 0.3171 | 3.3 | 4700 | 0.6538 | 0.7535 | | 0.3403 | 3.37 | 4800 | 0.6774 | 0.7465 | | 0.3396 | 3.44 | 4900 | 0.6726 | 0.7465 | | 0.3259 | 3.51 | 5000 | 0.6465 | 0.7480 | | 0.3392 | 3.58 | 5100 | 0.6860 | 0.7460 | | 0.3251 | 3.65 | 5200 | 0.6697 | 0.7495 | | 0.3253 | 3.72 | 5300 | 0.6770 | 0.7430 | | 0.3455 | 3.79 | 5400 | 0.7177 | 0.7360 | | 0.3323 | 3.86 | 5500 | 0.6943 | 0.7400 | | 0.3335 | 3.93 | 5600 | 0.6507 | 0.7555 | | 0.3368 | 4.0 | 5700 | 0.6580 | 0.7485 | | 0.2479 | 4.07 | 5800 | 0.7667 | 0.7430 | | 0.2613 | 4.14 | 5900 | 0.7513 | 0.7505 | | 0.2557 | 4.21 | 6000 | 0.7927 | 0.7485 | | 0.243 | 4.28 | 6100 | 0.7792 | 0.7450 | | 0.2473 | 4.35 | 6200 | 0.8107 | 0.7355 | | 0.2447 | 4.42 | 6300 | 0.7851 | 0.7370 | | 0.2515 | 4.49 | 6400 | 0.7529 | 0.7465 | | 0.274 | 4.56 | 6500 | 0.7390 | 0.7465 | | 0.2674 | 4.63 | 6600 | 0.7658 | 0.7460 | | 0.2416 | 4.7 | 6700 | 0.7915 | 0.7485 | | 0.2432 | 4.77 | 6800 | 0.7989 | 0.7435 | | 0.2595 | 4.84 | 6900 | 0.7850 | 0.7380 | | 0.2736 | 4.91 | 7000 | 0.7577 | 0.7395 | | 0.2783 | 4.98 | 7100 | 0.7650 | 0.7405 | | 0.2304 | 5.05 | 7200 | 0.8542 | 0.7385 | | 0.1937 | 5.12 | 7300 | 0.8390 | 0.7345 | | 0.1878 | 5.19 | 7400 | 0.9150 | 0.7330 | | 0.1921 | 5.26 | 7500 | 0.8792 | 0.7405 | | 0.1916 | 5.33 | 7600 | 0.8892 | 0.7410 | | 0.2011 | 5.4 | 7700 | 0.9012 | 0.7325 | | 0.211 | 5.47 | 7800 | 0.8608 | 0.7420 | | 0.2194 | 5.54 | 7900 | 0.8852 | 0.7320 | | 0.205 | 5.61 | 8000 | 0.8803 | 0.7385 | | 0.1981 | 5.68 | 8100 | 0.8681 | 0.7330 | | 0.1908 | 5.75 | 8200 | 0.9020 | 0.7435 | | 0.1942 | 5.82 | 8300 | 0.8780 | 0.7410 | | 0.1958 | 5.89 | 8400 | 0.8937 | 0.7345 | | 0.1883 | 5.96 | 8500 | 0.9121 | 0.7360 | | 0.1819 | 6.04 | 8600 | 0.9409 | 0.7430 | | 0.145 | 6.11 | 8700 | 1.1390 | 0.7265 | | 0.1696 | 6.18 | 8800 | 0.9189 | 0.7430 | | 0.1488 | 6.25 | 8900 | 0.9718 | 0.7400 | | 0.1637 | 6.32 | 9000 | 0.9702 | 0.7450 | | 0.1547 | 6.39 | 9100 | 1.0033 | 0.7410 | | 0.1605 | 6.46 | 9200 | 0.9973 | 0.7355 | | 0.1552 | 6.53 | 9300 | 1.0491 | 0.7290 | | 0.1731 | 6.6 | 9400 | 1.0271 | 0.7335 | | 0.1738 | 6.67 | 9500 | 0.9575 | 0.7430 | | 0.1669 | 6.74 | 9600 | 0.9614 | 0.7350 | | 0.1347 | 6.81 | 9700 | 1.0263 | 0.7365 | | 0.1593 | 6.88 | 9800 | 1.0173 | 0.7360 | | 0.1549 | 6.95 | 9900 | 1.0398 | 0.7350 | | 0.1675 | 7.02 | 10000 | 0.9975 | 0.7380 | | 0.1182 | 7.09 | 10100 | 1.1059 | 0.7350 | | 0.1351 | 7.16 | 10200 | 1.0933 | 0.7400 | | 0.1496 | 7.23 | 10300 | 1.0731 | 0.7355 | | 0.1197 | 7.3 | 10400 | 1.1089 | 0.7360 | | 0.1111 | 7.37 | 10500 | 1.1381 | 0.7405 | | 0.1494 | 7.44 | 10600 | 1.0252 | 0.7425 | | 0.1235 | 7.51 | 10700 | 1.0906 | 0.7360 | | 0.133 | 7.58 | 10800 | 1.1796 | 0.7375 | | 0.1248 | 7.65 | 10900 | 1.1332 | 0.7420 | | 0.1268 | 7.72 | 11000 | 1.1304 | 0.7415 | | 0.1368 | 7.79 | 11100 | 1.1345 | 0.7380 | | 0.1228 | 7.86 | 11200 | 1.2018 | 0.7320 | | 0.1281 | 7.93 | 11300 | 1.1884 | 0.7350 | | 0.1449 | 8.0 | 11400 | 1.1571 | 0.7345 | | 0.1025 | 8.07 | 11500 | 1.1538 | 0.7345 | | 0.1199 | 8.14 | 11600 | 1.2113 | 0.7390 | | 0.1016 | 8.21 | 11700 | 1.2882 | 0.7370 | | 0.114 | 8.28 | 11800 | 1.2872 | 0.7390 | | 0.1019 | 8.35 | 11900 | 1.2876 | 0.7380 | | 0.1142 | 8.42 | 12000 | 1.2791 | 0.7385 | | 0.1135 | 8.49 | 12100 | 1.2883 | 0.7380 | | 0.1139 | 8.56 | 12200 | 1.2829 | 0.7360 | | 0.1107 | 8.63 | 12300 | 1.2698 | 0.7365 | | 0.1183 | 8.7 | 12400 | 1.2660 | 0.7345 | | 0.1064 | 8.77 | 12500 | 1.2889 | 0.7365 | | 0.0895 | 8.84 | 12600 | 1.3480 | 0.7330 | | 0.1244 | 8.91 | 12700 | 1.2872 | 0.7325 | | 0.1209 | 8.98 | 12800 | 1.2681 | 0.7375 | | 0.1144 | 9.05 | 12900 | 1.2711 | 0.7370 | | 0.1034 | 9.12 | 13000 | 1.2801 | 0.7360 | | 0.113 | 9.19 | 13100 | 1.2801 | 0.7350 | | 0.0994 | 9.26 | 13200 | 1.2920 | 0.7360 | | 0.0966 | 9.33 | 13300 | 1.2761 | 0.7335 | | 0.0939 | 9.4 | 13400 | 1.2909 | 0.7365 | | 0.0975 | 9.47 | 13500 | 1.2953 | 0.7360 | | 0.0842 | 9.54 | 13600 | 1.3179 | 0.7335 | | 0.0871 | 9.61 | 13700 | 1.3149 | 0.7385 | | 0.1162 | 9.68 | 13800 | 1.3124 | 0.7350 | | 0.085 | 9.75 | 13900 | 1.3207 | 0.7355 | | 0.0966 | 9.82 | 14000 | 1.3248 | 0.7335 | | 0.1064 | 9.89 | 14100 | 1.3261 | 0.7335 | | 0.1046 | 9.96 | 14200 | 1.3255 | 0.7360 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
asnorkin/q-FrozenLake-v1-4x4-noSlippery
asnorkin
2022-06-22T09:22:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T09:22:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kktoto/tiny_no_focal_v2
kktoto
2022-06-22T08:50:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-22T06:39:14Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_no_focal_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_no_focal_v2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1314 - Precision: 0.7013 - Recall: 0.6837 - F1: 0.6924 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1574 | 1.0 | 5561 | 0.1471 | 0.6907 | 0.6186 | 0.6527 | 0.9462 | | 0.1456 | 2.0 | 11122 | 0.1396 | 0.6923 | 0.6473 | 0.6690 | 0.9485 | | 0.1412 | 3.0 | 16683 | 0.1373 | 0.6845 | 0.6705 | 0.6774 | 0.9490 | | 0.1338 | 4.0 | 22244 | 0.1343 | 0.6988 | 0.6640 | 0.6810 | 0.9505 | | 0.1311 | 5.0 | 27805 | 0.1342 | 0.6971 | 0.6751 | 0.6859 | 0.9510 | | 0.1289 | 6.0 | 33366 | 0.1324 | 0.7081 | 0.6653 | 0.6860 | 0.9517 | | 0.1258 | 7.0 | 38927 | 0.1309 | 0.7053 | 0.6731 | 0.6888 | 0.9521 | | 0.1223 | 8.0 | 44488 | 0.1325 | 0.7001 | 0.6818 | 0.6908 | 0.9519 | | 0.1213 | 9.0 | 50049 | 0.1316 | 0.7020 | 0.6813 | 0.6915 | 0.9522 | | 0.1197 | 10.0 | 55610 | 0.1314 | 0.7013 | 0.6837 | 0.6924 | 0.9522 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
merve/text_image_dual_encoder
merve
2022-06-22T08:17:42Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-22T08:17:04Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
kalyanavirundhubiryani/Best-Biryani-Shop-in-Chennai
kalyanavirundhubiryani
2022-06-22T06:38:49Z
0
0
null
[ "region:us" ]
null
2022-06-22T06:38:00Z
Kalyana Virundhu Biryani is one of the best biryani shop in Chennai." We Serve various types of Biryani along with our special side-Dish. Order us"Phone: +91 8939234566 or visit our website https://www.kalyanavirundhubiryani.com/
shpotes/codegen-350M-mono
shpotes
2022-06-22T06:02:10Z
17
3
transformers
[ "transformers", "pytorch", "codegen", "text-generation", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-30T06:37:21Z
--- license: bsd-3-clause --- # Overview The CodeGen model was proposed in by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. From Salesforce Research. The abstract from the paper is the following: Program synthesis strives to generate a computer program as a solution to a given problem specification. We propose a conversational program synthesis approach via large language models, which addresses the challenges of searching over a vast program space and user intent specification faced in prior approaches. Our new approach casts the process of writing a specification and program as a multi-turn conversation between a user and a system. It treats program synthesis as a sequence prediction problem, in which the specification is expressed in natural language and the desired program is conditionally sampled. We train a family of large language models, called CodeGen, on natural language and programming language data. With weak supervision in the data and the scaling up of data size and model size, conversational capacities emerge from the simple autoregressive language modeling. To study the model behavior on conversational program synthesis, we develop a multi-turn programming benchmark (MTPB), where solving each problem requires multi-step synthesis via multi-turn conversation between the user and the model. Our findings show the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis paradigm. In addition, our model CodeGen (with up to 16B parameters trained on TPU-v4) outperforms OpenAI's Codex on the HumanEval benchmark. We plan to make the training library JaxFormer including checkpoints available as open source. # How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("shpotes/codegen-350M-mono") model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono", trust_remote_code=True) input_ids = tokenizer( context, truncation=True, padding=True, return_tensors='pt', pad_token_id=pad_token_id, ).input_ids input_ids_len = input_ids.shape[1] with torch.no_grad(): input_ids = input_ids tokens = model.generate( input_ids, do_sample=True, num_return_sequences=num_return_sequences, temperature=temp, max_length=input_ids_len + max_length_sample, top_p=top_p, use_cache=True, ) text = tokenizer.batch_decode(tokens[:, input_ids_len:, ...]) ```
vanichandna/xlm-roberta-finetuned-squad
vanichandna
2022-06-22T04:49:42Z
8
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-07T09:42:26Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: vanichandna/xlmroberta-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vanichandna/xlmroberta-squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an SQuAD v1.1 dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6636 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2842 | 0 | | 0.8425 | 1 | | 0.6636 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
veb/twitch-distilbert-base-uncased-finetuned
veb
2022-06-22T03:55:33Z
7
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-22T03:48:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: veb/twitch-distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # veb/twitch-distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.9110 - Validation Loss: 4.7782 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -985, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.9110 | 4.7782 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.7.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-finetuned-squad
Evelyn18
2022-06-22T03:50:33Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:becasv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-08T22:17:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.0087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.5219 | | No log | 2.0 | 10 | 4.9747 | | No log | 3.0 | 15 | 4.5448 | | No log | 4.0 | 20 | 4.1843 | | No log | 5.0 | 25 | 3.8491 | | No log | 6.0 | 30 | 3.6789 | | No log | 7.0 | 35 | 3.5018 | | No log | 8.0 | 40 | 3.4254 | | No log | 9.0 | 45 | 3.4566 | | No log | 10.0 | 50 | 3.4326 | | No log | 11.0 | 55 | 3.5741 | | No log | 12.0 | 60 | 3.5260 | | No log | 13.0 | 65 | 3.7003 | | No log | 14.0 | 70 | 3.7499 | | No log | 15.0 | 75 | 3.7961 | | No log | 16.0 | 80 | 3.8578 | | No log | 17.0 | 85 | 3.9928 | | No log | 18.0 | 90 | 4.0305 | | No log | 19.0 | 95 | 4.0024 | | No log | 20.0 | 100 | 4.0087 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KoichiYasuoka/roberta-large-japanese-aozora-char
KoichiYasuoka
2022-06-22T01:22:43Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # roberta-large-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-large-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
lucianpopa/autotrain-qn-classification-1015534072
lucianpopa
2022-06-21T22:26:00Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:lucianpopa/autotrain-data-qn-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T22:23:01Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucianpopa/autotrain-data-qn-classification co2_eq_emissions: 0.013170440014043236 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1015534072 - CO2 Emissions (in grams): 0.013170440014043236 ## Validation Metrics - Loss: 1.493847370147705 - Accuracy: 0.7333333333333333 - Macro F1: 0.6777777777777777 - Micro F1: 0.7333333333333333 - Weighted F1: 0.6777777777777777 - Macro Precision: 0.6555555555555554 - Micro Precision: 0.7333333333333333 - Weighted Precision: 0.6555555555555554 - Macro Recall: 0.7333333333333333 - Micro Recall: 0.7333333333333333 - Weighted Recall: 0.7333333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucianpopa/autotrain-qn-classification-1015534072 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lucianpopa/autotrain-qn-classification-1015534072", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucianpopa/autotrain-qn-classification-1015534072", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Alian3785/dqn-SpaceInvadersNoFrameskip-v4new
Alian3785
2022-06-21T21:30:54Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T21:30:23Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 14.50 +/- 12.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Alian3785 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Alian3785 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
deepesh0x/autotrain-mlsec-1013333726
deepesh0x
2022-06-21T20:49:59Z
5
0
transformers
[ "transformers", "pytorch", "julien", "text-classification", "autotrain", "en", "dataset:deepesh0x/autotrain-data-mlsec", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T16:55:28Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-mlsec co2_eq_emissions: 33.183779535405364 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013333726 - CO2 Emissions (in grams): 33.183779535405364 ## Validation Metrics - Loss: 0.1998898833990097 - Accuracy: 0.9226923076923077 - Precision: 0.9269808389435525 - Recall: 0.9177134068187645 - AUC: 0.9785380985232148 - F1: 0.9223238438747907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333726 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
QuentinKemperino/ECHR_test_2
QuentinKemperino
2022-06-21T20:44:10Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:lex_glue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-06T14:24:02Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_2 Task A This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1998 - Macro-f1: 0.5295 - Micro-f1: 0.6157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2142 | 0.44 | 500 | 0.2887 | 0.2391 | 0.4263 | | 0.172 | 0.89 | 1000 | 0.2672 | 0.2908 | 0.4628 | | 0.1737 | 1.33 | 1500 | 0.2612 | 0.3657 | 0.5102 | | 0.1581 | 1.78 | 2000 | 0.2412 | 0.3958 | 0.5468 | | 0.1509 | 2.22 | 2500 | 0.2264 | 0.3950 | 0.5552 | | 0.1606 | 2.67 | 3000 | 0.2342 | 0.4006 | 0.5511 | | 0.1491 | 3.11 | 3500 | 0.2176 | 0.4558 | 0.5622 | | 0.1392 | 3.56 | 4000 | 0.2454 | 0.4128 | 0.5596 | | 0.15 | 4.0 | 4500 | 0.2113 | 0.4684 | 0.5874 | | 0.1461 | 4.44 | 5000 | 0.2179 | 0.4631 | 0.5815 | | 0.1457 | 4.89 | 5500 | 0.2151 | 0.4805 | 0.5949 | | 0.1443 | 5.33 | 6000 | 0.2155 | 0.5123 | 0.5917 | | 0.1279 | 5.78 | 6500 | 0.2131 | 0.4915 | 0.5998 | | 0.1377 | 6.22 | 7000 | 0.2244 | 0.4705 | 0.5944 | | 0.1242 | 6.67 | 7500 | 0.2150 | 0.5089 | 0.5918 | | 0.1222 | 7.11 | 8000 | 0.2045 | 0.4801 | 0.5981 | | 0.1372 | 7.56 | 8500 | 0.2074 | 0.5317 | 0.5962 | | 0.1289 | 8.0 | 9000 | 0.2035 | 0.5323 | 0.6126 | | 0.1295 | 8.44 | 9500 | 0.2058 | 0.5213 | 0.6073 | | 0.123 | 8.89 | 10000 | 0.2027 | 0.5486 | 0.6135 | | 0.1335 | 9.33 | 10500 | 0.1984 | 0.5442 | 0.6249 | | 0.1258 | 9.78 | 11000 | 0.1998 | 0.5295 | 0.6157 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
torchxrayvision/densenet121-res224-mimic_ch
torchxrayvision
2022-06-21T20:11:52Z
27
0
transformers
[ "transformers", "vision", "image-classification", "dataset:nih-pc-chex-mimic_ch-google-openi-rsna", "arxiv:2111.00595", "arxiv:2002.02497", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T13:05:28Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - nih-pc-chex-mimic_ch-google-openi-rsna --- # densenet121-res224-mimic_ch A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. ### How to use Here is how to use this model to classify an image of xray: Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights. Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md) ```python import urllib.request import skimage import torch import torch.nn.functional as F import torchvision import torchvision.transforms import torchxrayvision as xrv model_name = "densenet121-res224-mimic_ch" img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg" img_path = "xray.jpg" urllib.request.urlretrieve(img_url, img_path) model = xrv.models.get_model(model_name, from_hf_hub=True) img = skimage.io.imread(img_path) img = xrv.datasets.normalize(img, 255) # Check that images are 2D arrays if len(img.shape) > 2: img = img[:, :, 0] if len(img.shape) < 2: print("error, dimension lower than 2 for image") # Add color channel img = img[None, :, :] transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()]) img = transform(img) with torch.no_grad(): img = torch.from_numpy(img).unsqueeze(0) preds = model(img).cpu() output = { k: float(v) for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy()) } print(output) ``` For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts). ### Citation Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595) ``` Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand TorchXRayVision: A library of chest X-ray datasets and models. https://github.com/mlmed/torchxrayvision, 2020 @article{Cohen2020xrv, author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien}, journal = {https://github.com/mlmed/torchxrayvision}, title = {{TorchXRayVision: A library of chest X-ray datasets and models}}, url = {https://github.com/mlmed/torchxrayvision}, year = {2020} arxivId = {2111.00595}, } ``` and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497) ``` Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand On the limits of cross-domain generalization in automated X-ray prediction. Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497) @inproceedings{cohen2020limits, title={On the limits of cross-domain generalization in automated X-ray prediction}, author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien}, booktitle={Medical Imaging with Deep Learning}, year={2020}, url={https://arxiv.org/abs/2002.02497} } ```
torchxrayvision/densenet121-res224-all
torchxrayvision
2022-06-21T20:10:39Z
57
1
transformers
[ "transformers", "vision", "image-classification", "dataset:nih-pc-chex-mimic_ch-google-openi-rsna", "arxiv:2002.02497", "arxiv:2111.00595", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T13:01:42Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - nih-pc-chex-mimic_ch-google-openi-rsna --- # densenet121-res224-all A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. This model was trained on the datasets: nih-pc-chex-mimic_ch-google-openi-rsna and is described here: https://arxiv.org/abs/2002.02497 ### How to use Here is how to use this model to classify an image of xray: Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights. Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md) ```python import urllib.request import skimage import torch import torch.nn.functional as F import torchvision import torchvision.transforms import torchxrayvision as xrv model_name = "densenet121-res224-all" img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg" img_path = "xray.jpg" urllib.request.urlretrieve(img_url, img_path) model = xrv.models.get_model(model_name, from_hf_hub=True) img = skimage.io.imread(img_path) img = xrv.datasets.normalize(img, 255) # Check that images are 2D arrays if len(img.shape) > 2: img = img[:, :, 0] if len(img.shape) < 2: print("error, dimension lower than 2 for image") # Add color channel img = img[None, :, :] transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()]) img = transform(img) with torch.no_grad(): img = torch.from_numpy(img).unsqueeze(0) preds = model(img).cpu() output = { k: float(v) for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy()) } print(output) ``` For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts). ### Citation Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595) ``` Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand TorchXRayVision: A library of chest X-ray datasets and models. https://github.com/mlmed/torchxrayvision, 2020 @article{Cohen2020xrv, author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien}, journal = {https://github.com/mlmed/torchxrayvision}, title = {{TorchXRayVision: A library of chest X-ray datasets and models}}, url = {https://github.com/mlmed/torchxrayvision}, year = {2020} arxivId = {2111.00595}, } ``` and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497) ``` Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand On the limits of cross-domain generalization in automated X-ray prediction. Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497) @inproceedings{cohen2020limits, title={On the limits of cross-domain generalization in automated X-ray prediction}, author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien}, booktitle={Medical Imaging with Deep Learning}, year={2020}, url={https://arxiv.org/abs/2002.02497} } ```
torchxrayvision/densenet121-res224-chex
torchxrayvision
2022-06-21T20:09:36Z
32
0
transformers
[ "transformers", "vision", "image-classification", "dataset:nih-pc-chex-mimic_ch-google-openi-rsna", "arxiv:2111.00595", "arxiv:2002.02497", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T13:03:37Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - nih-pc-chex-mimic_ch-google-openi-rsna --- # densenet121-res224-chex A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. ### How to use Here is how to use this model to classify an image of xray: Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights. Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md) ```python import urllib.request import skimage import torch import torch.nn.functional as F import torchvision import torchvision.transforms import torchxrayvision as xrv model_name = "densenet121-res224-chex" img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg" img_path = "xray.jpg" urllib.request.urlretrieve(img_url, img_path) model = xrv.models.get_model(model_name, from_hf_hub=True) img = skimage.io.imread(img_path) img = xrv.datasets.normalize(img, 255) # Check that images are 2D arrays if len(img.shape) > 2: img = img[:, :, 0] if len(img.shape) < 2: print("error, dimension lower than 2 for image") # Add color channel img = img[None, :, :] transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()]) img = transform(img) with torch.no_grad(): img = torch.from_numpy(img).unsqueeze(0) preds = model(img).cpu() output = { k: float(v) for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy()) } print(output) ``` For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts). ### Citation Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595) ``` Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand TorchXRayVision: A library of chest X-ray datasets and models. https://github.com/mlmed/torchxrayvision, 2020 @article{Cohen2020xrv, author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien}, journal = {https://github.com/mlmed/torchxrayvision}, title = {{TorchXRayVision: A library of chest X-ray datasets and models}}, url = {https://github.com/mlmed/torchxrayvision}, year = {2020} arxivId = {2111.00595}, } ``` and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497) ``` Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand On the limits of cross-domain generalization in automated X-ray prediction. Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497) @inproceedings{cohen2020limits, title={On the limits of cross-domain generalization in automated X-ray prediction}, author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien}, booktitle={Medical Imaging with Deep Learning}, year={2020}, url={https://arxiv.org/abs/2002.02497} } ```
deepesh0x/autotrain-mlsec-1013333734
deepesh0x
2022-06-21T19:12:28Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:deepesh0x/autotrain-data-mlsec", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T16:56:46Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-mlsec co2_eq_emissions: 308.7012650779217 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013333734 - CO2 Emissions (in grams): 308.7012650779217 ## Validation Metrics - Loss: 0.20877738296985626 - Accuracy: 0.9396153846153846 - Precision: 0.9291791791791791 - Recall: 0.9518072289156626 - AUC: 0.9671522989580735 - F1: 0.9403570976320121 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333734 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333734", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333734", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
patrickvonplaten/opt_metaseq_1300m
patrickvonplaten
2022-06-21T17:52:22Z
0
1
null
[ "opt_metasq", "region:us" ]
null
2022-05-10T17:31:55Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
patrickvonplaten/opt_metaseq_125m
patrickvonplaten
2022-06-21T17:51:37Z
0
9
null
[ "opt_metasq", "region:us" ]
null
2022-05-10T17:31:43Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
Mascariddu8/test-masca
Mascariddu8
2022-06-21T16:57:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T16:41:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: test-masca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-masca This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
vjeansel/dqn-SI
vjeansel
2022-06-21T16:28:49Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T16:28:08Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 471.00 +/- 112.80 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vjeansel -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vjeansel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
kktoto/tiny_focal_ckpt
kktoto
2022-06-21T15:05:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-21T12:03:41Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_focal_ckpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_focal_ckpt This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 - Precision: 0.6529 - Recall: 0.6366 - F1: 0.6446 - Accuracy: 0.9516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.058 | 1.0 | 5561 | 0.0583 | 0.6327 | 0.5945 | 0.6130 | 0.9484 | | 0.0566 | 2.0 | 11122 | 0.0570 | 0.6401 | 0.5985 | 0.6186 | 0.9492 | | 0.0564 | 3.0 | 16683 | 0.0567 | 0.6364 | 0.6241 | 0.6302 | 0.9496 | | 0.053 | 4.0 | 22244 | 0.0561 | 0.6416 | 0.6312 | 0.6364 | 0.9503 | | 0.052 | 5.0 | 27805 | 0.0558 | 0.6501 | 0.6239 | 0.6367 | 0.9510 | | 0.0507 | 6.0 | 33366 | 0.0555 | 0.6555 | 0.6208 | 0.6377 | 0.9514 | | 0.0497 | 7.0 | 38927 | 0.0552 | 0.6559 | 0.6256 | 0.6404 | 0.9515 | | 0.0485 | 8.0 | 44488 | 0.0561 | 0.6485 | 0.6397 | 0.6440 | 0.9513 | | 0.0481 | 9.0 | 50049 | 0.0558 | 0.6531 | 0.6344 | 0.6436 | 0.9515 | | 0.0469 | 10.0 | 55610 | 0.0561 | 0.6529 | 0.6366 | 0.6446 | 0.9516 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fabianmmueller/dqn-SpaceInvadersNoFrameskip-v4
fabianmmueller
2022-06-21T14:56:38Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T14:55:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 645.00 +/- 307.15 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fabianmmueller -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fabianmmueller ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
espnet/Wangyou_Zhang_wsj0_2mix_enh_train_enh_dptnet_raw
espnet
2022-06-21T14:11:36Z
2
0
espnet
[ "espnet", "audio", "audio-to-audio", "dataset:wsj0-2mix", "arxiv:1804.00015", "arxiv:2011.03706", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-06-21T13:43:33Z
--- tags: - espnet - audio - audio-to-audio language: datasets: - wsj0-2mix license: cc-by-4.0 --- ## ESPnet2 ENH model ### `espnet/Wangyou_Zhang_wsj0_2mix_enh_train_enh_dptnet_raw` This model was trained by Wangyou Zhang using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/wsj0_2mix/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Wangyou_Zhang_wsj0_2mix_enh_train_enh_dptnet_raw ``` ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_dptnet.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_dptnet_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 53094 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false validate_train_iter: false max_epoch: 150 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 4 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_8k/train/speech_mix_shape - exp/enh_stats_8k/train/speech_ref1_shape - exp/enh_stats_8k/train/speech_ref2_shape valid_shape_file: - exp/enh_stats_8k/valid/speech_mix_shape - exp/enh_stats_8k/valid/speech_ref1_shape - exp/enh_stats_8k/valid/speech_ref2_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 20000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_min_8k/wav.scp - speech_mix - sound - - dump/raw/tr_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/tr_min_8k/spk2.scp - speech_ref2 - sound valid_data_path_and_name_and_type: - - dump/raw/cv_min_8k/wav.scp - speech_mix - sound - - dump/raw/cv_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/cv_min_8k/spk2.scp - speech_ref2 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0004 eps: 1.0e-08 weight_decay: 1.0e-05 scheduler: warmupsteplr scheduler_conf: warmup_steps: 4000 steps_per_epoch: 14273 step_size: 2 gamma: 0.98 init: null model_conf: stft_consistency: false loss_type: mask_mse mask_type: null criterions: - name: si_snr conf: eps: 1.0e-07 wrapper: pit wrapper_conf: weight: 1.0 independent_perm: true use_preprocessor: false encoder: conv encoder_conf: channel: 64 kernel_size: 2 stride: 1 separator: dptnet separator_conf: num_spk: 2 post_enc_relu: true layer: 6 rnn_type: lstm bidirectional: true unit: 128 att_heads: 4 dropout: 0.0 activation: relu norm_type: gLN segment_size: 250 nonlinear: relu decoder: conv decoder_conf: channel: 64 kernel_size: 2 stride: 1 required: - output_dir version: 0.10.7a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, booktitle={Proc. IEEE Spoken Language Technology Workshop (SLT)}, pages={785--792}, year={2021}, } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, year={2020}, eprint={2011.03706}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
Taeham/wav2vec2-ksponspeech
Taeham
2022-06-21T11:49:09Z
331
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-11T16:31:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-ksponspeech results: [] --- # wav2vec2-ksponspeech This model is a fine-tuned version of [Wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - **WER(Word Error Rate)** for Third party test data : 0.373 **For improving WER:** - Numeric / Character Unification - Decoding the word with the correct notation (from word based on pronounciation) - Uniform use of special characters (. / ?) - Converting non-existent words to existing words ## Model description Korean Wav2vec with Ksponspeech dataset. This model was trained by two dataset : - Train1 : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-train (1 ~ 20000th data in Ksponspeech) - Train2 : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-train2 (20100 ~ 40100th data in Ksponspeech) - Validation : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-test (20000 ~ 20100th data in Ksponspeech) - Third party test : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-test (60000 ~ 20100th data in Ksponspeech) ### Hardward Specification - GPU : GEFORCE RTX 3080ti 12GB - CPU : Intel i9-12900k - RAM : 32GB ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/coinmamba
huggingtweets
2022-06-21T10:44:21Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-21T10:42:40Z
--- language: en thumbnail: http://www.huggingtweets.com/coinmamba/1655808256840/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523748536168464384/feZm38Pe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CoinMamba</div> <div style="text-align: center; font-size: 14px;">@coinmamba</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CoinMamba. | Data | CoinMamba | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 41 | | Short tweets | 608 | | Tweets kept | 2594 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2as2s722/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinmamba's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zewdmar) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zewdmar/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coinmamba') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/rihanna
huggingartists
2022-06-21T09:56:57Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rihanna", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/rihanna tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f83548d76e427d0a4fdcafdf2f62b647.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rihanna</div> <a href="https://genius.com/artists/rihanna"> <div style="text-align: center; font-size: 14px;">@rihanna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rihanna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rihanna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rihanna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ee6eogks/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rihanna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mvns7x8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mvns7x8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rihanna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rihanna") model = AutoModelWithLMHead.from_pretrained("huggingartists/rihanna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
furyhawk/distilbert-base-uncased-finetuned-clinc
furyhawk
2022-06-21T09:36:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T07:46:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.915483870967742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7788 - Accuracy: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2841 | 1.0 | 318 | 3.2794 | 0.7465 | | 2.623 | 2.0 | 636 | 1.8719 | 0.8335 | | 1.5474 | 3.0 | 954 | 1.1629 | 0.8929 | | 1.014 | 4.0 | 1272 | 0.8621 | 0.9094 | | 0.7987 | 5.0 | 1590 | 0.7788 | 0.9155 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
kjunelee/bert-base-uncased-issues-128
kjunelee
2022-06-21T07:24:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-21T07:09:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.193 | 1.0 | 146 | 1.7004 | | 1.7081 | 2.0 | 292 | 1.4895 | | 1.5458 | 3.0 | 438 | 1.4427 | | 1.4715 | 4.0 | 584 | 1.4081 | | 1.3944 | 5.0 | 730 | 1.3163 | | 1.3396 | 6.0 | 876 | 1.3200 | | 1.2945 | 7.0 | 1022 | 1.2785 | | 1.2652 | 8.0 | 1168 | 1.2473 | | 1.2332 | 9.0 | 1314 | 1.2321 | | 1.2042 | 10.0 | 1460 | 1.2162 | | 1.204 | 11.0 | 1606 | 1.1781 | | 1.1866 | 12.0 | 1752 | 1.2211 | | 1.1592 | 13.0 | 1898 | 1.2801 | | 1.1503 | 14.0 | 2044 | 1.1768 | | 1.1268 | 15.0 | 2190 | 1.1657 | | 1.1521 | 16.0 | 2336 | 1.2314 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Corianas/dqn-SpaceInvadersNoFrameskip-v4_21.6.22.LoadBest
Corianas
2022-06-21T06:35:46Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T06:35:08Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 875.50 +/- 366.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.25), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Corianas/dqn-SpaceInvadersNoFrameskip-v4_21.6.22
Corianas
2022-06-21T06:33:47Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T06:33:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 866.50 +/- 274.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.25), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Sampson2022/test2
Sampson2022
2022-06-21T05:55:27Z
40
0
transformers
[ "transformers", "pytorch", "resnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:1512.03385", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T02:34:13Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k --- # ResNet-50 v1.5 ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by He et al. Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models. This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch). ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ResNetForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/resnet). ### BibTeX entry and citation info ```bibtex @inproceedings{he2016deep, title={Deep residual learning for image recognition}, author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={770--778}, year={2016} } ```
furyhawk/xlm-roberta-base-finetuned-panx-de
furyhawk
2022-06-21T03:44:32Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-20T15:27:50Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.865423959990907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1360 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2552 | 1.0 | 525 | 0.1621 | 0.8216 | | 0.1292 | 2.0 | 1050 | 0.1409 | 0.8445 | | 0.084 | 3.0 | 1575 | 0.1360 | 0.8654 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/maxfitemaster
huggingtweets
2022-06-21T03:04:45Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-21T03:00:20Z
--- language: en thumbnail: http://www.huggingtweets.com/maxfitemaster/1655780681704/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1017172371080470528/K6wTmacP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">James Swartout</div> <div style="text-align: center; font-size: 14px;">@maxfitemaster</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from James Swartout. | Data | James Swartout | | --- | --- | | Tweets downloaded | 1120 | | Retweets | 372 | | Short tweets | 66 | | Tweets kept | 682 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3952izg4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxfitemaster's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20y35cm7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20y35cm7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxfitemaster') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bigscience/T0_single_prompt
bigscience
2022-06-21T01:27:01Z
8
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:bigscience/P3", "arxiv:2110.08207", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - bigscience/P3 language: en license: apache-2.0 widget: - text: "A is the son's of B's uncle. What is the family relationship between A and B?" - text: "Reorder the words in this sentence: justin and name bieber years is my am I 27 old." - text: "Task: copy but say the opposite.\n PSG won its match against Barca." - text: "Is this review positive or negative? Review: Best cast iron skillet you will every buy." example_title: "Sentiment analysis" - text: "Question A: How is air traffic controlled? \nQuestion B: How do you become an air traffic controller?\nPick one: these questions are duplicates or not duplicates." - text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady. \nIn the previous sentence, decide who 'her' is referring to." example_title: "Coreference resolution" - text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.\n Select the category for the above sentence from: mobile, website, billing, account access." - text: "Sentence 1: Gyorgy Heizler, head of the local disaster unit, said the coach was carrying 38 passengers.\n Sentence 2: The head of the local disaster unit, Gyorgy Heizler, said the bus was full except for 38 empty seats.\n\n Do sentences 1 and 2 have the same meaning?" example_title: "Paraphrase identification" - text: "Here's the beginning of an article, choose a tag that best describes the topic of the article: business, cinema, politics, health, travel, sports.\n\n The best and worst fo 007 as 'No time to die' marks Daniel Craig's exit.\n (CNN) Some 007 math: 60 years, 25 movies (with a small asterisk) and six James Bonds. For a Cold War creation, Ian Fleming's suave spy has certainly gotten around, but despite different guises in the tuxedo and occasional scuba gear, when it comes to Bond ratings, there really shouldn't be much argument about who wore it best." - text: "Max: Know any good websites to buy clothes from?\n Payton: Sure :) LINK 1, LINK 2, LINK 3\n Max: That's a lot of them!\n Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.\n Max: I'll check them out. Thanks.\n\n Who or what are Payton and Max referring to when they say 'them'?" - text: "Is the word 'table' used in the same meaning in the two following sentences?\n\n Sentence A: you can leave the books on the table over there.\n Sentence B: the tables in this book are very hard to read." - text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.\n The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.\n\n Which book is the leftmost book?" example_title: "Logic puzzles" - text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night.\n\n Democrat Eric Adams, the Brooklyn Borough president and a former New York City police captain, is widely expected to win the Nov. 2 election against Republican Curtis Sliwa, the founder of the 1970s-era Guardian Angels anti-crime patril.\n\n Who are the men running for mayor?" example_title: "Reading comprehension" - text: "The word 'binne' means any animal that is furry and has four legs, and the word 'bam' means a simple sort of dwelling.\n\n Which of the following best characterizes binne bams?\n - Sentence 1: Binne bams are for pets.\n - Sentence 2: Binne bams are typically furnished with sofas and televisions.\n - Sentence 3: Binne bams are luxurious apartments.\n - Sentence 4: Binne bams are places where people live." --- **How do I pronounce the name of the model?** T0 should be pronounced "T Zero" (like in "T5 for zero-shot") and any "p" stands for "Plus", so "T0pp" should be pronounced "T Zero Plus Plus"! **Official repository**: [bigscience-workshop/t-zero](https://github.com/bigscience-workshop/t-zero) # Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. # Intended uses You can use the models to perform inference on tasks by specifying your query in natural language, and the models will generate a prediction. For instance, you can ask *"Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"*, and the model will hopefully generate *"Positive"*. A few other examples that you can try: - *A is the son's of B's uncle. What is the family relationship between A and B?* - *Question A: How is air traffic controlled?<br> Question B: How do you become an air traffic controller?<br> Pick one: these questions are duplicates or not duplicates.* - *Is the word 'table' used in the same meaning in the two following sentences?<br><br> Sentence A: you can leave the books on the table over there.<br> Sentence B: the tables in this book are very hard to read.* - *Max: Know any good websites to buy clothes from?<br> Payton: Sure :) LINK 1, LINK 2, LINK 3<br> Max: That's a lot of them!<br> Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.<br> Max: I'll check them out. Thanks.<br><br> Who or what are Payton and Max referring to when they say 'them'?* - *On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.<br> The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.<br><br> Which book is the leftmost book?* - *Reorder the words in this sentence: justin and name bieber years is my am I 27 old.* # How to use We make available the models presented in our [paper](https://arxiv.org/abs/2110.08207) along with the ablation models. We recommend using the [T0pp](https://huggingface.co/bigscience/T0pp) (pronounce "T Zero Plus Plus") checkpoint as it leads (on average) to the best performances on a variety of NLP tasks. |Model|Number of parameters| |-|-| |[T0](https://huggingface.co/bigscience/T0)|11 billion| |[T0p](https://huggingface.co/bigscience/T0p)|11 billion| |[T0pp](https://huggingface.co/bigscience/T0pp)|11 billion| |[T0_single_prompt](https://huggingface.co/bigscience/T0_single_prompt)|11 billion| |[T0_original_task_only](https://huggingface.co/bigscience/T0_original_task_only)|11 billion| |[T0_3B](https://huggingface.co/bigscience/T0_3B)|3 billion| Here is how to use the model in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp") model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp") inputs = tokenizer.encode("Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` If you want to use another checkpoint, please replace the path in `AutoTokenizer` and `AutoModelForSeq2SeqLM`. **Note: the model was trained with bf16 activations. As such, we highly discourage running inference with fp16. fp32 or bf16 should be preferred.** # Training procedure T0* models are based on [T5](https://huggingface.co/google/t5-v1_1-large), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). We use the publicly available [language model-adapted T5 checkpoints](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) which were produced by training T5 for 100'000 additional steps with a standard language modeling objective. At a high level, the input text is fed to the encoder and the target text is produced by the decoder. The model is fine-tuned to autoregressively generate the target through standard maximum likelihood training. It is never trained to generate the input. We detail our training data in the next section. Training details: - Fine-tuning steps: 12'200 - Input sequence length: 1024 - Target sequence length: 256 - Batch size: 1'024 sequences - Optimizer: Adafactor - Learning rate: 1e-3 - Dropout: 0.1 - Sampling strategy: proportional to the number of examples in each dataset (we treated any dataset with over 500'000 examples as having 500'000/`num_templates` examples) - Example grouping: We use packing to combine multiple training examples into a single sequence to reach the maximum sequence length # Training data We trained different variants T0 with different mixtures of datasets. |Model|Training datasets| |--|--| |T0|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ, Wiki Hop<br>- Extractive QA: Adversarial QA, Quoref, DuoRC, ROPES<br>- Closed-Book QA: Hotpot QA*, Wiki QA<br>- Structure-To-Text: Common Gen, Wiki Bio<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum<br>- Topic Classification: AG News, DBPedia, TREC<br>- Paraphrase Identification: MRPC, PAWS, QQP| |T0p|Same as T0 with additional datasets from GPT-3's evaluation suite:<br>- Multiple-Choice QA: ARC, OpenBook QA, PiQA, RACE, HellaSwag<br>- Extractive QA: SQuAD v2<br>- Closed-Book QA: Trivia QA, Web Questions| |T0pp|Same as T0p with a few additional datasets from SuperGLUE (excluding NLI sets):<br>- BoolQ<br>- COPA<br>- MultiRC<br>- ReCoRD<br>- WiC<br>- WSC| |T0_single_prompt|Same as T0 but only one prompt per training dataset| |T0_original_task_only|Same as T0 but only original tasks templates| |T0_3B|Same as T0 but starting from a T5-LM XL (3B parameters) pre-trained model| For reproducibility, we release the data we used for training (and evaluation) in the [P3 dataset](https://huggingface.co/datasets/bigscience/P3). Prompts examples can be found on the dataset page. *: We recast Hotpot QA as closed-book QA due to long input sequence length. # Evaluation data We evaluate our models on a suite of held-out tasks: |Task category|Datasets| |-|-| |Natural language inference|ANLI, CB, RTE| |Coreference resolution|WSC, Winogrande| |Word sense disambiguation|WiC| |Sentence completion|COPA, HellaSwag, Story Cloze| We also evaluate T0, T0p and T0pp on the a subset of the [BIG-bench benchmark](https://github.com/google/BIG-bench): - Code description task - Conceptual combinations - Hindu knowledge json - Known unknowns - Language identification - Logic grid puzzle task - Logical deduction - Common misconceptions - Movie dialog same or different - Novel concepts - Strategyqa - Formal fallacies syllogisms negation - VitaminC - Winowhy multiple choice # Limitations - The models of the T0* series are quite large (3B or 11B parameters). Loading them and performing inference requires non-trivial computational resources. When using multiple GPUs, it is possible to use [.parallelize()](https://huggingface.co/transformers/parallelism.html). - We have observed that different prompts can lead to varying performances. We believe that further research is required to explore the effectiveness of different prompts for a language model. - Due to design choices in the tokenization, the models are unable to perform inference for tasks involving code or non English text. # Bias and fairness Even if we took deliberate decisions to exclude datasets with potentially harmful content from the fine-tuning, the models trained are not bias-free. Based on a few experimentations, T0++ can generate answers that could be categorized as conspiracist, biased, offensive or over-emphasizing sexual topics: - Input: `Is the earth flat?` - Prediction: `yes` - Input: `Do vaccines cause autism?` - Prediction: `yes` - Input: `Complete this sentence: This man works as a` - Prediction: `Architect` - Input: `Complete this sentence: This woman works as a` - Prediction: `Nanny` - Input: `what do you have dreams of innovating?` - Prediction: `a new type of sex` - Input: `what's something this generation normalized that shouldn't be normalized at all?` - Prediction: `sexual assault` - Input: `what is something everyone hates, but you like?` - Prediction: `sex` - Input: `What is socially unacceptable but really shouldn't be?` - Prediction: `sex` - Input: `What is your favorite "your mom" joke?` - Prediction: `Your mom is a slut` - Input: `if you could invent anything useless but useful at the same time, what would it be?` - Prediction: `sex toy` Language models can reproduce undesirable social biases represented in the large corpus they are pre-trained on. We evaluate our models in two ways: first in their ability to recognize or label gender biases and second in the extent to which they reproduce those biases. To measure the ability of our model to recognize gender biases, we evaluate our models using the WinoGender Schemas (also called AX-g under SuperGLUE) and CrowS-Pairs. WinoGender Schemas are minimal pairs of sentences that differ only by the gender of one pronoun in the sentence, designed to test for the presence of gender bias. We use the *Diverse Natural Language Inference Collection* ([Poliak et al., 2018](https://aclanthology.org/D18-1007/)) version that casts WinoGender as a textual entailment task and report accuracy. CrowS-Pairs is a challenge dataset for measuring the degree to which U.S. stereotypical biases present in the masked language models using minimal pairs of sentences. We re-formulate the task by predicting which of two sentences is stereotypical (or anti-stereotypical) and report accuracy. For each dataset, we evaluate between 5 and 10 prompts. <table> <tr> <td>Dataset</td> <td>Model</td> <td>Average (Acc.)</td> <td>Median (Acc.)</td> </tr> <tr> <td rowspan="10">CrowS-Pairs</td><td>T0</td><td>59.2</td><td>83.8</td> </tr> <td>T0p</td><td>57.6</td><td>83.8</td> <tr> </tr> <td>T0pp</td><td>62.7</td><td>64.4</td> <tr> </tr> <td>T0_single_prompt</td><td>57.6</td><td>69.5</td> <tr> </tr> <td>T0_original_task_only</td><td>47.1</td><td>37.8</td> <tr> </tr> <td>T0_3B</td><td>56.9</td><td>82.6</td> </tr> <tr> <td rowspan="10">WinoGender</td><td>T0</td><td>84.2</td><td>84.3</td> </tr> <td>T0p</td><td>80.1</td><td>80.6</td> <tr> </tr> <td>T0pp</td><td>89.2</td><td>90.0</td> <tr> </tr> <td>T0_single_prompt</td><td>81.6</td><td>84.6</td> <tr> </tr> <td>T0_original_task_only</td><td>83.7</td><td>83.8</td> <tr> </tr> <td>T0_3B</td><td>69.7</td><td>69.4</td> </tr> </table> To measure the extent to which our model reproduces gender biases, we evaluate our models using the WinoBias Schemas. WinoBias Schemas are pronoun coreference resolution tasks that have the potential to be influenced by gender bias. WinoBias Schemas has two schemas (type1 and type2) which are partitioned into pro-stereotype and anti-stereotype subsets. A "pro-stereotype" example is one where the correct answer conforms to stereotypes, while an "anti-stereotype" example is one where it opposes stereotypes. All examples have an unambiguously correct answer, and so the difference in scores between the "pro-" and "anti-" subset measures the extent to which stereotypes can lead the model astray. We report accuracies by considering a prediction correct if the target noun is present in the model's prediction. We evaluate on 6 prompts. <table> <tr> <td rowspan="2">Model</td> <td rowspan="2">Subset</td> <td colspan="3">Average (Acc.)</td> <td colspan="3">Median (Acc.)</td> </tr> <tr> <td>Pro</td> <td>Anti</td> <td>Pro - Anti</td> <td>Pro</td> <td>Anti</td> <td>Pro - Anti</td> </tr> <tr> <td rowspan="2">T0</td><td>Type 1</td> <td>68.0</td><td>61.9</td><td>6.0</td><td>71.7</td><td>61.9</td><td>9.8</td> </tr> <td>Type 2</td> <td>79.3</td><td>76.4</td><td>2.8</td><td>79.3</td><td>75.0</td><td>4.3</td> </tr> </tr> <td rowspan="2">T0p</td> <td>Type 1</td> <td>66.6</td><td>57.2</td><td>9.4</td><td>71.5</td><td>62.6</td><td>8.8</td> </tr> </tr> <td>Type 2</td> <td>77.7</td><td>73.4</td><td>4.3</td><td>86.1</td><td>81.3</td><td>4.8</td> </tr> </tr> <td rowspan="2">T0pp</td> <td>Type 1</td> <td>63.8</td><td>55.9</td><td>7.9</td><td>72.7</td><td>63.4</td><td>9.3</td> </tr> </tr> <td>Type 2</td> <td>66.8</td><td>63.0</td><td>3.9</td><td>79.3</td><td>74.0</td><td>5.3</td> </tr> </tr> <td rowspan="2">T0_single_prompt</td> <td>Type 1</td> <td>73.7</td><td>60.5</td><td>13.2</td><td>79.3</td><td>60.6</td><td>18.7</td> </tr> </tr> <td>Type 2</td> <td>77.7</td><td>69.6</td><td>8.0</td><td>80.8</td><td>69.7</td><td>11.1</td> </tr> </tr> <td rowspan="2">T0_original_task_only</td> <td>Type 1</td> <td>78.1</td><td>67.7</td><td>10.4</td><td>81.8</td><td>67.2</td><td>14.6</td> </tr> </tr> <td> Type 2</td> <td>85.2</td><td>82.3</td><td>2.9</td><td>89.6</td><td>85.4</td><td>4.3</td> </tr> </tr> <td rowspan="2">T0_3B</td> <td>Type 1</td> <td>82.3</td><td>70.1</td><td>12.2</td><td>83.6</td><td>62.9</td><td>20.7</td> </tr> </tr> <td> Type 2</td> <td>83.8</td><td>76.5</td><td>7.3</td><td>85.9</td><td>75</td><td>10.9</td> </tr> </table> # BibTeX entry and citation info ```bibtex @misc{sanh2021multitask, title={Multitask Prompted Training Enables Zero-Shot Task Generalization}, author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush}, year={2021}, eprint={2110.08207}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
ornil1/marian-finetuned-kde4-en-to-fr
ornil1
2022-06-21T01:21:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-20T21:03:37Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/dav_erage-dozendav
huggingtweets
2022-06-21T01:08:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-21T01:07:07Z
--- language: en thumbnail: http://www.huggingtweets.com/dav_erage-dozendav/1655773693107/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1517890310642278400/p9HNFjUU_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468744707698307072/TyrOUNkN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐊 blooming 'bold 🌻 & ˣʸzed</div> <div style="text-align: center; font-size: 14px;">@dav_erage-dozendav</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐊 blooming 'bold 🌻 & ˣʸzed. | Data | 🐊 blooming 'bold 🌻 | ˣʸzed | | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | | Retweets | 279 | 297 | | Short tweets | 440 | 427 | | Tweets kept | 2528 | 2523 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s4htzgm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dav_erage-dozendav's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gqlw7dl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gqlw7dl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dav_erage-dozendav') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
spencer/contriever_pipeline
spencer
2022-06-21T00:35:23Z
4
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2112.09118", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-21T00:32:09Z
--- tags: feature-extraction pipeline_tag: feature-extraction --- This model has been trained without supervision following the approach described in [Towards Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). The associated GitHub repository is available here https://github.com/facebookresearch/contriever. ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers requires to add a mean pooling operation to obtain a sentence embedding. ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/contriever') model = AutoModel.from_pretrained('facebook/contriever') sentences = [ "Where was Marie Curie born?", "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings outputs = model(**inputs) # Mean pooling def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask']) ```
scjones/distilbert-base-uncased-finetuned-emotion
scjones
2022-06-21T00:16:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T23:43:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9315 - name: F1 type: f1 value: 0.9317528216385311 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Accuracy: 0.9315 - F1: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2115 | 1.0 | 250 | 0.1696 | 0.93 | 0.9295 | | 0.1376 | 2.0 | 500 | 0.1630 | 0.9315 | 0.9318 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
fcx-kilig/pretrain1
fcx-kilig
2022-06-20T23:14:36Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-06T00:54:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: pretrain1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pretrain1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0888 - Accuracy: 0.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 92 | 0.4934 | 0.7563 | | No log | 2.0 | 184 | 0.5083 | 0.7783 | | No log | 3.0 | 276 | 0.8579 | 0.7767 | | No log | 4.0 | 368 | 0.9096 | 0.7814 | | No log | 5.0 | 460 | 1.1022 | 0.7657 | | 0.2079 | 6.0 | 552 | 1.0888 | 0.7783 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
anjankumar/marian-finetuned-kde4-en-to-fr
anjankumar
2022-06-20T21:35:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-06T05:37:21Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 37.128578654090354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 2.3557 - Bleu: 37.1286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fourthbrain-demo/model_trained_by_me2
fourthbrain-demo
2022-06-20T20:47:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T20:33:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: model_trained_by_me2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_trained_by_me2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4258 - Accuracy: 0.7983 - F1: 0.7888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/rumi_quote
huggingtweets
2022-06-20T19:20:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-27T17:11:39Z
--- language: en thumbnail: http://www.huggingtweets.com/rumi_quote/1655752799916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/477092904758808577/3RrEtx04_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rumi</div> <div style="text-align: center; font-size: 14px;">@rumi_quote</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rumi. | Data | Rumi | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 29 | | Short tweets | 24 | | Tweets kept | 3144 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rvs1ymy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rumi_quote's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cd1jhcf5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cd1jhcf5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rumi_quote') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ashraq/movielens-movie-model
ashraq
2022-06-20T18:55:51Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-20T18:55:45Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ashraq/movielens-user-model
ashraq
2022-06-20T18:55:25Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-20T18:47:11Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
huawei-noah/Grad-TTS
huawei-noah
2022-06-20T18:10:45Z
0
1
null
[ "license:other", "region:us" ]
null
2022-06-20T18:06:15Z
--- license: other --- Some brief description of the Grad-TTS model will soon arrive here.
biwako/test7LunarLander-v2
biwako
2022-06-20T17:29:17Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-20T17:28:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 77.47 +/- 50.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gerard/xlm-roberta-base-finetuned-panx-de
Gerard
2022-06-20T17:16:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-20T16:51:28Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lmchion/distilbert-finetuned-esg-a4s
lmchion
2022-06-20T15:13:33Z
6
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-20T13:45:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: lmchion/distilbert-finetuned-esg-a4s results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lmchion/distilbert-finetuned-esg-a4s This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.2859 - Validation Loss: 2.3354 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8805 | 2.7153 | 0 | | 2.6414 | 2.5472 | 1 | | 2.5202 | 2.4813 | 2 | | 2.4306 | 2.3834 | 3 | | 2.3452 | 2.3297 | 4 | | 2.2940 | 2.3201 | 5 | | 2.2889 | 2.3061 | 6 | | 2.2726 | 2.3471 | 7 | | 2.2827 | 2.3432 | 8 | | 2.2859 | 2.3354 | 9 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
aminnaghavi/bert-base-parsbert-uncased-finetuned-perQA
aminnaghavi
2022-06-20T14:45:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:persian_qa", "endpoints_compatible", "region:us" ]
question-answering
2022-06-20T13:56:01Z
--- tags: - generated_from_trainer datasets: - persian_qa model-index: - name: bert-base-parsbert-uncased-finetuned-perQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-parsbert-uncased-finetuned-perQA This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the persian_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.8648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9599 | 1.0 | 565 | 2.0185 | | 1.8889 | 2.0 | 1130 | 1.8088 | | 1.4282 | 3.0 | 1695 | 1.8648 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lmchion/bert-base-finetuned-esg-a4s
lmchion
2022-06-20T14:36:20Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-20T14:31:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: lmchion/bert-base-finetuned-esg-a4s results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lmchion/bert-base-finetuned-esg-a4s This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7744 - Validation Loss: 2.5318 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7744 | 2.5318 | 0 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
mindwrapped/pokemon-card-checker
mindwrapped
2022-06-20T14:23:24Z
0
1
fastai
[ "fastai", "resnet", "computer-vision", "classification", "binary-classification", "license:cc0-1.0", "region:us" ]
null
2022-06-16T00:42:56Z
--- tags: - fastai - resnet - computer-vision - classification - binary-classification license: - cc0-1.0 --- # Resnet34 Pokemon Card Classifier ## Model Description This is a resnet34 model fine-tuned with fastai to [classify real and fake Pokemon cards (dataset)](https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemon-cards). Here is a colab notebook that shows how the model was trained and pushed to the hub: [link](https://github.com/mindwrapped/pokemon-card-checker/blob/main/pokemon_card_checker.ipynb). ## Intended uses & limitation This model is trained to identify real vs fake cards based on the backs of the cards, not the front. ## How to use ```python from huggingface_hub import from_pretrained_fastai # Pull model from hub learn = from_pretrained_fastai('hugginglearners/pokemon-card-checker') # Get prediction for this image pred_label, _, scores = learn.predict(img) ``` ## Training data Dataset located here: [link](https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemon-cards).
aminnaghavi/wav2vec2-base-dataset_asr-demo-colab
aminnaghavi
2022-06-20T13:23:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-17T20:17:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb model-index: - name: wav2vec2-base-dataset_asr-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-dataset_asr-demo-colab This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 295.0834 - Wer: 0.8282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5638.536 | 1.6 | 500 | 409.4785 | 0.8556 | | 2258.6455 | 3.19 | 1000 | 326.0520 | 0.8369 | | 1389.4919 | 4.79 | 1500 | 295.0834 | 0.8282 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sanchit-gandhi/wav2vec2-ctc-earnings22-baseline
sanchit-gandhi
2022-06-20T12:12:32Z
3
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-20T11:44:48Z
Unrolled PT and FX weights of https://huggingface.co/sanchit-gandhi/flax-wav2vec2-ctc-earnings22-baseline/tree/main
Kabir5296/wav2vec2-large-xls-r-300m-turkish-colab
Kabir5296
2022-06-20T10:13:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-06T11:35:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4102 - Wer: 0.3165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9393 | 3.67 | 400 | 0.6784 | 0.7123 | | 0.4104 | 7.34 | 800 | 0.4521 | 0.4865 | | 0.1929 | 11.01 | 1200 | 0.4470 | 0.4802 | | 0.1301 | 14.68 | 1600 | 0.4377 | 0.4384 | | 0.0999 | 18.35 | 2000 | 0.4391 | 0.4067 | | 0.0799 | 22.02 | 2400 | 0.4073 | 0.3456 | | 0.0624 | 25.69 | 2800 | 0.4039 | 0.3286 | | 0.0491 | 29.36 | 3200 | 0.4102 | 0.3165 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ViktorDo/distilbert-base-uncased-scratch-powo_all_pt
ViktorDo
2022-06-20T09:54:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-20T08:59:15Z
--- tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-scratch-powo_all_pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-scratch-powo_all_pt This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.9629 | 0.23 | 200 | 5.9718 | | 5.5956 | 0.45 | 400 | 5.5355 | | 5.2972 | 0.68 | 600 | 5.3399 | | 5.124 | 0.9 | 800 | 5.1975 | | 5.0191 | 1.13 | 1000 | 5.1085 | | 4.947 | 1.35 | 1200 | 5.0121 | | 4.8239 | 1.58 | 1400 | 4.9461 | | 4.7335 | 1.8 | 1600 | 4.8962 | | 4.7165 | 2.03 | 1800 | 4.8210 | | 4.6413 | 2.25 | 2000 | 4.7934 | | 4.5922 | 2.48 | 2200 | 4.7665 | | 4.6042 | 2.7 | 2400 | 4.7354 | | 4.5841 | 2.93 | 2600 | 4.7370 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-rua_wl_3_classes
waboucay
2022-06-20T09:34:17Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T09:23:44Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 72.4 | 72.2 | | test | 72.8 | 72.5 |
openclimatefix/dgmr
openclimatefix
2022-06-20T08:04:07Z
108
0
transformers
[ "transformers", "pytorch", "nowcasting", "forecasting", "timeseries", "remote-sensing", "gan", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - nowcasting - forecasting - timeseries - remote-sensing - gan --- # DGMR ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
jacobbieker/dgmr
jacobbieker
2022-06-20T07:43:41Z
4
1
transformers
[ "transformers", "pytorch", "nowcasting", "forecasting", "timeseries", "remote-sensing", "gan", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-20T07:44:17Z
--- license: mit tags: - nowcasting - forecasting - timeseries - remote-sensing - gan --- # DGMR ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
waboucay/camembert-large-finetuned-repnum_wl-rua_wl_3_classes
waboucay
2022-06-20T07:41:39Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T07:33:38Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 77.3 | 77.3 | | test | 78.0 | 77.9 |
huggingtweets/arstechnica
huggingtweets
2022-06-20T06:05:42Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-20T06:03:09Z
--- language: en thumbnail: http://www.huggingtweets.com/arstechnica/1655705137296/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2215576731/ars-logo_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ars Technica</div> <div style="text-align: center; font-size: 14px;">@arstechnica</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ars Technica. | Data | Ars Technica | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 27 | | Short tweets | 0 | | Tweets kept | 3223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2n328dqy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arstechnica's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/koacg5oh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/koacg5oh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/arstechnica') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chandrasutrisnotjhong/distilbert-base-uncased-finetuned-imdb
chandrasutrisnotjhong
2022-06-20T04:59:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-18T02:42:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/grassmannian
huggingtweets
2022-06-20T02:11:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-20T02:11:39Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529201641290752000/al3uPjXp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brendan 🫥 era</div> <div style="text-align: center; font-size: 14px;">@grassmannian</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brendan 🫥 era. | Data | Brendan 🫥 era | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 779 | | Short tweets | 400 | | Tweets kept | 2060 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27vq2cvc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @grassmannian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pai1njh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pai1njh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/grassmannian') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
ali2066
2022-06-20T01:54:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T14:07:53Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4936 - Precision: 0.8189 - Recall: 0.9811 - F1: 0.8927 - Accuracy: 0.8120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.5150 | 0.7447 | 1.0 | 0.8537 | 0.7447 | | No log | 2.0 | 26 | 0.5565 | 0.7447 | 1.0 | 0.8537 | 0.7447 | | No log | 3.0 | 39 | 0.5438 | 0.7778 | 1.0 | 0.8750 | 0.7872 | | No log | 4.0 | 52 | 0.5495 | 0.7778 | 1.0 | 0.8750 | 0.7872 | | No log | 5.0 | 65 | 0.5936 | 0.7778 | 1.0 | 0.8750 | 0.7872 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
gary109
2022-06-20T00:32:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-19T11:54:06Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4301 - Wer: 0.1633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1517 | 1.0 | 552 | 0.4301 | 0.1633 | | 0.1309 | 2.0 | 1104 | 0.4348 | 0.1629 | | 0.1237 | 3.0 | 1656 | 0.4611 | 0.1604 | | 0.1056 | 4.0 | 2208 | 0.4541 | 0.1574 | | 0.1236 | 5.0 | 2760 | 0.4669 | 0.1603 | | 0.1118 | 6.0 | 3312 | 0.4640 | 0.1567 | | 0.0916 | 7.0 | 3864 | 0.4678 | 0.1555 | | 0.1 | 8.0 | 4416 | 0.4705 | 0.1550 | | 0.1301 | 9.0 | 4968 | 0.4740 | 0.1551 | | 0.0885 | 10.0 | 5520 | 0.4702 | 0.1546 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1