modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
ahmeddbahaa/xlmroberta-finetuned-Spanish
ahmeddbahaa
2022-06-16T21:05:45Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "xlmroberta", "es", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-16T11:04:00Z
--- tags: - summarization - xlmroberta - encoder-decoder - es - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: xlmroberta-finetuned-Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta-finetuned-Spanish This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
roymukund/xlm-roberta-base-finetuned-ner
roymukund
2022-06-16T20:32:08Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:hi_ner-original", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-16T09:30:15Z
--- license: mit tags: - generated_from_trainer datasets: - hi_ner-original metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: hi_ner-original type: hi_ner-original args: HiNER metrics: - name: Precision type: precision value: 0.7366076627460114 - name: Recall type: recall value: 0.6770947627585838 - name: F1 type: f1 value: 0.7055985498152408 - name: Accuracy type: accuracy value: 0.9359390321752693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hi_ner-original dataset. It achieves the following results on the evaluation set: - Loss: 0.2314 - Precision: 0.7366 - Recall: 0.6771 - F1: 0.7056 - Accuracy: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2025 | 0.74 | 7000 | 0.2146 | 0.7399 | 0.6197 | 0.6745 | 0.9316 | | 0.1641 | 1.47 | 14000 | 0.2238 | 0.7618 | 0.6108 | 0.6780 | 0.9336 | | 0.1404 | 2.21 | 21000 | 0.2302 | 0.7560 | 0.6327 | 0.6889 | 0.9350 | | 0.1371 | 2.95 | 28000 | 0.2226 | 0.7395 | 0.6600 | 0.6975 | 0.9350 | | 0.1248 | 3.68 | 35000 | 0.2314 | 0.7366 | 0.6771 | 0.7056 | 0.9359 | | 0.1112 | 4.42 | 42000 | 0.2423 | 0.7089 | 0.7064 | 0.7077 | 0.9333 | | 0.1048 | 5.16 | 49000 | 0.2599 | 0.7326 | 0.6793 | 0.7050 | 0.9349 | | 0.1091 | 5.89 | 56000 | 0.2542 | 0.7244 | 0.6918 | 0.7077 | 0.9348 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
eplatas/scibert_scivocab_uncased_finetuned_leukaemia
eplatas
2022-06-16T20:01:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T19:41:12Z
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_uncased_finetuned_leukaemia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased_finetuned_leukaemia This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.742 | 1.0 | 50 | 2.9184 | | 0.7729 | 2.0 | 100 | 1.0324 | | 0.697 | 3.0 | 150 | 0.5968 | | 0.6573 | 4.0 | 200 | 0.4985 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M3_MLM
S2312dal
2022-06-16T19:46:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-16T19:22:36Z
--- tags: - generated_from_trainer model-index: - name: M3_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M3_MLM This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.8186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.6707 | 1.0 | 26 | 7.4412 | | 6.9122 | 2.0 | 52 | 6.3385 | | 6.2166 | 3.0 | 78 | 5.9148 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M4_MLM
S2312dal
2022-06-16T19:42:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-16T19:32:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M4_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M4_MLM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.7633 | 1.0 | 26 | 8.0400 | | 7.8899 | 2.0 | 52 | 7.6923 | | 7.589 | 3.0 | 78 | 7.4373 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/alanrmacleod-karl_was_right-yaboihakim
huggingtweets
2022-06-16T19:29:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T19:28:53Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521992020977348609/RrM3MB-G_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412117139071418386/3bmc9Vk7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1067405915077468161/tRoXWi8G_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michael Parenti’s Stache 🚩☭ & Alan MacLeod & Hakim</div> <div style="text-align: center; font-size: 14px;">@alanrmacleod-karl_was_right-yaboihakim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michael Parenti’s Stache 🚩☭ & Alan MacLeod & Hakim. | Data | Michael Parenti’s Stache 🚩☭ | Alan MacLeod | Hakim | | --- | --- | --- | --- | | Tweets downloaded | 3236 | 3244 | 2415 | | Retweets | 283 | 480 | 709 | | Short tweets | 360 | 177 | 139 | | Tweets kept | 2593 | 2587 | 1567 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38bj8kvf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alanrmacleod-karl_was_right-yaboihakim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1klcaw4v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1klcaw4v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alanrmacleod-karl_was_right-yaboihakim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
income/bpr-gpl-bioasq-base-msmarco-distilbert-tas-b
income
2022-06-16T18:26:16Z
37
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:26:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 92924 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-climate-fever-base-msmarco-distilbert-tas-b
income
2022-06-16T18:25:16Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:25:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 169268 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-dbpedia-entity-base-msmarco-distilbert-tas-b
income
2022-06-16T18:23:49Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:23:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 144872 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-hotpotqa-base-msmarco-distilbert-tas-b
income
2022-06-16T18:19:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:19:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 163541 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nfcorpus-base-msmarco-distilbert-tas-b
income
2022-06-16T18:17:34Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:17:25Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 338 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nq-base-msmarco-distilbert-tas-b
income
2022-06-16T18:15:23Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:15:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 245832 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-quora-base-msmarco-distilbert-tas-b
income
2022-06-16T18:14:29Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:14:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 16341 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-covid-base-msmarco-distilbert-tas-b
income
2022-06-16T18:00:33Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:00:26Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15001 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-news-base-msmarco-distilbert-tas-b
income
2022-06-16T17:59:18Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T17:59:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 55028 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/basilhalperin-ben_golub-tylercowen
huggingtweets
2022-06-16T17:09:13Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T17:03:42Z
--- language: en thumbnail: http://www.huggingtweets.com/basilhalperin-ben_golub-tylercowen/1655399323629/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483290763056320512/oILN7yPo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1043847779355897857/xyZk8v-m_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1284936824075550723/ix2eGZd7_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tylercowen & Basil Halperin & Ben Golub 🇺🇦</div> <div style="text-align: center; font-size: 14px;">@basilhalperin-ben_golub-tylercowen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tylercowen & Basil Halperin & Ben Golub 🇺🇦. | Data | tylercowen | Basil Halperin | Ben Golub 🇺🇦 | | --- | --- | --- | --- | | Tweets downloaded | 2642 | 1024 | 3247 | | Retweets | 2065 | 80 | 1009 | | Short tweets | 43 | 60 | 390 | | Tweets kept | 534 | 884 | 1848 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4x0ck2xi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @basilhalperin-ben_golub-tylercowen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/basilhalperin-ben_golub-tylercowen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anantoj/T5-summarizer-simple-wiki-v2
anantoj
2022-06-16T16:44:54Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-16T16:35:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-summarizer-simple-wiki-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-summarizer-simple-wiki-v2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2575 | 1.0 | 14719 | 2.1173 | | 2.2663 | 2.0 | 29438 | 2.0926 | | 2.2092 | 3.0 | 44157 | 2.0866 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/unknownco123
huggingtweets
2022-06-16T16:20:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T16:18:10Z
--- language: en thumbnail: http://www.huggingtweets.com/unknownco123/1655396407192/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522164949904248832/IdAMZkO9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">UnknownCollector 🇺🇦🕊🙏🏼</div> <div style="text-align: center; font-size: 14px;">@unknownco123</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from UnknownCollector 🇺🇦🕊🙏🏼. | Data | UnknownCollector 🇺🇦🕊🙏🏼 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 1208 | | Short tweets | 184 | | Tweets kept | 1852 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gtnmsztt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unknownco123's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2osaytek) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2osaytek/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unknownco123') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
S2312dal/M1_MLM
S2312dal
2022-06-16T15:54:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-16T14:48:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M1_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M1_MLM This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2418 | 1.0 | 25 | 2.4870 | | 2.4653 | 2.0 | 50 | 2.3762 | | 2.2127 | 3.0 | 75 | 2.3000 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
aleks0309/q-FrozenLake-v1-4x4-noSlippery
aleks0309
2022-06-16T14:37:01Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T14:36:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="aleks0309/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Corianas/PPO-QbertNoFrameskip-v4_2
Corianas
2022-06-16T14:26:25Z
2
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T14:22:03Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 12830.00 +/- 4355.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
Zengwei/pruned_transducer_stateless6_hubert_xtralarge_ll60k_finetune_ls960
Zengwei
2022-06-16T14:15:23Z
0
0
null
[ "region:us" ]
null
2022-06-16T06:16:05Z
Things worth to meantion: 1. The float type teacher embedding is quantized into a sequence of 8-bit integer codebook indexes. 2. a middle layer 36(1-based) out of total 48 layers is used to extract teacher embeddings. 3. a middle layer 6(1-based) out of total 6 layers is used to extract student embeddings.
bekirbakar/wav2vec2-large-xls-r-300m-finnish
bekirbakar
2022-06-16T13:34:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-06T10:46:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-finnish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4747 - Wer: 0.5143 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1666 | 14.8 | 400 | 0.4747 | 0.5143 | | 0.0875 | 29.62 | 800 | 0.4747 | 0.5143 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
bekirbakar/wav2vec2-large-xls-r-300m-slovenian
bekirbakar
2022-06-16T13:33:50Z
281
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-06T14:23:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-slovenian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4462 - Wer: 0.3271 ## Training procedure ### Training Hyper-parameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training Results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3681 | 4.93 | 400 | 0.7067 | 0.6486 | | 0.2311 | 9.87 | 800 | 0.5155 | 0.4341 | | 0.0833 | 14.81 | 1200 | 0.4996 | 0.3799 | | 0.0455 | 19.75 | 1600 | 0.4462 | 0.3271 | ### Framework Versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ArthurZ/roberta-large-sharded
ArthurZ
2022-06-16T13:33:48Z
4
0
transformers
[ "transformers", "tf", "roberta", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-16T13:18:24Z
--- tags: - generated_from_keras_callback model-index: - name: roberta-large-sharded results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sharded This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - TensorFlow 2.9.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Abeljones/Ye
Abeljones
2022-06-16T12:07:41Z
0
0
null
[ "region:us" ]
null
2022-06-16T12:07:26Z
git lfs install git clone https://huggingface.co/dalle-mini/dalle-mini
eunbeee/ainize-kobart-news-eb-finetuned-papers
eunbeee
2022-06-16T12:07:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T16:20:50Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: ainize-kobart-news-eb-finetuned-papers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ainize-kobart-news-eb-finetuned-papers This model is a fine-tuned version of [ainize/kobart-news](https://huggingface.co/ainize/kobart-news) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3066 - Rouge1: 14.5433 - Rouge2: 5.2238 - Rougel: 14.4731 - Rougelsum: 14.5183 - Gen Len: 19.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1918 | 1.0 | 7200 | 0.2403 | 14.6883 | 5.2427 | 14.6306 | 14.6489 | 19.9938 | | 0.1332 | 2.0 | 14400 | 0.2391 | 14.5165 | 5.2443 | 14.493 | 14.4908 | 19.9972 | | 0.0966 | 3.0 | 21600 | 0.2539 | 14.758 | 5.4976 | 14.6906 | 14.7188 | 19.9941 | | 0.0736 | 4.0 | 28800 | 0.2782 | 14.6267 | 5.3371 | 14.5578 | 14.6014 | 19.9934 | | 0.0547 | 5.0 | 36000 | 0.3066 | 14.5433 | 5.2238 | 14.4731 | 14.5183 | 19.9934 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
waboucay/camembert-large-finetuned-rua_wl
waboucay
2022-06-16T12:02:25Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-16T11:58:20Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 74.8 | 74.5 | | test | 74.8 | 74.6 |
rajeshradhakrishnan/ml-news-classify-fastai
rajeshradhakrishnan
2022-06-16T11:57:58Z
0
2
fastai
[ "fastai", "arxiv:2005.00085", "region:us" ]
null
2022-06-15T10:53:22Z
--- tags: - fastai --- # Malayalam (മലയാളം) Classifier using fastai (Working in Progress) 🥳 This model is my attempt to use machine learning using Malayalam Language. Huge inspiration from [Malayalam Text Classifier](https://kurianbenoy.com/2022-05-30-malayalamtext-0/). Courtesy to @waydegilliam for [blurr](https://ohmeow.github.io/blurr/text-examples-multilabel.html) 🌈 മലയാളത്തിൽ മെഷീൻ ലീർണിങ് പഠിക്കാനും പിന്നേ പരിചയപ്പെടാനും, to be continued... # How its built ? & How to use ? Please find the [notebook](https://nbviewer.org/github/rajeshradhakrishnanmvk/kitchen2.0/blob/feature101-frontend/ml/fastai_X_Hugging_Face_Group_2022.ipynb) used for training the model Usage: First, install the utilities to load the model as well as `blurr`, which was used to train this model. ```bash !pip install huggingface_hub[fastai] !git clone https://github.com/ohmeow/blurr.git && cd blurr && pip install -e ".[dev]" ``` ```python from huggingface_hub import from_pretrained_fastai learner = from_pretrained_fastai("rajeshradhakrishnan/ml-news-classify-fastai") sentences = ["ഓഹരി വിപണി തകരുമ്പോള്‍ നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം", "വാര്‍ണറുടെ ഒറ്റക്കയ്യന്‍ ക്യാച്ചില്‍ അമ്പരന്ന് ക്രിക്കറ്റ് ലോകം"] probs = learner.predict(sentences) # 'business', 'entertainment', 'sports', 'technology' for idx in range(len(sentences)): print(f"Probability that sentence '{sentences[idx]}' is business is: {100*probs[idx]['probs'][0]:.2f}%") print(f"Probability that sentence '{sentences[idx]}' is entertainment is: {100*probs[idx]['probs'][1]:.2f}%") print(f"Probability that sentence '{sentences[idx]}' is sports is: {100*probs[idx]['probs'][2]:.2f}%") print(f"Probability that sentence '{sentences[idx]}' is technology is: {100*probs[idx]['probs'][3]:.2f}%") ``` --- # Model card ## Model description The is a Malayalam classifier model for labels 'business', 'entertainment', 'sports', 'technology'. ## Intended uses & limitations The model can be used to categorize malayalam new sfeed. ## Training and evaluation data Data is from the [AI4Bharat-IndicNLP Dataset](https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset) and wrapper to extract only Malayalam data( [HF dataset](https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_news))!. ## Citation ``` @article{kunchukuttan2020indicnlpcorpus, title={AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages}, author={Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, journal={arXiv preprint arXiv:2005.00085}, } ```
eleldar/repunct-model_ft
eleldar
2022-06-16T11:16:55Z
0
0
null
[ "region:us" ]
null
2022-06-16T09:38:08Z
Model for API: https://github.com/eleldar/Punctuation
eleldar/rubert-base-cased-sentence
eleldar
2022-06-16T11:16:20Z
12
0
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-16T10:30:20Z
Model for API: https://github.com/eleldar/Punctuation
anantoj/T5-summarizer-simple-wiki
anantoj
2022-06-16T10:47:42Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-16T10:35:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2583 | 1.0 | 14719 | 2.1164 | | 2.2649 | 2.0 | 29438 | 2.0925 | | 2.209 | 3.0 | 44157 | 2.0868 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ahmeddbahaa/xlmroberta2xlmroberta-finetune-summarization-ur
ahmeddbahaa
2022-06-16T10:27:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "ur", "xlm-roberta", "Abstractive Summarization", "roberta", "generated_from_trainer", "dataset:xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-15T16:34:48Z
--- tags: - summarization - ur - encoder-decoder - xlm-roberta - Abstractive Summarization - roberta - generated_from_trainer datasets: - xlsum model-index: - name: xlmroberta2xlmroberta-finetune-summarization-ur results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta2xlmroberta-finetune-summarization-ur This model is a fine-tuned version of [](https://huggingface.co/) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 5.4576 - Rouge-1: 26.51 - Rouge-2: 9.4 - Rouge-l: 23.21 - Gen Len: 19.99 - Bertscore: 68.15 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Corianas/q-FrozenLake-v1-4x4-Slippery
Corianas
2022-06-16T10:11:36Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T09:14:52Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.72 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Corianas/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
waboucay/camembert-large-finetuned-repnum_wl
waboucay
2022-06-16T09:46:51Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-16T09:37:43Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 80.4 | 80.4 | | test | 80.6 | 80.6 |
huggingtweets/minusgn
huggingtweets
2022-06-16T09:01:01Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T09:00:54Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1081285419512127488/Mkb9FgN3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Isak Vik</div> <div style="text-align: center; font-size: 14px;">@minusgn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Isak Vik. | Data | Isak Vik | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 190 | | Short tweets | 550 | | Tweets kept | 2482 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dy32g00/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @minusgn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3njlvz02) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3njlvz02/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/minusgn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
waboucay/camembert-base-finetuned-repnum_wl-rua_wl_3_classes
waboucay
2022-06-16T07:44:53Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-16T07:27:43Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 75.6 | 75.3 | | test | 76.1 | 75.8 |
waboucay/camembert-base-finetuned-rua_wl_3_classes
waboucay
2022-06-16T07:39:30Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-16T07:29:41Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 73.5 | 73.3 | | test | 73.8 | 73.6 |
iaanimashaun/opus-mt-en-sw-finetuned-en-to-sw
iaanimashaun
2022-06-16T06:40:29Z
5
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-13T06:44:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-sw-finetuned-en-to-sw results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-sw-finetuned-en-to-sw This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-sw](https://huggingface.co/Helsinki-NLP/opus-mt-en-sw) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 113 | 0.9884 | 50.2226 | 19.0434 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Corianas/SkiingNoFrameskip-v4_ScoringTest
Corianas
2022-06-16T06:22:47Z
1
0
stable-baselines3
[ "stable-baselines3", "SkiingNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T06:20:38Z
--- library_name: stable-baselines3 tags: - SkiingNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -30000.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SkiingNoFrameskip-v4 type: SkiingNoFrameskip-v4 --- # **PPO** Agent playing **SkiingNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SkiingNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env SkiingNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env SkiingNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env SkiingNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env SkiingNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
ouiame/T5_mlsum
ouiame
2022-06-16T05:31:30Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "fr", "dataset:ouiame/autotrain-data-trainproject", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T13:51:07Z
--- tags: autotrain language: fr widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 976.8219757938544 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232789 - CO2 Emissions (in grams): 976.8219757938544 ## Validation Metrics - Loss: 1.7047555446624756 - Rouge1: 20.2108 - Rouge2: 7.8633 - RougeL: 16.9554 - RougeLsum: 17.3178 - Gen Len: 18.9874 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232789 ```
eslamxm/mbert2mbert-finetune-fa
eslamxm
2022-06-16T05:28:50Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "fa", "mbert", "mbert2mbert", "Abstractive Summarization", "generated_from_trainer", "dataset:pn_summary", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-15T22:17:31Z
--- tags: - summarization - fa - mbert - mbert2mbert - Abstractive Summarization - generated_from_trainer datasets: - pn_summary model-index: - name: mbert2mbert-finetune-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert2mbert-finetune-fa This model is a fine-tuned version of [](https://huggingface.co/) on the pn_summary dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Corianas/dqn-BeamRiderNoFrameskip-v4_2
Corianas
2022-06-16T04:42:20Z
4
0
stable-baselines3
[ "stable-baselines3", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T04:38:44Z
--- library_name: stable-baselines3 tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 4574.80 +/- 2171.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 --- # **DQN** Agent playing **BeamRiderNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BeamRiderNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sasuke/bert-base-uncased-finetuned-sst2
sasuke
2022-06-16T03:58:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-13T03:38:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9323394495412844 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2982 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1817 | 1.0 | 4210 | 0.2920 | 0.9186 | | 0.1297 | 2.0 | 8420 | 0.3069 | 0.9209 | | 0.0978 | 3.0 | 12630 | 0.2982 | 0.9323 | | 0.062 | 4.0 | 16840 | 0.3278 | 0.9312 | | 0.0303 | 5.0 | 21050 | 0.3642 | 0.9323 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
twieland/MIX2_ja-en_helsinki
twieland
2022-06-16T01:03:42Z
107
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T01:01:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX2_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX2_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4929 - Otaku Benchmark VN BLEU: 20.21 - Otaku Benchmark LN BLEU: 13.29 - Otaku Benchmark MANGA BLEU: 19.07 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8467 | 0.01 | 2000 | 2.3237 | | 2.6439 | 0.02 | 4000 | 2.2542 | | 2.547 | 0.03 | 6000 | 2.1956 | | 2.4852 | 0.04 | 8000 | 2.1088 | | 2.4408 | 0.05 | 10000 | 2.0909 | | 2.404 | 0.06 | 12000 | 2.1029 | | 2.3634 | 0.07 | 14000 | 2.0636 | | 2.3491 | 0.08 | 16000 | 2.0312 | | 2.3203 | 0.09 | 18000 | 2.0187 | | 2.3002 | 0.1 | 20000 | 1.9999 | | 2.2791 | 0.11 | 22000 | 1.9823 | | 2.2607 | 0.11 | 24000 | 1.9588 | | 2.2475 | 0.12 | 26000 | 1.9728 | | 2.2308 | 0.13 | 28000 | 1.9330 | | 2.2237 | 0.14 | 30000 | 1.9657 | | 2.208 | 0.15 | 32000 | 1.9560 | | 2.2019 | 0.16 | 34000 | 1.9704 | | 2.1864 | 0.17 | 36000 | 1.9513 | | 2.1764 | 0.18 | 38000 | 1.9534 | | 2.163 | 0.19 | 40000 | 1.9140 | | 2.1534 | 0.2 | 42000 | 1.9241 | | 2.146 | 0.21 | 44000 | 1.9162 | | 2.1403 | 0.22 | 46000 | 1.9030 | | 2.1309 | 0.23 | 48000 | 1.8741 | | 2.1174 | 0.24 | 50000 | 1.8834 | | 2.1157 | 0.25 | 52000 | 1.8666 | | 2.1116 | 0.26 | 54000 | 1.8870 | | 2.1062 | 0.27 | 56000 | 1.8837 | | 2.0994 | 0.28 | 58000 | 1.8638 | | 2.0924 | 0.29 | 60000 | 1.8766 | | 2.0874 | 0.3 | 62000 | 1.8712 | | 2.0805 | 0.31 | 64000 | 1.8792 | | 2.0746 | 0.32 | 66000 | 1.8586 | | 2.0684 | 0.32 | 68000 | 1.8819 | | 2.0678 | 0.33 | 70000 | 1.8529 | | 2.061 | 0.34 | 72000 | 1.8219 | | 2.0532 | 0.35 | 74000 | 1.8383 | | 2.0536 | 0.36 | 76000 | 1.8273 | | 2.0432 | 0.37 | 78000 | 1.8304 | | 2.0386 | 0.38 | 80000 | 1.8208 | | 2.0361 | 0.39 | 82000 | 1.8103 | | 2.0353 | 0.4 | 84000 | 1.8193 | | 2.0266 | 0.41 | 86000 | 1.8369 | | 2.0277 | 0.42 | 88000 | 1.8266 | | 2.0221 | 0.43 | 90000 | 1.8372 | | 2.0181 | 0.44 | 92000 | 1.8436 | | 2.0182 | 0.45 | 94000 | 1.8505 | | 2.0088 | 0.46 | 96000 | 1.8127 | | 2.005 | 0.47 | 98000 | 1.8325 | | 2.0003 | 0.48 | 100000 | 1.8407 | | 2.0031 | 0.49 | 102000 | 1.8140 | | 1.9954 | 0.5 | 104000 | 1.8177 | | 1.9894 | 0.51 | 106000 | 1.8072 | | 1.9901 | 0.52 | 108000 | 1.7971 | | 1.9864 | 0.53 | 110000 | 1.8007 | | 1.9848 | 0.53 | 112000 | 1.7961 | | 1.9774 | 0.54 | 114000 | 1.7933 | | 1.9802 | 0.55 | 116000 | 1.8031 | | 1.9698 | 0.56 | 118000 | 1.8137 | | 1.973 | 0.57 | 120000 | 1.7930 | | 1.9696 | 0.58 | 122000 | 1.7838 | | 1.9641 | 0.59 | 124000 | 1.7730 | | 1.9609 | 0.6 | 126000 | 1.7800 | | 1.9605 | 0.61 | 128000 | 1.7680 | | 1.9516 | 0.62 | 130000 | 1.7895 | | 1.9529 | 0.63 | 132000 | 1.7825 | | 1.9503 | 0.64 | 134000 | 1.7792 | | 1.9528 | 0.65 | 136000 | 1.8031 | | 1.9439 | 0.66 | 138000 | 1.7652 | | 1.9453 | 0.67 | 140000 | 1.7713 | | 1.9404 | 0.68 | 142000 | 1.7585 | | 1.9399 | 0.69 | 144000 | 1.7454 | | 1.9325 | 0.7 | 146000 | 1.7605 | | 1.9327 | 0.71 | 148000 | 1.7608 | | 1.9301 | 0.72 | 150000 | 1.7743 | | 1.928 | 0.73 | 152000 | 1.7532 | | 1.9286 | 0.74 | 154000 | 1.7682 | | 1.9194 | 0.74 | 156000 | 1.7582 | | 1.9247 | 0.75 | 158000 | 1.7601 | | 1.9183 | 0.76 | 160000 | 1.7600 | | 1.9138 | 0.77 | 162000 | 1.7555 | | 1.9148 | 0.78 | 164000 | 1.7447 | | 1.913 | 0.79 | 166000 | 1.7512 | | 1.9084 | 0.8 | 168000 | 1.7408 | | 1.9109 | 0.81 | 170000 | 1.7463 | | 1.905 | 0.82 | 172000 | 1.7543 | | 1.9067 | 0.83 | 174000 | 1.7662 | | 1.9005 | 0.84 | 176000 | 1.7428 | | 1.8997 | 0.85 | 178000 | 1.7500 | | 1.8963 | 0.86 | 180000 | 1.7297 | | 1.8938 | 0.87 | 182000 | 1.7356 | | 1.8923 | 0.88 | 184000 | 1.7602 | | 1.8896 | 0.89 | 186000 | 1.7426 | | 1.8866 | 0.9 | 188000 | 1.7323 | | 1.887 | 0.91 | 190000 | 1.7587 | | 1.8855 | 0.92 | 192000 | 1.7591 | | 1.8842 | 0.93 | 194000 | 1.7570 | | 1.8808 | 0.94 | 196000 | 1.7311 | | 1.8836 | 0.95 | 198000 | 1.7449 | | 1.8761 | 0.96 | 200000 | 1.7534 | | 1.8721 | 0.96 | 202000 | 1.7623 | | 1.8765 | 0.97 | 204000 | 1.7462 | | 1.8747 | 0.98 | 206000 | 1.7452 | | 1.8667 | 0.99 | 208000 | 1.7303 | | 1.8618 | 1.0 | 210000 | 1.7468 | | 1.8475 | 1.01 | 212000 | 1.7443 | | 1.8435 | 1.02 | 214000 | 1.7622 | | 1.8452 | 1.03 | 216000 | 1.7153 | | 1.84 | 1.04 | 218000 | 1.6976 | | 1.8432 | 1.05 | 220000 | 1.7013 | | 1.842 | 1.06 | 222000 | 1.7073 | | 1.8428 | 1.07 | 224000 | 1.6991 | | 1.841 | 1.08 | 226000 | 1.7477 | | 1.8321 | 1.09 | 228000 | 1.7438 | | 1.838 | 1.1 | 230000 | 1.7352 | | 1.8339 | 1.11 | 232000 | 1.7242 | | 1.836 | 1.12 | 234000 | 1.7221 | | 1.8329 | 1.13 | 236000 | 1.7402 | | 1.8337 | 1.14 | 238000 | 1.7083 | | 1.8267 | 1.15 | 240000 | 1.7200 | | 1.8335 | 1.16 | 242000 | 1.7092 | | 1.8306 | 1.17 | 244000 | 1.7340 | | 1.8279 | 1.17 | 246000 | 1.6983 | | 1.8261 | 1.18 | 248000 | 1.6928 | | 1.8295 | 1.19 | 250000 | 1.7135 | | 1.8227 | 1.2 | 252000 | 1.7156 | | 1.822 | 1.21 | 254000 | 1.7018 | | 1.8216 | 1.22 | 256000 | 1.7157 | | 1.8205 | 1.23 | 258000 | 1.7047 | | 1.8163 | 1.24 | 260000 | 1.6988 | | 1.8187 | 1.25 | 262000 | 1.7077 | | 1.8188 | 1.26 | 264000 | 1.6859 | | 1.8138 | 1.27 | 266000 | 1.6831 | | 1.8173 | 1.28 | 268000 | 1.6887 | | 1.813 | 1.29 | 270000 | 1.6967 | | 1.8114 | 1.3 | 272000 | 1.7085 | | 1.8057 | 1.31 | 274000 | 1.6885 | | 1.8094 | 1.32 | 276000 | 1.7198 | | 1.8079 | 1.33 | 278000 | 1.7036 | | 1.8056 | 1.34 | 280000 | 1.7106 | | 1.8044 | 1.35 | 282000 | 1.6704 | | 1.8047 | 1.36 | 284000 | 1.6811 | | 1.7978 | 1.37 | 286000 | 1.6848 | | 1.7997 | 1.38 | 288000 | 1.6698 | | 1.7997 | 1.38 | 290000 | 1.6820 | | 1.7945 | 1.39 | 292000 | 1.6963 | | 1.7958 | 1.4 | 294000 | 1.6922 | | 1.7923 | 1.41 | 296000 | 1.6577 | | 1.7975 | 1.42 | 298000 | 1.6621 | | 1.7914 | 1.43 | 300000 | 1.6804 | | 1.7944 | 1.44 | 302000 | 1.6953 | | 1.7927 | 1.45 | 304000 | 1.6846 | | 1.789 | 1.46 | 306000 | 1.6889 | | 1.7851 | 1.47 | 308000 | 1.6652 | | 1.7902 | 1.48 | 310000 | 1.6823 | | 1.7873 | 1.49 | 312000 | 1.6603 | | 1.7868 | 1.5 | 314000 | 1.6766 | | 1.7856 | 1.51 | 316000 | 1.6717 | | 1.7807 | 1.52 | 318000 | 1.6466 | | 1.7767 | 1.53 | 320000 | 1.6639 | | 1.7782 | 1.54 | 322000 | 1.6678 | | 1.7762 | 1.55 | 324000 | 1.6853 | | 1.7746 | 1.56 | 326000 | 1.6785 | | 1.7746 | 1.57 | 328000 | 1.6777 | | 1.7716 | 1.58 | 330000 | 1.6784 | | 1.7699 | 1.59 | 332000 | 1.6648 | | 1.7739 | 1.59 | 334000 | 1.6725 | | 1.7703 | 1.6 | 336000 | 1.6915 | | 1.7707 | 1.61 | 338000 | 1.6858 | | 1.7619 | 1.62 | 340000 | 1.6624 | | 1.7652 | 1.63 | 342000 | 1.6797 | | 1.7626 | 1.64 | 344000 | 1.6728 | | 1.7647 | 1.65 | 346000 | 1.6580 | | 1.7616 | 1.66 | 348000 | 1.6679 | | 1.7616 | 1.67 | 350000 | 1.6470 | | 1.7611 | 1.68 | 352000 | 1.6489 | | 1.759 | 1.69 | 354000 | 1.6603 | | 1.7604 | 1.7 | 356000 | 1.6532 | | 1.7599 | 1.71 | 358000 | 1.6477 | | 1.7529 | 1.72 | 360000 | 1.6322 | | 1.7596 | 1.73 | 362000 | 1.6447 | | 1.7508 | 1.74 | 364000 | 1.6509 | | 1.7533 | 1.75 | 366000 | 1.6465 | | 1.755 | 1.76 | 368000 | 1.6485 | | 1.7473 | 1.77 | 370000 | 1.6493 | | 1.7435 | 1.78 | 372000 | 1.6542 | | 1.7483 | 1.79 | 374000 | 1.6573 | | 1.7475 | 1.8 | 376000 | 1.6626 | | 1.7439 | 1.8 | 378000 | 1.6366 | | 1.7417 | 1.81 | 380000 | 1.6312 | | 1.7387 | 1.82 | 382000 | 1.6424 | | 1.7415 | 1.83 | 384000 | 1.6468 | | 1.7409 | 1.84 | 386000 | 1.6528 | | 1.7362 | 1.85 | 388000 | 1.6394 | | 1.7372 | 1.86 | 390000 | 1.6581 | | 1.7347 | 1.87 | 392000 | 1.6546 | | 1.7368 | 1.88 | 394000 | 1.6468 | | 1.7302 | 1.89 | 396000 | 1.6450 | | 1.7317 | 1.9 | 398000 | 1.6368 | | 1.7306 | 1.91 | 400000 | 1.6399 | | 1.7304 | 1.92 | 402000 | 1.6180 | | 1.726 | 1.93 | 404000 | 1.6212 | | 1.7271 | 1.94 | 406000 | 1.6302 | | 1.7312 | 1.95 | 408000 | 1.6264 | | 1.7249 | 1.96 | 410000 | 1.6584 | | 1.7226 | 1.97 | 412000 | 1.6514 | | 1.7214 | 1.98 | 414000 | 1.6516 | | 1.7228 | 1.99 | 416000 | 1.6346 | | 1.7205 | 2.0 | 418000 | 1.6370 | | 1.7041 | 2.01 | 420000 | 1.6021 | | 1.691 | 2.02 | 422000 | 1.6385 | | 1.6896 | 2.02 | 424000 | 1.6280 | | 1.6882 | 2.03 | 426000 | 1.6295 | | 1.6889 | 2.04 | 428000 | 1.6445 | | 1.6904 | 2.05 | 430000 | 1.6558 | | 1.6933 | 2.06 | 432000 | 1.6164 | | 1.6916 | 2.07 | 434000 | 1.6011 | | 1.6873 | 2.08 | 436000 | 1.6199 | | 1.6903 | 2.09 | 438000 | 1.6300 | | 1.6859 | 2.1 | 440000 | 1.6104 | | 1.6901 | 2.11 | 442000 | 1.6248 | | 1.6884 | 2.12 | 444000 | 1.6251 | | 1.6859 | 2.13 | 446000 | 1.6145 | | 1.6906 | 2.14 | 448000 | 1.6181 | | 1.6859 | 2.15 | 450000 | 1.6264 | | 1.6814 | 2.16 | 452000 | 1.6069 | | 1.6853 | 2.17 | 454000 | 1.6089 | | 1.6881 | 2.18 | 456000 | 1.6102 | | 1.6869 | 2.19 | 458000 | 1.6327 | | 1.6827 | 2.2 | 460000 | 1.6069 | | 1.6813 | 2.21 | 462000 | 1.6278 | | 1.6806 | 2.22 | 464000 | 1.6176 | | 1.6763 | 2.23 | 466000 | 1.6180 | | 1.68 | 2.23 | 468000 | 1.6226 | | 1.6816 | 2.24 | 470000 | 1.6071 | | 1.6845 | 2.25 | 472000 | 1.6178 | | 1.6764 | 2.26 | 474000 | 1.6073 | | 1.682 | 2.27 | 476000 | 1.5966 | | 1.6727 | 2.28 | 478000 | 1.5979 | | 1.6718 | 2.29 | 480000 | 1.6109 | | 1.6764 | 2.3 | 482000 | 1.6034 | | 1.671 | 2.31 | 484000 | 1.6001 | | 1.6691 | 2.32 | 486000 | 1.6148 | | 1.6706 | 2.33 | 488000 | 1.6003 | | 1.6705 | 2.34 | 490000 | 1.6021 | | 1.6699 | 2.35 | 492000 | 1.5940 | | 1.6708 | 2.36 | 494000 | 1.6077 | | 1.6715 | 2.37 | 496000 | 1.6188 | | 1.6672 | 2.38 | 498000 | 1.5903 | | 1.6638 | 2.39 | 500000 | 1.6042 | | 1.6634 | 2.4 | 502000 | 1.5967 | | 1.6669 | 2.41 | 504000 | 1.5904 | | 1.6643 | 2.42 | 506000 | 1.6071 | | 1.6606 | 2.43 | 508000 | 1.6065 | | 1.6573 | 2.44 | 510000 | 1.6010 | | 1.6603 | 2.44 | 512000 | 1.5801 | | 1.6568 | 2.45 | 514000 | 1.5961 | | 1.6564 | 2.46 | 516000 | 1.6020 | | 1.6596 | 2.47 | 518000 | 1.5952 | | 1.6567 | 2.48 | 520000 | 1.5760 | | 1.6536 | 2.49 | 522000 | 1.5697 | | 1.6564 | 2.5 | 524000 | 1.5664 | | 1.652 | 2.51 | 526000 | 1.5616 | | 1.653 | 2.52 | 528000 | 1.5738 | | 1.6525 | 2.53 | 530000 | 1.5754 | | 1.65 | 2.54 | 532000 | 1.5749 | | 1.6519 | 2.55 | 534000 | 1.5788 | | 1.6515 | 2.56 | 536000 | 1.5953 | | 1.6492 | 2.57 | 538000 | 1.5836 | | 1.6473 | 2.58 | 540000 | 1.5896 | | 1.6452 | 2.59 | 542000 | 1.5858 | | 1.6464 | 2.6 | 544000 | 1.5760 | | 1.6445 | 2.61 | 546000 | 1.5683 | | 1.6457 | 2.62 | 548000 | 1.5823 | | 1.6417 | 2.63 | 550000 | 1.5780 | | 1.6407 | 2.64 | 552000 | 1.5715 | | 1.6368 | 2.65 | 554000 | 1.5618 | | 1.6357 | 2.65 | 556000 | 1.5725 | | 1.6446 | 2.66 | 558000 | 1.5744 | | 1.634 | 2.67 | 560000 | 1.5360 | | 1.6351 | 2.68 | 562000 | 1.5599 | | 1.6362 | 2.69 | 564000 | 1.5607 | | 1.637 | 2.7 | 566000 | 1.5561 | | 1.6324 | 2.71 | 568000 | 1.5591 | | 1.6325 | 2.72 | 570000 | 1.5527 | | 1.6323 | 2.73 | 572000 | 1.5537 | | 1.629 | 2.74 | 574000 | 1.5673 | | 1.627 | 2.75 | 576000 | 1.5509 | | 1.6279 | 2.76 | 578000 | 1.5507 | | 1.6291 | 2.77 | 580000 | 1.5304 | | 1.625 | 2.78 | 582000 | 1.5540 | | 1.6246 | 2.79 | 584000 | 1.5530 | | 1.6228 | 2.8 | 586000 | 1.5570 | | 1.6241 | 2.81 | 588000 | 1.5586 | | 1.6224 | 2.82 | 590000 | 1.5480 | | 1.6264 | 2.83 | 592000 | 1.5624 | | 1.6214 | 2.84 | 594000 | 1.5565 | | 1.6187 | 2.85 | 596000 | 1.5397 | | 1.6191 | 2.86 | 598000 | 1.5520 | | 1.6192 | 2.87 | 600000 | 1.5494 | | 1.6182 | 2.87 | 602000 | 1.5608 | | 1.6164 | 2.88 | 604000 | 1.5428 | | 1.6107 | 2.89 | 606000 | 1.5525 | | 1.614 | 2.9 | 608000 | 1.5277 | | 1.6158 | 2.91 | 610000 | 1.5502 | | 1.6082 | 2.92 | 612000 | 1.5452 | | 1.6089 | 2.93 | 614000 | 1.5400 | | 1.6112 | 2.94 | 616000 | 1.5322 | | 1.6069 | 2.95 | 618000 | 1.5394 | | 1.6111 | 2.96 | 620000 | 1.5537 | | 1.6038 | 2.97 | 622000 | 1.5486 | | 1.6073 | 2.98 | 624000 | 1.5551 | | 1.6046 | 2.99 | 626000 | 1.5386 | | 1.6051 | 3.0 | 628000 | 1.5369 | | 1.5672 | 3.01 | 630000 | 1.5361 | | 1.5694 | 3.02 | 632000 | 1.5390 | | 1.5692 | 3.03 | 634000 | 1.5386 | | 1.5651 | 3.04 | 636000 | 1.5456 | | 1.5724 | 3.05 | 638000 | 1.5419 | | 1.5708 | 3.06 | 640000 | 1.5363 | | 1.5665 | 3.07 | 642000 | 1.5446 | | 1.5706 | 3.08 | 644000 | 1.5331 | | 1.5679 | 3.08 | 646000 | 1.5449 | | 1.5678 | 3.09 | 648000 | 1.5436 | | 1.5676 | 3.1 | 650000 | 1.5309 | | 1.5657 | 3.11 | 652000 | 1.5334 | | 1.5697 | 3.12 | 654000 | 1.5303 | | 1.5617 | 3.13 | 656000 | 1.5380 | | 1.5675 | 3.14 | 658000 | 1.5404 | | 1.5612 | 3.15 | 660000 | 1.5258 | | 1.5639 | 3.16 | 662000 | 1.5329 | | 1.567 | 3.17 | 664000 | 1.5418 | | 1.5619 | 3.18 | 666000 | 1.5314 | | 1.5637 | 3.19 | 668000 | 1.5201 | | 1.5608 | 3.2 | 670000 | 1.5181 | | 1.5641 | 3.21 | 672000 | 1.5290 | | 1.5626 | 3.22 | 674000 | 1.5180 | | 1.5605 | 3.23 | 676000 | 1.5156 | | 1.5566 | 3.24 | 678000 | 1.5266 | | 1.5587 | 3.25 | 680000 | 1.5286 | | 1.5602 | 3.26 | 682000 | 1.5265 | | 1.5535 | 3.27 | 684000 | 1.5354 | | 1.5589 | 3.28 | 686000 | 1.5265 | | 1.5569 | 3.29 | 688000 | 1.5346 | | 1.559 | 3.29 | 690000 | 1.5306 | | 1.5507 | 3.3 | 692000 | 1.5359 | | 1.5547 | 3.31 | 694000 | 1.5264 | | 1.5498 | 3.32 | 696000 | 1.5264 | | 1.5559 | 3.33 | 698000 | 1.5273 | | 1.553 | 3.34 | 700000 | 1.5137 | | 1.5503 | 3.35 | 702000 | 1.5143 | | 1.5498 | 3.36 | 704000 | 1.5263 | | 1.5516 | 3.37 | 706000 | 1.5096 | | 1.5461 | 3.38 | 708000 | 1.5112 | | 1.5489 | 3.39 | 710000 | 1.5094 | | 1.5451 | 3.4 | 712000 | 1.5079 | | 1.544 | 3.41 | 714000 | 1.5058 | | 1.5446 | 3.42 | 716000 | 1.5005 | | 1.5417 | 3.43 | 718000 | 1.4972 | | 1.5469 | 3.44 | 720000 | 1.5043 | | 1.5407 | 3.45 | 722000 | 1.5041 | | 1.5484 | 3.46 | 724000 | 1.5104 | | 1.5409 | 3.47 | 726000 | 1.5087 | | 1.5431 | 3.48 | 728000 | 1.5114 | | 1.5393 | 3.49 | 730000 | 1.5102 | | 1.5364 | 3.5 | 732000 | 1.5143 | | 1.5403 | 3.5 | 734000 | 1.5202 | | 1.5386 | 3.51 | 736000 | 1.5143 | | 1.5381 | 3.52 | 738000 | 1.5198 | | 1.5341 | 3.53 | 740000 | 1.5136 | | 1.5344 | 3.54 | 742000 | 1.5172 | | 1.5347 | 3.55 | 744000 | 1.5149 | | 1.5292 | 3.56 | 746000 | 1.5141 | | 1.5344 | 3.57 | 748000 | 1.5066 | | 1.5307 | 3.58 | 750000 | 1.5087 | | 1.5324 | 3.59 | 752000 | 1.5113 | | 1.5273 | 3.6 | 754000 | 1.5101 | | 1.5273 | 3.61 | 756000 | 1.4975 | | 1.5282 | 3.62 | 758000 | 1.5053 | | 1.5252 | 3.63 | 760000 | 1.4998 | | 1.525 | 3.64 | 762000 | 1.5020 | | 1.5297 | 3.65 | 764000 | 1.5075 | | 1.5215 | 3.66 | 766000 | 1.4980 | | 1.5237 | 3.67 | 768000 | 1.5066 | | 1.5248 | 3.68 | 770000 | 1.5093 | | 1.5231 | 3.69 | 772000 | 1.5090 | | 1.5224 | 3.7 | 774000 | 1.5093 | | 1.526 | 3.71 | 776000 | 1.5015 | | 1.5215 | 3.71 | 778000 | 1.5045 | | 1.5231 | 3.72 | 780000 | 1.4971 | | 1.5205 | 3.73 | 782000 | 1.4987 | | 1.5171 | 3.74 | 784000 | 1.5001 | | 1.5134 | 3.75 | 786000 | 1.4951 | | 1.5155 | 3.76 | 788000 | 1.4975 | | 1.5154 | 3.77 | 790000 | 1.4928 | | 1.5167 | 3.78 | 792000 | 1.4983 | | 1.5146 | 3.79 | 794000 | 1.4938 | | 1.5138 | 3.8 | 796000 | 1.4985 | | 1.5137 | 3.81 | 798000 | 1.5021 | | 1.5111 | 3.82 | 800000 | 1.5020 | | 1.5134 | 3.83 | 802000 | 1.4998 | | 1.5086 | 3.84 | 804000 | 1.5001 | | 1.5081 | 3.85 | 806000 | 1.5031 | | 1.5097 | 3.86 | 808000 | 1.5008 | | 1.5128 | 3.87 | 810000 | 1.4990 | | 1.5093 | 3.88 | 812000 | 1.4994 | | 1.5109 | 3.89 | 814000 | 1.5021 | | 1.5049 | 3.9 | 816000 | 1.5012 | | 1.5042 | 3.91 | 818000 | 1.5013 | | 1.5053 | 3.92 | 820000 | 1.4946 | | 1.5066 | 3.93 | 822000 | 1.4984 | | 1.5074 | 3.93 | 824000 | 1.4963 | | 1.5046 | 3.94 | 826000 | 1.4972 | | 1.5043 | 3.95 | 828000 | 1.4970 | | 1.5064 | 3.96 | 830000 | 1.4940 | | 1.4999 | 3.97 | 832000 | 1.4940 | | 1.5022 | 3.98 | 834000 | 1.4934 | | 1.5054 | 3.99 | 836000 | 1.4929 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/43folders-hotdogsladies
huggingtweets
2022-06-15T23:14:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T23:10:07Z
--- language: en thumbnail: http://www.huggingtweets.com/43folders-hotdogsladies/1655334875186/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1165801400/43f-logo-square-300_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474526156430798849/0Z_zfYqH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">43 Folders & Merlin Mann</div> <div style="text-align: center; font-size: 14px;">@43folders-hotdogsladies</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 43 Folders & Merlin Mann. | Data | 43 Folders | Merlin Mann | | --- | --- | --- | | Tweets downloaded | 149 | 317 | | Retweets | 8 | 41 | | Short tweets | 0 | 48 | | Tweets kept | 141 | 228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gd31yq9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @43folders-hotdogsladies's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/148w4fxc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/148w4fxc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/43folders-hotdogsladies') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emilys/BERTweet-WNUT17
emilys
2022-06-15T22:31:22Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "NER", "en", "dataset:wnut_17", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-14T22:59:18Z
--- language: - en tags: - NER datasets: - wnut_17 --- bertweet-base (https://huggingface.co/vinai/bertweet-base) finetuned on WNUT (2017), following https://github.com/huggingface/transformers/tree/main/examples/legacy/token-classification
tuni/xlm-roberta-large-xnli-finetuned-mnli
tuni
2022-06-15T21:46:28Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T09:57:35Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8548888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-xnli-finetuned-mnli This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2542 - Accuracy: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7468 | 1.0 | 2250 | 0.8551 | 0.8348 | | 0.567 | 2.0 | 4500 | 0.8935 | 0.8377 | | 0.318 | 3.0 | 6750 | 0.9892 | 0.8492 | | 0.1146 | 4.0 | 9000 | 1.2373 | 0.8446 | | 0.0383 | 5.0 | 11250 | 1.2542 | 0.8549 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
huggingtweets/yemeen
huggingtweets
2022-06-15T21:27:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T21:22:42Z
--- language: en thumbnail: http://www.huggingtweets.com/yemeen/1655328324400/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438226079030947845/pwH4SUlU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">𝕐𝕖𝕞𝕖𝕖𝕟</div> <div style="text-align: center; font-size: 14px;">@yemeen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 𝕐𝕖𝕞𝕖𝕖𝕟. | Data | 𝕐𝕖𝕞𝕖𝕖𝕟 | | --- | --- | | Tweets downloaded | 2911 | | Retweets | 1038 | | Short tweets | 198 | | Tweets kept | 1675 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3it77r2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yemeen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39fvs51l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39fvs51l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yemeen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jianyang/dqn-SpaceInvadersNoFrameskip-v4
jianyang
2022-06-15T20:31:27Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T20:30:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 699.00 +/- 184.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jianyang -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jianyang ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
kcarnold/inquisitive2
kcarnold
2022-06-15T19:55:47Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T18:28:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: inquisitive2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # inquisitive2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.3.0 - Tokenizers 0.12.1
ouiame/bert2gpt2Summy
ouiame
2022-06-15T19:31:08Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "fr", "dataset:ouiame/autotrain-data-trainproject", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T13:08:46Z
--- tags: autotrain language: fr widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 894.9753853627794 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232782 - CO2 Emissions (in grams): 894.9753853627794 ## Validation Metrics - Loss: 1.9692628383636475 - Rouge1: 19.3642 - Rouge2: 7.3644 - RougeL: 16.148 - RougeLsum: 16.4988 - Gen Len: 18.9975 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232782 ```
Ambiwlans/dqn-SpaceInvadersNoFrameskip-v4
Ambiwlans
2022-06-15T18:24:24Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T18:23:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 594.50 +/- 167.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ambiwlans -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ambiwlans ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
castorini/afriberta_base
castorini
2022-06-15T18:23:04Z
64
2
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Hugging Face's logo --- language: - om - am - rw - rn - ha - ig - pcm - so - sw - ti - yo - multilingual --- # afriberta_base ## Model description AfriBERTa base is a pretrained multilingual language model with around 111 million parameters. The model has 8 layers, 6 attention heads, 768 hidden units and 3072 feed forward size. The model was pretrained on 11 African languages namely - Afaan Oromoo (also called Oromo), Amharic, Gahuza (a mixed language containing Kinyarwanda and Kirundi), Hausa, Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya and Yorùbá. The model has been shown to obtain competitive downstream performances on text classification and Named Entity Recognition on several African languages, including those it was not pretrained on. ## Intended uses & limitations #### How to use You can use this model with Transformers for any downstream task. For example, assuming we want to finetune this model on a token classification task, we do the following: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("castorini/afriberta_base") >>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriberta_base") # we have to manually set the model max length because it is an imported sentencepiece model, which huggingface does not properly support right now >>> tokenizer.model_max_length = 512 ``` #### Limitations and bias - This model is possibly limited by its training dataset which are majorly obtained from news articles from a specific span of time. Thus, it may not generalize well. - This model is trained on very little data (less than 1 GB), hence it may not have seen enough data to learn very complex linguistic relations. ## Training data The model was trained on an aggregation of datasets from the BBC news website and Common Crawl. ## Training procedure For information on training procedures, please refer to the AfriBERTa [paper]() or [repository](https://github.com/keleog/afriberta) ### BibTeX entry and citation info ``` @inproceedings{ogueji-etal-2021-small, title = "Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages", author = "Ogueji, Kelechi and Zhu, Yuxin and Lin, Jimmy", booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.mrl-1.11", pages = "116--126", } ```
Vkt/model-960hfacebook-2022.06.08
Vkt
2022-06-15T18:17:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-08T16:16:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model-960hfacebook-2022.06.08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-960hfacebook-2022.06.08 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2907 - Wer: 0.1804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.7634 | 0.21 | 300 | 2.9743 | 0.9998 | | 1.6536 | 0.43 | 600 | 0.8605 | 0.7529 | | 0.9823 | 0.64 | 900 | 0.6600 | 0.6286 | | 0.8708 | 0.86 | 1200 | 0.5780 | 0.5736 | | 0.7878 | 1.07 | 1500 | 0.5386 | 0.5326 | | 0.7033 | 1.29 | 1800 | 0.4986 | 0.4992 | | 0.681 | 1.5 | 2100 | 0.4575 | 0.4778 | | 0.6537 | 1.72 | 2400 | 0.4591 | 0.4482 | | 0.6263 | 1.93 | 2700 | 0.4317 | 0.4353 | | 0.5811 | 2.14 | 3000 | 0.4149 | 0.4159 | | 0.5565 | 2.36 | 3300 | 0.4170 | 0.3956 | | 0.5501 | 2.57 | 3600 | 0.4007 | 0.3929 | | 0.5444 | 2.79 | 3900 | 0.3930 | 0.3851 | | 0.5177 | 3.0 | 4200 | 0.4006 | 0.3630 | | 0.4682 | 3.22 | 4500 | 0.3707 | 0.3713 | | 0.4805 | 3.43 | 4800 | 0.3564 | 0.3583 | | 0.4715 | 3.65 | 5100 | 0.3596 | 0.3434 | | 0.4482 | 3.86 | 5400 | 0.3555 | 0.3394 | | 0.4407 | 4.07 | 5700 | 0.3680 | 0.3312 | | 0.4134 | 4.29 | 6000 | 0.3534 | 0.3328 | | 0.4165 | 4.5 | 6300 | 0.3294 | 0.3259 | | 0.4196 | 4.72 | 6600 | 0.3353 | 0.3214 | | 0.4117 | 4.93 | 6900 | 0.3266 | 0.3211 | | 0.3847 | 5.15 | 7200 | 0.3365 | 0.3156 | | 0.3687 | 5.36 | 7500 | 0.3233 | 0.3014 | | 0.376 | 5.58 | 7800 | 0.3345 | 0.2979 | | 0.3732 | 5.79 | 8100 | 0.3105 | 0.2882 | | 0.3705 | 6.0 | 8400 | 0.3252 | 0.2935 | | 0.3311 | 6.22 | 8700 | 0.3266 | 0.2911 | | 0.3386 | 6.43 | 9000 | 0.2975 | 0.2765 | | 0.337 | 6.65 | 9300 | 0.3070 | 0.2826 | | 0.3458 | 6.86 | 9600 | 0.3090 | 0.2766 | | 0.3218 | 7.08 | 9900 | 0.3117 | 0.2748 | | 0.3041 | 7.29 | 10200 | 0.2989 | 0.2651 | | 0.3031 | 7.51 | 10500 | 0.3210 | 0.2672 | | 0.3037 | 7.72 | 10800 | 0.3040 | 0.2667 | | 0.3126 | 7.93 | 11100 | 0.2867 | 0.2613 | | 0.3005 | 8.15 | 11400 | 0.3075 | 0.2610 | | 0.2802 | 8.36 | 11700 | 0.3129 | 0.2608 | | 0.2785 | 8.58 | 12000 | 0.3002 | 0.2579 | | 0.2788 | 8.79 | 12300 | 0.3063 | 0.2476 | | 0.286 | 9.01 | 12600 | 0.2971 | 0.2495 | | 0.2534 | 9.22 | 12900 | 0.2766 | 0.2452 | | 0.2542 | 9.44 | 13200 | 0.2893 | 0.2405 | | 0.2576 | 9.65 | 13500 | 0.3038 | 0.2518 | | 0.2552 | 9.86 | 13800 | 0.2851 | 0.2429 | | 0.2487 | 10.08 | 14100 | 0.2858 | 0.2356 | | 0.2441 | 10.29 | 14400 | 0.2999 | 0.2364 | | 0.2345 | 10.51 | 14700 | 0.2907 | 0.2373 | | 0.2352 | 10.72 | 15000 | 0.2885 | 0.2402 | | 0.2464 | 10.94 | 15300 | 0.2896 | 0.2339 | | 0.2219 | 11.15 | 15600 | 0.2999 | 0.2351 | | 0.2257 | 11.37 | 15900 | 0.2930 | 0.2326 | | 0.2184 | 11.58 | 16200 | 0.2980 | 0.2353 | | 0.2182 | 11.79 | 16500 | 0.2832 | 0.2296 | | 0.2224 | 12.01 | 16800 | 0.2797 | 0.2285 | | 0.1991 | 12.22 | 17100 | 0.2810 | 0.2296 | | 0.1993 | 12.44 | 17400 | 0.2949 | 0.2253 | | 0.2042 | 12.65 | 17700 | 0.2864 | 0.2207 | | 0.2083 | 12.87 | 18000 | 0.2860 | 0.2278 | | 0.1998 | 13.08 | 18300 | 0.2872 | 0.2232 | | 0.1919 | 13.3 | 18600 | 0.2894 | 0.2247 | | 0.1925 | 13.51 | 18900 | 0.3007 | 0.2234 | | 0.1966 | 13.72 | 19200 | 0.2831 | 0.2176 | | 0.1942 | 13.94 | 19500 | 0.2811 | 0.2161 | | 0.1778 | 14.15 | 19800 | 0.2901 | 0.2196 | | 0.1755 | 14.37 | 20100 | 0.2864 | 0.2188 | | 0.1795 | 14.58 | 20400 | 0.2927 | 0.2170 | | 0.1817 | 14.8 | 20700 | 0.2846 | 0.2156 | | 0.1754 | 15.01 | 21000 | 0.3036 | 0.2137 | | 0.1674 | 15.23 | 21300 | 0.2876 | 0.2156 | | 0.171 | 15.44 | 21600 | 0.2812 | 0.2106 | | 0.1603 | 15.65 | 21900 | 0.2692 | 0.2093 | | 0.1663 | 15.87 | 22200 | 0.2745 | 0.2094 | | 0.1608 | 16.08 | 22500 | 0.2807 | 0.2043 | | 0.1555 | 16.3 | 22800 | 0.2872 | 0.2036 | | 0.1546 | 16.51 | 23100 | 0.2837 | 0.2049 | | 0.1515 | 16.73 | 23400 | 0.2746 | 0.2031 | | 0.1571 | 16.94 | 23700 | 0.2767 | 0.2047 | | 0.1498 | 17.16 | 24000 | 0.2837 | 0.2050 | | 0.143 | 17.37 | 24300 | 0.2745 | 0.2038 | | 0.1471 | 17.58 | 24600 | 0.2787 | 0.2004 | | 0.1442 | 17.8 | 24900 | 0.2779 | 0.2005 | | 0.1481 | 18.01 | 25200 | 0.2906 | 0.2021 | | 0.1318 | 18.23 | 25500 | 0.2936 | 0.1991 | | 0.1396 | 18.44 | 25800 | 0.2913 | 0.1984 | | 0.144 | 18.66 | 26100 | 0.2806 | 0.1953 | | 0.1341 | 18.87 | 26400 | 0.2896 | 0.1972 | | 0.1375 | 19.09 | 26700 | 0.2937 | 0.2002 | | 0.1286 | 19.3 | 27000 | 0.2929 | 0.1954 | | 0.1242 | 19.51 | 27300 | 0.2968 | 0.1962 | | 0.1305 | 19.73 | 27600 | 0.2879 | 0.1944 | | 0.1287 | 19.94 | 27900 | 0.2850 | 0.1937 | | 0.1286 | 20.16 | 28200 | 0.2910 | 0.1961 | | 0.121 | 20.37 | 28500 | 0.2908 | 0.1912 | | 0.1264 | 20.59 | 28800 | 0.2853 | 0.1904 | | 0.1238 | 20.8 | 29100 | 0.2913 | 0.1926 | | 0.117 | 21.02 | 29400 | 0.2907 | 0.1922 | | 0.1154 | 21.23 | 29700 | 0.2902 | 0.1888 | | 0.1142 | 21.44 | 30000 | 0.2854 | 0.1907 | | 0.1168 | 21.66 | 30300 | 0.2918 | 0.1873 | | 0.1168 | 21.87 | 30600 | 0.2897 | 0.1873 | | 0.1105 | 22.09 | 30900 | 0.2951 | 0.1856 | | 0.1134 | 22.3 | 31200 | 0.2842 | 0.1847 | | 0.1111 | 22.52 | 31500 | 0.2884 | 0.1829 | | 0.1088 | 22.73 | 31800 | 0.2991 | 0.1840 | | 0.1139 | 22.94 | 32100 | 0.2876 | 0.1839 | | 0.1078 | 23.16 | 32400 | 0.2899 | 0.1830 | | 0.1087 | 23.37 | 32700 | 0.2927 | 0.1803 | | 0.1076 | 23.59 | 33000 | 0.2924 | 0.1801 | | 0.11 | 23.8 | 33300 | 0.2877 | 0.1804 | | 0.1067 | 24.02 | 33600 | 0.2918 | 0.1799 | | 0.1104 | 24.23 | 33900 | 0.2908 | 0.1809 | | 0.1023 | 24.45 | 34200 | 0.2939 | 0.1807 | | 0.0993 | 24.66 | 34500 | 0.2925 | 0.1802 | | 0.1053 | 24.87 | 34800 | 0.2907 | 0.1804 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/_mohamads
huggingtweets
2022-06-15T17:37:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T17:33:04Z
--- language: en thumbnail: http://www.huggingtweets.com/_mohamads/1655314541919/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522920330960027648/Z5piAxnG_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🧬 محمد الزهراني</div> <div style="text-align: center; font-size: 14px;">@_mohamads</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🧬 محمد الزهراني. | Data | 🧬 محمد الزهراني | | --- | --- | | Tweets downloaded | 1108 | | Retweets | 75 | | Short tweets | 90 | | Tweets kept | 943 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y8wg10zm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_mohamads's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jm1spua) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jm1spua/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_mohamads') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
joaogante/test_text
joaogante
2022-06-15T16:53:59Z
44
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "distilbert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-31T16:02:39Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is uncased: it does not make a difference between english and English. ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.05292855575680733, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.03968575969338417, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a business model. [SEP]", 'score': 0.034743521362543106, 'token': 2449, 'token_str': 'business'}, {'sequence': "[CLS] hello i'm a model model. [SEP]", 'score': 0.03462274372577667, 'token': 2944, 'token_str': 'model'}, {'sequence': "[CLS] hello i'm a modeling model. [SEP]", 'score': 0.018145186826586723, 'token': 11643, 'token_str': 'modeling'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("The White man worked as a [MASK].") [{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]', 'score': 0.1235365942120552, 'token': 20987, 'token_str': 'blacksmith'}, {'sequence': '[CLS] the white man worked as a carpenter. [SEP]', 'score': 0.10142576694488525, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the white man worked as a farmer. [SEP]', 'score': 0.04985016956925392, 'token': 7500, 'token_str': 'farmer'}, {'sequence': '[CLS] the white man worked as a miner. [SEP]', 'score': 0.03932540491223335, 'token': 18594, 'token_str': 'miner'}, {'sequence': '[CLS] the white man worked as a butcher. [SEP]', 'score': 0.03351764753460884, 'token': 14998, 'token_str': 'butcher'}] >>> unmasker("The Black woman worked as a [MASK].") [{'sequence': '[CLS] the black woman worked as a waitress. [SEP]', 'score': 0.13283951580524445, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the black woman worked as a nurse. [SEP]', 'score': 0.12586183845996857, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the black woman worked as a maid. [SEP]', 'score': 0.11708822101354599, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the black woman worked as a prostitute. [SEP]', 'score': 0.11499975621700287, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]', 'score': 0.04722772538661957, 'token': 22583, 'token_str': 'housekeeper'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 16 GB V100 for 90 hours. See the [training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters details. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 | ### BibTeX entry and citation info ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ``` <a href="https://huggingface.co/exbert/?model=distilbert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
testingacc/dall-e-private
testingacc
2022-06-15T16:42:48Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-06-15T16:42:19Z
--- title: DALL·E mini description: "DALL·E mini - a Hugging Face Space by Boris Dayma et al." emoji: 🥑 colorFrom: yellow colorTo: green sdk: static pinned: True server : testingacc license: apache-2.0 ---
Alireza1044/mobilebert_rte
Alireza1044
2022-06-15T16:24:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T16:09:49Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6678700361010831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rte This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.8396 - Accuracy: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
ksabeh/albert-base-v2-attribute-correction-mlm
ksabeh
2022-06-15T15:49:41Z
5
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-15T07:46:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/albert-base-v2-mlm-electronics-attribute-correction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/albert-base-v2-mlm-electronics-attribute-correction This model is a fine-tuned version of [ksabeh/albert-base-v2-mlm-electronics](https://huggingface.co/ksabeh/albert-base-v2-mlm-electronics) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0541 - Validation Loss: 0.0570 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36852, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1364 | 0.0743 | 0 | | 0.0541 | 0.0570 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
ncfrey/ChemGPT-1.2B
ncfrey
2022-06-15T15:44:24Z
116
13
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T20:16:48Z
--- tags: - chemistry --- # ChemGPT 1.2B ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
Alireza1044/mobilebert_stsb
Alireza1044
2022-06-15T15:37:52Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T15:05:55Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8735136732190296 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stsb This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5348 - Pearson: 0.8773 - Spearmanr: 0.8735 - Combined Score: 0.8754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
ncfrey/ChemGPT-19M
ncfrey
2022-06-15T15:19:57Z
384
5
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T20:02:27Z
--- tags: - chemistry --- # ChemGPT 19M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
ncfrey/ChemGPT-4.7M
ncfrey
2022-06-15T15:17:11Z
391
19
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T19:54:55Z
--- tags: - chemistry --- # ChemGPT 4.7M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
themindorchestra/Soundhealing
themindorchestra
2022-06-15T13:02:25Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-06-15T13:02:25Z
--- license: cc-by-nc-sa-4.0 ---
AnyaSchen/rugpt3_tyutchev
AnyaSchen
2022-06-15T11:33:16Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T11:27:40Z
This model was created as a fine-tuned GPT-3 medium model, which is tuned to the style of Tyutchev's poetry in Russian. You can give her a word, a phrase, or just an empty line as an input, and she will give out a poem in the style of Tyutchev. ![alt text](https://lh4.googleusercontent.com/1B05-wqyj_8gI6zTues5f7a1epqkJ5FW672q3ReHCQ-d3qS0pIrKBIEyX2feWb66Y4Y=w2400)
AnyaSchen/rugpt3_pushkin
AnyaSchen
2022-06-15T11:25:56Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T14:45:08Z
This model was created by additional training of the giant GPT-3 medium on the works of A.S. Pushkin. Now this model can generate poetry in the style of this poet. Fine-tuning of GPT-3 was produced. ![alt text](https://lh3.googleusercontent.com/73NLTubc1m-Kiz2GJPv44cyMHQgaq32RGr7aWPfsEH5LCpqZxyqtj0TXk6Cw3gjfCzo=w2400)
vijaygoriya/test_trainer
vijaygoriya
2022-06-15T11:23:25Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-19T11:03:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9646 - Accuracy: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4452 | 1.0 | 2000 | 0.5505 | 0.7673 | | 0.277 | 2.0 | 4000 | 0.7271 | 0.8210 | | 0.1412 | 3.0 | 6000 | 0.9646 | 0.8171 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Corianas/dqn-BeamRiderNoFrameskip-v4
Corianas
2022-06-15T10:41:50Z
5
0
stable-baselines3
[ "stable-baselines3", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T08:55:40Z
--- library_name: stable-baselines3 tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 3983.00 +/- 1512.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 --- # **DQN** Agent playing **BeamRiderNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BeamRiderNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
fabiochiu/dqn-SpaceInvadersNoFrameskip-v4
fabiochiu
2022-06-15T10:32:49Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T10:32:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 631.50 +/- 84.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fabiochiu -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fabiochiu ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
HrayrM/bert-base-uncased-issues-128
HrayrM
2022-06-15T10:29:34Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T01:38:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0987 | 1.0 | 291 | 1.6066 | | 1.631 | 2.0 | 582 | 1.4775 | | 1.4933 | 3.0 | 873 | 1.4646 | | 1.3984 | 4.0 | 1164 | 1.3314 | | 1.3377 | 5.0 | 1455 | 1.3122 | | 1.274 | 6.0 | 1746 | 1.2062 | | 1.2538 | 7.0 | 2037 | 1.2626 | | 1.192 | 8.0 | 2328 | 1.1832 | | 1.1612 | 9.0 | 2619 | 1.2055 | | 1.1489 | 10.0 | 2910 | 1.1605 | | 1.1262 | 11.0 | 3201 | 1.1925 | | 1.1022 | 12.0 | 3492 | 1.1309 | | 1.0892 | 13.0 | 3783 | 1.1692 | | 1.0812 | 14.0 | 4074 | 1.2384 | | 1.0666 | 15.0 | 4365 | 1.0822 | | 1.0533 | 16.0 | 4656 | 1.2432 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0 - Datasets 2.2.2 - Tokenizers 0.10.3
TinySuitStarfish/q-FrozenLake-v1-4x4-Slippery
TinySuitStarfish
2022-06-15T10:09:42Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T10:09:31Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.72 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="TinySuitStarfish/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
roscazo/gpt2-covid
roscazo
2022-06-15T09:46:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T08:55:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-covid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-covid This model is a fine-tuned version of [PlanTL-GOB-ES/gpt2-base-bne](https://huggingface.co/PlanTL-GOB-ES/gpt2-base-bne) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
FritzOS/TEdetection_distiBERT_NER_final_8e
FritzOS
2022-06-15T09:37:10Z
4
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-15T09:36:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_final_8e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_final_8e This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_final_8e](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_final_8e) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0032 - Validation Loss: 0.0037 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 220743, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0032 | 0.0037 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.3.0 - Tokenizers 0.12.1
multimodalart/compvis-latent-diffusion-text2img-large
multimodalart
2022-06-15T08:59:10Z
0
12
null
[ "text-to-image", "license:mit", "region:us" ]
text-to-image
2022-04-11T15:44:02Z
--- license: mit tags: - text-to-image ---
RuiqianLi/Malaya-speech_fine-tune_MrBrown_15_Jun
RuiqianLi
2022-06-15T08:23:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-15T04:20:17Z
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: Malaya-speech_fine-tune_MrBrown_15_Jun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Malaya-speech_fine-tune_MrBrown_15_Jun This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. It achieves the following results on the evaluation set: - Loss: 0.4822 - Wer: 0.2449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1607 | 5.26 | 200 | 0.3983 | 0.2381 | | 0.5184 | 10.52 | 400 | 0.3256 | 0.2245 | | 0.2993 | 15.78 | 600 | 0.3437 | 0.2426 | | 0.2485 | 21.05 | 800 | 0.4547 | 0.2585 | | 0.1917 | 26.31 | 1000 | 0.4598 | 0.2517 | | 0.1586 | 31.57 | 1200 | 0.4050 | 0.2290 | | 0.1486 | 36.83 | 1400 | 0.4186 | 0.2653 | | 0.1307 | 42.1 | 1600 | 0.4284 | 0.2857 | | 0.0895 | 47.36 | 1800 | 0.5158 | 0.2562 | | 0.0526 | 52.62 | 2000 | 0.4525 | 0.2449 | | 0.0553 | 57.88 | 2200 | 0.4364 | 0.2336 | | 0.037 | 63.16 | 2400 | 0.3873 | 0.2449 | | 0.0439 | 68.42 | 2600 | 0.3914 | 0.2404 | | 0.0411 | 73.68 | 2800 | 0.4673 | 0.2494 | | 0.0242 | 78.94 | 3000 | 0.4801 | 0.2426 | | 0.0833 | 84.21 | 3200 | 0.4641 | 0.2630 | | 0.034 | 89.47 | 3400 | 0.4607 | 0.2449 | | 0.02 | 94.73 | 3600 | 0.4825 | 0.2449 | | 0.0211 | 99.99 | 3800 | 0.4822 | 0.2449 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sdugar/cross-en-de-fr-xlmr-200d-sentence-transformer
sdugar
2022-06-15T08:21:33Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-15T07:00:45Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 124278 with parameters: ``` {'batch_size': 25, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (dense): Dense({'in_features': 768, 'out_features': 200, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
FritzOS/TEdetection_distiBERT_mLM_final_8e
FritzOS
2022-06-15T07:55:31Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T07:55:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_mLM_final_8e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_final_8e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.3.0 - Tokenizers 0.12.1
hossay/biobert-base-cased-v1.2-finetuned-ner
hossay
2022-06-15T07:38:51Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-15T07:19:38Z
--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metrics: - name: Precision type: precision value: 0.8396334478808706 - name: Recall type: recall value: 0.8731387730792138 - name: F1 type: f1 value: 0.856058394160584 - name: Accuracy type: accuracy value: 0.9824805769647444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0706 - Precision: 0.8396 - Recall: 0.8731 - F1: 0.8561 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0691 | 0.8190 | 0.7868 | 0.8026 | 0.9777 | | 0.101 | 2.0 | 680 | 0.0700 | 0.8334 | 0.8553 | 0.8442 | 0.9807 | | 0.0244 | 3.0 | 1020 | 0.0706 | 0.8396 | 0.8731 | 0.8561 | 0.9825 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-Bert-base-uncased-POS
jkhan447
2022-06-15T07:17:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T04:05:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-POS This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1904 - Accuracy: 0.591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
lewtun/dog-vs-chicken
lewtun
2022-06-15T07:09:02Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T07:08:51Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dog-vs-chicken results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-vs-chicken Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### crispy fried chicken ![crispy fried chicken](images/crispy_fried_chicken.jpg) #### poodle ![poodle](images/poodle.jpg)
seomh/distilbert-base-uncased-finetuned-squad
seomh
2022-06-15T06:49:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-11T14:04:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2258 | 1.0 | 5533 | 0.0560 | | 0.952 | 2.0 | 11066 | 0.0096 | | 0.7492 | 3.0 | 16599 | 0.0083 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/wikisignpost
huggingtweets
2022-06-15T06:24:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T06:07:57Z
--- language: en thumbnail: http://www.huggingtweets.com/wikisignpost/1655274233816/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/795028567398576128/GG1GUpJ7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Signpost</div> <div style="text-align: center; font-size: 14px;">@wikisignpost</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Signpost. | Data | The Signpost | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 522 | | Short tweets | 47 | | Tweets kept | 2647 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7z6btxad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wikisignpost's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27ceco72) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27ceco72/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wikisignpost') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
olpa/pegasus-samsum
olpa
2022-06-15T04:40:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T03:21:16Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7014 | 0.54 | 500 | 1.4863 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
danielcfho/q-Taxi-v3
danielcfho
2022-06-15T04:32:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T04:32:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.50 +/- 2.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="danielcfho/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/mysteriousgam54
huggingtweets
2022-06-15T04:06:06Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-15T04:05:58Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429866660299689984/CGXAQuWf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">themysteriousgamer</div> <div style="text-align: center; font-size: 14px;">@mysteriousgam54</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from themysteriousgamer. | Data | themysteriousgamer | | --- | --- | | Tweets downloaded | 1315 | | Retweets | 210 | | Short tweets | 168 | | Tweets kept | 937 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m4i8lg1e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mysteriousgam54's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rz0m12t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rz0m12t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mysteriousgam54') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
steven123/Teeth_C
steven123
2022-06-15T02:53:44Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T02:53:33Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Teeth_C results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5 --- # Teeth_C Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
DLochmelis33/22s-dl-sentiment-1
DLochmelis33
2022-06-15T01:07:08Z
5
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T01:01:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: 22s-dl-sentiment-1 results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9542333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 22s-dl-sentiment-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.2574 - Accuracy: 0.9542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
tanbwilson/q-Taxi-v3
tanbwilson
2022-06-15T01:04:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T01:04:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tanbwilson/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
tanbwilson/q-FrozenLake-v1-4x4-noSlippery
tanbwilson
2022-06-15T01:02:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-15T01:02:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tanbwilson/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
enoriega/rule_learning_margin_1mm_spanpred
enoriega
2022-06-15T00:55:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:enoriega/odinsynth_dataset", "endpoints_compatible", "region:us" ]
null
2022-06-11T02:59:23Z
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm_spanpred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm_spanpred This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3250 - Margin Accuracy: 0.8518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.5448 | 0.16 | 20 | 0.5229 | 0.7717 | | 0.4571 | 0.32 | 40 | 0.4292 | 0.8109 | | 0.4296 | 0.48 | 60 | 0.4009 | 0.8193 | | 0.4028 | 0.64 | 80 | 0.3855 | 0.8296 | | 0.3878 | 0.8 | 100 | 0.3757 | 0.8334 | | 0.3831 | 0.96 | 120 | 0.3643 | 0.8367 | | 0.3591 | 1.12 | 140 | 0.3582 | 0.8393 | | 0.3598 | 1.28 | 160 | 0.3533 | 0.8401 | | 0.3635 | 1.44 | 180 | 0.3442 | 0.8427 | | 0.3478 | 1.6 | 200 | 0.3406 | 0.8472 | | 0.342 | 1.76 | 220 | 0.3352 | 0.8479 | | 0.3327 | 1.92 | 240 | 0.3352 | 0.8486 | | 0.3487 | 2.08 | 260 | 0.3293 | 0.8487 | | 0.3387 | 2.24 | 280 | 0.3298 | 0.8496 | | 0.3457 | 2.4 | 300 | 0.3279 | 0.8505 | | 0.3483 | 2.56 | 320 | 0.3286 | 0.8510 | | 0.3421 | 2.72 | 340 | 0.3245 | 0.8517 | | 0.3332 | 2.88 | 360 | 0.3252 | 0.8517 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
steven123/Teeth_B
steven123
2022-06-15T00:31:50Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T00:31:36Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Teeth_B results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6800000071525574 --- # Teeth_B Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Good Teeth ![Good Teeth](images/Good_Teeth.jpg) #### Missing Teeth ![Missing Teeth](images/Missing_Teeth.jpg) #### Rotten Teeth ![Rotten Teeth](images/Rotten_Teeth.jpg)
tyler-richardett/ppo-LunarLander-v2
tyler-richardett
2022-06-14T23:18:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T23:17:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 136.42 +/- 57.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ahmeddbahaa/xlmroberta2xlmroberta-finetuned-ar-wikilingua
ahmeddbahaa
2022-06-14T20:55:49Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "ar", "roberta", "xlmroberta2xlmroberta", "Abstractive Summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-14T08:51:35Z
--- tags: - summarization - ar - encoder-decoder - roberta - xlmroberta2xlmroberta - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: xlmroberta2xlmroberta-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta2xlmroberta-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.7757 - Rouge-1: 11.2 - Rouge-2: 1.96 - Rouge-l: 10.28 - Gen Len: 19.8 - Bertscore: 66.27 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 8.03 | 1.0 | 312 | 7.3208 | 0.19 | 0.0 | 0.19 | 20.0 | 54.84 | | 7.2309 | 2.0 | 624 | 7.1107 | 1.17 | 0.03 | 1.16 | 20.0 | 60.0 | | 7.0752 | 3.0 | 936 | 7.0061 | 2.58 | 0.15 | 2.55 | 20.0 | 63.52 | | 6.7538 | 4.0 | 1248 | 6.4189 | 5.75 | 0.46 | 5.55 | 19.95 | 62.83 | | 6.1513 | 5.0 | 1560 | 5.8402 | 8.46 | 1.04 | 8.08 | 19.2 | 64.25 | | 5.6639 | 6.0 | 1872 | 5.3938 | 8.62 | 1.17 | 8.16 | 19.28 | 64.81 | | 5.2857 | 7.0 | 2184 | 5.0719 | 9.34 | 1.41 | 8.61 | 19.71 | 65.29 | | 5.027 | 8.0 | 2496 | 4.9047 | 10.42 | 1.52 | 9.57 | 19.57 | 65.75 | | 4.8747 | 9.0 | 2808 | 4.8032 | 10.79 | 1.71 | 9.91 | 19.42 | 66.2 | | 4.7855 | 10.0 | 3120 | 4.7757 | 11.01 | 1.73 | 10.04 | 19.55 | 66.24 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jaay/test
Jaay
2022-06-14T20:51:25Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-14T20:51:25Z
--- license: bigscience-bloom-rail-1.0 ---
ahmeddbahaa/AraBART-finetuned-ar
ahmeddbahaa
2022-06-14T20:41:43Z
24
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-04T14:58:44Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum model-index: - name: AraBART-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraBART-finetuned-ar This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.7449 - Rouge-1: 31.08 - Rouge-2: 14.68 - Rouge-l: 27.36 - Gen Len: 19.64 - Bertscore: 73.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.4318 | 1.0 | 2345 | 3.7996 | 28.93 | 13.2 | 25.56 | 19.51 | 73.17 | | 4.0338 | 2.0 | 4690 | 3.7483 | 30.29 | 14.24 | 26.73 | 19.5 | 73.59 | | 3.8586 | 3.0 | 7035 | 3.7281 | 30.44 | 14.44 | 26.92 | 19.75 | 73.58 | | 3.7289 | 4.0 | 9380 | 3.7204 | 30.55 | 14.49 | 26.88 | 19.66 | 73.73 | | 3.6245 | 5.0 | 11725 | 3.7199 | 30.73 | 14.63 | 27.11 | 19.69 | 73.68 | | 3.5392 | 6.0 | 14070 | 3.7221 | 30.85 | 14.65 | 27.21 | 19.7 | 73.77 | | 3.4694 | 7.0 | 16415 | 3.7286 | 31.08 | 14.8 | 27.41 | 19.62 | 73.84 | | 3.4126 | 8.0 | 18760 | 3.7384 | 31.06 | 14.77 | 27.41 | 19.64 | 73.82 | | 3.3718 | 9.0 | 21105 | 3.7398 | 31.18 | 14.89 | 27.49 | 19.67 | 73.87 | | 3.3428 | 10.0 | 23450 | 3.7449 | 31.19 | 14.88 | 27.44 | 19.68 | 73.87 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
AAkhilesh/wav2vec2-large-xls-r-300m-ta-colab
AAkhilesh
2022-06-14T20:39:54Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-02T14:12:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ta-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ta-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tanbwilson/ppo-LunarLander-v2
tanbwilson
2022-06-14T20:31:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-14T20:31:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.14 +/- 22.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nateraw/koala-panda-wombat
nateraw
2022-06-14T20:31:04Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-14T20:30:51Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: koala-panda-wombat results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9850746393203735 --- # koala-panda-wombat Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### koala ![koala](images/koala.jpg) #### panda ![panda](images/panda.jpg) #### wombat ![wombat](images/wombat.jpg)
cindy203cc/finetuning-sentiment-model-3000-samples
cindy203cc
2022-06-14T19:16:33Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-14T18:55:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8628762541806019 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3187 - Accuracy: 0.8633 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1