modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
antonioricciardi/FrozenLake-v1
antonioricciardi
2022-06-11T13:06:56Z
2
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:06:48Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DavidCollier/SpaceInvader
DavidCollier
2022-06-11T12:40:06Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T12:39:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 15.50 +/- 12.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DavidCollier -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga DavidCollier ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Sebabrata/lmv2ubiai-pan8doc-06-11
Sebabrata
2022-06-11T12:25:03Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T11:46:22Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2ubiai-pan8doc-06-11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2ubiai-pan8doc-06-11 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9633 - Dob Precision: 1.0 - Dob Recall: 1.0 - Dob F1: 1.0 - Dob Number: 2 - Fname Precision: 0.6667 - Fname Recall: 1.0 - Fname F1: 0.8 - Fname Number: 2 - Name Precision: 1.0 - Name Recall: 1.0 - Name F1: 1.0 - Name Number: 2 - Pan Precision: 1.0 - Pan Recall: 1.0 - Pan F1: 1.0 - Pan Number: 2 - Overall Precision: 0.8889 - Overall Recall: 1.0 - Overall F1: 0.9412 - Overall Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dob Precision | Dob Recall | Dob F1 | Dob Number | Fname Precision | Fname Recall | Fname F1 | Fname Number | Name Precision | Name Recall | Name F1 | Name Number | Pan Precision | Pan Recall | Pan F1 | Pan Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------:|:------------:|:--------:|:------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.1195 | 1.0 | 6 | 1.7519 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.6994 | 2.0 | 12 | 1.5117 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.5521 | 3.0 | 18 | 1.4130 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.4726 | 4.0 | 24 | 1.3410 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.395 | 5.0 | 30 | 1.2693 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.3131 | 6.0 | 36 | 1.2079 | 1.0 | 1.0 | 1.0 | 2 | 0.1667 | 0.5 | 0.25 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.3 | 0.375 | 0.3333 | 0.8929 | | 1.2474 | 7.0 | 42 | 1.1495 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1869 | 8.0 | 48 | 1.0942 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1369 | 9.0 | 54 | 1.0453 | 1.0 | 1.0 | 1.0 | 2 | 0.4 | 1.0 | 0.5714 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5455 | 0.75 | 0.6316 | 0.9464 | | 1.0882 | 10.0 | 60 | 1.0054 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 1.0 | 0.6667 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.7 | 0.875 | 0.7778 | 0.9643 | | 1.0482 | 11.0 | 66 | 0.9633 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 1.017 | 12.0 | 72 | 0.9368 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9825 | 13.0 | 78 | 0.9139 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.9459 | 14.0 | 84 | 0.8837 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9155 | 15.0 | 90 | 0.8472 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8819 | 16.0 | 96 | 0.8231 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8523 | 17.0 | 102 | 0.7957 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.8251 | 18.0 | 108 | 0.7681 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7982 | 19.0 | 114 | 0.7533 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7762 | 20.0 | 120 | 0.7283 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7558 | 21.0 | 126 | 0.7114 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7346 | 22.0 | 132 | 0.6889 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7116 | 23.0 | 138 | 0.6697 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6898 | 24.0 | 144 | 0.6593 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6748 | 25.0 | 150 | 0.6356 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6487 | 26.0 | 156 | 0.6142 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6312 | 27.0 | 162 | 0.6008 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6156 | 28.0 | 168 | 0.5855 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5961 | 29.0 | 174 | 0.5625 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5781 | 30.0 | 180 | 0.5553 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
shivarama23
2022-06-11T11:54:49Z
85
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-11T11:41:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-image_quality results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-image_quality This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.5242 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6762 | 0.6364 | | No log | 2.0 | 2 | 0.6309 | 0.7273 | | No log | 3.0 | 3 | 0.6095 | 0.6364 | | No log | 4.0 | 4 | 0.5775 | 0.6364 | | No log | 5.0 | 5 | 0.5443 | 0.8182 | | No log | 6.0 | 6 | 0.5242 | 0.9091 | | No log | 7.0 | 7 | 0.5149 | 0.8182 | | No log | 8.0 | 8 | 0.5094 | 0.8182 | | No log | 9.0 | 9 | 0.5038 | 0.8182 | | 0.4095 | 10.0 | 10 | 0.4992 | 0.8182 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jawaher/LIAR-fake-news-roberta-base
Jawaher
2022-06-11T11:12:24Z
103
1
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-11T05:40:13Z
A pre-trained Roberta masked language model (MLM) trained on around 12K fake news dataset called LIAR. The perplexity of the original pre-trained Roberta model on the dataset is 5.957 and the perplexity of the adapted model is 3.918.
Gbartee/Gbartee2
Gbartee
2022-06-11T08:57:03Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-11T08:57:03Z
--- license: bigscience-bloom-rail-1.0 ---
huggingtweets/gustholomulers
huggingtweets
2022-06-11T07:53:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T07:50:54Z
--- language: en thumbnail: http://www.huggingtweets.com/gustholomulers/1654934015981/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535477036353040384/tXI_s1Yi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">soppy</div> <div style="text-align: center; font-size: 14px;">@gustholomulers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from soppy. | Data | soppy | | --- | --- | | Tweets downloaded | 1482 | | Retweets | 55 | | Short tweets | 329 | | Tweets kept | 1098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nhfbopf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gustholomulers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gustholomulers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
orzhan/t5-long-extract
orzhan
2022-06-11T07:20:59Z
105
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
T5-small model fine-tuned for extractive summarization on long documents. Repository: [GitHub](https://github.com/orzhan/t5-long-extract)
orzhan/rut5-base-detox-v2
orzhan
2022-06-11T07:18:47Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "PyTorch", "Transformers", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T06:51:41Z
--- language: - ru tags: - PyTorch - Transformers --- # rut5-base-detox-v2 Model was fine-tuned from sberbank-ai/ruT5-base on parallel detoxification corpus. * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101` * Num Parameters: `222 M`
titi7242229/roberta-base-bne-finetuned_personality_multi_2
titi7242229
2022-06-11T06:21:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T05:27:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_2 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2983 - Accuracy: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3256 | 1.0 | 125 | 2.2642 | 0.2161 | | 1.815 | 2.0 | 250 | 1.9569 | 0.3919 | | 1.614 | 3.0 | 375 | 1.7264 | 0.5014 | | 1.1718 | 4.0 | 500 | 1.6387 | 0.5239 | | 1.135 | 5.0 | 625 | 1.6259 | 0.5245 | | 0.5637 | 6.0 | 750 | 1.6443 | 0.5372 | | 0.3672 | 7.0 | 875 | 1.7146 | 0.5326 | | 0.3249 | 8.0 | 1000 | 1.8099 | 0.5297 | | 0.1791 | 9.0 | 1125 | 1.8888 | 0.5285 | | 0.2175 | 10.0 | 1250 | 1.9228 | 0.5326 | | 0.0465 | 11.0 | 1375 | 1.9753 | 0.5435 | | 0.1154 | 12.0 | 1500 | 2.1102 | 0.5256 | | 0.0745 | 13.0 | 1625 | 2.1319 | 0.5429 | | 0.0281 | 14.0 | 1750 | 2.1743 | 0.5360 | | 0.0173 | 15.0 | 1875 | 2.2087 | 0.5441 | | 0.0269 | 16.0 | 2000 | 2.2456 | 0.5424 | | 0.0107 | 17.0 | 2125 | 2.2685 | 0.5458 | | 0.0268 | 18.0 | 2250 | 2.2893 | 0.5383 | | 0.0245 | 19.0 | 2375 | 2.2943 | 0.5418 | | 0.0156 | 20.0 | 2500 | 2.2983 | 0.5429 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ablam/distilgpt2_fine_tuned_gcode
ablam
2022-06-11T03:52:00Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T01:09:05Z
--- tags: - generated_from_trainer model-index: - name: distilgpt2_fine_tuned_gcode results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_fine_tuned_gcode This model is a fine-tuned version of [congcongwang/distilgpt2_fine_tuned_coder](https://huggingface.co/congcongwang/distilgpt2_fine_tuned_coder) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1754 | 1.0 | 52144 | 4.1670 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.10.3
enoriega/rule_learning_margin_1mm
enoriega
2022-06-11T02:04:28Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:enoriega/odinsynth_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T01:52:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3806 - Margin Accuracy: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.6482 | 0.16 | 20 | 0.6494 | 0.7263 | | 0.5151 | 0.32 | 40 | 0.5088 | 0.7792 | | 0.4822 | 0.48 | 60 | 0.4429 | 0.8045 | | 0.4472 | 0.64 | 80 | 0.4265 | 0.8107 | | 0.4352 | 0.8 | 100 | 0.4155 | 0.8132 | | 0.4335 | 0.96 | 120 | 0.4128 | 0.8116 | | 0.4113 | 1.12 | 140 | 0.4119 | 0.8142 | | 0.4186 | 1.28 | 160 | 0.4075 | 0.8120 | | 0.42 | 1.44 | 180 | 0.4072 | 0.8123 | | 0.4175 | 1.6 | 200 | 0.4080 | 0.8130 | | 0.4097 | 1.76 | 220 | 0.4031 | 0.8128 | | 0.397 | 1.92 | 240 | 0.4004 | 0.8130 | | 0.4115 | 2.08 | 260 | 0.3979 | 0.8136 | | 0.4108 | 2.24 | 280 | 0.3940 | 0.8167 | | 0.4125 | 2.4 | 300 | 0.3879 | 0.8218 | | 0.4117 | 2.56 | 320 | 0.3848 | 0.8217 | | 0.3967 | 2.72 | 340 | 0.3818 | 0.8231 | | 0.3947 | 2.88 | 360 | 0.3813 | 0.8240 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/yomancuso
huggingtweets
2022-06-11T01:08:18Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T01:08:10Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1490538004607385602/laSBwC6u_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Davey Wavey</div> <div style="text-align: center; font-size: 14px;">@yomancuso</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Davey Wavey. | Data | Davey Wavey | | --- | --- | | Tweets downloaded | 3176 | | Retweets | 1207 | | Short tweets | 485 | | Tweets kept | 1484 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i0ci708/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yomancuso's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mexojoq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mexojoq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yomancuso') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tonebot_
huggingtweets
2022-06-11T00:15:41Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T00:14:25Z
--- language: en thumbnail: http://www.huggingtweets.com/tonebot_/1654906535396/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447253318380793858/VVNhWBGI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tone bot</div> <div style="text-align: center; font-size: 14px;">@tonebot_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tone bot. | Data | tone bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 537 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ot29sc5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tonebot_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tonebot_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/boopysaur
huggingtweets
2022-06-10T22:57:09Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T22:56:08Z
--- language: en thumbnail: http://www.huggingtweets.com/boopysaur/1654901824865/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476816918879297559/2jt_Rt2L_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">boop ♡</div> <div style="text-align: center; font-size: 14px;">@boopysaur</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from boop ♡. | Data | boop ♡ | | --- | --- | | Tweets downloaded | 920 | | Retweets | 162 | | Short tweets | 128 | | Tweets kept | 630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/398l195g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boopysaur's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boopysaur') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
facebook/roberta-hate-speech-dynabench-r1-target
facebook
2022-06-10T22:36:34Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T21:32:03Z
--- language: en --- # LFTW R1 Target The R1 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
luisrqe/cubucetapenis
luisrqe
2022-06-10T21:08:15Z
0
0
null
[ "region:us" ]
null
2022-06-10T20:52:33Z
git lfs install https://www.novinhavideosporno.com/wp-content/uploads/2018/11/a-maior-buceta-do-mundo-e-a-mais-escrota-tambem.jpg https://www.xvideos-tv.com/wp-content/uploads/2021/11/buceta-da-novinha-sendo-arrombada-por-varios-machos-272x180.jpg http://cdn.xvideos-br.com/media/imagens/10501.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Sidoka_photoshoot.jpg/800px-Sidoka_photoshoot.jpg https://rapforte.com/wp-content/uploads/2021/08/Doka.jpg https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR2pWEwhp9tl7CDcHd7ELiKLpUPXkhCm4zmCwZGerHYh7CY8WxsGnOSACYussZdIF283so&usqp=CAU git clone https://huggingface.co/luisrqe/cubucetapenis
huggingtweets/ninjasexparty
huggingtweets
2022-06-10T19:56:27Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T19:56:18Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446572046679302144/jF9HS_Yd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ninja Sex Party</div> <div style="text-align: center; font-size: 14px;">@ninjasexparty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ninja Sex Party. | Data | Ninja Sex Party | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 631 | | Short tweets | 439 | | Tweets kept | 2180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ik0ji2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ninjasexparty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ninjasexparty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
FritzOS/TEdetection_distilBERT_mLM_V5
FritzOS
2022-06-10T19:43:24Z
63
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-10T19:43:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/jana_aych_ess
huggingtweets
2022-06-10T19:22:06Z
98
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T19:21:00Z
--- language: en thumbnail: http://www.huggingtweets.com/jana_aych_ess/1654888920998/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1169751139409117185/BU60y7P5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jana 'All Cops Are Bastards' H-S (they/them)</div> <div style="text-align: center; font-size: 14px;">@jana_aych_ess</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jana 'All Cops Are Bastards' H-S (they/them). | Data | Jana 'All Cops Are Bastards' H-S (they/them) | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 343 | | Short tweets | 148 | | Tweets kept | 2743 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q5i1d01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jana_aych_ess's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uy7dmw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uy7dmw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jana_aych_ess') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/malzliebchen
huggingtweets
2022-06-10T18:29:39Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T18:26:43Z
--- language: en thumbnail: http://www.huggingtweets.com/malzliebchen/1654885748305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521909233024913408/4QsF2YzM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Malzbeard's Severed Head</div> <div style="text-align: center; font-size: 14px;">@malzliebchen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Malzbeard's Severed Head. | Data | Malzbeard's Severed Head | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 41 | | Short tweets | 486 | | Tweets kept | 2720 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e1wzn1e5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malzliebchen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malzliebchen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meln1k/dqn-SpaceInvadersNoFrameskip-v4
meln1k
2022-06-10T17:30:42Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T17:30:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 817.50 +/- 327.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
income/bpr-base-msmarco-contriever
income
2022-06-10T17:16:00Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-10T17:11:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6653 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `bpr_loss.BPRLossFunction` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
louisdeco/camembert-base-finetuned-LineCause
louisdeco
2022-06-10T16:35:03Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T13:11:32Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-LineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-LineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:------:| | 0.0428 | 1.0 | 4409 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0009 | 2.0 | 8818 | 0.0001 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Clody0071/distilbert-base-multilingual-cased-finetuned-similarite
Clody0071
2022-06-10T15:25:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:pawsx", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T14:33:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pawsx metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-similarite results: - task: name: Text Classification type: text-classification dataset: name: pawsx type: pawsx args: fr metrics: - name: Accuracy type: accuracy value: 0.7995 - name: F1 type: f1 value: 0.7994565743967147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-similarite This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the pawsx dataset. It achieves the following results on the evaluation set: - Loss: 0.4781 - Accuracy: 0.7995 - F1: 0.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5343 | 1.0 | 772 | 0.4879 | 0.7705 | 0.7714 | | 0.3523 | 2.0 | 1544 | 0.4781 | 0.7995 | 0.7995 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
OTQ/q-FrozenLake-v1-4x4-noSlippery
OTQ
2022-06-10T15:14:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T15:14:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
adalbertojunior/clip-rpt
adalbertojunior
2022-06-10T14:35:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:ydshieh/coco_dataset_script", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-10T12:46:52Z
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./models/clip-roberta](https://huggingface.co/./models/clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 2.7269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T14:19:32Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:47:03Z
--- tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - generated_from_trainer datasets: - wiki_lingua model-index: - name: mT5_multilingual_XLSum-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-wikilingua-ar This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.5540 - Rouge-1: 27.46 - Rouge-2: 9.0 - Rouge-l: 22.59 - Gen Len: 43.41 - Bertscore: 73.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
google/muril-base-cased
google
2022-06-10T13:33:04Z
10,230
35
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "arxiv:2103.10730", "arxiv:1810.04805", "arxiv:1911.02116", "arxiv:2003.11080", "arxiv:2009.05166", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- MuRIL: Multilingual Representations for Indian Languages === MuRIL is a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. We have released the pre-trained model (with the MLM layer intact, enabling masked word predictions) in this repository. We have also released the encoder on [TFHub](https://tfhub.dev/google/MuRIL/1) with an additional pre-processing module, that processes raw text into the expected input format for the encoder. You can find more details on MuRIL in this [paper](http://arxiv.org/abs/2103.10730). ## Overview This model uses a BERT base architecture [1] pretrained from scratch using the Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6] Indian languages. We use a training paradigm similar to multilingual bert, with a few modifications as listed: * We include translation and transliteration segment pairs in training as well. * We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to enhance low-resource performance. [7] See the Training section for more details. ## Training The MuRIL model is pre-trained on monolingual segments as well as parallel segments as detailed below : * Monolingual Data : We make use of publicly available corpora from Wikipedia and Common Crawl for 17 Indian languages. * Parallel Data : We have two types of parallel data : * Translated Data : We obtain translations of the above monolingual corpora using the Google NMT pipeline. We feed translated segment pairs as input. We also make use of the publicly available PMINDIA corpus. * Transliterated Data : We obtain transliterations of Wikipedia using the IndicTrans [8] library. We feed transliterated segment pairs as input. We also make use of the publicly available Dakshina dataset. We keep an exponent value of 0.3 to calculate duplication multiplier values for upsampling of lower resourced languages and set dupe factors accordingly. Note, we limit transliterated pairs to Wikipedia only. The model was trained using a self-supervised masked language modeling task. We do whole word masking with a maximum of 80 predictions. The model was trained for 1000K steps, with a batch size of 4096, and a max sequence length of 512. ### Trainable parameters All parameters in the module are trainable, and fine-tuning all parameters is the recommended practice. ## Uses & Limitations This model is intended to be used for a variety of downstream NLP tasks for Indian languages. This model is trained on transliterated data as well, a phenomomenon commonly observed in the Indian context. This model is not expected to perform well on languages other than the ones used in pretraining, i.e. 17 Indian languages. ## Evaluation We provide the results of fine-tuning this model on a set of downstream tasks.<br/> We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/> We also transliterate the test-sets and evaluate on the same.<br/> We use the same fine-tuning setting as is used by [9], except for TyDiQA, where we use additional SQuAD v1.1 English training data, similar to [10].<br/> For Tatoeba, we do not fine-tune the model, and use the pooled_output of the last layer as the sentence embedding.<br/> All results are computed in a zero-shot setting, with English being the high resource training set language. * Shown below are results on datasets from the XTREME benchmark (in %) <br/> PANX (F1) | ml | ta | te | en | bn | hi | mr | ur | Average :-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 54.77 | 51.24 | 50.16 | 84.40 | 68.59 | 65.13 | 58.44 | 31.36 | 58.01 MuRIL | 75.74 | 71.86 | 64.99 | 84.43 | 85.97 | 78.09 | 74.63 | 85.07 | 77.60 <br/> UDPOS (F1) | en | hi | mr | ta | te | ur | Average :--------- | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 95.35 | 66.09 | 71.27 | 59.58 | 76.98 | 57.85 | 71.19 MuRIL | 95.55 | 64.47 | 82.95 | 62.57 | 85.63 | 58.93 | 75.02 <br/> XNLI (Accuracy) | en | hi | ur | Average :-------------- | ----: | ----: | ----: | ------: mBERT | 81.72 | 60.52 | 58.20 | 66.81 MuRIL | 83.85 | 70.66 | 67.70 | 74.07 <br/> Tatoeba (Accuracy) | ml | ta | te | bn | hi | mr | ur | Average :----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 20.23 | 12.38 | 14.96 | 12.80 | 27.80 | 18.00 | 22.70 | 18.41 MuRIL | 26.35 | 36.81 | 17.52 | 20.20 | 31.50 | 26.60 | 17.10 | 25.15 <br/> XQUAD (F1/EM) | en | hi | Average :------------ | ----------: | ----------: | ----------: mBERT | 83.85/72.86 | 58.46/43.53 | 71.15/58.19 MuRIL | 84.31/72.94 | 73.93/58.32 | 79.12/65.63 <br/> MLQA (F1/EM) | en | hi | Average :----------- | ----------: | ----------: | ----------: mBERT | 80.39/67.30 | 50.28/35.18 | 65.34/51.24 MuRIL | 80.28/67.37 | 67.34/50.22 | 73.81/58.80 <br/> TyDiQA (F1/EM) | en | bn | te | Average :---------------- | ----------: | ----------: | ----------: | ----------: mBERT | 75.21/65.00 | 60.62/45.13 | 53.55/44.54 | 63.13/51.66 MuRIL | 74.10/64.55 | 78.03/66.37 | 73.95/46.94 | 75.36/59.28 * Shown below are results on the transliterated versions of the above test-sets. PANX (F1) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average :-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 7.53 | 1.04 | 8.24 | 41.77 | 25.46 | 8.34 | 7.30 | 14.24 MuRIL | 63.39 | 7.00 | 53.62 | 72.94 | 69.75 | 68.77 | 68.41 | 57.70 <br/> UDPOS (F1) | hi_tr | mr_tr | ta_tr | te_tr | ur_tr | Average :--------- | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 25.00 | 33.67 | 24.02 | 36.21 | 22.07 | 28.20 MuRIL | 63.09 | 67.19 | 58.40 | 65.30 | 56.49 | 62.09 <br/> XNLI (Accuracy) | hi_tr | ur_tr | Average :-------------- | ----: | ----: | ------: mBERT | 39.6 | 38.86 | 39.23 MuRIL | 68.24 | 61.16 | 64.70 <br/> Tatoeba (Accuracy) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average :----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 2.18 | 1.95 | 5.13 | 1.80 | 3.00 | 2.40 | 2.30 | 2.68 MuRIL | 10.33 | 11.07 | 11.54 | 8.10 | 14.90 | 7.20 | 13.70 | 10.98 <br/> ## References \[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint arXiv:1810.04805, 2018. \[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia) \[3]: [Common Crawl](http://commoncrawl.org/the-data/) \[4]: [PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html) \[5]: [Dakshina](https://github.com/google-research-datasets/dakshina) \[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi), Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya (or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu (ur). \[7]: Conneau, Alexis, et al. [Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf). arXiv preprint arXiv:1911.02116 (2019). \[8]: [IndicTrans](https://github.com/libindic/indic-trans) \[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M. (2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv preprint arXiv:2003.11080. \[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020). [FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf) arXiv preprint arXiv:2009.05166. ## Citation If you find MuRIL useful in your applications, please cite the following paper: ``` @misc{khanuja2021muril, title={MuRIL: Multilingual Representations for Indian Languages}, author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar}, year={2021}, eprint={2103.10730}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact Please mail your queries/feedback to muril-contact@google.com.
ahmeddbahaa/mt5-base-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T13:00:43Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "ar", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:40:53Z
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mt5-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-wikilingua-ar This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.4936 - Rouge-1: 20.79 - Rouge-2: 7.6 - Rouge-l: 18.81 - Gen Len: 18.73 - Bertscore: 70.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adi1494/distilbert-base-uncased-finetuned-squad
adi1494
2022-06-10T12:39:00Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T06:38:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: adi1494/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # adi1494/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5671 - Validation Loss: 1.2217 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5532, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5671 | 1.2217 | 0 | ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
becher/t5-small-finetuned-arxiv
becher
2022-06-10T12:28:48Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T11:59:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-arxiv This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1559 - Rouge1: 37.854 - Rouge2: 20.4934 - Rougel: 33.9992 - Rougelsum: 33.9943 - Gen Len: 15.847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 2.3848 | 1.0 | 3564 | 2.1559 | 37.854 | 20.4934 | 33.9992 | 33.9943 | 15.847 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stig/distilbert-base-uncased-finetuned
stig
2022-06-10T10:59:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T09:59:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0255 | 1.0 | 2312 | 1.9202 | | 1.7483 | 2.0 | 4624 | 1.8437 | | 1.5733 | 3.0 | 6936 | 1.8627 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-2ndfinetune-epru
mmillet
2022-06-10T10:52:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T10:49:55Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3531 - Accuracy: 0.9054 - F1: 0.9034 - Precision: 0.9074 - Recall: 0.9054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4716 | 1.0 | 11 | 0.2851 | 0.8986 | 0.8945 | 0.9029 | 0.8986 | | 0.2842 | 2.0 | 22 | 0.3041 | 0.8851 | 0.8796 | 0.8816 | 0.8851 | | 0.167 | 3.0 | 33 | 0.2996 | 0.8986 | 0.8914 | 0.8997 | 0.8986 | | 0.1527 | 4.0 | 44 | 0.2443 | 0.9189 | 0.9163 | 0.9222 | 0.9189 | | 0.0926 | 5.0 | 55 | 0.2777 | 0.9054 | 0.9016 | 0.9059 | 0.9054 | | 0.0897 | 6.0 | 66 | 0.3081 | 0.9122 | 0.9080 | 0.9147 | 0.9122 | | 0.0438 | 7.0 | 77 | 0.3332 | 0.8986 | 0.8952 | 0.8993 | 0.8986 | | 0.0433 | 8.0 | 88 | 0.3480 | 0.8851 | 0.8859 | 0.8896 | 0.8851 | | 0.0398 | 9.0 | 99 | 0.3531 | 0.9054 | 0.9034 | 0.9074 | 0.9054 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
shivigupta/dqn-SpaceInvadersNoFrameskip-v4
shivigupta
2022-06-10T10:11:07Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T10:10:35Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shivigupta -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga shivigupta ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
YaYaB/SpaceInvadersNoFrameskip-v4-2
YaYaB
2022-06-10T09:16:18Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T09:15:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 556.00 +/- 162.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YaYaB -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YaYaB ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/atrioc
huggingtweets
2022-06-10T09:05:36Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T08:58:33Z
--- language: en thumbnail: http://www.huggingtweets.com/atrioc/1654851931751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522249702837657603/1jNZf3aB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Atrioc</div> <div style="text-align: center; font-size: 14px;">@atrioc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Atrioc. | Data | Atrioc | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 746 | | Short tweets | 502 | | Tweets kept | 1957 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zlbp16x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atrioc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oldn78j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oldn78j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/atrioc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TurkuNLP/bert-large-finnish-cased-v1
TurkuNLP
2022-06-10T08:46:17Z
152
2
transformers
[ "transformers", "pytorch", "fi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T07:53:16Z
--- license: apache-2.0 language: fi --- This is the large variant of FinBERT (TurkuNLP/bert-base-finnish-cased-v1). The training data is exactly the same.
flood/distilbert-base-uncased-distilled-clinc
flood
2022-06-10T08:03:08Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T07:59:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9309677419354838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0389 - Accuracy: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6206 | 1.0 | 318 | 0.3251 | 0.6610 | | 0.2571 | 2.0 | 636 | 0.1366 | 0.8584 | | 0.1392 | 3.0 | 954 | 0.0813 | 0.9081 | | 0.0967 | 4.0 | 1272 | 0.0598 | 0.9152 | | 0.0779 | 5.0 | 1590 | 0.0503 | 0.9229 | | 0.0675 | 6.0 | 1908 | 0.0451 | 0.9271 | | 0.0615 | 7.0 | 2226 | 0.0425 | 0.9326 | | 0.058 | 8.0 | 2544 | 0.0403 | 0.9316 | | 0.0557 | 9.0 | 2862 | 0.0393 | 0.9306 | | 0.0544 | 10.0 | 3180 | 0.0389 | 0.9310 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
juns/imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english
juns
2022-06-10T07:37:10Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-18T07:05:06Z
imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english for boostcamp ai tech 3
Intel/MiniLM-L12-H384-uncased-mrpc
Intel
2022-06-10T07:06:45Z
220
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T06:55:25Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: MiniLM-L12-H384-uncased-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.9097345132743363 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-mrpc This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 - Accuracy: 0.875 - F1: 0.9097 - Combined Score: 0.8924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
flood/pegasus-samsum
flood
2022-06-10T07:00:06Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:24:51Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7052 | 0.54 | 500 | 1.4814 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jayeshgar/dqn-SpaceInvadersNoFrameskip-v4
jayeshgar
2022-06-10T06:54:27Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T06:53:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 653.00 +/- 114.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jayeshgar -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jayeshgar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
alibaba-pai/pai-dkplm-financial-base-zh
alibaba-pai
2022-06-10T06:49:32Z
4
1
transformers
[ "transformers", "pytorch", "bert", "pretraining", "fill-mask", "zh", "arxiv:2205.00258", "arxiv:2112.01047", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-10T06:28:43Z
--- language: zh pipeline_tag: fill-mask widget: - text: "根据新闻报道,三大[MASK]数午后集体涨超1%。" - text: "用各种途径支持中小[MASK]企业融资。" tags: - bert license: apache-2.0 --- ## Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model) for the financial domain For Chinese natural language processing in specific domains, we provide **Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model)** for the financial domain named **pai-dkplm-financial-base-zh**, from our AAAI 2021 paper named **DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) developed by the Alibaba PAI team. ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, publisher = {arXiv}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For DKPLM: ``` @article{dkplm, title = {DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding}, author = {Zhang, Taolin and Wang, Chengyu and Hu, Nan and Qiu, Minghui and Tang, Chengguang and He, Xiaofeng and Huang, Jun}, url = {https://arxiv.org/abs/2112.01047}, publisher = {arXiv}, year = {2021} } ```
huggingtweets/macarena_olona
huggingtweets
2022-06-10T06:32:02Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T06:10:00Z
--- language: en thumbnail: http://www.huggingtweets.com/macarena_olona/1654842717478/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535020786007916545/po7DO1ln_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Macarena Olona</div> <div style="text-align: center; font-size: 14px;">@macarena_olona</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Macarena Olona. | Data | Macarena Olona | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 1797 | | Short tweets | 225 | | Tweets kept | 1223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yx7hguo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macarena_olona's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/macarena_olona') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ritheshSree/animal-classifier
ritheshSree
2022-06-10T05:38:54Z
115
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-10T05:21:44Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # animal-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### snake ![snake](images/snake.jpg) #### tiger ![tiger](images/tiger.jpg)
flood/xlm-roberta-base-finetuned-panx-de
flood
2022-06-10T04:39:15Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-13T17:46:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8633935674508466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - F1: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2588 | 1.0 | 525 | 0.1676 | 0.8194 | | 0.1318 | 2.0 | 1050 | 0.1326 | 0.8513 | | 0.084 | 3.0 | 1575 | 0.1344 | 0.8634 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RuiqianLi/malaya-speech_Mrbrown_finetune1
RuiqianLi
2022-06-10T02:23:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T09:01:56Z
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: malaya-speech_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # malaya-speech_Mrbrown_finetune1 This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), get really bad fine-tuning result, that may mean the training/fine-tuning dataset must be high quality/at least several hours? Or maybe is because the learning rate is set too high(0.01) ? Still searching for the important factors. It achieves the following results on the evaluation set: - Loss: 3.8458 - Wer: 1.01 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:----:| | 0.3186 | 20.0 | 200 | 4.2225 | 1.13 | | 0.4911 | 40.0 | 400 | 4.0427 | 0.99 | | 0.9014 | 60.0 | 600 | 5.3285 | 1.04 | | 1.0955 | 80.0 | 800 | 3.6922 | 1.02 | | 0.7533 | 100.0 | 1000 | 3.8458 | 1.01 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/wickdedaccount
huggingtweets
2022-06-10T02:20:32Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T02:17:51Z
--- language: en thumbnail: http://www.huggingtweets.com/wickdedaccount/1654827628283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353151127026597889/Yarj5Kfr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pp</div> <div style="text-align: center; font-size: 14px;">@wickdedaccount</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pp. | Data | pp | | --- | --- | | Tweets downloaded | 1028 | | Retweets | 822 | | Short tweets | 119 | | Tweets kept | 87 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1of8kmw1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wickdedaccount's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wickdedaccount') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/wick_is_tired
huggingtweets
2022-06-10T01:42:38Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T01:41:57Z
--- language: en thumbnail: http://www.huggingtweets.com/wick_is_tired/1654825353897/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381121023567917058/JyYfOsKC_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">IntroWick</div> <div style="text-align: center; font-size: 14px;">@wick_is_tired</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from IntroWick. | Data | IntroWick | | --- | --- | | Tweets downloaded | 257 | | Retweets | 29 | | Short tweets | 77 | | Tweets kept | 151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/az5xmdyn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wick_is_tired's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lxj96tnp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lxj96tnp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wick_is_tired') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-10T00:52:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T23:49:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8146 - Rouge2: 0.6707 - Rougel: 2.8187 - Rougelsum: 2.8098 - Gen Len: 6.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 3869 | nan | 2.8146 | 0.6707 | 2.8187 | 2.8098 | 6.4901 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
UBC-NLP/turjuman
UBC-NLP
2022-06-10T00:24:37Z
32
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.03933", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T22:07:50Z
<p align="center"> <br> <img src="https://github.com/UBC-NLP/turjuman/raw/master//images/turjuman_logo.png"/> <br> <p> <img src="https://github.com/UBC-NLP/turjuman/raw/master/images/turjuman.png" alt="AraT5" width="50%" height="50%" align="right"/> Turjuman is a neural machine translation toolkit. It translates from 20 languages into Modern Standard Arabic (MSA). Turjuman is described in this paper: [**TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation**](https://arxiv.org/abs/2206.03933). Turjuman exploits our [AraT5 model](https://github.com/UBC-NLP/araT5). This endows Turjuman with a powerful ability to decode into Arabic. The toolkit offers the possibility of employing a number of diverse decoding methods, making it suited for acquiring paraphrases for the MSA translations as an added value. **Github**: [https://github.com/UBC-NLP/turjuman](https://github.com/UBC-NLP/turjuman) **Demo**: [https://demos.dlnlp.ai/turjuman](https://demos.dlnlp.ai/turjuman) **Paper**: [https://arxiv.org/abs/2206.03933](https://arxiv.org/abs/2206.03933) ## License turjuman(-py) is Apache-2.0 licensed. The license applies to the pre-trained models as well. ## Citation If you use TURJUMAN toolkit or the pre-trained models for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ``` @inproceedings{nagoudi-osact5-2022-turjuman, title={TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation}, author={Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad}, booktitle = "Proceedings of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT5)", month = "June", year = "2022", address = "Marseille, France", publisher = "European Language Resource Association", } ```
kjunelee/distilbert-base-uncased-finetuned-emotion
kjunelee
2022-06-10T00:24:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:03:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.931 - name: F1 type: f1 value: 0.9313235272564213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1595 - Accuracy: 0.931 - F1: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.1873 | 0.924 | 0.9234 | | 0.1992 | 2.0 | 250 | 0.1649 | 0.929 | 0.9293 | | 0.1992 | 3.0 | 375 | 0.1595 | 0.931 | 0.9313 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned
ajtamayoh
2022-06-09T23:31:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T23:02:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0537 - Precision: 0.8585 - Recall: 0.7101 - F1: 0.7773 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0693 | 1.0 | 514 | 0.0416 | 0.9485 | 0.6492 | 0.7708 | 0.9884 | | 0.0367 | 2.0 | 1028 | 0.0396 | 0.9391 | 0.6710 | 0.7827 | 0.9892 | | 0.0283 | 3.0 | 1542 | 0.0385 | 0.9388 | 0.6889 | 0.7947 | 0.9899 | | 0.0222 | 4.0 | 2056 | 0.0422 | 0.9456 | 0.6790 | 0.7904 | 0.9898 | | 0.0182 | 5.0 | 2570 | 0.0457 | 0.9349 | 0.6925 | 0.7956 | 0.9901 | | 0.013 | 6.0 | 3084 | 0.0484 | 0.8947 | 0.7062 | 0.7894 | 0.9899 | | 0.0084 | 7.0 | 3598 | 0.0537 | 0.8585 | 0.7101 | 0.7773 | 0.9893 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
fbadine/uk_ireland_accent_classification
fbadine
2022-06-09T20:07:40Z
8
1
tf-keras
[ "tf-keras", "tensorboard", "license:apache-2.0", "region:us" ]
null
2022-03-09T16:53:02Z
--- license: apache-2.0 --- ## UK & Ireland Accent Classification Model This model classifies UK & Ireland accents using feature extraction from [Yamnet](https://tfhub.dev/google/yamnet/1). ### Yamnet Model Yamnet is an audio event classifier trained on the AudioSet dataset to predict audio events from the AudioSet ontology. It is available on TensorFlow Hub. Yamnet accepts a 1-D tensor of audio samples with a sample rate of 16 kHz. As output, the model returns a 3-tuple: - Scores of shape `(N, 521)` representing the scores of the 521 classes. - Embeddings of shape `(N, 1024)`. - The log-mel spectrogram of the entire audio frame. We will use the embeddings, which are the features extracted from the audio samples, as the input to our dense model. For more detailed information about Yamnet, please refer to its [TensorFlow Hub](https://tfhub.dev/google/yamnet/1) page. ### Dense Model The dense model that we used consists of: - An input layer which is embedding output of the Yamnet classifier. - 4 dense hidden layers and 4 dropout layers. - An output dense layer. <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details> --- ## Results The model achieved the following results: Results | Training | Validation -----------|-----------|------------ Accuracy | 55% | 51% AUC | 0.9090 | 0.8911 d-prime | 1.887 | 1.743 And the confusion matrix for the validation set is: ![Validation Confusion Matrix](./confusion_matrix.png) --- ## Dataset The dataset used is the [Crowdsourced high-quality UK and Ireland English Dialect speech data set](https://openslr.org/83/) which consists of a total of 17,877 high-quality audio wav files. This dataset includes over 31 hours of recording from 120 vounteers who self-identify as native speakers of Southern England, Midlands, Northern England, Wales, Scotland and Ireland. For more info, please refer to the above link or to the following paper: [Open-source Multi-speaker Corpora of the English Accents in the British Isles](https://aclanthology.org/2020.lrec-1.804.pdf) --- ## How to use Having already installed `huggingface_hub` using: `pip install -U -q huggingface_hub` Use the following in your code: `from huggingface_hub import from_pretrained_keras` `model = from_pretrained_keras("fbadine/uk_ireland_accent_classification")` --- ## Demo A demo is available in [HuggingFace Spaces](https://huggingface.co/spaces/fbadine/uk_ireland_accent_classification)
q2-jlbar/segformer-b0-finetuned-brooks-or-dunn
q2-jlbar
2022-06-09T19:47:36Z
4
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-06-09T18:20:04Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-brooks-or-dunn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-brooks-or-dunn This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset. It achieves the following results on the evaluation set: - Loss: 0.1158 - Mean Iou: nan - Mean Accuracy: nan - Overall Accuracy: nan - Per Category Iou: [nan, nan] - Per Category Accuracy: [nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:| | 0.5153 | 4.0 | 20 | 0.5276 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.4082 | 8.0 | 40 | 0.3333 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.3157 | 12.0 | 60 | 0.2773 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2911 | 16.0 | 80 | 0.2389 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2395 | 20.0 | 100 | 0.1982 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2284 | 24.0 | 120 | 0.1745 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1818 | 28.0 | 140 | 0.1595 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1549 | 32.0 | 160 | 0.1556 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1351 | 36.0 | 180 | 0.1387 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1254 | 40.0 | 200 | 0.1263 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1412 | 44.0 | 220 | 0.1190 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1179 | 48.0 | 240 | 0.1158 | nan | nan | nan | [nan, nan] | [nan, nan] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/midudev
huggingtweets
2022-06-09T18:48:30Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T18:33:17Z
--- language: en thumbnail: http://www.huggingtweets.com/midudev/1654800505422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526668354609680384/r85fytOs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🔴 EN DIRECTO twitch.tv/midudev</div> <div style="text-align: center; font-size: 14px;">@midudev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🔴 EN DIRECTO twitch.tv/midudev. | Data | 🔴 EN DIRECTO twitch.tv/midudev | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 824 | | Short tweets | 163 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11iwoc6b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midudev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midudev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bookpanda/wangchanberta-base-att-spm-uncased-finetuned-imdb
bookpanda
2022-06-09T18:17:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-28T08:22:04Z
--- tags: - generated_from_trainer model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-imdb This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1831 | 1.0 | 4826 | 0.1542 | | 0.1 | 2.0 | 9652 | 0.1075 | | 0.0946 | 3.0 | 14478 | 0.0443 | | 0.0618 | 4.0 | 19304 | 0.0830 | | 0.0783 | 5.0 | 24130 | 0.0810 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
kabelomalapane/En-Ts
kabelomalapane
2022-06-09T17:33:20Z
69
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-09T16:33:13Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Ts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Ts This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ts](https://huggingface.co/Helsinki-NLP/opus-mt-en-ts) on the None dataset. It achieves the following results on the evaluation set: Before training: - Loss: 3.17 - Bleu: 14.513 After Training - Loss: 1.3320 - Bleu: 36.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.7082 | 1.0 | 5929 | 1.6902 | 32.1311 | | 1.4606 | 2.0 | 11858 | 1.4996 | 34.1129 | | 1.3182 | 3.0 | 17787 | 1.4107 | 35.7428 | | 1.2543 | 4.0 | 23716 | 1.3631 | 36.2009 | | 1.2116 | 5.0 | 29645 | 1.3389 | 36.5876 | | 1.1723 | 6.0 | 35574 | 1.3320 | 36.7481 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ksabeh/bert-base-uncased-attribute-correction-mlm
ksabeh
2022-06-09T17:23:14Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-09T09:08:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/bert-base-uncased-mlm-electronics-attribute-correction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/bert-base-uncased-mlm-electronics-attribute-correction This model is a fine-tuned version of [ksabeh/bert-base-uncased-mlm-electronics](https://huggingface.co/ksabeh/bert-base-uncased-mlm-electronics) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0524 - Validation Loss: 0.0520 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36848, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1459 | 0.0678 | 0 | | 0.0524 | 0.0520 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-commonvoice
tclong
2022-06-09T17:17:08Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-08T18:03:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3823 - Wer: 0.2401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2268 | 0.66 | 500 | 0.8746 | 0.5939 | | 0.8728 | 1.32 | 1000 | 0.6435 | 0.4554 | | 0.6899 | 1.99 | 1500 | 0.5655 | 0.3995 | | 0.5842 | 2.65 | 2000 | 0.5267 | 0.3694 | | 0.5371 | 3.31 | 2500 | 0.4980 | 0.3431 | | 0.4921 | 3.97 | 3000 | 0.4781 | 0.3276 | | 0.4508 | 4.64 | 3500 | 0.4434 | 0.3134 | | 0.433 | 5.3 | 4000 | 0.4348 | 0.2963 | | 0.404 | 5.96 | 4500 | 0.4248 | 0.2874 | | 0.3834 | 6.62 | 5000 | 0.4163 | 0.2775 | | 0.3784 | 7.28 | 5500 | 0.4104 | 0.2751 | | 0.3669 | 7.95 | 6000 | 0.4143 | 0.2724 | | 0.3462 | 8.61 | 6500 | 0.4131 | 0.2699 | | 0.3364 | 9.27 | 7000 | 0.4070 | 0.2617 | | 0.3249 | 9.93 | 7500 | 0.4076 | 0.2603 | | 0.3154 | 10.6 | 8000 | 0.3998 | 0.2577 | | 0.3117 | 11.26 | 8500 | 0.3930 | 0.2505 | | 0.3101 | 11.92 | 9000 | 0.4003 | 0.2492 | | 0.298 | 12.58 | 9500 | 0.3960 | 0.2496 | | 0.2968 | 13.24 | 10000 | 0.3877 | 0.2469 | | 0.29 | 13.91 | 10500 | 0.3870 | 0.2456 | | 0.2921 | 14.57 | 11000 | 0.3823 | 0.2401 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FritzOS/TEdetection_distiBERT_NER_V4
FritzOS
2022-06-09T16:36:54Z
5
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T16:36:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_V4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_V4 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2_shuffleplus3](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2_shuffleplus3) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/medscape
huggingtweets
2022-06-09T16:30:23Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T16:29:41Z
--- language: en thumbnail: http://www.huggingtweets.com/medscape/1654792218439/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401919208133378050/l2MKtnC7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Medscape</div> <div style="text-align: center; font-size: 14px;">@medscape</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Medscape. | Data | Medscape | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 2 | | Tweets kept | 3232 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mn0jpyr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medscape's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3n6qbw51) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3n6qbw51/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/medscape') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
XGBooster/dqn-SpaceInvadersNoFrameskip-v4
XGBooster
2022-06-09T16:03:42Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T16:03:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 744.00 +/- 231.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga XGBooster -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga XGBooster ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
buio/vq-vae
buio
2022-06-09T15:06:33Z
0
0
keras
[ "keras", "tf-keras", "computer-vision", "generative", "variational-autoencoder", "vq-vae", "region:us" ]
null
2022-06-09T15:04:32Z
--- library_name: keras tags: - computer-vision - generative - variational-autoencoder - vq-vae --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
EmileEsmaili/gpt2-p4k
EmileEsmaili
2022-06-09T14:55:23Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-05T17:16:58Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-p4k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-p4k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
chanifrusydi/distillbert-finetuned-ner
chanifrusydi
2022-06-09T14:34:38Z
18
1
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-06T02:43:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: chanifrusydi/distillbert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # chanifrusydi/distillbert-finetuned-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0168 - Validation Loss: 0.0691 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4385, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2046 | 0.0929 | 0 | | 0.0638 | 0.0732 | 1 | | 0.0376 | 0.0668 | 2 | | 0.0241 | 0.0707 | 3 | | 0.0168 | 0.0691 | 4 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
Khaled002/Yy
Khaled002
2022-06-09T14:22:32Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-06-09T14:22:32Z
--- license: bsd-3-clause-clear ---
ricardo-filho/bert_base_tcm_0.6
ricardo-filho
2022-06-09T14:15:12Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-03T18:39:06Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_0.6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_tcm_0.6 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0193 - Criterio Julgamento Precision: 0.8875 - Criterio Julgamento Recall: 0.8659 - Criterio Julgamento F1: 0.8765 - Criterio Julgamento Number: 82 - Data Sessao Precision: 0.7571 - Data Sessao Recall: 0.9636 - Data Sessao F1: 0.848 - Data Sessao Number: 55 - Modalidade Licitacao Precision: 0.9394 - Modalidade Licitacao Recall: 0.9718 - Modalidade Licitacao F1: 0.9553 - Modalidade Licitacao Number: 319 - Numero Exercicio Precision: 0.9172 - Numero Exercicio Recall: 0.9688 - Numero Exercicio F1: 0.9422 - Numero Exercicio Number: 160 - Objeto Licitacao Precision: 0.4659 - Objeto Licitacao Recall: 0.7069 - Objeto Licitacao F1: 0.5616 - Objeto Licitacao Number: 58 - Valor Objeto Precision: 0.8333 - Valor Objeto Recall: 0.9211 - Valor Objeto F1: 0.875 - Valor Objeto Number: 38 - Overall Precision: 0.8537 - Overall Recall: 0.9340 - Overall F1: 0.8920 - Overall Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Objeto Licitacao Precision | Objeto Licitacao Recall | Objeto Licitacao F1 | Objeto Licitacao Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0252 | 1.0 | 1963 | 0.0202 | 0.8022 | 0.8902 | 0.8439 | 82 | 0.7391 | 0.9273 | 0.8226 | 55 | 0.9233 | 0.9812 | 0.9514 | 319 | 0.8966 | 0.975 | 0.9341 | 160 | 0.4730 | 0.6034 | 0.5303 | 58 | 0.7083 | 0.8947 | 0.7907 | 38 | 0.8327 | 0.9298 | 0.8786 | 0.9948 | | 0.0191 | 2.0 | 3926 | 0.0226 | 0.8554 | 0.8659 | 0.8606 | 82 | 0.5641 | 0.4 | 0.4681 | 55 | 0.9572 | 0.9812 | 0.9690 | 319 | 0.9273 | 0.9563 | 0.9415 | 160 | 0.3770 | 0.3966 | 0.3866 | 58 | 0.8571 | 0.7895 | 0.8219 | 38 | 0.8620 | 0.8596 | 0.8608 | 0.9951 | | 0.0137 | 3.0 | 5889 | 0.0193 | 0.8875 | 0.8659 | 0.8765 | 82 | 0.7571 | 0.9636 | 0.848 | 55 | 0.9394 | 0.9718 | 0.9553 | 319 | 0.9172 | 0.9688 | 0.9422 | 160 | 0.4659 | 0.7069 | 0.5616 | 58 | 0.8333 | 0.9211 | 0.875 | 38 | 0.8537 | 0.9340 | 0.8920 | 0.9951 | | 0.0082 | 4.0 | 7852 | 0.0210 | 0.8780 | 0.8780 | 0.8780 | 82 | 0.7966 | 0.8545 | 0.8246 | 55 | 0.9512 | 0.9781 | 0.9645 | 319 | 0.9023 | 0.9812 | 0.9401 | 160 | 0.5385 | 0.6034 | 0.5691 | 58 | 0.9 | 0.9474 | 0.9231 | 38 | 0.8810 | 0.9256 | 0.9027 | 0.9963 | | 0.0048 | 5.0 | 9815 | 0.0222 | 0.8261 | 0.9268 | 0.8736 | 82 | 0.7969 | 0.9273 | 0.8571 | 55 | 0.9512 | 0.9781 | 0.9645 | 319 | 0.9231 | 0.975 | 0.9483 | 160 | 0.6515 | 0.7414 | 0.6935 | 58 | 0.875 | 0.9211 | 0.8974 | 38 | 0.8867 | 0.9452 | 0.9150 | 0.9964 | | 0.0044 | 6.0 | 11778 | 0.0262 | 0.8276 | 0.8780 | 0.8521 | 82 | 0.7681 | 0.9636 | 0.8548 | 55 | 0.9541 | 0.9781 | 0.9659 | 319 | 0.9235 | 0.9812 | 0.9515 | 160 | 0.5263 | 0.6897 | 0.5970 | 58 | 0.9211 | 0.9211 | 0.9211 | 38 | 0.8722 | 0.9396 | 0.9047 | 0.9959 | | 0.0042 | 7.0 | 13741 | 0.0246 | 0.8523 | 0.9146 | 0.8824 | 82 | 0.7656 | 0.8909 | 0.8235 | 55 | 0.9509 | 0.9718 | 0.9612 | 319 | 0.9118 | 0.9688 | 0.9394 | 160 | 0.5938 | 0.6552 | 0.6230 | 58 | 0.8974 | 0.9211 | 0.9091 | 38 | 0.8815 | 0.9298 | 0.9050 | 0.9960 | | 0.0013 | 8.0 | 15704 | 0.0294 | 0.8295 | 0.8902 | 0.8588 | 82 | 0.7391 | 0.9273 | 0.8226 | 55 | 0.9543 | 0.9812 | 0.9675 | 319 | 0.9070 | 0.975 | 0.9398 | 160 | 0.6094 | 0.6724 | 0.6393 | 58 | 0.875 | 0.9211 | 0.8974 | 38 | 0.8765 | 0.9368 | 0.9056 | 0.9961 | | 0.0019 | 9.0 | 17667 | 0.0303 | 0.8690 | 0.8902 | 0.8795 | 82 | 0.8305 | 0.8909 | 0.8596 | 55 | 0.9538 | 0.9718 | 0.9627 | 319 | 0.9290 | 0.9812 | 0.9544 | 160 | 0.6441 | 0.6552 | 0.6496 | 58 | 0.9211 | 0.9211 | 0.9211 | 38 | 0.9019 | 0.9298 | 0.9156 | 0.9961 | | 0.0007 | 10.0 | 19630 | 0.0295 | 0.8488 | 0.8902 | 0.8690 | 82 | 0.7903 | 0.8909 | 0.8376 | 55 | 0.9571 | 0.9781 | 0.9674 | 319 | 0.9181 | 0.9812 | 0.9486 | 160 | 0.6393 | 0.6724 | 0.6555 | 58 | 0.9211 | 0.9211 | 0.9211 | 38 | 0.8938 | 0.9340 | 0.9135 | 0.9962 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sschellhammer/SciTweets_SciBert
sschellhammer
2022-06-09T14:03:30Z
97
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-04T06:16:44Z
--- license: cc-by-4.0 widget: - text: "Study: Shifts in electricity generation spur net job growth, but coal jobs decline - via @DukeU https://www.eurekalert.org/news-releases/637217" example_title: "All categories" - text: "Shifts in electricity generation spur net job growth, but coal jobs decline" example_title: "Only Cat 1.1" - text: "Study on impacts of electricity generation shift via @DukeU https://www.eurekalert.org/news-releases/637217" example_title: "Only Cat 1.2 and 1.3" - text: "@DukeU received grant for research on electricity generation shift" example_title: "Only Cat 1.3" --- This SciBert-based multi-label classifier, trained as part of the work "SciTweets - A Dataset and Annotation Framework for Detecting Scientific Online Discourse", distinguishes three different forms of science-relatedness for Tweets. See details at https://github.com/AI-4-Sci/SciTweets .
YeRyeongLee/electra-base-discriminator-finetuned-filtered-0609
YeRyeongLee
2022-06-09T14:00:07Z
105
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T07:24:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-discriminator-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-filtered-0609 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1933 - Accuracy: 0.9745 - Precision: 0.9747 - Recall: 0.9745 - F1: 0.9746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.238 | 1.0 | 3180 | 0.1861 | 0.9682 | 0.9686 | 0.9682 | 0.9682 | | 0.1827 | 2.0 | 6360 | 0.2262 | 0.9645 | 0.9648 | 0.9645 | 0.9644 | | 0.1326 | 3.0 | 9540 | 0.1904 | 0.9711 | 0.9716 | 0.9711 | 0.9712 | | 0.1575 | 4.0 | 12720 | 0.2065 | 0.9676 | 0.9680 | 0.9676 | 0.9676 | | 0.1224 | 5.0 | 15900 | 0.2666 | 0.9557 | 0.9571 | 0.9557 | 0.9558 | | 0.1083 | 6.0 | 19080 | 0.1697 | 0.9752 | 0.9754 | 0.9752 | 0.9752 | | 0.0792 | 7.0 | 22260 | 0.1684 | 0.9742 | 0.9744 | 0.9742 | 0.9742 | | 0.0751 | 8.0 | 25440 | 0.1784 | 0.9723 | 0.9726 | 0.9723 | 0.9723 | | 0.0572 | 9.0 | 28620 | 0.1868 | 0.9736 | 0.9737 | 0.9736 | 0.9736 | | 0.0593 | 10.0 | 31800 | 0.1933 | 0.9745 | 0.9747 | 0.9745 | 0.9746 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
Nehc/FakeMobile
Nehc
2022-06-09T13:44:35Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-07T18:05:08Z
--- language: - ru widget: - text: "[CLS] Какая абонентская плата на тарифе Позвони маме? [SEP]" metrics: - loss: 0.704381 - accuracy: 1.000000 --- Start from 'DeepPavlov/rubert-base-cased' and finetuning on DUMBOT fake data (http://dumbot.ru/Home/MobileOperatorRate). 100 epoch on progress...
i8pxgd2s/q-Taxi-v3
i8pxgd2s
2022-06-09T13:26:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T13:26:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
victorlee071200/bert-base-cased-finetuned-squad_v2
victorlee071200
2022-06-09T13:16:06Z
8
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-08T17:41:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-cased-finetuned-squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad_v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.03 | 1.0 | 8255 | 1.1334 | | 0.7511 | 2.0 | 16510 | 1.1299 | | 0.5376 | 3.0 | 24765 | 1.3226 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/bbclaurakt
huggingtweets
2022-06-09T12:48:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T12:47:22Z
--- language: en thumbnail: http://www.huggingtweets.com/bbclaurakt/1654778894531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533553176619716608/4klYwjkC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laura Kuenssberg Translator</div> <div style="text-align: center; font-size: 14px;">@bbclaurakt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laura Kuenssberg Translator. | Data | Laura Kuenssberg Translator | | --- | --- | | Tweets downloaded | 2063 | | Retweets | 23 | | Short tweets | 135 | | Tweets kept | 1905 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37mk0av7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbclaurakt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a8gt7bb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a8gt7bb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbclaurakt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bubblecookie/t5-small-finetuned-cnndm-samsum
bubblecookie
2022-06-09T12:40:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-08T10:21:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6422 - Rouge1: 24.5996 - Rouge2: 11.817 - Rougel: 20.3346 - Rougelsum: 23.2155 - Gen Len: 18.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.8078 | 1.0 | 71779 | 1.6422 | 24.5996 | 11.817 | 20.3346 | 23.2155 | 18.9999 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
assamim/mt5-pukulenam-summarization
assamim
2022-06-09T12:19:33Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "Summarization", "mT5", "dataset:csebuetnlp/xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-08T15:08:51Z
--- tags: - generated_from_keras_callback - Summarization - mT5 datasets: - csebuetnlp/xlsum model-index: - name: assamim/mt5-pukulenam-summarization results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # assamim/mt5-pukulenam-summarization This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an [csebuetnlp/xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset ## Using this model in `transformers` (tested on 4.19.2) ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import re news = """ Anggota Unit Perlindungan Rakyat Kurdi di kota Rabia, pada perbatasan Irak-Suriah. Pasukan Kurdi Irak dilaporkan sudah menguasai kembali kota Rabia meskipun banyak korban jatuh. Pejabat senior Kurdi Irak mengatakan pasukan Kurdi Peshmerga mencatat kemajuan lewat serangan dini hari di Rabia. Sementara itu, milisi ISIS berusaha memukul mundur pasukan Kurdi Suriah di bagian lain perbatasan. Hal ini terjadi saat koalisi pimpinan Amerika terus melanjutkan serangan udara terhadap sasaran ISIS di Suriah dan Irak. Hari Selasa (30 September) dilaporkan juga terjadi serangkaian serangan bom di ibu kota Irak, Baghdad dan kota suci Syiah, Karbala. Dalam perkembangan terpisah, sejumlah tank Turki berada di bukit di sepanjang perbatasan dekat kota Kobane, Suriah setelah sejumlah bom mengenai wilayah Turki saat terjadi bentrokan dengan milisi ISIS dan pejuang Kurdi. Pemerintah Turki diperkirakan akan menyampaikan mosi ke parlemen, agar menyetujui aksi militer terhadap ISIS di Irak dan Suriah. """ tokenizer = AutoTokenizer.from_pretrained("assamim/mt5-pukulenam-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("assamim/mt5-pukulenam-summarization", from_tf=True) WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids = tokenizer.encode(WHITESPACE_HANDLER(news1), return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=200, num_beams=7, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-09T11:54:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T05:36:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.8441 - Rouge2: 0.0894 - Rougel: 0.8428 - Rougelsum: 0.844 - Gen Len: 6.338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 89332 | nan | 0.8441 | 0.0894 | 0.8428 | 0.844 | 6.338 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FritzOS/TEdetection_distiBERT_mLM_V2_shuffleplus3
FritzOS
2022-06-09T11:28:40Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-09T11:28:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_mLM_V2_shuffleplus3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_V2_shuffleplus3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
YaYaB/dqn-SpaceInvadersNoFrameskip-v4
YaYaB
2022-06-09T11:24:49Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T11:24:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YaYaB -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YaYaB ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mbazaNLP/kinyarwanda-tts-model
mbazaNLP
2022-06-09T11:16:13Z
0
2
fastpitch
[ "fastpitch", "waveglow", "text-to-speech", "rw", "dataset:mbazaNLP/kinyarwanda-tts-dataset", "region:us" ]
text-to-speech
2022-06-01T03:42:31Z
--- library_name: fastpitch task: text-to-speech tags: - fastpitch - waveglow - text-to-speech language: rw datasets: - mbazaNLP/kinyarwanda-tts-dataset widget: - text: "Muraho neza, murakaza neza mu Rwanda." example_title: "Muraho neza, murakaza neza mu Rwanda." --- **Model card - Kinyarwanda TTS model** **Model details** - Kinyarwanda Text to Speech model - Developed by [Digital Umuganda](digitalumuganda.com), [Arxia](https://www.arxia.com/home.html) and [Zevo Tech](https://zevo-tech.com/) - Model based from: Fastspeech and Waveglow - License: Mozilla 2.0 License - Feedback on the model: samuel@digitalumuganda.com **Metrics** - We use Mean Opinion Score (MOS) to evaluate the model with a maximum score being 5 |Test Corpus|MOS| |-----------|---| |Custom phrases|3| **Challenges** - The model does not always capture the Kinyarwanda tones **Recommendations** - Use a tonal dictionary to train future models - Add a numbers and symbols Dictionary - Create a code-switching dictionary containing foreign words used in Kinyarwanda
huggingtweets/politifact
huggingtweets
2022-06-09T11:14:17Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T11:13:06Z
--- language: en thumbnail: http://www.huggingtweets.com/politifact/1654773253130/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1286766140115517441/8rq6ZxZm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PolitiFact</div> <div style="text-align: center; font-size: 14px;">@politifact</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PolitiFact. | Data | PolitiFact | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 680 | | Short tweets | 14 | | Tweets kept | 2556 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vfo2t7i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @politifact's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7h3iptm6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7h3iptm6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/politifact') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
FritzOS/TEdetection_distilBERT_mLM_V4
FritzOS
2022-06-09T11:12:10Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-09T11:11:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0181 - Validation Loss: 0.0215 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0181 | 0.0215 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/aylesim
huggingtweets
2022-06-09T11:10:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T11:10:17Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513156868612448256/2nXWRcn5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mira</div> <div style="text-align: center; font-size: 14px;">@aylesim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mira. | Data | mira | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 255 | | Short tweets | 765 | | Tweets kept | 2195 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3buhour0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aylesim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c2a7aq5o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c2a7aq5o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aylesim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mbazaNLP/kinyarwanda-coqui-stt-model
mbazaNLP
2022-06-09T11:09:26Z
0
0
null
[ "tflite", "Coqui", "Deepspeech", "LSTM", "automatic-speech-recognition", "rw", "dataset:commonvoice", "arxiv:1412.5567", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-05-27T08:23:47Z
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - Coqui - Deepspeech - LSTM license: "apache-2.0" datasets: - commonvoice metrics: - wer --- **Model card - Kinyarwanda coqui STT model** **Model details** - Kinyarwanda Speech to text model - Developed by [Digital Umuganda](digitalumuganda.com) - Model based from: Baidu Deepspeech end to end RNN model - paper: [deepspeech end to end STT](https://arxiv.org/pdf/1412.5567.pdf) - Documentation on model: [deepspeech documentation](https://deepspeech.readthedocs.io/) - License: Mozilla 2.0 License - Feedback on the model: samuel@digitalumuganda.com **Intended use cases** - Intended to be used for - simple keyword spotting - simple transcribing - transfer learning for better kinyarwanda and african language models - Intended to be used by: - App developpers - various organizations who want to transcribe kinyarwanda recordings - ML researchers - other researchers in Kinyarwanda and tech usage in kinyarwanda (e.g. Linguists, journalists) - Not intended to be used as: - a fully fledged voice assistant - voice recognition application - Multiple languages STT - language detection **Factors** - Anti-bias: these are bias that can influence the accuracy of the model - Gender - accents and dialects - age - Voice quality: factors that can influence the accuracy of the model - Background noise - short sentences - Voice format: voices must be converted to the wav format - wav format **Metrics** - word error rate on the Common Voice Kinyarwanda test set |Test Corpus|WER| |-----------|---| |Common Voice|39.1\%| **Training data** - [common voice crowdsource website](https://commonvoice.mozilla.org/en/datasets) **Evaluation data** - [common voice crowdsource website](https://commonvoice.mozilla.org/en/datasets)
i8pxgd2s/q-FrozenLake-v1-4x4-Slippery
i8pxgd2s
2022-06-09T10:29:25Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T10:29:18Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.75 +/- 0.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/osanseviero
huggingtweets
2022-06-09T10:20:54Z
105
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T10:15:42Z
--- language: en thumbnail: http://www.huggingtweets.com/osanseviero/1654769951427/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1106315906165157889/0Hxb1ESL_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Omar Sanseviero</div> <div style="text-align: center; font-size: 14px;">@osanseviero</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Omar Sanseviero. | Data | Omar Sanseviero | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 1158 | | Short tweets | 224 | | Tweets kept | 1862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29bkab0t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @osanseviero's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s35jikq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s35jikq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/osanseviero') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
louisdeco/camembert-base-finetuned-ICDCode_5
louisdeco
2022-06-09T10:18:38Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-08T08:47:52Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-ICDCode_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-ICDCode_5 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It has been trained on a corpus of death certificate. One ICDCode is given for a given cause of death or commorbidities. As it is an important task to be able to predict these ICDCode, I shave trained this model for 8 epochs on 400 000 death causes. Pre-processing of noisy data points was mandatory before tokenization. It allows us to get this accuracy. It achieves the following results on the evaluation set: - Loss: 0.6574 - Accuracy: 0.8964 - F1: 0.8750 - Recall: 0.8964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 3.7466 | 1.0 | 4411 | 1.9448 | 0.7201 | 0.6541 | 0.7201 | | 1.5264 | 2.0 | 8822 | 1.2045 | 0.8134 | 0.7691 | 0.8134 | | 1.0481 | 3.0 | 13233 | 0.9473 | 0.8513 | 0.8149 | 0.8513 | | 0.8304 | 4.0 | 17644 | 0.8098 | 0.8718 | 0.8427 | 0.8718 | | 0.7067 | 5.0 | 22055 | 0.7352 | 0.8834 | 0.8574 | 0.8834 | | 0.6285 | 6.0 | 26466 | 0.6911 | 0.8898 | 0.8659 | 0.8898 | | 0.5779 | 7.0 | 30877 | 0.6641 | 0.8958 | 0.8741 | 0.8958 | | 0.549 | 8.0 | 35288 | 0.6574 | 0.8964 | 0.8750 | 0.8964 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Kiwipirate/q-FrozenLake-v1-4x4-noSlippery
Kiwipirate
2022-06-09T10:04:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T10:04:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Kiwipirate/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
yogeshkulkarni/MidcurveNN
yogeshkulkarni
2022-06-09T09:47:16Z
0
0
null
[ "arxiv:1904.0429", "region:us" ]
null
2022-06-06T10:55:33Z
# MidcurveNN Midcurve by Neural Networks ![Midcurve](https://github.com/yogeshhk/MidcurveNN/blob/master/TalksPublications/images/IMG-20191008-WA0001.jpg) --- license: apache-2.0 --- ## Description - Goal: Given a 2D closed shape (closed polygon) find its midcurve (polyline, closed or open) - Input: set of points or set of connected lines, non-intersecting, simple, convex, closed polygon - Output: another set of points or set of connected lines, open/branched polygons possible ## ToDos - Based on code at https://github.com/yogeshhk/MidcurveNN/tree/master/src/simpleencoderdecoder prepare Trainer class to train model using dataset uploaded here. Push model here - Prepare Gradio demo space here as well as inferencing API which takes profile image and generates midcurve image ## Publications/Talks - Vixra paper MidcurveNN: Encoder-Decoder Neural Network for Computing Midcurve of a Thin Polygon, viXra.org e-Print archive, viXra:1904.0429 http://vixra.org/abs/1904.0429 - ODSC proposal https://confengine.com/odsc-india-2019/proposal/10090/midcurvenn-encoder-decoder-neural-network-for-computing-midcurve-of-a-thin-polygon - CAD Conference 2021, Barcelona, pages 223-225 http://www.cad-conference.net/files/CAD21/CAD21_223-225.pdf - CAD & Applications 2022 Journal paper 19(6) http://www.cad-journal.net/files/vol_19/CAD_19(6)_2022_1154-1161.pdf - Google Developers Dev Library https://devlibrary.withgoogle.com/products/ml/repos/yogeshhk-MidcurveNN ## Citation ``` @article{MidcurveNN, doi = {https://doi.org/10.14733/cadaps.2022.1154-1161}, url = {https://www.cad-journal.net/files/vol_19/CAD_19(6)_2022_1154-1161.pdf}, author = {Kulkarni, Yogesh H.}, keywords = {Midcurve, Encoder-Decoder, Neural Network}, title = {MidcurveNN: Neural Network for Computing Midcurve of a Thin Polygon}, publisher = {CAD Solutions, LLC}, journal={Computer-Aided Design & Applications}, volume={19}, issue={6}, pages={1154-1161}, year = {2022} } ```
Skil-Internal/bart-paraphrase-finetuned-xsum-v5
Skil-Internal
2022-06-09T09:42:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T09:13:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-finetuned-xsum-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum-v5 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 263 | 0.4728 | 38.7072 | 38.5333 | 38.6391 | 38.6212 | 7.0513 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RalphX1/TEST2ppo-LunarLander-v2
RalphX1
2022-06-09T09:01:27Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T09:01:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.09 +/- 19.04 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Skil-Internal/bart-paraphrase-finetuned-xsum-v4
Skil-Internal
2022-06-09T08:52:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T07:40:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-finetuned-xsum-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum-v4 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1765 - Rouge1: 49.972 - Rouge2: 49.85 - Rougel: 49.9165 - Rougelsum: 49.7819 - Gen Len: 8.3061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 263 | 0.5050 | 47.9628 | 47.7085 | 47.8625 | 47.772 | 6.9639 | | 0.676 | 2.0 | 526 | 0.5793 | 49.6085 | 49.3495 | 49.5196 | 49.4173 | 7.4715 | | 0.676 | 3.0 | 789 | 0.7011 | 49.8635 | 49.6937 | 49.8155 | 49.6604 | 7.576 | | 0.322 | 4.0 | 1052 | 0.7585 | 49.8851 | 49.7578 | 49.8526 | 49.6977 | 7.6654 | | 0.322 | 5.0 | 1315 | 0.6615 | 49.861 | 49.7185 | 49.7978 | 49.6669 | 8.3023 | | 0.2828 | 6.0 | 1578 | 0.6233 | 49.916 | 49.7819 | 49.8861 | 49.7384 | 7.6084 | | 0.2828 | 7.0 | 1841 | 0.9380 | 49.916 | 49.7819 | 49.8861 | 49.7384 | 8.2433 | | 0.2073 | 8.0 | 2104 | 0.8497 | 49.9624 | 49.8355 | 49.91 | 49.7666 | 7.6331 | | 0.2073 | 9.0 | 2367 | 0.7715 | 49.972 | 49.85 | 49.9165 | 49.7819 | 7.9772 | | 0.1744 | 10.0 | 2630 | 1.1765 | 49.972 | 49.85 | 49.9165 | 49.7819 | 8.3061 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
edonath/pegasus-samsum
edonath
2022-06-09T07:56:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-15T21:05:00Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7073 | 0.54 | 500 | 1.4841 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
hugoguh/dqn-SpaceInvadersNoFrameskip-v4
hugoguh
2022-06-09T07:55:06Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T07:48:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 927.00 +/- 301.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hugoguh -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga hugoguh ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t8_54.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-09T06:59:53Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T05:34:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t8_54.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t8_54.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 1.4678 - Rouge2: 0.1841 - Rougel: 1.4748 - Rougelsum: 1.4701 - Gen Len: 6.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 10645 | nan | 1.4678 | 0.1841 | 1.4748 | 1.4701 | 6.4874 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/bert-base-uncased-finetuned-filtered-0609
YeRyeongLee
2022-06-09T06:54:36Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T04:49:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-filtered-0609 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - Accuracy: 0.9789 - Precision: 0.9790 - Recall: 0.9789 - F1: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1671 | 1.0 | 3180 | 0.1735 | 0.9632 | 0.9648 | 0.9632 | 0.9635 | | 0.1384 | 2.0 | 6360 | 0.1120 | 0.9736 | 0.9738 | 0.9736 | 0.9736 | | 0.1064 | 3.0 | 9540 | 0.1880 | 0.9635 | 0.9647 | 0.9635 | 0.9635 | | 0.0823 | 4.0 | 12720 | 0.1495 | 0.9758 | 0.9759 | 0.9758 | 0.9757 | | 0.0426 | 5.0 | 15900 | 0.1766 | 0.9742 | 0.9746 | 0.9742 | 0.9743 | | 0.0254 | 6.0 | 19080 | 0.1724 | 0.9777 | 0.9778 | 0.9777 | 0.9777 | | 0.0257 | 7.0 | 22260 | 0.1760 | 0.9764 | 0.9767 | 0.9764 | 0.9764 | | 0.0017 | 8.0 | 25440 | 0.1672 | 0.9786 | 0.9787 | 0.9786 | 0.9786 | | 0.0077 | 9.0 | 28620 | 0.1894 | 0.9789 | 0.9791 | 0.9789 | 0.9789 | | 0.0014 | 10.0 | 31800 | 0.1749 | 0.9789 | 0.9790 | 0.9789 | 0.9789 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/itsnovaherev2
huggingtweets
2022-06-09T03:53:35Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T03:53:27Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253734967923798018/FJ7AvxLN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ItsNovaHere</div> <div style="text-align: center; font-size: 14px;">@itsnovaherev2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ItsNovaHere. | Data | ItsNovaHere | | --- | --- | | Tweets downloaded | 588 | | Retweets | 409 | | Short tweets | 67 | | Tweets kept | 112 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tz4bf7d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsnovaherev2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35es3xf7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35es3xf7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsnovaherev2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/verizon
huggingtweets
2022-06-09T00:33:36Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T23:20:44Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1496892874276880389/ndAolYWm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Verizon</div> <div style="text-align: center; font-size: 14px;">@verizon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Verizon. | Data | Verizon | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 408 | | Short tweets | 188 | | Tweets kept | 2650 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rssnlth/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @verizon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17qcsqw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17qcsqw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/verizon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/beepunz
huggingtweets
2022-06-08T23:51:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T23:50:21Z
--- language: en thumbnail: http://www.huggingtweets.com/beepunz/1654732293963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/942050096837005317/u5sbn8VY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BeePunz</div> <div style="text-align: center; font-size: 14px;">@beepunz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BeePunz. | Data | BeePunz | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1775 | | Short tweets | 336 | | Tweets kept | 1107 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/84kgxhyn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beepunz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2analnwj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2analnwj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beepunz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)