modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 00:39:23
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 00:39:08
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
adalbertojunior/db-msm
|
adalbertojunior
| 2022-04-19T18:56:46Z | 12 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T18:28:01Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 147625 with parameters:
```
{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
SVANZ/gen_testo
|
SVANZ
| 2022-04-19T17:40:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-04-19T17:38:49Z |
!pip install transformers--
license: afl-3.0
model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)---
|
espnet/GunnarThor_talromur_c_tacotron2
|
espnet
| 2022-04-19T16:11:28Z | 1 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T16:10:16Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_c_tacotron2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_c_tacotron2
```
## TTS config
<details><summary>expand</summary>
```
config: ./conf/tuning/train_tacotron2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/c/tts_train_tacotron2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 500
batch_size: 20
valid_batch_size: null
batch_bins: 2560000
valid_batch_bins: null
train_shape_file:
- exp/c/tts_stats_raw_phn_none/train/text_shape.phn
- exp/c/tts_stats_raw_phn_none/train/speech_shape
valid_shape_file:
- exp/c/tts_stats_raw_phn_none/valid/text_shape.phn
- exp/c/tts_stats_raw_phn_none/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_c_phn/text
- text
- text
- - dump/raw/train_c_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_c_phn/text
- text
- text
- - dump/raw/dev_c_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-06
weight_decay: 0.0
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- m
- Y0
- v
- h
- E1
- k
- a:1
- E:1
- G
- f
- j
- T
- a1
- p
- c
- au:1
- i:1
- O:1
- I:1
- E0
- I1
- r_0
- t_h
- k_h
- Y1
- ei1
- i0
- ou:1
- ei:1
- u:1
- O1
- N
- l_0
- '91'
- ai0
- au1
- ou0
- n_0
- ei0
- ai:1
- O0
- ou1
- ai1
- i1
- '9:1'
- '90'
- au0
- x
- c_h
- 9i:1
- C
- p_h
- u0
- Y:1
- J
- 9i1
- u1
- 9i0
- N_0
- m_0
- J_0
- Yi0
- Oi1
- Yi1
- Oi0
- au:0
- '9:0'
- E:0
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/c/tts_stats_raw_phn_none/train/feats_stats.npz
tts: tacotron2
tts_conf:
embed_dim: 512
elayers: 1
eunits: 512
econv_layers: 3
econv_chans: 512
econv_filts: 5
atype: location
adim: 512
aconv_chans: 32
aconv_filts: 15
cumulate_att_w: true
dlayers: 2
dunits: 1024
prenet_layers: 2
prenet_units: 256
postnet_layers: 5
postnet_chans: 512
postnet_filts: 5
output_activation: null
use_batch_norm: true
use_concate: true
use_residual: false
dropout_rate: 0.5
zoneout_rate: 0.1
reduction_factor: 1
spk_embed_dim: null
use_masking: true
bce_pos_weight: 5.0
use_guided_attn_loss: true
guided_attn_loss_sigma: 0.4
guided_attn_loss_lambda: 1.0
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
espnet/GunnarThor_talromur_b_tacotron2
|
espnet
| 2022-04-19T16:09:39Z | 1 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T15:49:18Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_b_tacotron2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_b_tacotron2
```
## TTS config
<details><summary>expand</summary>
```
config: ./conf/tuning/train_tacotron2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/b/tts_train_tacotron2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 55403
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 500
batch_size: 20
valid_batch_size: null
batch_bins: 2560000
valid_batch_bins: null
train_shape_file:
- exp/b/tts_stats_raw_phn_none/train/text_shape.phn
- exp/b/tts_stats_raw_phn_none/train/speech_shape
valid_shape_file:
- exp/b/tts_stats_raw_phn_none/valid/text_shape.phn
- exp/b/tts_stats_raw_phn_none/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_b_phn/text
- text
- text
- - dump/raw/train_b_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_b_phn/text
- text
- text
- - dump/raw/dev_b_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-06
weight_decay: 0.0
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- Y0
- m
- v
- h
- E1
- k
- a:1
- j
- E:1
- f
- T
- G
- a1
- p
- c
- i:1
- au:1
- O:1
- E0
- I:1
- r_0
- t_h
- I1
- k_h
- Y1
- i0
- ei1
- u:1
- ou:1
- ei:1
- O1
- N
- l_0
- '91'
- n_0
- ou0
- ai0
- au1
- ou1
- O0
- '9:1'
- ai:1
- ei0
- ai1
- i1
- au0
- c_h
- p_h
- '90'
- C
- x
- u0
- 9i:1
- Y:1
- u1
- 9i1
- J
- N_0
- m_0
- 9i0
- J_0
- Oi1
- Yi0
- Yi1
- Oi0
- au:0
- '9:0'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/b/tts_stats_raw_phn_none/train/feats_stats.npz
tts: tacotron2
tts_conf:
embed_dim: 512
elayers: 1
eunits: 512
econv_layers: 3
econv_chans: 512
econv_filts: 5
atype: location
adim: 512
aconv_chans: 32
aconv_filts: 15
cumulate_att_w: true
dlayers: 2
dunits: 1024
prenet_layers: 2
prenet_units: 256
postnet_layers: 5
postnet_chans: 512
postnet_filts: 5
output_activation: null
use_batch_norm: true
use_concate: true
use_residual: false
dropout_rate: 0.5
zoneout_rate: 0.1
reduction_factor: 1
spk_embed_dim: null
use_masking: true
bce_pos_weight: 5.0
use_guided_attn_loss: true
guided_attn_loss_sigma: 0.4
guided_attn_loss_lambda: 1.0
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
espnet/GunnarThor_talromur_b_fastspeech2
|
espnet
| 2022-04-19T15:49:48Z | 22 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T15:49:08Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_b_fastspeech2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_b_fastspeech2
```
## TTS config
<details><summary>expand</summary>
```
config: conf/tuning/train_fastspeech2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/b/tts_train_fastspeech2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 8
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 800
batch_size: 20
valid_batch_size: null
batch_bins: 2500000
valid_batch_bins: null
train_shape_file:
- exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/text_shape.phn
- exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/speech_shape
valid_shape_file:
- exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/text_shape.phn
- exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_b_phn/text
- text
- text
- - exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/train_b_phn/durations
- durations
- text_int
- - dump/raw/train_b_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_b_phn/text
- text
- text
- - exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/dev_b_phn/durations
- durations
- text_int
- - dump/raw/dev_b_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 1.0
scheduler: noamlr
scheduler_conf:
model_size: 384
warmup_steps: 4000
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- Y0
- m
- v
- h
- E1
- k
- a:1
- E:1
- j
- f
- T
- G
- a1
- p
- c
- au:1
- i:1
- O:1
- E0
- I:1
- r_0
- I1
- t_h
- k_h
- Y1
- i0
- ei1
- u:1
- ou:1
- ei:1
- O1
- N
- l_0
- '91'
- ou0
- ai0
- n_0
- au1
- O0
- ou1
- ai:1
- ei0
- '9:1'
- ai1
- i1
- c_h
- '90'
- au0
- x
- C
- p_h
- u0
- 9i:1
- Y:1
- 9i1
- J
- u1
- 9i0
- N_0
- m_0
- J_0
- Oi1
- Yi0
- Yi1
- Oi0
- '9:0'
- au:0
- E:0
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/feats_stats.npz
tts: fastspeech2
tts_conf:
adim: 384
aheads: 2
elayers: 4
eunits: 1536
dlayers: 4
dunits: 1536
positionwise_layer_type: conv1d
positionwise_conv_kernel_size: 3
duration_predictor_layers: 2
duration_predictor_chans: 256
duration_predictor_kernel_size: 3
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
use_masking: true
use_scaled_pos_enc: true
encoder_normalize_before: true
decoder_normalize_before: true
reduction_factor: 1
init_type: xavier_uniform
init_enc_alpha: 1.0
init_dec_alpha: 1.0
transformer_enc_dropout_rate: 0.2
transformer_enc_positional_dropout_rate: 0.2
transformer_enc_attn_dropout_rate: 0.2
transformer_dec_dropout_rate: 0.2
transformer_dec_positional_dropout_rate: 0.2
transformer_dec_attn_dropout_rate: 0.2
pitch_predictor_layers: 5
pitch_predictor_chans: 256
pitch_predictor_kernel_size: 5
pitch_predictor_dropout: 0.5
pitch_embed_kernel_size: 1
pitch_embed_dropout: 0.0
stop_gradient_from_pitch_predictor: true
energy_predictor_layers: 2
energy_predictor_chans: 256
energy_predictor_kernel_size: 3
energy_predictor_dropout: 0.5
energy_embed_kernel_size: 1
energy_embed_dropout: 0.0
stop_gradient_from_energy_predictor: false
pitch_extract: dio
pitch_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
f0max: 400
f0min: 80
reduction_factor: 1
pitch_normalize: global_mvn
pitch_normalize_conf:
stats_file: exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/pitch_stats.npz
energy_extract: energy
energy_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
reduction_factor: 1
energy_normalize: global_mvn
energy_normalize_conf:
stats_file: exp/b/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/energy_stats.npz
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
GPL/fever-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:47:15Z | 128 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:22:46Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/climate-fever-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:46:28Z | 128 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:20:21Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
rmihaylov/roberta2roberta-shared-nmt-bg
|
rmihaylov
| 2022-04-19T15:37:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"torch",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:1907.12461",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-04-19T15:11:13Z |
---
inference: false
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# ROBERTA-TO-ROBERTA EncoderDecoder with Shared Weights
This model was introduced in [this paper](https://arxiv.org/pdf/1907.12461.pdf).
## Model description
The training data is private English-Bulgarian parallel data.
## Intended uses & limitations
You can use the raw model for translation from English to Bulgarian.
### How to use
Here is how to use this model in PyTorch:
```python
>>> from transformers import EncoderDecoderModel, XLMRobertaTokenizer
>>>
>>> model_id = "rmihaylov/roberta2roberta-shared-nmt-bg"
>>> model = EncoderDecoderModel.from_pretrained(model_id)
>>> model.encoder.pooler = None
>>> tokenizer = XLMRobertaTokenizer.from_pretrained(model_id)
>>>
>>> text = """
Others were photographed ransacking the building, smiling while posing with congressional items such as House Speaker Nancy Pelosi's lectern or at her staffer's desk, or publicly bragged about the crowd's violent and destructive joyride.
"""
>>>
>>> inputs = tokenizer.encode_plus(text, max_length=100, return_tensors='pt', truncation=True)
>>>
>>> translation = model.generate(**inputs,
>>> max_length=100,
>>> num_beams=4,
>>> do_sample=True,
>>> num_return_sequences=1,
>>> top_p=0.95,
>>> decoder_start_token_id=tokenizer.bos_token_id)
>>>
>>> print([tokenizer.decode(g.tolist(), skip_special_tokens=True) for g in translation])
['Други бяха заснети да бягат из сградата, усмихвайки се, докато се представят с конгресни предмети, като например лекцията на председателя на парламента Нанси Пелози или на бюрото на нейния служител, или публично се хвалят за насилието и разрушителната радост на тълпата.']
```
|
GPL/fiqa-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:28:28Z | 177 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/scidocs-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:27:32Z | 129 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:27:29Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/trec-news-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:26:45Z | 121 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:26:42Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/quora-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:25:55Z | 132 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:25:52Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/dbpedia-entity-tsdae-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:22:14Z | 126 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:22:12Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/robust04-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:19:47Z | 166 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/cqadupstack-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:19:20Z | 172 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/trec-covid-v2-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:18:49Z | 147 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/webis-touche2020-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:16:14Z | 129 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:16:11Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/signal1m-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:15:37Z | 120 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:15:34Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/quora-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:15:18Z | 131 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:15:16Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/nq-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:15:00Z | 117 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:14:57Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
GPL/climate-fever-msmarco-distilbert-gpl
|
GPL
| 2022-04-19T15:13:11Z | 113 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T15:04:32Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
mrm8488/vit-base-patch16-224-pretrained-cifar10
|
mrm8488
| 2022-04-19T15:10:58Z | 14 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"masked-image-modeling",
"generated_from_trainer",
"dataset:cifar10",
"endpoints_compatible",
"region:us"
] | null | 2022-04-12T15:09:26Z |
---
tags:
- masked-image-modeling
- generated_from_trainer
datasets:
- cifar10
model-index:
- name: vit-cifar10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ViT pre-trained from scratch on CIFAR10
This model is a ViT (with the same arch as Google's [vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) pre-trained from scratch on the cifar10 dataset for masked image modeling.
It achieves the following results on the evaluation set:
- Loss: 0.0891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.289 | 1.0 | 2657 | 0.2941 |
| 0.2858 | 2.0 | 5314 | 0.2809 |
| 0.2693 | 3.0 | 7971 | 0.2738 |
| 0.2578 | 4.0 | 10628 | 0.2546 |
| 0.2211 | 5.0 | 13285 | 0.2153 |
| 0.1799 | 6.0 | 15942 | 0.1795 |
| 0.158 | 7.0 | 18599 | 0.1623 |
| 0.1481 | 8.0 | 21256 | 0.1453 |
| 0.1391 | 9.0 | 23913 | 0.1368 |
| 0.1348 | 10.0 | 26570 | 0.1354 |
| 0.129 | 11.0 | 29227 | 0.1249 |
| 0.126 | 12.0 | 31884 | 0.1229 |
| 0.1216 | 13.0 | 34541 | 0.1184 |
| 0.1175 | 14.0 | 37198 | 0.1185 |
| 0.1137 | 15.0 | 39855 | 0.1146 |
| 0.1125 | 16.0 | 42512 | 0.1117 |
| 0.1112 | 17.0 | 45169 | 0.1100 |
| 0.1108 | 18.0 | 47826 | 0.1089 |
| 0.1061 | 19.0 | 50483 | 0.1070 |
| 0.1073 | 20.0 | 53140 | 0.1076 |
| 0.1066 | 21.0 | 55797 | 0.1061 |
| 0.1065 | 22.0 | 58454 | 0.1056 |
| 0.1045 | 23.0 | 61111 | 0.1037 |
| 0.1052 | 24.0 | 63768 | 0.1055 |
| 0.102 | 25.0 | 66425 | 0.1028 |
| 0.1025 | 26.0 | 69082 | 0.1034 |
| 0.1037 | 27.0 | 71739 | 0.1025 |
| 0.1022 | 28.0 | 74396 | 0.1014 |
| 0.1026 | 29.0 | 77053 | 0.1011 |
| 0.1022 | 30.0 | 79710 | 0.1001 |
| 0.0997 | 31.0 | 82367 | 0.1007 |
| 0.0998 | 32.0 | 85024 | 0.1016 |
| 0.1019 | 33.0 | 87681 | 0.1008 |
| 0.0999 | 34.0 | 90338 | 0.1000 |
| 0.0998 | 35.0 | 92995 | 0.0993 |
| 0.0994 | 36.0 | 95652 | 0.0992 |
| 0.0966 | 37.0 | 98309 | 0.0991 |
| 0.0997 | 38.0 | 100966 | 0.0970 |
| 0.0991 | 39.0 | 103623 | 0.0979 |
| 0.099 | 40.0 | 106280 | 0.0983 |
| 0.0974 | 41.0 | 108937 | 0.0980 |
| 0.0974 | 42.0 | 111594 | 0.0971 |
| 0.0972 | 43.0 | 114251 | 0.0970 |
| 0.0991 | 44.0 | 116908 | 0.0970 |
| 0.0979 | 45.0 | 119565 | 0.0972 |
| 0.097 | 46.0 | 122222 | 0.0970 |
| 0.0936 | 47.0 | 124879 | 0.0967 |
| 0.0948 | 48.0 | 127536 | 0.0967 |
| 0.0974 | 49.0 | 130193 | 0.0954 |
| 0.0958 | 50.0 | 132850 | 0.0954 |
| 0.0948 | 51.0 | 135507 | 0.0955 |
| 0.095 | 52.0 | 138164 | 0.0953 |
| 0.0939 | 53.0 | 140821 | 0.0945 |
| 0.0961 | 54.0 | 143478 | 0.0948 |
| 0.0964 | 55.0 | 146135 | 0.0955 |
| 0.0934 | 56.0 | 148792 | 0.0948 |
| 0.0965 | 57.0 | 151449 | 0.0943 |
| 0.0966 | 58.0 | 154106 | 0.0941 |
| 0.0926 | 59.0 | 156763 | 0.0938 |
| 0.0928 | 60.0 | 159420 | 0.0942 |
| 0.093 | 61.0 | 162077 | 0.0936 |
| 0.0939 | 62.0 | 164734 | 0.0939 |
| 0.0936 | 63.0 | 167391 | 0.0936 |
| 0.093 | 64.0 | 170048 | 0.0929 |
| 0.0929 | 65.0 | 172705 | 0.0930 |
| 0.0917 | 66.0 | 175362 | 0.0925 |
| 0.0948 | 67.0 | 178019 | 0.0932 |
| 0.0931 | 68.0 | 180676 | 0.0927 |
| 0.0911 | 69.0 | 183333 | 0.0922 |
| 0.0923 | 70.0 | 185990 | 0.0924 |
| 0.0923 | 71.0 | 188647 | 0.0923 |
| 0.0929 | 72.0 | 191304 | 0.0919 |
| 0.0916 | 73.0 | 193961 | 0.0923 |
| 0.0927 | 74.0 | 196618 | 0.0921 |
| 0.0907 | 75.0 | 199275 | 0.0922 |
| 0.0927 | 76.0 | 201932 | 0.0919 |
| 0.0925 | 77.0 | 204589 | 0.0913 |
| 0.0921 | 78.0 | 207246 | 0.0917 |
| 0.0895 | 79.0 | 209903 | 0.0912 |
| 0.0916 | 80.0 | 212560 | 0.0914 |
| 0.09 | 81.0 | 215217 | 0.0909 |
| 0.0916 | 82.0 | 217874 | 0.0908 |
| 0.0902 | 83.0 | 220531 | 0.0907 |
| 0.0911 | 84.0 | 223188 | 0.0910 |
| 0.091 | 85.0 | 225845 | 0.0903 |
| 0.0903 | 86.0 | 228502 | 0.0905 |
| 0.0907 | 87.0 | 231159 | 0.0901 |
| 0.0908 | 88.0 | 233816 | 0.0907 |
| 0.0911 | 89.0 | 236473 | 0.0902 |
| 0.0905 | 90.0 | 239130 | 0.0906 |
| 0.089 | 91.0 | 241787 | 0.0901 |
| 0.0908 | 92.0 | 244444 | 0.0896 |
| 0.0894 | 93.0 | 247101 | 0.0892 |
| 0.0899 | 94.0 | 249758 | 0.0893 |
| 0.0899 | 95.0 | 252415 | 0.0897 |
| 0.0904 | 96.0 | 255072 | 0.0898 |
| 0.0906 | 97.0 | 257729 | 0.0894 |
| 0.0892 | 98.0 | 260386 | 0.0894 |
| 0.0881 | 99.0 | 263043 | 0.0892 |
| 0.09 | 100.0 | 265700 | 0.0894 |
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
rmihaylov/pegasus-base-qag-bg
|
rmihaylov
| 2022-04-19T14:54:31Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"torch",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:1912.08777",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-04-19T12:29:47Z |
---
inference: false
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# PEGASUS BASE
This model was pretrained on Bulgarian language. It was intorduced in [this paper](https://arxiv.org/pdf/1912.08777.pdf).
## Model description
The training data is private Bulgarian squad data.
## Intended uses & limitations
You can use the raw model for generation of question-answer pairs related with given Bulgarian text.
### How to use
Here is how to use this model in PyTorch:
```python
>>> from transformers import PegasusForConditionalGeneration, AlbertTokenizer
>>>
>>> model_id = "rmihaylov/pegasus-base-qag-bg"
>>> model = PegasusForConditionalGeneration.from_pretrained(model_id)
>>> tokenizer = AlbertTokenizer.from_pretrained(model_id)
>>>
>>> text = """Това, че някой може да заяви на най-силен глас исканията си, не означава те да бъдат удовлетворени, заяви Костадин Ангелов.
Той допълни, че приоритетите на властите са здравето, образование и спорта, давайки знак, че се търси разхлабване на мерките в болничните заведения, връщането на учениците в класните стаи и отварянето на обектите за масов спорт.
"""
>>>
>>> inputs = tokenizer.encode_plus(
>>> text,
>>> return_tensors='pt',
>>> truncation=True,
>>> max_length=512,
>>> return_token_type_ids=False,
>>> return_attention_mask=True)
>>>
>>> outputs = model.generate(**inputs,
>>> max_length=150,
>>> top_p=0.95,
>>> top_k=20,
>>> do_sample=True,
>>> num_return_sequences=10,
>>> num_beams=1,
>>> eos_token_id=50259,
>>> decoder_start_token_id=50257,
>>> return_dict_in_generate=True,
>>> output_scores=True)
>>>
>>> for g in outputs.sequences:
>>> text_gen = tokenizer.decode(g, skip_special_tokens=False)
>>>
>>> if ('[SEP]' not in text_gen) or ('[MASK]' not in text_gen) or ('[CLS]' not in text_gen):
>>> continue
>>>
>>> question, answer = text_gen.replace('[CLS]', '').strip().split('[SEP]')
>>> answer = answer.split('[MASK]')[0].strip()
>>>
>>> if (not answer) or (answer not in text) or (len(answer) <= 1):
>>> continue
>>>
>>> print(f'{question.strip()}\n{answer.strip()}', '\n\n')
Какво трябва да се предприеме, за да се случи?
разхлабване
Какви са приоритетите на управляващите?
здравето, образование и спорта,
Какви усилия има правителството за стимулиране на раждаемостта?
разхлабване на мерките
Какъв е основният проблем, който може да реши?
образование
```
|
intellisr/MBTI-twitter
|
intellisr
| 2022-04-19T14:18:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"en",
"dataset:intellisr/autotrain-data-twitterMbti",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T13:43:25Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- intellisr/autotrain-data-twitterMbti
co2_eq_emissions: 0.3313142450338848
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 758223271
- CO2 Emissions (in grams): 0.3313142450338848
## Validation Metrics
- Loss: 1.2496932744979858
- Accuracy: 0.6438828259620908
- Macro F1: 0.5757131072506373
- Micro F1: 0.6438828259620908
- Weighted F1: 0.6401462906378685
- Macro Precision: 0.6279826743318115
- Micro Precision: 0.6438828259620908
- Weighted Precision: 0.6479595607607238
- Macro Recall: 0.5436771609966322
- Micro Recall: 0.6438828259620908
- Weighted Recall: 0.6438828259620908
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/intellisr/autotrain-twitterMbti-758223271
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("intellisr/autotrain-twitterMbti-758223271", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("intellisr/autotrain-twitterMbti-758223271", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
PBusienei/Nashville_Analytics_Summit_conference_helper
|
PBusienei
| 2022-04-19T13:58:57Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-04-19T13:18:03Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# Conference Helper
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources.
## Usage (Sentence-Transformers)
The usage of this model is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Thus the model can be used as:
```python
from sentence_transformers import SentenceTransformer, util
query = "Health Analytics?"
docs = ["The output is 3 top most similar sessions from the summit"]
#Load the model
model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can take the following steps:
1. Pass input through the transformer model,
2. Apply the correct pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take average of all tokens
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state #The first element of model_output containing all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
#Encode text
def encode(texts):
# Tokenize sentences
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
# Perform pooling
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Sentences we want sentence embeddings for
query = "Health Analytics?"
docs = ["The output is 3 top most similar sessions from the summit"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)
#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Technical Details
In the following some technical details how this model must be used:
| Setting | Value |
| --- | :---: |
| Dimensions | 384 |
| Produces normalized embeddings | Yes |
| Pooling-Method | Mean pooling |
| Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance |
Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used.
----
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
## Intended uses
The model is intended to be used for semantic search at Nashville Analytics Summit: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages.
Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text.
## Training procedure
The full training script is accessible in: `train_script.py`.
### Pre-training
The pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model.
#### Training
We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20.
|
csikasote/xlsr-53-bemba-15hrs
|
csikasote
| 2022-04-19T13:30:25Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-19T08:38:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: xlsr-53-bemba-15hrs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlsr-53-bemba-15hrs
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2789
- Wer: 0.3751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4138 | 0.71 | 400 | 0.4965 | 0.7239 |
| 0.5685 | 1.43 | 800 | 0.2939 | 0.4839 |
| 0.4471 | 2.15 | 1200 | 0.2728 | 0.4467 |
| 0.3579 | 2.86 | 1600 | 0.2397 | 0.3965 |
| 0.3087 | 3.58 | 2000 | 0.2427 | 0.4015 |
| 0.2702 | 4.29 | 2400 | 0.2539 | 0.4112 |
| 0.2406 | 5.01 | 2800 | 0.2376 | 0.3885 |
| 0.2015 | 5.72 | 3200 | 0.2492 | 0.3844 |
| 0.1759 | 6.44 | 3600 | 0.2562 | 0.3768 |
| 0.1572 | 7.16 | 4000 | 0.2789 | 0.3751 |
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
ScyKindness/Hatsune_Miku
|
ScyKindness
| 2022-04-19T13:27:18Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"conversational",
"arxiv:1911.00536",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-04-17T08:02:17Z |
---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
* Multi-turn generation examples from an interactive environment:
|Role | Response |
|---------|--------|
|User | Does money buy happiness? |
| Bot | Depends how much money you spend on it .|
|User | What is the best way to buy happiness ? |
| Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
|User |This is so difficult ! |
| Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
### How to use
Now we are ready to try out how the model works as a chatting partner!
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
# Let's chat for 5 lines
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last ouput tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
espnet/GunnarThor_talromur_f_fastspeech2
|
espnet
| 2022-04-19T11:53:28Z | 2 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T11:53:08Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_f_fastspeech2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_f_fastspeech2
```
## TTS config
<details><summary>expand</summary>
```
config: conf/tuning/train_fastspeech2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/f/tts_train_fastspeech2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 8
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 800
batch_size: 20
valid_batch_size: null
batch_bins: 2500000
valid_batch_bins: null
train_shape_file:
- exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/text_shape.phn
- exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/speech_shape
valid_shape_file:
- exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/text_shape.phn
- exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_f_phn/text
- text
- text
- - exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/train_f_phn/durations
- durations
- text_int
- - dump/raw/train_f_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_f_phn/text
- text
- text
- - exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/dev_f_phn/durations
- durations
- text_int
- - dump/raw/dev_f_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 1.0
scheduler: noamlr
scheduler_conf:
model_size: 384
warmup_steps: 4000
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- m
- Y0
- v
- h
- E1
- k
- a:1
- E:1
- G
- f
- j
- T
- a1
- p
- c
- au:1
- i:1
- O:1
- I:1
- E0
- I1
- r_0
- t_h
- k_h
- Y1
- ei1
- i0
- ou:1
- ei:1
- u:1
- O1
- N
- l_0
- '91'
- ai0
- au1
- ou0
- n_0
- ei0
- ai:1
- O0
- ou1
- ai1
- i1
- '9:1'
- '90'
- au0
- x
- c_h
- 9i:1
- C
- p_h
- u0
- Y:1
- J
- 9i1
- u1
- 9i0
- N_0
- m_0
- J_0
- Yi0
- Oi1
- Yi1
- Oi0
- au:0
- '9:0'
- E:0
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/feats_stats.npz
tts: fastspeech2
tts_conf:
adim: 384
aheads: 2
elayers: 4
eunits: 1536
dlayers: 4
dunits: 1536
positionwise_layer_type: conv1d
positionwise_conv_kernel_size: 3
duration_predictor_layers: 2
duration_predictor_chans: 256
duration_predictor_kernel_size: 3
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
use_masking: true
use_scaled_pos_enc: true
encoder_normalize_before: true
decoder_normalize_before: true
reduction_factor: 1
init_type: xavier_uniform
init_enc_alpha: 1.0
init_dec_alpha: 1.0
transformer_enc_dropout_rate: 0.2
transformer_enc_positional_dropout_rate: 0.2
transformer_enc_attn_dropout_rate: 0.2
transformer_dec_dropout_rate: 0.2
transformer_dec_positional_dropout_rate: 0.2
transformer_dec_attn_dropout_rate: 0.2
pitch_predictor_layers: 5
pitch_predictor_chans: 256
pitch_predictor_kernel_size: 5
pitch_predictor_dropout: 0.5
pitch_embed_kernel_size: 1
pitch_embed_dropout: 0.0
stop_gradient_from_pitch_predictor: true
energy_predictor_layers: 2
energy_predictor_chans: 256
energy_predictor_kernel_size: 3
energy_predictor_dropout: 0.5
energy_embed_kernel_size: 1
energy_embed_dropout: 0.0
stop_gradient_from_energy_predictor: false
pitch_extract: dio
pitch_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
f0max: 400
f0min: 80
reduction_factor: 1
pitch_normalize: global_mvn
pitch_normalize_conf:
stats_file: exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/pitch_stats.npz
energy_extract: energy
energy_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
reduction_factor: 1
energy_normalize: global_mvn
energy_normalize_conf:
stats_file: exp/f/tts_train_tacotron2_raw_phn_none/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/energy_stats.npz
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
espnet/GunnarThor_talromur_f_tacotron2
|
espnet
| 2022-04-19T11:52:31Z | 0 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T11:52:08Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_f_tacotron2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_f_tacotron2
```
## TTS config
<details><summary>expand</summary>
```
config: ./conf/tuning/train_tacotron2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/f/tts_train_tacotron2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 60131
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 500
batch_size: 20
valid_batch_size: null
batch_bins: 2560000
valid_batch_bins: null
train_shape_file:
- exp/f/tts_stats_raw_phn_none/train/text_shape.phn
- exp/f/tts_stats_raw_phn_none/train/speech_shape
valid_shape_file:
- exp/f/tts_stats_raw_phn_none/valid/text_shape.phn
- exp/f/tts_stats_raw_phn_none/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_f_phn/text
- text
- text
- - dump/raw/train_f_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_f_phn/text
- text
- text
- - dump/raw/dev_f_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-06
weight_decay: 0.0
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- m
- Y0
- v
- h
- E1
- k
- a:1
- E:1
- G
- f
- j
- T
- a1
- p
- c
- au:1
- i:1
- O:1
- I:1
- E0
- I1
- r_0
- t_h
- k_h
- Y1
- ei1
- i0
- ou:1
- ei:1
- u:1
- O1
- N
- l_0
- '91'
- ai0
- au1
- ou0
- n_0
- ei0
- ai:1
- O0
- ou1
- ai1
- i1
- '9:1'
- '90'
- au0
- x
- c_h
- 9i:1
- C
- p_h
- u0
- Y:1
- J
- 9i1
- u1
- 9i0
- N_0
- m_0
- J_0
- Yi0
- Oi1
- Yi1
- Oi0
- au:0
- '9:0'
- E:0
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/f/tts_stats_raw_phn_none/train/feats_stats.npz
tts: tacotron2
tts_conf:
embed_dim: 512
elayers: 1
eunits: 512
econv_layers: 3
econv_chans: 512
econv_filts: 5
atype: location
adim: 512
aconv_chans: 32
aconv_filts: 15
cumulate_att_w: true
dlayers: 2
dunits: 1024
prenet_layers: 2
prenet_units: 256
postnet_layers: 5
postnet_chans: 512
postnet_filts: 5
output_activation: null
use_batch_norm: true
use_concate: true
use_residual: false
dropout_rate: 0.5
zoneout_rate: 0.1
reduction_factor: 1
spk_embed_dim: null
use_masking: true
bce_pos_weight: 5.0
use_guided_attn_loss: true
guided_attn_loss_sigma: 0.4
guided_attn_loss_lambda: 1.0
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
espnet/GunnarThor_talromur_e_tacotron2
|
espnet
| 2022-04-19T11:51:21Z | 0 | 0 |
espnet
|
[
"espnet",
"audio",
"text-to-speech",
"en",
"dataset:talromur",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
text-to-speech
| 2022-04-19T11:51:04Z |
---
tags:
- espnet
- audio
- text-to-speech
language: en
datasets:
- talromur
license: cc-by-4.0
---
## ESPnet2 TTS model
### `espnet/GunnarThor_talromur_e_tacotron2`
This model was trained by Gunnar Thor using talromur recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout 49a284e69308d81c142b89795de255b4ce290c54
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/GunnarThor_talromur_e_tacotron2
```
## TTS config
<details><summary>expand</summary>
```
config: ./conf/tuning/train_tacotron2.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/e/tts_train_tacotron2_raw_phn_none
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 44171
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 500
batch_size: 20
valid_batch_size: null
batch_bins: 2560000
valid_batch_bins: null
train_shape_file:
- exp/e/tts_stats_raw_phn_none/train/text_shape.phn
- exp/e/tts_stats_raw_phn_none/train/speech_shape
valid_shape_file:
- exp/e/tts_stats_raw_phn_none/valid/text_shape.phn
- exp/e/tts_stats_raw_phn_none/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_e_phn/text
- text
- text
- - dump/raw/train_e_phn/wav.scp
- speech
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dev_e_phn/text
- text
- text
- - dump/raw/dev_e_phn/wav.scp
- speech
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-06
weight_decay: 0.0
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ','
- .
- r
- t
- n
- a0
- s
- I0
- D
- l
- Y0
- m
- v
- h
- E1
- k
- a:1
- E:1
- j
- f
- T
- G
- a1
- p
- c
- au:1
- i:1
- O:1
- E0
- I:1
- r_0
- I1
- t_h
- k_h
- Y1
- i0
- ei1
- u:1
- ou:1
- ei:1
- O1
- N
- l_0
- '91'
- ou0
- ai0
- n_0
- au1
- O0
- ou1
- ai:1
- ei0
- '9:1'
- ai1
- i1
- c_h
- '90'
- au0
- x
- C
- p_h
- u0
- 9i:1
- Y:1
- 9i1
- J
- u1
- 9i0
- N_0
- m_0
- J_0
- Oi1
- Yi0
- Yi1
- Oi0
- '9:0'
- au:0
- E:0
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/e/tts_stats_raw_phn_none/train/feats_stats.npz
tts: tacotron2
tts_conf:
embed_dim: 512
elayers: 1
eunits: 512
econv_layers: 3
econv_chans: 512
econv_filts: 5
atype: location
adim: 512
aconv_chans: 32
aconv_filts: 15
cumulate_att_w: true
dlayers: 2
dunits: 1024
prenet_layers: 2
prenet_units: 256
postnet_layers: 5
postnet_chans: 512
postnet_filts: 5
output_activation: null
use_batch_norm: true
use_concate: true
use_residual: false
dropout_rate: 0.5
zoneout_rate: 0.1
reduction_factor: 1
spk_embed_dim: null
use_masking: true
bce_pos_weight: 5.0
use_guided_attn_loss: true
guided_attn_loss_sigma: 0.4
guided_attn_loss_lambda: 1.0
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
stevenlx96/distilbert-base-uncased-finetuned-hated
|
stevenlx96
| 2022-04-19T11:30:24Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T09:18:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-hated
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-hated
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5042
- Accuracy: 0.8135
- F1: 0.8127
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7267 | 1.0 | 215 | 0.5443 | 0.7832 | 0.7833 |
| 0.4548 | 2.0 | 430 | 0.5042 | 0.8135 | 0.8127 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
SeNSiTivE/Learning-sentiment-analysis-through-imdb-ds
|
SeNSiTivE
| 2022-04-19T11:21:52Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T11:10:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: Learning-sentiment-analysis-through-imdb-ds
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.8766666666666667
- name: F1
type: f1
value: 0.8817891373801918
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Learning-sentiment-analysis-through-imdb-ds
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3419
- Accuracy: 0.8767
- F1: 0.8818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
TalTechNLP/voxlingua107-xls-r-300m-wav2vec
|
TalTechNLP
| 2022-04-19T11:08:36Z | 0 | 4 |
speechbrain
|
[
"speechbrain",
"wav2vec2",
"language-identification",
"pytorch",
"embeddings",
"Language",
"Identification",
"audio-classification",
"wav2vec2.0",
"XLS-R-300M",
"VoxLingua107",
"multilingual",
"dataset:voxlingua107",
"license:cc-by-4.0",
"region:us"
] |
audio-classification
| 2022-04-14T11:16:25Z |
---
language: multilingual
license: cc-by-4.0
tags:
- language-identification
- speechbrain
- wav2vec2
- pytorch
- embeddings
- Language
- Identification
- audio-classification
- wav2vec2.0
- XLS-R-300M
- VoxLingua107
datasets:
- voxlingua107
metrics:
- Accuracy
---
# VoxLingua107 Wav2Vec Spoken Language Identification Model
## Model description
This is a spoken language identification model trained on the VoxLingua107 dataset using SpeechBrain.
The model is trained using weights of pretrained [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model, Wav2Vec2.0 architecture and negative log likelihood loss.
The model can classify a speech utterance according to the language spoken.
It covers 107 different languages (
Abkhazian,
Afrikaans,
Amharic,
Arabic,
Assamese,
Azerbaijani,
Bashkir,
Belarusian,
Bulgarian,
Bengali,
Tibetan,
Breton,
Bosnian,
Catalan,
Cebuano,
Czech,
Welsh,
Danish,
German,
Greek,
English,
Esperanto,
Spanish,
Estonian,
Basque,
Persian,
Finnish,
Faroese,
French,
Galician,
Guarani,
Gujarati,
Manx,
Hausa,
Hawaiian,
Hindi,
Croatian,
Haitian,
Hungarian,
Armenian,
Interlingua,
Indonesian,
Icelandic,
Italian,
Hebrew,
Japanese,
Javanese,
Georgian,
Kazakh,
Central Khmer,
Kannada,
Korean,
Latin,
Luxembourgish,
Lingala,
Lao,
Lithuanian,
Latvian,
Malagasy,
Maori,
Macedonian,
Malayalam,
Mongolian,
Marathi,
Malay,
Maltese,
Burmese,
Nepali,
Dutch,
Norwegian Nynorsk,
Norwegian,
Occitan,
Panjabi,
Polish,
Pushto,
Portuguese,
Romanian,
Russian,
Sanskrit,
Scots,
Sindhi,
Sinhala,
Slovak,
Slovenian,
Shona,
Somali,
Albanian,
Serbian,
Sundanese,
Swedish,
Swahili,
Tamil,
Telugu,
Tajik,
Thai,
Turkmen,
Tagalog,
Turkish,
Tatar,
Ukrainian,
Urdu,
Uzbek,
Vietnamese,
Waray,
Yiddish,
Yoruba,
Mandarin Chinese).
## Intended uses & limitations
The model has two uses:
- use 'as is' for spoken language recognition
- use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data
The model is trained on automatically collected YouTube data. For more
information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/).
#### How to use
```python
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
language_id = foreign_class(source="TalTechNLP/voxlingua107-xls-r-300m-wav2vec", pymodule_file="encoder_wav2vec_classifier.py", classname="EncoderWav2vecClassifier", hparams_file='inference_wav2vec.yaml', savedir="tmp")
# Download Thai language sample from Omniglot and convert to suitable form
wav_file = "https://omniglot.com/soundfiles/udhr/udhr_th.mp3"
out_prob, score, index, text_lab = language_id.classify_file(wav_file)
print("probability:", out_prob)
print("label:", text_lab)
print("score:", score)
print("index:", index)
probability: tensor([[[-2.2849e+01, -2.4349e+01, -2.3686e+01, -2.3632e+01, -2.0218e+01,
-2.7241e+01, -2.6715e+01, -2.2301e+01, -2.6076e+01, -2.1716e+01,
-1.9923e+01, -2.7303e+01, -2.1211e+01, -2.2998e+01, -2.4436e+01,
-2.6437e+01, -2.2686e+01, -2.4244e+01, -2.0416e+01, -2.8329e+01,
-1.7788e+01, -2.4829e+01, -2.4186e+01, -2.7036e+01, -2.5993e+01,
-1.9677e+01, -2.2746e+01, -2.9192e+01, -2.4941e+01, -2.7135e+01,
-2.6653e+01, -2.2791e+01, -2.4599e+01, -2.1066e+01, -2.4855e+01,
-2.1874e+01, -2.2914e+01, -2.4174e+01, -2.0902e+01, -2.3197e+01,
-2.6108e+01, -2.3941e+01, -2.3103e+01, -2.2363e+01, -2.8969e+01,
-2.5302e+01, -2.4862e+01, -2.2392e+01, -2.4042e+01, -2.1221e+01,
-2.3656e+01, -2.1286e+01, -1.9209e+01, -2.3254e+01, -2.8291e+01,
-5.9105e+00, -2.4525e+01, -2.4937e+01, -2.8349e+01, -2.4420e+01,
-2.7439e+01, -2.6329e+01, -2.3317e+01, -2.3842e+01, -2.2114e+01,
-2.3637e+01, -1.7217e+01, -1.8342e+01, -2.4332e+01, -2.6090e+01,
-2.5452e+01, -2.3854e+01, -2.6082e+01, -2.4992e+01, -2.0618e+01,
-2.9351e+01, -2.4153e+01, -2.3156e+01, -2.6893e+01, -2.5314e+01,
-2.8374e+01, -2.4009e+01, -2.3604e+01, -2.4063e+01, -2.3538e+01,
-2.4953e+01, -2.5607e+01, -2.3960e+01, -2.6471e+01, -2.3348e+01,
-2.1681e+01, -2.7610e+01, -2.5023e+01, -2.3585e+01, -2.7146e-03,
-2.0338e+01, -1.8737e+01, -2.5158e+01, -2.7491e+01, -2.3623e+01,
-2.5718e+01, -2.3465e+01, -1.8305e+01, -2.1064e+01, -2.9880e+01,
-2.2809e+01, -1.9856e+01]]])
# The identified language ISO code is given in score[0][0]
label: [['th']]
score: tensor([[-0.0027]])
index: tensor([[94]])
# The scores in the out_prob tensor can be interpreted as log-likelihoods that
# the given utterance belongs to the given language (i.e., the larger the better)
# The linear-scale likelihood can be retrieved using the following:
print(score.exp())
tensor([0.9973])
# Alternatively, use the utterance embedding extractor:
signal, fs = torchaudio.load(wav_file)
embeddings = language_id.encode_batch(signal)
print(embeddings.shape)
torch.Size([2, 1, 2048])
```
#### Limitations and bias
Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are:
- Probably it's accuracy on smaller languages is quite limited
- Probably it works worse on female speech than male speech (because YouTube data includes much more male speech)
- Based on experiments, it performs satisfactory on accented speech
- Probably it doesn't work well on children's speech and on persons with speech disorders
## Training data
The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/).
VoxLingua107 is a speech dataset for training spoken language identification models.
The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.
VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours.
The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.
## Training procedure
We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model.
Training recipe will be published soon.
## Evaluation results
| Version | Error Rate (%) |
|-----------------------|:------:|
| 2022-04-14 | 5.6 |
Error rate is calculated on VoxLingua107 development dataset.
### BibTeX entry and citation info
```bibtex
@inproceedings{valk2021slt,
title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
booktitle={Proc. IEEE SLT Workshop},
year={2021},
}
```
|
migueladarlo/distilbert-depression-mixed
|
migueladarlo
| 2022-04-19T10:35:06Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"text",
"Twitter",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T07:35:43Z |
---
language:
- en
license: mit # Example: apache-2.0 or any license from https://huggingface.co/docs/hub/model-repos#list-of-license-identifiers
tags:
- text # Example: audio
- Twitter
datasets:
- CLPsych 2015 # Example: common_voice. Use dataset id from https://hf.co/datasets
metrics:
- accuracy, f1, precision, recall, AUC # Example: wer. Use metric id from https://hf.co/metrics
model-index:
- name: distilbert-depression-mixed
results: []
---
# distilbert-depression-mixed
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) trained on CLPsych 2015 and a scraped dataset, and evaluated on a scraped dataset from Twitter to detect potential users in Twitter for depression.
It achieves the following results on the evaluation set:
- Evaluation Loss: 0.71
- Accuracy: 0.63
- F1: 0.59
- Precision: 0.66
- Recall: 0.53
- AUC: 0.63
## Intended uses & limitations
Feed a corpus of tweets to the model to generate label if input is indicative of a depressed user or not. Label 1 is depressed, Label 0 is not depressed.
Limitation: All token sequences longer than 512 are automatically truncated. Also, training and test data may be contaminated with mislabeled users.
### How to use
You can use this model directly with a pipeline for sentiment analysis:
```python
>>> from transformers import DistilBertTokenizerFast, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained(r"distilbert-depression-mixed")
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
>>> result=classifier('pain peko',**tokenizer_kwargs) #For truncation to apply in the pipeline
>>> #Should note that the string passed as the input can be a corpus of tweets concatenated together into one document.
[{'label': 'LABEL_1', 'score': 0.5048992037773132}]
```
Otherwise, download the files and specify within the pipeline the path to the folder that contains the config.json, pytorch_model.bin, and training_args.bin
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.19e-05
- train_batch_size: 16
- eval_batch_size: 16
- weight_decay: 0.06
- num_epochs: 5.0
## Training results
| Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | AUC |
|:-----:|:-------------:|:---------------:|:--------:|:--------:|:---------:|:--------:|:--------:|
| 1.0 | 0.68 | 0.66 | 0.61 | 0.54 | 0.60 | 0.50 | 0.60 |
| 2.0 | 0.65 | 0.65 | 0.63 | 0.49 | 0.70 | 0.37 | 0.62 |
| 3.0 | 0.53 | 0.63 | 0.66 | 0.58 | 0.69 | 0.50 | 0.65 |
| 4.0 | 0.39 | 0.66 | 0.67 | 0.61 | 0.69 | 0.54 | 0.67 |
| 5.0 | 0.27 | 0.72 | 0.65 | 0.61 | 0.63 | 0.60 | 0.64 |
|
luyaojie/uie-large-en
|
luyaojie
| 2022-04-19T10:14:55Z | 11 | 3 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-04-19T10:11:38Z |
---
license: cc-by-nc-sa-4.0
---
|
OWG/gpt-j-6B
|
OWG
| 2022-04-19T08:42:15Z | 0 | 1 | null |
[
"onnx",
"causal-lm",
"en",
"dataset:the_pile",
"license:apache-2.0",
"region:us"
] | null | 2022-04-14T09:20:10Z |
---
language:
- en
tags:
- causal-lm
license: apache-2.0
datasets:
- the_pile
---
# GPT-J 6B
## Model Description
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
## Original implementation
Follow [this link](https://huggingface.co/EleutherAI/gpt-j-6B) to see the original implementation.
# How to use
Download the model by cloning the repository via `git clone https://huggingface.co/OWG/gpt-j-6B`.
Then you can use the model with the following code:
```python
from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
options = SessionOptions()
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
session = InferenceSession("path/to/model.onnx", sess_options=options)
session.disable_fallback()
TODO
```
|
rmihaylov/pegasus-base-cnn-dailymail-bg
|
rmihaylov
| 2022-04-19T08:34:13Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"torch",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:1912.08777",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-04-19T08:14:05Z |
---
inference: false
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# PEGASUS BASE
This model was pretrained on Bulgarian language. It was intorduced in [this paper](https://arxiv.org/pdf/1912.08777.pdf).
## Model description
The training data is private Bulgarian text from CNN, DailyMail articles.
## Intended uses & limitations
You can use the raw model for summarization.
### How to use
Here is how to use this model in PyTorch:
```python
>>> from transformers import PegasusForConditionalGeneration, AutoTokenizer
>>>
>>> model_id = "rmihaylov/pegasus-base-cnn-dailymail-bg"
>>> model = PegasusForConditionalGeneration.from_pretrained(model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>>
>>> text = """Лукашенко поиска още полицията "да защити работническите колективи и организации и медии от заплахите на улицата", а който от държавните медии протестира, изобщо да не се връща на работа. На граничните служби бе наредено да засилят охраната на цялата граница, "за да не се допускат в Беларус от други държави бойци, оръжие, боеприпаси, пари за финансиране на безредиците, защото виждаме, че такива пари пристигат". Министерството на отбраната трябва да следи "движението на войски на НАТО на територията на Полша и Литва, тяхното направление и замисли, които в момента виждаме - и някои от тях ни карат да се замислим - и да не се притеснява да изкарва нашите въоръжени сили и техника в направлението на тяхното придвижване". Лукашенко изрично посочи събитията в град Гродно, "защото там има по-голямо желание за дестабилизация на обстановката, отколкото в Минск". Гродно стана вчера първият по-голям град, в който властите се разбраха с протестиращите да протестират на определени места в центъра на града. Той нарече опозицията "черносотници", тласкащи страната към пропаст и унищожение, както и към сблъсък с "исторически братския руски народ". Медиите трябва специално да се активизират срещу това, заръча Лукашенко."""
>>>
>>> batch = tokenizer(
>>> src_text,
>>> truncation=True,
>>> padding="longest",
>>> return_tensors="pt",
>>> return_token_type_ids=False)
>>>
>>> inputs = {
>>> 'max_length': 150,
>>> 'min_length': 10,
>>> 'do_sample': False,
>>> 'temperature': 1.0,
>>> 'top_k': 50,
>>> 'top_p': 1.0,
>>> 'repetition_penalty': 1.0,
>>> 'no_repeat_ngram_size': 0,
>>> 'use_cache': True,
>>> 'num_beams': 2,
>>> 'length_penalty': 1.0,
>>> 'num_return_sequences': 1,
>>> 'early_stopping': False}
>>>
>>> batch.update(inputs)
>>>
>>> summary = model.generate(**batch)
>>>
>>> tgt_text = tokenizer.batch_decode(summary, skip_special_tokens=True)
>>> print(tgt_text)
['Лукашенко изрично посочи събитията в Гродно, "защото там има по-голямо желание за дестабилизация на обстановката, отколкото в Минск" Той нарече опозицията "черносотници", тласкащи страната към пропаст и унищожение, както и сблъсък с "исторически братския руски народ"']
```
|
guillaumegg/wav2vec2-base-timit-demo-ove
|
guillaumegg
| 2022-04-19T08:16:46Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-19T07:42:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-ove
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-ove
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53-french](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
### Training results
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.1.1.dev0
- Tokenizers 0.12.1
|
rabiaqayyum/autotrain-mental-health-analysis-752423172
|
rabiaqayyum
| 2022-04-19T06:45:00Z | 38 | 3 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain",
"en",
"dataset:rabiaqayyum/autotrain-data-mental-health-analysis",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T04:19:04Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- rabiaqayyum/autotrain-data-mental-health-analysis
co2_eq_emissions: 313.3534743349287
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 752423172
- CO2 Emissions (in grams): 313.3534743349287
## Validation Metrics
- Loss: 0.6064515113830566
- Accuracy: 0.805171240644137
- Macro F1: 0.7253473044054398
- Micro F1: 0.805171240644137
- Weighted F1: 0.7970679970423672
- Macro Precision: 0.7477679873153633
- Micro Precision: 0.805171240644137
- Weighted Precision: 0.7966263131173029
- Macro Recall: 0.7143231260991618
- Micro Recall: 0.805171240644137
- Weighted Recall: 0.805171240644137
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rabiaqayyum/autotrain-mental-health-analysis-752423172
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
fvector/xlm-roberta-base-finetuned-panx-de
|
fvector
| 2022-04-19T05:58:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-18T13:19:48Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.862669465085938
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1374
- F1: 0.8627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2596 | 1.0 | 525 | 0.1571 | 0.8302 |
| 0.1292 | 2.0 | 1050 | 0.1416 | 0.8455 |
| 0.0809 | 3.0 | 1575 | 0.1374 | 0.8627 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
user1/distilbert-base-uncased-finetuned-emotion
|
user1
| 2022-04-19T03:59:12Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T03:29:32Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9215
- name: F1
type: f1
value: 0.9215748499839705
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2302
- Accuracy: 0.9215
- F1: 0.9216
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8775 | 1.0 | 250 | 0.3501 | 0.894 | 0.8871 |
| 0.2658 | 2.0 | 500 | 0.2302 | 0.9215 | 0.9216 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
mrafida/distilbert-base-uncased-finetuned-cola
|
mrafida
| 2022-04-19T02:56:44Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-19T01:58:45Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: mrafida/distilbert-base-uncased-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# mrafida/distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1849
- Validation Loss: 0.5355
- Train Matthews Correlation: 0.5322
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Matthews Correlation | Epoch |
|:----------:|:---------------:|:--------------------------:|:-----:|
| 0.5120 | 0.4736 | 0.4411 | 0 |
| 0.3247 | 0.4741 | 0.4620 | 1 |
| 0.1849 | 0.5355 | 0.5322 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
ptran74/DSPFirst-Finetuning-5
|
ptran74
| 2022-04-19T01:14:26Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-04-18T13:03:21Z |
---
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: DSPFirst-Finetuning-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Important Note:
I created the `combined` metric (55% F1 score + 45% exact match score) and load the state with the best result at the end. Here is the setting in the `TrainingArguments`:
```
load_best_model_at_end=True,
metric_for_best_model='combined',
greater_is_better=True,
```
# DSPFirst-Finetuning-5
This model is a fine-tuned version of [ahotrod/electra_large_discriminator_squad2_512](https://huggingface.co/ahotrod/electra_large_discriminator_squad2_512) on a generated Questions and Answers dataset from the DSPFirst textbook based on the SQuAD 2.0 format.<br />
It achieves the following results on the evaluation set:
- Loss: 0.8529
- Exact: 67.0964
- F1: 74.4842
- Combined: 71.1597
## More accurate metrics:
### Before fine-tuning:
```
'HasAns_exact': 54.71817606079797,
'HasAns_f1': 61.08672724332754,
'HasAns_total': 1579,
'NoAns_exact': 88.78048780487805,
'NoAns_f1': 88.78048780487805,
'NoAns_total': 205,
'best_exact': 58.63228699551569,
'best_exact_thresh': 0.0,
'best_f1': 64.26902596256402,
'best_f1_thresh': 0.0,
'exact': 58.63228699551569,
'f1': 64.26902596256404,
'total': 1784
```
### After fine-tuning:
```
'HasAns_exact': 67.57441418619379,
'HasAns_f1': 75.92137683558988,
'HasAns_total': 1579,
'NoAns_exact': 63.41463414634146,
'NoAns_f1': 63.41463414634146,
'NoAns_total': 205,
'best_exact': 67.0964125560538,
'best_exact_thresh': 0.0,
'best_f1': 74.48422310728503,
'best_f1_thresh': 0.0,
'exact': 67.0964125560538,
'f1': 74.48422310728503,
'total': 1784
```
# Dataset
A visualization of the dataset can be found [here](https://github.gatech.edu/pages/VIP-ITS/textbook_SQuAD_explore/explore/textbookv1.0/textbook/).<br />
The split between train and test is 70% and 30% respectively.
```
DatasetDict({
train: Dataset({
features: ['id', 'title', 'context', 'question', 'answers'],
num_rows: 4160
})
test: Dataset({
features: ['id', 'title', 'context', 'question', 'answers'],
num_rows: 1784
})
})
```
## Intended uses & limitations
This model is fine-tuned to answer questions from the DSPFirst textbook. I'm not really sure what I am doing so you should review before using it.<br />
Also, you should improve the Dataset either by using a **better generated questions and answers model** (currently using https://github.com/patil-suraj/question_generation) or perform **data augmentation** to increase dataset size.
## Training and evaluation data
- `batch_size` of 6 results in 14.03 GB VRAM
- Utilizes `gradient_accumulation_steps` to get total batch size to 516 (total batch size should be at least 256)
- 4.52 GB RAM
- 30% of the total questions is dedicated for evaluating.
## Training procedure
- The model was trained from [Google Colab](https://colab.research.google.com/drive/1dJXNstk2NSenwzdtl9xA8AqjP4LL-Ks_?usp=sharing)
- Utilizes Tesla P100 16GB, took 6.3 hours to train
- `load_best_model_at_end` is enabled in TrainingArguments
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 86
- total_train_batch_size: 516
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Model hyperparameters
- hidden_dropout_prob: 0.36
- attention_probs_dropout_prob = 0.36
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact | F1 | Combined |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------:|
| 2.3222 | 0.81 | 20 | 1.0363 | 60.3139 | 68.8586 | 65.0135 |
| 1.6149 | 1.65 | 40 | 0.9702 | 64.7422 | 72.5555 | 69.0395 |
| 1.2375 | 2.49 | 60 | 1.0007 | 64.6861 | 72.6306 | 69.0556 |
| 1.0417 | 3.32 | 80 | 0.9963 | 66.0874 | 73.8634 | 70.3642 |
| 0.9401 | 4.16 | 100 | 0.8803 | 67.0964 | 74.4842 | 71.1597 |
| 0.8799 | 4.97 | 120 | 0.8652 | 66.7040 | 74.1267 | 70.7865 |
| 0.8712 | 5.81 | 140 | 0.8921 | 66.3677 | 73.7213 | 70.4122 |
| 0.8311 | 6.65 | 160 | 0.8529 | 66.3117 | 73.4039 | 70.2124 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
samwell/marian-finetuned-kde4-en-to-fr
|
samwell
| 2022-04-18T23:53:11Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-18T23:36:48Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2663
- Bleu: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
irenelizihui/MarianMT_UFAL
|
irenelizihui
| 2022-04-18T23:08:08Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"license:wtfpl",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-04-18T23:01:31Z |
---
license: wtfpl
---
[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) model trained on the [UFAL](https://ufal.mff.cuni.cz/ufal_medical_corpus) dataset, from `en` to `cs, de, es, fr, pl, ro, hu, sv`.
|
huggan/projected_gan_impressionism
|
huggan
| 2022-04-18T21:29:45Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2022-04-14T23:32:14Z |
dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset
trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images
fun stuff
check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art
Made by:-<br/>
[Jeronim Matijević](https://huggingface.co/Cropinky)<br/>
[Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
|
Tianle/bert-base-uncased-finetuned-squad
|
Tianle
| 2022-04-18T20:25:14Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-04-18T17:25:10Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-squad
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0275 | 1.0 | 5533 | 1.1006 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased
|
bhavitvyamalik
| 2022-04-18T20:23:38Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-04T13:17:52Z |
---
license: mit
---
### Dataset used
[Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset)
### Labels
Fake news: 1 </br>
Real news: 0
### Usage
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import torch
config = AutoConfig.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased", config=config)
tokenizer = AutoTokenizer.from_pretrained("microsoft/xtremedistil-l6-h256-uncased", usefast=True)
text = "According to reports by Fox News, Biden is the President of the USA"
encode = tokenizer(text, max_length=512, truncation=True, padding="max_length", return_tensors="pt")
output = model(**encode)
print(torch.argmax(output["logits"]))
```
### Performance on test data
```json
'test/accuracy': 0.9977836608886719,
'test/aucroc': 0.9999998807907104,
'test/f1': 0.9976308941841125,
'test/loss': 0.00828308891505003
```
### Run can be tracked here
[Wandb project for Fake news classifier](https://wandb.ai/bhavitvya/Fake%20news%20classifier?workspace=user-bhavitvya)
|
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter4
|
4m1g0
| 2022-04-18T19:59:47Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-18T13:15:07Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-gl-jupyter4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-gl-jupyter4
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0970
- Wer: 0.0636
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 45
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.492 | 3.36 | 400 | 0.3109 | 0.3158 |
| 0.194 | 6.72 | 800 | 0.1279 | 0.1454 |
| 0.0794 | 10.08 | 1200 | 0.1210 | 0.1240 |
| 0.0565 | 13.44 | 1600 | 0.1209 | 0.1150 |
| 0.041 | 16.8 | 2000 | 0.1186 | 0.1107 |
| 0.0343 | 20.17 | 2400 | 0.1143 | 0.0933 |
| 0.0283 | 23.53 | 2800 | 0.1067 | 0.0900 |
| 0.0231 | 26.89 | 3200 | 0.1076 | 0.0812 |
| 0.0176 | 30.25 | 3600 | 0.1094 | 0.0780 |
| 0.0169 | 33.61 | 4000 | 0.1041 | 0.0766 |
| 0.0138 | 36.97 | 4400 | 0.1012 | 0.0711 |
| 0.0109 | 40.33 | 4800 | 0.0985 | 0.0655 |
| 0.0099 | 43.69 | 5200 | 0.0970 | 0.0636 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
Noxel/sentiments_multilenguaje
|
Noxel
| 2022-04-18T19:37:38Z | 4 | 2 |
transformers
|
[
"transformers",
"bert",
"text-classification",
"en",
"nl",
"de",
"fr",
"it",
"es",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- en
- nl
- de
- fr
- it
- es
license: mit
---
# bert-base-multilingual-uncased-sentiment
This a bert-base-multilingual-uncased model finetuned for sentiment analysis on product reviews in six languages: English, Dutch, German, French, Spanish and Italian. It predicts the sentiment of the review as a number of stars (between 1 and 5).
This model is intended for direct use as a sentiment analysis model for product reviews in any of the six languages above, or for further finetuning on related sentiment analysis tasks.
## Training data
Here is the number of product reviews we used for finetuning the model:
| Language | Number of reviews |
| -------- | ----------------- |
| English | 150k |
| Dutch | 80k |
| German | 137k |
| French | 140k |
| Italian | 72k |
| Spanish | 50k |
## Accuracy
The finetuned model obtained the following accuracy on 5,000 held-out product reviews in each of the languages:
- Accuracy (exact) is the exact match on the number of stars.
- Accuracy (off-by-1) is the percentage of reviews where the number of stars the model predicts differs by a maximum of 1 from the number given by the human reviewer.
| Language | Accuracy (exact) | Accuracy (off-by-1) |
| -------- | ---------------------- | ------------------- |
| English | 67% | 95%
| Dutch | 57% | 93%
| German | 61% | 94%
| French | 59% | 94%
| Italian | 59% | 95%
| Spanish | 58% | 95%
## Contact
In addition to this model, [NLP Town](https://www.nlp.town) offers custom, monolingual sentiment models for many languages and an improved multilingual model through [RapidAPI](https://rapidapi.com/nlp-town-nlp-town-default/api/multilingual-sentiment-analysis2/).
Feel free to contact us for questions, feedback and/or requests for similar models.
|
uw-madison/nystromformer-4096
|
uw-madison
| 2022-04-18T17:07:21Z | 81 | 3 |
transformers
|
[
"transformers",
"pytorch",
"nystromformer",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-04-18T16:33:51Z |
Nystromformer for sequence length 4096 trained on WikiText-103 v1.
|
imyday/xlm-roberta-base-finetuned-panx-de
|
imyday
| 2022-04-18T16:42:01Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-18T13:17:13Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8590909090909091
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1380
- F1: 0.8591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2642 | 1.0 | 525 | 0.1624 | 0.8251 |
| 0.1315 | 2.0 | 1050 | 0.1445 | 0.8508 |
| 0.0832 | 3.0 | 1575 | 0.1380 | 0.8591 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
zoha/wav2vec2-base-timit-demo-colab
|
zoha
| 2022-04-18T16:40:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-18T10:33:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
shishirAI/wav2vec2-xlsr-nepali
|
shishirAI
| 2022-04-18T16:35:18Z | 9 | 2 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-18T12:31:40Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-nepali
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-nepali
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.12.1
|
patrickvonplaten/data2vec-base
|
patrickvonplaten
| 2022-04-18T16:29:03Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"data2vec-audio",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2202.03555",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- librispeech_asr
tags:
- speech
license: apache-2.0
---
# Data2Vec-Audio-Base
[Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
[Paper](https://arxiv.org/abs/2202.03555)
Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli
**Abstract**
While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.
The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec .
# Pre-Training method

For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555).
# Usage
See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
|
facebook/data2vec-audio-base-100h
|
facebook
| 2022-04-18T16:19:17Z | 46 | 1 |
transformers
|
[
"transformers",
"pytorch",
"data2vec-audio",
"automatic-speech-recognition",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2202.03555",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- librispeech_asr
tags:
- speech
license: apache-2.0
---
# Data2Vec-Audio-Base-100h
[Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/)
The base model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.
[Paper](https://arxiv.org/abs/2202.03555)
Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli
**Abstract**
While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.
The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec .
# Pre-Training method

For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555).
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Data2VecForCTC
from datasets import load_dataset
import torch
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-100h")
model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-100h")
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
|
facebook/data2vec-text-base
|
facebook
| 2022-04-18T16:03:20Z | 1,601 | 12 |
transformers
|
[
"transformers",
"pytorch",
"data2vec-text",
"feature-extraction",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:2202.03555",
"arxiv:1806.02847",
"license:mit",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- exbert
license: mit
datasets:
- bookcorpus
- wikipedia
---
# Data2Vec-Text base model
Pretrained model on English language using the *data2vec* objective. It was introduced in
[this paper](https://arxiv.org/abs/2202.03555) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/main/examples/data2vec). This model is case-sensitive: it
makes a difference between english and English.
Disclaimer: The team releasing Data2Vec-Text did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Pre-Training method

For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555).
## Abstract
*While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because
they were developed with a single modality in
mind. To get us closer to general self-supervised
learning, we present data2vec, a framework that
uses the same learning method for either speech,
NLP or computer vision. The core idea is to predict latent representations of the full input data
based on a masked view of the input in a selfdistillation setup using a standard Transformer architecture. Instead of predicting modality-specific
targets such as words, visual tokens or units of
human speech which are local in nature, data2vec
predicts contextualized latent representations that
contain information from the entire input. Experiments on the major benchmarks of speech
recognition, image classification, and natural language understanding demonstrate a new state of
the art or competitive performance to predominant approaches.*
## Intended uses & limitations
The model is intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=data2vec-text) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
## Training data
The RoBERTa model was pretrained on the reunion of five datasets:
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
- [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news
articles crawled between September 2016 and February 2019.
- [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to
train GPT-2,
- [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas.
Together theses datasets weight 160GB of text.
### BibTeX entry and citation info
```bibtex
@misc{https://doi.org/10.48550/arxiv.2202.03555,
doi = {10.48550/ARXIV.2202.03555},
url = {https://arxiv.org/abs/2202.03555},
author = {Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael},
keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
|
csikasote/xls-r-300m-bemba-15hrs
|
csikasote
| 2022-04-18T15:18:07Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-17T20:30:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: xls-r-300m-bemba-15hrs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-300m-bemba-15hrs
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2754
- Wer: 0.3481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5142 | 0.71 | 400 | 0.5585 | 0.7501 |
| 0.6351 | 1.43 | 800 | 0.3185 | 0.5058 |
| 0.4892 | 2.15 | 1200 | 0.2813 | 0.4655 |
| 0.4021 | 2.86 | 1600 | 0.2539 | 0.4159 |
| 0.3505 | 3.58 | 2000 | 0.2411 | 0.4000 |
| 0.3045 | 4.29 | 2400 | 0.2512 | 0.3951 |
| 0.274 | 5.01 | 2800 | 0.2402 | 0.3922 |
| 0.2335 | 5.72 | 3200 | 0.2403 | 0.3764 |
| 0.2032 | 6.44 | 3600 | 0.2383 | 0.3657 |
| 0.1783 | 7.16 | 4000 | 0.2603 | 0.3518 |
| 0.1487 | 7.87 | 4400 | 0.2479 | 0.3577 |
| 0.1281 | 8.59 | 4800 | 0.2638 | 0.3518 |
| 0.113 | 9.3 | 5200 | 0.2754 | 0.3481 |
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
csikasote/xls-r-300m-bemba-5hrs
|
csikasote
| 2022-04-18T14:52:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-18T07:37:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: xls-r-300m-bemba-5hrs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-300m-bemba-5hrs
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3129
- Wer: 0.4430
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4473 | 2.16 | 400 | 0.4687 | 0.6798 |
| 0.5882 | 4.32 | 800 | 0.3235 | 0.5089 |
| 0.3508 | 6.49 | 1200 | 0.3190 | 0.4695 |
| 0.21 | 8.65 | 1600 | 0.3129 | 0.4430 |
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
vikasaeta/bert-finetuned-ner
|
vikasaeta
| 2022-04-18T14:15:43Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-18T13:59:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.931045859452326
- name: Recall
type: recall
value: 0.9498485358465163
- name: F1
type: f1
value: 0.9403532155948018
- name: Accuracy
type: accuracy
value: 0.9857096603284865
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0614
- Precision: 0.9310
- Recall: 0.9498
- F1: 0.9404
- Accuracy: 0.9857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0875 | 1.0 | 1756 | 0.0639 | 0.9167 | 0.9387 | 0.9276 | 0.9833 |
| 0.0332 | 2.0 | 3512 | 0.0595 | 0.9334 | 0.9504 | 0.9418 | 0.9857 |
| 0.0218 | 3.0 | 5268 | 0.0614 | 0.9310 | 0.9498 | 0.9404 | 0.9857 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
crcb/imp_hatred
|
crcb
| 2022-04-18T14:11:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain",
"en",
"dataset:crcb/autotrain-data-imp_hs",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T14:03:53Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- crcb/autotrain-data-imp_hs
co2_eq_emissions: 15.91710539314839
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 753423062
- CO2 Emissions (in grams): 15.91710539314839
## Validation Metrics
- Loss: 0.5205655694007874
- Accuracy: 0.7746741154562383
- Macro F1: 0.5796696218586866
- Micro F1: 0.7746741154562382
- Weighted F1: 0.7602379277947592
- Macro Precision: 0.6976905233970596
- Micro Precision: 0.7746741154562383
- Weighted Precision: 0.7628815999440115
- Macro Recall: 0.557144871405371
- Micro Recall: 0.7746741154562383
- Weighted Recall: 0.7746741154562383
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-imp_hs-753423062
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-imp_hs-753423062", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-imp_hs-753423062", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
crcb/hs_dvs
|
crcb
| 2022-04-18T13:43:00Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain",
"en",
"dataset:crcb/autotrain-data-dvs",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T13:40:47Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- crcb/autotrain-data-dvs
co2_eq_emissions: 5.1746636998598445
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 753223051
- CO2 Emissions (in grams): 5.1746636998598445
## Validation Metrics
- Loss: 0.14639143645763397
- Accuracy: 0.9493645350010087
- Precision: 0.5460992907801419
- Recall: 0.2916666666666667
- AUC: 0.8843542768404266
- F1: 0.3802469135802469
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-dvs-753223051
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-dvs-753223051", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-dvs-753223051", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
sadaqabdo/SpanBert-base-pheno
|
sadaqabdo
| 2022-04-18T13:05:05Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T03:17:33Z |
SpanBert finetuned on pheno dataset for named entity recognition task
|
npleshkanov/labse-rutoxicity-classification
|
npleshkanov
| 2022-04-18T12:53:15Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"region:us"
] | null | 2022-04-18T12:00:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: labse-rutoxicity-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# labse-rutoxicity-classification
This model is a fine-tuned version of [rasa/LaBSE](https://huggingface.co/rasa/LaBSE) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1995
- Acc: 0.9218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
Stremie/roberta-base-clickbait-keywords
|
Stremie
| 2022-04-18T12:52:44Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-06T16:57:32Z |
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText' + '[SEP]' + 'targetKeywords'. Achieved ~0.7 F1-score on test data.
|
Stremie/xlm-roberta-base-clickbait-keywords
|
Stremie
| 2022-04-18T12:51:55Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-06T20:56:11Z |
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText' + '[SEP]' + 'targetKeywords'. Achieved ~0.7 F1-score on test data.
|
Stremie/bert-base-uncased-clickbait-keywords
|
Stremie
| 2022-04-18T12:49:08Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-06T16:21:39Z |
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText' + '[SEP]' + 'targetKeywords'. Achieved ~0.7 F1-score on test data.
|
AykeeSalazar/violation-classification-bantai-vit-withES
|
AykeeSalazar
| 2022-04-18T12:34:09Z | 64 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-04-07T08:54:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
model-index:
- name: violation-classification-bantai-vit-withES
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# violation-classification-bantai-vit-withES
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2234
- eval_accuracy: 0.9592
- eval_runtime: 64.9173
- eval_samples_per_second: 85.37
- eval_steps_per_second: 2.68
- epoch: 227.72
- step: 23000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 500
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
nbhimte/tiny-bert-best
|
nbhimte
| 2022-04-18T11:46:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T11:09:20Z |
TrainOutput(global_step=2456, training_loss=0.29150783277878156, metrics={'train_runtime': 939.2154, 'train_samples_per_second': 167.246, 'train_steps_per_second': 2.615, 'total_flos': 321916620637920.0, 'train_loss': 0.29150783277878156, 'epoch': 4.0})
|
shishirpaudel/wav2vec2-large-xlsr-nepali
|
shishirpaudel
| 2022-04-18T10:44:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-18T10:10:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-nepali
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-nepali
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.12.1
|
rmihaylov/roberta-base-use-qa-theseus-bg
|
rmihaylov
| 2022-04-18T10:25:59Z | 2 | 1 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"feature-extraction",
"torch",
"sentence-similarity",
"custom_code",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:2004.09813",
"arxiv:2002.02925",
"license:mit",
"text-embeddings-inference",
"region:us"
] |
sentence-similarity
| 2022-04-18T09:12:32Z |
---
inference: false
pipeline_tag: sentence-similarity
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# ROBERTA BASE (cased) trained on private Bulgarian-English parallel data
This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences.
Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence.
The teacher model is the [USE model by Google](https://aclanthology.org/D18-2029/).
This model is cased: it does make a difference between bulgarian and Bulgarian.
It was trained on private Bulgarian-English parallel data.
Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925).
### How to use
Here is how to use this model in PyTorch:
```python
>>> import scipy
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>>
>>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-use-qa-theseus-bg')
>>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-use-qa-theseus-bg')
>>>
>>> query = "Какви са съставките на бисквитките?"
>>>
>>> answers = [
>>> "Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.",
>>> "Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.",
>>> "В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат бисквити.",
>>> "Бисквитите Chewier понякога се наричат бисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.",
>>> "Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.",
>>> "Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.",
>>> "Бисквитките често се сервират с напитки като мляко, кафе или чай.",
>>> "Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.",
>>> "Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.",
>>> "Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).",
>>> "Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.",
>>> "Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.",
>>> ]
>>>
>>> query_embedding = model.question(**tokenizer.encode_plus(query, return_tensors='pt')).detach().numpy()[0]
>>>
>>> corpus, corpus_embeddings = [], []
>>> for answer in answers:
>>> value_inputs = tokenizer.encode_plus(answer, answer, return_tensors='pt')
>>> embedding = model.answer(**value_inputs).detach().numpy()[0]
>>> corpus.append(answer)
>>> corpus_embeddings.append(embedding)
>>>
>>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0]
>>>
>>> results = zip(range(len(distances)), distances)
>>> results = sorted(results, key=lambda x: x[1])
>>>
>>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results])
[['Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.',
0.5449754306536151],
['Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.',
0.5049509545814316],
['В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат \u200b\u200bбисквити.',
0.5029661338050297],
['Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.',
0.4991678233218718],
['Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.',
0.49050297326146386],
['Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.',
0.48950875441294106],
['Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.',
0.48646309549536737],
['Бисквитите Chewier понякога се наричат \u200b\u200bбисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.',
0.4840599482604815],
['Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).',
0.45209677893728206],
['Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.',
0.4511516464302119],
['Бисквитките често се сервират с напитки като мляко, кафе или чай.',
0.42364528401677803],
['Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.',
0.3267314582662877]]
```
|
rmihaylov/roberta-base-use-qa-bg
|
rmihaylov
| 2022-04-18T09:10:52Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"feature-extraction",
"torch",
"sentence-similarity",
"custom_code",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:2004.09813",
"license:mit",
"text-embeddings-inference",
"region:us"
] |
sentence-similarity
| 2022-04-18T08:42:48Z |
---
inference: false
pipeline_tag: sentence-similarity
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# ROBERTA BASE (cased) trained on private Bulgarian-English parallel data
This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences.
Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence.
The teacher model is the [USE model by Google](https://aclanthology.org/D18-2029/).
This model is cased: it does make a difference between bulgarian and Bulgarian.
It was trained on private Bulgarian-English parallel data.
### How to use
Here is how to use this model in PyTorch:
```python
>>> import scipy
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>>
>>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-use-qa-bg')
>>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-use-qa-bg')
>>>
>>> query = "Какви са съставките на бисквитките?"
>>>
>>> answers = [
>>> "Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.",
>>> "Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.",
>>> "В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат бисквити.",
>>> "Бисквитите Chewier понякога се наричат бисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.",
>>> "Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.",
>>> "Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.",
>>> "Бисквитките често се сервират с напитки като мляко, кафе или чай.",
>>> "Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.",
>>> "Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.",
>>> "Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).",
>>> "Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.",
>>> "Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.",
>>> ]
>>>
>>> query_embedding = model.question(**tokenizer.encode_plus(query, return_tensors='pt')).detach().numpy()[0]
>>>
>>> corpus, corpus_embeddings = [], []
>>> for answer in answers:
>>> value_inputs = tokenizer.encode_plus(answer, answer, return_tensors='pt')
>>> embedding = model.answer(**value_inputs).detach().numpy()[0]
>>> corpus.append(answer)
>>> corpus_embeddings.append(embedding)
>>>
>>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0]
>>>
>>> results = zip(range(len(distances)), distances)
>>> results = sorted(results, key=lambda x: x[1])
>>>
>>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results])
[['Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.',
0.620301064877746],
['Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.',
0.5696434424179133],
['Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.',
0.5496458499598336],
['Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.',
0.5365738121336622],
['Бисквитите Chewier понякога се наричат \u200b\u200bбисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.',
0.5278547550921155],
['Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.',
0.5231947553588652],
['Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.',
0.5222493948012543],
['В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат \u200b\u200bбисквити.',
0.5185776999549867],
['Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.',
0.5113299248563532],
['Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).',
0.4642001162793412],
['Бисквитките често се сервират с напитки като мляко, кафе или чай.',
0.44902199326988135],
['Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.',
0.25256183690274214]]
```
|
dfsj/distilbert-base-uncased-finetuned-emotion
|
dfsj
| 2022-04-18T07:12:17Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T06:50:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.922
- name: F1
type: f1
value: 0.9222074564200887
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2170
- Accuracy: 0.922
- F1: 0.9222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8116 | 1.0 | 250 | 0.3076 | 0.9035 | 0.9013 |
| 0.2426 | 2.0 | 500 | 0.2170 | 0.922 | 0.9222 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.0.0
- Tokenizers 0.12.1
|
rmihaylov/roberta-base-nli-stsb-theseus-bg
|
rmihaylov
| 2022-04-18T06:59:18Z | 34 | 1 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"feature-extraction",
"torch",
"sentence-similarity",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:2004.09813",
"arxiv:2002.02925",
"license:mit",
"text-embeddings-inference",
"region:us"
] |
sentence-similarity
| 2022-04-18T05:51:49Z |
---
inference: false
pipeline_tag: sentence-similarity
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# ROBERTA BASE (cased) trained on private Bulgarian-English parallel data
This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences.
Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence.
This model is cased: it does make a difference between bulgarian and Bulgarian.
It was trained on private Bulgarian-English parallel data.
Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925).
### How to use
Here is how to use this model in PyTorch:
```python
>>> import scipy
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>>
>>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-nli-stsb-theseus-bg')
>>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-nli-stsb-theseus-bg')
>>>
>>> def embed(text):
>>> inputs = tokenizer.encode_plus(text, return_tensors='pt')
>>> outputs = model(**inputs)
>>> sequence_output = outputs[0]
>>> input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(sequence_output.size()).float()
>>> embeddings = torch.sum(sequence_output * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
>>> return embeddings.detach().numpy()[0]
>>>
>>>
>>> query_embedding = embed("Какви са съставките на бисквитките?")
>>>
>>> questions = [
>>> "Какво е бисквитка?",
>>> "От какво са направени бисквитките?",
>>> "Използват ли в Англия думата бисквитки?",
>>> "Къде се правят бисквитките?",
>>> "Какви видове бисквитки има?",
>>> "Къде човек може да купи бисквитки?",
>>> "Откъде дойде думата бисквитка?",
>>> "Кое е чудовището на бисквитките?",
>>> "Как да си направите бисквитки у дома?",
>>> "Колко калории има типичната бисквитка?",
>>> "Какви напитки вървят добре с бисквитките?",
>>> "Бисквитките наричат ли се също сладки?"
>>> ]
>>>
>>> corpus, corpus_embeddings = [], []
>>> for question in questions:
>>> embedding = embed(question)
>>> corpus.append(question)
>>> corpus_embeddings.append(embedding)
>>>
>>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0]
>>>
>>> results = zip(range(len(distances)), distances)
>>> results = sorted(results, key=lambda x: x[1])
>>>
>>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results])
[['От какво са направени бисквитките?', 0.9855158537034977],
['Къде се правят бисквитките?', 0.9774093134195002],
['Какви видове бисквитки има?', 0.9766014240577192],
['Използват ли в Англия думата бисквитки?', 0.9446492058523037],
['Кое е чудовището на бисквитките?', 0.9269786184641834],
['Къде човек може да купи бисквитки?', 0.9268900421152592],
['Какво е бисквитка?', 0.9188155080718263],
['Бисквитките наричат ли се също сладки?', 0.9060368627614406],
['Откъде дойде думата бисквитка?', 0.9048309659657036],
['Какви напитки вървят добре с бисквитките?', 0.890836765118977],
['Как да си направите бисквитки у дома?', 0.8878968487540497],
['Колко калории има типичната бисквитка?', 0.8652821650136402]]
```
|
leung233/opus-mt-en-zh-finetuned-0-to-1
|
leung233
| 2022-04-18T05:56:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-04-17T15:08:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: opus-mt-en-zh-finetuned-0-to-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-zh-finetuned-0-to-1
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
joniponi/facility-classifier
|
joniponi
| 2022-04-18T05:00:26Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T04:50:45Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: facility-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# facility-classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4422
- Accuracy: 0.7872
- F1: 0.7854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.671 | 1.0 | 12 | 0.6529 | 0.6596 | 0.6441 |
| 0.5845 | 2.0 | 24 | 0.5722 | 0.7447 | 0.7461 |
| 0.4902 | 3.0 | 36 | 0.5091 | 0.7447 | 0.7461 |
| 0.378 | 4.0 | 48 | 0.4797 | 0.7660 | 0.7670 |
| 0.354 | 5.0 | 60 | 0.4487 | 0.8085 | 0.8029 |
| 0.2865 | 6.0 | 72 | 0.4422 | 0.7872 | 0.7854 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
speydach/layoutlmv2-finetuned-cord2
|
speydach
| 2022-04-18T04:44:45Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T15:33:53Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-finetuned-cord2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-cord2
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 500
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cpu
- Datasets 2.1.0
- Tokenizers 0.12.1
|
BigSalmon/InformalToFormalLincoln37
|
BigSalmon
| 2022-04-18T03:12:02Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-04-17T17:47:54Z |
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln37")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln37")
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
infill: chrome extensions [MASK] accomplish everyday tasks.
Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks.
infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
infill:
```
```
Essay Intro (Warriors vs. Rockets in Game 7):
text: eagerly anticipated by fans, game 7's are the highlight of the post-season.
text: ever-building in suspense, game 7's have the crowd captivated.
***
Essay Intro (South Korean TV Is Becoming Popular):
text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ).
text: increasingly held in critical esteem, south korean television continues to impress.
text: at the forefront of quality content, south korea is quickly achieving celebrity status.
***
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
```
- declining viewership facing the nba.
- does not have to be this way.
- in fact, many solutions exist.
- the four point line would surely draw in eyes.
text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership.
***
-
```
```
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
***
original:
```
```
wordy: classical music is becoming less popular more and more.
Translate into Concise Text: interest in classic music is fading.
***
wordy:
```
```
sweet: savvy voters ousted him.
longer: voters who were informed delivered his defeat.
***
sweet:
```
```
1: commercial space company spacex plans to launch a whopping 52 flights in 2022.
2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022.
3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights.
4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company.
5: a commercial space company, spacex aims to conduct 52 flights in 2022.
***
1:
```
Keywords to sentences or sentence.
|
crcb/hateval_re
|
crcb
| 2022-04-18T01:35:05Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"en",
"dataset:crcb/autotrain-data-hate_speech",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-18T01:32:22Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- crcb/autotrain-data-hate_speech
co2_eq_emissions: 5.301132895184483
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 752122994
- CO2 Emissions (in grams): 5.301132895184483
## Validation Metrics
- Loss: 0.7107211351394653
- Accuracy: 0.7529411764705882
- Precision: 0.7502287282708143
- Recall: 0.9177392277560157
- AUC: 0.8358316393336287
- F1: 0.8255726151522779
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-hate_speech-752122994
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-hate_speech-752122994", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-hate_speech-752122994", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
surafelkindu/AmBERT
|
surafelkindu
| 2022-04-17T20:16:29Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-04-17T09:20:51Z |
---
license: mit
---
Amharic Language Language Model
#Trained in Roberta architecture
|
Chris1/real2sim-512
|
Chris1
| 2022-04-17T20:06:01Z | 0 | 0 | null |
[
"pytorch",
"huggan",
"gan",
"license:mit",
"region:us"
] | null | 2022-04-15T12:06:39Z |
---
tags:
- huggan
- gan
# See a list of available tags here:
# https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12
# task: unconditional-image-generation or conditional-image-generation or image-to-image
license: mit
---
# MyModelName
## Model description
Describe the model here (what it does, what it's used for, etc.)
## Intended uses & limitations
#### How to use
```python
# You can include sample code which will be formatted
```
#### Limitations and bias
Provide examples of latent issues and potential remediations.
## Training data
Describe the data you used to train the model.
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
## Training procedure
Preprocessing, hardware used, hyperparameters...
## Eval results
## Generated Images
You can embed local or remote images using ``
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020}
}
```
|
huggingtweets/crowsunflower-holyhorror8-witheredstrings
|
huggingtweets
| 2022-04-17T18:28:49Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-04-17T18:27:15Z |
---
language: en
thumbnail: http://www.huggingtweets.com/crowsunflower-holyhorror8-witheredstrings/1650220124956/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1515513843216171009/zT6m-Miq_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1510441725415899139/16Ro5tD5_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1511427151102287872/Onql0JIa_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">VacuumF & Jude obscura 🌒 & The Mad Puppet/Prophet</div>
<div style="text-align: center; font-size: 14px;">@crowsunflower-holyhorror8-witheredstrings</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from VacuumF & Jude obscura 🌒 & The Mad Puppet/Prophet.
| Data | VacuumF | Jude obscura 🌒 | The Mad Puppet/Prophet |
| --- | --- | --- | --- |
| Tweets downloaded | 454 | 3228 | 3243 |
| Retweets | 2 | 829 | 134 |
| Short tweets | 38 | 742 | 1275 |
| Tweets kept | 414 | 1657 | 1834 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fsr8bm1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowsunflower-holyhorror8-witheredstrings's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dgpcknqj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dgpcknqj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crowsunflower-holyhorror8-witheredstrings')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
BigSalmon/InformalToFormalLincoln36
|
BigSalmon
| 2022-04-17T17:44:43Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-04-15T00:31:32Z |
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln36")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln36")
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
infill: chrome extensions [MASK] accomplish everyday tasks.
Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks.
infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
infill:
```
```
Essay Intro (Warriors vs. Rockets in Game 7):
text: eagerly anticipated by fans, game 7's are the highlight of the post-season.
text: ever-building in suspense, game 7's have the crowd captivated.
***
Essay Intro (South Korean TV Is Becoming Popular):
text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ).
text: increasingly held in critical esteem, south korean television continues to impress.
text: at the forefront of quality content, south korea is quickly achieving celebrity status.
***
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
```
- declining viewership facing the nba.
- does not have to be this way.
- in fact, many solutions exist.
- the four point line would surely draw in eyes.
text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership.
***
-
```
```
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
***
original:
```
```
wordy: classical music is becoming less popular more and more.
Translate into Concise Text: interest in classic music is fading.
***
wordy:
```
```
sweet: savvy voters ousted him.
longer: voters who were informed delivered his defeat.
***
sweet:
```
```
1: commercial space company spacex plans to launch a whopping 52 flights in 2022.
2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022.
3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights.
4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company.
5: a commercial space company, spacex aims to conduct 52 flights in 2022.
***
1:
```
Keywords to sentences or sentence.
|
npleshkanov/rutoxicity-classification
|
npleshkanov
| 2022-04-17T15:33:06Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2022-04-17T14:37:06Z |
---
tags:
- generated_from_trainer
model-index:
- name: rutoxicity-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rutoxicity-classification
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2747
- Acc: 0.9255
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
AJGP/bert-finetuned-ner
|
AJGP
| 2022-04-17T14:57:27Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T14:13:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9354518371400199
- name: Recall
type: recall
value: 0.9511948838774823
- name: F1
type: f1
value: 0.9432576769025368
- name: Accuracy
type: accuracy
value: 0.9868870312591982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0598
- Precision: 0.9355
- Recall: 0.9512
- F1: 0.9433
- Accuracy: 0.9869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0833 | 1.0 | 1756 | 0.0654 | 0.9202 | 0.9350 | 0.9275 | 0.9833 |
| 0.034 | 2.0 | 3512 | 0.0610 | 0.9262 | 0.9458 | 0.9359 | 0.9846 |
| 0.0233 | 3.0 | 5268 | 0.0598 | 0.9355 | 0.9512 | 0.9433 | 0.9869 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
crcb/emo_nojoylove
|
crcb
| 2022-04-17T14:19:31Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"en",
"dataset:crcb/autotrain-data-emo_carer_nojoylove",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-17T14:12:53Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- crcb/autotrain-data-emo_carer_nojoylove
co2_eq_emissions: 12.236769332727217
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 751422966
- CO2 Emissions (in grams): 12.236769332727217
## Validation Metrics
- Loss: 0.1358409821987152
- Accuracy: 0.9397905759162304
- Macro F1: 0.9096049124431982
- Micro F1: 0.9397905759162304
- Weighted F1: 0.9395954853807672
- Macro Precision: 0.919807346649452
- Micro Precision: 0.9397905759162304
- Weighted Precision: 0.9407259082357824
- Macro Recall: 0.9024000547645126
- Micro Recall: 0.9397905759162304
- Weighted Recall: 0.9397905759162304
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-emo_carer_nojoylove-751422966
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422966", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422966", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
hafidber/anomaly
|
hafidber
| 2022-04-17T12:14:15Z | 58 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-04-17T02:54:23Z |
---
tags:
- image-classification
- pytorch
metrics:
- accuracy
model-index:
- name: anomaly
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
# anomaly
Anomaly classification
## Example Images
#### Abnormal

#### Normal

|
stevems1/distilroberta-base-SmithsModel2
|
stevems1
| 2022-04-17T11:53:54Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-04-17T11:21:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-SmithsModel2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-SmithsModel2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4012
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.8736 | 1.0 | 3632 | 1.6643 |
| 1.5808 | 2.0 | 7264 | 1.4663 |
| 1.498 | 3.0 | 10896 | 1.4090 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1
|
engmatic-earth
| 2022-04-17T11:00:50Z | 17 | 6 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-17T10:01:38Z |
---
license: cc-by-nc-sa-4.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mt5-zh-ja-en-trimmed-fine-tuned-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-zh-ja-en-trimmed-fine-tuned-v1
This model is a fine-tuned version of [K024/mt5-zh-ja-en-trimmed](https://huggingface.co/K024/mt5-zh-ja-en-trimmed) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0225
- Bleu: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
ttwj-sutd/finetuning-sentiment-model-3000-samples-6pm
|
ttwj-sutd
| 2022-04-17T10:33:50Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-17T10:12:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuning-sentiment-model-3000-samples-6pm
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Precision
type: precision
value: 0.875
- name: Recall
type: recall
value: 0.8866666666666667
- name: F1
type: f1
value: 0.880794701986755
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples-6pm
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2896
- Precision: 0.875
- Recall: 0.8867
- F1: 0.8808
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 188 | 0.3436 | 0.8633 | 0.8 | 0.8304 | 0.8367 |
| No log | 2.0 | 376 | 0.2896 | 0.875 | 0.8867 | 0.8808 | 0.88 |
| 0.3 | 3.0 | 564 | 0.3330 | 0.8693 | 0.8867 | 0.8779 | 0.8767 |
| 0.3 | 4.0 | 752 | 0.4378 | 0.8766 | 0.9 | 0.8882 | 0.8867 |
| 0.3 | 5.0 | 940 | 0.5198 | 0.8284 | 0.9333 | 0.8777 | 0.87 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|
haryoaw/id-recigen-bart
|
haryoaw
| 2022-04-17T10:19:27Z | 5 | 3 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"bart",
"id",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-04-16T15:09:44Z |
---
language: id
tags:
- bart
- id
license: mit
---
# Indonesia Recipe Ingredients Generator Model
**WARNING: inference on Huggingface might not run since the tokenizer used is not transformers's tokenizer.**
Feel free to test the model [in this space](https://huggingface.co/spaces/haryoaw/id-recigen)
😎 **Have fun on generating ingredients** 😎
This is a fine-tuned model to generate the Indonesian food ingredients. One of my personal project that I did in my free time.
Basically, you give the name of the food and it will produce the ingredients of the food.
## Model
Data: [Indonesian Recipe Data on Kaggle](https://www.kaggle.com/datasets/canggih/indonesian-food-recipes)
Pre-trained Model: [IndoBART-v2](https://huggingface.co/indobenchmark/indobart-v2)
## How to use
We will specify the usage of the tokenizer and the model.
### Tokenizer
Since we use `indobart-v2`, we need to use their tokenizer.
First, install the tokenizer by doing `pip install indobenchmark-toolkit`.
After that, you can load the tokenizer:
```python
from indobenchmark.tokenization_indonlg import IndoNLGTokenizer
tokenizer = IndoNLGTokenizer.from_pretrained("haryoaw/id-recigen-bart")
```
**EDIT**:
Seems like the tokenizer in the package is not the same as the one that I use to finetune the model.
There are some noticeable bug such as some subword tokens are not considered as subword. Nevertheless, it stil works!
### Model
The model can be loaded by using AutoModel.
```python
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("haryoaw/id-recigen-bart")
```
## Input Example
Make sure to input a **LOWERCASE** food name. The tokenizer is case-sensitive!
```
sayur asam
```
```
nasi goreng ayam
```
~To be continued..
|
DrishtiSharma/lwg_cartoon_faces
|
DrishtiSharma
| 2022-04-17T07:50:05Z | 8 | 0 |
transformers
|
[
"transformers",
"huggan",
"gan",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-04-16T22:05:52Z |
---
tags:
- huggan
- gan
# See a list of available tags here:
# https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12
# task: unconditional-image-generation or conditional-image-generation or image-to-image
license: mit
---
# MyModelName
## Model description
Describe the model here (what it does, what it's used for, etc.)
## Intended uses & limitations
#### How to use
```python
# You can include sample code which will be formatted
```
#### Limitations and bias
Provide examples of latent issues and potential remediations.
## Training data
Describe the data you used to train the model.
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
## Training procedure
Preprocessing, hardware used, hyperparameters...
## Eval results
## Generated Images
You can embed local or remote images using ``
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020}
}
```
|
rmihaylov/bert-base-nli-theseus-bg
|
rmihaylov
| 2022-04-17T06:35:37Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"torch",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:1810.04805",
"arxiv:2002.02925",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2022-04-17T05:18:41Z |
---
inference: false
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# BERT BASE (cased) finetuned on Bulgarian natural-language-inference data
Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it does make a difference
between bulgarian and Bulgarian. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/).
It was finetuned on private NLI Bulgarian data.
Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925).
### How to use
Here is how to use this model in PyTorch:
```python
>>> import torch
>>> from transformers import AutoModelForSequenceClassification, AutoTokenizer
>>>
>>> model_id = 'rmihaylov/bert-base-nli-theseus-bg'
>>> model = AutoModelForSequenceClassification.from_pretrained(model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>>
>>> inputs = tokenizer.encode_plus(
>>> 'Няколко момчета играят футбол.',
>>> 'Няколко момичета играят футбол.',
>>> return_tensors='pt')
>>>
>>> outputs = model(**inputs)
>>> contradiction, entailment, neutral = torch.softmax(outputs[0][0], dim=0).detach()
>>> contradiction, neutral, entailment
(tensor(0.9998), tensor(0.0001), tensor(5.9929e-05))
```
|
chrisvinsen/xlsr-wav2vec2-base-commonvoice-demo-colab-1
|
chrisvinsen
| 2022-04-17T06:13:54Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-04-17T04:24:14Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: xlsr-wav2vec2-base-commonvoice-demo-colab-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlsr-wav2vec2-base-commonvoice-demo-colab-1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3736
- Wer: 0.5517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7.5523 | 8.06 | 500 | 2.8965 | 1.0 |
| 2.4454 | 16.13 | 1000 | 0.7292 | 0.8364 |
| 0.6349 | 24.19 | 1500 | 0.3736 | 0.5517 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
rmihaylov/bert-base-squad-theseus-bg
|
rmihaylov
| 2022-04-17T03:47:35Z | 37 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"torch",
"bg",
"dataset:oscar",
"dataset:chitanka",
"dataset:wikipedia",
"arxiv:1810.04805",
"arxiv:2002.02925",
"license:mit",
"region:us"
] |
question-answering
| 2022-04-17T03:33:52Z |
---
inference: false
language:
- bg
license: mit
datasets:
- oscar
- chitanka
- wikipedia
tags:
- torch
---
# BERT BASE (cased) finetuned on Bulgarian squad data
Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it does make a difference
between bulgarian and Bulgarian. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/).
It was finetuned on private squad Bulgarian data.
Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925).
### How to use
Here is how to use this model in PyTorch:
```python
>>> from transformers import pipeline
>>>
>>> model = pipeline(
>>> 'question-answering',
>>> model='rmihaylov/bert-base-squad-theseus-bg',
>>> tokenizer='rmihaylov/bert-base-squad-theseus-bg',
>>> device=0,
>>> revision=None)
>>>
>>> question = "С какво се проследява пандемията?"
>>> context = "Епидемията гасне, обяви при обявяването на данните тази сутрин Тодор Кантарджиев, член на Националния оперативен щаб. Той направи този извод на база на данните от математическите модели, с които се проследява развитието на заразата. Те показват, че т. нар. ефективно репродуктивно число е вече в границите 0.6-1. Тоест, 10 души заразяват 8, те на свой ред 6 и така нататък. "
>>> output = model(**{'question': question, 'context': context})
>>> print(output)
{'score': 0.85157310962677, 'start': 162, 'end': 186, 'answer': ' математическите модели,'}
```
|
pitiwat/argument_wangchanberta2
|
pitiwat
| 2022-04-17T02:59:58Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-14T10:32:31Z |
---
widget:
- text: "ฉัน ชอบ หมา เพราะ มัน น่ารัก"
---
|
lideming7757/bert-finetuned-ner-uncased
|
lideming7757
| 2022-04-17T02:37:12Z | 2 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T02:24:12Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: lideming7757/bert-finetuned-ner-uncased
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lideming7757/bert-finetuned-ner-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0240
- Validation Loss: 0.0568
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1256 | 0.0614 | 0 |
| 0.0393 | 0.0557 | 1 |
| 0.0240 | 0.0568 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
speydach/layoutlmv2-finetuned-cord
|
speydach
| 2022-04-17T02:14:14Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T02:00:43Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-finetuned-cord
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-cord
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 15
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cpu
- Datasets 2.1.0
- Tokenizers 0.12.1
|
jiaxin97/bert_finetuned_ner_custom
|
jiaxin97
| 2022-04-17T00:35:53Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-17T00:06:57Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: jiaxin97/bert_finetuned_ner_custom
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# jiaxin97/bert_finetuned_ner_custom
This model is a fine-tuned version of [jiaxin97/bert-finetuned-ner](https://huggingface.co/jiaxin97/bert-finetuned-ner) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1479
- Validation Loss: 0.1963
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 666, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.3352 | 0.2394 | 0 |
| 0.2000 | 0.2331 | 1 |
| 0.1479 | 0.1963 | 2 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
Krishadow/biobert-finetuned-ner-K2
|
Krishadow
| 2022-04-16T23:13:42Z | 4 | 1 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-04-16T23:02:02Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Krishadow/biobert-finetuned-ner-K2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Krishadow/biobert-finetuned-ner-K2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0107
- Validation Loss: 0.0671
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1695, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1365 | 0.0585 | 0 |
| 0.0427 | 0.0549 | 1 |
| 0.0243 | 0.0572 | 2 |
| 0.0155 | 0.0639 | 3 |
| 0.0107 | 0.0671 | 4 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.