modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
527 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 06:27:12
card
stringlengths
11
1.01M
llyfacebook/sdxl-pokemon-model
llyfacebook
2023-08-27T08:23:41Z
0
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-08-26T23:06:51Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 dataset: lambdalabs/pokemon-blip-captions tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - llyfacebook/sdxl-pokemon-model This pipeline was finetuned from **stabilityai/stable-diffusion-xl-base-1.0** on the **lambdalabs/pokemon-blip-captions** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: a cute Sundar Pichai creature: ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
ThuyNT03/xlm-roberta-base-Balance_VietNam-aug_replace_tfidf
ThuyNT03
2023-08-27T08:22:07Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T07:58:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_VietNam-aug_replace_tfidf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_VietNam-aug_replace_tfidf This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8255 - Accuracy: 0.71 - F1: 0.7123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0682 | 1.0 | 87 | 0.8850 | 0.63 | 0.5828 | | 0.8982 | 2.0 | 174 | 0.8205 | 0.68 | 0.6460 | | 0.7637 | 3.0 | 261 | 0.7253 | 0.7 | 0.7013 | | 0.6902 | 4.0 | 348 | 0.6887 | 0.71 | 0.7088 | | 0.5525 | 5.0 | 435 | 0.6648 | 0.75 | 0.7480 | | 0.4981 | 6.0 | 522 | 0.7215 | 0.75 | 0.7504 | | 0.403 | 7.0 | 609 | 0.8010 | 0.72 | 0.7251 | | 0.3255 | 8.0 | 696 | 0.8255 | 0.71 | 0.7123 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
EricPeter/distilbert-base-cased
EricPeter
2023-08-27T08:17:36Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2023-08-27T07:27:10Z
--- tags: - generated_from_keras_callback model-index: - name: EricPeter/distilbert-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # EricPeter/distilbert-base-cased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2356 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2846, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 4, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.06}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.3158 | 0 | | 0.3561 | 1 | | 0.2694 | 2 | | 0.2718 | 3 | | 0.2687 | 4 | | 0.2844 | 5 | | 0.2824 | 6 | | 0.2698 | 7 | | 0.2882 | 8 | | 0.2808 | 9 | | 0.2710 | 10 | | 0.2663 | 11 | | 0.2574 | 12 | | 0.2417 | 13 | | 0.2581 | 14 | | 0.2581 | 15 | | 0.2625 | 16 | | 0.2443 | 17 | | 0.2360 | 18 | | 0.2478 | 19 | | 0.2431 | 20 | | 0.2454 | 21 | | 0.2409 | 22 | | 0.2359 | 23 | | 0.2428 | 24 | | 0.2374 | 25 | | 0.2419 | 26 | | 0.2371 | 27 | | 0.2392 | 28 | | 0.2393 | 29 | | 0.2378 | 30 | | 0.2399 | 31 | | 0.2381 | 32 | | 0.2347 | 33 | | 0.2414 | 34 | | 0.2352 | 35 | | 0.2361 | 36 | | 0.2407 | 37 | | 0.2397 | 38 | | 0.2314 | 39 | | 0.2370 | 40 | | 0.2338 | 41 | | 0.2360 | 42 | | 0.2356 | 43 | | 0.2375 | 44 | | 0.2343 | 45 | | 0.2366 | 46 | | 0.2377 | 47 | | 0.2369 | 48 | | 0.2356 | 49 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
DrishtiSharma/DialoGPT-large-faqs-block-size-128-bs-16-lr-7e-6
DrishtiSharma
2023-08-27T08:12:25Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:microsoft/DialoGPT-large", "base_model:finetune:microsoft/DialoGPT-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-27T07:58:02Z
--- license: mit base_model: microsoft/DialoGPT-large tags: - generated_from_trainer model-index: - name: DialoGPT-large-faqs-block-size-128-bs-16-lr-7e-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DialoGPT-large-faqs-block-size-128-bs-16-lr-7e-6 This model is a fine-tuned version of [microsoft/DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 4.4791 | | No log | 2.0 | 80 | 3.7462 | | No log | 3.0 | 120 | 3.2760 | | No log | 4.0 | 160 | 3.0066 | | No log | 5.0 | 200 | 2.8421 | | No log | 6.0 | 240 | 2.7291 | | No log | 7.0 | 280 | 2.6535 | | No log | 8.0 | 320 | 2.5975 | | No log | 9.0 | 360 | 2.5532 | | No log | 10.0 | 400 | 2.5265 | | No log | 11.0 | 440 | 2.4987 | | No log | 12.0 | 480 | 2.4778 | | 2.9559 | 13.0 | 520 | 2.4655 | | 2.9559 | 14.0 | 560 | 2.4553 | | 2.9559 | 15.0 | 600 | 2.4449 | | 2.9559 | 16.0 | 640 | 2.4456 | | 2.9559 | 17.0 | 680 | 2.4389 | | 2.9559 | 18.0 | 720 | 2.4384 | | 2.9559 | 19.0 | 760 | 2.4372 | | 2.9559 | 20.0 | 800 | 2.4362 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Balance_Mixed-aug_replace
ThuyNT03
2023-08-27T08:07:17Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T08:00:01Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_Mixed-aug_replace results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_Mixed-aug_replace This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1700 - Accuracy: 0.75 - F1: 0.7476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.045 | 1.0 | 81 | 0.9285 | 0.59 | 0.4986 | | 0.8637 | 2.0 | 162 | 0.7319 | 0.72 | 0.7025 | | 0.6437 | 3.0 | 243 | 0.7081 | 0.74 | 0.7327 | | 0.4385 | 4.0 | 324 | 0.6997 | 0.72 | 0.7237 | | 0.331 | 5.0 | 405 | 0.9485 | 0.71 | 0.7129 | | 0.2433 | 6.0 | 486 | 0.9924 | 0.73 | 0.7328 | | 0.1657 | 7.0 | 567 | 1.1475 | 0.75 | 0.7473 | | 0.1374 | 8.0 | 648 | 1.1700 | 0.75 | 0.7476 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
fridriik/mental-health-arg-post-quarantine-covid19-model
fridriik
2023-08-27T08:05:48Z
0
0
sklearn
[ "sklearn", "medical", "es", "en", "dataset:fridriik/mental-health-arg-post-quarantine-covid19-dataset", "arxiv:1910.09700", "license:cc-by-nc-4.0", "region:us" ]
null
2023-08-27T05:59:50Z
--- license: cc-by-nc-4.0 datasets: - fridriik/mental-health-arg-post-quarantine-covid19-dataset language: - es - en library_name: sklearn tags: - medical metrics: - perplexity --- # Mental health of people in Argentina post quarantine COVID-19 Model ## Model Details ### Model Description This model aims to cluster cases and identify which province or region of Argentina presents higher values of suicide risk based on the analyzed variables, in order to subsequently assist the community in creating support programs. - **Developed by:** Farias, Federico; Arroyo, Guadalupe; Avalos, Manuel - **Model type:** Clustering - **License:** Creative Commons Attribution Non Commercial 4.0 ## Uses Research and education. ### Out-of-Scope Use Government and private entities in the fields of research, medicine, psychology, and education. ## Bias, Risks, and Limitations This model is intended for research purposes, and it analyzes serious topics related to individuals' mental health. It should not be taken as practical advice for real-life situations, except for the possibility that in the future, the dataset used for its training could be improved and discussions with its authors could facilitate extended usage. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/fridriik/mental-health-arg-post-quarantine-covid19-dataset ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wesley7137/BCI-Platy-Orca-13B-V2-adapter
wesley7137
2023-08-27T07:59:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-27T07:58:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
ThuyNT03/xlm-roberta-base-Balance_Mixed-aug_insert
ThuyNT03
2023-08-27T07:53:30Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T07:45:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_Mixed-aug_insert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_Mixed-aug_insert This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8765 - Accuracy: 0.68 - F1: 0.6779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9796 | 1.0 | 87 | 0.7820 | 0.65 | 0.6411 | | 0.6824 | 2.0 | 174 | 0.5968 | 0.67 | 0.6578 | | 0.5057 | 3.0 | 261 | 0.8463 | 0.69 | 0.6620 | | 0.3193 | 4.0 | 348 | 0.9758 | 0.71 | 0.6991 | | 0.1899 | 5.0 | 435 | 1.4013 | 0.67 | 0.6711 | | 0.116 | 6.0 | 522 | 1.5033 | 0.71 | 0.7069 | | 0.0823 | 7.0 | 609 | 1.7558 | 0.69 | 0.6864 | | 0.0627 | 8.0 | 696 | 1.8765 | 0.68 | 0.6779 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Balance_VietNam-aug_insert_w2v
ThuyNT03
2023-08-27T07:53:17Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T07:33:45Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_VietNam-aug_insert_w2v results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_VietNam-aug_insert_w2v This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8223 - Accuracy: 0.73 - F1: 0.7349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0709 | 1.0 | 87 | 0.9441 | 0.56 | 0.5255 | | 0.9032 | 2.0 | 174 | 0.7216 | 0.65 | 0.5885 | | 0.7586 | 3.0 | 261 | 0.6999 | 0.74 | 0.7382 | | 0.6773 | 4.0 | 348 | 0.7020 | 0.7 | 0.7013 | | 0.5627 | 5.0 | 435 | 0.7242 | 0.72 | 0.7128 | | 0.4603 | 6.0 | 522 | 0.7668 | 0.7 | 0.7052 | | 0.3853 | 7.0 | 609 | 0.8019 | 0.73 | 0.7365 | | 0.3405 | 8.0 | 696 | 0.8223 | 0.73 | 0.7349 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
WanJEJEkun/SovitsModel
WanJEJEkun
2023-08-27T07:49:57Z
0
0
null
[ "region:us" ]
null
2023-08-27T07:46:33Z
--- license: other datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: adapter-transformers pipeline_tag: audio-to-audio ---https://gradio.s3-us-west-2.amazonaws.com/3.18.0/gradio.js
ThuyNT03/xlm-roberta-base-Balance_Mixed-aug_delete
ThuyNT03
2023-08-27T07:43:40Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T07:36:16Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_Mixed-aug_delete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_Mixed-aug_delete This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9162 - Accuracy: 0.68 - F1: 0.6762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0634 | 1.0 | 87 | 0.9436 | 0.6 | 0.5016 | | 0.8668 | 2.0 | 174 | 0.6742 | 0.71 | 0.6650 | | 0.7168 | 3.0 | 261 | 0.6614 | 0.72 | 0.7103 | | 0.5632 | 4.0 | 348 | 0.6308 | 0.68 | 0.6686 | | 0.452 | 5.0 | 435 | 0.7301 | 0.64 | 0.6429 | | 0.3594 | 6.0 | 522 | 0.8300 | 0.72 | 0.7168 | | 0.2844 | 7.0 | 609 | 0.8999 | 0.71 | 0.7046 | | 0.2399 | 8.0 | 696 | 0.9162 | 0.68 | 0.6762 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Cyber-Machine/distilhubert-finetuned-gtzan
Cyber-Machine
2023-08-27T07:29:33Z
175
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-26T18:01:03Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0171 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1164 | 1.0 | 113 | 2.0148 | 0.45 | | 1.3653 | 2.0 | 226 | 1.3290 | 0.64 | | 1.1139 | 3.0 | 339 | 1.0579 | 0.71 | | 1.0451 | 4.0 | 452 | 1.0425 | 0.72 | | 0.5678 | 5.0 | 565 | 0.8254 | 0.76 | | 0.3324 | 6.0 | 678 | 0.7542 | 0.81 | | 0.4072 | 7.0 | 791 | 0.6650 | 0.81 | | 0.0858 | 8.0 | 904 | 0.8092 | 0.79 | | 0.2328 | 9.0 | 1017 | 0.8203 | 0.8 | | 0.0331 | 10.0 | 1130 | 0.9223 | 0.83 | | 0.0129 | 11.0 | 1243 | 0.9507 | 0.84 | | 0.1248 | 12.0 | 1356 | 0.9733 | 0.83 | | 0.0087 | 13.0 | 1469 | 1.0091 | 0.82 | | 0.0677 | 14.0 | 1582 | 1.0063 | 0.82 | | 0.008 | 15.0 | 1695 | 1.0171 | 0.82 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
aman-agarwal/t5-base-lora
aman-agarwal
2023-08-27T07:27:30Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-27T07:27:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
wyuancs/Fine_Tuned_T5_small_for_DailyDialog
wyuancs
2023-08-27T07:22:46Z
102
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-27T07:22:36Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: Fine_Tuned_T5_small_for_DailyDialog results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tuned_T5_small_for_DailyDialog This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Rouge1: 11.0459 - Rouge2: 2.2404 - Rougel: 10.5072 - Rougelsum: 10.7781 - Bleu: 0.8903 - Gen Len: 7.111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:------:|:-------:| | 2.0809 | 1.0 | 313 | 1.7698 | 9.3634 | 1.6744 | 8.9437 | 9.0705 | 0.6728 | 8.217 | | 1.4771 | 2.0 | 626 | 1.3016 | 10.1104 | 1.7728 | 9.6869 | 9.8809 | 0.0 | 6.527 | | 1.2084 | 3.0 | 939 | 1.0781 | 10.3142 | 2.0722 | 9.8421 | 10.0426 | 0.7095 | 6.272 | | 1.0171 | 4.0 | 1252 | 0.9219 | 10.299 | 2.107 | 9.8825 | 10.1102 | 0.7598 | 6.246 | | 0.9029 | 5.0 | 1565 | 0.7993 | 10.5767 | 2.0701 | 10.0645 | 10.3152 | 0.88 | 6.94 | | 0.7979 | 6.0 | 1878 | 0.7169 | 10.618 | 2.0406 | 10.0889 | 10.3652 | 0.9014 | 7.047 | | 0.7266 | 7.0 | 2191 | 0.6627 | 10.8584 | 2.1613 | 10.292 | 10.575 | 0.8766 | 6.769 | | 0.692 | 8.0 | 2504 | 0.6231 | 11.2891 | 2.2669 | 10.7278 | 11.0423 | 0.9933 | 7.273 | | 0.6724 | 9.0 | 2817 | 0.5956 | 11.2029 | 2.2399 | 10.6659 | 10.9419 | 0.9988 | 7.512 | | 0.65 | 10.0 | 3130 | 0.5891 | 11.0459 | 2.2404 | 10.5072 | 10.7781 | 0.8903 | 7.111 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
eachadea/ggml-hws-13b
eachadea
2023-08-27T07:14:41Z
0
1
null
[ "text-generation", "region:us" ]
text-generation
2023-07-18T19:50:10Z
--- pipeline_tag: text-generation ---
DrishtiSharma/DialoGPT-large-faqs-block-size-128-bs-16-lr-0.5e-5
DrishtiSharma
2023-08-27T07:10:54Z
137
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:microsoft/DialoGPT-large", "base_model:finetune:microsoft/DialoGPT-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-27T06:56:41Z
--- license: mit base_model: microsoft/DialoGPT-large tags: - generated_from_trainer model-index: - name: DialoGPT-large-faqs-block-size-128-bs-16-lr-0.5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DialoGPT-large-faqs-block-size-128-bs-16-lr-0.5e-5 This model is a fine-tuned version of [microsoft/DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 4.7556 | | No log | 2.0 | 80 | 4.0984 | | No log | 3.0 | 120 | 3.6525 | | No log | 4.0 | 160 | 3.3247 | | No log | 5.0 | 200 | 3.1137 | | No log | 6.0 | 240 | 2.9706 | | No log | 7.0 | 280 | 2.8696 | | No log | 8.0 | 320 | 2.7942 | | No log | 9.0 | 360 | 2.7382 | | No log | 10.0 | 400 | 2.6928 | | No log | 11.0 | 440 | 2.6547 | | No log | 12.0 | 480 | 2.6237 | | 3.3313 | 13.0 | 520 | 2.6033 | | 3.3313 | 14.0 | 560 | 2.5852 | | 3.3313 | 15.0 | 600 | 2.5690 | | 3.3313 | 16.0 | 640 | 2.5614 | | 3.3313 | 17.0 | 680 | 2.5532 | | 3.3313 | 18.0 | 720 | 2.5485 | | 3.3313 | 19.0 | 760 | 2.5458 | | 3.3313 | 20.0 | 800 | 2.5447 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
spear1/Reinforce-CartPole-v1
spear1
2023-08-27T07:06:31Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T07:06:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nisten/bigdoc-c34b-python-v1
nisten
2023-08-27T06:52:24Z
0
0
peft
[ "peft", "license:mit", "region:us" ]
null
2023-08-27T05:03:31Z
--- library_name: peft license: mit --- ## training only 2000/5000 complete The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0 - To load start a jupyter notebook, here it is all in 2 parts ``` !pip install -q -U bitsandbytes !pip install -q -U git+https://github.com/huggingface/transformers.git !pip install -q -U git+https://github.com/huggingface/peft.git !pip install -q -U git+https://github.com/huggingface/accelerate.git !pip install -q -U gradio !pip install -q -U sentencepiece import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer model_name = "TheBloke/CodeLlama-34B-Instruct-fp16" adapters_name = 'nisten/bigdoc-c34b-python-v1' print(f"Starting to load the model {model_name} into memory") m = AutoModelForCausalLM.from_pretrained( model_name, #load_in_4bit=True, #19GB in 4bit, 38GB with load_in_8bit, 67GB in full f16 if you just delete this line torch_dtype=torch.bfloat16, device_map={"": 0} ) m = PeftModel.from_pretrained(m, adapters_name) m = m.merge_and_unload() tok = AutoTokenizer.from_pretrained(model_name) eos_token_id = tok.convert_tokens_to_ids('/s') tok.eos_token = '/s' tok.pad_token = tok.eos_token tok.padding_side = 'right' tok.eos_token_id = eos_token_id stop_token_ids = eos_token_id print(f"Successfully loaded the model {model_name} into memory") ``` ### Gradio the UI ``` #should all work in one click import datetime import os from threading import Event, Thread from uuid import uuid4 from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import gradio as gr import requests max_new_tokens = 2369 start_message = """A chat between a chill human asking ( Question: ) and an AI doctor ( Answer: ). The doctor answers in helpful, detailed, and exhaustively nerdy extensive answers to the user's every medical Question:""" class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if isinstance(stop_token_ids, (list, torch.Tensor)): for stop_id in stop_token_ids: if stop_id in input_ids[0]: return True else: # Assumes scalar if input_ids[0][-1] == stop_token_ids: return True return False def convert_history_to_text(history): text = start_message + "".join( [ "".join( [ f" Question: {item[0]}\n", f"\n\n Answer: {item[1]}\n", ] ) for item in history[:-1] ] ) text += "".join( [ "".join( [ f" Question: {history[-1][0]}\n", f"\n\n Answer: {history[-1][1]}\n", ] ) ] ) return text def log_conversation(conversation_id, history, messages, generate_kwargs): logging_url = os.getenv("LOGGING_URL", None) if logging_url is None: return timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S") data = { "conversation_id": conversation_id, "timestamp": timestamp, "history": history, "messages": messages, "generate_kwargs": generate_kwargs, } try: requests.post(logging_url, json=data) except requests.exceptions.RequestException as e: print(f"Error logging conversation: {e}") def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id): print(f"history: {history}") # Initialize a StopOnTokens object stop = StopOnTokens() # Construct the input message string for the model by concatenating the current system message and conversation history messages = convert_history_to_text(history) # Tokenize the messages string input_ids = tok(messages, return_tensors="pt").input_ids input_ids = input_ids.to(m.device) streamer = TextIteratorStreamer(tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=temperature > 0.0, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, streamer=streamer, stopping_criteria=StoppingCriteriaList([stop]), ) stream_complete = Event() def generate_and_signal_complete(): m.generate(**generate_kwargs) stream_complete.set() def log_after_stream_complete(): stream_complete.wait() log_conversation( conversation_id, history, messages, { "top_k": top_k, "top_p": top_p, "temperature": temperature, "repetition_penalty": repetition_penalty, }, ) t1 = Thread(target=generate_and_signal_complete) t1.start() t2 = Thread(target=log_after_stream_complete) t2.start() # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: partial_text += new_text history[-1][1] = partial_text yield history def get_uuid(): return str(uuid4()) with gr.Blocks( theme=gr.themes.Soft(), css=".disclaimer {font-variant-caps: all-small-caps;}", ) as demo: conversation_id = gr.State(get_uuid) gr.Markdown( """<h1><center>Nisten's 34b Doctor v1</center></h1> """ ) chatbot = gr.Chatbot().style(height=969) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="Chat Message Box", placeholder="Chat Message Box", show_label=False, ).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Submit") stop = gr.Button("Stop") clear = gr.Button("Clear") with gr.Row(): with gr.Accordion("Advanced Options:", open=False): with gr.Row(): with gr.Column(): with gr.Row(): temperature = gr.Slider( label="Temperature", value=0.7, minimum=0.0, maximum=1.0, step=0.1, interactive=True, info="Higher values produce more diverse outputs", ) with gr.Column(): with gr.Row(): top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.9, minimum=0.0, maximum=1, step=0.01, interactive=True, info=( "Sample from the smallest possible set of tokens whose cumulative probability " "exceeds top_p. Set to 1 to disable and sample from all tokens." ), ) with gr.Column(): with gr.Row(): top_k = gr.Slider( label="Top-k", value=0, minimum=0.0, maximum=200, step=1, interactive=True, info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.", ) with gr.Column(): with gr.Row(): repetition_penalty = gr.Slider( label="Repetition Penalty", value=1.1, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repetition — 1.0 to disable.", ) with gr.Row(): gr.Markdown( "Disclaimer: The model can produce factually incorrect output, and should not be relied on to produce " "factually accurate information. The model was trained on various public datasets; while great efforts " "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " "biased, or otherwise offensive outputs.", elem_classes=["disclaimer"], ) with gr.Row(): gr.Markdown( "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)", elem_classes=["disclaimer"], ) submit_event = msg.submit( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( fn=bot, inputs=[ chatbot, temperature, top_p, top_k, repetition_penalty, conversation_id, ], outputs=chatbot, queue=True, ) submit_click_event = submit.click( fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).then( fn=bot, inputs=[ chatbot, temperature, top_p, top_k, repetition_penalty, conversation_id, ], outputs=chatbot, queue=True, ) stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue(max_size=128, concurrency_count=2) demo.launch( share = True ) #delete share = True () to make it private ```
Ancient237/gpt2_lora
Ancient237
2023-08-27T06:39:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-27T06:34:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
Tao2AIScienceHPC/ppo-Huggy
Tao2AIScienceHPC
2023-08-27T06:38:57Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-27T06:38:53Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Tao2AIScienceHPC/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dt-and-vanilla-ardt/dt-arrl_train_halfcheetah_high-2708_0519-66
dt-and-vanilla-ardt
2023-08-27T06:31:30Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-27T04:21:28Z
--- tags: - generated_from_trainer model-index: - name: dt-arrl_train_halfcheetah_high-2708_0519-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-arrl_train_halfcheetah_high-2708_0519-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mangostin2010/KangLuda-1000step
mangostin2010
2023-08-27T06:26:29Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-27T06:26:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
Foret2006/Gen
Foret2006
2023-08-27T06:25:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-27T06:25:32Z
--- license: creativeml-openrail-m ---
lucky1357/test-gmo-150
lucky1357
2023-08-27T06:24:22Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-27T05:48:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
ThuyNT03/xlm-roberta-base-Balance_VietNam-aug_delete
ThuyNT03
2023-08-27T06:24:20Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T06:16:20Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_VietNam-aug_delete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_VietNam-aug_delete This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9985 - Accuracy: 0.72 - F1: 0.7249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0573 | 1.0 | 87 | 0.8704 | 0.64 | 0.5908 | | 0.8411 | 2.0 | 174 | 0.7557 | 0.67 | 0.6079 | | 0.6874 | 3.0 | 261 | 0.6533 | 0.72 | 0.7112 | | 0.5116 | 4.0 | 348 | 0.6770 | 0.73 | 0.7338 | | 0.4243 | 5.0 | 435 | 0.7311 | 0.74 | 0.7466 | | 0.3378 | 6.0 | 522 | 0.8615 | 0.72 | 0.7180 | | 0.2496 | 7.0 | 609 | 0.9281 | 0.73 | 0.7332 | | 0.2269 | 8.0 | 696 | 0.9985 | 0.72 | 0.7249 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ESGenie/userid-majid_model-qwen7b-api-train-test-2023-08-27
ESGenie
2023-08-27T06:09:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-27T06:09:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Reajin/Senyamiku
Reajin
2023-08-27T06:07:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-10T04:45:26Z
--- license: creativeml-openrail-m ---
ThuyNT03/xlm-roberta-base-Balance_VietNam-aug_swap
ThuyNT03
2023-08-27T06:05:33Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T05:38:57Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_VietNam-aug_swap results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_VietNam-aug_swap This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2667 - Accuracy: 0.69 - F1: 0.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9608 | 1.0 | 86 | 0.7778 | 0.63 | 0.5729 | | 0.6733 | 2.0 | 172 | 0.7087 | 0.68 | 0.6835 | | 0.4889 | 3.0 | 258 | 0.7707 | 0.7 | 0.7028 | | 0.3672 | 4.0 | 344 | 0.7906 | 0.69 | 0.7021 | | 0.2388 | 5.0 | 430 | 1.0683 | 0.7 | 0.6979 | | 0.1691 | 6.0 | 516 | 1.1391 | 0.69 | 0.7010 | | 0.1323 | 7.0 | 602 | 1.2486 | 0.71 | 0.7176 | | 0.1033 | 8.0 | 688 | 1.2667 | 0.69 | 0.6959 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dkimds/rl_course_vizdoom_health_gathering_supreme
dkimds
2023-08-27T05:58:04Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T05:57:57Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.65 +/- 6.08 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dkimds/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Vedikal/foodvar
Vedikal
2023-08-27T05:54:15Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-27T05:48:30Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### FoodVAR Dreambooth model trained by Vedikal following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: MGMCE-359 Sample pictures of this concept: ![0](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(1).jpg) ![1](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(11).jpg) ![2](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(12).jpg) ![3](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(9).jpg) ![4](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(13).jpg) ![5](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(8).jpg) ![6](https://huggingface.co/Vedikal/foodvar/resolve/main/sample_images/var_(10).jpg)
Mtc2/a2c-PandaReachDense-v3
Mtc2
2023-08-27T05:38:10Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-08-12T19:20:48Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.13 +/- 0.07 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
ThuyNT03/xlm-roberta-base-Balance_VietNam-train
ThuyNT03
2023-08-27T05:22:45Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T05:04:54Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Balance_VietNam-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Balance_VietNam-train This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7864 - Accuracy: 0.69 - F1: 0.6994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0988 | 1.0 | 44 | 1.0966 | 0.36 | 0.1906 | | 1.0983 | 2.0 | 88 | 1.0983 | 0.23 | 0.1774 | | 1.0813 | 3.0 | 132 | 0.9806 | 0.57 | 0.4769 | | 0.8793 | 4.0 | 176 | 0.8133 | 0.67 | 0.6202 | | 0.7643 | 5.0 | 220 | 0.8456 | 0.65 | 0.6154 | | 0.6868 | 6.0 | 264 | 0.7879 | 0.71 | 0.7193 | | 0.5844 | 7.0 | 308 | 0.7552 | 0.69 | 0.7002 | | 0.4721 | 8.0 | 352 | 0.7864 | 0.69 | 0.6994 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
lucky1357/test-model
lucky1357
2023-08-27T05:19:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-27T05:19:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
mayankchhabra/Nous-Hermes-Llama2-13B-GGUF
mayankchhabra
2023-08-27T04:36:52Z
0
1
null
[ "region:us" ]
null
2023-08-27T04:35:26Z
This repo contains GGUF format Q4_K_M model file for Nous Hermes Llama 2 13B. --- license: llama2 ---
cloudqi/cqi_speech_recognize_pt_v0
cloudqi
2023-08-27T04:30:08Z
16
3
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "pt", "en", "es", "dataset:cloudqi/abreviacoes_e_girias_pt_v0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-20T02:25:53Z
--- language: - pt - en - es tags: - audio - automatic-speech-recognition widget: - example_title: Exemplo 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac model-index: - name: cqi_speech_recognize_pt_v0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: pt metrics: - name: Test WER type: wer value: 2.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: pt metrics: - name: Test WER type: wer value: 5.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 53.87 pipeline_tag: automatic-speech-recognition license: apache-2.0 datasets: - cloudqi/abreviacoes_e_girias_pt_v0 --- # Voice Transcript - Portuguese Focused (From Whisper) Optimized to work with Brazilian Language. Current Version: v0.1
CyberHarem/inoue_orihime_bleach
CyberHarem
2023-08-27T04:28:08Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/inoue_orihime_bleach", "license:mit", "region:us" ]
text-to-image
2023-08-27T04:19:31Z
--- license: mit datasets: - CyberHarem/inoue_orihime_bleach pipeline_tag: text-to-image tags: - art --- # Lora of inoue_orihime_bleach This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 2400, you need to download `2400/inoue_orihime_bleach.pt` as the embedding and `2400/inoue_orihime_bleach.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `inoue_orihime_bleach`.** For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Download | pattern_1 | pattern_2 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |--------:|:------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 2400 | [Download](2400/inoue_orihime_bleach.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 2240 | [Download](2240/inoue_orihime_bleach.zip) | ![pattern_1-2240](2240/previews/pattern_1.png) | ![pattern_2-2240](2240/previews/pattern_2.png) | ![bikini-2240](2240/previews/bikini.png) | [<NSFW, click to see>](2240/previews/bondage.png) | ![free-2240](2240/previews/free.png) | ![maid-2240](2240/previews/maid.png) | ![miko-2240](2240/previews/miko.png) | [<NSFW, click to see>](2240/previews/nude.png) | [<NSFW, click to see>](2240/previews/nude2.png) | ![suit-2240](2240/previews/suit.png) | ![yukata-2240](2240/previews/yukata.png) | | 2080 | [Download](2080/inoue_orihime_bleach.zip) | ![pattern_1-2080](2080/previews/pattern_1.png) | ![pattern_2-2080](2080/previews/pattern_2.png) | ![bikini-2080](2080/previews/bikini.png) | [<NSFW, click to see>](2080/previews/bondage.png) | ![free-2080](2080/previews/free.png) | ![maid-2080](2080/previews/maid.png) | ![miko-2080](2080/previews/miko.png) | [<NSFW, click to see>](2080/previews/nude.png) | [<NSFW, click to see>](2080/previews/nude2.png) | ![suit-2080](2080/previews/suit.png) | ![yukata-2080](2080/previews/yukata.png) | | 1920 | [Download](1920/inoue_orihime_bleach.zip) | ![pattern_1-1920](1920/previews/pattern_1.png) | ![pattern_2-1920](1920/previews/pattern_2.png) | ![bikini-1920](1920/previews/bikini.png) | [<NSFW, click to see>](1920/previews/bondage.png) | ![free-1920](1920/previews/free.png) | ![maid-1920](1920/previews/maid.png) | ![miko-1920](1920/previews/miko.png) | [<NSFW, click to see>](1920/previews/nude.png) | [<NSFW, click to see>](1920/previews/nude2.png) | ![suit-1920](1920/previews/suit.png) | ![yukata-1920](1920/previews/yukata.png) | | 1760 | [Download](1760/inoue_orihime_bleach.zip) | ![pattern_1-1760](1760/previews/pattern_1.png) | ![pattern_2-1760](1760/previews/pattern_2.png) | ![bikini-1760](1760/previews/bikini.png) | [<NSFW, click to see>](1760/previews/bondage.png) | ![free-1760](1760/previews/free.png) | ![maid-1760](1760/previews/maid.png) | ![miko-1760](1760/previews/miko.png) | [<NSFW, click to see>](1760/previews/nude.png) | [<NSFW, click to see>](1760/previews/nude2.png) | ![suit-1760](1760/previews/suit.png) | ![yukata-1760](1760/previews/yukata.png) | | 1600 | [Download](1600/inoue_orihime_bleach.zip) | ![pattern_1-1600](1600/previews/pattern_1.png) | ![pattern_2-1600](1600/previews/pattern_2.png) | ![bikini-1600](1600/previews/bikini.png) | [<NSFW, click to see>](1600/previews/bondage.png) | ![free-1600](1600/previews/free.png) | ![maid-1600](1600/previews/maid.png) | ![miko-1600](1600/previews/miko.png) | [<NSFW, click to see>](1600/previews/nude.png) | [<NSFW, click to see>](1600/previews/nude2.png) | ![suit-1600](1600/previews/suit.png) | ![yukata-1600](1600/previews/yukata.png) | | 1440 | [Download](1440/inoue_orihime_bleach.zip) | ![pattern_1-1440](1440/previews/pattern_1.png) | ![pattern_2-1440](1440/previews/pattern_2.png) | ![bikini-1440](1440/previews/bikini.png) | [<NSFW, click to see>](1440/previews/bondage.png) | ![free-1440](1440/previews/free.png) | ![maid-1440](1440/previews/maid.png) | ![miko-1440](1440/previews/miko.png) | [<NSFW, click to see>](1440/previews/nude.png) | [<NSFW, click to see>](1440/previews/nude2.png) | ![suit-1440](1440/previews/suit.png) | ![yukata-1440](1440/previews/yukata.png) | | 1280 | [Download](1280/inoue_orihime_bleach.zip) | ![pattern_1-1280](1280/previews/pattern_1.png) | ![pattern_2-1280](1280/previews/pattern_2.png) | ![bikini-1280](1280/previews/bikini.png) | [<NSFW, click to see>](1280/previews/bondage.png) | ![free-1280](1280/previews/free.png) | ![maid-1280](1280/previews/maid.png) | ![miko-1280](1280/previews/miko.png) | [<NSFW, click to see>](1280/previews/nude.png) | [<NSFW, click to see>](1280/previews/nude2.png) | ![suit-1280](1280/previews/suit.png) | ![yukata-1280](1280/previews/yukata.png) | | 1120 | [Download](1120/inoue_orihime_bleach.zip) | ![pattern_1-1120](1120/previews/pattern_1.png) | ![pattern_2-1120](1120/previews/pattern_2.png) | ![bikini-1120](1120/previews/bikini.png) | [<NSFW, click to see>](1120/previews/bondage.png) | ![free-1120](1120/previews/free.png) | ![maid-1120](1120/previews/maid.png) | ![miko-1120](1120/previews/miko.png) | [<NSFW, click to see>](1120/previews/nude.png) | [<NSFW, click to see>](1120/previews/nude2.png) | ![suit-1120](1120/previews/suit.png) | ![yukata-1120](1120/previews/yukata.png) | | 960 | [Download](960/inoue_orihime_bleach.zip) | ![pattern_1-960](960/previews/pattern_1.png) | ![pattern_2-960](960/previews/pattern_2.png) | ![bikini-960](960/previews/bikini.png) | [<NSFW, click to see>](960/previews/bondage.png) | ![free-960](960/previews/free.png) | ![maid-960](960/previews/maid.png) | ![miko-960](960/previews/miko.png) | [<NSFW, click to see>](960/previews/nude.png) | [<NSFW, click to see>](960/previews/nude2.png) | ![suit-960](960/previews/suit.png) | ![yukata-960](960/previews/yukata.png) | | 800 | [Download](800/inoue_orihime_bleach.zip) | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![bikini-800](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/bondage.png) | ![free-800](800/previews/free.png) | ![maid-800](800/previews/maid.png) | ![miko-800](800/previews/miko.png) | [<NSFW, click to see>](800/previews/nude.png) | [<NSFW, click to see>](800/previews/nude2.png) | ![suit-800](800/previews/suit.png) | ![yukata-800](800/previews/yukata.png) | | 640 | [Download](640/inoue_orihime_bleach.zip) | ![pattern_1-640](640/previews/pattern_1.png) | ![pattern_2-640](640/previews/pattern_2.png) | ![bikini-640](640/previews/bikini.png) | [<NSFW, click to see>](640/previews/bondage.png) | ![free-640](640/previews/free.png) | ![maid-640](640/previews/maid.png) | ![miko-640](640/previews/miko.png) | [<NSFW, click to see>](640/previews/nude.png) | [<NSFW, click to see>](640/previews/nude2.png) | ![suit-640](640/previews/suit.png) | ![yukata-640](640/previews/yukata.png) | | 480 | [Download](480/inoue_orihime_bleach.zip) | ![pattern_1-480](480/previews/pattern_1.png) | ![pattern_2-480](480/previews/pattern_2.png) | ![bikini-480](480/previews/bikini.png) | [<NSFW, click to see>](480/previews/bondage.png) | ![free-480](480/previews/free.png) | ![maid-480](480/previews/maid.png) | ![miko-480](480/previews/miko.png) | [<NSFW, click to see>](480/previews/nude.png) | [<NSFW, click to see>](480/previews/nude2.png) | ![suit-480](480/previews/suit.png) | ![yukata-480](480/previews/yukata.png) | | 320 | [Download](320/inoue_orihime_bleach.zip) | ![pattern_1-320](320/previews/pattern_1.png) | ![pattern_2-320](320/previews/pattern_2.png) | ![bikini-320](320/previews/bikini.png) | [<NSFW, click to see>](320/previews/bondage.png) | ![free-320](320/previews/free.png) | ![maid-320](320/previews/maid.png) | ![miko-320](320/previews/miko.png) | [<NSFW, click to see>](320/previews/nude.png) | [<NSFW, click to see>](320/previews/nude2.png) | ![suit-320](320/previews/suit.png) | ![yukata-320](320/previews/yukata.png) | | 160 | [Download](160/inoue_orihime_bleach.zip) | ![pattern_1-160](160/previews/pattern_1.png) | ![pattern_2-160](160/previews/pattern_2.png) | ![bikini-160](160/previews/bikini.png) | [<NSFW, click to see>](160/previews/bondage.png) | ![free-160](160/previews/free.png) | ![maid-160](160/previews/maid.png) | ![miko-160](160/previews/miko.png) | [<NSFW, click to see>](160/previews/nude.png) | [<NSFW, click to see>](160/previews/nude2.png) | ![suit-160](160/previews/suit.png) | ![yukata-160](160/previews/yukata.png) |
DicksonMassawe/ASR_SWAHILI
DicksonMassawe
2023-08-27T04:24:29Z
157
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-25T05:11:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec_large_xlsr_swahili results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_large_xlsr_swahili This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 1.10.0 - Datasets 2.13.0 - Tokenizers 0.13.3
dt-and-vanilla-ardt/dt-arrl_train_halfcheetah_high-2708_0309-33
dt-and-vanilla-ardt
2023-08-27T04:19:43Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-27T02:10:48Z
--- tags: - generated_from_trainer model-index: - name: dt-arrl_train_halfcheetah_high-2708_0309-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-arrl_train_halfcheetah_high-2708_0309-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
deepachalapathi/with_questions
deepachalapathi
2023-08-27T04:15:16Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-26T14:50:20Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # whateverweird17/with_questions This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("whateverweird17/with_questions") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
jaredoong/dqn-SpaceInvadersNoFrameskip-v4
jaredoong
2023-08-27T03:56:02Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T03:50:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 551.50 +/- 216.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jaredoong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jaredoong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jaredoong ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
lw2333/whisper-small-hi
lw2333
2023-08-27T03:50:24Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-04T14:17:40Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 33.09912807923474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4278 - Wer: 33.0991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0776 | 2.45 | 1000 | 0.3089 | 36.4514 | | 0.0207 | 4.89 | 2000 | 0.3399 | 33.1372 | | 0.0012 | 7.34 | 3000 | 0.4067 | 33.4081 | | 0.0005 | 9.8 | 4000 | 0.4278 | 33.0991 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
nightdude/config_60
nightdude
2023-08-27T03:30:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-27T03:30:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Dogge/aichan-codellama-34B
Dogge
2023-08-27T03:01:32Z
0
0
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-08-27T03:00:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
tmanabe/ir100-dogfooding-siamese
tmanabe
2023-08-27T02:59:09Z
3
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-08-27T02:48:41Z
--- license: apache-2.0 --- A mock model trained with https://github.com/amazon-science/esci-data
tmanabe/ir100-dogfooding-embedding
tmanabe
2023-08-27T02:50:09Z
112
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-27T02:48:08Z
--- license: apache-2.0 --- A mock model trained with https://github.com/amazon-science/esci-data
deepghs/anime_teen
deepghs
2023-08-27T02:24:15Z
0
0
null
[ "onnx", "art", "image-classification", "dataset:deepghs/anime_teen", "license:mit", "region:us" ]
image-classification
2023-08-26T14:09:22Z
--- license: mit datasets: - deepghs/anime_teen metrics: - accuracy pipeline_tag: image-classification tags: - art --- | Name | FLOPS | Params | Accuracy | AUC | Confusion | Labels | |:-------------------:|:-------:|:--------:|:----------:|:------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------:| | caformer_s36_v0 | 22.10G | 37.22M | 77.97% | 0.9046 | [confusion](https://huggingface.co/deepghs/anime_teen/blob/main/caformer_s36_v0/plot_confusion.png) | `contentious`, `safe_teen`, `non_teen` | | mobilenetv3_v0_dist | 0.63G | 4.18M | 74.92% | 0.8866 | [confusion](https://huggingface.co/deepghs/anime_teen/blob/main/mobilenetv3_v0_dist/plot_confusion.png) | `contentious`, `safe_teen`, `non_teen` |
dt-and-vanilla-ardt/dt-combo_train_halfcheetah_v2-2708_0054-99
dt-and-vanilla-ardt
2023-08-27T02:07:05Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T23:56:13Z
--- tags: - generated_from_trainer model-index: - name: dt-combo_train_halfcheetah_v2-2708_0054-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-combo_train_halfcheetah_v2-2708_0054-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Tao2AIScienceHPC/ppo-LunarLander-v2
Tao2AIScienceHPC
2023-08-27T01:59:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T01:59:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -504.11 +/- 74.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
baxterstockman/my_awesome_eli5_clm-model_new_new
baxterstockman
2023-08-27T01:48:18Z
145
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-27T01:34:36Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model_new_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model_new_new This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 4.7115 | | No log | 2.0 | 2 | 4.6939 | | No log | 3.0 | 3 | 4.6856 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
JUNGU/dqn-SpaceInvadersNoFrameskip-v4
JUNGU
2023-08-27T01:41:43Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T01:41:05Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 846.50 +/- 307.52 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga JUNGU -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga JUNGU -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga JUNGU ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 5000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
rohn132/rl_course_vizdoom_health_gathering_supreme
rohn132
2023-08-27T01:29:41Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T01:29:35Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.41 +/- 5.01 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r rohn132/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
pixep/lunar-lander
pixep
2023-08-27T01:16:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T01:15:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -1114.81 +/- 436.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dimitarrskv/a2c-PandaReachDense-v3
dimitarrskv
2023-08-27T00:26:21Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-27T00:20:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
njuptzzh/distilbert-base-uncased-finetuned-emotion
njuptzzh
2023-08-27T00:17:56Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-27T00:15:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9253341912779972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2153 - Accuracy: 0.9255 - F1: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7935 | 1.0 | 250 | 0.3036 | 0.9125 | 0.9108 | | 0.2502 | 2.0 | 500 | 0.2153 | 0.9255 | 0.9253 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Glavin001/coqar-questions-llama-2-7b-v0.1
Glavin001
2023-08-27T00:12:14Z
7
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:Glavin001/generate-questions-v0.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-26T23:05:52Z
--- language: - en datasets: - Glavin001/generate-questions-v0.1 library_name: transformers --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
josebruzzoni/disfluency-spanish-v4
josebruzzoni
2023-08-27T00:07:16Z
82
1
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:josebruzzoni/disfluency-spanish-v1", "base_model:finetune:josebruzzoni/disfluency-spanish-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T20:01:26Z
--- license: apache-2.0 base_model: josebruzzoni/disfluency-spanish-v1 tags: - generated_from_trainer metrics: - wer model-index: - name: disfluency-spanish-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # disfluency-spanish-v4 This model is a fine-tuned version of [josebruzzoni/disfluency-spanish-v1](https://huggingface.co/josebruzzoni/disfluency-spanish-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2653 - Wer: 27.7008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.002 | 20.41 | 1000 | 0.2377 | 20.2216 | | 0.0001 | 40.82 | 2000 | 0.2524 | 23.4072 | | 0.0001 | 61.22 | 3000 | 0.2617 | 26.7313 | | 0.0001 | 81.63 | 4000 | 0.2653 | 27.7008 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/dt-combo_train_halfcheetah_v2-2608_2243-66
dt-and-vanilla-ardt
2023-08-26T23:54:27Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T21:45:14Z
--- tags: - generated_from_trainer model-index: - name: dt-combo_train_halfcheetah_v2-2608_2243-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-combo_train_halfcheetah_v2-2608_2243-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
sehiro/AI-buncho-novel-ct2
sehiro
2023-08-26T23:17:57Z
6
1
transformers
[ "transformers", "ja", "license:openrail", "endpoints_compatible", "region:us" ]
null
2023-08-26T22:53:50Z
--- license: openrail language: - ja --- AIBunCho様の公開モデル (https://huggingface.co/AIBunCho/japanese-novel-gpt-j-6b) をctranslate2用に変換したデータセット。 8bit量子化しているため、精度が落ちているはずです。 ただし定量的なデータは現在のところありません。
Jims97/Komp
Jims97
2023-08-26T23:08:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T23:08:16Z
--- license: creativeml-openrail-m ---
rishabh063/lora-trained-xl-owl
rishabh063
2023-08-26T22:59:01Z
2
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-26T21:51:10Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of ohwx owl tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - rishabh063/lora-trained-xl-owl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of ohwx owl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
dt-and-vanilla-ardt/dt-combo_train_halfcheetah_v2-2608_2034-33
dt-and-vanilla-ardt
2023-08-26T21:43:16Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T19:35:50Z
--- tags: - generated_from_trainer model-index: - name: dt-combo_train_halfcheetah_v2-2608_2034-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-combo_train_halfcheetah_v2-2608_2034-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ulichovick/platzi-distilroberta-base-mrpc-glue-Andres-Rojas
ulichovick
2023-08-26T21:28:53Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-26T21:20:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-mrpc-glue-Andres-Rojas results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8848920863309353 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-Andres-Rojas This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6370 - Accuracy: 0.8431 - F1: 0.8849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5194 | 1.09 | 500 | 0.5060 | 0.8309 | 0.8852 | | 0.3535 | 2.18 | 1000 | 0.6370 | 0.8431 | 0.8849 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
huemin/fxhash
huemin
2023-08-26T21:08:23Z
8
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-27T02:19:19Z
Experimental Stable Diffusion 1.5 finetune on fxhash tokens
CiroN2022/alien-god-0
CiroN2022
2023-08-26T21:07:14Z
3
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-26T21:07:11Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Alien God ![Image 0](2211994.jpeg) None ## Image examples for the model: ![Image 1](2212003.jpeg) ![Image 2](2211875.jpeg) ![Image 3](2211886.jpeg) ![Image 4](2212010.jpeg) ![Image 5](2211889.jpeg) ![Image 6](2211941.jpeg) ![Image 7](2212032.jpeg) ![Image 8](2211876.jpeg) ![Image 9](2211877.jpeg)
sarwarbeing/water-impact-few-shot
sarwarbeing
2023-08-26T21:07:05Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "deberta-v2", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-26T20:11:43Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # sarwarbeing/water-impact-few-shot This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("sarwarbeing/water-impact-few-shot") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Nurmukhamed/dqn-SpaceInvadersNoFrameskip-v4
Nurmukhamed
2023-08-26T20:59:42Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T20:59:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 571.00 +/- 147.05 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Nurmukhamed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Nurmukhamed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Nurmukhamed ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Robert1547/Cheloo
Robert1547
2023-08-26T20:52:41Z
0
0
null
[ "ro", "license:openrail", "region:us" ]
null
2023-08-26T20:41:02Z
--- license: openrail language: - ro ---
AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA
AhmedSSoliman
2023-08-26T20:38:30Z
9
5
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "Code-Generation", "autotrain", "Llama2", "Pytorch", "PEFT", "QLoRA", "code", "coding", "dataset:AhmedSSoliman/CodeSearchNet", "dataset:AhmedSSoliman/CodeSearchNet-Python", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T15:56:42Z
--- tags: - Code-Generation - autotrain - text-generation - Llama2 - Pytorch - PEFT - QLoRA - code - coding pipeline_tag: text-generation widget: - text: Write a program that add five numbers - text: Write a python code for reading multiple images - text: Write a python code for the name Ahmed to be in a reversed order datasets: - AhmedSSoliman/CodeSearchNet - AhmedSSoliman/CodeSearchNet-Python --- # LlaMa2-CodeGen This model is [**LlaMa2-7b**](https://huggingface.co/meta-llama/Llama-2-7b) which is fine-tuned on the [**CodeSearchNet dataset**](https://github.com/github/CodeSearchNet) by using the method [**QLoRA**](https://github.com/artidoro/qlora) with [PEFT](https://github.com/huggingface/peft) library. # Model Trained on Google Colab Pro Using AutoTrain, PEFT and QLoRA [![Open in Colab][Colab Badge]][RDP Notebook] # You can load the LlaMa2-CodeGen model on google colab. ### Example ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig peft_model_id = "AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def create_prompt(instruction): system = "You are using the Llam2-CodeGen model, a coding assistant that will help the user to resolve the following instruction:\n" instruction = "### Input: " + instruction return system + "\n" + instruction + "\n\n" + "### Response:" + "\n" def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs, ): prompt = create_prompt(instruction) print(prompt) inputs = tokenizer(prompt, return_tensors="pt").to("cuda") #input_ids = inputs["input_ids"].to("cuda") #attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( #input_ids=input_ids, #attention_mask=attention_mask, **inputs, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) generated_response = tokenizer.decode(outputs[0], skip_special_tokens=True) stop_output = "### Input" gen_response = (generated_response.split(stop_output))[0] #s = generation_output.sequences[0] #output = tokenizer.decode(s, skip_special_tokens=True) #stop_output = "### Input" #gen_response = (output.split(stop_output))[0] #return output.split("### Response:")[1].lstrip("\n") return gen_response instruction = """ Write a python code for the name Ahmed to be in a reversed order """ print(generate(instruction)) ``` [Colab Badge]: https://colab.research.google.com/assets/colab-badge.svg [License-Badge]: https://img.shields.io/badge/License-MIT-blue.svg [RDP Issues]: https://img.shields.io/github/issues/PradyumnaKrishna/Colab-Hacks/Colab%20RDP?label=Issues [RDP Notebook]: https://colab.research.google.com/drive/18sAFC7msV0gJ24wn5gl41nU0QRynfLqG?usp=sharing [Code Issues]: https://img.shields.io/github/issues/PradyumnaKrishna/Colab-Hacks/Code%20Server?label=Issues [Code Notebook]: https://colab.research.google.com/drive/18sAFC7msV0gJ24wn5gl41nU0QRynfLqG?usp=sharing
GFazzito/speecht5_finetuned_voxpopuli_hr
GFazzito
2023-08-26T20:23:01Z
81
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "text-to-speech", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-26T18:57:02Z
--- license: mit base_model: microsoft/speecht5_tts tags: - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_hr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_hr This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4811 | 33.9 | 1000 | 0.4413 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ddoc/def1
ddoc
2023-08-26T19:54:02Z
0
0
null
[ "region:us" ]
null
2023-08-26T19:52:49Z
# Deforum Stable Diffusion — official extension for AUTOMATIC1111's webui <p align="left"> <a href="https://github.com/deforum-art/sd-webui-deforum/commits"><img alt="Last Commit" src="https://img.shields.io/github/last-commit/deforum-art/deforum-for-automatic1111-webui"></a> <a href="https://github.com/deforum-art/sd-webui-deforum/issues"><img alt="GitHub issues" src="https://img.shields.io/github/issues/deforum-art/deforum-for-automatic1111-webui"></a> <a href="https://github.com/deforum-art/sd-webui-deforum/stargazers"><img alt="GitHub stars" src="https://img.shields.io/github/stars/deforum-art/deforum-for-automatic1111-webui"></a> <a href="https://github.com/deforum-art/sd-webui-deforum/network"><img alt="GitHub forks" src="https://img.shields.io/github/forks/deforum-art/deforum-for-automatic1111-webui"></a> </a> </p> ## Need help? See our [FAQ](https://github.com/deforum-art/sd-webui-deforum/wiki/FAQ-&-Troubleshooting) ## Getting Started 1. Install [AUTOMATIC1111's webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/). 2. Now two ways: either clone the repo into the `extensions` directory via git commandline launched within in the `stable-diffusion-webui` folder ```sh git clone https://github.com/deforum-art/sd-webui-deforum extensions/deforum ``` Or download this repository, locate the `extensions` folder within your WebUI installation, create a folder named `deforum` and put the contents of the downloaded directory inside of it. Then restart WebUI. 3. Open the webui, find the Deforum tab at the top of the page. 4. Enter the animation settings. Refer to [this general guide](https://docs.google.com/document/d/1pEobUknMFMkn8F5TMsv8qRzamXX_75BShMMXV8IFslI/edit) and [this guide to math keyframing functions in Deforum](https://docs.google.com/document/d/1pfW1PwbDIuW0cv-dnuyYj1UzPqe23BlSLTJsqazffXM/edit?usp=sharing). However, **in this version prompt weights less than zero don't just like in original Deforum!** Split the positive and the negative prompt in the json section using --neg argument like this "apple:\`where(cos(t)>=0, cos(t), 0)\`, snow --neg strawberry:\`where(cos(t)<0, -cos(t), 0)\`" 5. To view animation frames as they're being made, without waiting for the completion of an animation, go to the 'Settings' tab and set the value of this toolbar **above zero**. Warning: it may slow down the generation process. ![adsdasunknown](https://user-images.githubusercontent.com/14872007/196064311-1b79866a-e55b-438a-84a7-004ff30829ad.png) 6. Run the script and see if you got it working or even got something. **In 3D mode a large delay is expected at first** as the script loads the depth models. In the end, using the default settings the whole thing should consume 6.4 GBs of VRAM at 3D mode peaks and no more than 3.8 GB VRAM in 3D mode if you launch the webui with the '--lowvram' command line argument. 7. After the generation process is completed, click the button with the self-describing name to show the video or gif result right in the GUI! 8. Join our Discord where you can post generated stuff, ask questions and more: https://discord.gg/deforum. <br> * There's also the 'Issues' tab in the repo, for well... reporting issues ;) 9. Profit! ## Known issues * This port is not fully backward-compatible with the notebook and the local version both due to the changes in how AUTOMATIC1111's webui handles Stable Diffusion models and the changes in this script to get it to work in the new environment. *Expect* that you may not get exactly the same result or that the thing may break down because of the older settings. ## Screenshots Amazing raw Deforum animation by [Pxl.Pshr](https://www.instagram.com/pxl.pshr): * Turn Audio ON! (Audio credits: SKRILLEX, FRED AGAIN & FLOWDAN - RUMBLE (PHACE'S DNB FLIP)) https://user-images.githubusercontent.com/121192995/224450647-39529b28-be04-4871-bb7a-faf7afda2ef2.mp4 Setting file of that video: [here](https://github.com/deforum-art/sd-webui-deforum/files/11353167/PxlPshrWinningAnimationSettings.txt). <br> Main extension tab: ![image](https://user-images.githubusercontent.com/121192995/226101131-43bf594a-3152-45dd-a5d1-2538d0bc221d.png) Keyframes tab: ![image](https://user-images.githubusercontent.com/121192995/226101140-bfe6cce7-9b78-4a1d-be9a-43e1fc78239e.png) ## License This program is distributed under the terms of the GNU Affero Public License v3.0, copyright (c) 2023 Deforum LLC. Some of its sublicensed integrated 3rd party components may have other licenses, see LICENSE for usage terms.
gabrikid/rare-puppers
gabrikid
2023-08-26T19:52:33Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-26T19:52:24Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8656716346740723 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
hapandya/xlmr-large-hi-bn-MLM-SQuAD-TyDi-MLQA
hapandya
2023-08-26T19:44:50Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "hi", "bn", "en", "dataset:squad", "dataset:tydiqa", "dataset:mlqa", "license:cc", "endpoints_compatible", "region:us" ]
question-answering
2023-08-26T16:48:48Z
--- license: cc datasets: - squad - tydiqa - mlqa language: - hi - bn - en pipeline_tag: question-answering --- # xlmr-large-hi-be-MLM-SQuAD-TyDi-MLQA Model Card ## Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("question-answering", model="hapandya/xlmr-large-hi-be-MLM-SQuAD-TyDi-MLQA") ## Load model directly from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("hapandya/xlmr-large-hi-be-MLM-SQuAD-TyDi-MLQA") model = AutoModelForQuestionAnswering.from_pretrained("hapandya/xlmr-large-hi-be-MLM-SQuAD-TyDi-MLQA"
hapandya/indic-hi-te-MLM-SQuAD-TyDi-MLQA
hapandya
2023-08-26T19:38:48Z
109
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "hi", "te", "en", "dataset:squad", "dataset:tydiqa", "dataset:mlqa", "license:cc", "endpoints_compatible", "region:us" ]
question-answering
2023-08-26T17:01:51Z
--- license: cc datasets: - squad - tydiqa - mlqa language: - hi - te - en pipeline_tag: question-answering --- # indicBERT-hi-te-MLM-SQuAD-TyDi-MLQA Model Card ## Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("question-answering", model="hapandya/indic-hi-te-MLM-SQuAD-TyDi-MLQA") ## Load model directly from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("hapandya/indic-hi-te-MLM-SQuAD-TyDi-MLQA") model = AutoModelForQuestionAnswering.from_pretrained("hapandya/indic-hi-te-MLM-SQuAD-TyDi-MLQA")
hapandya/indic-hi-bn-MLM-SQuAD-TyDi-MLQA
hapandya
2023-08-26T19:37:23Z
109
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "hi", "bn", "en", "dataset:squad", "dataset:tydiqa", "dataset:mlqa", "license:cc", "endpoints_compatible", "region:us" ]
question-answering
2023-08-26T17:01:38Z
--- license: cc datasets: - squad - tydiqa - mlqa language: - hi - bn - en pipeline_tag: question-answering --- # indicBERT-hi-be-MLM-SQuAD-TyDi-MLQA Model Card ## Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("question-answering", model="hapandya/indic-hi-be-MLM-SQuAD-TyDi-MLQA") ## Load model directly from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("hapandya/indic-hi-be-MLM-SQuAD-TyDi-MLQA") model = AutoModelForQuestionAnswering.from_pretrained("hapandya/indic-hi-be-MLM-SQuAD-TyDi-MLQA")
dt-and-vanilla-ardt/dt-robust_train_halfcheetah_v3-2608_1822-99
dt-and-vanilla-ardt
2023-08-26T19:34:00Z
33
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T17:23:36Z
--- tags: - generated_from_trainer model-index: - name: dt-robust_train_halfcheetah_v3-2608_1822-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-robust_train_halfcheetah_v3-2608_1822-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0115
bigmorning
2023-08-26T19:28:35Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T19:28:26Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0115 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0115 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.1115 - Train Wermet: 5.8174 - Validation Loss: 0.5875 - Validation Accuracy: 0.0637 - Validation Wermet: 12.3093 - Epoch: 114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | | 0.0096 | 0.1115 | 4.3534 | 0.4333 | 0.0636 | 10.3831 | 60 | | 0.0084 | 0.1115 | 4.4131 | 0.4417 | 0.0636 | 10.2134 | 61 | | 0.0072 | 0.1115 | 4.4827 | 0.4539 | 0.0636 | 10.4537 | 62 | | 0.0101 | 0.1114 | 4.6105 | 0.4701 | 0.0635 | 9.2620 | 63 | | 0.0114 | 0.1113 | 4.4725 | 0.4602 | 0.0637 | 11.3443 | 64 | | 0.0056 | 0.1115 | 4.6820 | 0.4678 | 0.0637 | 10.8401 | 65 | | 0.0035 | 0.1115 | 4.7095 | 0.4748 | 0.0637 | 10.8410 | 66 | | 0.0033 | 0.1115 | 4.5291 | 0.4831 | 0.0637 | 10.3950 | 67 | | 0.0029 | 0.1115 | 4.4502 | 0.4916 | 0.0637 | 10.8216 | 68 | | 0.0184 | 0.1110 | 4.2753 | 0.4987 | 0.0634 | 10.2126 | 69 | | 0.0091 | 0.1113 | 4.1128 | 0.4833 | 0.0638 | 10.8605 | 70 | | 0.0033 | 0.1115 | 4.1755 | 0.4911 | 0.0638 | 10.4538 | 71 | | 0.0026 | 0.1115 | 4.3450 | 0.5009 | 0.0637 | 10.1961 | 72 | | 0.0039 | 0.1115 | 4.6335 | 0.5079 | 0.0637 | 11.0165 | 73 | | 0.0030 | 0.1115 | 4.5756 | 0.5071 | 0.0637 | 9.9384 | 74 | | 0.0017 | 0.1115 | 4.6589 | 0.5090 | 0.0638 | 10.8814 | 75 | | 0.0012 | 0.1115 | 4.8756 | 0.5146 | 0.0638 | 10.9099 | 76 | | 0.0013 | 0.1115 | 4.9431 | 0.5220 | 0.0638 | 10.5558 | 77 | | 0.0136 | 0.1111 | 4.8817 | 0.5117 | 0.0637 | 10.1668 | 78 | | 0.0038 | 0.1115 | 5.1236 | 0.5118 | 0.0638 | 11.3651 | 79 | | 0.0017 | 0.1115 | 5.3989 | 0.5176 | 0.0638 | 11.3609 | 80 | | 0.0014 | 0.1115 | 5.5658 | 0.5231 | 0.0638 | 11.5637 | 81 | | 0.0008 | 0.1115 | 5.4076 | 0.5273 | 0.0638 | 11.5293 | 82 | | 0.0007 | 0.1116 | 5.5166 | 0.5325 | 0.0638 | 11.6874 | 83 | | 0.0007 | 0.1115 | 5.3020 | 0.5370 | 0.0638 | 11.6410 | 84 | | 0.0006 | 0.1116 | 5.3834 | 0.5424 | 0.0638 | 11.4686 | 85 | | 0.0005 | 0.1115 | 5.2441 | 0.5482 | 0.0638 | 11.7770 | 86 | | 0.0161 | 0.1110 | 5.8611 | 0.5310 | 0.0637 | 14.1541 | 87 | | 0.0043 | 0.1115 | 6.7439 | 0.5302 | 0.0638 | 13.7884 | 88 | | 0.0016 | 0.1115 | 6.4034 | 0.5337 | 0.0639 | 13.2969 | 89 | | 0.0009 | 0.1115 | 6.4491 | 0.5361 | 0.0639 | 13.3960 | 90 | | 0.0007 | 0.1115 | 6.4412 | 0.5412 | 0.0639 | 13.6544 | 91 | | 0.0005 | 0.1115 | 6.4941 | 0.5451 | 0.0639 | 13.4296 | 92 | | 0.0005 | 0.1116 | 6.4763 | 0.5493 | 0.0639 | 13.9268 | 93 | | 0.0005 | 0.1115 | 6.4452 | 0.5595 | 0.0638 | 12.9971 | 94 | | 0.0125 | 0.1111 | 5.7381 | 0.5505 | 0.0636 | 10.6493 | 95 | | 0.0066 | 0.1114 | 5.3763 | 0.5383 | 0.0639 | 10.1229 | 96 | | 0.0022 | 0.1115 | 5.4800 | 0.5424 | 0.0639 | 12.3926 | 97 | | 0.0013 | 0.1115 | 5.6556 | 0.5460 | 0.0639 | 11.1784 | 98 | | 0.0012 | 0.1115 | 6.1793 | 0.5467 | 0.0639 | 11.4956 | 99 | | 0.0006 | 0.1115 | 6.0584 | 0.5492 | 0.0640 | 12.1496 | 100 | | 0.0004 | 0.1116 | 5.8904 | 0.5531 | 0.0640 | 12.1934 | 101 | | 0.0003 | 0.1116 | 5.8994 | 0.5566 | 0.0640 | 12.0296 | 102 | | 0.0003 | 0.1116 | 5.8099 | 0.5608 | 0.0640 | 12.1687 | 103 | | 0.0003 | 0.1116 | 5.8167 | 0.5641 | 0.0640 | 11.8858 | 104 | | 0.0002 | 0.1116 | 5.7524 | 0.5681 | 0.0640 | 11.8685 | 105 | | 0.0002 | 0.1116 | 5.8104 | 0.5731 | 0.0639 | 11.9771 | 106 | | 0.0002 | 0.1116 | 5.7022 | 0.5770 | 0.0640 | 11.8855 | 107 | | 0.0002 | 0.1116 | 5.8197 | 0.5806 | 0.0640 | 11.6167 | 108 | | 0.0163 | 0.1109 | 5.0213 | 0.5551 | 0.0638 | 12.7567 | 109 | | 0.0047 | 0.1114 | 5.9526 | 0.5517 | 0.0640 | 12.5943 | 110 | | 0.0014 | 0.1115 | 6.1876 | 0.5544 | 0.0640 | 14.2314 | 111 | | 0.0009 | 0.1115 | 6.4595 | 0.5571 | 0.0640 | 13.3475 | 112 | | 0.0006 | 0.1115 | 5.5795 | 0.5598 | 0.0640 | 12.5131 | 113 | | 0.0019 | 0.1115 | 5.8174 | 0.5875 | 0.0637 | 12.3093 | 114 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Jiuzhouh/flan-t5-xxl-lora-commongen
Jiuzhouh
2023-08-26T19:19:20Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-26T19:19:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0110
bigmorning
2023-08-26T19:15:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T19:15:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0110 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0110 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0163 - Train Accuracy: 0.1109 - Train Wermet: 5.0213 - Validation Loss: 0.5551 - Validation Accuracy: 0.0638 - Validation Wermet: 12.7567 - Epoch: 109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | | 0.0096 | 0.1115 | 4.3534 | 0.4333 | 0.0636 | 10.3831 | 60 | | 0.0084 | 0.1115 | 4.4131 | 0.4417 | 0.0636 | 10.2134 | 61 | | 0.0072 | 0.1115 | 4.4827 | 0.4539 | 0.0636 | 10.4537 | 62 | | 0.0101 | 0.1114 | 4.6105 | 0.4701 | 0.0635 | 9.2620 | 63 | | 0.0114 | 0.1113 | 4.4725 | 0.4602 | 0.0637 | 11.3443 | 64 | | 0.0056 | 0.1115 | 4.6820 | 0.4678 | 0.0637 | 10.8401 | 65 | | 0.0035 | 0.1115 | 4.7095 | 0.4748 | 0.0637 | 10.8410 | 66 | | 0.0033 | 0.1115 | 4.5291 | 0.4831 | 0.0637 | 10.3950 | 67 | | 0.0029 | 0.1115 | 4.4502 | 0.4916 | 0.0637 | 10.8216 | 68 | | 0.0184 | 0.1110 | 4.2753 | 0.4987 | 0.0634 | 10.2126 | 69 | | 0.0091 | 0.1113 | 4.1128 | 0.4833 | 0.0638 | 10.8605 | 70 | | 0.0033 | 0.1115 | 4.1755 | 0.4911 | 0.0638 | 10.4538 | 71 | | 0.0026 | 0.1115 | 4.3450 | 0.5009 | 0.0637 | 10.1961 | 72 | | 0.0039 | 0.1115 | 4.6335 | 0.5079 | 0.0637 | 11.0165 | 73 | | 0.0030 | 0.1115 | 4.5756 | 0.5071 | 0.0637 | 9.9384 | 74 | | 0.0017 | 0.1115 | 4.6589 | 0.5090 | 0.0638 | 10.8814 | 75 | | 0.0012 | 0.1115 | 4.8756 | 0.5146 | 0.0638 | 10.9099 | 76 | | 0.0013 | 0.1115 | 4.9431 | 0.5220 | 0.0638 | 10.5558 | 77 | | 0.0136 | 0.1111 | 4.8817 | 0.5117 | 0.0637 | 10.1668 | 78 | | 0.0038 | 0.1115 | 5.1236 | 0.5118 | 0.0638 | 11.3651 | 79 | | 0.0017 | 0.1115 | 5.3989 | 0.5176 | 0.0638 | 11.3609 | 80 | | 0.0014 | 0.1115 | 5.5658 | 0.5231 | 0.0638 | 11.5637 | 81 | | 0.0008 | 0.1115 | 5.4076 | 0.5273 | 0.0638 | 11.5293 | 82 | | 0.0007 | 0.1116 | 5.5166 | 0.5325 | 0.0638 | 11.6874 | 83 | | 0.0007 | 0.1115 | 5.3020 | 0.5370 | 0.0638 | 11.6410 | 84 | | 0.0006 | 0.1116 | 5.3834 | 0.5424 | 0.0638 | 11.4686 | 85 | | 0.0005 | 0.1115 | 5.2441 | 0.5482 | 0.0638 | 11.7770 | 86 | | 0.0161 | 0.1110 | 5.8611 | 0.5310 | 0.0637 | 14.1541 | 87 | | 0.0043 | 0.1115 | 6.7439 | 0.5302 | 0.0638 | 13.7884 | 88 | | 0.0016 | 0.1115 | 6.4034 | 0.5337 | 0.0639 | 13.2969 | 89 | | 0.0009 | 0.1115 | 6.4491 | 0.5361 | 0.0639 | 13.3960 | 90 | | 0.0007 | 0.1115 | 6.4412 | 0.5412 | 0.0639 | 13.6544 | 91 | | 0.0005 | 0.1115 | 6.4941 | 0.5451 | 0.0639 | 13.4296 | 92 | | 0.0005 | 0.1116 | 6.4763 | 0.5493 | 0.0639 | 13.9268 | 93 | | 0.0005 | 0.1115 | 6.4452 | 0.5595 | 0.0638 | 12.9971 | 94 | | 0.0125 | 0.1111 | 5.7381 | 0.5505 | 0.0636 | 10.6493 | 95 | | 0.0066 | 0.1114 | 5.3763 | 0.5383 | 0.0639 | 10.1229 | 96 | | 0.0022 | 0.1115 | 5.4800 | 0.5424 | 0.0639 | 12.3926 | 97 | | 0.0013 | 0.1115 | 5.6556 | 0.5460 | 0.0639 | 11.1784 | 98 | | 0.0012 | 0.1115 | 6.1793 | 0.5467 | 0.0639 | 11.4956 | 99 | | 0.0006 | 0.1115 | 6.0584 | 0.5492 | 0.0640 | 12.1496 | 100 | | 0.0004 | 0.1116 | 5.8904 | 0.5531 | 0.0640 | 12.1934 | 101 | | 0.0003 | 0.1116 | 5.8994 | 0.5566 | 0.0640 | 12.0296 | 102 | | 0.0003 | 0.1116 | 5.8099 | 0.5608 | 0.0640 | 12.1687 | 103 | | 0.0003 | 0.1116 | 5.8167 | 0.5641 | 0.0640 | 11.8858 | 104 | | 0.0002 | 0.1116 | 5.7524 | 0.5681 | 0.0640 | 11.8685 | 105 | | 0.0002 | 0.1116 | 5.8104 | 0.5731 | 0.0639 | 11.9771 | 106 | | 0.0002 | 0.1116 | 5.7022 | 0.5770 | 0.0640 | 11.8855 | 107 | | 0.0002 | 0.1116 | 5.8197 | 0.5806 | 0.0640 | 11.6167 | 108 | | 0.0163 | 0.1109 | 5.0213 | 0.5551 | 0.0638 | 12.7567 | 109 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0100
bigmorning
2023-08-26T18:48:48Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T18:48:39Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0100 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0100 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0012 - Train Accuracy: 0.1115 - Train Wermet: 6.1793 - Validation Loss: 0.5467 - Validation Accuracy: 0.0639 - Validation Wermet: 11.4956 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | | 0.0096 | 0.1115 | 4.3534 | 0.4333 | 0.0636 | 10.3831 | 60 | | 0.0084 | 0.1115 | 4.4131 | 0.4417 | 0.0636 | 10.2134 | 61 | | 0.0072 | 0.1115 | 4.4827 | 0.4539 | 0.0636 | 10.4537 | 62 | | 0.0101 | 0.1114 | 4.6105 | 0.4701 | 0.0635 | 9.2620 | 63 | | 0.0114 | 0.1113 | 4.4725 | 0.4602 | 0.0637 | 11.3443 | 64 | | 0.0056 | 0.1115 | 4.6820 | 0.4678 | 0.0637 | 10.8401 | 65 | | 0.0035 | 0.1115 | 4.7095 | 0.4748 | 0.0637 | 10.8410 | 66 | | 0.0033 | 0.1115 | 4.5291 | 0.4831 | 0.0637 | 10.3950 | 67 | | 0.0029 | 0.1115 | 4.4502 | 0.4916 | 0.0637 | 10.8216 | 68 | | 0.0184 | 0.1110 | 4.2753 | 0.4987 | 0.0634 | 10.2126 | 69 | | 0.0091 | 0.1113 | 4.1128 | 0.4833 | 0.0638 | 10.8605 | 70 | | 0.0033 | 0.1115 | 4.1755 | 0.4911 | 0.0638 | 10.4538 | 71 | | 0.0026 | 0.1115 | 4.3450 | 0.5009 | 0.0637 | 10.1961 | 72 | | 0.0039 | 0.1115 | 4.6335 | 0.5079 | 0.0637 | 11.0165 | 73 | | 0.0030 | 0.1115 | 4.5756 | 0.5071 | 0.0637 | 9.9384 | 74 | | 0.0017 | 0.1115 | 4.6589 | 0.5090 | 0.0638 | 10.8814 | 75 | | 0.0012 | 0.1115 | 4.8756 | 0.5146 | 0.0638 | 10.9099 | 76 | | 0.0013 | 0.1115 | 4.9431 | 0.5220 | 0.0638 | 10.5558 | 77 | | 0.0136 | 0.1111 | 4.8817 | 0.5117 | 0.0637 | 10.1668 | 78 | | 0.0038 | 0.1115 | 5.1236 | 0.5118 | 0.0638 | 11.3651 | 79 | | 0.0017 | 0.1115 | 5.3989 | 0.5176 | 0.0638 | 11.3609 | 80 | | 0.0014 | 0.1115 | 5.5658 | 0.5231 | 0.0638 | 11.5637 | 81 | | 0.0008 | 0.1115 | 5.4076 | 0.5273 | 0.0638 | 11.5293 | 82 | | 0.0007 | 0.1116 | 5.5166 | 0.5325 | 0.0638 | 11.6874 | 83 | | 0.0007 | 0.1115 | 5.3020 | 0.5370 | 0.0638 | 11.6410 | 84 | | 0.0006 | 0.1116 | 5.3834 | 0.5424 | 0.0638 | 11.4686 | 85 | | 0.0005 | 0.1115 | 5.2441 | 0.5482 | 0.0638 | 11.7770 | 86 | | 0.0161 | 0.1110 | 5.8611 | 0.5310 | 0.0637 | 14.1541 | 87 | | 0.0043 | 0.1115 | 6.7439 | 0.5302 | 0.0638 | 13.7884 | 88 | | 0.0016 | 0.1115 | 6.4034 | 0.5337 | 0.0639 | 13.2969 | 89 | | 0.0009 | 0.1115 | 6.4491 | 0.5361 | 0.0639 | 13.3960 | 90 | | 0.0007 | 0.1115 | 6.4412 | 0.5412 | 0.0639 | 13.6544 | 91 | | 0.0005 | 0.1115 | 6.4941 | 0.5451 | 0.0639 | 13.4296 | 92 | | 0.0005 | 0.1116 | 6.4763 | 0.5493 | 0.0639 | 13.9268 | 93 | | 0.0005 | 0.1115 | 6.4452 | 0.5595 | 0.0638 | 12.9971 | 94 | | 0.0125 | 0.1111 | 5.7381 | 0.5505 | 0.0636 | 10.6493 | 95 | | 0.0066 | 0.1114 | 5.3763 | 0.5383 | 0.0639 | 10.1229 | 96 | | 0.0022 | 0.1115 | 5.4800 | 0.5424 | 0.0639 | 12.3926 | 97 | | 0.0013 | 0.1115 | 5.6556 | 0.5460 | 0.0639 | 11.1784 | 98 | | 0.0012 | 0.1115 | 6.1793 | 0.5467 | 0.0639 | 11.4956 | 99 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dthejaka/roberta-base_corona_nlp_classif
dthejaka
2023-08-26T18:29:28Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-26T09:17:31Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base_corona_nlp_classif results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_corona_nlp_classif This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5166 ## Model description This model is used to classify tweets regarding the COVID-19 as Extremely Positive, Positive, Neutral,Negative, Extremely Negative ## Intended uses & limitations Training is done on a raw uncleaned dataset. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6501 | 1.0 | 4496 | 0.6886 | | 0.4461 | 2.0 | 8992 | 0.5166 | | 0.3347 | 3.0 | 13488 | 0.6570 | | 0.152 | 4.0 | 17984 | 0.6583 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
FredZhang7/malphish-eater-v1
FredZhang7
2023-08-26T18:23:01Z
118
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "af", "en", "et", "sw", "sv", "sq", "de", "ca", "hu", "da", "tl", "so", "fi", "fr", "cs", "hr", "cy", "es", "sl", "tr", "pl", "pt", "nl", "id", "sk", "lt", "no", "lv", "vi", "it", "ro", "ru", "mk", "bg", "th", "ja", "ko", "multilingual", "dataset:FredZhang7/malicious-website-features-2.4M", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T14:55:18Z
--- license: apache-2.0 datasets: - FredZhang7/malicious-website-features-2.4M wget: - text: https://chat.openai.com/ - text: https://huggingface.co/FredZhang7/aivance-safesearch-v3 metrics: - accuracy language: - af - en - et - sw - sv - sq - de - ca - hu - da - tl - so - fi - fr - cs - hr - cy - es - sl - tr - pl - pt - nl - id - sk - lt - 'no' - lv - vi - it - ro - ru - mk - bg - th - ja - ko - multilingual --- It's very important to note that this model is not production-ready. <br> The classification task for v1 is split into two stages: 1. URL features model - **96.5%+ accurate** on training and validation data - 2,436,727 rows of labelled URLs - evaluation from v2: slightly overfitted, by perhaps around 0.8% 2. Website features model - **98.4% accurate** on training data, and **98.9% accurate** on validation data - 911,180 rows of 42 features - evaluation from v2: slightly biased towards the URL feature (bert_confidence) more than the other columns ## Training I applied cross-validation with `cv=5` to the training dataset to search for the best hyperparameters. Here's the dict passed to `sklearn`'s `GridSearchCV` function: ```python params = { 'objective': 'binary', 'metric': 'binary_logloss', 'boosting_type': ['gbdt', 'dart'], 'num_leaves': [15, 23, 31, 63], 'learning_rate': [0.001, 0.002, 0.01, 0.02], 'feature_fraction': [0.5, 0.6, 0.7, 0.9], 'early_stopping_rounds': [10, 20], 'num_boost_round': [500, 750, 800, 900, 1000, 1250, 2000] } ``` To reproduce the 98.4% accurate model, you can follow the data analysis on the [dataset page](https://huggingface.co/datasets/FredZhang7/malicious-website-features-2.4M) to filter out the unimportant features. Then train a LightGBM model using the most suited hyperparamters for this task: ```python params = { 'objective': 'binary', 'metric': 'binary_logloss', 'boosting_type': 'gbdt', 'num_leaves': 31, 'learning_rate': 0.01, 'feature_fraction': 0.6, 'early_stopping_rounds': 10, 'num_boost_round': 800 } ``` ## URL Features ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("FredZhang7/malware-phisher") model = AutoModelForSequenceClassification.from_pretrained("FredZhang7/malware-phisher") ``` ## Website Features ```bash pip install lightgbm ``` ```python import lightgbm as lgb lgb.Booster(model_file="phishing_model_combined_0.984_train.txt") ```
yasmineelabbar/marian-finetuned-kde4-en-to-fr-accelerate
yasmineelabbar
2023-08-26T18:19:57Z
118
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "fine-tuning", "fr", "en", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-21T14:41:40Z
--- license: apache-2.0 metrics: - bleu 52.98 - sacrebleu datasets: - kde4 language: - fr - en pipeline_tag: translation tags: - translation - fine-tuning - marian --- # Model Name: marian-finetuned-kde4-en-to-fr ## Description This model is a fine-tuned MarianMT model for English to French translation. It has been trained using the KDE4 dataset and optimized for translation tasks. ## Performance During training and evaluation, the model achieved a BLEU score of 52.98 on the validation dataset. The BLEU score is a measure of translation quality, with higher scores indicating better translation performance. ## Usage You can use this model for translating English sentences to French. Below is a sample code snippet for translating a sentence using the model: ```python from transformers import pipeline model_checkpoint = "yasmineelabbar/marian-finetuned-kde4-en-to-fr-accelerate" translator = pipeline("translation", model=model_checkpoint) result = translator("Input sentence in English") print(result)
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0085
bigmorning
2023-08-26T18:08:59Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T18:08:51Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0085 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0085 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0007 - Train Accuracy: 0.1115 - Train Wermet: 5.3020 - Validation Loss: 0.5370 - Validation Accuracy: 0.0638 - Validation Wermet: 11.6410 - Epoch: 84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | | 0.0096 | 0.1115 | 4.3534 | 0.4333 | 0.0636 | 10.3831 | 60 | | 0.0084 | 0.1115 | 4.4131 | 0.4417 | 0.0636 | 10.2134 | 61 | | 0.0072 | 0.1115 | 4.4827 | 0.4539 | 0.0636 | 10.4537 | 62 | | 0.0101 | 0.1114 | 4.6105 | 0.4701 | 0.0635 | 9.2620 | 63 | | 0.0114 | 0.1113 | 4.4725 | 0.4602 | 0.0637 | 11.3443 | 64 | | 0.0056 | 0.1115 | 4.6820 | 0.4678 | 0.0637 | 10.8401 | 65 | | 0.0035 | 0.1115 | 4.7095 | 0.4748 | 0.0637 | 10.8410 | 66 | | 0.0033 | 0.1115 | 4.5291 | 0.4831 | 0.0637 | 10.3950 | 67 | | 0.0029 | 0.1115 | 4.4502 | 0.4916 | 0.0637 | 10.8216 | 68 | | 0.0184 | 0.1110 | 4.2753 | 0.4987 | 0.0634 | 10.2126 | 69 | | 0.0091 | 0.1113 | 4.1128 | 0.4833 | 0.0638 | 10.8605 | 70 | | 0.0033 | 0.1115 | 4.1755 | 0.4911 | 0.0638 | 10.4538 | 71 | | 0.0026 | 0.1115 | 4.3450 | 0.5009 | 0.0637 | 10.1961 | 72 | | 0.0039 | 0.1115 | 4.6335 | 0.5079 | 0.0637 | 11.0165 | 73 | | 0.0030 | 0.1115 | 4.5756 | 0.5071 | 0.0637 | 9.9384 | 74 | | 0.0017 | 0.1115 | 4.6589 | 0.5090 | 0.0638 | 10.8814 | 75 | | 0.0012 | 0.1115 | 4.8756 | 0.5146 | 0.0638 | 10.9099 | 76 | | 0.0013 | 0.1115 | 4.9431 | 0.5220 | 0.0638 | 10.5558 | 77 | | 0.0136 | 0.1111 | 4.8817 | 0.5117 | 0.0637 | 10.1668 | 78 | | 0.0038 | 0.1115 | 5.1236 | 0.5118 | 0.0638 | 11.3651 | 79 | | 0.0017 | 0.1115 | 5.3989 | 0.5176 | 0.0638 | 11.3609 | 80 | | 0.0014 | 0.1115 | 5.5658 | 0.5231 | 0.0638 | 11.5637 | 81 | | 0.0008 | 0.1115 | 5.4076 | 0.5273 | 0.0638 | 11.5293 | 82 | | 0.0007 | 0.1116 | 5.5166 | 0.5325 | 0.0638 | 11.6874 | 83 | | 0.0007 | 0.1115 | 5.3020 | 0.5370 | 0.0638 | 11.6410 | 84 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
DrishtiSharma/DialoGPT-large-faqs-block-size-128-bs-16-lr-2e-5
DrishtiSharma
2023-08-26T18:03:34Z
138
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:microsoft/DialoGPT-large", "base_model:finetune:microsoft/DialoGPT-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-26T17:49:08Z
--- license: mit base_model: microsoft/DialoGPT-large tags: - generated_from_trainer model-index: - name: DialoGPT-large-faqs-block-size-128-bs-16-lr-2e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DialoGPT-large-faqs-block-size-128-bs-16-lr-2e-5 This model is a fine-tuned version of [microsoft/DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 3.3953 | | No log | 2.0 | 80 | 2.7368 | | No log | 3.0 | 120 | 2.4963 | | No log | 4.0 | 160 | 2.4083 | | No log | 5.0 | 200 | 2.3677 | | No log | 6.0 | 240 | 2.3529 | | No log | 7.0 | 280 | 2.3669 | | No log | 8.0 | 320 | 2.4104 | | No log | 9.0 | 360 | 2.4576 | | No log | 10.0 | 400 | 2.5224 | | No log | 11.0 | 440 | 2.5940 | | No log | 12.0 | 480 | 2.6281 | | 1.7771 | 13.0 | 520 | 2.6656 | | 1.7771 | 14.0 | 560 | 2.6991 | | 1.7771 | 15.0 | 600 | 2.7157 | | 1.7771 | 16.0 | 640 | 2.7565 | | 1.7771 | 17.0 | 680 | 2.7790 | | 1.7771 | 18.0 | 720 | 2.7847 | | 1.7771 | 19.0 | 760 | 2.7866 | | 1.7771 | 20.0 | 800 | 2.7873 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
mythrex/LunarLander-v2
mythrex
2023-08-26T17:55:37Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T17:55:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MLPPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.67 +/- 20.04 name: mean_reward verified: false --- # **MLPPO** Agent playing **LunarLander-v2** This is a trained model of a **MLPPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mythrex/ppo-LunarLander-v1
mythrex
2023-08-26T17:51:50Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T17:50:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MLPPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.30 +/- 21.99 name: mean_reward verified: false --- # **MLPPO** Agent playing **LunarLander-v2** This is a trained model of a **MLPPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0075
bigmorning
2023-08-26T17:42:28Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T17:42:20Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0075 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0030 - Train Accuracy: 0.1115 - Train Wermet: 4.5756 - Validation Loss: 0.5071 - Validation Accuracy: 0.0637 - Validation Wermet: 9.9384 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | | 0.0096 | 0.1115 | 4.3534 | 0.4333 | 0.0636 | 10.3831 | 60 | | 0.0084 | 0.1115 | 4.4131 | 0.4417 | 0.0636 | 10.2134 | 61 | | 0.0072 | 0.1115 | 4.4827 | 0.4539 | 0.0636 | 10.4537 | 62 | | 0.0101 | 0.1114 | 4.6105 | 0.4701 | 0.0635 | 9.2620 | 63 | | 0.0114 | 0.1113 | 4.4725 | 0.4602 | 0.0637 | 11.3443 | 64 | | 0.0056 | 0.1115 | 4.6820 | 0.4678 | 0.0637 | 10.8401 | 65 | | 0.0035 | 0.1115 | 4.7095 | 0.4748 | 0.0637 | 10.8410 | 66 | | 0.0033 | 0.1115 | 4.5291 | 0.4831 | 0.0637 | 10.3950 | 67 | | 0.0029 | 0.1115 | 4.4502 | 0.4916 | 0.0637 | 10.8216 | 68 | | 0.0184 | 0.1110 | 4.2753 | 0.4987 | 0.0634 | 10.2126 | 69 | | 0.0091 | 0.1113 | 4.1128 | 0.4833 | 0.0638 | 10.8605 | 70 | | 0.0033 | 0.1115 | 4.1755 | 0.4911 | 0.0638 | 10.4538 | 71 | | 0.0026 | 0.1115 | 4.3450 | 0.5009 | 0.0637 | 10.1961 | 72 | | 0.0039 | 0.1115 | 4.6335 | 0.5079 | 0.0637 | 11.0165 | 73 | | 0.0030 | 0.1115 | 4.5756 | 0.5071 | 0.0637 | 9.9384 | 74 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
BadreddineHug/LayoutLM_1
BadreddineHug
2023-08-26T17:42:25Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-26T17:38:33Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: LayoutLM_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LayoutLM_1 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4204 - Precision: 0.6552 - Recall: 0.7480 - F1: 0.6985 - Accuracy: 0.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.7 | 100 | 0.6185 | 0.0 | 0.0 | 0.0 | 0.8310 | | No log | 7.41 | 200 | 0.4585 | 0.6146 | 0.4646 | 0.5291 | 0.8839 | | No log | 11.11 | 300 | 0.4020 | 0.5870 | 0.6378 | 0.6113 | 0.8929 | | No log | 14.81 | 400 | 0.3775 | 0.6496 | 0.7008 | 0.6742 | 0.9006 | | 0.4776 | 18.52 | 500 | 0.3826 | 0.6268 | 0.7008 | 0.6617 | 0.9019 | | 0.4776 | 22.22 | 600 | 0.3864 | 0.6224 | 0.7008 | 0.6593 | 0.8981 | | 0.4776 | 25.93 | 700 | 0.4307 | 0.5759 | 0.7165 | 0.6386 | 0.8916 | | 0.4776 | 29.63 | 800 | 0.4205 | 0.6738 | 0.7480 | 0.7090 | 0.9123 | | 0.4776 | 33.33 | 900 | 0.4176 | 0.6552 | 0.7480 | 0.6985 | 0.9084 | | 0.0536 | 37.04 | 1000 | 0.4204 | 0.6552 | 0.7480 | 0.6985 | 0.9071 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
DrishtiSharma/DialoGPT-large-faqs-block-size128-bs-16
DrishtiSharma
2023-08-26T17:37:27Z
136
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:microsoft/DialoGPT-large", "base_model:finetune:microsoft/DialoGPT-large", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-26T13:36:46Z
--- license: mit base_model: microsoft/DialoGPT-large tags: - generated_from_trainer model-index: - name: DialoGPT-large-faqs-block-size128-bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DialoGPT-large-faqs-block-size128-bs-16 This model is a fine-tuned version of [microsoft/DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 2.4979 | | No log | 2.0 | 80 | 2.2314 | | No log | 3.0 | 120 | 2.2409 | | No log | 4.0 | 160 | 2.4555 | | No log | 5.0 | 200 | 2.7390 | | No log | 6.0 | 240 | 2.9258 | | No log | 7.0 | 280 | 3.0355 | | No log | 8.0 | 320 | 3.1368 | | No log | 9.0 | 360 | 3.2088 | | No log | 10.0 | 400 | 3.2541 | | No log | 11.0 | 440 | 3.3225 | | No log | 12.0 | 480 | 3.3775 | | 0.7809 | 13.0 | 520 | 3.4102 | | 0.7809 | 14.0 | 560 | 3.4456 | | 0.7809 | 15.0 | 600 | 3.4707 | | 0.7809 | 16.0 | 640 | 3.4786 | | 0.7809 | 17.0 | 680 | 3.4868 | | 0.7809 | 18.0 | 720 | 3.5035 | | 0.7809 | 19.0 | 760 | 3.5015 | | 0.7809 | 20.0 | 800 | 3.5086 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
wesley7137/platy-orca-bci-adapter
wesley7137
2023-08-26T17:36:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T17:35:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Vedikal/food
Vedikal
2023-08-26T17:32:17Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-26T17:30:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Food- Dreambooth model trained by Vedikal following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: Code-MGMCE-359 Sample pictures of this concept: ![0](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(1).jpg) ![1](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(2).jpg) ![2](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(5).jpg) ![3](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(7).jpg) ![4](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(4).jpg) ![5](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(3).jpg) ![6](https://huggingface.co/Vedikal/food/resolve/main/sample_images/var_(6).jpg)
dt-and-vanilla-ardt/dt-robust_train_halfcheetah_v3-2608_1609-66
dt-and-vanilla-ardt
2023-08-26T17:21:49Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T15:10:58Z
--- tags: - generated_from_trainer model-index: - name: dt-robust_train_halfcheetah_v3-2608_1609-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-robust_train_halfcheetah_v3-2608_1609-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Cicatrice/ppo-LunarLander-v2
Cicatrice
2023-08-26T17:06:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T17:06:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.26 +/- 12.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TheXin18/Xin18
TheXin18
2023-08-26T17:06:31Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-26T15:45:28Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of ND18 tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Danielbrdz/Barcenas-7b
Danielbrdz
2023-08-26T17:04:40Z
1,497
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "es", "en", "dataset:Danielbrdz/Barcenas-DataSet", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-25T17:33:48Z
--- license: other datasets: - Danielbrdz/Barcenas-DataSet language: - es - en --- Barcenas-7b a model based on orca-mini-v3-7b and LLama2-7b. Trained with a proprietary dataset to boost the creativity and consistency of its responses. This model would never have been possible thanks to the following people: Pankaj Mathur - For his orca-mini-v3-7b model which was the basis of the Barcenas-7b fine-tune. Maxime Labonne - Thanks to his code and tutorial for fine-tuning in LLama2 TheBloke - For his script for a peft adapter Georgi Gerganov - For his llama.cp project that contributed in Barcenas-7b functions TrashPandaSavior - Reddit user who with his information would never have started the project. Made with ❤️ in Guadalupe, Nuevo Leon, Mexico 🇲🇽
Jzuluaga/accent-id-commonaccent_xlsr-de-german
Jzuluaga
2023-08-26T17:03:24Z
6
2
speechbrain
[ "speechbrain", "audio-classification", "embeddings", "Accent Identification", "pytorch", "wav2vec2", "XLSR", "CommonAccent", "German", "de", "dataset:CommonVoice", "arxiv:2305.18283", "arxiv:2006.13979", "arxiv:2106.04624", "license:mit", "region:us" ]
audio-classification
2023-08-05T16:21:33Z
--- language: - de thumbnail: null tags: - audio-classification - speechbrain - embeddings - Accent Identification - pytorch - wav2vec2 - XLSR - CommonAccent - German license: mit datasets: - CommonVoice metrics: - Accuracy widget: - example_title: Germany src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-de-german/resolve/main/data/germany.wav - example_title: Switzerland src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-de-german/resolve/main/data/switzerland.wav - example_title: Italy src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-de-german/resolve/main/data/italy.wav --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice **German Accent Classifier** **Abstract**: Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. This repository provides all the necessary tools to perform accent identification from speech recordings with [SpeechBrain](https://github.com/speechbrain/speechbrain). The system uses a model pretrained on the CommonAccent dataset in German (4 accents). This system is based on the CommonLanguage Recipe located here: https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonLanguage The provided system can recognize the following 4 accents from short speech recordings in German (DE): ``` - DEUTSCHLAND DEUTSCH - SCHWEIZERDEUTSCH - OSTERREICHISCHES DEUTSCH - ITALIENISCH DEUTSCH ``` <a href="https://github.com/JuanPZuluaga/accent-recog-slt2022"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green"> </a> Github repository link: https://github.com/JuanPZuluaga/accent-recog-slt2022 **NOTE**: due to incompatibility with the model and the current SpeechBrain interfaces, we cannot offer the Inference API. Please, follow the steps in **"Perform Accent Identification from Speech Recordings"** to use this German Accent ID model. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is: | Release (dd/mm/yyyy) | Accuracy (%) |:-------------:|:--------------:| | 01-08-2023 (this model) | 75.5 | ## Pipeline description This system is composed of a fine-tuned XLSR model coupled with statistical pooling. A classifier, trained with NLL Loss, is applied on top of that. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Accent Identification from Speech Recordings ```python import torchaudio from speechbrain.pretrained.interfaces import foreign_class classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-de-german", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier") # German Accent Example out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-de-german/data/german.wav') print(text_lab) # Swiss Example out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-de-german/data/switzerland.wav') print(text_lab) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Clone our repository in https://github.com/JuanPZuluaga/accent-recog-slt2022: ```bash git clone https://github.com/JuanPZuluaga/accent-recog-slt2022 cd CommonAccent/accent_id python train_w2v2.py hparams/train_w2v2.yaml ``` You can find our training results (models, logs, etc) in this repository's `Files and versions` page. ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Cite our work: CommonAccent If you find useful this work, please cite our work as: ``` @article{zuluaga2023commonaccent, title={CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice}, author={Zuluaga-Gomez, Juan and Ahmed, Sara and Visockas, Danielius and Subakan, Cem}, journal={Interspeech 2023}, url={https://arxiv.org/abs/2305.18283}, year={2023} } ``` #### Cite XLSR model ```@article{conneau2020unsupervised, title={Unsupervised cross-lingual representation learning for speech recognition}, author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael}, journal={arXiv preprint arXiv:2006.13979}, year={2020} } ``` # **Cite SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
Jzuluaga/accent-id-commonaccent_xlsr-it-italian
Jzuluaga
2023-08-26T17:02:48Z
3
1
speechbrain
[ "speechbrain", "wav2vec2", "audio-classification", "embeddings", "Accent Identification", "pytorch", "XLSR", "CommonAccent", "Italian", "it", "dataset:CommonVoice", "arxiv:2305.18283", "arxiv:2006.13979", "arxiv:2106.04624", "license:mit", "region:us" ]
audio-classification
2023-08-04T22:06:35Z
--- language: - it thumbnail: null tags: - audio-classification - speechbrain - embeddings - Accent Identification - pytorch - wav2vec2 - XLSR - CommonAccent - Italian license: mit datasets: - CommonVoice metrics: - Accuracy widget: - example_title: Veneto src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-it-italian/resolve/main/data/veneto.wav - example_title: Emilian src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-it-italian/resolve/main/data/emilian.wav - example_title: Trentino src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-it-italian/resolve/main/data/trentino.wav - example_title: Meridionale src: >- https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-it-italian/resolve/main/data/meridionale.wav --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice **Italian Accent Classifier** **Abstract**: Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. This repository provides all the necessary tools to perform accent identification from speech recordings with [SpeechBrain](https://github.com/speechbrain/speechbrain). The system uses a model pretrained on the CommonAccent dataset in Italian (5 accents). This system is based on the CommonLanguage Recipe located here: https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonLanguage The provided system can recognize the following 5 accents from short speech recordings in Italian (IT): ``` - VENETO - EMILIANO - MERIDIONALE - TENDENTE AL SICULO MA NON MARCATO - BASILICATA TRENTINO ``` <a href="https://github.com/JuanPZuluaga/accent-recog-slt2022"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green"> </a> Github repository link: https://github.com/JuanPZuluaga/accent-recog-slt2022 **NOTE**: due to incompatibility with the model and the current SpeechBrain interfaces, we cannot offer the Inference API. Please, follow the steps in **"Perform Accent Identification from Speech Recordings"** to use this Italian Accent ID model. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). ## Pipeline description This system is composed of a fine-tuned XLSR model coupled with statistical pooling. A classifier, trained with NLL Loss, is applied on top of that. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Accent Identification from Speech Recordings ```python import torchaudio from speechbrain.pretrained.interfaces import foreign_class classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-it-italian", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier") # Veneto accent example out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-it-italian/data/veneto.wav') print(text_lab) # Trentino accent example out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-it-italian/data/trentino.wav') print(text_lab) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Clone our repository in https://github.com/JuanPZuluaga/accent-recog-slt2022: ```bash git clone https://github.com/JuanPZuluaga/accent-recog-slt2022 cd CommonAccent/accent_id python train_w2v2.py hparams/train_w2v2.yaml ``` You can find our training results (models, logs, etc) in this repository's `Files and versions` page. ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Cite our work: CommonAccent If you find useful this work, please cite our work as: ``` @article{zuluaga2023commonaccent, title={CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice}, author={Zuluaga-Gomez, Juan and Ahmed, Sara and Visockas, Danielius and Subakan, Cem}, journal={Interspeech 2023}, url={https://arxiv.org/abs/2305.18283}, year={2023} } ``` #### Cite XLSR model ```@article{conneau2020unsupervised, title={Unsupervised cross-lingual representation learning for speech recognition}, author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael}, journal={arXiv preprint arXiv:2006.13979}, year={2020} } ``` # **Cite SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
bigmorning/whisper_char_cv12_pad_lob100_low_sup__0060
bigmorning
2023-08-26T17:02:42Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T17:02:33Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low_sup__0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low_sup__0060 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0117 - Train Accuracy: 0.1114 - Train Wermet: 4.3648 - Validation Loss: 0.4241 - Validation Accuracy: 0.0636 - Validation Wermet: 10.1904 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 2.5942 | 0.0399 | 3.6402 | 1.9371 | 0.0319 | 16.1531 | 0 | | 1.8766 | 0.0532 | 6.8384 | 1.7437 | 0.0343 | 15.0408 | 1 | | 1.7251 | 0.0570 | 5.9150 | 1.6630 | 0.0358 | 10.5002 | 2 | | 1.6457 | 0.0591 | 5.1153 | 1.5993 | 0.0369 | 10.4737 | 3 | | 1.5935 | 0.0604 | 4.8231 | 1.5582 | 0.0375 | 8.5794 | 4 | | 1.5526 | 0.0615 | 4.1987 | 1.5103 | 0.0385 | 9.4130 | 5 | | 1.5165 | 0.0625 | 4.0179 | 1.4812 | 0.0391 | 6.6025 | 6 | | 1.4868 | 0.0633 | 3.6770 | 1.4465 | 0.0399 | 6.7562 | 7 | | 1.4565 | 0.0642 | 3.3851 | 1.4326 | 0.0402 | 6.3327 | 8 | | 1.4271 | 0.0650 | 3.2883 | 1.3788 | 0.0413 | 6.5933 | 9 | | 1.3965 | 0.0659 | 3.0822 | 1.3558 | 0.0415 | 5.7852 | 10 | | 1.3541 | 0.0671 | 2.8659 | 1.2958 | 0.0429 | 5.2978 | 11 | | 1.3066 | 0.0684 | 2.4942 | 1.2323 | 0.0440 | 4.9600 | 12 | | 1.2401 | 0.0703 | 2.0745 | 1.1430 | 0.0456 | 3.6837 | 13 | | 1.1549 | 0.0728 | 1.6202 | 1.0353 | 0.0478 | 2.9217 | 14 | | 1.0653 | 0.0755 | 1.3041 | 0.9650 | 0.0492 | 2.0673 | 15 | | 0.9765 | 0.0783 | 1.0922 | 0.8766 | 0.0510 | 2.7441 | 16 | | 0.8977 | 0.0808 | 1.2561 | 0.8053 | 0.0524 | 3.6015 | 17 | | 0.8246 | 0.0831 | 1.2955 | 0.7391 | 0.0537 | 3.2922 | 18 | | 0.7591 | 0.0852 | 1.3109 | 0.7221 | 0.0541 | 3.6946 | 19 | | 0.6988 | 0.0872 | 1.3303 | 0.6366 | 0.0559 | 3.8377 | 20 | | 0.6424 | 0.0891 | 1.3256 | 0.5883 | 0.0569 | 4.1079 | 21 | | 0.5925 | 0.0908 | 1.3637 | 0.5649 | 0.0575 | 3.7297 | 22 | | 0.5405 | 0.0925 | 1.3142 | 0.5193 | 0.0584 | 3.5121 | 23 | | 0.4929 | 0.0942 | 1.3157 | 0.4836 | 0.0591 | 4.8017 | 24 | | 0.4523 | 0.0956 | 1.4635 | 0.4542 | 0.0598 | 4.5538 | 25 | | 0.4116 | 0.0971 | 1.5118 | 0.4377 | 0.0602 | 4.9221 | 26 | | 0.3759 | 0.0984 | 1.6392 | 0.4101 | 0.0608 | 5.6152 | 27 | | 0.3446 | 0.0994 | 1.7744 | 0.3890 | 0.0613 | 7.0303 | 28 | | 0.3176 | 0.1004 | 2.1998 | 0.3751 | 0.0616 | 8.1772 | 29 | | 0.2945 | 0.1012 | 2.5525 | 0.3598 | 0.0619 | 8.2165 | 30 | | 0.2739 | 0.1019 | 2.7708 | 0.3425 | 0.0623 | 9.8904 | 31 | | 0.2553 | 0.1026 | 3.0620 | 0.3336 | 0.0625 | 9.8263 | 32 | | 0.2380 | 0.1032 | 3.3150 | 0.3248 | 0.0627 | 10.1323 | 33 | | 0.2225 | 0.1037 | 3.4188 | 0.3186 | 0.0629 | 9.8005 | 34 | | 0.2074 | 0.1043 | 3.4245 | 0.3194 | 0.0629 | 10.0836 | 35 | | 0.1921 | 0.1048 | 3.5998 | 0.3096 | 0.0631 | 10.9020 | 36 | | 0.1795 | 0.1053 | 3.7938 | 0.3075 | 0.0632 | 11.1284 | 37 | | 0.1671 | 0.1057 | 3.7413 | 0.3038 | 0.0633 | 10.9362 | 38 | | 0.1546 | 0.1061 | 3.7830 | 0.3024 | 0.0634 | 10.7771 | 39 | | 0.1432 | 0.1066 | 3.6808 | 0.3035 | 0.0635 | 11.4689 | 40 | | 0.1319 | 0.1070 | 3.7824 | 0.3027 | 0.0635 | 10.9949 | 41 | | 0.1211 | 0.1074 | 3.9301 | 0.3060 | 0.0636 | 10.8937 | 42 | | 0.1113 | 0.1077 | 3.8509 | 0.3060 | 0.0636 | 10.7188 | 43 | | 0.1012 | 0.1081 | 3.8780 | 0.3104 | 0.0636 | 10.6993 | 44 | | 0.0922 | 0.1085 | 3.6982 | 0.3123 | 0.0637 | 10.6308 | 45 | | 0.0827 | 0.1088 | 3.7227 | 0.3185 | 0.0637 | 10.8392 | 46 | | 0.0741 | 0.1092 | 3.7235 | 0.3222 | 0.0637 | 10.2774 | 47 | | 0.0665 | 0.1095 | 3.7106 | 0.3314 | 0.0637 | 9.5736 | 48 | | 0.0589 | 0.1098 | 3.6104 | 0.3393 | 0.0636 | 9.9114 | 49 | | 0.0515 | 0.1100 | 3.6150 | 0.3431 | 0.0637 | 10.1000 | 50 | | 0.0453 | 0.1103 | 3.6760 | 0.3542 | 0.0636 | 9.4499 | 51 | | 0.0389 | 0.1105 | 3.7376 | 0.3607 | 0.0636 | 9.6629 | 52 | | 0.0335 | 0.1107 | 3.7707 | 0.3692 | 0.0637 | 9.5104 | 53 | | 0.0283 | 0.1109 | 3.7655 | 0.3771 | 0.0636 | 9.6379 | 54 | | 0.0246 | 0.1110 | 3.9511 | 0.3898 | 0.0636 | 9.7582 | 55 | | 0.0211 | 0.1111 | 3.9487 | 0.3960 | 0.0636 | 10.0651 | 56 | | 0.0191 | 0.1112 | 4.0695 | 0.4041 | 0.0636 | 9.1873 | 57 | | 0.0150 | 0.1113 | 4.2329 | 0.4158 | 0.0636 | 10.5777 | 58 | | 0.0117 | 0.1114 | 4.3648 | 0.4241 | 0.0636 | 10.1904 | 59 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
NoobCoder10/Scoring_V_1
NoobCoder10
2023-08-26T16:51:09Z
1
0
peft
[ "peft", "pytorch", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
2023-08-26T16:46:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Lykon/dreamshaper-2
Lykon
2023-08-26T16:49:34Z
18
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "art", "artistic", "anime", "dreamshaper", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-26T16:49:33Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers - anime - dreamshaper duplicated_from: lykon-models/dreamshaper-2 --- # Dreamshaper 2 `lykon-models/dreamshaper-2` is a Stable Diffusion model that has been fine-tuned on [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). Please consider supporting me: - on [Patreon](https://www.patreon.com/Lykon275) - or [buy me a coffee](https://snipfeed.co/lykon) ## Diffusers For more general information on how to run text-to-image models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation). 1. Installation ``` pip install diffusers transformers accelerate ``` 2. Run ```py from diffusers import AutoPipelineForText2Image, DEISMultistepScheduler import torch pipe = AutoPipelineForText2Image.from_pretrained('lykon-models/dreamshaper-2', torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors" generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=25, generator=generator).images[0] image.save("./image.png") ``` ![](./image.png) ## Notes - **Version 8** focuses on improving what V7 started. Might be harder to do photorealism compared to realism focused models, as it might be hard to do anime compared to anime focused models, but it can do both pretty well if you're skilled enough. Check the examples! - **Version 7** improves lora support, NSFW and realism. If you're interested in "absolute" realism, try AbsoluteReality. - **Version 6** adds more lora support and more style in general. It should also be better at generating directly at 1024 height (but be careful with it). 6.x are all improvements. - **Version 5** is the best at photorealism and has noise offset. - **Version 4** is much better with anime (can do them with no LoRA) and booru tags. It might be harder to control if you're used to caption style, so you might still want to use version 3.31. V4 is also better with eyes at lower resolutions. Overall is like a "fix" of V3 and shouldn't be too much different.