modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
GillesMeyhi/whisper-tiny-minds14
GillesMeyhi
2023-09-09T15:32:21Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-08T13:49:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 33.47107438016529 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7299 - Wer Ortho: 34.1764 - Wer: 33.4711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0012 | 17.86 | 500 | 0.7299 | 34.1764 | 33.4711 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
deepachalapathi/without_questions
deepachalapathi
2023-09-09T15:28:19Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-09T15:27:36Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # whateverweird17/without_questions This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("whateverweird17/without_questions") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
sento800/distilbert-base-cased-squad
sento800
2023-09-09T15:24:52Z
122
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-01T18:05:20Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-cased-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-squad This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3677 | 1.0 | 1350 | 1.5690 | | 1.2389 | 2.0 | 2700 | 1.3666 | | 0.8202 | 3.0 | 4050 | 1.3394 | | 0.5676 | 4.0 | 5400 | 1.5052 | | 0.4022 | 5.0 | 6750 | 1.6366 | | 0.305 | 6.0 | 8100 | 1.7423 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Terps/ppo-Huggy
Terps
2023-09-09T15:24:00Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-09T15:23:56Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Terps/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Chris-choi/xlm-roberta-base-finetuned-panx-all
Chris-choi
2023-09-09T15:06:33Z
101
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-09T14:50:45Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1738 - F1: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.301 | 1.0 | 835 | 0.1789 | 0.8323 | | 0.1567 | 2.0 | 1670 | 0.1684 | 0.8437 | | 0.1025 | 3.0 | 2505 | 0.1738 | 0.8542 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.12.1+cu113 - Datasets 2.14.5 - Tokenizers 0.13.3
Chris-choi/xlm-roberta-base-finetuned-panx-en
Chris-choi
2023-09-09T14:49:28Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-09T14:42:18Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6911349520045172 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3993 - F1: 0.6911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0952 | 1.0 | 50 | 0.5689 | 0.5558 | | 0.4968 | 2.0 | 100 | 0.4343 | 0.6557 | | 0.3427 | 3.0 | 150 | 0.3993 | 0.6911 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.12.1+cu113 - Datasets 2.14.5 - Tokenizers 0.13.3
Ori/lama-2-13b-peft-strategyqa-no-retrieval-v2-seed-1
Ori
2023-09-09T14:45:55Z
0
0
peft
[ "peft", "safetensors", "region:us" ]
null
2023-09-09T14:43:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
trieudemo11/llama_7b_attrb_cate_big_l280_18
trieudemo11
2023-09-09T14:41:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T14:41:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
ipipan/herbert-base-qa-v1
ipipan
2023-09-09T14:29:35Z
107
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "sentence-similarity", "pl", "dataset:ipipan/polqa", "dataset:ipipan/maupqa", "arxiv:2305.05486", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-31T10:22:50Z
--- datasets: - ipipan/polqa - ipipan/maupqa language: - pl pipeline_tag: sentence-similarity --- # HerBERT QA HerBERT QA model encodes the Polish sentences or paragraphs into a 768-dimensional dense vector space and can be used for tasks like document retrieval or semantic search. See [the paper](https://arxiv.org/abs/2305.05486) for more details. This model is deprecated. Please consider using the [Silver Retriever (v1)](https://huggingface.co/ipipan/silver-retriever-base-v1) for much better performance. ## Additional Information ### Model Creators The was created by Piotr Rybak from the [Institute of Computer Science, Polish Academy of Sciences](http://zil.ipipan.waw.pl/). This work was supported by the European Regional Development Fund as a part of 2014โ€“2020 Smart Growth Operational Programme, CLARIN โ€” Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00-00C002/19. ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{rybak-2023-maupqa, title = "{MAUPQA}: Massive Automatically-created {P}olish Question Answering Dataset", author = "Rybak, Piotr", booktitle = "Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.bsnlp-1.2", pages = "11--16", abstract = "Recently, open-domain question answering systems have begun to rely heavily on annotated datasets to train neural passage retrievers. However, manually annotating such datasets is both difficult and time-consuming, which limits their availability for less popular languages. In this work, we experiment with several methods for automatically collecting weakly labeled datasets and show how they affect the performance of the neural passage retrieval models. As a result of our work, we publish the MAUPQA dataset, consisting of nearly 400,000 question-passage pairs for Polish, as well as the HerBERT-QA neural retriever.", } ```
rlewczuk/distilbert-base-uncased-finetuned-emotion
rlewczuk
2023-09-09T14:27:50Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T14:16:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249250567487983 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2171 - Accuracy: 0.925 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8247 | 1.0 | 250 | 0.3085 | 0.908 | 0.9060 | | 0.2455 | 2.0 | 500 | 0.2171 | 0.925 | 0.9249 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.1.0.dev20230414+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
rrozb/rl_course_vizdoom_health_gathering_supreme
rrozb
2023-09-09T14:23:03Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T14:13:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 4.22 +/- 0.57 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r rrozb/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
squarelike/polyglot-ko-medical-5.8b
squarelike
2023-09-09T14:15:45Z
263
4
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "causal-lm", "medical", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-15T06:46:52Z
--- language: - ko tags: - pytorch - causal-lm - medical license: apache-2.0 pipeline_tag: text-generation --- [https://github.com/jwj7140/ko-medical-chat](https://github.com/jwj7140/ko-medical-chat) # Polyglot-Ko-Medical-5.8b polyglot-ko-medical์€ [polyglot-ko](https://github.com/EleutherAI/polyglot)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์˜๋ฃŒ ๋ถ„์•ผ์˜ ํ•œ๊ธ€ raw ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต์‹œํ‚จ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ## ํ•™์Šต ๋ฐ์ดํ„ฐ polyglot-ko-medical์€ ์•ฝ 420MB์˜ ์˜๋ฃŒ ๋ถ„์•ผ ํ•œ๊ธ€ ๋ง๋ญ‰์น˜๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ฃผ์š” ๋ฐ์ดํ„ฐ์…‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. | Source |Size (MB) | Link | |----------------------------------|---------|------------------------------------------| | AIHub ์˜๋ฃŒ, ๋ฒ•๋ฅ  ์ „๋ฌธ ์„œ์  ๋ง๋ญ‰์น˜ | 351.0 | aihub.or.kr | | AIHub ์ „๋ฌธ๋ถ„์•ผ ํ•œ์˜ ๋ง๋ญ‰์น˜ | 63.4 | aihub.or.kr| | ์งˆ๋ณ‘๊ด€๋ฆฌ์ฒญ ๊ตญ๊ฐ€๊ฑด๊ฐ•์ •๋ณดํฌํ„ธ | 8.33 | health.kdca.go.kr | | ๋ณด๊ฑด๋ณต์ง€๋ถ€ ๊ตญ๊ฐ€์ •์‹ ๊ฑด๊ฐ•์ •๋ณดํฌํ„ธ | < 1.0 | mentalhealth.go.kr | ## ํ•™์Šต polyglot-ko-medical-5.8b๋Š” [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b)์—์„œ qlora๋กœ ์ถ”๊ฐ€ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. - lora_alpha: 32 - lora_dropout: 0.05 - lora_r: 8 - target_modules: query_key_value - epoch: 3 - learning_rate: 3e-4
haouarin/jais-13b-8bits
haouarin
2023-09-09T14:08:43Z
5
0
transformers
[ "transformers", "pytorch", "jais", "text-generation", "custom_code", "ar", "autotrain_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-08T13:13:32Z
--- language: - ar --- Demo google colab : https://colab.research.google.com/drive/1QLihIVHOnWrz5P7XER4mn13YuGAbnPDq?usp=sharing
Yntec/BasilRemix
Yntec
2023-09-09T14:08:34Z
285
1
diffusers
[ "diffusers", "safetensors", "Anime", "3D", "Illustration", "nuigurumi", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-08T02:14:20Z
--- license: other library_name: diffusers pipeline_tag: text-to-image tags: - Anime - 3D - Illustration - nuigurumi - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- # Basil Remix BasilMix mixed with ReVAnimated v11 to bring its compositions back to life! It has the MoistMixV2VAE baked in. Comparison: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/OxgKIXdKMCQujcEHYkqlp.png) (Click for larger) Sample and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/Klj0dHwDyLi_caXyAh_6l.png) Pretty detailed CUTE Girl, Cartoon, sitting on a computer monitor, holding antique TV, DETAILED CHIBI EYES, gorgeous detailed hair, Magazine ad, iconic, 1940, sharp focus. Illustration By KlaysMoji and artgerm and Clay Mann and and leyendecker and kyoani Original page: https://huggingface.co/nuigurumi/basil_mix # Recipe - SuperMerger Weight sum Train Difference Use MBW 0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1 Model A: BasilMix Model B: ReVAnimated v11 Output Model: BasilRemix
Sachin16/q-FrozenLake-v1-4x4-noSlippery
Sachin16
2023-09-09T13:59:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T13:59:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Sachin16/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jjluo/my_awesome_mingliangqiangu_model
jjluo
2023-09-09T13:50:28Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-09T13:27:22Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_mingliangqiangu_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mingliangqiangu_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1140 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7575 | 0.99 | 67 | 1.3989 | 0.9287 | | 0.4806 | 2.0 | 135 | 0.4502 | 0.9935 | | 0.2902 | 2.99 | 202 | 0.2922 | 0.9944 | | 0.2073 | 4.0 | 270 | 0.2118 | 0.9981 | | 0.1975 | 4.99 | 337 | 0.1831 | 0.9963 | | 0.1514 | 6.0 | 405 | 0.1576 | 0.9935 | | 0.1282 | 6.99 | 472 | 0.1290 | 1.0 | | 0.1224 | 8.0 | 540 | 0.1317 | 0.9963 | | 0.1147 | 8.99 | 607 | 0.1127 | 1.0 | | 0.1129 | 9.93 | 670 | 0.1140 | 0.9981 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
StefanoCaloni/PixelCopter
StefanoCaloni
2023-09-09T13:46:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T11:17:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 29.20 +/- 24.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Christiyke/roberta-base-Roberta-Model
Christiyke
2023-09-09T13:42:24Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-06T09:03:21Z
--- license: mit base_model: Roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-Roberta-Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-Roberta-Model This model is a fine-tuned version of [Roberta-base](https://huggingface.co/Roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1276 - F1: 0.7654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5905 | 0.5 | 500 | 0.8005 | 0.7418 | | 0.5825 | 1.0 | 1000 | 0.7042 | 0.7480 | | 0.4843 | 1.5 | 1500 | 0.9599 | 0.7538 | | 0.4913 | 2.0 | 2000 | 0.9035 | 0.7595 | | 0.396 | 2.5 | 2500 | 0.8974 | 0.7607 | | 0.398 | 3.0 | 3000 | 0.8997 | 0.7652 | | 0.3065 | 3.5 | 3500 | 1.0698 | 0.7619 | | 0.2987 | 4.0 | 4000 | 0.9735 | 0.7655 | | 0.217 | 4.5 | 4500 | 1.1451 | 0.7560 | | 0.237 | 5.0 | 5000 | 1.1276 | 0.7654 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Zeroxdesignart/Difu
Zeroxdesignart
2023-09-09T13:23:06Z
0
0
null
[ "region:us" ]
null
2023-09-09T13:22:35Z
import requests API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content image_bytes = query({ "inputs": "Astronaut riding a horse", }) # You can access the image with PIL.Image for example import io from PIL import Image image = Image.open(io.BytesIO(image_bytes))
liubomyrgavryliv/en_colorExtractor
liubomyrgavryliv
2023-09-09T13:20:03Z
12
1
spacy
[ "spacy", "token-classification", "en", "doi:10.57967/hf/2848", "license:mit", "model-index", "region:us" ]
token-classification
2023-09-07T10:53:06Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_colorExtractor results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9655765921 - name: NER Recall type: recall value: 0.9705882353 - name: NER F Score type: f_score value: 0.9680759275 --- Model to extract color entities from chunks of notes | Feature | Description | | --- | --- | | **Name** | `en_colorExtractor` | | **Version** | `0.0.1` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Liubomyr Gavryliv](mineralogy.rocks) | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `COLOR` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 96.81 | | `ENTS_P` | 96.56 | | `ENTS_R` | 97.06 | | `TOK2VEC_LOSS` | 1365.52 | | `NER_LOSS` | 147789.01 |
ingeol/llama_qlora_test_trainversion2_3000
ingeol
2023-09-09T12:27:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T12:27:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
VietnamAIHub/Vietnamese_LLama2_13B_8K_SFT_General_Domain_Knowledge
VietnamAIHub
2023-09-09T12:25:05Z
137
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-29T03:20:47Z
# Vietnamese Llama2-13B 8k Context Length with LoRA Adapters This repository contains a Llama-13B model fine-tuned with QLoRA (Quantization Low-Rank Adapter) adapters. The adapter is a plug-and-play tool that enables the LLaMa model to perform well in many Vietnamese NLP tasks. Project Github page: [Github](https://github.com/VietnamAIHub/Vietnamese_LLMs) ## Model Overview The Vietnamese Llama2-13b model is a large language model capable of generating meaningful text and can be used in a wide variety of natural language processing tasks, including text generation, sentiment analysis, and more. By using LoRA adapters, the model achieves better performance on low-resource tasks and demonstrates improved generalization. ## Dataset and Fine-Tuning The LLaMa2 model was fine-tuned on over 200K Vietnamese instructions from various sources to improve its ability to understand and generate text for different tasks. The instruction dataset comprises data from the following sources: Dataset link: Comming soon ## Testing the Model by yourself. To load the fine-tuned Llama-13B model with LoRA adapters, follow the code snippet below: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = "VietnamAIHub/Vietnamese_LLama2_13B_8K_SFT_General_Domain_Knowledge" ## Loading Base LLaMa model weight and Merge with Adapter Weight wiht the base model m = AutoModelForCausalLM.from_pretrained( model_name, load_in_8bit=True, torch_dtype=torch.bfloat16, pretraining_tp=1, # use_auth_token=True, # trust_remote_code=True, cache_dir=cache_dir, ) tok = AutoTokenizer.from_pretrained( model_name, cache_dir=cache_dir, padding_side="right", use_fast=False, # Fast tokenizer giving issues. tokenizer_type='llama', #if 'llama' in args.model_name_or_path else None, # Needed for HF name change use_auth_token=True, ) tok.bos_token_id = 1 stop_token_ids = [0] class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: for stop_id in stop_token_ids: if input_ids[0][-1] == stop_id: return True return False generation_config = dict( temperature=0.2, top_k=20, top_p=0.9, do_sample=True, num_beams=1, repetition_penalty=1.2, max_new_tokens=400, early_stopping=True, ) prompts_input="Cรกch ฤ‘แปƒ hแปc tแบญp vแป mแป™t mรดn hแปc thแบญt tแป‘t" system_prompt=f"<s>[INST] <<SYS>>\n You are a helpful assistant, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ that your responses are socially unbiased and positive in nature.\ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ correct. If you don't know the answer to a question, please response as language model you are not able to respone detailed to these kind of question.\n<</SYS>>\n\n {prompts_input} [/INST] " input_ids = tok(message, return_tensors="pt").input_ids input_ids = input_ids.to(m.device) stop = StopOnTokens() streamer = TextIteratorStreamer(tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True) # #print(tok.decode(output[0])) generation_config = dict( temperature=0.1, top_k=30, top_p=0.95, do_sample=True, # num_beams=1, repetition_penalty=1.2, max_new_tokens=2048, ## 8K early_stopping=True, stopping_criteria=StoppingCriteriaList([stop]), ) inputs = tok(message,return_tensors="pt") #add_special_tokens=False ? generation_output = m.generate( input_ids = inputs["input_ids"].to(device), attention_mask = inputs['attention_mask'].to(device), eos_token_id=tok.eos_token_id, pad_token_id=tok.pad_token_id, **generation_config ) generation_output_ = m.generate(input_ids = inputs["input_ids"].to(device), **generation_config) s = generation_output[0] output = tok.decode(s,skip_special_tokens=True) #response = output.split("### Output:")[1].strip() print(output) ``` ## Conclusion The Vietnamese Llama2-13b with LoRA adapters is a versatile language model that can be utilized for a wide range of NLP tasks in Vietnamese. We hope that researchers and developers find this model useful and are encouraged to experiment with it in their projects. For any questions, feedback, or contributions, please feel free to contact the maintainers of this repository TranNhiem ๐Ÿ™Œ: [Linkedin](https://www.linkedin.com/in/tran-nhiem-ab1851125/) [Twitter](https://twitter.com/TranRick2) [Facebook](https://www.facebook.com/jean.tran.336), Project [Discord](https://discord.gg/MC3yDZNz). Happy fine-tuning and experimenting with the Llama2-13B model!
sontn122/tmp_trainer
sontn122
2023-09-09T12:20:41Z
159
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-09T12:17:50Z
--- tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
moniem/finetuning-sentiment-model-3000-samples
moniem
2023-09-09T11:42:08Z
102
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T11:35:48Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8646864686468646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3239 - Accuracy: 0.8633 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Prot10/vit-base-patch16-224-for-pre_evaluation
Prot10
2023-09-09T11:30:17Z
20
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-29T17:34:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-for-pre_evaluation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-for-pre_evaluation This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6048 - Accuracy: 0.3929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5774 | 0.98 | 16 | 1.5109 | 0.3022 | | 1.4794 | 1.97 | 32 | 1.4942 | 0.3242 | | 1.4536 | 2.95 | 48 | 1.4943 | 0.3187 | | 1.421 | 4.0 | 65 | 1.4247 | 0.3407 | | 1.3882 | 4.98 | 81 | 1.4944 | 0.3462 | | 1.3579 | 5.97 | 97 | 1.4180 | 0.3571 | | 1.2838 | 6.95 | 113 | 1.4693 | 0.3681 | | 1.2695 | 8.0 | 130 | 1.4359 | 0.3434 | | 1.2016 | 8.98 | 146 | 1.4656 | 0.3599 | | 1.2087 | 9.97 | 162 | 1.4550 | 0.3379 | | 1.206 | 10.95 | 178 | 1.5056 | 0.3516 | | 1.1236 | 12.0 | 195 | 1.5003 | 0.3434 | | 1.0534 | 12.98 | 211 | 1.5193 | 0.3269 | | 1.0024 | 13.97 | 227 | 1.4890 | 0.3681 | | 0.9767 | 14.95 | 243 | 1.5628 | 0.3434 | | 0.9201 | 16.0 | 260 | 1.6306 | 0.3516 | | 0.9136 | 16.98 | 276 | 1.5715 | 0.3626 | | 0.8566 | 17.97 | 292 | 1.5966 | 0.3654 | | 0.8273 | 18.95 | 308 | 1.6048 | 0.3929 | | 0.7825 | 20.0 | 325 | 1.6175 | 0.3846 | | 0.736 | 20.98 | 341 | 1.6526 | 0.3929 | | 0.7008 | 21.97 | 357 | 1.6563 | 0.3736 | | 0.6714 | 22.95 | 373 | 1.7319 | 0.3901 | | 0.7039 | 24.0 | 390 | 1.6866 | 0.3929 | | 0.628 | 24.98 | 406 | 1.7023 | 0.3791 | | 0.6182 | 25.97 | 422 | 1.7301 | 0.3901 | | 0.5957 | 26.95 | 438 | 1.7157 | 0.3846 | | 0.5973 | 28.0 | 455 | 1.7478 | 0.3709 | | 0.5655 | 28.98 | 471 | 1.7377 | 0.3736 | | 0.5631 | 29.54 | 480 | 1.7374 | 0.3736 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
felixshier/ac-01-bert-finetuned
felixshier
2023-09-09T11:25:10Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-15T23:32:39Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: ac-01-bert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ac-01-bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1172 - Validation Loss: 0.5493 - Train F1: 0.8137 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.5556 | 0.4472 | 0.7965 | 0 | | 0.3877 | 0.4268 | 0.8107 | 1 | | 0.2931 | 0.4459 | 0.8165 | 2 | | 0.1734 | 0.5071 | 0.8223 | 3 | | 0.1172 | 0.5493 | 0.8137 | 4 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
sd-dreambooth-library/tatar-style
sd-dreambooth-library
2023-09-09T11:18:50Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-09T11:15:48Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### tatar style on Stable Diffusion via Dreambooth #### model by nailmarsel This your the Stable Diffusion model fine-tuned the tatar style concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **tatar_style** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/5.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/6.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/12.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/3.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/0.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/11.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/4.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/2.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/7.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/8.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/10.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/1.jpeg) ![image 12](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/9.jpeg)
xszhou/CartPole-v1
xszhou
2023-09-09T11:17:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T11:17:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 1500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Kyrmasch/mDeBERTa-v3-base-SQuAD2-kaz
Kyrmasch
2023-09-09T11:08:17Z
105
0
transformers
[ "transformers", "pytorch", "deberta-v2", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2023-09-05T05:58:16Z
Base: timpal0l/mdeberta-v3-base-squad2
haouarin/jais-13b-chat-8bits
haouarin
2023-09-09T10:45:56Z
6
3
transformers
[ "transformers", "pytorch", "jais", "text-generation", "custom_code", "autotrain_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-08T12:19:30Z
Demo google colab : https://colab.research.google.com/drive/13rz5tGDdHc3fTah8qT9rmOKdIg1ylqcD?usp=sharing
RVC-RU/glad-valakas-ru
RVC-RU
2023-09-09T10:38:53Z
0
8
null
[ "license:mit", "region:us" ]
null
2023-09-09T06:47:31Z
--- license: mit --- # ะ ัƒััะบะพัะทั‹ั‡ะฝะฐั ะผะพะดะตะปัŒ ะฝะฐ ัั‚ั€ะธะผะตั€ะฐ GLAD VALAKAS ###### By nekoanime :) ##### - ะœะพะดะตะปัŒ ัะดะตะปะฐะฝะฐ ะฒ 350 ัะฟะพั…. D ะธ G ั„ะฐะนะปั‹ ัั‚ะฐะฝะดะฐั€ั‚ะฝั‹ะต ##### - ะ”ะฐั‚ะฐัะตั‚ ะตัั‚ัŒ ะฒ ั„ะฐะนะปะฐั…, ะผะพะถะฝะพ ัะฒะพะฑะพะดะฝะพ ั‚ั€ะตะฝะธั‚ัŒ ะธ ะดะพะฟะธะปะธะฒะฐั‚ัŒ ะผะพะดะตะปัŒ ะดะพ ะธะดะตะฐะปะฐ ะตัะปะธ ั…ะพั‚ะธั‚ะต. ## ะขะตัั‚ั‹ ะผะพะดะตะปะธ (ะœะฐั‚ ะฟั€ะธััƒั‚ัั‚ะฒัƒะตั‚) ### ะะธะถะต ััั‹ะปะบะธ ะดะปั ัะบะฐั‡ะธะฒะฐะฝะธั ะฐัƒะดะธะพ (ะฟั€ัะผั‹ะต) [ะ—ะฐะฟะธััŒ ะณะพะปะพัะฐ 1 ะฒ ั€ะตะฐะปัŒะฝะพะผ ะฒั€ะตะผะตะฝะธ](https://cdn.discordapp.com/attachments/650365898678468647/1149966845969969192/valakas_1.mp3) [ะ—ะฐะฟะธััŒ ะณะพะปะพัะฐ 2 ะฒ ั€ะตะฐะปัŒะฝะพะผ ะฒั€ะตะผะตะฝะธ](https://cdn.discordapp.com/attachments/650365898678468647/1149966846326493246/valakas_2.mp3)
SoyGema/english-hindi
SoyGema
2023-09-09T10:34:48Z
156
2
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "translation", "en", "hi", "dataset:opus100", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-09-02T20:43:14Z
--- language: - en - hi license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: english-hindi results: - task: name: Translation type: translation dataset: name: opus100 en-hi type: opus100 config: en-hi split: validation args: en-hi metrics: - name: Bleu type: bleu value: 0 pipeline_tag: translation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-hindi This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus100 en-hi dataset. It achieves the following results on the evaluation set: - Loss: 0.0653 - Bleu: 0.0 - Gen Len: 97.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
badokorach/bert-base-multilingual-cased-finetuned-luganda-qa
badokorach
2023-09-09T10:31:09Z
20
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-09-09T09:09:27Z
--- tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-luganda-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-luganda-qa This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3748 | 1.0 | 2215 | 0.1817 | | 0.0707 | 2.0 | 4430 | 0.0123 | | 0.0141 | 3.0 | 6645 | 0.0007 | | 0.0045 | 4.0 | 8860 | 0.0002 | | 0.0005 | 5.0 | 11075 | 0.0000 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
davanstrien/detr_beyond_words
davanstrien
2023-09-09T10:30:30Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "detr", "object-detection", "license:mit", "endpoints_compatible", "region:us" ]
object-detection
2022-03-02T23:29:05Z
--- license: mit tags: - object-detection widget: - src: https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/19.jpg example_title: page - src: https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/65.jpg example_title: page2 --- # detr_beyond_words (WIP) [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) fine tuned on [Beyond Words](https://github.com/LibraryOfCongress/newspaper-navigator/tree/master/beyond_words_data).
camenduru/ffmpeg-cuda
camenduru
2023-09-09T10:17:18Z
0
1
null
[ "region:us" ]
null
2023-09-09T10:16:55Z
FFmpeg README ============= FFmpeg is a collection of libraries and tools to process multimedia content such as audio, video, subtitles and related metadata. ## Libraries * `libavcodec` provides implementation of a wider range of codecs. * `libavformat` implements streaming protocols, container formats and basic I/O access. * `libavutil` includes hashers, decompressors and miscellaneous utility functions. * `libavfilter` provides means to alter decoded audio and video through a directed graph of connected filters. * `libavdevice` provides an abstraction to access capture and playback devices. * `libswresample` implements audio mixing and resampling routines. * `libswscale` implements color conversion and scaling routines. ## Tools * [ffmpeg](https://ffmpeg.org/ffmpeg.html) is a command line toolbox to manipulate, convert and stream multimedia content. * [ffplay](https://ffmpeg.org/ffplay.html) is a minimalistic multimedia player. * [ffprobe](https://ffmpeg.org/ffprobe.html) is a simple analysis tool to inspect multimedia content. * Additional small tools such as `aviocat`, `ismindex` and `qt-faststart`. ## Documentation The offline documentation is available in the **doc/** directory. The online documentation is available in the main [website](https://ffmpeg.org) and in the [wiki](https://trac.ffmpeg.org). ### Examples Coding examples are available in the **doc/examples** directory. ## License FFmpeg codebase is mainly LGPL-licensed with optional components licensed under GPL. Please refer to the LICENSE file for detailed information. ## Contributing Patches should be submitted to the ffmpeg-devel mailing list using `git format-patch` or `git send-email`. Github pull requests should be avoided because they are not part of our review process and will be ignored.
antikpatel128/OUTPUT_DIR
antikpatel128
2023-09-09T09:54:33Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-08T14:21:44Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Slider SDXL - LoRA ![Image 0](1739210.jpeg) <h2 id="heading-2">SDXL ONLY</h2><ul><li><p>weight: <strong>0 to 5.0</strong></p></li><li><p>positive: <strong>more realistic</strong></p></li><li><p>negative: <strong>less realistic, cartoon, painting, etc</strong></p></li></ul><p></p><p>I noticed the more bizarre your prompt gets, the more SDXL wants to turn it into a cartoon. This helps give you the ability to adjust the level of realism in a photo. All images were generated without refiner. I refuse. </p><p></p><p>If you like my work, I am not asking for coffee, but a kind review is always appreciated.<br /><br /></p> ## Image examples for the model: ![Image 1](1739267.jpeg) ![Image 2](1739266.jpeg) ![Image 3](1739235.jpeg) ![Image 4](1739247.jpeg)
hwkang/distilbert-base-uncased-finetuned-emotion
hwkang
2023-09-09T09:42:18Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T07:25:55Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9263847378294227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Accuracy: 0.9265 - F1: 0.9264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.815 | 1.0 | 250 | 0.3069 | 0.915 | 0.9144 | | 0.2449 | 2.0 | 500 | 0.2151 | 0.9265 | 0.9264 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
rrozb/LunarLanderPPO
rrozb
2023-09-09T09:28:00Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T09:27:53Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -196.83 +/- 90.71 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'rrozb/LunarLanderPPO' 'batch_size': 512 'minibatch_size': 128} ```
Bhuvaneshwari/worktual_vectone_cai
Bhuvaneshwari
2023-09-09T09:27:48Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-09T09:13:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
ninachely/my-ruDialoGPT-medium-model
ninachely
2023-09-09T08:58:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:t-bank-ai/ruDialoGPT-medium", "base_model:finetune:t-bank-ai/ruDialoGPT-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-09T08:13:49Z
--- license: mit base_model: tinkoff-ai/ruDialoGPT-medium tags: - generated_from_trainer model-index: - name: my-ruDialoGPT-medium-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-ruDialoGPT-medium-model This model is a fine-tuned version of [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5214 | 1.0 | 3488 | 1.4633 | | 1.399 | 2.0 | 6976 | 1.3927 | | 1.3553 | 3.0 | 10464 | 1.3729 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
Sunny98/q-FrozenLake-v1-4x4-noSlippery
Sunny98
2023-09-09T08:51:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T08:51:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Sunny98/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KobanBanan/ruRoberta-large_ner
KobanBanan
2023-09-09T08:41:56Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:ai-forever/ruRoberta-large", "base_model:finetune:ai-forever/ruRoberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-08T14:34:59Z
--- base_model: ai-forever/ruRoberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ruRoberta-large_ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruRoberta-large_ner This model is a fine-tuned version of [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1853 - Precision: 0.7273 - Recall: 0.8 - F1: 0.7619 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.4171 | 0.5833 | 0.7 | 0.6364 | 0.8067 | | No log | 2.0 | 30 | 0.2306 | 0.6765 | 0.7667 | 0.7188 | 0.9 | | No log | 3.0 | 45 | 0.1853 | 0.7273 | 0.8 | 0.7619 | 0.9333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0.dev20230621+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
Venkatesh4342/pegasus-samsum
Venkatesh4342
2023-09-09T07:39:35Z
9
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/pegasus-large", "base_model:finetune:google/pegasus-large", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-07T14:22:01Z
--- base_model: google/pegasus-large tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4659 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4091 - Rouge1: 0.4659 - Rouge2: 0.2345 - Rougel: 0.3946 - Rougelsum: 0.3951 - Gen Len: 17.7467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.8025 | 0.27 | 500 | 1.4403 | 0.4466 | 0.2101 | 0.3832 | 0.3841 | 21.64 | | 1.5936 | 0.54 | 1000 | 1.3766 | 0.4786 | 0.2374 | 0.4017 | 0.4013 | 21.24 | | 1.5926 | 0.81 | 1500 | 1.3910 | 0.5118 | 0.2643 | 0.4282 | 0.4286 | 20.2267 | | 1.5067 | 1.09 | 2000 | 1.4028 | 0.4982 | 0.261 | 0.4155 | 0.4157 | 20.4267 | | 1.5712 | 1.36 | 2500 | 1.4236 | 0.4712 | 0.234 | 0.3964 | 0.3969 | 17.0 | | 1.6177 | 1.63 | 3000 | 1.4151 | 0.4768 | 0.2382 | 0.4019 | 0.4022 | 16.28 | | 1.6289 | 1.9 | 3500 | 1.4112 | 0.4744 | 0.2346 | 0.402 | 0.4033 | 17.0267 | | 1.6326 | 2.17 | 4000 | 1.4096 | 0.4682 | 0.234 | 0.3985 | 0.3994 | 17.1333 | | 1.5929 | 2.44 | 4500 | 1.4093 | 0.4637 | 0.2342 | 0.3939 | 0.3942 | 17.16 | | 1.4351 | 2.72 | 5000 | 1.4090 | 0.4684 | 0.2346 | 0.3953 | 0.3955 | 17.8133 | | 1.6445 | 2.99 | 5500 | 1.4091 | 0.4659 | 0.2345 | 0.3946 | 0.3951 | 17.7467 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
922-CA/natsuki-lm-lora-tests
922-CA
2023-09-09T07:14:46Z
0
0
null
[ "license:llama2", "region:us" ]
null
2023-09-07T08:39:45Z
--- license: llama2 --- For better/best results, use "Player" and "Natsuki" like so: \nPlayer: (prompt)\Natsuki: # l2-7b-natsuki-v0.1 (09/07/2023) * Fine-tuned on Natsuki dialogue from DDLC (dataset of ~800 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From chat LLaMA-2-7b * Lora of [l2-7b-natsuki-ddlc-v0.1](https://huggingface.co/922-CA/l2-7b-natsuki-ddlc-v0.1) # l2-7b-natsuki-v0.1-Kv2 (09/08/2023) * Fine-tuned on Natsuki dialogue from DDLC (dataset of ~800 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From [Kimiko-LLaMA-2-7b](https://huggingface.co/johnwick123forevr/Llama2-chat-kimiko-Sharded-2gb) * Lora of [l2-7b-natsuki-ddlc-v0.1-Kv2](https://huggingface.co/922-CA/l2-7b-natsuki-ddlc-v0.1-Kv2)
922-CA/sayori-lm-lora-tests
922-CA
2023-09-09T07:13:10Z
0
0
null
[ "license:llama2", "region:us" ]
null
2023-09-07T08:40:14Z
--- license: llama2 --- For better/best results, use "Player" and "Sayori" like so: \nPlayer: (prompt)\Sayori: # l2-7b-sayori-v0.1 (09/07/2023) * Fine-tuned on Sayori dialogue from DDLC (dataset of ~600 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From chat LLaMA-2-7b * Lora of [l2-7b-sayori-ddlc-v0.1](https://huggingface.co/922-CA/l2-7b-sayori-ddlc-v0.1) # l2-7b-sayori-v0.1-Kv2 (09/08/2023) * Fine-tuned on Sayori dialogue from DDLC (dataset of ~600 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From [Kimiko-LLaMA-2-7b](https://huggingface.co/johnwick123forevr/Llama2-chat-kimiko-Sharded-2gb) * Lora of [l2-7b-sayori-ddlc-v0.1-Kv2](https://huggingface.co/922-CA/l2-7b-sayori-ddlc-v0.1-Kv2)
FredNajjar/my_awesome_qa_model
FredNajjar
2023-09-09T07:12:36Z
122
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-09T02:17:32Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.2079 | | 2.4745 | 2.0 | 500 | 1.6112 | | 2.4745 | 3.0 | 750 | 1.5901 | | 0.9178 | 4.0 | 1000 | 1.6356 | | 0.9178 | 5.0 | 1250 | 1.6687 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
osieosie/bloom-mnli-4bit-7b-bnb-seed87
osieosie
2023-09-09T07:10:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T07:10:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
922-CA/l2-7b-yuri-ddlc-v0.1
922-CA
2023-09-09T07:07:30Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-07T09:03:31Z
--- license: llama2 --- # l2-7b-yuri-ddlc-v0.1: * Experimental LLaMA-2 7b chat fine-tuned for Yuri character from DDLC * Fine-tuned on a dataset of ~1300 items (dialogue scraped from game augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn each into snippets of multi-turn chat dialogue between Player and Yuri) * [GGMLs](https://huggingface.co/922-CA/l2-7b-yuri-ddlc-v0.1-ggml), [GGUFs](https://huggingface.co/922-CA/l2-7b-yuri-ddlc-v0.1-gguf) * [QLoras (hf and GGML)](https://huggingface.co/922-CA/yuri-lm-lora-tests/tree/main/l2-7b-yuri-v0.1) ### USAGE This is meant to be mainly a chat model with limited RP ability. For best results: replace "Human" and "Assistant" with "Player" and "Yuri" like so: \nPlayer: (prompt)\Yuri: ### HYPERPARAMS * Trained for 2 epochs * rank: 32 * lora alpha: 64 * lora dropout: 0.5 * lr: 2e-4 * batch size: 2 * warmup ratio: 0.1 * grad steps: 4 ### WARNINGS AND DISCLAIMERS Note that aside from formatting and other minor edits, generated portion of dataset used is mostly as is generated by LM. As such, while this version is better at coherency or chatting than previous ones, it may not reflect perfectly the characteristics of Yuri (i.e. she may be not as timid, have different preferences, etc.). Next version will train on a manually curated and edited version of this dataset, where dialogue will be edited to reflect her characteristics more. Other tests to come (i.e. fine tuning on other base models, like Airoboros or Kimiko-based model). Finally, this model is not guaranteed to output aligned or safe outputs, use at your own risk.
asyafiqe/Merak-7B-v3-Mini-Orca-Indo
asyafiqe
2023-09-09T07:00:02Z
13
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "id", "dataset:asyafiqe/orca_mini_v1_indonesia", "arxiv:2307.09288", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-26T08:36:51Z
--- inference: false license: cc-by-nc-sa-4.0 datasets: - asyafiqe/orca_mini_v1_indonesia language: - en - id --- # ๐ŸฆšMerak-7B-v3-Mini-Orca๐Ÿณ <p align="center"> <img src="https://i.imgur.com/39sQd3h.png" alt="Merak Orca" width="300" height="300"/> </p> **Merak-7B-v3-Mini-Orca** is Ichsan2895's [Merak-7B-v3](https://huggingface.co/Ichsan2895/Merak-7B-v3) fine-tuned on Bahasa Indonesia translated psmathur's [orca_mini_v1_dataset](https://huggingface.co/datasets/psmathur/orca_mini_v1_dataset). ## Usage This model fit on 16GB VRAM GPU (Google Collab T4 wil do), by using BitsandBytes it can run on 6GB VRAM GPU. [![Open in Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11xmPcRNirGwZcpgmNPNpUioJUG4PQBuh) **Quantized** versions is available: GPTQ: https://huggingface.co/asyafiqe/Merak-7B-v3-Mini-Orca-Indo-GPTQ GGML/GGUF: I will try to make this version once GGUF merge is stable. Start chatting with Merak Mini Orca using the following code snippet: ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo") model = AutoModelForCausalLM.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo", torch_dtype=torch.float16, device_map="auto") system_prompt = "SYSTEM: 'Anda adalah asisten AI. Anda akan diberi tugas. Anda harus menghasilkan jawaban yang rinci dan panjang.\n" message = "Buatlah rencana untuk mengurangi penggunaan listrik di rumah." prompt = f"{system_prompt}USER: {message}\nASSISTANT:" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, temperature=0.1, max_new_tokens=200) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ### Prompt format You can use [Vicuna 1.1](https://github.com/oobabooga/text-generation-webui/blob/main/instruction-templates/Vicuna-v1.1.yaml) format for Ooobabooga's text generation webui. ``` SYSTEM: Anda adalah asisten AI. Anda akan diberi tugas. Anda harus memberikan jawaban yang rinci dan panjang. USER: <prompt> (without the <>) ASSISTANT: ``` ## Training details [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="150" height="24"/>](https://github.com/OpenAccess-AI-Collective/axolotl) Merak-7B-v3-Mini-Orca was instruction fine-tuned on 2 x 3090-24GB for 6 hours. [LoRA](https://github.com/microsoft/LoRA), [DeepSpeed ZeRO-2](https://github.com/microsoft/DeepSpeed), and [FlashAttention](https://github.com/Dao-AILab/flash-attention) were implemented during training using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). Hyperparameter | value | | ------ | ------ | learning rate | 0.0004 | batch size | 16 | microbatch size | 2 | warmup step | 100 | epochs | 2 | weight decay | 0.0 | lr scheduler | cosine | lora alpha | 16 | lora rank | 16 | lora dropout | 0.05 | lora target modules | q_proj, v_proj, k_proj, o_proj | cutoff length | 4096 | #### Training loss Step |Train Loss | | ------ | ------ | 1 |0.9578 | 100 |0.816 | 200 |0.7819 | 300 |0.7279 | 400 |0.732 | 500 |0.7139 | 600 |0.6829 | 700 |0.6641 | 800 |0.6553 | #### Limitations and bias Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/ ## Citation ``` @Paper{arXiv, author = {Touvron, et al}, title = {Llama 2: Open Foundation and Fine-Tuned Chat Models}, journal = {arXiv preprint arXiv:2307.09288}, year = {2023} } @misc{orca_mini_v3_70b, author = {Pankaj Mathur}, title = {orca_mini_v3_70b: An Orca Style Llama2-70b model}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b}, } @article{hu2021lora, title={LoRA: Low-Rank Adaptation of Large Language Models}, author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu}, journal={CoRR}, year={2021} } ```
Dorgus/horse_model
Dorgus
2023-09-09T06:50:17Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stablediffusionapi/bb95-furry-mix", "base_model:finetune:stablediffusionapi/bb95-furry-mix", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-09T03:44:22Z
--- license: creativeml-openrail-m base_model: stablediffusionapi/bb95-furry-mix instance_prompt: handsome sks anthro horse with black and white fur tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Dorgus/horse_model This is a dreambooth model derived from stablediffusionapi/bb95-furry-mix. The weights were trained on handsome sks anthro horse with black and white fur using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
re2panda/polyglot_12b_grade_school_math
re2panda
2023-09-09T06:48:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T06:47:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
sk0032/coqui-tts-model-adam
sk0032
2023-09-09T06:43:08Z
2
0
transformers
[ "transformers", "tensorboard", "endpoints_compatible", "region:us" ]
null
2023-09-08T12:29:19Z
Epochs- 11,276 GLOBAL_STEP: 1248150
shenshan/chinese-alpaca-2-gguf
shenshan
2023-09-09T06:42:50Z
8
0
transformers
[ "transformers", "gguf", "llama", "text-generation", "text-generation-inference", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T08:36:30Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation tags: - llama - text-generation-inference --- # Chinese-Alpaca-2 7B & 13B Quantized by [llama.cpp](https://github.com/ggerganov/llama.cpp) Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
922-CA/l2-7b-sayori-ddlc-v0.1-gguf
922-CA
2023-09-09T06:28:12Z
1
0
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-09-08T11:01:16Z
--- license: llama2 --- GGUFs of [l2-7b-sayori-ddlc-v0.1](https://huggingface.co/922-CA/l2-7b-sayori-ddlc-v0.1). (Primarily tested and run with Koboldcpp v1.41+). QLora (hf and GGML) [here](https://huggingface.co/922-CA/sayori-lm-lora-tests/tree/main/l2-7b-sayori-v0.1).
razhan/bart-kurd-spell-base-05_10
razhan
2023-09-09T06:20:40Z
15
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-08T17:49:17Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer metrics: - wer model-index: - name: bart-kurd-spell-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-kurd-spell-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1930 - Cer: 1.5424 - Wer: 8.3088 - Gen Len: 12.6945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:|:-------:| | 0.4548 | 1.54 | 20000 | 0.4117 | 2.8856 | 13.6181 | 12.7807 | | 0.2723 | 3.07 | 40000 | 0.2736 | 2.1004 | 10.5883 | 12.6808 | | 0.2246 | 4.61 | 60000 | 0.2303 | 1.8035 | 9.4897 | 12.7048 | | 0.1812 | 6.14 | 80000 | 0.2122 | 1.6804 | 8.9349 | 12.6937 | | 0.1693 | 7.68 | 100000 | 0.2001 | 1.589 | 8.5464 | 12.7045 | | 0.1498 | 9.22 | 120000 | 0.1942 | 1.5546 | 8.3598 | 12.6935 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 1.13.1 - Datasets 2.14.5 - Tokenizers 0.13.3
masonbarnes/open-llm-search
masonbarnes
2023-09-09T06:00:09Z
56
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-04T21:55:24Z
--- license: llama2 language: - en --- # **Model Overview** As the demand for large language models grows, a common limitation surfaces: their inability to directly search the internet. Although tech giants like Google (with Bard), Bing, and Perplexity are addressing this challenge, their proprietary methods have data logging issues. **Introducing Open LLM Search** โ€” A specialized adaptation of Together AI's `llama-2-7b-32k` model, purpose-built for extracting information from web pages. While the model only has a 7 billion parameters, its fine-tuned capabilities and expanded context limit enable it to excel in search tasks. **License:** This model uses Meta's Llama 2 license. # **Fine-Tuning Process** The model's fine tuning involved a combination of GPT-4 and GPT-4-32k to generate synthetic data. Here is the training workflow used: 1. Use GPT-4 to generate a multitude of queries. 2. For each query, identify the top five website results from Google. 3. Extract content from these websites and use GPT-4-32k for their summarization. 4. Record the text and summarizes from GPT-4-32k for fine-tuning. 5. Feed the summaries from all five sources with GPT-4 to craft a cohesive response. 6. Document both the input and output from GPT-4 for fine-tuning. Fine tuning was done with an `<instructions>:`, `<user>:`, and `<assistant>:` format. # **Getting Started** - Experience it firsthand! Check out the live demo [here](https://huggingface.co/spaces/masonbarnes/open-llm-search). - For DIY enthusiasts, explore or self-deploy this solution using our [GitHub repository](https://github.com/MasonBarnes/open-llm-search).
trieudemo11/llama_7b_attrb_cate_10m_0
trieudemo11
2023-09-09T06:00:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T05:59:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
tmnam20/codellama_instruct_pt_text2sql
tmnam20
2023-09-09T05:45:58Z
0
0
null
[ "generated_from_trainer", "dataset:tmnam20/InstructNSText2SQL", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "license:llama2", "region:us" ]
null
2023-09-06T02:59:32Z
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer datasets: - tmnam20/InstructNSText2SQL model-index: - name: codellama_instruct_pt_text2sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellama_instruct_pt_text2sql This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the tmnam20/InstructNSText2SQL dataset. It achieves the following results on the evaluation set: - Loss: 0.0150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0693 | 0.22 | 2000 | 0.0589 | | 0.047 | 0.45 | 4000 | 0.0396 | | 0.0364 | 0.67 | 6000 | 0.0307 | | 0.0311 | 0.89 | 8000 | 0.0278 | | 0.0251 | 1.11 | 10000 | 0.0241 | | 0.0243 | 1.34 | 12000 | 0.0228 | | 0.0227 | 1.56 | 14000 | 0.0223 | | 0.0212 | 1.78 | 16000 | 0.0201 | | 0.0202 | 2.01 | 18000 | 0.0182 | | 0.016 | 2.23 | 20000 | 0.0184 | | 0.0156 | 2.45 | 22000 | 0.0179 | | 0.015 | 2.67 | 24000 | 0.0173 | | 0.0147 | 2.9 | 26000 | 0.0165 | | 0.0112 | 3.12 | 28000 | 0.0165 | | 0.0109 | 3.34 | 30000 | 0.0161 | | 0.0109 | 3.56 | 32000 | 0.0155 | | 0.0105 | 3.79 | 34000 | 0.0152 | | 0.0104 | 4.01 | 36000 | 0.0150 | | 0.0077 | 4.23 | 38000 | 0.0158 | | 0.0078 | 4.46 | 40000 | 0.0151 | | 0.0076 | 4.68 | 42000 | 0.0150 | | 0.0077 | 4.9 | 44000 | 0.0150 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dsmsb/esg-tweet-bert_0909_testing_v1
dsmsb
2023-09-09T05:44:15Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T02:38:31Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: esg-tweet-bert_0909_testing_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esg-tweet-bert_0909_testing_v1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 246 | 0.0440 | 0.9887 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bkowshik/swag-multiple-choice
bkowshik
2023-09-09T05:32:12Z
113
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-08T12:48:11Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: swag-multiple-choice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swag-multiple-choice This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0120 - Accuracy: 0.7052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 157 | 0.8148 | 0.6848 | | No log | 2.0 | 314 | 0.8738 | 0.702 | | No log | 3.0 | 471 | 1.0120 | 0.7052 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Onutoa/1_8e-3_10_0.5
Onutoa
2023-09-09T04:49:16Z
108
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T01:48:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_8e-3_10_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_8e-3_10_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9754 - Accuracy: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.008 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.0295 | 1.0 | 590 | 5.2308 | 0.6217 | | 3.1648 | 2.0 | 1180 | 2.6673 | 0.3908 | | 2.5921 | 3.0 | 1770 | 5.0497 | 0.3761 | | 2.9042 | 4.0 | 2360 | 2.2586 | 0.6291 | | 2.4411 | 5.0 | 2950 | 6.5105 | 0.6217 | | 2.3131 | 6.0 | 3540 | 2.7244 | 0.5183 | | 2.0563 | 7.0 | 4130 | 4.6938 | 0.3783 | | 1.9468 | 8.0 | 4720 | 1.5045 | 0.6862 | | 1.9269 | 9.0 | 5310 | 1.7666 | 0.6734 | | 1.9701 | 10.0 | 5900 | 1.8173 | 0.6780 | | 1.8231 | 11.0 | 6490 | 1.6929 | 0.6752 | | 1.7563 | 12.0 | 7080 | 1.3455 | 0.6862 | | 1.726 | 13.0 | 7670 | 1.2870 | 0.6786 | | 1.6706 | 14.0 | 8260 | 1.3862 | 0.6951 | | 1.5876 | 15.0 | 8850 | 1.4384 | 0.6587 | | 1.5067 | 16.0 | 9440 | 1.5336 | 0.6985 | | 1.5777 | 17.0 | 10030 | 1.9860 | 0.5972 | | 1.4323 | 18.0 | 10620 | 1.2068 | 0.7076 | | 1.4228 | 19.0 | 11210 | 1.8071 | 0.6780 | | 1.4335 | 20.0 | 11800 | 4.1127 | 0.6346 | | 1.4549 | 21.0 | 12390 | 1.2302 | 0.7131 | | 1.277 | 22.0 | 12980 | 1.2829 | 0.6771 | | 1.2962 | 23.0 | 13570 | 1.2152 | 0.7070 | | 1.4076 | 24.0 | 14160 | 1.5758 | 0.6529 | | 1.3427 | 25.0 | 14750 | 1.1333 | 0.6997 | | 1.1936 | 26.0 | 15340 | 1.1974 | 0.6917 | | 1.1937 | 27.0 | 15930 | 1.2653 | 0.6948 | | 1.2784 | 28.0 | 16520 | 1.0620 | 0.7242 | | 1.1605 | 29.0 | 17110 | 2.7859 | 0.6734 | | 1.1438 | 30.0 | 17700 | 1.8633 | 0.6428 | | 1.1406 | 31.0 | 18290 | 1.6275 | 0.7098 | | 1.0993 | 32.0 | 18880 | 1.2765 | 0.6969 | | 1.158 | 33.0 | 19470 | 1.1218 | 0.7058 | | 1.0432 | 34.0 | 20060 | 1.0562 | 0.7245 | | 1.0295 | 35.0 | 20650 | 1.3146 | 0.7251 | | 1.0041 | 36.0 | 21240 | 1.0308 | 0.7150 | | 1.0104 | 37.0 | 21830 | 1.0149 | 0.7242 | | 1.0096 | 38.0 | 22420 | 1.1232 | 0.7083 | | 0.9661 | 39.0 | 23010 | 1.0316 | 0.7251 | | 0.9183 | 40.0 | 23600 | 1.2166 | 0.7055 | | 0.9298 | 41.0 | 24190 | 1.9118 | 0.7040 | | 0.8799 | 42.0 | 24780 | 1.0190 | 0.7306 | | 0.954 | 43.0 | 25370 | 1.0761 | 0.7263 | | 0.853 | 44.0 | 25960 | 1.2006 | 0.7080 | | 1.0647 | 45.0 | 26550 | 1.1605 | 0.7379 | | 0.8562 | 46.0 | 27140 | 1.2208 | 0.7122 | | 0.8421 | 47.0 | 27730 | 0.9974 | 0.7388 | | 0.7865 | 48.0 | 28320 | 1.1207 | 0.7376 | | 0.8998 | 49.0 | 28910 | 1.1221 | 0.7080 | | 0.8044 | 50.0 | 29500 | 1.0191 | 0.7205 | | 0.7771 | 51.0 | 30090 | 0.9921 | 0.7364 | | 0.7886 | 52.0 | 30680 | 1.1379 | 0.7419 | | 0.7756 | 53.0 | 31270 | 1.3039 | 0.7315 | | 0.7232 | 54.0 | 31860 | 1.1143 | 0.7385 | | 0.69 | 55.0 | 32450 | 1.1024 | 0.7239 | | 0.7313 | 56.0 | 33040 | 1.3560 | 0.7370 | | 0.7266 | 57.0 | 33630 | 0.9763 | 0.7431 | | 0.7084 | 58.0 | 34220 | 1.4480 | 0.7291 | | 0.7072 | 59.0 | 34810 | 1.4463 | 0.7336 | | 0.6889 | 60.0 | 35400 | 1.2983 | 0.7330 | | 0.6745 | 61.0 | 35990 | 0.9898 | 0.7413 | | 0.6739 | 62.0 | 36580 | 0.9817 | 0.7373 | | 0.6513 | 63.0 | 37170 | 0.9999 | 0.7391 | | 0.6665 | 64.0 | 37760 | 0.9840 | 0.7367 | | 0.6428 | 65.0 | 38350 | 1.0120 | 0.7284 | | 0.6418 | 66.0 | 38940 | 1.0021 | 0.7401 | | 0.6185 | 67.0 | 39530 | 1.0063 | 0.7327 | | 0.6259 | 68.0 | 40120 | 1.0108 | 0.7339 | | 0.6165 | 69.0 | 40710 | 1.0279 | 0.7440 | | 0.6393 | 70.0 | 41300 | 1.1899 | 0.7183 | | 0.5869 | 71.0 | 41890 | 0.9767 | 0.7333 | | 0.605 | 72.0 | 42480 | 1.4097 | 0.7367 | | 0.5906 | 73.0 | 43070 | 1.0036 | 0.7358 | | 0.5704 | 74.0 | 43660 | 1.3105 | 0.7443 | | 0.5872 | 75.0 | 44250 | 1.0241 | 0.7242 | | 0.5755 | 76.0 | 44840 | 1.1519 | 0.7410 | | 0.5967 | 77.0 | 45430 | 1.1481 | 0.7431 | | 0.57 | 78.0 | 46020 | 1.0164 | 0.7398 | | 0.5599 | 79.0 | 46610 | 1.1657 | 0.7391 | | 0.5458 | 80.0 | 47200 | 1.1020 | 0.7422 | | 0.5299 | 81.0 | 47790 | 1.0836 | 0.7437 | | 0.5285 | 82.0 | 48380 | 0.9682 | 0.7391 | | 0.538 | 83.0 | 48970 | 1.1895 | 0.7193 | | 0.5277 | 84.0 | 49560 | 0.9778 | 0.7459 | | 0.525 | 85.0 | 50150 | 0.9893 | 0.7364 | | 0.5268 | 86.0 | 50740 | 0.9745 | 0.7434 | | 0.518 | 87.0 | 51330 | 0.9654 | 0.7450 | | 0.5212 | 88.0 | 51920 | 0.9665 | 0.7382 | | 0.5132 | 89.0 | 52510 | 1.0605 | 0.7474 | | 0.5155 | 90.0 | 53100 | 0.9605 | 0.7440 | | 0.4986 | 91.0 | 53690 | 1.0163 | 0.7480 | | 0.5004 | 92.0 | 54280 | 1.0187 | 0.7312 | | 0.4846 | 93.0 | 54870 | 0.9721 | 0.7440 | | 0.4963 | 94.0 | 55460 | 1.0295 | 0.7468 | | 0.4759 | 95.0 | 56050 | 1.0004 | 0.7468 | | 0.4905 | 96.0 | 56640 | 1.0361 | 0.7474 | | 0.4994 | 97.0 | 57230 | 0.9591 | 0.7446 | | 0.4673 | 98.0 | 57820 | 0.9604 | 0.7431 | | 0.4734 | 99.0 | 58410 | 0.9771 | 0.7462 | | 0.4588 | 100.0 | 59000 | 0.9754 | 0.7459 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
lampshade/Al-Jarreau
lampshade
2023-09-09T04:45:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T02:08:40Z
--- license: creativeml-openrail-m ---
Onutoa/1_6e-3_10_0.5
Onutoa
2023-09-09T04:29:22Z
111
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T01:30:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_6e-3_10_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_6e-3_10_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9536 - Accuracy: 0.7596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.006 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.948 | 1.0 | 590 | 2.2396 | 0.6214 | | 2.5635 | 2.0 | 1180 | 2.2693 | 0.6275 | | 2.5246 | 3.0 | 1770 | 1.9556 | 0.6141 | | 2.329 | 4.0 | 2360 | 2.3951 | 0.4801 | | 2.1726 | 5.0 | 2950 | 1.7234 | 0.6618 | | 2.0265 | 6.0 | 3540 | 1.5347 | 0.6679 | | 2.0227 | 7.0 | 4130 | 1.8508 | 0.6064 | | 1.8725 | 8.0 | 4720 | 2.0863 | 0.6584 | | 1.8575 | 9.0 | 5310 | 4.0052 | 0.4639 | | 1.8071 | 10.0 | 5900 | 3.1552 | 0.6468 | | 1.6655 | 11.0 | 6490 | 1.3147 | 0.7104 | | 1.501 | 12.0 | 7080 | 1.3005 | 0.6844 | | 1.538 | 13.0 | 7670 | 1.7051 | 0.6948 | | 1.4114 | 14.0 | 8260 | 1.4922 | 0.7028 | | 1.3916 | 15.0 | 8850 | 1.6514 | 0.7034 | | 1.3373 | 16.0 | 9440 | 1.9420 | 0.5896 | | 1.271 | 17.0 | 10030 | 2.9731 | 0.6624 | | 1.3123 | 18.0 | 10620 | 1.4756 | 0.6609 | | 1.2775 | 19.0 | 11210 | 1.4888 | 0.6612 | | 1.2341 | 20.0 | 11800 | 1.4493 | 0.7159 | | 1.1907 | 21.0 | 12390 | 1.7638 | 0.7110 | | 1.2035 | 22.0 | 12980 | 1.0716 | 0.7291 | | 1.0365 | 23.0 | 13570 | 1.2975 | 0.6853 | | 1.1041 | 24.0 | 14160 | 1.0275 | 0.7220 | | 1.1326 | 25.0 | 14750 | 1.0228 | 0.7385 | | 1.0261 | 26.0 | 15340 | 1.1473 | 0.7076 | | 1.0168 | 27.0 | 15930 | 1.0435 | 0.7205 | | 1.0653 | 28.0 | 16520 | 1.0105 | 0.7358 | | 0.9418 | 29.0 | 17110 | 1.0397 | 0.7232 | | 1.0591 | 30.0 | 17700 | 1.3640 | 0.6917 | | 0.9186 | 31.0 | 18290 | 0.9679 | 0.7459 | | 0.8665 | 32.0 | 18880 | 1.0310 | 0.7303 | | 0.9005 | 33.0 | 19470 | 1.0498 | 0.7235 | | 0.8494 | 34.0 | 20060 | 0.9766 | 0.7358 | | 0.8474 | 35.0 | 20650 | 1.0077 | 0.7465 | | 0.7973 | 36.0 | 21240 | 1.0674 | 0.7428 | | 0.8049 | 37.0 | 21830 | 1.0074 | 0.7398 | | 0.8241 | 38.0 | 22420 | 0.9613 | 0.7453 | | 0.7793 | 39.0 | 23010 | 0.9864 | 0.7398 | | 0.7781 | 40.0 | 23600 | 1.0741 | 0.7456 | | 0.7539 | 41.0 | 24190 | 0.9809 | 0.7550 | | 0.7403 | 42.0 | 24780 | 0.9993 | 0.7339 | | 0.7494 | 43.0 | 25370 | 0.9887 | 0.7477 | | 0.7091 | 44.0 | 25960 | 1.1792 | 0.7125 | | 0.7236 | 45.0 | 26550 | 0.9549 | 0.7443 | | 0.6947 | 46.0 | 27140 | 1.3568 | 0.7440 | | 0.6928 | 47.0 | 27730 | 1.0682 | 0.7517 | | 0.6578 | 48.0 | 28320 | 1.0993 | 0.7486 | | 0.7723 | 49.0 | 28910 | 1.0381 | 0.7260 | | 0.7169 | 50.0 | 29500 | 0.9510 | 0.7486 | | 0.6424 | 51.0 | 30090 | 1.0781 | 0.7281 | | 0.6652 | 52.0 | 30680 | 0.9623 | 0.7541 | | 0.6274 | 53.0 | 31270 | 0.9476 | 0.7498 | | 0.6295 | 54.0 | 31860 | 0.9461 | 0.7474 | | 0.6252 | 55.0 | 32450 | 1.0873 | 0.7278 | | 0.632 | 56.0 | 33040 | 0.9470 | 0.7492 | | 0.5865 | 57.0 | 33630 | 1.4737 | 0.7355 | | 0.6029 | 58.0 | 34220 | 1.0871 | 0.7477 | | 0.5935 | 59.0 | 34810 | 1.0781 | 0.7514 | | 0.6023 | 60.0 | 35400 | 0.9968 | 0.7581 | | 0.5849 | 61.0 | 35990 | 1.0700 | 0.7547 | | 0.5813 | 62.0 | 36580 | 1.2525 | 0.7425 | | 0.5557 | 63.0 | 37170 | 0.9643 | 0.7541 | | 0.541 | 64.0 | 37760 | 1.0179 | 0.7547 | | 0.5693 | 65.0 | 38350 | 1.0064 | 0.7401 | | 0.5562 | 66.0 | 38940 | 1.2333 | 0.7367 | | 0.5677 | 67.0 | 39530 | 0.9976 | 0.7388 | | 0.5357 | 68.0 | 40120 | 0.9795 | 0.7413 | | 0.5372 | 69.0 | 40710 | 1.1113 | 0.7462 | | 0.5563 | 70.0 | 41300 | 1.1366 | 0.7492 | | 0.5377 | 71.0 | 41890 | 0.9343 | 0.7502 | | 0.5442 | 72.0 | 42480 | 1.1735 | 0.7465 | | 0.5124 | 73.0 | 43070 | 0.9499 | 0.7514 | | 0.5007 | 74.0 | 43660 | 1.2104 | 0.7456 | | 0.5094 | 75.0 | 44250 | 0.9865 | 0.7474 | | 0.5118 | 76.0 | 44840 | 1.0542 | 0.7474 | | 0.5166 | 77.0 | 45430 | 0.9762 | 0.7615 | | 0.5071 | 78.0 | 46020 | 0.9333 | 0.7581 | | 0.4961 | 79.0 | 46610 | 1.0310 | 0.7535 | | 0.4863 | 80.0 | 47200 | 1.0242 | 0.7492 | | 0.4801 | 81.0 | 47790 | 1.0528 | 0.7535 | | 0.4975 | 82.0 | 48380 | 1.0188 | 0.7554 | | 0.4868 | 83.0 | 48970 | 0.9455 | 0.7596 | | 0.4661 | 84.0 | 49560 | 0.9841 | 0.7557 | | 0.4765 | 85.0 | 50150 | 0.9570 | 0.7538 | | 0.4732 | 86.0 | 50740 | 1.0383 | 0.7535 | | 0.4846 | 87.0 | 51330 | 0.9560 | 0.7587 | | 0.4641 | 88.0 | 51920 | 0.9716 | 0.7578 | | 0.477 | 89.0 | 52510 | 0.9581 | 0.7606 | | 0.4567 | 90.0 | 53100 | 0.9674 | 0.7569 | | 0.4567 | 91.0 | 53690 | 0.9718 | 0.7587 | | 0.4676 | 92.0 | 54280 | 0.9535 | 0.7520 | | 0.4532 | 93.0 | 54870 | 0.9593 | 0.7563 | | 0.4727 | 94.0 | 55460 | 0.9611 | 0.7584 | | 0.4535 | 95.0 | 56050 | 0.9539 | 0.7602 | | 0.4569 | 96.0 | 56640 | 0.9506 | 0.7587 | | 0.4417 | 97.0 | 57230 | 0.9616 | 0.7584 | | 0.4314 | 98.0 | 57820 | 0.9488 | 0.7593 | | 0.4318 | 99.0 | 58410 | 0.9439 | 0.7587 | | 0.4415 | 100.0 | 59000 | 0.9536 | 0.7596 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
krishanusinha20/marketmail
krishanusinha20
2023-09-09T04:28:09Z
5
0
peft
[ "peft", "region:us" ]
null
2023-09-05T05:47:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
xiaol/RWKV-claude-4-World-7B-65k
xiaol
2023-09-09T04:26:25Z
0
52
null
[ "dataset:Norquinal/claude_multiround_chat_30k", "dataset:OpenLeecher/Teatime", "license:apache-2.0", "region:us" ]
null
2023-08-05T08:07:49Z
--- license: apache-2.0 datasets: - Norquinal/claude_multiround_chat_30k - OpenLeecher/Teatime --- # RWKV role play model ## According our community users, this model is better than claude2. This is a model trained based on RWKV world 7B model with 65336 context, which can do claude-like task. Good at novel, role play and multi turn chat. You can test this model in this buggy UI: https://rwkv.ai-creator.net/risu or https://rwkv.ai-creator.net/st ,API hosted by RWKV Runner, remember frequency penalty is sensitive and fixed a lot of repeating. and Use temp 0.1 ,topp 0.7 could have better results. # other: if you use RWKV runner as API, https://github.com/josStorer/RWKV-Runner/blob/a057bb6c5bebc346a50ae746f2b10000627552b0/backend-python/routes/completion.py#L52C29-L52C29 change user_name,assistant_name to User,Assistant to replace default Question,Answer, due to the finetune format ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/uFuIyO_2id99mD3f9DKks.png) ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/72AdIr8npTbtDYeCwHGS0.png) also you can do multi-lang with RWKV Runner ![S4K{E8{LNM5$GW3~Q29V9IO.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/3SRjSU0Q2kt8y0bOGC-sX.png) ![QQๅ›พ็‰‡20230806001842.jpg](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/AuOwbozKlIsEEv9pPQYHQ.jpeg) ![af5b0cb3546a8d614ca491c42d26feb.jpg](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/LWAwNJrnDQdAw2VeitZXN.jpeg) ![ๅพฎไฟกๆˆชๅ›พ_20230805180659.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/Czmy_7P1hznhIVYFjruy9.png) ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/7ciRnIqupHZJgb6JvznRt.png) ![ๅพฎไฟกๅ›พ็‰‡_20230807131001.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/ldNisLCG7cu4n8HGlUqed.png)
minfeng-ai/ppo-Huggy
minfeng-ai
2023-09-09T04:22:54Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-09T04:22:48Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: minfeng-ai/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
HaohuaLv/mt5_large-lora_rank_16-yue_zh_translation
HaohuaLv
2023-09-09T04:22:32Z
3
1
peft
[ "peft", "text2text-generation", "zh", "license:openrail", "region:us" ]
text2text-generation
2023-09-09T04:00:05Z
--- license: openrail language: - zh metrics: - sacrebleu library_name: peft pipeline_tag: text2text-generation --- A lora based on google/mt5-large a fine-tunes on indiejoseph/yue-zh-translation dataset. It would translate Mandarin to Cantonese. e.g. input: `translate Mandarin to Cantonese: ๆˆ‘้ƒฝไธ็Ÿฅ้“ไฝ ๅœจ่ฏดไป€ไนˆ` output: `ๆˆ‘้ƒฝๅ””็Ÿฅไฝ ่ฌ›ๅ’ฉ` input: `translate Mandarin to Cantonese: ๆ•ดๅคฉๅฐฑ็Ÿฅ้“ๆ‰“ๆธธๆˆ` output: `ๆˆๆ—ฅๅฐฑ็Ÿฅๆ‰“้Šๆˆฒ`
CRD716/ggml-LLaMa-65B-quantized
CRD716
2023-09-09T03:17:19Z
0
30
null
[ "LLaMa", "text-generation-inference", "ggml", "text-generation", "en", "bg", "ca", "cs", "da", "de", "es", "fr", "hr", "hu", "it", "nl", "pl", "pt", "ro", "ru", "sl", "sr", "sv", "uk", "license:gpl-3.0", "region:us" ]
text-generation
2023-04-07T18:33:27Z
--- license: gpl-3.0 metrics: - perplexity pipeline_tag: text-generation tags: - LLaMa - text-generation-inference - ggml language: - en - bg - ca - cs - da - de - es - fr - hr - hu - it - nl - pl - pt - ro - ru - sl - sr - sv - uk --- NOTE: DEPRECIATED, BETTER PEOPLE DO THIS NOW LLaMa 65B converted to ggml via LLaMa.cpp, then quantized to 4bit. Legacy is for llama.cpp setups older than https://github.com/ggerganov/llama.cpp/pull/1508, the regular is faster but does not work on old versions. I recommend the following settings when running as a good starting point: ```main.exe -m ggml-LLaMa-65B-q4_0.bin -n -1 -t 32 -c 2048 --temp 0.7 --repeat_penalty 1.2 --mirostat 2 --interactive-first --color``` Be aware that LLaMa is a text generation model, not a conversational one, and as such you will have to prompt it differently than, for example, Vicuna or ChatGPT.
Onutoa/1_1e-2_1_0.5
Onutoa
2023-09-09T02:37:17Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T23:38:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_1e-2_1_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_1e-2_1_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4701 - Accuracy: 0.7431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2311 | 1.0 | 590 | 1.5093 | 0.6217 | | 1.0444 | 2.0 | 1180 | 0.5788 | 0.6196 | | 0.9287 | 3.0 | 1770 | 1.3468 | 0.6217 | | 0.8066 | 4.0 | 2360 | 0.7094 | 0.6217 | | 0.6756 | 5.0 | 2950 | 0.5829 | 0.6486 | | 0.5869 | 6.0 | 3540 | 0.5398 | 0.6670 | | 0.5733 | 7.0 | 4130 | 0.6279 | 0.5716 | | 0.5229 | 8.0 | 4720 | 0.4543 | 0.7061 | | 0.4998 | 9.0 | 5310 | 0.4906 | 0.6685 | | 0.476 | 10.0 | 5900 | 0.5972 | 0.6927 | | 0.4498 | 11.0 | 6490 | 0.4602 | 0.7049 | | 0.4082 | 12.0 | 7080 | 0.4432 | 0.7012 | | 0.4072 | 13.0 | 7670 | 0.4585 | 0.6963 | | 0.3746 | 14.0 | 8260 | 0.4281 | 0.7312 | | 0.3652 | 15.0 | 8850 | 0.4691 | 0.7294 | | 0.3505 | 16.0 | 9440 | 0.4156 | 0.7303 | | 0.3375 | 17.0 | 10030 | 0.4299 | 0.7275 | | 0.3298 | 18.0 | 10620 | 0.4948 | 0.7 | | 0.3056 | 19.0 | 11210 | 0.4208 | 0.7275 | | 0.2956 | 20.0 | 11800 | 0.4474 | 0.7324 | | 0.2859 | 21.0 | 12390 | 0.5893 | 0.6746 | | 0.2807 | 22.0 | 12980 | 0.4613 | 0.7291 | | 0.2566 | 23.0 | 13570 | 0.4610 | 0.7235 | | 0.249 | 24.0 | 14160 | 0.5434 | 0.7413 | | 0.2391 | 25.0 | 14750 | 0.5110 | 0.7333 | | 0.2421 | 26.0 | 15340 | 0.6915 | 0.6465 | | 0.2556 | 27.0 | 15930 | 0.4759 | 0.7306 | | 0.2271 | 28.0 | 16520 | 0.4690 | 0.7321 | | 0.2295 | 29.0 | 17110 | 0.5012 | 0.7376 | | 0.2283 | 30.0 | 17700 | 0.5150 | 0.7128 | | 0.2054 | 31.0 | 18290 | 0.4737 | 0.7343 | | 0.2157 | 32.0 | 18880 | 0.6032 | 0.7327 | | 0.215 | 33.0 | 19470 | 0.4818 | 0.7297 | | 0.196 | 34.0 | 20060 | 0.4894 | 0.7147 | | 0.2001 | 35.0 | 20650 | 0.5326 | 0.7193 | | 0.1955 | 36.0 | 21240 | 0.4826 | 0.7413 | | 0.1947 | 37.0 | 21830 | 0.4625 | 0.7385 | | 0.1912 | 38.0 | 22420 | 0.4764 | 0.7492 | | 0.1946 | 39.0 | 23010 | 0.5615 | 0.7443 | | 0.1898 | 40.0 | 23600 | 0.4870 | 0.7413 | | 0.1789 | 41.0 | 24190 | 0.5526 | 0.7462 | | 0.1803 | 42.0 | 24780 | 0.5021 | 0.7217 | | 0.1708 | 43.0 | 25370 | 0.4751 | 0.7379 | | 0.1835 | 44.0 | 25960 | 0.4738 | 0.7355 | | 0.1738 | 45.0 | 26550 | 0.4759 | 0.7336 | | 0.1726 | 46.0 | 27140 | 0.4928 | 0.7367 | | 0.1756 | 47.0 | 27730 | 0.5380 | 0.7193 | | 0.1617 | 48.0 | 28320 | 0.5119 | 0.7327 | | 0.1725 | 49.0 | 28910 | 0.4884 | 0.7431 | | 0.1643 | 50.0 | 29500 | 0.4968 | 0.7382 | | 0.1593 | 51.0 | 30090 | 0.4708 | 0.7281 | | 0.1645 | 52.0 | 30680 | 0.4943 | 0.7364 | | 0.1566 | 53.0 | 31270 | 0.4820 | 0.7446 | | 0.1555 | 54.0 | 31860 | 0.5117 | 0.7376 | | 0.1584 | 55.0 | 32450 | 0.5269 | 0.7410 | | 0.1587 | 56.0 | 33040 | 0.4650 | 0.7394 | | 0.1527 | 57.0 | 33630 | 0.5007 | 0.7431 | | 0.157 | 58.0 | 34220 | 0.4689 | 0.7413 | | 0.1527 | 59.0 | 34810 | 0.4960 | 0.7306 | | 0.1461 | 60.0 | 35400 | 0.5033 | 0.7416 | | 0.1506 | 61.0 | 35990 | 0.4817 | 0.7459 | | 0.153 | 62.0 | 36580 | 0.4782 | 0.7422 | | 0.1417 | 63.0 | 37170 | 0.4808 | 0.7410 | | 0.1477 | 64.0 | 37760 | 0.5090 | 0.7358 | | 0.1467 | 65.0 | 38350 | 0.5180 | 0.7419 | | 0.1416 | 66.0 | 38940 | 0.5055 | 0.7483 | | 0.1407 | 67.0 | 39530 | 0.4779 | 0.7416 | | 0.1407 | 68.0 | 40120 | 0.4661 | 0.7401 | | 0.1379 | 69.0 | 40710 | 0.5172 | 0.7450 | | 0.1432 | 70.0 | 41300 | 0.4883 | 0.7422 | | 0.1455 | 71.0 | 41890 | 0.4853 | 0.7382 | | 0.1348 | 72.0 | 42480 | 0.4934 | 0.7465 | | 0.134 | 73.0 | 43070 | 0.4773 | 0.7462 | | 0.1323 | 74.0 | 43660 | 0.5033 | 0.7428 | | 0.1356 | 75.0 | 44250 | 0.5184 | 0.7483 | | 0.1321 | 76.0 | 44840 | 0.4860 | 0.7382 | | 0.1328 | 77.0 | 45430 | 0.4800 | 0.7422 | | 0.1334 | 78.0 | 46020 | 0.4668 | 0.7489 | | 0.128 | 79.0 | 46610 | 0.4930 | 0.7498 | | 0.1315 | 80.0 | 47200 | 0.4808 | 0.7410 | | 0.1236 | 81.0 | 47790 | 0.4718 | 0.7456 | | 0.1286 | 82.0 | 48380 | 0.4723 | 0.7413 | | 0.1264 | 83.0 | 48970 | 0.4987 | 0.7480 | | 0.1273 | 84.0 | 49560 | 0.4582 | 0.7492 | | 0.1243 | 85.0 | 50150 | 0.4713 | 0.7471 | | 0.1286 | 86.0 | 50740 | 0.4913 | 0.7437 | | 0.1186 | 87.0 | 51330 | 0.4953 | 0.7495 | | 0.1194 | 88.0 | 51920 | 0.4805 | 0.7486 | | 0.118 | 89.0 | 52510 | 0.4799 | 0.7474 | | 0.1236 | 90.0 | 53100 | 0.4829 | 0.7471 | | 0.1201 | 91.0 | 53690 | 0.4736 | 0.7474 | | 0.1235 | 92.0 | 54280 | 0.4695 | 0.7431 | | 0.1214 | 93.0 | 54870 | 0.4781 | 0.7446 | | 0.1188 | 94.0 | 55460 | 0.4701 | 0.7456 | | 0.1191 | 95.0 | 56050 | 0.4681 | 0.7456 | | 0.1144 | 96.0 | 56640 | 0.4737 | 0.7453 | | 0.1212 | 97.0 | 57230 | 0.4736 | 0.7446 | | 0.1152 | 98.0 | 57820 | 0.4668 | 0.7410 | | 0.1153 | 99.0 | 58410 | 0.4743 | 0.7437 | | 0.1194 | 100.0 | 59000 | 0.4701 | 0.7431 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
HeshamHaroon/falcon-rw-1b-4bit
HeshamHaroon
2023-09-09T02:36:27Z
115
1
transformers
[ "transformers", "pytorch", "safetensors", "falcon", "text-generation", "text-generation-inference", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2023-08-24T03:24:43Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference --- # GPTQ Algorithm with `auto-gptq` Integration ## Model Description The GPTQ algorithm, developed by Frantar et al., is designed to compress transformer-based language models into fewer bits with minimal performance degradation. The `auto-gptq` library, based on the GPTQ algorithm, has been seamlessly integrated into the ๐Ÿค— transformers, enabling users to load and work with models quantized using the GPTQ algorithm. ## Features - **Quantization**: Compress transformer-based language models with minimal performance loss. - **Integration with ๐Ÿค— transformers**: Directly load models quantized with the GPTQ algorithm. - **Flexibility**: Offers two scenarios for users: 1. Quantize a language model from scratch. 2. Load a pre-quantized model from the ๐Ÿค— Hub. - **Calibration**: Uses model inference to calibrate the quantized weights, ensuring optimal performance. - **Custom Dataset Support**: Users can quantize models using either a supported dataset or a custom dataset. ## Intended Use This integration is intended for users who want to compress their transformer-based language models without significant performance loss. It's especially useful for deployment scenarios where model size is a constraint. ## Limitations and Considerations - The quality of quantization may vary based on the dataset used for calibration. It's recommended to use a dataset closely related to the model's domain for best results. - While the GPTQ algorithm minimizes performance degradation, some loss in performance is expected, especially at lower bit quantizations. ## Training Data The GPTQ algorithm requires calibration data for optimal quantization. Users can either use supported datasets like "c4", "wikitext2", etc., or provide a custom dataset for calibration. ## Evaluation Results Performance after quantization may vary based on the dataset used for calibration and the bit precision chosen for quantization. It's recommended to evaluate the quantized model on relevant tasks to ensure it meets the desired performance criteria. ## References - Frantar et al., "GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers" - [AutoGPTQ GitHub Repository](https://github.com/PanQiWei/AutoGPTQ)
OttoYu/Tree-Inspection
OttoYu
2023-09-09T02:13:13Z
180
0
transformers
[ "transformers", "pytorch", "safetensors", "swin", "image-classification", "autotrain", "vision", "dataset:OttoYu/autotrain-data-tree-inspection", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-09T02:07:18Z
--- tags: - autotrain - vision - image-classification datasets: - OttoYu/autotrain-data-tree-inspection widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.1481896644746374 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 87833143598 - CO2 Emissions (in grams): 2.1482 ## Validation Metrics - Loss: 1.251 - Accuracy: 0.652 - Macro F1: 0.594 - Micro F1: 0.652 - Weighted F1: 0.620 - Macro Precision: 0.629 - Micro Precision: 0.652 - Weighted Precision: 0.642 - Macro Recall: 0.617 - Micro Recall: 0.652 - Weighted Recall: 0.652
AlienKevin/whisper-tiny-jyutping-without-tones
AlienKevin
2023-09-09T01:56:07Z
77
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-09T01:55:37Z
--- language: - yue license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Tiny Jyutping without Tones results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Jyutping without Tones This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2079 - Wer: 22.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 800 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1622 | 0.62 | 800 | 0.2079 | 22.8645 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
Onutoa/1_8e-3_5_0.5
Onutoa
2023-09-09T01:48:23Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T22:48:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_8e-3_5_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_8e-3_5_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9097 - Accuracy: 0.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.008 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.7895 | 1.0 | 590 | 1.8785 | 0.6150 | | 2.562 | 2.0 | 1180 | 2.8327 | 0.4046 | | 2.4023 | 3.0 | 1770 | 2.0853 | 0.5217 | | 2.3167 | 4.0 | 2360 | 1.5879 | 0.6505 | | 2.161 | 5.0 | 2950 | 1.9917 | 0.4914 | | 1.794 | 6.0 | 3540 | 2.5834 | 0.5110 | | 1.9698 | 7.0 | 4130 | 3.1462 | 0.4927 | | 1.5971 | 8.0 | 4720 | 1.6865 | 0.5966 | | 1.5201 | 9.0 | 5310 | 3.4553 | 0.6413 | | 1.5841 | 10.0 | 5900 | 3.1799 | 0.6327 | | 1.5231 | 11.0 | 6490 | 1.1451 | 0.6933 | | 1.3941 | 12.0 | 7080 | 1.1390 | 0.6884 | | 1.3679 | 13.0 | 7670 | 1.4767 | 0.6902 | | 1.2653 | 14.0 | 8260 | 1.5274 | 0.7028 | | 1.2451 | 15.0 | 8850 | 1.6725 | 0.7073 | | 1.255 | 16.0 | 9440 | 1.5284 | 0.7012 | | 1.184 | 17.0 | 10030 | 1.0831 | 0.6979 | | 1.1215 | 18.0 | 10620 | 2.0515 | 0.5755 | | 1.0766 | 19.0 | 11210 | 1.1808 | 0.7263 | | 1.1108 | 20.0 | 11800 | 1.0647 | 0.7190 | | 1.0272 | 21.0 | 12390 | 1.2527 | 0.6654 | | 1.036 | 22.0 | 12980 | 1.1910 | 0.6783 | | 0.9735 | 23.0 | 13570 | 1.0311 | 0.7037 | | 0.9167 | 24.0 | 14160 | 0.9997 | 0.7021 | | 0.8494 | 25.0 | 14750 | 1.0338 | 0.7284 | | 0.8461 | 26.0 | 15340 | 1.4642 | 0.6495 | | 0.8466 | 27.0 | 15930 | 0.9877 | 0.7370 | | 0.8498 | 28.0 | 16520 | 0.9401 | 0.7287 | | 0.7851 | 29.0 | 17110 | 1.0208 | 0.7336 | | 0.7796 | 30.0 | 17700 | 0.9350 | 0.7232 | | 0.7725 | 31.0 | 18290 | 1.4097 | 0.7162 | | 0.7599 | 32.0 | 18880 | 1.1313 | 0.7333 | | 0.768 | 33.0 | 19470 | 1.0272 | 0.7379 | | 0.7007 | 34.0 | 20060 | 0.9294 | 0.7364 | | 0.6718 | 35.0 | 20650 | 0.9347 | 0.7330 | | 0.6786 | 36.0 | 21240 | 1.0231 | 0.7416 | | 0.6822 | 37.0 | 21830 | 0.9767 | 0.7413 | | 0.6667 | 38.0 | 22420 | 0.9351 | 0.7272 | | 0.6497 | 39.0 | 23010 | 0.9574 | 0.7355 | | 0.638 | 40.0 | 23600 | 1.0610 | 0.7437 | | 0.6468 | 41.0 | 24190 | 1.1462 | 0.7434 | | 0.6046 | 42.0 | 24780 | 0.9750 | 0.7211 | | 0.6079 | 43.0 | 25370 | 1.2040 | 0.7419 | | 0.5806 | 44.0 | 25960 | 1.1603 | 0.7018 | | 0.5753 | 45.0 | 26550 | 1.0639 | 0.7110 | | 0.5693 | 46.0 | 27140 | 1.0966 | 0.7422 | | 0.5757 | 47.0 | 27730 | 1.0137 | 0.7468 | | 0.5692 | 48.0 | 28320 | 0.9476 | 0.7382 | | 0.5732 | 49.0 | 28910 | 1.0004 | 0.7291 | | 0.5563 | 50.0 | 29500 | 0.9870 | 0.7394 | | 0.5217 | 51.0 | 30090 | 0.9681 | 0.7312 | | 0.5239 | 52.0 | 30680 | 0.9812 | 0.7456 | | 0.525 | 53.0 | 31270 | 1.0355 | 0.7196 | | 0.5136 | 54.0 | 31860 | 0.9161 | 0.7385 | | 0.5249 | 55.0 | 32450 | 1.0093 | 0.7382 | | 0.5092 | 56.0 | 33040 | 1.0072 | 0.7428 | | 0.4754 | 57.0 | 33630 | 1.0560 | 0.7425 | | 0.4716 | 58.0 | 34220 | 0.9922 | 0.7425 | | 0.4913 | 59.0 | 34810 | 1.0014 | 0.7480 | | 0.4773 | 60.0 | 35400 | 0.9148 | 0.7352 | | 0.4725 | 61.0 | 35990 | 0.9691 | 0.7474 | | 0.4656 | 62.0 | 36580 | 0.9459 | 0.7453 | | 0.4565 | 63.0 | 37170 | 0.9521 | 0.7388 | | 0.4502 | 64.0 | 37760 | 1.0172 | 0.7474 | | 0.4765 | 65.0 | 38350 | 0.9504 | 0.7327 | | 0.4439 | 66.0 | 38940 | 0.9998 | 0.7443 | | 0.4424 | 67.0 | 39530 | 1.0985 | 0.7498 | | 0.4541 | 68.0 | 40120 | 0.9088 | 0.7446 | | 0.4321 | 69.0 | 40710 | 0.9322 | 0.7379 | | 0.4346 | 70.0 | 41300 | 1.0028 | 0.7495 | | 0.4329 | 71.0 | 41890 | 0.8949 | 0.7385 | | 0.4344 | 72.0 | 42480 | 0.9631 | 0.7544 | | 0.4111 | 73.0 | 43070 | 0.9800 | 0.7272 | | 0.4183 | 74.0 | 43660 | 1.1350 | 0.7541 | | 0.4234 | 75.0 | 44250 | 0.9444 | 0.7511 | | 0.4297 | 76.0 | 44840 | 0.9584 | 0.7526 | | 0.4172 | 77.0 | 45430 | 0.9165 | 0.7413 | | 0.4083 | 78.0 | 46020 | 0.9103 | 0.7401 | | 0.4078 | 79.0 | 46610 | 0.9100 | 0.7468 | | 0.3977 | 80.0 | 47200 | 0.9172 | 0.7480 | | 0.3885 | 81.0 | 47790 | 0.9714 | 0.7523 | | 0.4012 | 82.0 | 48380 | 1.0683 | 0.7547 | | 0.3831 | 83.0 | 48970 | 0.9867 | 0.7575 | | 0.3878 | 84.0 | 49560 | 0.9245 | 0.7541 | | 0.3841 | 85.0 | 50150 | 0.9662 | 0.7327 | | 0.3835 | 86.0 | 50740 | 0.9532 | 0.7505 | | 0.3755 | 87.0 | 51330 | 0.9645 | 0.7492 | | 0.379 | 88.0 | 51920 | 0.9183 | 0.7483 | | 0.38 | 89.0 | 52510 | 0.9787 | 0.7523 | | 0.37 | 90.0 | 53100 | 0.9205 | 0.7443 | | 0.368 | 91.0 | 53690 | 0.9236 | 0.7446 | | 0.3737 | 92.0 | 54280 | 0.9023 | 0.7419 | | 0.3663 | 93.0 | 54870 | 0.9200 | 0.7514 | | 0.3763 | 94.0 | 55460 | 0.9496 | 0.7517 | | 0.3635 | 95.0 | 56050 | 0.9487 | 0.7508 | | 0.3656 | 96.0 | 56640 | 0.9122 | 0.7502 | | 0.3604 | 97.0 | 57230 | 0.9036 | 0.7498 | | 0.3475 | 98.0 | 57820 | 0.9054 | 0.7474 | | 0.3552 | 99.0 | 58410 | 0.9078 | 0.7471 | | 0.3564 | 100.0 | 59000 | 0.9097 | 0.7502 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
kaungmyat/translation
kaungmyat
2023-09-09T01:33:31Z
11
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-08T16:35:20Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.6441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6122 - Bleu: 5.6441 - Gen Len: 17.5838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8593 | 1.0 | 6355 | 1.6362 | 5.4979 | 17.59 | | 1.8198 | 2.0 | 12710 | 1.6122 | 5.6441 | 17.5838 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
FunkEngine/SchweinZwei-13b
FunkEngine
2023-09-09T01:20:57Z
15
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text generation", "instruct", "en", "dataset:SchweinZwei/PIPPA", "dataset:Open-Orca/OpenOrca", "dataset:Norquinal/claude_multiround_chat_30k", "dataset:jondurbin/airoboros-gpt4-1.4.1", "dataset:databricks/databricks-dolly-15k", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-08T09:56:32Z
--- language: - en thumbnail: null tags: - text generation - instruct pipeline_tag: text-generation inference: false license: llama2 datasets: - SchweinZwei/PIPPA - Open-Orca/OpenOrca - Norquinal/claude_multiround_chat_30k - jondurbin/airoboros-gpt4-1.4.1 - databricks/databricks-dolly-15k --- <h1 style="text-align: center">SchweinZwei/SchweinZwei-13b</h1> <h2 style="text-align: center">An instruction-tuned Llama-2 biased towards fiction writing and conversation.</h2> ## Model Details The long-awaited release of our new models based on Llama-2 is finally here. SchweinZwei-13b (formerly known as Metharme) is based on [Llama-2 13B](https://huggingface.co/meta-llama/llama-2-13b-hf) released by Meta AI. The Metharme models were an experiment to try and get a model that is usable for conversation, roleplaying and storywriting, but which can be guided using natural language like other instruct models. After much deliberation, we reached the conclusion that the Metharme prompting format is superior (and easier to use) compared to the classic Schweinen. This model was trained by doing supervised fine-tuning over a mixture of regular instruction data alongside roleplay, fictional stories and conversations with synthetically generated instructions attached. This model is freely available for both commercial and non-commercial use, as per the Llama-2 license. ## Prompting The model has been trained on prompts using three different roles, which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`. The `<|system|>` prompt can be used to inject out-of-channel information behind the scenes, while the `<|user|>` prompt should be used to indicate user input. The `<|model|>` token should then be used to indicate that the model should generate a response. These tokens can happen multiple times and be chained up to form a conversation history. ### Prompting example The system prompt has been designed to allow the model to "enter" various modes and dictate the reply length. Here's an example: ``` <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows: {{persona}} You shall reply to the user while staying in character, and generate long responses. ``` ## Dataset The dataset used to fine-tune this model includes our own [PIPPA], along with several other instruction datasets, and datasets acquired from various RP forums. ## Limitations and biases The intended use-case for this model is fictional writing for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. ## Acknowledgements We would like to thank [SpicyChat](https://spicychat.ai/) for sponsoring the training for this model.
Cohee/distilbert-base-uncased-go-emotions-onnx
Cohee
2023-09-09T01:19:25Z
12,784
6
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T01:11:39Z
--- license: mit --- [joeddav/distilbert-base-uncased-go-emotions-student](https://huggingface.co/joeddav/distilbert-base-uncased-go-emotions-student) converted to ONNX and quantized using optimum. --- # distilbert-base-uncased-go-emotions-student ## Model Description This model is distilled from the zero-shot classification pipeline on the unlabeled GoEmotions dataset using [this script](https://github.com/huggingface/transformers/tree/master/examples/research_projects/zero-shot-distillation). It was trained with mixed precision for 10 epochs and otherwise used the default script arguments. ## Intended Usage The model can be used like any other model trained on GoEmotions, but will likely not perform as well as a model trained with full supervision. It is primarily intended as a demo of how an expensive NLI-based zero-shot model can be distilled to a more efficient student, allowing a classifier to be trained with only unlabeled data. Note that although the GoEmotions dataset allow multiple labels per instance, the teacher used single-label classification to create psuedo-labels.
nitikaverma26/Reinforce-Pixelcopter-PLE-v0
nitikaverma26
2023-09-09T01:01:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T01:01:45Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 81.80 +/- 50.82 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
murali1986/murali-test1
murali1986
2023-09-09T00:43:00Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-06T20:11:04Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Murali_test Dreambooth model trained by murali1986 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AlienKevin/whisper-small-jyutping-without-tones
AlienKevin
2023-09-08T23:54:58Z
105
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-08T23:53:39Z
--- language: - yue license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer model-index: - name: Whisper Small Jyutping without Tones results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Jyutping without Tones This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0701 - eval_wer: 9.8213 - eval_runtime: 1761.3114 - eval_samples_per_second: 1.453 - eval_steps_per_second: 0.182 - epoch: 0.78 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
Onutoa/1_1e-2_10_0.1
Onutoa
2023-09-08T23:37:49Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T20:38:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_1e-2_10_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_1e-2_10_0.1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9213 - Accuracy: 0.7489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8284 | 1.0 | 590 | 2.0796 | 0.6220 | | 1.4411 | 2.0 | 1180 | 1.1449 | 0.6220 | | 1.3365 | 3.0 | 1770 | 1.0330 | 0.6217 | | 1.305 | 4.0 | 2360 | 0.9705 | 0.6349 | | 1.1782 | 5.0 | 2950 | 0.9411 | 0.6339 | | 1.1021 | 6.0 | 3540 | 1.4542 | 0.6223 | | 1.091 | 7.0 | 4130 | 1.3703 | 0.4969 | | 0.9725 | 8.0 | 4720 | 1.4839 | 0.6425 | | 0.9313 | 9.0 | 5310 | 0.7887 | 0.7009 | | 0.8889 | 10.0 | 5900 | 0.8354 | 0.7052 | | 0.8457 | 11.0 | 6490 | 0.8120 | 0.6807 | | 0.7264 | 12.0 | 7080 | 0.9915 | 0.6190 | | 0.7354 | 13.0 | 7670 | 0.7554 | 0.7205 | | 0.686 | 14.0 | 8260 | 0.8069 | 0.7183 | | 0.6549 | 15.0 | 8850 | 0.7395 | 0.7379 | | 0.6278 | 16.0 | 9440 | 0.7282 | 0.7275 | | 0.5753 | 17.0 | 10030 | 0.9035 | 0.6795 | | 0.5773 | 18.0 | 10620 | 0.8699 | 0.6887 | | 0.5437 | 19.0 | 11210 | 0.7501 | 0.7226 | | 0.5266 | 20.0 | 11800 | 0.9360 | 0.7336 | | 0.509 | 21.0 | 12390 | 0.8204 | 0.7199 | | 0.497 | 22.0 | 12980 | 0.7944 | 0.7343 | | 0.4379 | 23.0 | 13570 | 0.8074 | 0.7147 | | 0.4276 | 24.0 | 14160 | 0.8147 | 0.7306 | | 0.4132 | 25.0 | 14750 | 0.8578 | 0.7373 | | 0.3944 | 26.0 | 15340 | 0.9502 | 0.7015 | | 0.3845 | 27.0 | 15930 | 0.8962 | 0.7021 | | 0.3754 | 28.0 | 16520 | 0.8571 | 0.7275 | | 0.3478 | 29.0 | 17110 | 0.8433 | 0.7373 | | 0.3561 | 30.0 | 17700 | 0.8819 | 0.7327 | | 0.3301 | 31.0 | 18290 | 0.8623 | 0.7382 | | 0.3217 | 32.0 | 18880 | 0.9132 | 0.7419 | | 0.3182 | 33.0 | 19470 | 0.9184 | 0.7281 | | 0.2892 | 34.0 | 20060 | 0.8482 | 0.7358 | | 0.2915 | 35.0 | 20650 | 0.8988 | 0.7474 | | 0.2816 | 36.0 | 21240 | 0.8834 | 0.7446 | | 0.2763 | 37.0 | 21830 | 0.9208 | 0.7251 | | 0.2679 | 38.0 | 22420 | 0.8656 | 0.7379 | | 0.2785 | 39.0 | 23010 | 0.9177 | 0.7315 | | 0.2551 | 40.0 | 23600 | 0.9989 | 0.7508 | | 0.2491 | 41.0 | 24190 | 0.9483 | 0.7505 | | 0.2482 | 42.0 | 24780 | 0.8921 | 0.7391 | | 0.2577 | 43.0 | 25370 | 0.9175 | 0.7459 | | 0.24 | 44.0 | 25960 | 0.9345 | 0.7453 | | 0.2368 | 45.0 | 26550 | 0.9161 | 0.7428 | | 0.2261 | 46.0 | 27140 | 0.8859 | 0.7315 | | 0.2317 | 47.0 | 27730 | 0.8984 | 0.7437 | | 0.218 | 48.0 | 28320 | 0.8986 | 0.7465 | | 0.224 | 49.0 | 28910 | 0.8665 | 0.7431 | | 0.2064 | 50.0 | 29500 | 0.8869 | 0.7492 | | 0.2163 | 51.0 | 30090 | 0.8786 | 0.7394 | | 0.2145 | 52.0 | 30680 | 0.9545 | 0.7446 | | 0.1998 | 53.0 | 31270 | 0.8586 | 0.7462 | | 0.2008 | 54.0 | 31860 | 0.9008 | 0.7446 | | 0.1978 | 55.0 | 32450 | 0.9236 | 0.7471 | | 0.2025 | 56.0 | 33040 | 0.8906 | 0.7474 | | 0.1903 | 57.0 | 33630 | 0.9517 | 0.7459 | | 0.1846 | 58.0 | 34220 | 0.9696 | 0.7529 | | 0.1819 | 59.0 | 34810 | 0.9163 | 0.7419 | | 0.1883 | 60.0 | 35400 | 0.9419 | 0.7373 | | 0.1851 | 61.0 | 35990 | 0.9657 | 0.7419 | | 0.1805 | 62.0 | 36580 | 0.9279 | 0.7413 | | 0.1866 | 63.0 | 37170 | 0.8996 | 0.7495 | | 0.1752 | 64.0 | 37760 | 0.9427 | 0.7554 | | 0.1703 | 65.0 | 38350 | 0.9364 | 0.7379 | | 0.1702 | 66.0 | 38940 | 0.9546 | 0.7502 | | 0.1688 | 67.0 | 39530 | 0.9265 | 0.7498 | | 0.1724 | 68.0 | 40120 | 0.9043 | 0.7446 | | 0.1635 | 69.0 | 40710 | 0.9426 | 0.7465 | | 0.1652 | 70.0 | 41300 | 0.9702 | 0.7471 | | 0.1643 | 71.0 | 41890 | 0.9191 | 0.7379 | | 0.1684 | 72.0 | 42480 | 0.9362 | 0.7526 | | 0.1575 | 73.0 | 43070 | 0.9399 | 0.7511 | | 0.1585 | 74.0 | 43660 | 0.9585 | 0.7483 | | 0.1551 | 75.0 | 44250 | 0.9481 | 0.7532 | | 0.1587 | 76.0 | 44840 | 0.9233 | 0.7483 | | 0.1499 | 77.0 | 45430 | 0.9115 | 0.7508 | | 0.1541 | 78.0 | 46020 | 0.9531 | 0.7535 | | 0.1505 | 79.0 | 46610 | 0.9306 | 0.7456 | | 0.1521 | 80.0 | 47200 | 0.9185 | 0.7535 | | 0.1448 | 81.0 | 47790 | 0.9228 | 0.7459 | | 0.1475 | 82.0 | 48380 | 0.9214 | 0.7446 | | 0.1491 | 83.0 | 48970 | 0.9355 | 0.7465 | | 0.1433 | 84.0 | 49560 | 0.9403 | 0.7523 | | 0.1416 | 85.0 | 50150 | 0.9270 | 0.7492 | | 0.1391 | 86.0 | 50740 | 0.9208 | 0.7517 | | 0.1391 | 87.0 | 51330 | 0.9134 | 0.7517 | | 0.1415 | 88.0 | 51920 | 0.9198 | 0.7486 | | 0.1343 | 89.0 | 52510 | 0.9380 | 0.7483 | | 0.128 | 90.0 | 53100 | 0.9429 | 0.7505 | | 0.1328 | 91.0 | 53690 | 0.9211 | 0.7529 | | 0.1311 | 92.0 | 54280 | 0.9180 | 0.7431 | | 0.1383 | 93.0 | 54870 | 0.9522 | 0.7535 | | 0.133 | 94.0 | 55460 | 0.9047 | 0.7486 | | 0.1331 | 95.0 | 56050 | 0.9339 | 0.7526 | | 0.1304 | 96.0 | 56640 | 0.9177 | 0.7480 | | 0.1293 | 97.0 | 57230 | 0.9194 | 0.7471 | | 0.128 | 98.0 | 57820 | 0.9213 | 0.7492 | | 0.1268 | 99.0 | 58410 | 0.9260 | 0.7492 | | 0.1297 | 100.0 | 59000 | 0.9213 | 0.7489 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
speechlessai/speechless-baichuan2-dolphin-orca-platypus-13b
speechlessai
2023-09-08T23:29:00Z
13
0
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "custom_code", "en", "zh", "dataset:ehartford/dolphin", "dataset:Open-Orca/OpenOrca", "dataset:garage-bAInd/Open-Platypus", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T11:27:45Z
--- language: - en - zh license: apache-2.0 tasks: - text-generation datasets: - ehartford/dolphin - Open-Orca/OpenOrca - garage-bAInd/Open-Platypus --- <p><h1> speechless-baichuan2-dolphin-orca-platypus-13b </h1></p> Fine-tune the baichuan-inc/Baichuan2-13B-Base with Dolphin, Orca and Platypus datasets. | Metric | Value | | --- | --- | | ARC | | | HellaSwag | | | MMLU | | | TruthfulQA | | | Average | | <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <div align="center"> <h1> Baichuan 2 </h1> </div> <div align="center"> <a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">๐Ÿฆ‰GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">๐Ÿ’ฌWeChat</a> </div> <div align="center"> ๐Ÿš€ <a href="https://www.baichuan-ai.com/" target="_blank">็™พๅทๅคงๆจกๅž‹ๅœจ็บฟๅฏน่ฏๅนณๅฐ</a> ๅทฒๆญฃๅผๅ‘ๅ…ฌไผ—ๅผ€ๆ”พ ๐ŸŽ‰ </div> # ็›ฎๅฝ•/Table of Contents - [๐Ÿ“– ๆจกๅž‹ไป‹็ป/Introduction](#Introduction) - [โš™๏ธ ๅฟซ้€Ÿๅผ€ๅง‹/Quick Start](#Start) - [๐Ÿ“Š Benchmark่ฏ„ไผฐ/Benchmark Evaluation](#Benchmark) - [๐Ÿ“œ ๅฃฐๆ˜ŽไธŽๅ่ฎฎ/Terms and Conditions](#Terms) # <span id="Introduction">ๆจกๅž‹ไป‹็ป/Introduction</span> Baichuan 2 ๆ˜ฏ[็™พๅทๆ™บ่ƒฝ]ๆŽจๅ‡บ็š„ๆ–ฐไธ€ไปฃๅผ€ๆบๅคง่ฏญ่จ€ๆจกๅž‹๏ผŒ้‡‡็”จ **2.6 ไธ‡ไบฟ** Tokens ็š„้ซ˜่ดจ้‡่ฏญๆ–™่ฎญ็ปƒ๏ผŒๅœจๆƒๅจ็š„ไธญๆ–‡ๅ’Œ่‹ฑๆ–‡ benchmark ไธŠๅ‡ๅ–ๅพ—ๅŒๅฐบๅฏธๆœ€ๅฅฝ็š„ๆ•ˆๆžœใ€‚ๆœฌๆฌกๅ‘ๅธƒๅŒ…ๅซๆœ‰ 7Bใ€13B ็š„ Base ๅ’Œ Chat ็‰ˆๆœฌ๏ผŒๅนถๆไพ›ไบ† Chat ็‰ˆๆœฌ็š„ 4bits ้‡ๅŒ–๏ผŒๆ‰€ๆœ‰็‰ˆๆœฌไธไป…ๅฏนๅญฆๆœฏ็ ”็ฉถๅฎŒๅ…จๅผ€ๆ”พ๏ผŒๅผ€ๅ‘่€…ไนŸไป…้œ€[้‚ฎไปถ็”ณ่ฏท]ๅนถ่Žทๅพ—ๅฎ˜ๆ–นๅ•†็”จ่ฎธๅฏๅŽ๏ผŒๅณๅฏไปฅๅ…่ดนๅ•†็”จใ€‚ๅ…ทไฝ“ๅ‘ๅธƒ็‰ˆๆœฌๅ’Œไธ‹่ฝฝ่งไธ‹่กจ๏ผš Baichuan 2 is the new generation of large-scale open-source language models launched by [Baichuan Intelligence inc.](https://www.baichuan-ai.com/). It is trained on a high-quality corpus with 2.6 trillion tokens and has achieved the best performance in authoritative Chinese and English benchmarks of the same size. This release includes 7B and 13B versions for both Base and Chat models, along with a 4bits quantized version for the Chat model. All versions are fully open to academic research, and developers can also use them for free in commercial applications after obtaining an official commercial license through [email request](mailto:opensource@baichuan-inc.com). The specific release versions and download links are listed in the table below: | | Base Model | Chat Model | 4bits Quantized Chat Model | |:---:|:--------------------:|:--------------------:|:--------------------------:| | 7B | [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) | [Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | [Baichuan2-7B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base-4bits) | | 13B | [Baichuan2-13B-Base](https://huggingface.co/baichuan-inc/Baichuan2-13B-Base) | [Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) | [Baichuan2-13B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits) | # <span id="Start">ๅฟซ้€Ÿๅผ€ๅง‹/Quick Start</span> ๅœจBaichuan2็ณปๅˆ—ๆจกๅž‹ไธญ๏ผŒๆˆ‘ไปฌไธบไบ†ๅŠ ๅฟซๆŽจ็†้€Ÿๅบฆไฝฟ็”จไบ†Pytorch2.0ๅŠ ๅ…ฅ็š„ๆ–ฐๅŠŸ่ƒฝF.scaled_dot_product_attention๏ผŒๅ› ๆญคๆจกๅž‹้œ€่ฆๅœจPytorch2.0็Žฏๅขƒไธ‹่ฟ่กŒใ€‚ In the Baichuan 2 series models, we have utilized the new feature `F.scaled_dot_product_attention` introduced in PyTorch 2.0 to accelerate inference speed. Therefore, the model needs to be run in a PyTorch 2.0 environment. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True) inputs = tokenizer('็™ป้นณ้›€ๆฅผ->็Ž‹ไน‹ๆถฃ\nๅคœ้›จๅฏ„ๅŒ—->', return_tensors='pt') inputs = inputs.to('cuda:0') pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` # <span id="Benchmark">Benchmark ็ป“ๆžœ/Benchmark Evaluation</span> ๆˆ‘ไปฌๅœจ[้€š็”จ]ใ€[ๆณ•ๅพ‹]ใ€[ๅŒป็–—]ใ€[ๆ•ฐๅญฆ]ใ€[ไปฃ็ ]ๅ’Œ[ๅคš่ฏญ่จ€็ฟป่ฏ‘]ๅ…ญไธช้ข†ๅŸŸ็š„ไธญ่‹ฑๆ–‡ๆƒๅจๆ•ฐๆฎ้›†ไธŠๅฏนๆจกๅž‹่ฟ›่กŒไบ†ๅนฟๆณ›ๆต‹่ฏ•๏ผŒๆ›ดๅคš่ฏฆ็ป†ๆต‹่ฏ„็ป“ๆžœๅฏๆŸฅ็œ‹[GitHub]ใ€‚ We have extensively tested the model on authoritative Chinese-English datasets across six domains: [General](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#general-domain), [Legal](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Medical](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Mathematics](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), [Code](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), and [Multilingual Translation](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#multilingual-translation). For more detailed evaluation results, please refer to [GitHub](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md). ### 7B Model Results | | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** | |:-----------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:| | | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot | | **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 | | **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 | | **LLaMA-7B** | 27.10 | 35.10 | 26.75 | 27.81 | 28.17 | 32.38 | | **LLaMA2-7B** | 28.90 | 45.73 | 31.38 | 25.97 | 26.53 | 39.16 | | **MPT-7B** | 27.15 | 27.93 | 26.00 | 26.54 | 24.83 | 35.20 | | **Falcon-7B** | 24.23 | 26.03 | 25.66 | 24.24 | 24.10 | 28.77 | | **ChatGLM2-6B** | 50.20 | 45.90 | 49.00 | 49.44 | 45.28 | 31.65 | | **[Baichuan-7B]** | 42.80 | 42.30 | 44.02 | 36.34 | 34.44 | 32.48 | | **[Baichuan2-7B-Base]** | 54.00 | 54.16 | 57.07 | 47.47 | 42.73 | 41.56 | ### 13B Model Results | | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** | |:---------------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:| | | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot | | **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 | | **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 | | **LLaMA-13B** | 28.50 | 46.30 | 31.15 | 28.23 | 28.22 | 37.89 | | **LLaMA2-13B** | 35.80 | 55.09 | 37.99 | 30.83 | 32.29 | 46.98 | | **Vicuna-13B** | 32.80 | 52.00 | 36.28 | 30.11 | 31.55 | 43.04 | | **Chinese-Alpaca-Plus-13B** | 38.80 | 43.90 | 33.43 | 34.78 | 35.46 | 28.94 | | **XVERSE-13B** | 53.70 | 55.21 | 58.44 | 44.69 | 42.54 | 38.06 | | **[Baichuan-13B-Base]** | 52.40 | 51.60 | 55.30 | 49.69 | 43.20 | 43.01 | | **[Baichuan2-13B-Base]** | 58.10 | 59.17 | 61.97 | 54.33 | 48.17 | 48.78 | ## ่ฎญ็ปƒ่ฟ‡็จ‹ๆจกๅž‹/Training Dynamics ้™คไบ†่ฎญ็ปƒไบ† 2.6 ไธ‡ไบฟ Tokens ็š„ [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) ๆจกๅž‹๏ผŒๆˆ‘ไปฌ่ฟ˜ๆไพ›ไบ†ๅœจๆญคไน‹ๅ‰็š„ๅฆๅค– 11 ไธชไธญ้—ด่ฟ‡็จ‹็š„ๆจกๅž‹๏ผˆๅˆ†ๅˆซๅฏนๅบ”่ฎญ็ปƒไบ†็บฆ 0.2 ~ 2.4 ไธ‡ไบฟ Tokens๏ผ‰ไพ›็คพๅŒบ็ ”็ฉถไฝฟ็”จ ๏ผˆ[่ฎญ็ปƒ่ฟ‡็จ‹checkpointไธ‹่ฝฝ](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints)๏ผ‰ใ€‚ไธ‹ๅ›พ็ป™ๅ‡บไบ†่ฟ™ไบ› checkpoints ๅœจ C-Evalใ€MMLUใ€CMMLU ไธ‰ไธช benchmark ไธŠ็š„ๆ•ˆๆžœๅ˜ๅŒ–๏ผš In addition to the [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) model trained on 2.6 trillion tokens, we also offer 11 additional intermediate-stage models for community research, corresponding to training on approximately 0.2 to 2.4 trillion tokens each ([Intermediate Checkpoints Download](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints)). The graph below shows the performance changes of these checkpoints on three benchmarks: C-Eval, MMLU, and CMMLU. ![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg) # <span id="Terms">ๅฃฐๆ˜ŽไธŽๅ่ฎฎ/Terms and Conditions</span> ## ๅฃฐๆ˜Ž ๆˆ‘ไปฌๅœจๆญคๅฃฐๆ˜Ž๏ผŒๆˆ‘ไปฌ็š„ๅผ€ๅ‘ๅ›ข้˜ŸๅนถๆœชๅŸบไบŽ Baichuan 2 ๆจกๅž‹ๅผ€ๅ‘ไปปไฝ•ๅบ”็”จ๏ผŒๆ— ่ฎบๆ˜ฏๅœจ iOSใ€Androidใ€็ฝ‘้กตๆˆ–ไปปไฝ•ๅ…ถไป–ๅนณๅฐใ€‚ๆˆ‘ไปฌๅผบ็ƒˆๅ‘ผๅๆ‰€ๆœ‰ไฝฟ็”จ่€…๏ผŒไธ่ฆๅˆฉ็”จ Baichuan 2 ๆจกๅž‹่ฟ›่กŒไปปไฝ•ๅฑๅฎณๅ›ฝๅฎถ็คพไผšๅฎ‰ๅ…จๆˆ–่ฟๆณ•็š„ๆดปๅŠจใ€‚ๅฆๅค–๏ผŒๆˆ‘ไปฌไนŸ่ฆๆฑ‚ไฝฟ็”จ่€…ไธ่ฆๅฐ† Baichuan 2 ๆจกๅž‹็”จไบŽๆœช็ป้€‚ๅฝ“ๅฎ‰ๅ…จๅฎกๆŸฅๅ’Œๅค‡ๆกˆ็š„ไบ’่”็ฝ‘ๆœๅŠกใ€‚ๆˆ‘ไปฌๅธŒๆœ›ๆ‰€ๆœ‰็š„ไฝฟ็”จ่€…้ƒฝ่ƒฝ้ตๅฎˆ่ฟ™ไธชๅŽŸๅˆ™๏ผŒ็กฎไฟ็ง‘ๆŠ€็š„ๅ‘ๅฑ•่ƒฝๅœจ่ง„่Œƒๅ’Œๅˆๆณ•็š„็Žฏๅขƒไธ‹่ฟ›่กŒใ€‚ ๆˆ‘ไปฌๅทฒ็ปๅฐฝๆˆ‘ไปฌๆ‰€่ƒฝ๏ผŒๆฅ็กฎไฟๆจกๅž‹่ฎญ็ปƒ่ฟ‡็จ‹ไธญไฝฟ็”จ็š„ๆ•ฐๆฎ็š„ๅˆ่ง„ๆ€งใ€‚็„ถ่€Œ๏ผŒๅฐฝ็ฎกๆˆ‘ไปฌๅทฒ็ปๅšๅ‡บไบ†ๅทจๅคง็š„ๅŠชๅŠ›๏ผŒไฝ†็”ฑไบŽๆจกๅž‹ๅ’Œๆ•ฐๆฎ็š„ๅคๆ‚ๆ€ง๏ผŒไปๆœ‰ๅฏ่ƒฝๅญ˜ๅœจไธ€ไบ›ๆ— ๆณ•้ข„่ง็š„้—ฎ้ข˜ใ€‚ๅ› ๆญค๏ผŒๅฆ‚ๆžœ็”ฑไบŽไฝฟ็”จ Baichuan 2 ๅผ€ๆบๆจกๅž‹่€Œๅฏผ่‡ด็š„ไปปไฝ•้—ฎ้ข˜๏ผŒๅŒ…ๆ‹ฌไฝ†ไธ้™ไบŽๆ•ฐๆฎๅฎ‰ๅ…จ้—ฎ้ข˜ใ€ๅ…ฌๅ…ฑ่ˆ†่ฎบ้ฃŽ้™ฉ๏ผŒๆˆ–ๆจกๅž‹่ขซ่ฏฏๅฏผใ€ๆปฅ็”จใ€ไผ ๆ’ญๆˆ–ไธๅฝ“ๅˆฉ็”จๆ‰€ๅธฆๆฅ็š„ไปปไฝ•้ฃŽ้™ฉๅ’Œ้—ฎ้ข˜๏ผŒๆˆ‘ไปฌๅฐ†ไธๆ‰ฟๆ‹…ไปปไฝ•่ดฃไปปใ€‚ We hereby declare that our team has not developed any applications based on Baichuan 2 models, not on iOS, Android, the web, or any other platform. We strongly call on all users not to use Baichuan 2 models for any activities that harm national / social security or violate the law. Also, we ask users not to use Baichuan 2 models for Internet services that have not undergone appropriate security reviews and filings. We hope that all users can abide by this principle and ensure that the development of technology proceeds in a regulated and legal environment. We have done our best to ensure the compliance of the data used in the model training process. However, despite our considerable efforts, there may still be some unforeseeable issues due to the complexity of the model and data. Therefore, if any problems arise due to the use of Baichuan 2 open-source models, including but not limited to data security issues, public opinion risks, or any risks and problems brought about by the model being misled, abused, spread or improperly exploited, we will not assume any responsibility. ## ๅ่ฎฎ Baichuan 2 ๆจกๅž‹็š„็คพๅŒบไฝฟ็”จ้œ€้ตๅพช[ใ€ŠBaichuan 2 ๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎใ€‹]ใ€‚Baichuan 2 ๆ”ฏๆŒๅ•†็”จใ€‚ๅฆ‚ๆžœๅฐ† Baichuan 2 ๆจกๅž‹ๆˆ–ๅ…ถ่ก็”Ÿๅ“็”จไฝœๅ•†ไธš็”จ้€”๏ผŒ่ฏทๆ‚จๆŒ‰็…งๅฆ‚ไธ‹ๆ–นๅผ่”็ณป่ฎธๅฏๆ–น๏ผŒไปฅ่ฟ›่กŒ็™ป่ฎฐๅนถๅ‘่ฎธๅฏๆ–น็”ณ่ฏทไนฆ้ขๆŽˆๆƒ๏ผš่”็ณป้‚ฎ็ฎฑ [opensource@baichuan-inc.com]ใ€‚ The use of the source code in this repository follows the open-source license Apache 2.0. Community use of the Baichuan 2 model must adhere to the [Community License for Baichuan 2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). Baichuan 2 supports commercial use. If you are using the Baichuan 2 models or their derivatives for commercial purposes, please contact the licensor in the following manner for registration and to apply for written authorization: Email opensource@baichuan-inc.com. [GitHub]:https://github.com/baichuan-inc/Baichuan2 [Baichuan2]:https://github.com/baichuan-inc/Baichuan2 [Baichuan-7B]:https://huggingface.co/baichuan-inc/Baichuan-7B [Baichuan2-7B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base [Baichuan2-7B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat [Baichuan2-7B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bits [Baichuan-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan-13B-Base [Baichuan2-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Base [Baichuan2-13B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat [Baichuan2-13B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits [้€š็”จ]:https://github.com/baichuan-inc/Baichuan2#%E9%80%9A%E7%94%A8%E9%A2%86%E5%9F%9F [ๆณ•ๅพ‹]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97 [ๅŒป็–—]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97 [ๆ•ฐๅญฆ]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81 [ไปฃ็ ]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81 [ๅคš่ฏญ่จ€็ฟป่ฏ‘]:https://github.com/baichuan-inc/Baichuan2#%E5%A4%9A%E8%AF%AD%E8%A8%80%E7%BF%BB%E8%AF%91 [ใ€ŠBaichuan 2 ๆจกๅž‹็คพๅŒบ่ฎธๅฏๅ่ฎฎใ€‹]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf [้‚ฎไปถ็”ณ่ฏท]: mailto:opensource@baichuan-inc.com [Email]: mailto:opensource@baichuan-inc.com [opensource@baichuan-inc.com]: mailto:opensource@baichuan-inc.com [่ฎญ็ปƒ่ฟ‡็จ‹heckpointไธ‹่ฝฝ]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints [็™พๅทๆ™บ่ƒฝ]: https://www.baichuan-ai.com
Brouz/REMM-PYG-0.65-SLERP
Brouz
2023-09-08T22:56:11Z
22
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T19:21:50Z
--- license: llama2 --- ReMM-SLERP-L2-13B merged with pygmalion-2-13b at 0.65 weight using Ties-Merge with SLERP 13b
Brouz/Slerpeno
Brouz
2023-09-08T22:51:29Z
1,534
4
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T00:33:20Z
--- license: cc-by-4.0 --- Uses the same models Stheno does but merging using SLERP method instead 13B model
Fredyco/FIFA
Fredyco
2023-09-08T22:32:30Z
0
0
null
[ "region:us" ]
null
2023-09-08T22:30:43Z
--- title: Fifa 2022 Model 1 emoji: ๐Ÿ“Š colorFrom: pink colorTo: purple sdk: streamlit sdk_version: 1.17.0 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Fredithefish/Guanaco-13B-Uncensored
Fredithefish
2023-09-08T22:07:16Z
1,500
13
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "dataset:Fredithefish/openassistant-guanaco-unfiltered", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-07T12:25:27Z
--- license: apache-2.0 datasets: - Fredithefish/openassistant-guanaco-unfiltered language: - en library_name: transformers pipeline_tag: conversational inference: false --- <img src="https://huggingface.co/Fredithefish/Guanaco-3B-Uncensored/resolve/main/Guanaco-Uncensored.jpg" alt="Alt Text" width="295"/> # โœจ Guanaco - 13B - Uncensored โœจ Guanaco-13B-Uncensored has been fine-tuned for 4 epochs on the [Unfiltered Guanaco Dataset.](https://huggingface.co/datasets/Fredithefish/openassistant-guanaco-unfiltered) using [Llama-2-13B](https://hf.co/meta-llama/Llama-2-13b-hf) as the base model. <br>The model does not perform well with languages other than English. <br>Please note: This model is designed to provide responses without content filtering or censorship. It generates answers without denials. ## Special thanks I would like to thank AutoMeta for providing me with the computing power necessary to train this model. Also thanks to TheBloke for creating [the GGUF](https://huggingface.co/TheBloke/Guanaco-13B-Uncensored-GGUF) and [the GPTQ](https://huggingface.co/TheBloke/Guanaco-13B-Uncensored-GPTQ) quantizations for this model ### Prompt Template ``` ### Human: {prompt} ### Assistant: ``` ### Dataset The model has been fine-tuned on the V2 of the Guanaco unfiltered dataset.
mgmeskill/downstrike-320m
mgmeskill
2023-09-08T22:04:56Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-08T22:02:18Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mgmeskill/downstrike-320m 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
MattStammers/a2c-PandaPickAndPlace-v3
MattStammers
2023-09-08T22:00:42Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:55:15Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -40.00 +/- 20.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mmnga/stockmark-gpt-neox-japanese-1.4b-gguf
mmnga
2023-09-08T22:00:37Z
727
1
null
[ "gguf", "gpt-neox", "ja", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-08-22T12:45:18Z
--- license: mit language: - ja tags: - gpt-neox --- # stockmark-gpt-neox-japanese-1.4b-gguf [stockmarkใ•ใ‚“ใŒๅ…ฌ้–‹ใ—ใฆใ„ใ‚‹gpt-neox-japanese-1.4b](https://huggingface.co/stockmark/gpt-neox-japanese-1.4b)ใฎggufใƒ•ใ‚ฉใƒผใƒžใƒƒใƒˆๅค‰ๆ›็‰ˆใงใ™ใ€‚ ๆณจๆ„:ใ“ใกใ‚‰ใฏใƒ–ใƒฉใƒณใƒใง่ฉฆ็”จใซใชใ‚Šใพใ™ใ€‚llama.cppๆœฌๅฎถใซgptneoxใŒๅฎŸ่ฃ…ใ•ใ‚ŒใŸๆ™‚ใซใ€ใ“ใฎggufใƒ•ใ‚กใ‚คใƒซใŒไฝฟ็”จใงใใชใ„ๅฏ่ƒฝๆ€งใŒใ‚ใ‚Šใพใ™ใ€‚ ***[GitHubใƒชใƒใ‚ธใƒˆใƒชใฎ readme ใฏใ“ใกใ‚‰](https://github.com/mmnga/llama.cpp/tree/mmnga-dev)*** ## Usage (่ฉฆ็”จ) ``` git clone --branch mmnga-dev https://github.com/mmnga/llama.cpp.git cd llama.cpp make -j ./main -m 'stockmark-gpt-neox-japanese-1.4b-q4_0.gguf' -n 128 -p 'ๅพ่ผฉใฏ็Œซใงใ‚ใ‚‹ใ€‚ๅๅ‰ใฏๅฎŸใ‚’่จ€ใ†ใจใ€' --top_p 0.9 --temp 0.7 --repeat-penalty 1.1 ``` **CUBLAS** ``` LLAMA_CUBLAS=1 make -j ./main -m 'stockmark-gpt-neox-japanese-1.4b-q4_0.gguf' -n 128 -p 'ๅพ่ผฉใฏ็Œซใงใ‚ใ‚‹ใ€‚ๅๅ‰ใฏๅฎŸใ‚’่จ€ใ†ใจใ€' -ngl 24 ```
luissgtorres/Bert_sentiment_analysis_Indata
luissgtorres
2023-09-08T21:39:54Z
66
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-07T17:31:11Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Bert_sentiment_analysis_Indata results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_sentiment_analysis_Indata This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.33.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
PHL99/Reinforce-Cartpole-v1
PHL99
2023-09-08T21:39:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:39:31Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Beniuv/a2c-PandaReachDense-v3
Beniuv
2023-09-08T21:37:26Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:31:51Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.17 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rnkVikcdkam/Taxi-v3
rnkVikcdkam
2023-09-08T21:30:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:30:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rnkVikcdkam/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
quantumaikr/falcon-180B-wizard_alpaca_dolly_orca
quantumaikr
2023-09-08T21:28:51Z
1,517
4
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "en", "de", "es", "fr", "dataset:tiiuae/falcon-refinedweb", "dataset:nRuaif/wizard_alpaca_dolly_orca", "license:unknown", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-07T16:31:18Z
--- datasets: - tiiuae/falcon-refinedweb - nRuaif/wizard_alpaca_dolly_orca language: - en - de - es - fr inference: false license: unknown --- # ๐Ÿ‡ฐ๐Ÿ‡ท quantumaikr/falcon-180B-wizard_alpaca_dolly_orca **quantumaikr/falcon-180B-wizard_alpaca_dolly_orca is a 180B parameters causal decoder-only model built by [quantumaikr](https://www.quantumai.kr) based on [Falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)** ## How to Get Started with the Model To run inference with the model in full `bfloat16` precision you need approximately 8xA100 80GB or equivalent. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "quantumaikr/falcon-180B-wizard_alpaca_dolly_orca" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Contact ๐Ÿ‡ฐ๐Ÿ‡ท www.quantumai.kr ๐Ÿ‡ฐ๐Ÿ‡ท hi@quantumai.kr [์ดˆ๊ฑฐ๋Œ€์–ธ์–ด๋ชจ๋ธ ๊ธฐ์ˆ ๋„์ž… ๋ฌธ์˜ํ™˜์˜]
quantumaikr/falcon-180B-WizardLM_Orca
quantumaikr
2023-09-08T21:28:26Z
1,512
1
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "en", "de", "es", "fr", "dataset:tiiuae/falcon-refinedweb", "dataset:pankajmathur/WizardLM_Orca", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-08T03:47:54Z
--- datasets: - tiiuae/falcon-refinedweb - pankajmathur/WizardLM_Orca language: - en - de - es - fr inference: false --- # ๐Ÿ‡ฐ๐Ÿ‡ท quantumaikr/falcon-180B-WizardLM_Orca **quantumaikr/falcon-180B-WizardLM_Orca is a 180B parameters causal decoder-only model built by [quantumaikr](https://www.quantumai.kr) based on [Falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)** ## How to Get Started with the Model To run inference with the model in full `bfloat16` precision you need approximately 8xA100 80GB or equivalent. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "quantumaikr/falcon-180B-WizardLM_Orca" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Contact ๐Ÿ‡ฐ๐Ÿ‡ท www.quantumai.kr ๐Ÿ‡ฐ๐Ÿ‡ท hi@quantumai.kr [์ดˆ๊ฑฐ๋Œ€์–ธ์–ด๋ชจ๋ธ ๊ธฐ์ˆ ๋„์ž… ๋ฌธ์˜ํ™˜์˜]
Dischordo/Anime
Dischordo
2023-09-08T21:20:48Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-09-08T21:12:00Z
--- license: openrail --- Nekezuga: Clip Skip 1 capable Manga style model tuned away from bhili styles and more towards retro western tastes. Preview images are mostly raw at 1024 no upscaling, metadata is left on images.
rebolforces/a2c-PandaReachDense-v2g
rebolforces
2023-09-08T21:17:39Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T05:58:22Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.03 +/- 0.78 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
rebolforces/a2c-PandaReachDense-v2f
rebolforces
2023-09-08T21:17:25Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T05:42:53Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.23 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
ccore/opt-125-smart-test
ccore
2023-09-08T21:08:41Z
124
1
transformers
[ "transformers", "pytorch", "opt", "text-generation", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T19:21:58Z
--- license: gpl-3.0 --- hf-causal (pretrained=ccore/opt-125-smart-test), limit: None, provide_description: False, num_fewshot: 0, batch_size: None | Task |Version| Metric |Value | |Stderr| |----------|------:|--------|-----:|---|-----:| |openbookqa| 0|acc |0.1560|ยฑ |0.0162| | | |acc_norm|0.3420|ยฑ |0.0212| |piqa | 0|acc |0.6197|ยฑ |0.0113| | | |acc_norm|0.6023|ยฑ |0.0114| prompt format: [INSTRUCTION] what's the capital of Brasil? ? [RESPONSE] The capital of Brazil is Brasilia datasets: OpenOrca, Wizard dataset, custom papers data .
OtterDev/otterchat
OtterDev
2023-09-08T21:05:45Z
149
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "question-answering", "code", "dataset:xquad", "dataset:xquad_r", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-04-25T00:23:19Z
--- license: apache-2.0 datasets: - xquad - xquad_r tags: - code --- # OtterChat <!-- Provide a quick summary of what the model is/does. --> OtterChat is a custom-trained model made by me that allows you to ask questions about given data. ## Model Details - **Developed by:** OtterDev - **Model type:** Question Answering
MattStammers/a2c-PandaReachDense-v3
MattStammers
2023-09-08T20:52:59Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T20:28:58Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Having some issues with the video but this is a much better robotic reacher - will try to sort later on