modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 18:27:20
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 18:27:03
card
stringlengths
11
1.01M
chaanks/asr-whisper-tiny-sb
chaanks
2023-08-02T09:04:49Z
7
0
speechbrain
[ "speechbrain", "whisper", "pytorch", "Transformer", "hf-asr-leaderboard", "automatic-speech-recognition", "en", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2023-08-01T11:53:52Z
--- language: - en thumbnail: null pipeline_tag: automatic-speech-recognition tags: - whisper - pytorch - speechbrain - Transformer - hf-asr-leaderboard license: apache-2.0 model-index: - name: asr-whisper-tiny-sb results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 7.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 17.15 --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Whisper tiny SpeechBrain This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end whisper model within SpeechBrain. Please note that this is not an official Speechbrain repository. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers==4.28.0 ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files ```python from speechbrain.pretrained import WhisperASR asr_model = WhisperASR.from_hparams(source="chaanks/asr-whisper-tiny-sb", savedir="pretrained_models/asr-whisper-tiny-sb") asr_model.transcribe_file("chaanks/asr-whisper-tiny-sb/example.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
DataPrime/ppo-LunarLander-v2
DataPrime
2023-08-02T09:03:56Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T09:03:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.25 +/- 27.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dev-ninja/tsel_distilgpt
dev-ninja
2023-08-02T08:59:19Z
136
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T08:55:46Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: tsel_distilgpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tsel_distilgpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.6157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.9501 | | No log | 2.0 | 2 | 5.8630 | | No log | 3.0 | 3 | 5.7924 | | No log | 4.0 | 4 | 5.7383 | | No log | 5.0 | 5 | 5.6969 | | No log | 6.0 | 6 | 5.6665 | | No log | 7.0 | 7 | 5.6445 | | No log | 8.0 | 8 | 5.6297 | | No log | 9.0 | 9 | 5.6202 | | No log | 10.0 | 10 | 5.6157 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Yaopu/translate-scratch-kde4-en-to-fr
Yaopu
2023-08-02T08:58:35Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-01T06:24:34Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: translate-scratch-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translate-scratch-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Zekunli/bart-large-extraction-all-cnndm_2000-ep5
Zekunli
2023-08-02T08:57:48Z
114
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-02T08:46:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-large-extraction-all-cnndm_2000-ep5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-extraction-all-cnndm_2000-ep5 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8572 - Hint Hit Num: 1.91 - Hint Precision: 0.3668 - Num: 5.066 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 72 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hint Hit Num | Hint Precision | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------------:|:-----:|:-------:| | 2.2212 | 1.19 | 100 | 1.8652 | 1.86 | 0.3764 | 4.826 | 20.0 | | 1.8571 | 2.38 | 200 | 1.8548 | 1.948 | 0.3838 | 4.936 | 20.0 | | 1.6716 | 3.57 | 300 | 1.8468 | 1.894 | 0.3677 | 5.01 | 20.0 | | 1.5749 | 4.76 | 400 | 1.8559 | 1.918 | 0.3695 | 5.066 | 20.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousAuthorsforICSE2024/LLM4FIN
AnonymousAuthorsforICSE2024
2023-08-02T08:44:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-08-02T06:55:45Z
--- license: mit --- # Introduction This is model for LLM4FIN, including two models based on rule filtering model and rule element extraction model. To run the rule filtering model, use ``` model = AutoModelForSequenceClassification.from_pretrained("rule_filtering", num_labels=3) tokenizer = AutoTokenizer.from_pretrained("rule_filtering") ``` to load the model and tokenizer. To run the rule element extraction model, use ``` model = AutoModelForTokenClassification.from_pretrained("rule_element_extraction", num_labels=num_labels) tokenizer = AutoTokenizer.from_pretrained("rule_element_extraction") ``` to load the model and tokenizer.
mjpesavento/bert-swag-finetuned
mjpesavento
2023-08-02T08:40:33Z
104
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-08-02T08:31:44Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-swag-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-swag-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0460 - Accuracy: 0.7895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7705 | 1.0 | 4597 | 0.5834 | 0.7698 | | 0.3724 | 2.0 | 9194 | 0.6170 | 0.7845 | | 0.1456 | 3.0 | 13791 | 1.0460 | 0.7895 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
simonycl/bert-base-uncased-sst-2-32-100
simonycl
2023-08-02T08:32:01Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T08:26:42Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-sst-2-32-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst-2-32-100 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4379 - Accuracy: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.5385 | 0.9219 | | No log | 2.0 | 4 | 0.5392 | 0.9219 | | No log | 3.0 | 6 | 0.5398 | 0.9219 | | No log | 4.0 | 8 | 0.5410 | 0.9219 | | 0.733 | 5.0 | 10 | 0.5426 | 0.9219 | | 0.733 | 6.0 | 12 | 0.5443 | 0.9062 | | 0.733 | 7.0 | 14 | 0.5461 | 0.9062 | | 0.733 | 8.0 | 16 | 0.5481 | 0.9062 | | 0.733 | 9.0 | 18 | 0.5487 | 0.9062 | | 0.6383 | 10.0 | 20 | 0.5495 | 0.9062 | | 0.6383 | 11.0 | 22 | 0.5546 | 0.8906 | | 0.6383 | 12.0 | 24 | 0.5643 | 0.9062 | | 0.6383 | 13.0 | 26 | 0.5742 | 0.9062 | | 0.6383 | 14.0 | 28 | 0.5875 | 0.9062 | | 0.4993 | 15.0 | 30 | 0.5982 | 0.9062 | | 0.4993 | 16.0 | 32 | 0.6100 | 0.9062 | | 0.4993 | 17.0 | 34 | 0.6222 | 0.9062 | | 0.4993 | 18.0 | 36 | 0.6263 | 0.9062 | | 0.4993 | 19.0 | 38 | 0.6305 | 0.9062 | | 0.4891 | 20.0 | 40 | 0.6335 | 0.9062 | | 0.4891 | 21.0 | 42 | 0.6368 | 0.9062 | | 0.4891 | 22.0 | 44 | 0.6351 | 0.9062 | | 0.4891 | 23.0 | 46 | 0.6301 | 0.9062 | | 0.4891 | 24.0 | 48 | 0.6212 | 0.9062 | | 0.377 | 25.0 | 50 | 0.6100 | 0.9062 | | 0.377 | 26.0 | 52 | 0.5999 | 0.9062 | | 0.377 | 27.0 | 54 | 0.5852 | 0.9062 | | 0.377 | 28.0 | 56 | 0.5737 | 0.9062 | | 0.377 | 29.0 | 58 | 0.5606 | 0.9219 | | 0.3369 | 30.0 | 60 | 0.5466 | 0.9062 | | 0.3369 | 31.0 | 62 | 0.5319 | 0.9062 | | 0.3369 | 32.0 | 64 | 0.5205 | 0.9062 | | 0.3369 | 33.0 | 66 | 0.5074 | 0.9219 | | 0.3369 | 34.0 | 68 | 0.5025 | 0.9219 | | 0.19 | 35.0 | 70 | 0.4984 | 0.9219 | | 0.19 | 36.0 | 72 | 0.4934 | 0.9219 | | 0.19 | 37.0 | 74 | 0.4927 | 0.9375 | | 0.19 | 38.0 | 76 | 0.4955 | 0.9375 | | 0.19 | 39.0 | 78 | 0.4968 | 0.9375 | | 0.0507 | 40.0 | 80 | 0.4956 | 0.9375 | | 0.0507 | 41.0 | 82 | 0.4882 | 0.9375 | | 0.0507 | 42.0 | 84 | 0.4784 | 0.9375 | | 0.0507 | 43.0 | 86 | 0.4710 | 0.9219 | | 0.0507 | 44.0 | 88 | 0.4650 | 0.9219 | | 0.0102 | 45.0 | 90 | 0.4578 | 0.9219 | | 0.0102 | 46.0 | 92 | 0.4540 | 0.9219 | | 0.0102 | 47.0 | 94 | 0.4566 | 0.9062 | | 0.0102 | 48.0 | 96 | 0.4682 | 0.9062 | | 0.0102 | 49.0 | 98 | 0.4831 | 0.9219 | | 0.0026 | 50.0 | 100 | 0.4922 | 0.9219 | | 0.0026 | 51.0 | 102 | 0.4985 | 0.9219 | | 0.0026 | 52.0 | 104 | 0.5029 | 0.9219 | | 0.0026 | 53.0 | 106 | 0.5062 | 0.9219 | | 0.0026 | 54.0 | 108 | 0.5087 | 0.9219 | | 0.001 | 55.0 | 110 | 0.5100 | 0.9219 | | 0.001 | 56.0 | 112 | 0.5110 | 0.9219 | | 0.001 | 57.0 | 114 | 0.5112 | 0.9219 | | 0.001 | 58.0 | 116 | 0.5112 | 0.9219 | | 0.001 | 59.0 | 118 | 0.5110 | 0.9219 | | 0.0004 | 60.0 | 120 | 0.5087 | 0.9219 | | 0.0004 | 61.0 | 122 | 0.5028 | 0.9219 | | 0.0004 | 62.0 | 124 | 0.4965 | 0.9219 | | 0.0004 | 63.0 | 126 | 0.4903 | 0.9219 | | 0.0004 | 64.0 | 128 | 0.4848 | 0.9219 | | 0.0003 | 65.0 | 130 | 0.4802 | 0.9219 | | 0.0003 | 66.0 | 132 | 0.4767 | 0.9219 | | 0.0003 | 67.0 | 134 | 0.4739 | 0.9219 | | 0.0003 | 68.0 | 136 | 0.4719 | 0.9219 | | 0.0003 | 69.0 | 138 | 0.4707 | 0.9219 | | 0.0024 | 70.0 | 140 | 0.4600 | 0.9219 | | 0.0024 | 71.0 | 142 | 0.4439 | 0.9219 | | 0.0024 | 72.0 | 144 | 0.4336 | 0.9062 | | 0.0024 | 73.0 | 146 | 0.4283 | 0.9062 | | 0.0024 | 74.0 | 148 | 0.4253 | 0.9219 | | 0.0002 | 75.0 | 150 | 0.4237 | 0.9219 | | 0.0002 | 76.0 | 152 | 0.4232 | 0.9375 | | 0.0002 | 77.0 | 154 | 0.4230 | 0.9375 | | 0.0002 | 78.0 | 156 | 0.4229 | 0.9375 | | 0.0002 | 79.0 | 158 | 0.4228 | 0.9375 | | 0.0002 | 80.0 | 160 | 0.4228 | 0.9375 | | 0.0002 | 81.0 | 162 | 0.4225 | 0.9375 | | 0.0002 | 82.0 | 164 | 0.4237 | 0.9062 | | 0.0002 | 83.0 | 166 | 0.4384 | 0.9219 | | 0.0002 | 84.0 | 168 | 0.4565 | 0.9219 | | 0.0004 | 85.0 | 170 | 0.4717 | 0.9219 | | 0.0004 | 86.0 | 172 | 0.4813 | 0.9219 | | 0.0004 | 87.0 | 174 | 0.4858 | 0.9219 | | 0.0004 | 88.0 | 176 | 0.4885 | 0.9219 | | 0.0004 | 89.0 | 178 | 0.4897 | 0.9219 | | 0.0002 | 90.0 | 180 | 0.4904 | 0.9219 | | 0.0002 | 91.0 | 182 | 0.4865 | 0.9219 | | 0.0002 | 92.0 | 184 | 0.4732 | 0.9219 | | 0.0002 | 93.0 | 186 | 0.4557 | 0.9219 | | 0.0002 | 94.0 | 188 | 0.4388 | 0.9219 | | 0.0053 | 95.0 | 190 | 0.4254 | 0.9219 | | 0.0053 | 96.0 | 192 | 0.4171 | 0.9219 | | 0.0053 | 97.0 | 194 | 0.4132 | 0.9375 | | 0.0053 | 98.0 | 196 | 0.4118 | 0.9375 | | 0.0053 | 99.0 | 198 | 0.4115 | 0.9219 | | 0.0002 | 100.0 | 200 | 0.4118 | 0.9219 | | 0.0002 | 101.0 | 202 | 0.4122 | 0.9219 | | 0.0002 | 102.0 | 204 | 0.4125 | 0.9219 | | 0.0002 | 103.0 | 206 | 0.4128 | 0.9219 | | 0.0002 | 104.0 | 208 | 0.4131 | 0.9219 | | 0.0002 | 105.0 | 210 | 0.4133 | 0.9219 | | 0.0002 | 106.0 | 212 | 0.4134 | 0.9219 | | 0.0002 | 107.0 | 214 | 0.4140 | 0.9219 | | 0.0002 | 108.0 | 216 | 0.4149 | 0.9219 | | 0.0002 | 109.0 | 218 | 0.4158 | 0.9219 | | 0.0002 | 110.0 | 220 | 0.4167 | 0.9219 | | 0.0002 | 111.0 | 222 | 0.4175 | 0.9219 | | 0.0002 | 112.0 | 224 | 0.4183 | 0.9375 | | 0.0002 | 113.0 | 226 | 0.4190 | 0.9375 | | 0.0002 | 114.0 | 228 | 0.4197 | 0.9375 | | 0.0001 | 115.0 | 230 | 0.4203 | 0.9375 | | 0.0001 | 116.0 | 232 | 0.4208 | 0.9375 | | 0.0001 | 117.0 | 234 | 0.4218 | 0.9219 | | 0.0001 | 118.0 | 236 | 0.4228 | 0.9219 | | 0.0001 | 119.0 | 238 | 0.4237 | 0.9219 | | 0.0002 | 120.0 | 240 | 0.4244 | 0.9219 | | 0.0002 | 121.0 | 242 | 0.4251 | 0.9219 | | 0.0002 | 122.0 | 244 | 0.4257 | 0.9219 | | 0.0002 | 123.0 | 246 | 0.4263 | 0.9219 | | 0.0002 | 124.0 | 248 | 0.4269 | 0.9219 | | 0.0002 | 125.0 | 250 | 0.4273 | 0.9219 | | 0.0002 | 126.0 | 252 | 0.4277 | 0.9219 | | 0.0002 | 127.0 | 254 | 0.4280 | 0.9219 | | 0.0002 | 128.0 | 256 | 0.4284 | 0.9219 | | 0.0002 | 129.0 | 258 | 0.4287 | 0.9219 | | 0.0008 | 130.0 | 260 | 0.4330 | 0.9219 | | 0.0008 | 131.0 | 262 | 0.4554 | 0.9219 | | 0.0008 | 132.0 | 264 | 0.4714 | 0.9219 | | 0.0008 | 133.0 | 266 | 0.4845 | 0.9375 | | 0.0008 | 134.0 | 268 | 0.5000 | 0.9219 | | 0.0001 | 135.0 | 270 | 0.5167 | 0.9219 | | 0.0001 | 136.0 | 272 | 0.5308 | 0.9062 | | 0.0001 | 137.0 | 274 | 0.5417 | 0.9062 | | 0.0001 | 138.0 | 276 | 0.5480 | 0.9062 | | 0.0001 | 139.0 | 278 | 0.5529 | 0.9062 | | 0.0001 | 140.0 | 280 | 0.5566 | 0.9062 | | 0.0001 | 141.0 | 282 | 0.5570 | 0.9062 | | 0.0001 | 142.0 | 284 | 0.5565 | 0.9062 | | 0.0001 | 143.0 | 286 | 0.5555 | 0.9062 | | 0.0001 | 144.0 | 288 | 0.5544 | 0.9062 | | 0.0001 | 145.0 | 290 | 0.5511 | 0.9062 | | 0.0001 | 146.0 | 292 | 0.5096 | 0.9219 | | 0.0001 | 147.0 | 294 | 0.4811 | 0.9375 | | 0.0001 | 148.0 | 296 | 0.4624 | 0.9219 | | 0.0001 | 149.0 | 298 | 0.4488 | 0.9219 | | 0.0002 | 150.0 | 300 | 0.4379 | 0.9219 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
simonycl/bert-base-uncased-sst-2-32-87
simonycl
2023-08-02T08:26:28Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T08:21:03Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-sst-2-32-87 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst-2-32-87 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9995 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 1.3036 | 0.8281 | | No log | 2.0 | 4 | 1.3032 | 0.8281 | | No log | 3.0 | 6 | 1.3022 | 0.8281 | | No log | 4.0 | 8 | 1.3002 | 0.8438 | | 0.6888 | 5.0 | 10 | 1.2981 | 0.8438 | | 0.6888 | 6.0 | 12 | 1.2958 | 0.8438 | | 0.6888 | 7.0 | 14 | 1.2937 | 0.8438 | | 0.6888 | 8.0 | 16 | 1.2916 | 0.8438 | | 0.6888 | 9.0 | 18 | 1.2896 | 0.8281 | | 0.6235 | 10.0 | 20 | 1.2880 | 0.8281 | | 0.6235 | 11.0 | 22 | 1.2862 | 0.8281 | | 0.6235 | 12.0 | 24 | 1.2847 | 0.8281 | | 0.6235 | 13.0 | 26 | 1.2833 | 0.8281 | | 0.6235 | 14.0 | 28 | 1.2827 | 0.8281 | | 0.6224 | 15.0 | 30 | 1.2813 | 0.8281 | | 0.6224 | 16.0 | 32 | 1.2788 | 0.8281 | | 0.6224 | 17.0 | 34 | 1.2739 | 0.8281 | | 0.6224 | 18.0 | 36 | 1.2670 | 0.8281 | | 0.6224 | 19.0 | 38 | 1.2583 | 0.8281 | | 0.5366 | 20.0 | 40 | 1.2501 | 0.8281 | | 0.5366 | 21.0 | 42 | 1.2366 | 0.8281 | | 0.5366 | 22.0 | 44 | 1.2258 | 0.8281 | | 0.5366 | 23.0 | 46 | 1.2148 | 0.8281 | | 0.5366 | 24.0 | 48 | 1.2069 | 0.8281 | | 0.3634 | 25.0 | 50 | 1.1973 | 0.8281 | | 0.3634 | 26.0 | 52 | 1.1888 | 0.8281 | | 0.3634 | 27.0 | 54 | 1.1754 | 0.8281 | | 0.3634 | 28.0 | 56 | 1.1583 | 0.8281 | | 0.3634 | 29.0 | 58 | 1.1462 | 0.8281 | | 0.3447 | 30.0 | 60 | 1.1399 | 0.8281 | | 0.3447 | 31.0 | 62 | 1.1399 | 0.8281 | | 0.3447 | 32.0 | 64 | 1.1328 | 0.8281 | | 0.3447 | 33.0 | 66 | 1.1304 | 0.8281 | | 0.3447 | 34.0 | 68 | 1.1275 | 0.8281 | | 0.2231 | 35.0 | 70 | 1.1185 | 0.8281 | | 0.2231 | 36.0 | 72 | 1.1059 | 0.8281 | | 0.2231 | 37.0 | 74 | 1.0901 | 0.8281 | | 0.2231 | 38.0 | 76 | 1.0711 | 0.8281 | | 0.2231 | 39.0 | 78 | 1.0516 | 0.8281 | | 0.0925 | 40.0 | 80 | 1.0339 | 0.8281 | | 0.0925 | 41.0 | 82 | 1.0151 | 0.8281 | | 0.0925 | 42.0 | 84 | 0.9910 | 0.8281 | | 0.0925 | 43.0 | 86 | 0.9616 | 0.8281 | | 0.0925 | 44.0 | 88 | 0.9422 | 0.8281 | | 0.024 | 45.0 | 90 | 0.9346 | 0.8281 | | 0.024 | 46.0 | 92 | 0.9374 | 0.8281 | | 0.024 | 47.0 | 94 | 0.9413 | 0.8438 | | 0.024 | 48.0 | 96 | 0.9460 | 0.8438 | | 0.024 | 49.0 | 98 | 0.9470 | 0.8438 | | 0.0161 | 50.0 | 100 | 0.9483 | 0.8438 | | 0.0161 | 51.0 | 102 | 0.9505 | 0.8438 | | 0.0161 | 52.0 | 104 | 0.9534 | 0.8438 | | 0.0161 | 53.0 | 106 | 0.9565 | 0.8438 | | 0.0161 | 54.0 | 108 | 0.9591 | 0.8438 | | 0.0003 | 55.0 | 110 | 0.9613 | 0.8438 | | 0.0003 | 56.0 | 112 | 0.9609 | 0.8438 | | 0.0003 | 57.0 | 114 | 0.9606 | 0.8438 | | 0.0003 | 58.0 | 116 | 0.9597 | 0.8438 | | 0.0003 | 59.0 | 118 | 0.9582 | 0.8438 | | 0.0003 | 60.0 | 120 | 0.9572 | 0.8438 | | 0.0003 | 61.0 | 122 | 0.9557 | 0.8438 | | 0.0003 | 62.0 | 124 | 0.9563 | 0.8438 | | 0.0003 | 63.0 | 126 | 0.9514 | 0.8438 | | 0.0003 | 64.0 | 128 | 0.9487 | 0.8438 | | 0.0006 | 65.0 | 130 | 0.9472 | 0.8438 | | 0.0006 | 66.0 | 132 | 0.9472 | 0.8438 | | 0.0006 | 67.0 | 134 | 0.9486 | 0.8438 | | 0.0006 | 68.0 | 136 | 0.9471 | 0.8438 | | 0.0006 | 69.0 | 138 | 0.9569 | 0.8438 | | 0.0008 | 70.0 | 140 | 0.9658 | 0.8438 | | 0.0008 | 71.0 | 142 | 0.9732 | 0.8438 | | 0.0008 | 72.0 | 144 | 0.9792 | 0.8438 | | 0.0008 | 73.0 | 146 | 0.9836 | 0.8438 | | 0.0008 | 74.0 | 148 | 0.9813 | 0.8438 | | 0.0003 | 75.0 | 150 | 0.9750 | 0.8281 | | 0.0003 | 76.0 | 152 | 0.9712 | 0.8281 | | 0.0003 | 77.0 | 154 | 0.9636 | 0.8281 | | 0.0003 | 78.0 | 156 | 0.9525 | 0.8281 | | 0.0003 | 79.0 | 158 | 0.9410 | 0.8281 | | 0.001 | 80.0 | 160 | 0.9323 | 0.8438 | | 0.001 | 81.0 | 162 | 0.9256 | 0.8438 | | 0.001 | 82.0 | 164 | 0.9293 | 0.8438 | | 0.001 | 83.0 | 166 | 0.9429 | 0.8281 | | 0.001 | 84.0 | 168 | 0.9565 | 0.8281 | | 0.0002 | 85.0 | 170 | 0.9687 | 0.8281 | | 0.0002 | 86.0 | 172 | 0.9796 | 0.8281 | | 0.0002 | 87.0 | 174 | 0.9900 | 0.8281 | | 0.0002 | 88.0 | 176 | 0.9985 | 0.8281 | | 0.0002 | 89.0 | 178 | 1.0049 | 0.8281 | | 0.0002 | 90.0 | 180 | 1.0099 | 0.8281 | | 0.0002 | 91.0 | 182 | 1.0139 | 0.8281 | | 0.0002 | 92.0 | 184 | 1.0170 | 0.8281 | | 0.0002 | 93.0 | 186 | 1.0196 | 0.8281 | | 0.0002 | 94.0 | 188 | 1.0218 | 0.8281 | | 0.0002 | 95.0 | 190 | 1.0236 | 0.8281 | | 0.0002 | 96.0 | 192 | 1.0250 | 0.8281 | | 0.0002 | 97.0 | 194 | 1.0258 | 0.8281 | | 0.0002 | 98.0 | 196 | 1.0262 | 0.8281 | | 0.0002 | 99.0 | 198 | 1.0266 | 0.8281 | | 0.0002 | 100.0 | 200 | 1.0274 | 0.8281 | | 0.0002 | 101.0 | 202 | 1.0280 | 0.8281 | | 0.0002 | 102.0 | 204 | 1.0286 | 0.8281 | | 0.0002 | 103.0 | 206 | 1.0293 | 0.8281 | | 0.0002 | 104.0 | 208 | 1.0298 | 0.8281 | | 0.0001 | 105.0 | 210 | 1.0303 | 0.8281 | | 0.0001 | 106.0 | 212 | 1.0309 | 0.8281 | | 0.0001 | 107.0 | 214 | 1.0315 | 0.8281 | | 0.0001 | 108.0 | 216 | 1.0318 | 0.8281 | | 0.0001 | 109.0 | 218 | 1.0182 | 0.8281 | | 0.0025 | 110.0 | 220 | 0.9797 | 0.8281 | | 0.0025 | 111.0 | 222 | 0.9486 | 0.8438 | | 0.0025 | 112.0 | 224 | 0.9379 | 0.8594 | | 0.0025 | 113.0 | 226 | 0.9381 | 0.8594 | | 0.0025 | 114.0 | 228 | 0.9421 | 0.8594 | | 0.0002 | 115.0 | 230 | 0.9449 | 0.8594 | | 0.0002 | 116.0 | 232 | 0.9477 | 0.8594 | | 0.0002 | 117.0 | 234 | 0.9504 | 0.8594 | | 0.0002 | 118.0 | 236 | 0.9531 | 0.8594 | | 0.0002 | 119.0 | 238 | 0.9563 | 0.8594 | | 0.0002 | 120.0 | 240 | 0.9597 | 0.8438 | | 0.0002 | 121.0 | 242 | 0.9630 | 0.8438 | | 0.0002 | 122.0 | 244 | 0.9902 | 0.8438 | | 0.0002 | 123.0 | 246 | 0.9989 | 0.8438 | | 0.0002 | 124.0 | 248 | 1.0010 | 0.8281 | | 0.0007 | 125.0 | 250 | 1.0085 | 0.8438 | | 0.0007 | 126.0 | 252 | 1.0163 | 0.8438 | | 0.0007 | 127.0 | 254 | 1.0225 | 0.8438 | | 0.0007 | 128.0 | 256 | 1.0279 | 0.8594 | | 0.0007 | 129.0 | 258 | 1.0322 | 0.8594 | | 0.0001 | 130.0 | 260 | 1.0336 | 0.8594 | | 0.0001 | 131.0 | 262 | 1.0348 | 0.8594 | | 0.0001 | 132.0 | 264 | 1.0358 | 0.8594 | | 0.0001 | 133.0 | 266 | 1.0367 | 0.8594 | | 0.0001 | 134.0 | 268 | 1.0300 | 0.8438 | | 0.0005 | 135.0 | 270 | 1.0190 | 0.8438 | | 0.0005 | 136.0 | 272 | 1.0185 | 0.8281 | | 0.0005 | 137.0 | 274 | 1.0266 | 0.8438 | | 0.0005 | 138.0 | 276 | 1.0311 | 0.8438 | | 0.0005 | 139.0 | 278 | 1.0318 | 0.8438 | | 0.0001 | 140.0 | 280 | 1.0306 | 0.8438 | | 0.0001 | 141.0 | 282 | 1.0295 | 0.8281 | | 0.0001 | 142.0 | 284 | 1.0286 | 0.8438 | | 0.0001 | 143.0 | 286 | 1.0278 | 0.8438 | | 0.0001 | 144.0 | 288 | 1.0272 | 0.8438 | | 0.0001 | 145.0 | 290 | 1.0268 | 0.8438 | | 0.0001 | 146.0 | 292 | 1.0266 | 0.8438 | | 0.0001 | 147.0 | 294 | 1.0264 | 0.8438 | | 0.0001 | 148.0 | 296 | 1.0265 | 0.8438 | | 0.0001 | 149.0 | 298 | 0.9917 | 0.8594 | | 0.0002 | 150.0 | 300 | 0.9995 | 0.875 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
mhmd2125/whisper-small-hi
mhmd2125
2023-08-02T08:24:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-08T10:01:18Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2396 - Wer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 10.0 | 10 | 2.7433 | 92.3077 | | No log | 20.0 | 20 | 1.2396 | 0.0 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
FelixChao/vicuna-7b-instruct-ft-adapters-chemical1.2
FelixChao
2023-08-02T08:21:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T08:20:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
kengamd/clip-roberta-finetuned
kengamd
2023-08-02T08:19:09Z
17
0
transformers
[ "transformers", "pytorch", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:MP", "endpoints_compatible", "region:us" ]
feature-extraction
2023-07-24T17:13:25Z
--- base_model: ./clip-roberta tags: - generated_from_trainer datasets: - MP model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the MP dataset. It achieves the following results on the evaluation set: - Loss: 1.6548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
jariasn/rl_course_vizdoom_health_gathering_supreme
jariasn
2023-08-02T08:15:56Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T08:15:50Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.86 +/- 5.57 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jariasn/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Li/roberta-base-squad2
Li
2023-08-02T08:13:11Z
144
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
[roberta-base](https://huggingface.co/roberta-base) fine-tuned on the [SQuAD2](https://rajpurkar.github.io/SQuAD-explorer) dataset for 2 epochs. The fine-tuning process was performed on a single NVIDIA Tesla T4 GPU (15GB). The hyperparameters are: ``` max_seq_length=512 per_device_train_batch_size=8 gradient_accumulation_steps=4 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results ``` "eval_exact": 80.33352985766024, "eval_f1": 83.38322909593009, "eval_HasAns_exact": 77.81713900134953, "eval_HasAns_f1": 83.925283241562, "eval_HasAns_total": 5928, "eval_NoAns_exact": 82.84272497897393, "eval_NoAns_f1": 82.84272497897393, "eval_NoAns_total": 5945, "eval_best_exact": 80.33352985766024, "eval_best_exact_thresh": 0.0, "eval_best_f1": 83.38322909593005, "eval_best_f1_thresh": 0.0, "eval_samples": 11955, "eval_total": 11873, ``` ## More information Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. (https://rajpurkar.github.io/SQuAD-explorer/)
digiplay/bluePencilRealistic_v05
digiplay
2023-08-02T08:12:37Z
892
6
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T00:09:45Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: 💖☺️Lovely Cute Model💞 https://huggingface.co/bluepen5805/blue_pencil_realistic https://civitai.com/models/88941?modelVersionId=97200 Original Author's DEMO images: ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/b6d35ab9-38c0-4a8d-914f-15a66a5ab147/width=1536/01234-20230616194837-1416568985-20-7.5.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cb29ffcf-1082-4242-b1a4-0573b6a3e1c8/width=1536/00220-20230617155341-380313430-25-7.5.jpeg) Sample image I made : ![5a649728-39f2-4423-9993-a370bb745cef.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/iVwoi1QVZX_jObzUSeIZB.jpeg)
casque/realisticVisionV51_v51VAE
casque
2023-08-02T08:09:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-02T07:53:55Z
--- license: creativeml-openrail-m ---
s3nh/Hermes-LLongMA-2-7b-8k-GGML
s3nh
2023-08-02T08:07:43Z
0
0
transformers
[ "transformers", "text-generation", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T07:44:07Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](conceptofmind/Hermes-LLongMA-2-7b-8k). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
waliaMuskaan011/whisper-largev2-hindi-02
waliaMuskaan011
2023-08-02T08:06:12Z
1
0
peft
[ "peft", "pytorch", "whisper", "region:us" ]
null
2023-08-02T07:55:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.4.0.dev0
simonycl/bert-base-uncased-sst-2-16-87
simonycl
2023-08-02T08:00:09Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T07:57:06Z
--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-sst-2-16-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sst-2-16-13 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4022 - Accuracy: 0.7812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6926 | 0.5 | | No log | 2.0 | 2 | 0.6926 | 0.5 | | No log | 3.0 | 3 | 0.6926 | 0.5 | | No log | 4.0 | 4 | 0.6926 | 0.5 | | No log | 5.0 | 5 | 0.6926 | 0.5 | | No log | 6.0 | 6 | 0.6926 | 0.5 | | No log | 7.0 | 7 | 0.6925 | 0.5 | | No log | 8.0 | 8 | 0.6925 | 0.5 | | No log | 9.0 | 9 | 0.6925 | 0.5 | | 0.6898 | 10.0 | 10 | 0.6925 | 0.5 | | 0.6898 | 11.0 | 11 | 0.6924 | 0.5 | | 0.6898 | 12.0 | 12 | 0.6924 | 0.5 | | 0.6898 | 13.0 | 13 | 0.6924 | 0.5 | | 0.6898 | 14.0 | 14 | 0.6924 | 0.5 | | 0.6898 | 15.0 | 15 | 0.6923 | 0.5 | | 0.6898 | 16.0 | 16 | 0.6923 | 0.5 | | 0.6898 | 17.0 | 17 | 0.6922 | 0.5 | | 0.6898 | 18.0 | 18 | 0.6922 | 0.5 | | 0.6898 | 19.0 | 19 | 0.6922 | 0.5 | | 0.694 | 20.0 | 20 | 0.6921 | 0.5 | | 0.694 | 21.0 | 21 | 0.6921 | 0.5 | | 0.694 | 22.0 | 22 | 0.6920 | 0.5 | | 0.694 | 23.0 | 23 | 0.6920 | 0.5 | | 0.694 | 24.0 | 24 | 0.6920 | 0.5 | | 0.694 | 25.0 | 25 | 0.6919 | 0.5 | | 0.694 | 26.0 | 26 | 0.6919 | 0.5 | | 0.694 | 27.0 | 27 | 0.6918 | 0.5 | | 0.694 | 28.0 | 28 | 0.6918 | 0.5 | | 0.694 | 29.0 | 29 | 0.6918 | 0.5 | | 0.7021 | 30.0 | 30 | 0.6917 | 0.5 | | 0.7021 | 31.0 | 31 | 0.6916 | 0.5 | | 0.7021 | 32.0 | 32 | 0.6916 | 0.5 | | 0.7021 | 33.0 | 33 | 0.6916 | 0.5 | | 0.7021 | 34.0 | 34 | 0.6915 | 0.5 | | 0.7021 | 35.0 | 35 | 0.6915 | 0.5 | | 0.7021 | 36.0 | 36 | 0.6914 | 0.5 | | 0.7021 | 37.0 | 37 | 0.6914 | 0.5 | | 0.7021 | 38.0 | 38 | 0.6913 | 0.5 | | 0.7021 | 39.0 | 39 | 0.6913 | 0.5 | | 0.6798 | 40.0 | 40 | 0.6913 | 0.5 | | 0.6798 | 41.0 | 41 | 0.6912 | 0.5 | | 0.6798 | 42.0 | 42 | 0.6911 | 0.5 | | 0.6798 | 43.0 | 43 | 0.6910 | 0.5 | | 0.6798 | 44.0 | 44 | 0.6909 | 0.5 | | 0.6798 | 45.0 | 45 | 0.6908 | 0.5 | | 0.6798 | 46.0 | 46 | 0.6907 | 0.5 | | 0.6798 | 47.0 | 47 | 0.6906 | 0.5 | | 0.6798 | 48.0 | 48 | 0.6905 | 0.5 | | 0.6798 | 49.0 | 49 | 0.6903 | 0.5 | | 0.6874 | 50.0 | 50 | 0.6902 | 0.5 | | 0.6874 | 51.0 | 51 | 0.6901 | 0.5 | | 0.6874 | 52.0 | 52 | 0.6899 | 0.5 | | 0.6874 | 53.0 | 53 | 0.6898 | 0.5 | | 0.6874 | 54.0 | 54 | 0.6896 | 0.5 | | 0.6874 | 55.0 | 55 | 0.6895 | 0.5 | | 0.6874 | 56.0 | 56 | 0.6894 | 0.5 | | 0.6874 | 57.0 | 57 | 0.6893 | 0.5 | | 0.6874 | 58.0 | 58 | 0.6892 | 0.5 | | 0.6874 | 59.0 | 59 | 0.6890 | 0.5 | | 0.6878 | 60.0 | 60 | 0.6889 | 0.5 | | 0.6878 | 61.0 | 61 | 0.6888 | 0.5 | | 0.6878 | 62.0 | 62 | 0.6886 | 0.5 | | 0.6878 | 63.0 | 63 | 0.6885 | 0.5 | | 0.6878 | 64.0 | 64 | 0.6884 | 0.5 | | 0.6878 | 65.0 | 65 | 0.6884 | 0.5 | | 0.6878 | 66.0 | 66 | 0.6883 | 0.5 | | 0.6878 | 67.0 | 67 | 0.6882 | 0.5 | | 0.6878 | 68.0 | 68 | 0.6882 | 0.5 | | 0.6878 | 69.0 | 69 | 0.6881 | 0.5 | | 0.6805 | 70.0 | 70 | 0.6880 | 0.5312 | | 0.6805 | 71.0 | 71 | 0.6878 | 0.5312 | | 0.6805 | 72.0 | 72 | 0.6877 | 0.5312 | | 0.6805 | 73.0 | 73 | 0.6874 | 0.5312 | | 0.6805 | 74.0 | 74 | 0.6872 | 0.5312 | | 0.6805 | 75.0 | 75 | 0.6870 | 0.5312 | | 0.6805 | 76.0 | 76 | 0.6868 | 0.5312 | | 0.6805 | 77.0 | 77 | 0.6865 | 0.5312 | | 0.6805 | 78.0 | 78 | 0.6862 | 0.5 | | 0.6805 | 79.0 | 79 | 0.6860 | 0.5 | | 0.6675 | 80.0 | 80 | 0.6857 | 0.5 | | 0.6675 | 81.0 | 81 | 0.6853 | 0.5312 | | 0.6675 | 82.0 | 82 | 0.6849 | 0.5312 | | 0.6675 | 83.0 | 83 | 0.6845 | 0.5312 | | 0.6675 | 84.0 | 84 | 0.6840 | 0.5312 | | 0.6675 | 85.0 | 85 | 0.6834 | 0.5625 | | 0.6675 | 86.0 | 86 | 0.6827 | 0.5625 | | 0.6675 | 87.0 | 87 | 0.6818 | 0.5625 | | 0.6675 | 88.0 | 88 | 0.6809 | 0.5625 | | 0.6675 | 89.0 | 89 | 0.6798 | 0.5625 | | 0.65 | 90.0 | 90 | 0.6786 | 0.5625 | | 0.65 | 91.0 | 91 | 0.6772 | 0.5625 | | 0.65 | 92.0 | 92 | 0.6758 | 0.5625 | | 0.65 | 93.0 | 93 | 0.6741 | 0.5625 | | 0.65 | 94.0 | 94 | 0.6718 | 0.5625 | | 0.65 | 95.0 | 95 | 0.6687 | 0.5625 | | 0.65 | 96.0 | 96 | 0.6649 | 0.5625 | | 0.65 | 97.0 | 97 | 0.6615 | 0.5625 | | 0.65 | 98.0 | 98 | 0.6596 | 0.5625 | | 0.65 | 99.0 | 99 | 0.6605 | 0.5625 | | 0.611 | 100.0 | 100 | 0.6642 | 0.5625 | | 0.611 | 101.0 | 101 | 0.6683 | 0.5625 | | 0.611 | 102.0 | 102 | 0.6689 | 0.5625 | | 0.611 | 103.0 | 103 | 0.6670 | 0.5625 | | 0.611 | 104.0 | 104 | 0.6627 | 0.5312 | | 0.611 | 105.0 | 105 | 0.6595 | 0.5312 | | 0.611 | 106.0 | 106 | 0.6577 | 0.5625 | | 0.611 | 107.0 | 107 | 0.6575 | 0.5938 | | 0.611 | 108.0 | 108 | 0.6552 | 0.5938 | | 0.611 | 109.0 | 109 | 0.6555 | 0.625 | | 0.5787 | 110.0 | 110 | 0.6560 | 0.625 | | 0.5787 | 111.0 | 111 | 0.6566 | 0.625 | | 0.5787 | 112.0 | 112 | 0.6560 | 0.625 | | 0.5787 | 113.0 | 113 | 0.6543 | 0.6562 | | 0.5787 | 114.0 | 114 | 0.6530 | 0.6562 | | 0.5787 | 115.0 | 115 | 0.6518 | 0.6562 | | 0.5787 | 116.0 | 116 | 0.6512 | 0.6562 | | 0.5787 | 117.0 | 117 | 0.6506 | 0.6562 | | 0.5787 | 118.0 | 118 | 0.6500 | 0.6562 | | 0.5787 | 119.0 | 119 | 0.6499 | 0.6875 | | 0.5279 | 120.0 | 120 | 0.6497 | 0.6875 | | 0.5279 | 121.0 | 121 | 0.6496 | 0.6875 | | 0.5279 | 122.0 | 122 | 0.6494 | 0.6875 | | 0.5279 | 123.0 | 123 | 0.6486 | 0.6875 | | 0.5279 | 124.0 | 124 | 0.6472 | 0.6875 | | 0.5279 | 125.0 | 125 | 0.6443 | 0.6875 | | 0.5279 | 126.0 | 126 | 0.6397 | 0.6562 | | 0.5279 | 127.0 | 127 | 0.6328 | 0.6562 | | 0.5279 | 128.0 | 128 | 0.6238 | 0.6875 | | 0.5279 | 129.0 | 129 | 0.6173 | 0.6875 | | 0.4721 | 130.0 | 130 | 0.6138 | 0.6875 | | 0.4721 | 131.0 | 131 | 0.6175 | 0.625 | | 0.4721 | 132.0 | 132 | 0.6137 | 0.6562 | | 0.4721 | 133.0 | 133 | 0.6101 | 0.6562 | | 0.4721 | 134.0 | 134 | 0.6062 | 0.6562 | | 0.4721 | 135.0 | 135 | 0.6027 | 0.6562 | | 0.4721 | 136.0 | 136 | 0.6015 | 0.625 | | 0.4721 | 137.0 | 137 | 0.5982 | 0.625 | | 0.4721 | 138.0 | 138 | 0.6102 | 0.625 | | 0.4721 | 139.0 | 139 | 0.5983 | 0.625 | | 0.378 | 140.0 | 140 | 0.6020 | 0.625 | | 0.378 | 141.0 | 141 | 0.5921 | 0.625 | | 0.378 | 142.0 | 142 | 0.5790 | 0.625 | | 0.378 | 143.0 | 143 | 0.5654 | 0.6562 | | 0.378 | 144.0 | 144 | 0.5493 | 0.6562 | | 0.378 | 145.0 | 145 | 0.5279 | 0.6562 | | 0.378 | 146.0 | 146 | 0.5064 | 0.6562 | | 0.378 | 147.0 | 147 | 0.4834 | 0.6875 | | 0.378 | 148.0 | 148 | 0.4557 | 0.7188 | | 0.378 | 149.0 | 149 | 0.4318 | 0.75 | | 0.2537 | 150.0 | 150 | 0.4022 | 0.7812 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
omegaodin/llama2-qlora-finetunined-spanish
omegaodin
2023-08-02T07:57:27Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T07:57:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
omegaodin/llama2-qlora-finetunined-french
omegaodin
2023-08-02T07:57:05Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T07:56:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
s3nh/Hermes-LLongMA-2-13b-8k-GGML
s3nh
2023-08-02T07:52:05Z
0
0
transformers
[ "transformers", "text-generation", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T07:35:08Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/conceptofmind/Hermes-LLongMA-2-13b-8k). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card You can find the Llama-2 usage policy here: https://ai.meta.com/llama/use-policy/ Llama 2 Community License Agreement Llama 2 Version Release Date: July 18, 2023 “Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. “Documentation” means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/. “Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. “Llama 2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/. “Llama Materials” means, collectively, Meta’s proprietary Llama 2 and Documentation (and any portion thereof) made available under this Agreement. “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into this Agreement. v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof). Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
bioformers/bioformer-8L-mnli
bioformers
2023-08-02T07:51:11Z
118
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
[bioformer-cased-v1.0](https://huggingface.co/bioformers/bioformer-cased-v1.0) fined-tuned on the [MNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.803973 ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT. ## More information The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: https://huggingface.co/datasets/glue)
RoundtTble/dog.pt
RoundtTble
2023-08-02T07:46:40Z
31
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-02T06:41:40Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - RoundtTble/dog.pt This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
bioformers/bioformer-8L
bioformers
2023-08-02T07:45:33Z
193
7
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "en", "arxiv:2302.01588", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 pipeline_tag: fill-mask --- **_NOTE: `bioformer-cased-v1.0` has been renamed to `bioformer-8L`. All links to `bioformer-cased-v1.0` will automatically redirect to `bioformer-8L`, including git operations. However, to avoid confusion, we recommend updating any existing local clones to point to the new repository URL._** Bioformer-8L is a lightweight BERT model for biomedical text mining. Bioformer-8L uses a biomedical vocabulary and is pre-trained from scratch only on biomedical domain corpora. Our experiments show that Bioformer-8L is 3x as fast as BERT-base, and achieves comparable or even better performance than BioBERT/PubMedBERT on downstream NLP tasks. Bioformer-8L has 8 layers (transformer blocks) with a hidden embedding size of 512, and the number of self-attention heads is 8. Its total number of parameters is 42,820,610. **The usage of Bioformer-8L is the same as a standard BERT model. The documentation of BERT can be found [here](https://huggingface.co/docs/transformers/model_doc/bert).** ## Vocabulary of Bioformer-8L Bioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT. ## Pre-training of Bioformer-8L Bioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using [SciSpacy](https://allenai.github.io/scispacy/). Pre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days. ## Usage Prerequisites: python3, pytorch, transformers and datasets We have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26. To install pytorch, please refer to instructions [here](https://pytorch.org/get-started/locally). To install the `transformers` and `datasets` library: ``` pip install transformers pip install datasets ``` ### Filling mask ``` from transformers import pipeline unmasker8L = pipeline('fill-mask', model='bioformers/bioformer-8L') unmasker8L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") unmasker16L = pipeline('fill-mask', model='bioformers/bioformer-16L') unmasker16L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") ``` Output of `bioformer-8L`: ``` [{'score': 0.3207533359527588, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.19234347343444824, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.09200277179479599, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.08494312316179276, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.0412776917219162, 'token': 22263, 'token_str': 'Hypertension', 'sequence': 'Hypertension refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` Output of `bioformer-16L`: ``` [{'score': 0.7262957692146301, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.124954953789711, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.04062706232070923, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.022694870829582214, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.009743048809468746, 'token': 13960, 'token_str': 'T2D', 'sequence': 'T2D refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` ## Awards Bioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (https://doi.org/10.1093/database/baac069) ## Links [Bioformer-16L](https://huggingface.co/bioformers/bioformer-16L) ## Acknowledgment Training and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01. ## Questions If you have any questions, please submit an issue here: https://github.com/WGLab/bioformer/issues You can also send an email to Li Fang (fangli9@mail.sysu.edu.cn, https://fangli80.github.io/). ## Citation You can cite our preprint on arXiv: Fang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: https://doi.org/10.48550/arXiv.2302.01588 BibTeX format: ``` @ARTICLE{fangli2023bioformer, author = {{Fang}, Li and {Chen}, Qingyu and {Wei}, Chih-Hsuan and {Lu}, Zhiyong and {Wang}, Kai}, title = "{Bioformer: an efficient transformer language model for biomedical text mining}", journal = {arXiv preprint arXiv:2302.01588}, year = {2023} } ```
breakjl/distilbert-base-food_review
breakjl
2023-08-02T07:42:13Z
127
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-01T08:35:00Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is uncased: it does not make a difference between english and English. ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.05292855575680733, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.03968575969338417, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a business model. [SEP]", 'score': 0.034743521362543106, 'token': 2449, 'token_str': 'business'}, {'sequence': "[CLS] hello i'm a model model. [SEP]", 'score': 0.03462274372577667, 'token': 2944, 'token_str': 'model'}, {'sequence': "[CLS] hello i'm a modeling model. [SEP]", 'score': 0.018145186826586723, 'token': 11643, 'token_str': 'modeling'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("The White man worked as a [MASK].") [{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]', 'score': 0.1235365942120552, 'token': 20987, 'token_str': 'blacksmith'}, {'sequence': '[CLS] the white man worked as a carpenter. [SEP]', 'score': 0.10142576694488525, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the white man worked as a farmer. [SEP]', 'score': 0.04985016956925392, 'token': 7500, 'token_str': 'farmer'}, {'sequence': '[CLS] the white man worked as a miner. [SEP]', 'score': 0.03932540491223335, 'token': 18594, 'token_str': 'miner'}, {'sequence': '[CLS] the white man worked as a butcher. [SEP]', 'score': 0.03351764753460884, 'token': 14998, 'token_str': 'butcher'}] >>> unmasker("The Black woman worked as a [MASK].") [{'sequence': '[CLS] the black woman worked as a waitress. [SEP]', 'score': 0.13283951580524445, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the black woman worked as a nurse. [SEP]', 'score': 0.12586183845996857, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the black woman worked as a maid. [SEP]', 'score': 0.11708822101354599, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the black woman worked as a prostitute. [SEP]', 'score': 0.11499975621700287, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]', 'score': 0.04722772538661957, 'token': 22583, 'token_str': 'housekeeper'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 16 GB V100 for 90 hours. See the [training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters details. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 | ### BibTeX entry and citation info ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ``` <a href="https://huggingface.co/exbert/?model=distilbert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
FelixChao/vicuna-7b-instruct-ft-adapters-chemical1.1
FelixChao
2023-08-02T07:38:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T07:38:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
Lajonbot/vicuna-13b-v1.3-PL-lora_GGML
Lajonbot
2023-08-02T07:22:18Z
0
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:other", "region:us" ]
text-generation
2023-08-02T07:10:19Z
--- language: - pl datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish license: other model_type: llama-2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 ---
shylee2021/llm-tolkien
shylee2021
2023-08-02T07:11:49Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:01:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
marco-bordessoule/falcon-qlora-finetunined-guanaco
marco-bordessoule
2023-08-02T07:10:40Z
1
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
2023-08-02T07:08:09Z
--- library_name: peft pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
jkhan447/HateXplain-DS-labeled-1
jkhan447
2023-08-02T06:58:42Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T06:06:01Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: HateXplain-DS-labeled-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HateXplain-DS-labeled-1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0581 - Accuracy: 0.6271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Sookeyy/Reinforce-Pixelcopter-PLE-v0
Sookeyy
2023-08-02T06:58:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T03:41:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 41.72 +/- 33.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NebulaByte/hindi_gpt2
NebulaByte
2023-08-02T06:45:14Z
296
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-24T10:13:27Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: hindi_gpt2 results: [] widget: - text: "अपने अनुप्रयोग को पहुंचनीयता व्यायाम" - text: "जनतंत्र की सफलता केवल इस बात से नहीं हो सकती है कि हर" - text: "अगर इसके बाद भी वे फैसले पर कायम रहते हैं और" - text: "मामले का खुलासा होने के बाद" - text: "My name is Julien and I like to" - text: "My name is Thomas and my main" inference: parameters: max_length: 200 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hindi_gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 400 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.694 | 0.18 | 400 | 2.7361 | | 2.3952 | 0.35 | 800 | 2.1608 | | 2.1311 | 0.53 | 1200 | 2.0237 | | 2.0282 | 0.71 | 1600 | 1.9518 | | 1.9731 | 0.89 | 2000 | 1.9187 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
osman2001/test_model
osman2001
2023-08-02T06:42:00Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "dataset:openchat/openchat_sharegpt4_dataset", "license:afl-3.0", "region:us" ]
null
2023-08-02T06:39:17Z
--- license: afl-3.0 datasets: - openchat/openchat_sharegpt4_dataset language: - en metrics: - code_eval - accuracy library_name: adapter-transformers ---
simonycl/best_model-yelp_polarity-64-42
simonycl
2023-08-02T06:29:03Z
107
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T03:24:14Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-64-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-64-42 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6069 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.7342 | 0.9219 | | No log | 2.0 | 8 | 0.7290 | 0.9219 | | 0.5102 | 3.0 | 12 | 0.7270 | 0.9219 | | 0.5102 | 4.0 | 16 | 0.7253 | 0.9219 | | 0.4089 | 5.0 | 20 | 0.7208 | 0.9219 | | 0.4089 | 6.0 | 24 | 0.7191 | 0.9219 | | 0.4089 | 7.0 | 28 | 0.7271 | 0.9297 | | 0.3981 | 8.0 | 32 | 0.7192 | 0.9297 | | 0.3981 | 9.0 | 36 | 0.7009 | 0.9219 | | 0.1982 | 10.0 | 40 | 0.6963 | 0.9141 | | 0.1982 | 11.0 | 44 | 0.6904 | 0.9219 | | 0.1982 | 12.0 | 48 | 0.6924 | 0.9219 | | 0.2128 | 13.0 | 52 | 0.6921 | 0.9297 | | 0.2128 | 14.0 | 56 | 0.6866 | 0.9219 | | 0.0935 | 15.0 | 60 | 0.6841 | 0.9219 | | 0.0935 | 16.0 | 64 | 0.6494 | 0.9219 | | 0.0935 | 17.0 | 68 | 0.6201 | 0.9219 | | 0.0365 | 18.0 | 72 | 0.6122 | 0.9219 | | 0.0365 | 19.0 | 76 | 0.6047 | 0.9219 | | 0.026 | 20.0 | 80 | 0.5870 | 0.9219 | | 0.026 | 21.0 | 84 | 0.5739 | 0.9219 | | 0.026 | 22.0 | 88 | 0.5737 | 0.9219 | | 0.0139 | 23.0 | 92 | 0.5677 | 0.9219 | | 0.0139 | 24.0 | 96 | 0.5579 | 0.9219 | | 0.0149 | 25.0 | 100 | 0.5468 | 0.9219 | | 0.0149 | 26.0 | 104 | 0.5277 | 0.9219 | | 0.0149 | 27.0 | 108 | 0.5168 | 0.9219 | | 0.0085 | 28.0 | 112 | 0.5036 | 0.9141 | | 0.0085 | 29.0 | 116 | 0.4960 | 0.9141 | | 0.0 | 30.0 | 120 | 0.4941 | 0.9219 | | 0.0 | 31.0 | 124 | 0.4956 | 0.9297 | | 0.0 | 32.0 | 128 | 0.4987 | 0.9297 | | 0.0 | 33.0 | 132 | 0.5018 | 0.9297 | | 0.0 | 34.0 | 136 | 0.5053 | 0.9297 | | 0.0 | 35.0 | 140 | 0.5081 | 0.9297 | | 0.0 | 36.0 | 144 | 0.5107 | 0.9297 | | 0.0 | 37.0 | 148 | 0.5125 | 0.9297 | | 0.0 | 38.0 | 152 | 0.5135 | 0.9297 | | 0.0 | 39.0 | 156 | 0.5146 | 0.9297 | | 0.0 | 40.0 | 160 | 0.5157 | 0.9297 | | 0.0 | 41.0 | 164 | 0.5168 | 0.9297 | | 0.0 | 42.0 | 168 | 0.5182 | 0.9297 | | 0.0 | 43.0 | 172 | 0.5197 | 0.9297 | | 0.0 | 44.0 | 176 | 0.5209 | 0.9297 | | 0.0 | 45.0 | 180 | 0.5224 | 0.9297 | | 0.0 | 46.0 | 184 | 0.5240 | 0.9297 | | 0.0 | 47.0 | 188 | 0.5257 | 0.9297 | | 0.0 | 48.0 | 192 | 0.5272 | 0.9297 | | 0.0 | 49.0 | 196 | 0.5286 | 0.9297 | | 0.0 | 50.0 | 200 | 0.5300 | 0.9297 | | 0.0 | 51.0 | 204 | 0.5313 | 0.9297 | | 0.0 | 52.0 | 208 | 0.5329 | 0.9297 | | 0.0 | 53.0 | 212 | 0.5343 | 0.9297 | | 0.0 | 54.0 | 216 | 0.5355 | 0.9297 | | 0.0 | 55.0 | 220 | 0.5369 | 0.9297 | | 0.0 | 56.0 | 224 | 0.5382 | 0.9297 | | 0.0 | 57.0 | 228 | 0.5395 | 0.9297 | | 0.0 | 58.0 | 232 | 0.5407 | 0.9297 | | 0.0 | 59.0 | 236 | 0.5419 | 0.9297 | | 0.0 | 60.0 | 240 | 0.5431 | 0.9297 | | 0.0 | 61.0 | 244 | 0.5444 | 0.9297 | | 0.0 | 62.0 | 248 | 0.5455 | 0.9297 | | 0.0 | 63.0 | 252 | 0.5466 | 0.9297 | | 0.0 | 64.0 | 256 | 0.5478 | 0.9297 | | 0.0 | 65.0 | 260 | 0.5489 | 0.9297 | | 0.0 | 66.0 | 264 | 0.5501 | 0.9297 | | 0.0 | 67.0 | 268 | 0.5513 | 0.9297 | | 0.0 | 68.0 | 272 | 0.5524 | 0.9297 | | 0.0 | 69.0 | 276 | 0.5535 | 0.9297 | | 0.0 | 70.0 | 280 | 0.5548 | 0.9297 | | 0.0 | 71.0 | 284 | 0.5559 | 0.9297 | | 0.0 | 72.0 | 288 | 0.5570 | 0.9297 | | 0.0 | 73.0 | 292 | 0.5581 | 0.9297 | | 0.0 | 74.0 | 296 | 0.5592 | 0.9297 | | 0.0 | 75.0 | 300 | 0.5601 | 0.9297 | | 0.0 | 76.0 | 304 | 0.5610 | 0.9297 | | 0.0 | 77.0 | 308 | 0.5620 | 0.9297 | | 0.0 | 78.0 | 312 | 0.5630 | 0.9297 | | 0.0 | 79.0 | 316 | 0.5640 | 0.9297 | | 0.0 | 80.0 | 320 | 0.5648 | 0.9297 | | 0.0 | 81.0 | 324 | 0.5658 | 0.9297 | | 0.0 | 82.0 | 328 | 0.5667 | 0.9297 | | 0.0 | 83.0 | 332 | 0.5675 | 0.9297 | | 0.0 | 84.0 | 336 | 0.5684 | 0.9297 | | 0.0 | 85.0 | 340 | 0.5693 | 0.9297 | | 0.0 | 86.0 | 344 | 0.5701 | 0.9297 | | 0.0 | 87.0 | 348 | 0.5710 | 0.9297 | | 0.0 | 88.0 | 352 | 0.5719 | 0.9297 | | 0.0 | 89.0 | 356 | 0.5728 | 0.9297 | | 0.0 | 90.0 | 360 | 0.5736 | 0.9297 | | 0.0 | 91.0 | 364 | 0.5745 | 0.9297 | | 0.0 | 92.0 | 368 | 0.5754 | 0.9297 | | 0.0 | 93.0 | 372 | 0.5762 | 0.9297 | | 0.0 | 94.0 | 376 | 0.5771 | 0.9297 | | 0.0 | 95.0 | 380 | 0.5779 | 0.9297 | | 0.0 | 96.0 | 384 | 0.5788 | 0.9297 | | 0.0 | 97.0 | 388 | 0.5796 | 0.9297 | | 0.0 | 98.0 | 392 | 0.5804 | 0.9297 | | 0.0 | 99.0 | 396 | 0.5812 | 0.9297 | | 0.0 | 100.0 | 400 | 0.5820 | 0.9297 | | 0.0 | 101.0 | 404 | 0.5828 | 0.9297 | | 0.0 | 102.0 | 408 | 0.5836 | 0.9297 | | 0.0 | 103.0 | 412 | 0.5843 | 0.9297 | | 0.0 | 104.0 | 416 | 0.5851 | 0.9297 | | 0.0 | 105.0 | 420 | 0.5859 | 0.9297 | | 0.0 | 106.0 | 424 | 0.5866 | 0.9297 | | 0.0 | 107.0 | 428 | 0.5874 | 0.9297 | | 0.0 | 108.0 | 432 | 0.5881 | 0.9297 | | 0.0 | 109.0 | 436 | 0.5889 | 0.9297 | | 0.0 | 110.0 | 440 | 0.5896 | 0.9297 | | 0.0 | 111.0 | 444 | 0.5902 | 0.9297 | | 0.0 | 112.0 | 448 | 0.5910 | 0.9375 | | 0.0 | 113.0 | 452 | 0.5916 | 0.9375 | | 0.0 | 114.0 | 456 | 0.5924 | 0.9375 | | 0.0 | 115.0 | 460 | 0.5931 | 0.9375 | | 0.0 | 116.0 | 464 | 0.5938 | 0.9375 | | 0.0 | 117.0 | 468 | 0.5945 | 0.9375 | | 0.0 | 118.0 | 472 | 0.5952 | 0.9375 | | 0.0 | 119.0 | 476 | 0.5958 | 0.9375 | | 0.0 | 120.0 | 480 | 0.5964 | 0.9375 | | 0.0 | 121.0 | 484 | 0.5971 | 0.9375 | | 0.0 | 122.0 | 488 | 0.5978 | 0.9375 | | 0.0 | 123.0 | 492 | 0.5985 | 0.9375 | | 0.0 | 124.0 | 496 | 0.5991 | 0.9375 | | 0.0 | 125.0 | 500 | 0.5997 | 0.9375 | | 0.0 | 126.0 | 504 | 0.6004 | 0.9375 | | 0.0 | 127.0 | 508 | 0.6009 | 0.9375 | | 0.0 | 128.0 | 512 | 0.6015 | 0.9375 | | 0.0 | 129.0 | 516 | 0.6020 | 0.9375 | | 0.0 | 130.0 | 520 | 0.6025 | 0.9375 | | 0.0 | 131.0 | 524 | 0.6029 | 0.9375 | | 0.0 | 132.0 | 528 | 0.6034 | 0.9375 | | 0.0 | 133.0 | 532 | 0.6038 | 0.9375 | | 0.0 | 134.0 | 536 | 0.6042 | 0.9375 | | 0.0 | 135.0 | 540 | 0.6045 | 0.9375 | | 0.0 | 136.0 | 544 | 0.6048 | 0.9375 | | 0.0 | 137.0 | 548 | 0.6051 | 0.9375 | | 0.0 | 138.0 | 552 | 0.6054 | 0.9375 | | 0.0 | 139.0 | 556 | 0.6056 | 0.9375 | | 0.0 | 140.0 | 560 | 0.6058 | 0.9375 | | 0.0 | 141.0 | 564 | 0.6061 | 0.9375 | | 0.0 | 142.0 | 568 | 0.6062 | 0.9375 | | 0.0 | 143.0 | 572 | 0.6064 | 0.9375 | | 0.0 | 144.0 | 576 | 0.6065 | 0.9375 | | 0.0 | 145.0 | 580 | 0.6066 | 0.9375 | | 0.0 | 146.0 | 584 | 0.6067 | 0.9375 | | 0.0 | 147.0 | 588 | 0.6068 | 0.9375 | | 0.0 | 148.0 | 592 | 0.6068 | 0.9375 | | 0.0 | 149.0 | 596 | 0.6069 | 0.9375 | | 0.0 | 150.0 | 600 | 0.6069 | 0.9375 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
Lajonbot/WizardLM-13B-V1.2-PL-lora_adapter_model
Lajonbot
2023-08-02T06:27:21Z
0
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:other", "region:us" ]
text-generation
2023-08-02T06:27:19Z
--- language: - pl datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish license: other model_type: llama-2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 ---
zangyuchen2008/llama2-lora-test
zangyuchen2008
2023-08-02T06:26:49Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:26:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
waliaMuskaan011/whisper-largev2-hindi
waliaMuskaan011
2023-08-02T06:20:10Z
2
0
peft
[ "peft", "pytorch", "tensorboard", "whisper", "region:us" ]
null
2023-07-12T19:01:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.4.0.dev0
simonycl/best_model-yelp_polarity-64-21
simonycl
2023-08-02T06:13:07Z
108
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T03:09:26Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-64-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-64-21 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6300 - Accuracy: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.6653 | 0.9297 | | No log | 2.0 | 8 | 0.6599 | 0.9375 | | 0.3506 | 3.0 | 12 | 0.6517 | 0.9375 | | 0.3506 | 4.0 | 16 | 0.6448 | 0.9375 | | 0.4992 | 5.0 | 20 | 0.6507 | 0.9375 | | 0.4992 | 6.0 | 24 | 0.6967 | 0.9219 | | 0.4992 | 7.0 | 28 | 0.7602 | 0.9141 | | 0.3039 | 8.0 | 32 | 0.9351 | 0.8984 | | 0.3039 | 9.0 | 36 | 0.9244 | 0.8984 | | 0.2241 | 10.0 | 40 | 0.7974 | 0.9062 | | 0.2241 | 11.0 | 44 | 0.7229 | 0.9219 | | 0.2241 | 12.0 | 48 | 0.6981 | 0.9219 | | 0.1025 | 13.0 | 52 | 0.6961 | 0.9219 | | 0.1025 | 14.0 | 56 | 0.6819 | 0.9219 | | 0.1057 | 15.0 | 60 | 0.6655 | 0.9219 | | 0.1057 | 16.0 | 64 | 0.6463 | 0.9219 | | 0.1057 | 17.0 | 68 | 0.6240 | 0.9219 | | 0.0733 | 18.0 | 72 | 0.6086 | 0.9141 | | 0.0733 | 19.0 | 76 | 0.6109 | 0.9141 | | 0.0366 | 20.0 | 80 | 0.6219 | 0.9141 | | 0.0366 | 21.0 | 84 | 0.6291 | 0.9141 | | 0.0366 | 22.0 | 88 | 0.6227 | 0.9219 | | 0.0449 | 23.0 | 92 | 0.6182 | 0.9219 | | 0.0449 | 24.0 | 96 | 0.6148 | 0.9219 | | 0.0188 | 25.0 | 100 | 0.5999 | 0.9219 | | 0.0188 | 26.0 | 104 | 0.5537 | 0.9297 | | 0.0188 | 27.0 | 108 | 0.5538 | 0.9297 | | 0.0146 | 28.0 | 112 | 0.5492 | 0.9297 | | 0.0146 | 29.0 | 116 | 0.5275 | 0.9297 | | 0.0131 | 30.0 | 120 | 0.5212 | 0.9219 | | 0.0131 | 31.0 | 124 | 0.5486 | 0.9219 | | 0.0131 | 32.0 | 128 | 0.5641 | 0.9141 | | 0.0074 | 33.0 | 132 | 0.5489 | 0.9219 | | 0.0074 | 34.0 | 136 | 0.5426 | 0.9219 | | 0.0042 | 35.0 | 140 | 0.5468 | 0.9141 | | 0.0042 | 36.0 | 144 | 0.5411 | 0.9141 | | 0.0042 | 37.0 | 148 | 0.5366 | 0.9219 | | 0.0027 | 38.0 | 152 | 0.5306 | 0.9219 | | 0.0027 | 39.0 | 156 | 0.5182 | 0.9219 | | 0.0011 | 40.0 | 160 | 0.5096 | 0.9219 | | 0.0011 | 41.0 | 164 | 0.5059 | 0.9219 | | 0.0011 | 42.0 | 168 | 0.5130 | 0.9219 | | 0.0007 | 43.0 | 172 | 0.5198 | 0.9219 | | 0.0007 | 44.0 | 176 | 0.5172 | 0.9219 | | 0.0007 | 45.0 | 180 | 0.5129 | 0.9219 | | 0.0007 | 46.0 | 184 | 0.5337 | 0.9062 | | 0.0007 | 47.0 | 188 | 0.5600 | 0.9141 | | 0.0003 | 48.0 | 192 | 0.5687 | 0.9141 | | 0.0003 | 49.0 | 196 | 0.5413 | 0.9141 | | 0.0003 | 50.0 | 200 | 0.5270 | 0.9062 | | 0.0003 | 51.0 | 204 | 0.5249 | 0.9141 | | 0.0003 | 52.0 | 208 | 0.5315 | 0.9141 | | 0.0002 | 53.0 | 212 | 0.5528 | 0.9141 | | 0.0002 | 54.0 | 216 | 0.5732 | 0.9141 | | 0.0001 | 55.0 | 220 | 0.5812 | 0.9141 | | 0.0001 | 56.0 | 224 | 0.5871 | 0.9141 | | 0.0001 | 57.0 | 228 | 0.5854 | 0.9141 | | 0.0001 | 58.0 | 232 | 0.5846 | 0.9141 | | 0.0001 | 59.0 | 236 | 0.5842 | 0.9141 | | 0.0 | 60.0 | 240 | 0.5865 | 0.9141 | | 0.0 | 61.0 | 244 | 0.5895 | 0.9141 | | 0.0 | 62.0 | 248 | 0.5908 | 0.9141 | | 0.0001 | 63.0 | 252 | 0.5911 | 0.9141 | | 0.0001 | 64.0 | 256 | 0.5905 | 0.9141 | | 0.0 | 65.0 | 260 | 0.5870 | 0.9141 | | 0.0 | 66.0 | 264 | 0.5859 | 0.9141 | | 0.0 | 67.0 | 268 | 0.5863 | 0.9141 | | 0.0 | 68.0 | 272 | 0.5881 | 0.9141 | | 0.0 | 69.0 | 276 | 0.5888 | 0.9141 | | 0.0 | 70.0 | 280 | 0.5902 | 0.9141 | | 0.0 | 71.0 | 284 | 0.5926 | 0.9141 | | 0.0 | 72.0 | 288 | 0.5945 | 0.9141 | | 0.0 | 73.0 | 292 | 0.5949 | 0.9141 | | 0.0 | 74.0 | 296 | 0.5962 | 0.9141 | | 0.0 | 75.0 | 300 | 0.5982 | 0.9141 | | 0.0 | 76.0 | 304 | 0.6003 | 0.9141 | | 0.0 | 77.0 | 308 | 0.6014 | 0.9141 | | 0.0 | 78.0 | 312 | 0.6018 | 0.9219 | | 0.0 | 79.0 | 316 | 0.6024 | 0.9219 | | 0.0 | 80.0 | 320 | 0.6037 | 0.9219 | | 0.0 | 81.0 | 324 | 0.6041 | 0.9219 | | 0.0 | 82.0 | 328 | 0.6052 | 0.9219 | | 0.0 | 83.0 | 332 | 0.6064 | 0.9219 | | 0.0 | 84.0 | 336 | 0.6069 | 0.9219 | | 0.0 | 85.0 | 340 | 0.6069 | 0.9219 | | 0.0 | 86.0 | 344 | 0.6074 | 0.9219 | | 0.0 | 87.0 | 348 | 0.6089 | 0.9219 | | 0.0 | 88.0 | 352 | 0.6098 | 0.9219 | | 0.0 | 89.0 | 356 | 0.6098 | 0.9219 | | 0.0 | 90.0 | 360 | 0.6100 | 0.9219 | | 0.0 | 91.0 | 364 | 0.6098 | 0.9219 | | 0.0 | 92.0 | 368 | 0.6098 | 0.9219 | | 0.0 | 93.0 | 372 | 0.6101 | 0.9219 | | 0.0 | 94.0 | 376 | 0.6111 | 0.9219 | | 0.0 | 95.0 | 380 | 0.6122 | 0.9219 | | 0.0 | 96.0 | 384 | 0.6131 | 0.9219 | | 0.0 | 97.0 | 388 | 0.6122 | 0.9219 | | 0.0 | 98.0 | 392 | 0.6127 | 0.9219 | | 0.0 | 99.0 | 396 | 0.6124 | 0.9219 | | 0.0 | 100.0 | 400 | 0.6120 | 0.9219 | | 0.0 | 101.0 | 404 | 0.6127 | 0.9219 | | 0.0 | 102.0 | 408 | 0.6132 | 0.9219 | | 0.0 | 103.0 | 412 | 0.6140 | 0.9219 | | 0.0 | 104.0 | 416 | 0.6150 | 0.9219 | | 0.0 | 105.0 | 420 | 0.6158 | 0.9219 | | 0.0 | 106.0 | 424 | 0.6160 | 0.9219 | | 0.0 | 107.0 | 428 | 0.6161 | 0.9219 | | 0.0 | 108.0 | 432 | 0.6166 | 0.9219 | | 0.0 | 109.0 | 436 | 0.6168 | 0.9219 | | 0.0 | 110.0 | 440 | 0.6170 | 0.9219 | | 0.0 | 111.0 | 444 | 0.6178 | 0.9219 | | 0.0 | 112.0 | 448 | 0.6184 | 0.9219 | | 0.0 | 113.0 | 452 | 0.6189 | 0.9219 | | 0.0 | 114.0 | 456 | 0.6197 | 0.9219 | | 0.0 | 115.0 | 460 | 0.6213 | 0.9219 | | 0.0 | 116.0 | 464 | 0.6220 | 0.9219 | | 0.0 | 117.0 | 468 | 0.6226 | 0.9219 | | 0.0 | 118.0 | 472 | 0.6229 | 0.9219 | | 0.0 | 119.0 | 476 | 0.6235 | 0.9219 | | 0.0 | 120.0 | 480 | 0.6219 | 0.9219 | | 0.0 | 121.0 | 484 | 0.6219 | 0.9219 | | 0.0 | 122.0 | 488 | 0.6223 | 0.9219 | | 0.0 | 123.0 | 492 | 0.6236 | 0.9219 | | 0.0 | 124.0 | 496 | 0.6246 | 0.9219 | | 0.0 | 125.0 | 500 | 0.6259 | 0.9219 | | 0.0 | 126.0 | 504 | 0.6265 | 0.9219 | | 0.0 | 127.0 | 508 | 0.6270 | 0.9219 | | 0.0 | 128.0 | 512 | 0.6272 | 0.9219 | | 0.0 | 129.0 | 516 | 0.6271 | 0.9219 | | 0.0 | 130.0 | 520 | 0.6262 | 0.9219 | | 0.0 | 131.0 | 524 | 0.6257 | 0.9219 | | 0.0 | 132.0 | 528 | 0.6255 | 0.9219 | | 0.0 | 133.0 | 532 | 0.6258 | 0.9219 | | 0.0 | 134.0 | 536 | 0.6262 | 0.9219 | | 0.0 | 135.0 | 540 | 0.6272 | 0.9219 | | 0.0 | 136.0 | 544 | 0.6277 | 0.9219 | | 0.0 | 137.0 | 548 | 0.6286 | 0.9219 | | 0.0 | 138.0 | 552 | 0.6288 | 0.9219 | | 0.0 | 139.0 | 556 | 0.6292 | 0.9219 | | 0.0 | 140.0 | 560 | 0.6295 | 0.9219 | | 0.0 | 141.0 | 564 | 0.6293 | 0.9219 | | 0.0 | 142.0 | 568 | 0.6294 | 0.9219 | | 0.0 | 143.0 | 572 | 0.6296 | 0.9219 | | 0.0 | 144.0 | 576 | 0.6299 | 0.9219 | | 0.0 | 145.0 | 580 | 0.6297 | 0.9219 | | 0.0 | 146.0 | 584 | 0.6299 | 0.9219 | | 0.0 | 147.0 | 588 | 0.6300 | 0.9219 | | 0.0 | 148.0 | 592 | 0.6300 | 0.9219 | | 0.0 | 149.0 | 596 | 0.6300 | 0.9219 | | 0.0 | 150.0 | 600 | 0.6300 | 0.9219 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
lchiang/layoutlmv3-finetuned-cne_100
lchiang
2023-08-02T06:07:59Z
75
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cne-layoutlmv3-data", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-02T04:41:32Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cne-layoutlmv3-data metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cne_100 results: - task: name: Token Classification type: token-classification dataset: name: cne-layoutlmv3-data type: cne-layoutlmv3-data config: cne-dataset split: test args: cne-dataset metrics: - name: Precision type: precision value: 0.9950738916256158 - name: Recall type: recall value: 0.9950738916256158 - name: F1 type: f1 value: 0.9950738916256159 - name: Accuracy type: accuracy value: 0.9992716678805535 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cne_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cne-layoutlmv3-data dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Precision: 0.9951 - Recall: 0.9951 - F1: 0.9951 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 7.81 | 250 | 0.0028 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0229 | 15.62 | 500 | 0.0015 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0229 | 23.44 | 750 | 0.0011 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0031 | 31.25 | 1000 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0031 | 39.06 | 1250 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0019 | 46.88 | 1500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0019 | 54.69 | 1750 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0014 | 62.5 | 2000 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.0014 | 70.31 | 2250 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | | 0.001 | 78.12 | 2500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
simonycl/best_model-yelp_polarity-64-13
simonycl
2023-08-02T05:57:11Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T02:54:38Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-64-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-64-13 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9118 - Accuracy: 0.9062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.9825 | 0.8828 | | No log | 2.0 | 8 | 0.9391 | 0.8906 | | 0.0791 | 3.0 | 12 | 0.8979 | 0.8984 | | 0.0791 | 4.0 | 16 | 0.8416 | 0.875 | | 0.0238 | 5.0 | 20 | 0.8260 | 0.8906 | | 0.0238 | 6.0 | 24 | 0.8079 | 0.8984 | | 0.0238 | 7.0 | 28 | 0.7782 | 0.8906 | | 0.0015 | 8.0 | 32 | 0.7635 | 0.8984 | | 0.0015 | 9.0 | 36 | 0.7694 | 0.9062 | | 0.0001 | 10.0 | 40 | 0.7757 | 0.9062 | | 0.0001 | 11.0 | 44 | 0.7786 | 0.9141 | | 0.0001 | 12.0 | 48 | 0.7749 | 0.9141 | | 0.0 | 13.0 | 52 | 0.7730 | 0.9141 | | 0.0 | 14.0 | 56 | 0.7692 | 0.9141 | | 0.0 | 15.0 | 60 | 0.7662 | 0.9141 | | 0.0 | 16.0 | 64 | 0.7640 | 0.9141 | | 0.0 | 17.0 | 68 | 0.7616 | 0.9141 | | 0.0 | 18.0 | 72 | 0.7600 | 0.9141 | | 0.0 | 19.0 | 76 | 0.7608 | 0.9141 | | 0.0 | 20.0 | 80 | 0.7625 | 0.9141 | | 0.0 | 21.0 | 84 | 0.7641 | 0.9141 | | 0.0 | 22.0 | 88 | 0.7656 | 0.9141 | | 0.0 | 23.0 | 92 | 0.7670 | 0.9141 | | 0.0 | 24.0 | 96 | 0.7692 | 0.9141 | | 0.0 | 25.0 | 100 | 0.7709 | 0.9141 | | 0.0 | 26.0 | 104 | 0.7737 | 0.9141 | | 0.0 | 27.0 | 108 | 0.7763 | 0.9141 | | 0.0 | 28.0 | 112 | 0.7774 | 0.9141 | | 0.0 | 29.0 | 116 | 0.7802 | 0.9141 | | 0.0 | 30.0 | 120 | 0.7819 | 0.9141 | | 0.0 | 31.0 | 124 | 0.7846 | 0.9141 | | 0.0 | 32.0 | 128 | 0.7864 | 0.9141 | | 0.0 | 33.0 | 132 | 0.7891 | 0.9141 | | 0.0 | 34.0 | 136 | 0.7923 | 0.9141 | | 0.0 | 35.0 | 140 | 0.7953 | 0.9141 | | 0.0 | 36.0 | 144 | 0.7967 | 0.9141 | | 0.0 | 37.0 | 148 | 0.7973 | 0.9141 | | 0.0 | 38.0 | 152 | 0.7987 | 0.9141 | | 0.0 | 39.0 | 156 | 0.8002 | 0.9141 | | 0.0 | 40.0 | 160 | 0.8022 | 0.9141 | | 0.0 | 41.0 | 164 | 0.8030 | 0.9141 | | 0.0 | 42.0 | 168 | 0.8043 | 0.9141 | | 0.0 | 43.0 | 172 | 0.8048 | 0.9141 | | 0.0 | 44.0 | 176 | 0.8057 | 0.9141 | | 0.0 | 45.0 | 180 | 0.8068 | 0.9141 | | 0.0 | 46.0 | 184 | 0.8080 | 0.9141 | | 0.0 | 47.0 | 188 | 0.8104 | 0.9141 | | 0.0 | 48.0 | 192 | 0.8121 | 0.9141 | | 0.0 | 49.0 | 196 | 0.8122 | 0.9141 | | 0.0 | 50.0 | 200 | 0.8133 | 0.9141 | | 0.0 | 51.0 | 204 | 0.8146 | 0.9141 | | 0.0 | 52.0 | 208 | 0.8154 | 0.9141 | | 0.0 | 53.0 | 212 | 0.8160 | 0.9141 | | 0.0 | 54.0 | 216 | 0.8182 | 0.9141 | | 0.0 | 55.0 | 220 | 0.8204 | 0.9141 | | 0.0 | 56.0 | 224 | 0.8226 | 0.9141 | | 0.0 | 57.0 | 228 | 0.8228 | 0.9141 | | 0.0 | 58.0 | 232 | 0.8241 | 0.9141 | | 0.0 | 59.0 | 236 | 0.8263 | 0.9141 | | 0.0 | 60.0 | 240 | 0.8284 | 0.9062 | | 0.0 | 61.0 | 244 | 0.8287 | 0.9062 | | 0.0 | 62.0 | 248 | 0.8300 | 0.9062 | | 0.0 | 63.0 | 252 | 0.8317 | 0.9062 | | 0.0 | 64.0 | 256 | 0.8327 | 0.9062 | | 0.0 | 65.0 | 260 | 0.8342 | 0.9062 | | 0.0 | 66.0 | 264 | 0.8353 | 0.9062 | | 0.0 | 67.0 | 268 | 0.8369 | 0.9062 | | 0.0 | 68.0 | 272 | 0.8378 | 0.9062 | | 0.0 | 69.0 | 276 | 0.8386 | 0.9062 | | 0.0 | 70.0 | 280 | 0.8394 | 0.9062 | | 0.0 | 71.0 | 284 | 0.8403 | 0.9062 | | 0.0 | 72.0 | 288 | 0.8413 | 0.9062 | | 0.0 | 73.0 | 292 | 0.8414 | 0.9062 | | 0.0 | 74.0 | 296 | 0.8430 | 0.9062 | | 0.0 | 75.0 | 300 | 0.8439 | 0.9062 | | 0.0 | 76.0 | 304 | 0.8452 | 0.9062 | | 0.0 | 77.0 | 308 | 0.8469 | 0.9062 | | 0.0 | 78.0 | 312 | 0.8484 | 0.9062 | | 0.0 | 79.0 | 316 | 0.8499 | 0.9062 | | 0.0 | 80.0 | 320 | 0.8517 | 0.9062 | | 0.0 | 81.0 | 324 | 0.8533 | 0.9062 | | 0.0 | 82.0 | 328 | 0.8538 | 0.9062 | | 0.0 | 83.0 | 332 | 0.8549 | 0.9062 | | 0.0 | 84.0 | 336 | 0.8565 | 0.9062 | | 0.0 | 85.0 | 340 | 0.8575 | 0.9062 | | 0.0 | 86.0 | 344 | 0.8585 | 0.9062 | | 0.0 | 87.0 | 348 | 0.8596 | 0.9062 | | 0.0 | 88.0 | 352 | 0.8609 | 0.9062 | | 0.0 | 89.0 | 356 | 0.8623 | 0.9062 | | 0.0 | 90.0 | 360 | 0.8641 | 0.9062 | | 0.0 | 91.0 | 364 | 0.8653 | 0.9062 | | 0.0 | 92.0 | 368 | 0.8664 | 0.9062 | | 0.0 | 93.0 | 372 | 0.8674 | 0.9062 | | 0.0 | 94.0 | 376 | 0.8695 | 0.9062 | | 0.0 | 95.0 | 380 | 0.8711 | 0.9062 | | 0.0 | 96.0 | 384 | 0.8715 | 0.9062 | | 0.0 | 97.0 | 388 | 0.8713 | 0.9062 | | 0.0 | 98.0 | 392 | 0.8725 | 0.9062 | | 0.0 | 99.0 | 396 | 0.8725 | 0.9062 | | 0.0 | 100.0 | 400 | 0.8730 | 0.9062 | | 0.0 | 101.0 | 404 | 0.8730 | 0.9062 | | 0.0 | 102.0 | 408 | 0.8738 | 0.9062 | | 0.0 | 103.0 | 412 | 0.8750 | 0.9062 | | 0.0 | 104.0 | 416 | 0.8756 | 0.9062 | | 0.0 | 105.0 | 420 | 0.8757 | 0.9062 | | 0.0 | 106.0 | 424 | 0.8772 | 0.9062 | | 0.0 | 107.0 | 428 | 0.8785 | 0.9062 | | 0.0 | 108.0 | 432 | 0.8795 | 0.9062 | | 0.0 | 109.0 | 436 | 0.8806 | 0.9062 | | 0.0 | 110.0 | 440 | 0.8815 | 0.9062 | | 0.0 | 111.0 | 444 | 0.8826 | 0.9062 | | 0.0 | 112.0 | 448 | 0.8837 | 0.9062 | | 0.0 | 113.0 | 452 | 0.8846 | 0.9062 | | 0.0 | 114.0 | 456 | 0.8859 | 0.9062 | | 0.0 | 115.0 | 460 | 0.8877 | 0.9062 | | 0.0 | 116.0 | 464 | 0.8891 | 0.9062 | | 0.0 | 117.0 | 468 | 0.8913 | 0.9062 | | 0.0 | 118.0 | 472 | 0.8926 | 0.9062 | | 0.0 | 119.0 | 476 | 0.8940 | 0.9062 | | 0.0 | 120.0 | 480 | 0.8959 | 0.9062 | | 0.0 | 121.0 | 484 | 0.8978 | 0.9062 | | 0.0 | 122.0 | 488 | 0.8987 | 0.9062 | | 0.0 | 123.0 | 492 | 0.8999 | 0.9062 | | 0.0 | 124.0 | 496 | 0.8998 | 0.9062 | | 0.0 | 125.0 | 500 | 0.9010 | 0.9062 | | 0.0 | 126.0 | 504 | 0.9019 | 0.9062 | | 0.0 | 127.0 | 508 | 0.9031 | 0.9062 | | 0.0 | 128.0 | 512 | 0.9036 | 0.9062 | | 0.0 | 129.0 | 516 | 0.9039 | 0.9062 | | 0.0 | 130.0 | 520 | 0.9043 | 0.9062 | | 0.0 | 131.0 | 524 | 0.9043 | 0.9062 | | 0.0 | 132.0 | 528 | 0.9052 | 0.9062 | | 0.0 | 133.0 | 532 | 0.9052 | 0.9062 | | 0.0 | 134.0 | 536 | 0.9060 | 0.9062 | | 0.0 | 135.0 | 540 | 0.9071 | 0.9062 | | 0.0 | 136.0 | 544 | 0.9078 | 0.9062 | | 0.0 | 137.0 | 548 | 0.9085 | 0.9062 | | 0.0 | 138.0 | 552 | 0.9087 | 0.9062 | | 0.0 | 139.0 | 556 | 0.9094 | 0.9062 | | 0.0 | 140.0 | 560 | 0.9097 | 0.9062 | | 0.0 | 141.0 | 564 | 0.9101 | 0.9062 | | 0.0 | 142.0 | 568 | 0.9105 | 0.9062 | | 0.0 | 143.0 | 572 | 0.9108 | 0.9062 | | 0.0 | 144.0 | 576 | 0.9110 | 0.9062 | | 0.0 | 145.0 | 580 | 0.9112 | 0.9062 | | 0.0 | 146.0 | 584 | 0.9115 | 0.9062 | | 0.0 | 147.0 | 588 | 0.9116 | 0.9062 | | 0.0 | 148.0 | 592 | 0.9117 | 0.9062 | | 0.0 | 149.0 | 596 | 0.9118 | 0.9062 | | 0.0 | 150.0 | 600 | 0.9118 | 0.9062 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
NasimB/aochildes-gutenberg_fixed-notm-log-rarity-seed
NasimB
2023-08-02T05:56:10Z
133
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T00:34:55Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes-gutenberg_fixed-notm-log-rarity-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes-gutenberg_fixed-notm-log-rarity-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.2287 | 0.59 | 500 | 5.1296 | | 4.7894 | 1.17 | 1000 | 4.6882 | | 4.4055 | 1.76 | 1500 | 4.4303 | | 4.1038 | 2.34 | 2000 | 4.2799 | | 3.9529 | 2.93 | 2500 | 4.1705 | | 3.7134 | 3.52 | 3000 | 4.1288 | | 3.6138 | 4.1 | 3500 | 4.0921 | | 3.4188 | 4.69 | 4000 | 4.0665 | | 3.3146 | 5.28 | 4500 | 4.0712 | | 3.2243 | 5.86 | 5000 | 4.0652 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
jaswant50/distilbert-base-uncased-finetuned-emotion
jaswant50
2023-08-02T05:27:11Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T09:32:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9335 - name: F1 type: f1 value: 0.9336214774727247 library_name: transformers pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Accuracy: 0.9335 - F1: 0.9336 ## Model description label0 = sadness label1 = joy label2 = love label3 = anger label4 = fear label5 = surprise eg: model("I am extremely mesmerised") output : [{'label': 'LABEL_5', 'score': 0.857551097869873}] label5 = surprise ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0275 | 1.0 | 250 | 0.2920 | 0.9355 | 0.9359 | | 0.072 | 2.0 | 500 | 0.2144 | 0.9335 | 0.9336 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
simonycl/best_model-yelp_polarity-32-21
simonycl
2023-08-02T05:08:14Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T02:14:19Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-32-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-32-21 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8940 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.8845 | 0.875 | | No log | 2.0 | 4 | 0.8817 | 0.875 | | No log | 3.0 | 6 | 0.8770 | 0.875 | | No log | 4.0 | 8 | 0.8735 | 0.875 | | 0.4208 | 5.0 | 10 | 0.8676 | 0.875 | | 0.4208 | 6.0 | 12 | 0.8661 | 0.875 | | 0.4208 | 7.0 | 14 | 0.8671 | 0.875 | | 0.4208 | 8.0 | 16 | 0.8603 | 0.875 | | 0.4208 | 9.0 | 18 | 0.8539 | 0.875 | | 0.3008 | 10.0 | 20 | 0.8486 | 0.875 | | 0.3008 | 11.0 | 22 | 0.8322 | 0.875 | | 0.3008 | 12.0 | 24 | 0.8044 | 0.875 | | 0.3008 | 13.0 | 26 | 0.7829 | 0.875 | | 0.3008 | 14.0 | 28 | 0.7727 | 0.875 | | 0.1225 | 15.0 | 30 | 0.7704 | 0.875 | | 0.1225 | 16.0 | 32 | 0.7792 | 0.8594 | | 0.1225 | 17.0 | 34 | 0.7959 | 0.8594 | | 0.1225 | 18.0 | 36 | 0.8441 | 0.8594 | | 0.1225 | 19.0 | 38 | 0.8519 | 0.8594 | | 0.0141 | 20.0 | 40 | 0.8216 | 0.8594 | | 0.0141 | 21.0 | 42 | 0.7810 | 0.875 | | 0.0141 | 22.0 | 44 | 0.7611 | 0.875 | | 0.0141 | 23.0 | 46 | 0.7566 | 0.875 | | 0.0141 | 24.0 | 48 | 0.7634 | 0.875 | | 0.0011 | 25.0 | 50 | 0.7747 | 0.875 | | 0.0011 | 26.0 | 52 | 0.7894 | 0.8594 | | 0.0011 | 27.0 | 54 | 0.8063 | 0.8594 | | 0.0011 | 28.0 | 56 | 0.8136 | 0.8594 | | 0.0011 | 29.0 | 58 | 0.8142 | 0.8594 | | 0.0003 | 30.0 | 60 | 0.8096 | 0.8594 | | 0.0003 | 31.0 | 62 | 0.8001 | 0.8594 | | 0.0003 | 32.0 | 64 | 0.7901 | 0.8594 | | 0.0003 | 33.0 | 66 | 0.7819 | 0.875 | | 0.0003 | 34.0 | 68 | 0.7763 | 0.875 | | 0.0002 | 35.0 | 70 | 0.7729 | 0.875 | | 0.0002 | 36.0 | 72 | 0.7707 | 0.875 | | 0.0002 | 37.0 | 74 | 0.7693 | 0.875 | | 0.0002 | 38.0 | 76 | 0.7684 | 0.875 | | 0.0002 | 39.0 | 78 | 0.7684 | 0.875 | | 0.0002 | 40.0 | 80 | 0.7686 | 0.875 | | 0.0002 | 41.0 | 82 | 0.7692 | 0.875 | | 0.0002 | 42.0 | 84 | 0.7701 | 0.875 | | 0.0002 | 43.0 | 86 | 0.7712 | 0.875 | | 0.0002 | 44.0 | 88 | 0.7726 | 0.875 | | 0.0002 | 45.0 | 90 | 0.7741 | 0.875 | | 0.0002 | 46.0 | 92 | 0.7758 | 0.875 | | 0.0002 | 47.0 | 94 | 0.7778 | 0.875 | | 0.0002 | 48.0 | 96 | 0.7796 | 0.875 | | 0.0002 | 49.0 | 98 | 0.7815 | 0.875 | | 0.0001 | 50.0 | 100 | 0.7835 | 0.875 | | 0.0001 | 51.0 | 102 | 0.7855 | 0.875 | | 0.0001 | 52.0 | 104 | 0.7872 | 0.875 | | 0.0001 | 53.0 | 106 | 0.7888 | 0.875 | | 0.0001 | 54.0 | 108 | 0.7905 | 0.875 | | 0.0001 | 55.0 | 110 | 0.7922 | 0.875 | | 0.0001 | 56.0 | 112 | 0.7938 | 0.875 | | 0.0001 | 57.0 | 114 | 0.7954 | 0.875 | | 0.0001 | 58.0 | 116 | 0.7969 | 0.875 | | 0.0001 | 59.0 | 118 | 0.7982 | 0.875 | | 0.0001 | 60.0 | 120 | 0.7995 | 0.875 | | 0.0001 | 61.0 | 122 | 0.8007 | 0.875 | | 0.0001 | 62.0 | 124 | 0.8020 | 0.875 | | 0.0001 | 63.0 | 126 | 0.8031 | 0.875 | | 0.0001 | 64.0 | 128 | 0.8041 | 0.875 | | 0.0001 | 65.0 | 130 | 0.8052 | 0.875 | | 0.0001 | 66.0 | 132 | 0.8063 | 0.875 | | 0.0001 | 67.0 | 134 | 0.8073 | 0.875 | | 0.0001 | 68.0 | 136 | 0.8084 | 0.875 | | 0.0001 | 69.0 | 138 | 0.8095 | 0.875 | | 0.0001 | 70.0 | 140 | 0.8104 | 0.875 | | 0.0001 | 71.0 | 142 | 0.8115 | 0.875 | | 0.0001 | 72.0 | 144 | 0.8125 | 0.875 | | 0.0001 | 73.0 | 146 | 0.8135 | 0.875 | | 0.0001 | 74.0 | 148 | 0.8143 | 0.875 | | 0.0001 | 75.0 | 150 | 0.8151 | 0.875 | | 0.0001 | 76.0 | 152 | 0.8159 | 0.875 | | 0.0001 | 77.0 | 154 | 0.8167 | 0.875 | | 0.0001 | 78.0 | 156 | 0.8176 | 0.875 | | 0.0001 | 79.0 | 158 | 0.8187 | 0.875 | | 0.0001 | 80.0 | 160 | 0.8198 | 0.875 | | 0.0001 | 81.0 | 162 | 0.8210 | 0.875 | | 0.0001 | 82.0 | 164 | 0.8222 | 0.875 | | 0.0001 | 83.0 | 166 | 0.8232 | 0.875 | | 0.0001 | 84.0 | 168 | 0.8243 | 0.875 | | 0.0001 | 85.0 | 170 | 0.8254 | 0.875 | | 0.0001 | 86.0 | 172 | 0.8266 | 0.875 | | 0.0001 | 87.0 | 174 | 0.8278 | 0.875 | | 0.0001 | 88.0 | 176 | 0.8290 | 0.875 | | 0.0001 | 89.0 | 178 | 0.8302 | 0.875 | | 0.0001 | 90.0 | 180 | 0.8314 | 0.875 | | 0.0001 | 91.0 | 182 | 0.8326 | 0.875 | | 0.0001 | 92.0 | 184 | 0.8337 | 0.875 | | 0.0001 | 93.0 | 186 | 0.8347 | 0.875 | | 0.0001 | 94.0 | 188 | 0.8358 | 0.875 | | 0.0001 | 95.0 | 190 | 0.8369 | 0.875 | | 0.0001 | 96.0 | 192 | 0.8379 | 0.875 | | 0.0001 | 97.0 | 194 | 0.8390 | 0.875 | | 0.0001 | 98.0 | 196 | 0.8401 | 0.875 | | 0.0001 | 99.0 | 198 | 0.8411 | 0.875 | | 0.0001 | 100.0 | 200 | 0.8421 | 0.875 | | 0.0001 | 101.0 | 202 | 0.8431 | 0.875 | | 0.0001 | 102.0 | 204 | 0.8442 | 0.875 | | 0.0001 | 103.0 | 206 | 0.8454 | 0.875 | | 0.0001 | 104.0 | 208 | 0.8464 | 0.875 | | 0.0001 | 105.0 | 210 | 0.8475 | 0.875 | | 0.0001 | 106.0 | 212 | 0.8486 | 0.875 | | 0.0001 | 107.0 | 214 | 0.8498 | 0.875 | | 0.0001 | 108.0 | 216 | 0.8510 | 0.875 | | 0.0001 | 109.0 | 218 | 0.8520 | 0.875 | | 0.0001 | 110.0 | 220 | 0.8532 | 0.875 | | 0.0001 | 111.0 | 222 | 0.8544 | 0.875 | | 0.0001 | 112.0 | 224 | 0.8556 | 0.875 | | 0.0001 | 113.0 | 226 | 0.8568 | 0.875 | | 0.0001 | 114.0 | 228 | 0.8580 | 0.875 | | 0.0 | 115.0 | 230 | 0.8591 | 0.875 | | 0.0 | 116.0 | 232 | 0.8601 | 0.875 | | 0.0 | 117.0 | 234 | 0.8612 | 0.875 | | 0.0 | 118.0 | 236 | 0.8623 | 0.875 | | 0.0 | 119.0 | 238 | 0.8633 | 0.875 | | 0.0 | 120.0 | 240 | 0.8643 | 0.875 | | 0.0 | 121.0 | 242 | 0.8652 | 0.875 | | 0.0 | 122.0 | 244 | 0.8662 | 0.875 | | 0.0 | 123.0 | 246 | 0.8671 | 0.875 | | 0.0 | 124.0 | 248 | 0.8680 | 0.875 | | 0.0 | 125.0 | 250 | 0.8689 | 0.875 | | 0.0 | 126.0 | 252 | 0.8699 | 0.875 | | 0.0 | 127.0 | 254 | 0.8708 | 0.875 | | 0.0 | 128.0 | 256 | 0.8717 | 0.875 | | 0.0 | 129.0 | 258 | 0.8727 | 0.875 | | 0.0 | 130.0 | 260 | 0.8736 | 0.875 | | 0.0 | 131.0 | 262 | 0.8746 | 0.875 | | 0.0 | 132.0 | 264 | 0.8755 | 0.875 | | 0.0 | 133.0 | 266 | 0.8764 | 0.875 | | 0.0 | 134.0 | 268 | 0.8774 | 0.875 | | 0.0 | 135.0 | 270 | 0.8784 | 0.875 | | 0.0 | 136.0 | 272 | 0.8794 | 0.875 | | 0.0 | 137.0 | 274 | 0.8803 | 0.875 | | 0.0 | 138.0 | 276 | 0.8814 | 0.875 | | 0.0 | 139.0 | 278 | 0.8825 | 0.875 | | 0.0 | 140.0 | 280 | 0.8835 | 0.875 | | 0.0 | 141.0 | 282 | 0.8846 | 0.875 | | 0.0 | 142.0 | 284 | 0.8857 | 0.875 | | 0.0 | 143.0 | 286 | 0.8869 | 0.875 | | 0.0 | 144.0 | 288 | 0.8880 | 0.875 | | 0.0 | 145.0 | 290 | 0.8890 | 0.875 | | 0.0 | 146.0 | 292 | 0.8900 | 0.875 | | 0.0 | 147.0 | 294 | 0.8911 | 0.875 | | 0.0 | 148.0 | 296 | 0.8921 | 0.875 | | 0.0 | 149.0 | 298 | 0.8931 | 0.875 | | 0.0 | 150.0 | 300 | 0.8940 | 0.875 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
reecursion/falcon-7b-HR-performance-reviewer
reecursion
2023-08-02T04:55:51Z
33
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
2023-08-01T15:16:19Z
--- library_name: peft pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
simonycl/best_model-yelp_polarity-16-100
simonycl
2023-08-02T04:46:16Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T01:15:17Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-16-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-16-100 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1862 - Accuracy: 0.8125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0619 | 0.8438 | | No log | 2.0 | 2 | 1.0610 | 0.8438 | | No log | 3.0 | 3 | 1.0591 | 0.8438 | | No log | 4.0 | 4 | 1.0563 | 0.8438 | | No log | 5.0 | 5 | 1.0524 | 0.8438 | | No log | 6.0 | 6 | 1.0473 | 0.8438 | | No log | 7.0 | 7 | 1.0408 | 0.8438 | | No log | 8.0 | 8 | 1.0325 | 0.8438 | | No log | 9.0 | 9 | 1.0221 | 0.8438 | | 0.5215 | 10.0 | 10 | 1.0093 | 0.8438 | | 0.5215 | 11.0 | 11 | 0.9939 | 0.8438 | | 0.5215 | 12.0 | 12 | 0.9775 | 0.8438 | | 0.5215 | 13.0 | 13 | 0.9630 | 0.8438 | | 0.5215 | 14.0 | 14 | 0.9517 | 0.8438 | | 0.5215 | 15.0 | 15 | 0.9431 | 0.8125 | | 0.5215 | 16.0 | 16 | 0.9352 | 0.7812 | | 0.5215 | 17.0 | 17 | 0.9263 | 0.7812 | | 0.5215 | 18.0 | 18 | 0.9195 | 0.7812 | | 0.5215 | 19.0 | 19 | 0.9178 | 0.7812 | | 0.3945 | 20.0 | 20 | 0.9230 | 0.8125 | | 0.3945 | 21.0 | 21 | 0.9374 | 0.8125 | | 0.3945 | 22.0 | 22 | 0.9628 | 0.8125 | | 0.3945 | 23.0 | 23 | 1.0035 | 0.8438 | | 0.3945 | 24.0 | 24 | 1.0608 | 0.8125 | | 0.3945 | 25.0 | 25 | 1.1258 | 0.8125 | | 0.3945 | 26.0 | 26 | 1.1859 | 0.8125 | | 0.3945 | 27.0 | 27 | 1.2311 | 0.8125 | | 0.3945 | 28.0 | 28 | 1.2580 | 0.8125 | | 0.3945 | 29.0 | 29 | 1.2702 | 0.8125 | | 0.2334 | 30.0 | 30 | 1.2750 | 0.8125 | | 0.2334 | 31.0 | 31 | 1.2763 | 0.8125 | | 0.2334 | 32.0 | 32 | 1.2763 | 0.8125 | | 0.2334 | 33.0 | 33 | 1.2757 | 0.8125 | | 0.2334 | 34.0 | 34 | 1.2733 | 0.8125 | | 0.2334 | 35.0 | 35 | 1.2687 | 0.8125 | | 0.2334 | 36.0 | 36 | 1.2612 | 0.8125 | | 0.2334 | 37.0 | 37 | 1.2508 | 0.8125 | | 0.2334 | 38.0 | 38 | 1.2376 | 0.8125 | | 0.2334 | 39.0 | 39 | 1.2213 | 0.8125 | | 0.024 | 40.0 | 40 | 1.2024 | 0.8125 | | 0.024 | 41.0 | 41 | 1.1803 | 0.8125 | | 0.024 | 42.0 | 42 | 1.1548 | 0.8125 | | 0.024 | 43.0 | 43 | 1.1254 | 0.8125 | | 0.024 | 44.0 | 44 | 1.0929 | 0.8125 | | 0.024 | 45.0 | 45 | 1.0591 | 0.8125 | | 0.024 | 46.0 | 46 | 1.0257 | 0.8125 | | 0.024 | 47.0 | 47 | 0.9942 | 0.8125 | | 0.024 | 48.0 | 48 | 0.9662 | 0.8125 | | 0.024 | 49.0 | 49 | 0.9436 | 0.8125 | | 0.0008 | 50.0 | 50 | 0.9266 | 0.8125 | | 0.0008 | 51.0 | 51 | 0.9148 | 0.8125 | | 0.0008 | 52.0 | 52 | 0.9073 | 0.8125 | | 0.0008 | 53.0 | 53 | 0.9039 | 0.8125 | | 0.0008 | 54.0 | 54 | 0.9049 | 0.8125 | | 0.0008 | 55.0 | 55 | 0.9087 | 0.8125 | | 0.0008 | 56.0 | 56 | 0.9152 | 0.8125 | | 0.0008 | 57.0 | 57 | 0.9238 | 0.8125 | | 0.0008 | 58.0 | 58 | 0.9340 | 0.8125 | | 0.0008 | 59.0 | 59 | 0.9450 | 0.8125 | | 0.0006 | 60.0 | 60 | 0.9566 | 0.8438 | | 0.0006 | 61.0 | 61 | 0.9682 | 0.8438 | | 0.0006 | 62.0 | 62 | 0.9797 | 0.8438 | | 0.0006 | 63.0 | 63 | 0.9912 | 0.8438 | | 0.0006 | 64.0 | 64 | 1.0028 | 0.8438 | | 0.0006 | 65.0 | 65 | 1.0141 | 0.8438 | | 0.0006 | 66.0 | 66 | 1.0251 | 0.8438 | | 0.0006 | 67.0 | 67 | 1.0358 | 0.8438 | | 0.0006 | 68.0 | 68 | 1.0460 | 0.8438 | | 0.0006 | 69.0 | 69 | 1.0558 | 0.8438 | | 0.0005 | 70.0 | 70 | 1.0646 | 0.8438 | | 0.0005 | 71.0 | 71 | 1.0730 | 0.8438 | | 0.0005 | 72.0 | 72 | 1.0808 | 0.8438 | | 0.0005 | 73.0 | 73 | 1.0882 | 0.8438 | | 0.0005 | 74.0 | 74 | 1.0951 | 0.8438 | | 0.0005 | 75.0 | 75 | 1.1013 | 0.8125 | | 0.0005 | 76.0 | 76 | 1.1070 | 0.8125 | | 0.0005 | 77.0 | 77 | 1.1122 | 0.8125 | | 0.0005 | 78.0 | 78 | 1.1170 | 0.8125 | | 0.0005 | 79.0 | 79 | 1.1214 | 0.8125 | | 0.0004 | 80.0 | 80 | 1.1255 | 0.8125 | | 0.0004 | 81.0 | 81 | 1.1292 | 0.8125 | | 0.0004 | 82.0 | 82 | 1.1324 | 0.8125 | | 0.0004 | 83.0 | 83 | 1.1354 | 0.8125 | | 0.0004 | 84.0 | 84 | 1.1383 | 0.8125 | | 0.0004 | 85.0 | 85 | 1.1411 | 0.8125 | | 0.0004 | 86.0 | 86 | 1.1437 | 0.8125 | | 0.0004 | 87.0 | 87 | 1.1462 | 0.8125 | | 0.0004 | 88.0 | 88 | 1.1484 | 0.8125 | | 0.0004 | 89.0 | 89 | 1.1506 | 0.8125 | | 0.0004 | 90.0 | 90 | 1.1527 | 0.8125 | | 0.0004 | 91.0 | 91 | 1.1546 | 0.8125 | | 0.0004 | 92.0 | 92 | 1.1563 | 0.8125 | | 0.0004 | 93.0 | 93 | 1.1579 | 0.8125 | | 0.0004 | 94.0 | 94 | 1.1596 | 0.8125 | | 0.0004 | 95.0 | 95 | 1.1611 | 0.8125 | | 0.0004 | 96.0 | 96 | 1.1624 | 0.8125 | | 0.0004 | 97.0 | 97 | 1.1636 | 0.8125 | | 0.0004 | 98.0 | 98 | 1.1648 | 0.8125 | | 0.0004 | 99.0 | 99 | 1.1658 | 0.8125 | | 0.0003 | 100.0 | 100 | 1.1668 | 0.8125 | | 0.0003 | 101.0 | 101 | 1.1678 | 0.8125 | | 0.0003 | 102.0 | 102 | 1.1689 | 0.8125 | | 0.0003 | 103.0 | 103 | 1.1697 | 0.8125 | | 0.0003 | 104.0 | 104 | 1.1706 | 0.8125 | | 0.0003 | 105.0 | 105 | 1.1715 | 0.8125 | | 0.0003 | 106.0 | 106 | 1.1722 | 0.8125 | | 0.0003 | 107.0 | 107 | 1.1728 | 0.8125 | | 0.0003 | 108.0 | 108 | 1.1734 | 0.8125 | | 0.0003 | 109.0 | 109 | 1.1739 | 0.8125 | | 0.0003 | 110.0 | 110 | 1.1745 | 0.8125 | | 0.0003 | 111.0 | 111 | 1.1749 | 0.8125 | | 0.0003 | 112.0 | 112 | 1.1754 | 0.8125 | | 0.0003 | 113.0 | 113 | 1.1759 | 0.8125 | | 0.0003 | 114.0 | 114 | 1.1764 | 0.8125 | | 0.0003 | 115.0 | 115 | 1.1768 | 0.8125 | | 0.0003 | 116.0 | 116 | 1.1772 | 0.8125 | | 0.0003 | 117.0 | 117 | 1.1774 | 0.8125 | | 0.0003 | 118.0 | 118 | 1.1776 | 0.8125 | | 0.0003 | 119.0 | 119 | 1.1776 | 0.8125 | | 0.0003 | 120.0 | 120 | 1.1778 | 0.8125 | | 0.0003 | 121.0 | 121 | 1.1780 | 0.8125 | | 0.0003 | 122.0 | 122 | 1.1781 | 0.8125 | | 0.0003 | 123.0 | 123 | 1.1783 | 0.8125 | | 0.0003 | 124.0 | 124 | 1.1784 | 0.8125 | | 0.0003 | 125.0 | 125 | 1.1787 | 0.8125 | | 0.0003 | 126.0 | 126 | 1.1790 | 0.8125 | | 0.0003 | 127.0 | 127 | 1.1794 | 0.8125 | | 0.0003 | 128.0 | 128 | 1.1797 | 0.8125 | | 0.0003 | 129.0 | 129 | 1.1800 | 0.8125 | | 0.0003 | 130.0 | 130 | 1.1803 | 0.8125 | | 0.0003 | 131.0 | 131 | 1.1807 | 0.8125 | | 0.0003 | 132.0 | 132 | 1.1809 | 0.8125 | | 0.0003 | 133.0 | 133 | 1.1812 | 0.8125 | | 0.0003 | 134.0 | 134 | 1.1815 | 0.8125 | | 0.0003 | 135.0 | 135 | 1.1818 | 0.8125 | | 0.0003 | 136.0 | 136 | 1.1823 | 0.8125 | | 0.0003 | 137.0 | 137 | 1.1828 | 0.8125 | | 0.0003 | 138.0 | 138 | 1.1832 | 0.8125 | | 0.0003 | 139.0 | 139 | 1.1835 | 0.8125 | | 0.0002 | 140.0 | 140 | 1.1837 | 0.8125 | | 0.0002 | 141.0 | 141 | 1.1838 | 0.8125 | | 0.0002 | 142.0 | 142 | 1.1840 | 0.8125 | | 0.0002 | 143.0 | 143 | 1.1841 | 0.8125 | | 0.0002 | 144.0 | 144 | 1.1844 | 0.8125 | | 0.0002 | 145.0 | 145 | 1.1845 | 0.8125 | | 0.0002 | 146.0 | 146 | 1.1848 | 0.8125 | | 0.0002 | 147.0 | 147 | 1.1851 | 0.8125 | | 0.0002 | 148.0 | 148 | 1.1855 | 0.8125 | | 0.0002 | 149.0 | 149 | 1.1859 | 0.8125 | | 0.0002 | 150.0 | 150 | 1.1862 | 0.8125 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
liuhaotian/llava-pretrain-llama-2-7b-chat
liuhaotian
2023-08-02T04:42:40Z
21
4
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T04:28:13Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-Pretrain-LLaMA-2-7b-Chat was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
liuhaotian/llava-pretrain-llama-2-13b-chat
liuhaotian
2023-08-02T04:42:29Z
17
2
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T04:28:23Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-Pretrain-LLaMA-2-13b-Chat was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
liuhaotian/llava-336px-pretrain-llama-2-7b-chat
liuhaotian
2023-08-02T04:39:29Z
18
0
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T04:28:51Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-336px-Pretrain-LLaMA-2-7b-Chat was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
simonycl/best_model-yelp_polarity-16-87
simonycl
2023-08-02T04:37:41Z
108
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T01:07:32Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-16-87 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-16-87 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.3437 | 0.875 | | No log | 2.0 | 2 | 0.3444 | 0.875 | | No log | 3.0 | 3 | 0.3459 | 0.875 | | No log | 4.0 | 4 | 0.3481 | 0.875 | | No log | 5.0 | 5 | 0.3509 | 0.875 | | No log | 6.0 | 6 | 0.3542 | 0.875 | | No log | 7.0 | 7 | 0.3577 | 0.875 | | No log | 8.0 | 8 | 0.3605 | 0.875 | | No log | 9.0 | 9 | 0.3609 | 0.875 | | 1.0043 | 10.0 | 10 | 0.3571 | 0.875 | | 1.0043 | 11.0 | 11 | 0.3490 | 0.875 | | 1.0043 | 12.0 | 12 | 0.3367 | 0.875 | | 1.0043 | 13.0 | 13 | 0.3202 | 0.875 | | 1.0043 | 14.0 | 14 | 0.2996 | 0.875 | | 1.0043 | 15.0 | 15 | 0.2751 | 0.875 | | 1.0043 | 16.0 | 16 | 0.2470 | 0.9375 | | 1.0043 | 17.0 | 17 | 0.2159 | 0.9375 | | 1.0043 | 18.0 | 18 | 0.1832 | 0.9375 | | 1.0043 | 19.0 | 19 | 0.1516 | 0.9375 | | 0.6554 | 20.0 | 20 | 0.1241 | 0.9688 | | 0.6554 | 21.0 | 21 | 0.1018 | 0.9688 | | 0.6554 | 22.0 | 22 | 0.0818 | 0.9688 | | 0.6554 | 23.0 | 23 | 0.0611 | 0.9688 | | 0.6554 | 24.0 | 24 | 0.0378 | 0.9688 | | 0.6554 | 25.0 | 25 | 0.0170 | 1.0 | | 0.6554 | 26.0 | 26 | 0.0093 | 1.0 | | 0.6554 | 27.0 | 27 | 0.0077 | 1.0 | | 0.6554 | 28.0 | 28 | 0.0073 | 1.0 | | 0.6554 | 29.0 | 29 | 0.0072 | 1.0 | | 0.1962 | 30.0 | 30 | 0.0072 | 1.0 | | 0.1962 | 31.0 | 31 | 0.0071 | 1.0 | | 0.1962 | 32.0 | 32 | 0.0070 | 1.0 | | 0.1962 | 33.0 | 33 | 0.0069 | 1.0 | | 0.1962 | 34.0 | 34 | 0.0068 | 1.0 | | 0.1962 | 35.0 | 35 | 0.0067 | 1.0 | | 0.1962 | 36.0 | 36 | 0.0065 | 1.0 | | 0.1962 | 37.0 | 37 | 0.0063 | 1.0 | | 0.1962 | 38.0 | 38 | 0.0060 | 1.0 | | 0.1962 | 39.0 | 39 | 0.0058 | 1.0 | | 0.0075 | 40.0 | 40 | 0.0056 | 1.0 | | 0.0075 | 41.0 | 41 | 0.0053 | 1.0 | | 0.0075 | 42.0 | 42 | 0.0051 | 1.0 | | 0.0075 | 43.0 | 43 | 0.0050 | 1.0 | | 0.0075 | 44.0 | 44 | 0.0048 | 1.0 | | 0.0075 | 45.0 | 45 | 0.0046 | 1.0 | | 0.0075 | 46.0 | 46 | 0.0045 | 1.0 | | 0.0075 | 47.0 | 47 | 0.0043 | 1.0 | | 0.0075 | 48.0 | 48 | 0.0042 | 1.0 | | 0.0075 | 49.0 | 49 | 0.0041 | 1.0 | | 0.0019 | 50.0 | 50 | 0.0040 | 1.0 | | 0.0019 | 51.0 | 51 | 0.0039 | 1.0 | | 0.0019 | 52.0 | 52 | 0.0038 | 1.0 | | 0.0019 | 53.0 | 53 | 0.0037 | 1.0 | | 0.0019 | 54.0 | 54 | 0.0036 | 1.0 | | 0.0019 | 55.0 | 55 | 0.0035 | 1.0 | | 0.0019 | 56.0 | 56 | 0.0035 | 1.0 | | 0.0019 | 57.0 | 57 | 0.0034 | 1.0 | | 0.0019 | 58.0 | 58 | 0.0033 | 1.0 | | 0.0019 | 59.0 | 59 | 0.0033 | 1.0 | | 0.0014 | 60.0 | 60 | 0.0032 | 1.0 | | 0.0014 | 61.0 | 61 | 0.0032 | 1.0 | | 0.0014 | 62.0 | 62 | 0.0031 | 1.0 | | 0.0014 | 63.0 | 63 | 0.0031 | 1.0 | | 0.0014 | 64.0 | 64 | 0.0030 | 1.0 | | 0.0014 | 65.0 | 65 | 0.0030 | 1.0 | | 0.0014 | 66.0 | 66 | 0.0029 | 1.0 | | 0.0014 | 67.0 | 67 | 0.0029 | 1.0 | | 0.0014 | 68.0 | 68 | 0.0029 | 1.0 | | 0.0014 | 69.0 | 69 | 0.0028 | 1.0 | | 0.0011 | 70.0 | 70 | 0.0028 | 1.0 | | 0.0011 | 71.0 | 71 | 0.0028 | 1.0 | | 0.0011 | 72.0 | 72 | 0.0027 | 1.0 | | 0.0011 | 73.0 | 73 | 0.0027 | 1.0 | | 0.0011 | 74.0 | 74 | 0.0027 | 1.0 | | 0.0011 | 75.0 | 75 | 0.0026 | 1.0 | | 0.0011 | 76.0 | 76 | 0.0026 | 1.0 | | 0.0011 | 77.0 | 77 | 0.0026 | 1.0 | | 0.0011 | 78.0 | 78 | 0.0026 | 1.0 | | 0.0011 | 79.0 | 79 | 0.0025 | 1.0 | | 0.0009 | 80.0 | 80 | 0.0025 | 1.0 | | 0.0009 | 81.0 | 81 | 0.0025 | 1.0 | | 0.0009 | 82.0 | 82 | 0.0024 | 1.0 | | 0.0009 | 83.0 | 83 | 0.0024 | 1.0 | | 0.0009 | 84.0 | 84 | 0.0024 | 1.0 | | 0.0009 | 85.0 | 85 | 0.0023 | 1.0 | | 0.0009 | 86.0 | 86 | 0.0023 | 1.0 | | 0.0009 | 87.0 | 87 | 0.0023 | 1.0 | | 0.0009 | 88.0 | 88 | 0.0022 | 1.0 | | 0.0009 | 89.0 | 89 | 0.0022 | 1.0 | | 0.0008 | 90.0 | 90 | 0.0022 | 1.0 | | 0.0008 | 91.0 | 91 | 0.0021 | 1.0 | | 0.0008 | 92.0 | 92 | 0.0021 | 1.0 | | 0.0008 | 93.0 | 93 | 0.0021 | 1.0 | | 0.0008 | 94.0 | 94 | 0.0020 | 1.0 | | 0.0008 | 95.0 | 95 | 0.0020 | 1.0 | | 0.0008 | 96.0 | 96 | 0.0020 | 1.0 | | 0.0008 | 97.0 | 97 | 0.0019 | 1.0 | | 0.0008 | 98.0 | 98 | 0.0019 | 1.0 | | 0.0008 | 99.0 | 99 | 0.0019 | 1.0 | | 0.0007 | 100.0 | 100 | 0.0019 | 1.0 | | 0.0007 | 101.0 | 101 | 0.0018 | 1.0 | | 0.0007 | 102.0 | 102 | 0.0018 | 1.0 | | 0.0007 | 103.0 | 103 | 0.0018 | 1.0 | | 0.0007 | 104.0 | 104 | 0.0018 | 1.0 | | 0.0007 | 105.0 | 105 | 0.0018 | 1.0 | | 0.0007 | 106.0 | 106 | 0.0017 | 1.0 | | 0.0007 | 107.0 | 107 | 0.0017 | 1.0 | | 0.0007 | 108.0 | 108 | 0.0017 | 1.0 | | 0.0007 | 109.0 | 109 | 0.0017 | 1.0 | | 0.0006 | 110.0 | 110 | 0.0017 | 1.0 | | 0.0006 | 111.0 | 111 | 0.0016 | 1.0 | | 0.0006 | 112.0 | 112 | 0.0016 | 1.0 | | 0.0006 | 113.0 | 113 | 0.0016 | 1.0 | | 0.0006 | 114.0 | 114 | 0.0016 | 1.0 | | 0.0006 | 115.0 | 115 | 0.0016 | 1.0 | | 0.0006 | 116.0 | 116 | 0.0016 | 1.0 | | 0.0006 | 117.0 | 117 | 0.0015 | 1.0 | | 0.0006 | 118.0 | 118 | 0.0015 | 1.0 | | 0.0006 | 119.0 | 119 | 0.0015 | 1.0 | | 0.0005 | 120.0 | 120 | 0.0015 | 1.0 | | 0.0005 | 121.0 | 121 | 0.0015 | 1.0 | | 0.0005 | 122.0 | 122 | 0.0015 | 1.0 | | 0.0005 | 123.0 | 123 | 0.0015 | 1.0 | | 0.0005 | 124.0 | 124 | 0.0015 | 1.0 | | 0.0005 | 125.0 | 125 | 0.0014 | 1.0 | | 0.0005 | 126.0 | 126 | 0.0014 | 1.0 | | 0.0005 | 127.0 | 127 | 0.0014 | 1.0 | | 0.0005 | 128.0 | 128 | 0.0014 | 1.0 | | 0.0005 | 129.0 | 129 | 0.0014 | 1.0 | | 0.0005 | 130.0 | 130 | 0.0014 | 1.0 | | 0.0005 | 131.0 | 131 | 0.0014 | 1.0 | | 0.0005 | 132.0 | 132 | 0.0014 | 1.0 | | 0.0005 | 133.0 | 133 | 0.0014 | 1.0 | | 0.0005 | 134.0 | 134 | 0.0014 | 1.0 | | 0.0005 | 135.0 | 135 | 0.0013 | 1.0 | | 0.0005 | 136.0 | 136 | 0.0013 | 1.0 | | 0.0005 | 137.0 | 137 | 0.0013 | 1.0 | | 0.0005 | 138.0 | 138 | 0.0013 | 1.0 | | 0.0005 | 139.0 | 139 | 0.0013 | 1.0 | | 0.0004 | 140.0 | 140 | 0.0013 | 1.0 | | 0.0004 | 141.0 | 141 | 0.0013 | 1.0 | | 0.0004 | 142.0 | 142 | 0.0013 | 1.0 | | 0.0004 | 143.0 | 143 | 0.0013 | 1.0 | | 0.0004 | 144.0 | 144 | 0.0013 | 1.0 | | 0.0004 | 145.0 | 145 | 0.0013 | 1.0 | | 0.0004 | 146.0 | 146 | 0.0013 | 1.0 | | 0.0004 | 147.0 | 147 | 0.0013 | 1.0 | | 0.0004 | 148.0 | 148 | 0.0012 | 1.0 | | 0.0004 | 149.0 | 149 | 0.0012 | 1.0 | | 0.0004 | 150.0 | 150 | 0.0012 | 1.0 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
ZMaxwell-Smith/OIL_YT_ind_nlp_all
ZMaxwell-Smith
2023-08-02T04:36:40Z
114
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "id", "en", "doi:10.57967/hf/0492", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-27T05:21:51Z
--- language: - id - en tags: - wav2vec2 license: cc-by-nc-sa-4.0 --- Model page for OIL_YT_ind_nlp_all For further details please see Zara Maxwell-Smith and Ben Foley, (forthcoming), Automated speech recognition of Indonesian-English language lessons on YouTube using transfer learning, Field Matters Workshop, EACL 2023 How to cite this model. Please use the following .bib to reference this work. ``` {@inproceedings{Maxwell-Smith_Foley_2023_Automated, title={{Automated speech recognition of Indonesian-English language lessons on YouTube using transfer learning}}, author={Maxwell-Smith, Zara and Foley, Ben}, booktitle={Proceedings of the {Second Workshop on NLP Applications to Field Linguistics (EACL)}}, pages={}, year={forthcoming} } ```
liuhaotian/llava-336px-pretrain-vicuna-13b-v1.3
liuhaotian
2023-08-02T04:33:22Z
12
7
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T04:12:10Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-336px-Pretrain-Vicuna-13B-v1.3 was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
liuhaotian/llava-pretrain-vicuna-7b-v1.3
liuhaotian
2023-08-02T04:32:23Z
95
0
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T04:06:19Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-Pretrain-Vicuna-7B-v1.3 was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
liuhaotian/llava-pretrain-vicuna-13b-v1.3
liuhaotian
2023-08-02T04:32:07Z
25
0
transformers
[ "transformers", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-08-02T03:59:06Z
--- inference: false --- <br> <br> # LLaVA Model Card This is a pretrained checkpoint, you can use it to instruct tune your multimodal models. Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-Pretrain-Vicuna-13B-v1.3 was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Non-commerical Use. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
lchiang/layoutlmv3-finetuned-cord_100
lchiang
2023-08-02T04:30:58Z
78
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T21:28:54Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9465478841870824 - name: Recall type: recall value: 0.9543413173652695 - name: F1 type: f1 value: 0.9504286246738725 - name: Accuracy type: accuracy value: 0.9584040747028862 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2090 - Precision: 0.9465 - Recall: 0.9543 - F1: 0.9504 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0347 | 0.6965 | 0.7695 | 0.7312 | 0.7861 | | 1.4031 | 3.12 | 500 | 0.5641 | 0.8491 | 0.8720 | 0.8604 | 0.8744 | | 1.4031 | 4.69 | 750 | 0.3899 | 0.8810 | 0.9087 | 0.8946 | 0.9138 | | 0.4005 | 6.25 | 1000 | 0.3025 | 0.9202 | 0.9319 | 0.9260 | 0.9355 | | 0.4005 | 7.81 | 1250 | 0.2641 | 0.9211 | 0.9349 | 0.9279 | 0.9402 | | 0.2161 | 9.38 | 1500 | 0.2406 | 0.9277 | 0.9416 | 0.9346 | 0.9474 | | 0.2161 | 10.94 | 1750 | 0.2250 | 0.9343 | 0.9469 | 0.9405 | 0.9516 | | 0.1474 | 12.5 | 2000 | 0.2238 | 0.9415 | 0.9513 | 0.9464 | 0.9542 | | 0.1474 | 14.06 | 2250 | 0.2128 | 0.9451 | 0.9536 | 0.9493 | 0.9571 | | 0.1128 | 15.62 | 2500 | 0.2090 | 0.9465 | 0.9543 | 0.9504 | 0.9584 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
OpenBuddy/openbuddy-llama-65b-v8-bf16
OpenBuddy
2023-08-02T04:28:56Z
1,547
9
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T02:54:07Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice OpenBuddy LLaMA-series models are built upon Meta's LLaMA and are subject to Meta's licensing agreement. They are intended for use only by individuals who have obtained approval from Meta and are eligible to download LLaMA. If you have not obtained approval from Meta, you must visit the https://ai.meta.com/llama/ page, read and agree to the model's licensing agreement, submit an application, and wait for approval from Meta before downloading LLaMA-series models from this page. ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
polejowska/detr-r101-cd45rb-8ah-6l-256d-1024ffn
polejowska
2023-08-02T04:26:27Z
159
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb", "endpoints_compatible", "region:us" ]
object-detection
2023-08-01T14:23:23Z
--- tags: - generated_from_trainer datasets: - cd45rb model-index: - name: detr-r101-cd45rb-8ah-6l-256d-1024ffn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r101-cd45rb-8ah-6l-256d-1024ffn This model is a fine-tuned version of [](https://huggingface.co/) on the cd45rb dataset. It achieves the following results on the evaluation set: - Loss: 5.0153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.7717 | 1.0 | 4606 | 4.9667 | | 3.7186 | 2.0 | 9212 | 5.0146 | | 3.6825 | 3.0 | 13818 | 5.0084 | | 3.6793 | 4.0 | 18424 | 5.0322 | | 3.673 | 5.0 | 23030 | 5.0330 | | 3.6605 | 6.0 | 27636 | 5.0197 | | 3.657 | 7.0 | 32242 | 5.0128 | | 3.6543 | 8.0 | 36848 | 5.0124 | | 3.6505 | 9.0 | 41454 | 5.0099 | | 3.6484 | 10.0 | 46060 | 5.0153 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
simonycl/best_model-yelp_polarity-16-21
simonycl
2023-08-02T04:20:33Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T00:51:53Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-16-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-16-21 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8234 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.8218 | 0.625 | | No log | 2.0 | 2 | 0.8206 | 0.625 | | No log | 3.0 | 3 | 0.8183 | 0.625 | | No log | 4.0 | 4 | 0.8150 | 0.625 | | No log | 5.0 | 5 | 0.8107 | 0.625 | | No log | 6.0 | 6 | 0.8057 | 0.625 | | No log | 7.0 | 7 | 0.8001 | 0.6562 | | No log | 8.0 | 8 | 0.7944 | 0.6875 | | No log | 9.0 | 9 | 0.7887 | 0.7188 | | 0.5647 | 10.0 | 10 | 0.7834 | 0.7188 | | 0.5647 | 11.0 | 11 | 0.7784 | 0.7188 | | 0.5647 | 12.0 | 12 | 0.7738 | 0.7188 | | 0.5647 | 13.0 | 13 | 0.7695 | 0.7188 | | 0.5647 | 14.0 | 14 | 0.7651 | 0.7188 | | 0.5647 | 15.0 | 15 | 0.7606 | 0.7188 | | 0.5647 | 16.0 | 16 | 0.7558 | 0.7188 | | 0.5647 | 17.0 | 17 | 0.7506 | 0.7188 | | 0.5647 | 18.0 | 18 | 0.7451 | 0.7188 | | 0.5647 | 19.0 | 19 | 0.7392 | 0.7188 | | 0.472 | 20.0 | 20 | 0.7329 | 0.7188 | | 0.472 | 21.0 | 21 | 0.7262 | 0.7188 | | 0.472 | 22.0 | 22 | 0.7190 | 0.7188 | | 0.472 | 23.0 | 23 | 0.7112 | 0.75 | | 0.472 | 24.0 | 24 | 0.7029 | 0.75 | | 0.472 | 25.0 | 25 | 0.6941 | 0.75 | | 0.472 | 26.0 | 26 | 0.6847 | 0.75 | | 0.472 | 27.0 | 27 | 0.6749 | 0.75 | | 0.472 | 28.0 | 28 | 0.6647 | 0.75 | | 0.472 | 29.0 | 29 | 0.6545 | 0.75 | | 0.3267 | 30.0 | 30 | 0.6445 | 0.75 | | 0.3267 | 31.0 | 31 | 0.6350 | 0.6562 | | 0.3267 | 32.0 | 32 | 0.6261 | 0.6562 | | 0.3267 | 33.0 | 33 | 0.6177 | 0.6875 | | 0.3267 | 34.0 | 34 | 0.6100 | 0.6875 | | 0.3267 | 35.0 | 35 | 0.6031 | 0.6875 | | 0.3267 | 36.0 | 36 | 0.5973 | 0.6875 | | 0.3267 | 37.0 | 37 | 0.5926 | 0.7188 | | 0.3267 | 38.0 | 38 | 0.5895 | 0.7188 | | 0.3267 | 39.0 | 39 | 0.5869 | 0.7188 | | 0.1824 | 40.0 | 40 | 0.5842 | 0.75 | | 0.1824 | 41.0 | 41 | 0.5796 | 0.75 | | 0.1824 | 42.0 | 42 | 0.5730 | 0.75 | | 0.1824 | 43.0 | 43 | 0.5651 | 0.75 | | 0.1824 | 44.0 | 44 | 0.5555 | 0.75 | | 0.1824 | 45.0 | 45 | 0.5466 | 0.7812 | | 0.1824 | 46.0 | 46 | 0.5408 | 0.7812 | | 0.1824 | 47.0 | 47 | 0.5379 | 0.7812 | | 0.1824 | 48.0 | 48 | 0.5386 | 0.7812 | | 0.1824 | 49.0 | 49 | 0.5419 | 0.7812 | | 0.0885 | 50.0 | 50 | 0.5482 | 0.7812 | | 0.0885 | 51.0 | 51 | 0.5568 | 0.7812 | | 0.0885 | 52.0 | 52 | 0.5662 | 0.7812 | | 0.0885 | 53.0 | 53 | 0.5761 | 0.7812 | | 0.0885 | 54.0 | 54 | 0.5834 | 0.7812 | | 0.0885 | 55.0 | 55 | 0.5897 | 0.8125 | | 0.0885 | 56.0 | 56 | 0.5929 | 0.8125 | | 0.0885 | 57.0 | 57 | 0.5930 | 0.8125 | | 0.0885 | 58.0 | 58 | 0.5905 | 0.7812 | | 0.0885 | 59.0 | 59 | 0.5869 | 0.7812 | | 0.0497 | 60.0 | 60 | 0.5830 | 0.7812 | | 0.0497 | 61.0 | 61 | 0.5795 | 0.75 | | 0.0497 | 62.0 | 62 | 0.5776 | 0.75 | | 0.0497 | 63.0 | 63 | 0.5777 | 0.75 | | 0.0497 | 64.0 | 64 | 0.5800 | 0.75 | | 0.0497 | 65.0 | 65 | 0.5832 | 0.75 | | 0.0497 | 66.0 | 66 | 0.5887 | 0.75 | | 0.0497 | 67.0 | 67 | 0.5962 | 0.7812 | | 0.0497 | 68.0 | 68 | 0.6062 | 0.7812 | | 0.0497 | 69.0 | 69 | 0.6192 | 0.75 | | 0.0306 | 70.0 | 70 | 0.6332 | 0.75 | | 0.0306 | 71.0 | 71 | 0.6475 | 0.75 | | 0.0306 | 72.0 | 72 | 0.6610 | 0.75 | | 0.0306 | 73.0 | 73 | 0.6726 | 0.75 | | 0.0306 | 74.0 | 74 | 0.6824 | 0.75 | | 0.0306 | 75.0 | 75 | 0.6910 | 0.75 | | 0.0306 | 76.0 | 76 | 0.6989 | 0.75 | | 0.0306 | 77.0 | 77 | 0.7058 | 0.75 | | 0.0306 | 78.0 | 78 | 0.7122 | 0.75 | | 0.0306 | 79.0 | 79 | 0.7179 | 0.7188 | | 0.0175 | 80.0 | 80 | 0.7230 | 0.7188 | | 0.0175 | 81.0 | 81 | 0.7281 | 0.7188 | | 0.0175 | 82.0 | 82 | 0.7331 | 0.7188 | | 0.0175 | 83.0 | 83 | 0.7385 | 0.7188 | | 0.0175 | 84.0 | 84 | 0.7428 | 0.7188 | | 0.0175 | 85.0 | 85 | 0.7462 | 0.7188 | | 0.0175 | 86.0 | 86 | 0.7491 | 0.75 | | 0.0175 | 87.0 | 87 | 0.7520 | 0.75 | | 0.0175 | 88.0 | 88 | 0.7544 | 0.75 | | 0.0175 | 89.0 | 89 | 0.7566 | 0.75 | | 0.0111 | 90.0 | 90 | 0.7584 | 0.75 | | 0.0111 | 91.0 | 91 | 0.7604 | 0.75 | | 0.0111 | 92.0 | 92 | 0.7622 | 0.75 | | 0.0111 | 93.0 | 93 | 0.7641 | 0.75 | | 0.0111 | 94.0 | 94 | 0.7665 | 0.75 | | 0.0111 | 95.0 | 95 | 0.7693 | 0.75 | | 0.0111 | 96.0 | 96 | 0.7724 | 0.75 | | 0.0111 | 97.0 | 97 | 0.7757 | 0.75 | | 0.0111 | 98.0 | 98 | 0.7792 | 0.75 | | 0.0111 | 99.0 | 99 | 0.7828 | 0.75 | | 0.0078 | 100.0 | 100 | 0.7868 | 0.75 | | 0.0078 | 101.0 | 101 | 0.7911 | 0.75 | | 0.0078 | 102.0 | 102 | 0.7959 | 0.75 | | 0.0078 | 103.0 | 103 | 0.8010 | 0.75 | | 0.0078 | 104.0 | 104 | 0.8059 | 0.75 | | 0.0078 | 105.0 | 105 | 0.8106 | 0.75 | | 0.0078 | 106.0 | 106 | 0.8150 | 0.75 | | 0.0078 | 107.0 | 107 | 0.8193 | 0.75 | | 0.0078 | 108.0 | 108 | 0.8230 | 0.75 | | 0.0078 | 109.0 | 109 | 0.8263 | 0.75 | | 0.0061 | 110.0 | 110 | 0.8290 | 0.75 | | 0.0061 | 111.0 | 111 | 0.8312 | 0.75 | | 0.0061 | 112.0 | 112 | 0.8328 | 0.75 | | 0.0061 | 113.0 | 113 | 0.8339 | 0.75 | | 0.0061 | 114.0 | 114 | 0.8345 | 0.75 | | 0.0061 | 115.0 | 115 | 0.8348 | 0.75 | | 0.0061 | 116.0 | 116 | 0.8347 | 0.75 | | 0.0061 | 117.0 | 117 | 0.8338 | 0.75 | | 0.0061 | 118.0 | 118 | 0.8329 | 0.75 | | 0.0061 | 119.0 | 119 | 0.8322 | 0.75 | | 0.0048 | 120.0 | 120 | 0.8315 | 0.75 | | 0.0048 | 121.0 | 121 | 0.8308 | 0.75 | | 0.0048 | 122.0 | 122 | 0.8301 | 0.75 | | 0.0048 | 123.0 | 123 | 0.8296 | 0.75 | | 0.0048 | 124.0 | 124 | 0.8294 | 0.75 | | 0.0048 | 125.0 | 125 | 0.8296 | 0.75 | | 0.0048 | 126.0 | 126 | 0.8299 | 0.75 | | 0.0048 | 127.0 | 127 | 0.8302 | 0.75 | | 0.0048 | 128.0 | 128 | 0.8302 | 0.75 | | 0.0048 | 129.0 | 129 | 0.8304 | 0.75 | | 0.0039 | 130.0 | 130 | 0.8306 | 0.75 | | 0.0039 | 131.0 | 131 | 0.8305 | 0.75 | | 0.0039 | 132.0 | 132 | 0.8301 | 0.75 | | 0.0039 | 133.0 | 133 | 0.8296 | 0.7812 | | 0.0039 | 134.0 | 134 | 0.8292 | 0.7812 | | 0.0039 | 135.0 | 135 | 0.8283 | 0.7812 | | 0.0039 | 136.0 | 136 | 0.8272 | 0.7812 | | 0.0039 | 137.0 | 137 | 0.8259 | 0.7812 | | 0.0039 | 138.0 | 138 | 0.8247 | 0.7812 | | 0.0039 | 139.0 | 139 | 0.8237 | 0.75 | | 0.0032 | 140.0 | 140 | 0.8228 | 0.75 | | 0.0032 | 141.0 | 141 | 0.8222 | 0.75 | | 0.0032 | 142.0 | 142 | 0.8222 | 0.75 | | 0.0032 | 143.0 | 143 | 0.8220 | 0.75 | | 0.0032 | 144.0 | 144 | 0.8220 | 0.75 | | 0.0032 | 145.0 | 145 | 0.8218 | 0.75 | | 0.0032 | 146.0 | 146 | 0.8217 | 0.75 | | 0.0032 | 147.0 | 147 | 0.8218 | 0.75 | | 0.0032 | 148.0 | 148 | 0.8222 | 0.75 | | 0.0032 | 149.0 | 149 | 0.8228 | 0.75 | | 0.0028 | 150.0 | 150 | 0.8234 | 0.75 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
simonycl/best_model-yelp_polarity-16-13
simonycl
2023-08-02T04:11:59Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T23:47:24Z
--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-16-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_model-yelp_polarity-16-13 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3928 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.7228 | 0.5 | | No log | 2.0 | 2 | 0.7227 | 0.5 | | No log | 3.0 | 3 | 0.7227 | 0.5 | | No log | 4.0 | 4 | 0.7225 | 0.5 | | No log | 5.0 | 5 | 0.7224 | 0.5 | | No log | 6.0 | 6 | 0.7221 | 0.5 | | No log | 7.0 | 7 | 0.7219 | 0.5 | | No log | 8.0 | 8 | 0.7216 | 0.5 | | No log | 9.0 | 9 | 0.7213 | 0.5 | | 0.7034 | 10.0 | 10 | 0.7209 | 0.5 | | 0.7034 | 11.0 | 11 | 0.7205 | 0.5 | | 0.7034 | 12.0 | 12 | 0.7200 | 0.5 | | 0.7034 | 13.0 | 13 | 0.7195 | 0.5 | | 0.7034 | 14.0 | 14 | 0.7189 | 0.5 | | 0.7034 | 15.0 | 15 | 0.7183 | 0.5 | | 0.7034 | 16.0 | 16 | 0.7177 | 0.5 | | 0.7034 | 17.0 | 17 | 0.7170 | 0.5 | | 0.7034 | 18.0 | 18 | 0.7163 | 0.5 | | 0.7034 | 19.0 | 19 | 0.7156 | 0.5 | | 0.6925 | 20.0 | 20 | 0.7148 | 0.5 | | 0.6925 | 21.0 | 21 | 0.7140 | 0.5 | | 0.6925 | 22.0 | 22 | 0.7132 | 0.5 | | 0.6925 | 23.0 | 23 | 0.7123 | 0.5 | | 0.6925 | 24.0 | 24 | 0.7113 | 0.5 | | 0.6925 | 25.0 | 25 | 0.7104 | 0.5 | | 0.6925 | 26.0 | 26 | 0.7093 | 0.5 | | 0.6925 | 27.0 | 27 | 0.7082 | 0.5 | | 0.6925 | 28.0 | 28 | 0.7071 | 0.5 | | 0.6925 | 29.0 | 29 | 0.7059 | 0.5 | | 0.6581 | 30.0 | 30 | 0.7047 | 0.5 | | 0.6581 | 31.0 | 31 | 0.7034 | 0.5 | | 0.6581 | 32.0 | 32 | 0.7021 | 0.5 | | 0.6581 | 33.0 | 33 | 0.7007 | 0.5 | | 0.6581 | 34.0 | 34 | 0.6991 | 0.5 | | 0.6581 | 35.0 | 35 | 0.6975 | 0.5 | | 0.6581 | 36.0 | 36 | 0.6958 | 0.5 | | 0.6581 | 37.0 | 37 | 0.6941 | 0.5 | | 0.6581 | 38.0 | 38 | 0.6923 | 0.5 | | 0.6581 | 39.0 | 39 | 0.6904 | 0.5 | | 0.6325 | 40.0 | 40 | 0.6883 | 0.5 | | 0.6325 | 41.0 | 41 | 0.6862 | 0.5 | | 0.6325 | 42.0 | 42 | 0.6841 | 0.5 | | 0.6325 | 43.0 | 43 | 0.6818 | 0.5 | | 0.6325 | 44.0 | 44 | 0.6794 | 0.5 | | 0.6325 | 45.0 | 45 | 0.6770 | 0.5 | | 0.6325 | 46.0 | 46 | 0.6745 | 0.5312 | | 0.6325 | 47.0 | 47 | 0.6718 | 0.5312 | | 0.6325 | 48.0 | 48 | 0.6690 | 0.5312 | | 0.6325 | 49.0 | 49 | 0.6662 | 0.5625 | | 0.573 | 50.0 | 50 | 0.6633 | 0.5625 | | 0.573 | 51.0 | 51 | 0.6602 | 0.5625 | | 0.573 | 52.0 | 52 | 0.6571 | 0.5625 | | 0.573 | 53.0 | 53 | 0.6538 | 0.5625 | | 0.573 | 54.0 | 54 | 0.6504 | 0.5625 | | 0.573 | 55.0 | 55 | 0.6469 | 0.5625 | | 0.573 | 56.0 | 56 | 0.6435 | 0.5625 | | 0.573 | 57.0 | 57 | 0.6401 | 0.625 | | 0.573 | 58.0 | 58 | 0.6368 | 0.625 | | 0.573 | 59.0 | 59 | 0.6336 | 0.6562 | | 0.5136 | 60.0 | 60 | 0.6305 | 0.6875 | | 0.5136 | 61.0 | 61 | 0.6273 | 0.6562 | | 0.5136 | 62.0 | 62 | 0.6240 | 0.6562 | | 0.5136 | 63.0 | 63 | 0.6206 | 0.6562 | | 0.5136 | 64.0 | 64 | 0.6172 | 0.6875 | | 0.5136 | 65.0 | 65 | 0.6138 | 0.6875 | | 0.5136 | 66.0 | 66 | 0.6105 | 0.6875 | | 0.5136 | 67.0 | 67 | 0.6072 | 0.6875 | | 0.5136 | 68.0 | 68 | 0.6038 | 0.6875 | | 0.5136 | 69.0 | 69 | 0.6004 | 0.6875 | | 0.4388 | 70.0 | 70 | 0.5968 | 0.6875 | | 0.4388 | 71.0 | 71 | 0.5931 | 0.7188 | | 0.4388 | 72.0 | 72 | 0.5893 | 0.75 | | 0.4388 | 73.0 | 73 | 0.5854 | 0.75 | | 0.4388 | 74.0 | 74 | 0.5814 | 0.75 | | 0.4388 | 75.0 | 75 | 0.5773 | 0.75 | | 0.4388 | 76.0 | 76 | 0.5732 | 0.75 | | 0.4388 | 77.0 | 77 | 0.5695 | 0.7812 | | 0.4388 | 78.0 | 78 | 0.5660 | 0.7812 | | 0.4388 | 79.0 | 79 | 0.5626 | 0.7812 | | 0.3545 | 80.0 | 80 | 0.5590 | 0.7812 | | 0.3545 | 81.0 | 81 | 0.5553 | 0.7812 | | 0.3545 | 82.0 | 82 | 0.5514 | 0.8125 | | 0.3545 | 83.0 | 83 | 0.5476 | 0.7812 | | 0.3545 | 84.0 | 84 | 0.5437 | 0.7812 | | 0.3545 | 85.0 | 85 | 0.5396 | 0.7812 | | 0.3545 | 86.0 | 86 | 0.5358 | 0.7812 | | 0.3545 | 87.0 | 87 | 0.5316 | 0.7812 | | 0.3545 | 88.0 | 88 | 0.5277 | 0.7812 | | 0.3545 | 89.0 | 89 | 0.5238 | 0.7812 | | 0.2725 | 90.0 | 90 | 0.5197 | 0.7812 | | 0.2725 | 91.0 | 91 | 0.5159 | 0.7812 | | 0.2725 | 92.0 | 92 | 0.5120 | 0.7812 | | 0.2725 | 93.0 | 93 | 0.5079 | 0.7812 | | 0.2725 | 94.0 | 94 | 0.5034 | 0.7812 | | 0.2725 | 95.0 | 95 | 0.4983 | 0.7812 | | 0.2725 | 96.0 | 96 | 0.4934 | 0.7812 | | 0.2725 | 97.0 | 97 | 0.4885 | 0.7812 | | 0.2725 | 98.0 | 98 | 0.4835 | 0.7812 | | 0.2725 | 99.0 | 99 | 0.4790 | 0.8125 | | 0.199 | 100.0 | 100 | 0.4751 | 0.8125 | | 0.199 | 101.0 | 101 | 0.4714 | 0.8125 | | 0.199 | 102.0 | 102 | 0.4677 | 0.8125 | | 0.199 | 103.0 | 103 | 0.4634 | 0.8438 | | 0.199 | 104.0 | 104 | 0.4585 | 0.8438 | | 0.199 | 105.0 | 105 | 0.4532 | 0.875 | | 0.199 | 106.0 | 106 | 0.4484 | 0.875 | | 0.199 | 107.0 | 107 | 0.4439 | 0.875 | | 0.199 | 108.0 | 108 | 0.4400 | 0.875 | | 0.199 | 109.0 | 109 | 0.4363 | 0.875 | | 0.1406 | 110.0 | 110 | 0.4329 | 0.875 | | 0.1406 | 111.0 | 111 | 0.4296 | 0.875 | | 0.1406 | 112.0 | 112 | 0.4259 | 0.875 | | 0.1406 | 113.0 | 113 | 0.4219 | 0.8438 | | 0.1406 | 114.0 | 114 | 0.4176 | 0.8438 | | 0.1406 | 115.0 | 115 | 0.4138 | 0.8438 | | 0.1406 | 116.0 | 116 | 0.4108 | 0.8438 | | 0.1406 | 117.0 | 117 | 0.4077 | 0.8438 | | 0.1406 | 118.0 | 118 | 0.4042 | 0.8438 | | 0.1406 | 119.0 | 119 | 0.4003 | 0.8438 | | 0.0921 | 120.0 | 120 | 0.3968 | 0.8438 | | 0.0921 | 121.0 | 121 | 0.3936 | 0.8438 | | 0.0921 | 122.0 | 122 | 0.3905 | 0.8438 | | 0.0921 | 123.0 | 123 | 0.3878 | 0.8438 | | 0.0921 | 124.0 | 124 | 0.3851 | 0.8438 | | 0.0921 | 125.0 | 125 | 0.3823 | 0.8438 | | 0.0921 | 126.0 | 126 | 0.3802 | 0.8438 | | 0.0921 | 127.0 | 127 | 0.3786 | 0.8438 | | 0.0921 | 128.0 | 128 | 0.3769 | 0.8125 | | 0.0921 | 129.0 | 129 | 0.3748 | 0.8125 | | 0.0543 | 130.0 | 130 | 0.3721 | 0.8125 | | 0.0543 | 131.0 | 131 | 0.3700 | 0.8125 | | 0.0543 | 132.0 | 132 | 0.3685 | 0.8125 | | 0.0543 | 133.0 | 133 | 0.3687 | 0.8125 | | 0.0543 | 134.0 | 134 | 0.3699 | 0.8125 | | 0.0543 | 135.0 | 135 | 0.3711 | 0.8125 | | 0.0543 | 136.0 | 136 | 0.3719 | 0.8125 | | 0.0543 | 137.0 | 137 | 0.3716 | 0.8125 | | 0.0543 | 138.0 | 138 | 0.3706 | 0.8438 | | 0.0543 | 139.0 | 139 | 0.3699 | 0.8438 | | 0.0313 | 140.0 | 140 | 0.3692 | 0.875 | | 0.0313 | 141.0 | 141 | 0.3690 | 0.875 | | 0.0313 | 142.0 | 142 | 0.3690 | 0.875 | | 0.0313 | 143.0 | 143 | 0.3698 | 0.875 | | 0.0313 | 144.0 | 144 | 0.3715 | 0.875 | | 0.0313 | 145.0 | 145 | 0.3737 | 0.875 | | 0.0313 | 146.0 | 146 | 0.3766 | 0.875 | | 0.0313 | 147.0 | 147 | 0.3798 | 0.875 | | 0.0313 | 148.0 | 148 | 0.3838 | 0.875 | | 0.0313 | 149.0 | 149 | 0.3884 | 0.875 | | 0.0183 | 150.0 | 150 | 0.3928 | 0.875 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
joeljoseph1599/layoutlm-funsd
joeljoseph1599
2023-08-02T03:58:36Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "dataset:funsd", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T11:32:11Z
--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6510 - Answer: {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809} - Header: {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119} - Question: {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065} - Overall Precision: 0.7090 - Overall Recall: 0.7737 - Overall F1: 0.7399 - Overall Accuracy: 0.8032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.7428 | 1.0 | 10 | 1.5458 | {'precision': 0.030690537084398978, 'recall': 0.04449938195302843, 'f1': 0.036326942482341064, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18740157480314962, 'recall': 0.22347417840375586, 'f1': 0.2038543897216274, 'number': 1065} | 0.1122 | 0.1375 | 0.1235 | 0.4326 | | 1.3991 | 2.0 | 20 | 1.2229 | {'precision': 0.1326676176890157, 'recall': 0.11495673671199011, 'f1': 0.12317880794701987, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5, 'recall': 0.5352112676056338, 'f1': 0.5170068027210885, 'number': 1065} | 0.3597 | 0.3327 | 0.3457 | 0.5731 | | 1.0911 | 3.0 | 30 | 0.9391 | {'precision': 0.47231638418079097, 'recall': 0.5166872682323856, 'f1': 0.4935064935064935, 'number': 809} | {'precision': 0.058823529411764705, 'recall': 0.01680672268907563, 'f1': 0.026143790849673203, 'number': 119} | {'precision': 0.6528268551236749, 'recall': 0.6938967136150235, 'f1': 0.6727355484751935, 'number': 1065} | 0.5651 | 0.5815 | 0.5732 | 0.7183 | | 0.8461 | 4.0 | 40 | 0.7784 | {'precision': 0.6047717842323651, 'recall': 0.7206427688504327, 'f1': 0.6576424139875917, 'number': 809} | {'precision': 0.15384615384615385, 'recall': 0.06722689075630252, 'f1': 0.0935672514619883, 'number': 119} | {'precision': 0.6666666666666666, 'recall': 0.7455399061032864, 'f1': 0.7039007092198581, 'number': 1065} | 0.6275 | 0.6949 | 0.6595 | 0.7638 | | 0.6966 | 5.0 | 50 | 0.7307 | {'precision': 0.6315228966986155, 'recall': 0.7330037082818294, 'f1': 0.6784897025171623, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.13445378151260504, 'f1': 0.1641025641025641, 'number': 119} | {'precision': 0.6925064599483204, 'recall': 0.7549295774647887, 'f1': 0.7223719676549865, 'number': 1065} | 0.6494 | 0.7090 | 0.6779 | 0.7703 | | 0.6037 | 6.0 | 60 | 0.6834 | {'precision': 0.657922350472193, 'recall': 0.7750309023485785, 'f1': 0.7116912599318955, 'number': 809} | {'precision': 0.3150684931506849, 'recall': 0.19327731092436976, 'f1': 0.23958333333333334, 'number': 119} | {'precision': 0.7021103896103896, 'recall': 0.812206572769953, 'f1': 0.7531562908141053, 'number': 1065} | 0.6709 | 0.7602 | 0.7128 | 0.7915 | | 0.5421 | 7.0 | 70 | 0.6692 | {'precision': 0.671306209850107, 'recall': 0.7750309023485785, 'f1': 0.7194492254733217, 'number': 809} | {'precision': 0.2823529411764706, 'recall': 0.20168067226890757, 'f1': 0.23529411764705882, 'number': 119} | {'precision': 0.7227467811158799, 'recall': 0.7906103286384977, 'f1': 0.7551569506726458, 'number': 1065} | 0.6836 | 0.7491 | 0.7149 | 0.7931 | | 0.5085 | 8.0 | 80 | 0.6549 | {'precision': 0.6901874310915105, 'recall': 0.7737948084054388, 'f1': 0.7296037296037297, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119} | {'precision': 0.7408637873754153, 'recall': 0.8375586854460094, 'f1': 0.7862494490965183, 'number': 1065} | 0.7028 | 0.7747 | 0.7370 | 0.7982 | | 0.4692 | 9.0 | 90 | 0.6517 | {'precision': 0.6973684210526315, 'recall': 0.7861557478368356, 'f1': 0.7391051714119697, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} | {'precision': 0.7534364261168385, 'recall': 0.8234741784037559, 'f1': 0.7868999551368328, 'number': 1065} | 0.7100 | 0.7727 | 0.7400 | 0.8025 | | 0.4538 | 10.0 | 100 | 0.6510 | {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809} | {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119} | {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065} | 0.7090 | 0.7737 | 0.7399 | 0.8032 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
jafarabdurrohman/IndoBert-large-ler
jafarabdurrohman
2023-08-02T03:55:11Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T05:20:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: IndoBert-large-ler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndoBert-large-ler This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0280 - Overall Precision: 0.8514 - Overall Recall: 0.8391 - Overall F1: 0.8452 - Overall Accuracy: 0.9965 - Jenis amar F1: 0.9373 - Jenis dakwaan F1: 0.8619 - Jenis perkara F1: 0.8023 - Melanggar uu (dakwaan) F1: 0.6952 - Melanggar uu (pertimbangan hukum) F1: 0.5805 - Melanggar uu (tuntutan) F1: 0.8052 - Nama hakim anggota F1: 0.9106 - Nama hakim ketua F1: 0.8938 - Nama jaksa F1: 0.9034 - Nama panitera F1: 0.9078 - Nama pengacara F1: 0.7839 - Nama pengadilan F1: 0.9964 - Nama saksi F1: 0.8391 - Nama terdakwa F1: 0.8208 - Nomor putusan F1: 0.9346 - Putusan hukuman F1: 0.7023 - Tanggal kejadian F1: 0.4252 - Tanggal putusan F1: 0.9267 - Tingkat kasus F1: 0.9725 - Tuntutan hukuman F1: 0.8329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - max_sequence_length: 128 - stride: 0% - decay_rate: 0.01 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Jenis amar F1 | Jenis dakwaan F1 | Jenis perkara F1 | Melanggar uu (dakwaan) F1 | Melanggar uu (pertimbangan hukum) F1 | Melanggar uu (tuntutan) F1 | Nama hakim anggota F1 | Nama hakim ketua F1 | Nama jaksa F1 | Nama panitera F1 | Nama pengacara F1 | Nama pengadilan F1 | Nama saksi F1 | Nama terdakwa F1 | Nomor putusan F1 | Putusan hukuman F1 | Tanggal kejadian F1 | Tanggal putusan F1 | Tingkat kasus F1 | Tuntutan hukuman F1 | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:----------------:|:----------------:|:-------------------------:|:------------------------------------:|:--------------------------:|:---------------------:|:-------------------:|:-------------:|:----------------:|:-----------------:|:------------------:|:-------------:|:----------------:|:----------------:|:------------------:|:-------------------:|:------------------:|:----------------:|:-------------------:| | 0.0166 | 1.0 | 2748 | 0.0249 | 0.7758 | 0.7067 | 0.7396 | 0.9936 | 0.8423 | 0.1685 | 0.5932 | 0.5248 | 0.5367 | 0.6792 | 0.8378 | 0.8500 | 0.8651 | 0.8257 | 0.1235 | 0.9474 | 0.7851 | 0.8169 | 0.8446 | 0.5196 | 0.3771 | 0.6203 | 0.8691 | 0.4773 | | 0.0142 | 2.0 | 5496 | 0.0174 | 0.7433 | 0.7866 | 0.7643 | 0.9953 | 0.8768 | 0.7126 | 0.7329 | 0.6098 | 0.5700 | 0.7270 | 0.6293 | 0.3585 | 0.8772 | 0.8900 | 0.6534 | 0.9964 | 0.8461 | 0.8220 | 0.9333 | 0.5072 | 0.3842 | 0.6283 | 0.9580 | 0.7159 | | 0.0107 | 3.0 | 8244 | 0.0209 | 0.7960 | 0.8236 | 0.8096 | 0.9948 | 0.8627 | 0.7920 | 0.4613 | 0.6199 | 0.5762 | 0.6600 | 0.8954 | 0.8941 | 0.8941 | 0.8980 | 0.6855 | 0.9856 | 0.8192 | 0.7853 | 0.9395 | 0.6171 | 0.4233 | 0.9384 | 0.9708 | 0.7573 | | 0.0084 | 4.0 | 10992 | 0.0148 | 0.8054 | 0.8351 | 0.8200 | 0.9962 | 0.8912 | 0.7805 | 0.7989 | 0.6511 | 0.5696 | 0.7557 | 0.88 | 0.8964 | 0.8900 | 0.8820 | 0.4533 | 0.9821 | 0.8314 | 0.7595 | 0.9331 | 0.5484 | 0.4451 | 0.8849 | 0.9668 | 0.7673 | | 0.0069 | 5.0 | 13740 | 0.0155 | 0.8370 | 0.8155 | 0.8261 | 0.9963 | 0.9191 | 0.8512 | 0.7623 | 0.6756 | 0.5732 | 0.7616 | 0.8632 | 0.8410 | 0.8791 | 0.8608 | 0.6745 | 0.9910 | 0.8442 | 0.7191 | 0.9303 | 0.6130 | 0.4351 | 0.9225 | 0.9761 | 0.7955 | | 0.0059 | 6.0 | 16488 | 0.0175 | 0.8275 | 0.8302 | 0.8288 | 0.9960 | 0.9276 | 0.8049 | 0.7938 | 0.6219 | 0.5088 | 0.7215 | 0.8839 | 0.8760 | 0.8831 | 0.9057 | 0.7259 | 0.9910 | 0.8389 | 0.8276 | 0.9410 | 0.5837 | 0.3982 | 0.9328 | 0.9779 | 0.8022 | | 0.0052 | 7.0 | 19236 | 0.0171 | 0.8260 | 0.8216 | 0.8238 | 0.9963 | 0.9171 | 0.8367 | 0.7810 | 0.6305 | 0.5604 | 0.7232 | 0.8284 | 0.8767 | 0.8149 | 0.8513 | 0.6970 | 0.9964 | 0.8430 | 0.8277 | 0.9390 | 0.5832 | 0.4070 | 0.9403 | 0.9761 | 0.7783 | | 0.1431 | 8.0 | 21984 | 0.0192 | 0.8253 | 0.8308 | 0.8281 | 0.9961 | 0.8596 | 0.8175 | 0.7848 | 0.6045 | 0.5592 | 0.6472 | 0.8952 | 0.88 | 0.8824 | 0.8912 | 0.7492 | 0.9731 | 0.8562 | 0.8538 | 0.9379 | 0.5667 | 0.3996 | 0.9265 | 0.9761 | 0.7778 | | 0.0036 | 9.0 | 24732 | 0.0164 | 0.8209 | 0.8462 | 0.8334 | 0.9961 | 0.9193 | 0.8456 | 0.8104 | 0.6787 | 0.5545 | 0.7774 | 0.9022 | 0.8822 | 0.8929 | 0.9006 | 0.7464 | 0.9910 | 0.8549 | 0.8479 | 0.9415 | 0.6494 | 0.3990 | 0.9149 | 0.9798 | 0.6811 | | 0.0032 | 10.0 | 27480 | 0.0194 | 0.8392 | 0.8437 | 0.8414 | 0.9964 | 0.9257 | 0.8246 | 0.8007 | 0.6742 | 0.5632 | 0.7942 | 0.9032 | 0.8925 | 0.8934 | 0.8966 | 0.7579 | 0.9964 | 0.8432 | 0.8340 | 0.9445 | 0.6418 | 0.4387 | 0.9474 | 0.9761 | 0.8386 | | 0.0032 | 11.0 | 30228 | 0.0216 | 0.8442 | 0.8332 | 0.8387 | 0.9965 | 0.9040 | 0.7774 | 0.8063 | 0.6756 | 0.5577 | 0.7815 | 0.9117 | 0.8760 | 0.9000 | 0.9019 | 0.7518 | 0.9856 | 0.8491 | 0.8318 | 0.9313 | 0.6316 | 0.4012 | 0.9286 | 0.9725 | 0.8297 | | 0.0022 | 12.0 | 32976 | 0.0224 | 0.8353 | 0.8356 | 0.8354 | 0.9964 | 0.9298 | 0.8646 | 0.7923 | 0.6704 | 0.5808 | 0.7862 | 0.9123 | 0.8811 | 0.8913 | 0.8894 | 0.7801 | 0.9964 | 0.8345 | 0.7984 | 0.9282 | 0.6599 | 0.4072 | 0.9403 | 0.9688 | 0.8069 | | 0.0013 | 13.0 | 35724 | 0.0229 | 0.8367 | 0.8435 | 0.8401 | 0.9963 | 0.9308 | 0.8629 | 0.7861 | 0.6681 | 0.5662 | 0.8152 | 0.9166 | 0.8932 | 0.8986 | 0.9019 | 0.7917 | 0.9875 | 0.8378 | 0.7869 | 0.9381 | 0.6543 | 0.4279 | 0.9242 | 0.9744 | 0.8398 | | 0.0007 | 14.0 | 38472 | 0.0262 | 0.8474 | 0.8372 | 0.8423 | 0.9965 | 0.9373 | 0.8619 | 0.7910 | 0.6689 | 0.5752 | 0.7948 | 0.9111 | 0.8897 | 0.9038 | 0.9103 | 0.7758 | 0.9964 | 0.8438 | 0.8213 | 0.9333 | 0.6619 | 0.4290 | 0.9288 | 0.9670 | 0.8046 | | 0.0005 | 15.0 | 41220 | 0.0270 | 0.8464 | 0.8400 | 0.8432 | 0.9964 | 0.9357 | 0.8609 | 0.7948 | 0.6794 | 0.5756 | 0.7987 | 0.9067 | 0.8915 | 0.9054 | 0.9076 | 0.7692 | 0.9964 | 0.8400 | 0.8275 | 0.9356 | 0.7157 | 0.4253 | 0.9217 | 0.9744 | 0.8161 | | 0.0004 | 16.0 | 43968 | 0.0280 | 0.8514 | 0.8391 | 0.8452 | 0.9965 | 0.9373 | 0.8619 | 0.8023 | 0.6952 | 0.5805 | 0.8052 | 0.9106 | 0.8938 | 0.9034 | 0.9078 | 0.7839 | 0.9964 | 0.8391 | 0.8208 | 0.9346 | 0.7023 | 0.4252 | 0.9267 | 0.9725 | 0.8329 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
jafarabdurrohman/IndoBert-base-ler
jafarabdurrohman
2023-08-02T03:53:49Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T04:51:30Z
--- license: mit tags: - generated_from_trainer model-index: - name: IndoBert-base-ler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndoBert-base-ler This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0348 - Overall Precision: 0.8392 - Overall Recall: 0.8292 - Overall F1: 0.8342 - Overall Accuracy: 0.9961 - Jenis amar F1: 0.9381 - Jenis dakwaan F1: 0.8202 - Jenis perkara F1: 0.7895 - Melanggar uu (dakwaan) F1: 0.6704 - Melanggar uu (pertimbangan hukum) F1: 0.5885 - Melanggar uu (tuntutan) F1: 0.7783 - Nama hakim anggota F1: 0.9045 - Nama hakim ketua F1: 0.8854 - Nama jaksa F1: 0.8905 - Nama panitera F1: 0.9056 - Nama pengacara F1: 0.8288 - Nama pengadilan F1: 0.9964 - Nama saksi F1: 0.8385 - Nama terdakwa F1: 0.8264 - Nomor putusan F1: 0.9359 - Putusan hukuman F1: 0.6659 - Tanggal kejadian F1: 0.3870 - Tanggal putusan F1: 0.9430 - Tingkat kasus F1: 0.9817 - Tuntutan hukuman F1: 0.8348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - max_sequence_length: 128 - stride: 25% (32) - decay_rate: 0.01 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Jenis amar F1 | Jenis dakwaan F1 | Jenis perkara F1 | Melanggar uu (dakwaan) F1 | Melanggar uu (pertimbangan hukum) F1 | Melanggar uu (tuntutan) F1 | Nama hakim anggota F1 | Nama hakim ketua F1 | Nama jaksa F1 | Nama panitera F1 | Nama pengacara F1 | Nama pengadilan F1 | Nama saksi F1 | Nama terdakwa F1 | Nomor putusan F1 | Putusan hukuman F1 | Tanggal kejadian F1 | Tanggal putusan F1 | Tingkat kasus F1 | Tuntutan hukuman F1 | |:-------------:|:-----:|:------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:----------------:|:----------------:|:-------------------------:|:------------------------------------:|:--------------------------:|:---------------------:|:-------------------:|:-------------:|:----------------:|:-----------------:|:------------------:|:-------------:|:----------------:|:----------------:|:------------------:|:-------------------:|:------------------:|:----------------:|:-------------------:| | 0.0214 | 1.0 | 7322 | 0.0174 | 0.7920 | 0.7699 | 0.7808 | 0.9956 | 0.8514 | 0.6352 | 0.6728 | 0.5940 | 0.5044 | 0.7329 | 0.8602 | 0.7357 | 0.8160 | 0.8355 | 0.6585 | 0.9661 | 0.8130 | 0.8053 | 0.9248 | 0.5354 | 0.3278 | 0.9372 | 0.9173 | 0.7353 | | 0.0127 | 2.0 | 14644 | 0.0162 | 0.7760 | 0.7960 | 0.7859 | 0.9955 | 0.8982 | 0.6809 | 0.7038 | 0.5598 | 0.4747 | 0.6963 | 0.8733 | 0.8681 | 0.8604 | 0.8858 | 0.7114 | 0.9803 | 0.7601 | 0.8242 | 0.9318 | 0.6187 | 0.3976 | 0.9351 | 0.9560 | 0.7015 | | 0.0117 | 3.0 | 21966 | 0.0172 | 0.7830 | 0.7701 | 0.7765 | 0.9953 | 0.8487 | 0.6657 | 0.7051 | 0.5092 | 0.5336 | 0.7518 | 0.8460 | 0.8093 | 0.7043 | 0.6803 | 0.7242 | 0.9802 | 0.8191 | 0.8039 | 0.9346 | 0.5290 | 0.3797 | 0.9312 | 0.9564 | 0.7534 | | 0.0088 | 4.0 | 29288 | 0.0175 | 0.8086 | 0.8019 | 0.8052 | 0.9960 | 0.9093 | 0.7876 | 0.7571 | 0.6362 | 0.5500 | 0.7384 | 0.8832 | 0.8440 | 0.7949 | 0.8913 | 0.6986 | 0.9874 | 0.8193 | 0.8378 | 0.9089 | 0.5590 | 0.3968 | 0.9534 | 0.9640 | 0.7724 | | 0.0092 | 5.0 | 36610 | 0.0171 | 0.8070 | 0.8035 | 0.8053 | 0.9958 | 0.8686 | 0.6188 | 0.7521 | 0.5808 | 0.5625 | 0.7645 | 0.8825 | 0.8168 | 0.8656 | 0.8557 | 0.7155 | 0.9803 | 0.8242 | 0.8132 | 0.9323 | 0.6011 | 0.3756 | 0.9211 | 0.9653 | 0.7570 | | 0.0057 | 6.0 | 43932 | 0.0184 | 0.8157 | 0.8077 | 0.8117 | 0.9958 | 0.9050 | 0.8299 | 0.7505 | 0.6424 | 0.4908 | 0.7571 | 0.8822 | 0.8740 | 0.8625 | 0.8970 | 0.7475 | 0.9802 | 0.8158 | 0.8327 | 0.9389 | 0.5801 | 0.3892 | 0.944 | 0.9635 | 0.8073 | | 0.0057 | 7.0 | 51254 | 0.0203 | 0.7988 | 0.8277 | 0.8130 | 0.9959 | 0.9273 | 0.7900 | 0.7673 | 0.5932 | 0.5577 | 0.7811 | 0.8863 | 0.8553 | 0.8743 | 0.8945 | 0.7176 | 0.9681 | 0.8316 | 0.8231 | 0.9374 | 0.5983 | 0.4006 | 0.9110 | 0.9620 | 0.8203 | | 0.0054 | 8.0 | 58576 | 0.0209 | 0.8263 | 0.8058 | 0.8159 | 0.9959 | 0.8996 | 0.8097 | 0.7661 | 0.6445 | 0.5613 | 0.7778 | 0.9079 | 0.7732 | 0.8783 | 0.8968 | 0.7080 | 0.9910 | 0.8227 | 0.8355 | 0.9401 | 0.5395 | 0.3542 | 0.9279 | 0.9706 | 0.7937 | | 0.003 | 9.0 | 65898 | 0.0244 | 0.8255 | 0.8096 | 0.8175 | 0.9956 | 0.9277 | 0.7944 | 0.7146 | 0.6556 | 0.5502 | 0.7842 | 0.8564 | 0.8798 | 0.8813 | 0.8955 | 0.7547 | 0.9857 | 0.8221 | 0.8270 | 0.9399 | 0.6681 | 0.3873 | 0.9468 | 0.9654 | 0.7912 | | 0.0031 | 10.0 | 73220 | 0.0256 | 0.8297 | 0.8206 | 0.8251 | 0.9959 | 0.9103 | 0.8239 | 0.7598 | 0.6639 | 0.5665 | 0.7609 | 0.9008 | 0.8765 | 0.8867 | 0.9002 | 0.7590 | 0.9982 | 0.8359 | 0.8322 | 0.9409 | 0.5965 | 0.3774 | 0.9402 | 0.9635 | 0.8070 | | 0.0021 | 11.0 | 80542 | 0.0259 | 0.8365 | 0.8238 | 0.8301 | 0.9960 | 0.9191 | 0.8383 | 0.7966 | 0.6644 | 0.5874 | 0.7530 | 0.8944 | 0.8675 | 0.8878 | 0.9041 | 0.7500 | 0.9964 | 0.8319 | 0.8307 | 0.9332 | 0.6536 | 0.3909 | 0.9316 | 0.9670 | 0.8496 | | 0.0015 | 12.0 | 87864 | 0.0267 | 0.8344 | 0.8204 | 0.8273 | 0.9960 | 0.9270 | 0.8141 | 0.7881 | 0.6816 | 0.5730 | 0.7855 | 0.8964 | 0.8745 | 0.8926 | 0.8913 | 0.7805 | 0.9946 | 0.8291 | 0.8275 | 0.9332 | 0.6376 | 0.3753 | 0.9273 | 0.9761 | 0.8035 | | 0.001 | 13.0 | 95186 | 0.0297 | 0.8316 | 0.8201 | 0.8258 | 0.9960 | 0.9339 | 0.8373 | 0.7351 | 0.6392 | 0.5955 | 0.7816 | 0.9022 | 0.8763 | 0.8968 | 0.8861 | 0.7826 | 0.9964 | 0.8408 | 0.8296 | 0.9223 | 0.6689 | 0.3906 | 0.9404 | 0.9762 | 0.8070 | | 0.0007 | 14.0 | 102508 | 0.0317 | 0.8299 | 0.8211 | 0.8254 | 0.9959 | 0.9387 | 0.8462 | 0.7520 | 0.6820 | 0.5964 | 0.7791 | 0.9010 | 0.8770 | 0.8932 | 0.9039 | 0.8142 | 0.9964 | 0.8325 | 0.8262 | 0.9171 | 0.6637 | 0.3807 | 0.9316 | 0.9799 | 0.8450 | | 0.0003 | 15.0 | 109830 | 0.0334 | 0.8340 | 0.8274 | 0.8307 | 0.9960 | 0.9368 | 0.8222 | 0.7744 | 0.6737 | 0.5977 | 0.7877 | 0.9053 | 0.8817 | 0.8745 | 0.9038 | 0.8083 | 0.9964 | 0.8345 | 0.8335 | 0.9311 | 0.6681 | 0.3793 | 0.9406 | 0.9762 | 0.8436 | | 0.0001 | 16.0 | 117152 | 0.0348 | 0.8392 | 0.8292 | 0.8342 | 0.9961 | 0.9381 | 0.8202 | 0.7895 | 0.6704 | 0.5885 | 0.7783 | 0.9045 | 0.8854 | 0.8905 | 0.9056 | 0.8288 | 0.9964 | 0.8385 | 0.8264 | 0.9359 | 0.6659 | 0.3870 | 0.9430 | 0.9817 | 0.8348 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
jafarabdurrohman/indonesian-roberta-base-ler
jafarabdurrohman
2023-08-02T03:52:37Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-08T03:32:01Z
--- license: mit tags: - generated_from_trainer model-index: - name: indonesian-roberta-base-ler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indonesian-roberta-base-ler This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0291 - Overall Precision: 0.9294 - Overall Recall: 0.9191 - Overall F1: 0.9242 - Overall Accuracy: 0.9968 - Jenis amar F1: 0.9379 - Jenis dakwaan F1: 0.8644 - Jenis perkara F1: 0.9096 - Melanggar uu (dakwaan) F1: 0.8062 - Melanggar uu (pertimbangan hukum) F1: 0.6441 - Melanggar uu (tuntutan) F1: 0.9248 - Nama hakim anggota F1: 0.9640 - Nama hakim ketua F1: 0.9741 - Nama jaksa F1: 0.9614 - Nama panitera F1: 0.9756 - Nama pengacara F1: 0.9000 - Nama pengadilan F1: 0.9982 - Nama saksi F1: 0.9386 - Nama terdakwa F1: 0.9786 - Nomor putusan F1: 0.9963 - Putusan hukuman F1: 0.9433 - Tanggal kejadian F1: 0.3988 - Tanggal putusan F1: 0.9680 - Tingkat kasus F1: 0.9853 - Tuntutan hukuman F1: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - max_sequence_length: 128 - stride: 0% - decay_rate: 0.01 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Jenis amar F1 | Jenis dakwaan F1 | Jenis perkara F1 | Melanggar uu (dakwaan) F1 | Melanggar uu (pertimbangan hukum) F1 | Melanggar uu (tuntutan) F1 | Nama hakim anggota F1 | Nama hakim ketua F1 | Nama jaksa F1 | Nama panitera F1 | Nama pengacara F1 | Nama pengadilan F1 | Nama saksi F1 | Nama terdakwa F1 | Nomor putusan F1 | Putusan hukuman F1 | Tanggal kejadian F1 | Tanggal putusan F1 | Tingkat kasus F1 | Tuntutan hukuman F1 | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:----------------:|:----------------:|:-------------------------:|:------------------------------------:|:--------------------------:|:---------------------:|:-------------------:|:-------------:|:----------------:|:-----------------:|:------------------:|:-------------:|:----------------:|:----------------:|:------------------:|:-------------------:|:------------------:|:----------------:|:-------------------:| | 0.0204 | 1.0 | 5641 | 0.0163 | 0.8647 | 0.8564 | 0.8605 | 0.9960 | 0.8723 | 0.5028 | 0.7307 | 0.6945 | 0.5383 | 0.8472 | 0.9192 | 0.9389 | 0.9086 | 0.9449 | 0.7881 | 0.9821 | 0.8989 | 0.9423 | 0.9530 | 0.7655 | 0.3135 | 0.9630 | 0.9575 | 0.7803 | | 0.0133 | 2.0 | 11282 | 0.0193 | 0.8305 | 0.8274 | 0.8289 | 0.9945 | 0.8316 | 0.6958 | 0.6978 | 0.6186 | 0.3940 | 0.8116 | 0.8620 | 0.8495 | 0.8338 | 0.8849 | 0.5220 | 0.9690 | 0.9036 | 0.9532 | 0.9927 | 0.1196 | 0.3154 | 0.9290 | 0.8864 | 0.6835 | | 0.0099 | 3.0 | 16923 | 0.0163 | 0.8455 | 0.8801 | 0.8624 | 0.9960 | 0.9 | 0.7671 | 0.7539 | 0.5686 | 0.4050 | 0.4949 | 0.9267 | 0.9168 | 0.9281 | 0.9353 | 0.7831 | 0.9910 | 0.8946 | 0.9722 | 0.9895 | 0.8827 | 0.3423 | 0.9474 | 0.9610 | 0.8459 | | 0.0079 | 4.0 | 22564 | 0.0164 | 0.8627 | 0.9019 | 0.8819 | 0.9958 | 0.9022 | 0.7602 | 0.7336 | 0.7157 | 0.5674 | 0.8599 | 0.9550 | 0.9515 | 0.9631 | 0.9695 | 0.8184 | 0.9679 | 0.9131 | 0.9780 | 0.9963 | 0.8650 | 0.3234 | 0.9564 | 0.9722 | 0.8262 | | 0.0059 | 5.0 | 28205 | 0.0179 | 0.9157 | 0.8947 | 0.9050 | 0.9968 | 0.9017 | 0.7932 | 0.8425 | 0.7648 | 0.5989 | 0.8992 | 0.9531 | 0.9373 | 0.9560 | 0.9660 | 0.8232 | 0.9784 | 0.9136 | 0.9642 | 0.9898 | 0.9051 | 0.3933 | 0.9645 | 0.9630 | 0.8470 | | 0.0052 | 6.0 | 33846 | 0.0183 | 0.8523 | 0.8960 | 0.8736 | 0.9960 | 0.8923 | 0.8015 | 0.8443 | 0.7440 | 0.5949 | 0.8528 | 0.9339 | 0.8898 | 0.9348 | 0.9620 | 0.8814 | 1.0 | 0.9156 | 0.9613 | 0.9936 | 0.8604 | 0.2037 | 0.8600 | 0.9646 | 0.8483 | | 0.005 | 7.0 | 39487 | 0.0183 | 0.8901 | 0.9073 | 0.8986 | 0.9965 | 0.9150 | 0.7942 | 0.8355 | 0.7872 | 0.6258 | 0.8641 | 0.9514 | 0.9573 | 0.9665 | 0.9676 | 0.8746 | 0.9964 | 0.9223 | 0.9680 | 0.9945 | 0.8970 | 0.3249 | 0.9354 | 0.9759 | 0.8407 | | 0.0039 | 8.0 | 45128 | 0.0197 | 0.8915 | 0.9016 | 0.8965 | 0.9962 | 0.9125 | 0.7638 | 0.7435 | 0.7406 | 0.5828 | 0.8394 | 0.9562 | 0.9683 | 0.9456 | 0.9702 | 0.7469 | 1.0 | 0.8969 | 0.9595 | 0.9969 | 0.9067 | 0.3916 | 0.9404 | 0.9722 | 0.8621 | | 0.0031 | 9.0 | 50769 | 0.0225 | 0.8661 | 0.9179 | 0.8913 | 0.9959 | 0.9306 | 0.7714 | 0.7939 | 0.7900 | 0.6084 | 0.9049 | 0.9591 | 0.9643 | 0.9457 | 0.9527 | 0.8127 | 0.9964 | 0.9080 | 0.9716 | 0.9970 | 0.9064 | 0.3388 | 0.8412 | 0.9593 | 0.8727 | | 0.0022 | 10.0 | 56410 | 0.0232 | 0.9254 | 0.9111 | 0.9182 | 0.9967 | 0.9212 | 0.8411 | 0.9080 | 0.8044 | 0.6126 | 0.9243 | 0.9560 | 0.9741 | 0.9591 | 0.9642 | 0.9102 | 0.9874 | 0.9240 | 0.9734 | 0.9941 | 0.9351 | 0.4186 | 0.9626 | 0.9779 | 0.8687 | | 0.0023 | 11.0 | 62051 | 0.0209 | 0.9289 | 0.9114 | 0.9201 | 0.9969 | 0.9297 | 0.8423 | 0.8843 | 0.7986 | 0.6318 | 0.8808 | 0.9645 | 0.9624 | 0.9585 | 0.9674 | 0.8963 | 0.9946 | 0.9309 | 0.9752 | 0.9966 | 0.9320 | 0.4092 | 0.9697 | 0.9871 | 0.8790 | | 0.001 | 12.0 | 67692 | 0.0230 | 0.9279 | 0.9075 | 0.9176 | 0.9968 | 0.9377 | 0.8665 | 0.8771 | 0.7951 | 0.6213 | 0.9079 | 0.9611 | 0.9768 | 0.9576 | 0.9638 | 0.9174 | 0.9964 | 0.9353 | 0.9621 | 0.9967 | 0.9391 | 0.3735 | 0.9665 | 0.9703 | 0.8666 | | 0.0007 | 13.0 | 73333 | 0.0244 | 0.9095 | 0.9190 | 0.9142 | 0.9965 | 0.9400 | 0.8610 | 0.8974 | 0.8030 | 0.6337 | 0.9338 | 0.9660 | 0.9712 | 0.9565 | 0.9668 | 0.9181 | 0.9964 | 0.9273 | 0.9640 | 0.9961 | 0.9233 | 0.3664 | 0.9697 | 0.9668 | 0.8845 | | 0.0006 | 14.0 | 78974 | 0.0258 | 0.9213 | 0.9186 | 0.9200 | 0.9967 | 0.9315 | 0.8533 | 0.9119 | 0.7934 | 0.6453 | 0.9311 | 0.9617 | 0.9749 | 0.9614 | 0.9702 | 0.8718 | 0.9910 | 0.9320 | 0.9726 | 0.9966 | 0.9249 | 0.3936 | 0.9680 | 0.9871 | 0.8728 | | 0.0003 | 15.0 | 84615 | 0.0281 | 0.9260 | 0.9208 | 0.9234 | 0.9969 | 0.9313 | 0.8463 | 0.9150 | 0.7996 | 0.6601 | 0.9176 | 0.9677 | 0.9712 | 0.9599 | 0.9749 | 0.8928 | 0.9946 | 0.9351 | 0.9793 | 0.9963 | 0.9347 | 0.3956 | 0.9680 | 0.9852 | 0.8854 | | 0.0001 | 16.0 | 90256 | 0.0291 | 0.9294 | 0.9191 | 0.9242 | 0.9968 | 0.9379 | 0.8644 | 0.9096 | 0.8062 | 0.6441 | 0.9248 | 0.9640 | 0.9741 | 0.9614 | 0.9756 | 0.9000 | 0.9982 | 0.9386 | 0.9786 | 0.9963 | 0.9433 | 0.3988 | 0.9680 | 0.9853 | 0.8867 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
phamvanlinh143/bert-fine-tuned-cola
phamvanlinh143
2023-08-02T02:38:27Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-24T17:20:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5675682416159784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8760 - Matthews Correlation: 0.5676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4768 | 1.0 | 1069 | 0.5682 | 0.5183 | | 0.3134 | 2.0 | 2138 | 0.6110 | 0.5789 | | 0.1627 | 3.0 | 3207 | 0.8760 | 0.5676 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DunnBC22/bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
DunnBC22
2023-08-02T02:32:25Z
133
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-05T17:28:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd results: [] language: - en metrics: - seqeval pipeline_tag: token-classification --- # bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased). It achieves the following results on the evaluation set: - Loss: 0.1312 - Person - Precision: 0.8860048426150121 - Recall: 0.9401849948612538 - F1: 0.912291199202194 - Number: 29190 - Location - Precision: 0.8686381704207632 - Recall: 0.8152889539136796 - F1: 0.841118472477534 - Number: 95690 - Organization - Precision: 0.7919078915181266 - Recall': 0.7449641777764141 - F1: 0.7677190874452579 - Number': 65183 - Product - Precision: 0.7065968977761166 - Recall: 0.8295304958315051 - F1: 0.7631446160056513 - Number: 9116 - Art - Precision: 0.8407258064516129 - Recall: 0.8614333386302241 - F1: 0.8509536143159878 - Number: 6293 - Other - Precision: 0.7303024586555996 - Recall: 0.8314124132006586 - F1: 0.7775843599357258 - Nnumber: 13969 - Building - Precision: 0.5162234691388143 - Recall: 0.3648904983617865 - F1: 0.4275611234592847 - Number: 5799 - Event - Precision: 0.605920892987139 - Recall: 0.35144264602392683 - F1: 0.44486014608943525 - Number: 7105 - Overall - Precision: 0.8203 - Recall: 0.7886 - F1: 0.8041 - Accuracy: 0.9498 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/tree/main/Token%20Classification/Monolingual/DFKI%20SLT%20few%20NERd ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/DFKI-SLT/few-nerd ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Person Precision | Person Recall | Person F1 | Person Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Product Precision | Product Recall | Product F1 | Product Number | Art Precision | Art Recall | Art F1 | Art Number | Other Precision | Other Recall | Other F1 | Other Number | Building Precision | Building Recall | Building F1 | Building Number | Event Precision | Event Recall | Event F1 | Event Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:| | 0.1796 | 1.0 | 11293 | 0.1427 | 0.8741 | 0.9272 | 0.8999 | 29190 | 0.8576 | 0.8072 | 0.8316 | 95690 | 0.7699 | 0.7688 | 0.7694 | 65183 | 0.6711 | 0.75 | 0.7084 | 9116 | 0.8347 | 0.8154 | 0.8249 | 6293 | 0.6743 | 0.8195 | 0.7398 | 13969 | 0.4812 | 0.3951 | 0.4339 | 5799 | 0.5998 | 0.3253 | 0.4218 | 7105 | 0.8000 | 0.7852 | 0.7925 | 0.9483 | | 0.1542 | 2.0 | 22586 | 0.1312 | 0.8860 | 0.9402 | 0.9123 | 29190 | 0.8686 | 0.8153 | 0.8411 | 95690 | 0.7919 | 0.7450 | 0.7677 | 65183 | 0.7066 | 0.8295 | 0.7631 | 9116 | 0.8407 | 0.8614 | 0.8510 | 6293 | 0.7303 | 0.8314 | 0.7776 | 13969 | 0.5162 | 0.3649 | 0.4276 | 5799 | 0.6059 | 0.3514 | 0.4449 | 7105 | 0.8203 | 0.7886 | 0.8041 | 0.9498 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
TangTide/vit-base-patch16-224-in21k-Dog-Classification
TangTide
2023-08-02T02:29:09Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagewoof", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-28T13:40:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagewoof metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-test-1 results: - task: name: Image Classification type: image-classification dataset: name: imagewoof type: imagewoof config: full_size split: train args: full_size metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-Dog-Classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagewoof dataset. It achieves the following results on the evaluation set: - Loss: 0.5386 - Accuracy: 0.9524 ## Model description Based on the [frgfm/imagewoof dataset](https://huggingface.co/datasets/frgfm/imagewoof), it can categorize ten types of dogs such as Shih-Tzu, Rhodesian ridgeback, Beagle, English foxhound, Border terrier, Australian terrier, Golden retriever, Old English sheepdog, Samoyed, Dingo. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2356 | 0.99 | 63 | 1.0520 | 0.9059 | | 0.6987 | 2.0 | 127 | 0.6162 | 0.9446 | | 0.5787 | 2.98 | 189 | 0.5386 | 0.9524 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.0+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
eepon/finetuning-emotion-model
eepon
2023-08-02T02:25:23Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-02T02:17:50Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion model-index: - name: finetuning-emotion-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-emotion-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.2 - Tokenizers 0.13.3
DunnBC22/bert-base-uncased-Vitamin_C_Fact_Verification
DunnBC22
2023-08-02T02:15:12Z
222
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "multiple_choice", "question-answering", "en", "dataset:tasksource/bigbench", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-01T18:18:57Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer - multiple_choice metrics: - accuracy model-index: - name: bert-base-uncased-Vitamin_C_Fact_Verification results: [] datasets: - tasksource/bigbench language: - en pipeline_tag: question-answering --- # bert-base-uncased-Vitamin_C_Fact_Verification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased). It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.7240 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiple%20Choice/Vitamin%20C%20Fact%20Verification/Vitamin_C_Fact_Verification_Multiple_Choice_Using_BERT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/tasksource/bigbench/viewer/vitaminc_fact_verification ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6985 | 1.0 | 2170 | 0.6894 | 0.6864 | | 0.5555 | 2.0 | 4340 | 0.6329 | 0.7240 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
mhdaw/ppo-Huggy
mhdaw
2023-08-02T02:14:49Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-02T02:14:43Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mhdaw/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ashercn97/manatee-LoRA-7b
ashercn97
2023-08-02T02:06:05Z
0
1
null
[ "text-generation", "region:us" ]
text-generation
2023-07-29T23:29:18Z
--- pipeline_tag: text-generation ---
xiongjya/whisper-medium-zh-CN
xiongjya
2023-08-02T02:02:47Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-26T03:12:07Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-zh-CN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-zh-CN This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2354 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3354 | 0.55 | 500 | 0.2808 | 100.0235 | | 0.1662 | 1.1 | 1000 | 0.2354 | 100.0 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
olzml/llama2-qlora-finetunined-french
olzml
2023-08-02T01:37:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T17:55:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
sheaDurgin/test
sheaDurgin
2023-08-02T01:33:38Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-02T01:28:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 870 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 870, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jonalkw/q-FrozenLake-v1-4x4-noSlippery
jonalkw
2023-08-02T01:24:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-03T03:48:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jonalkw/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Elliot4AI/Dugong-Llama2-13b-chinese
Elliot4AI
2023-08-02T01:04:21Z
0
0
transformers
[ "transformers", "text-generation", "zh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T01:02:42Z
--- license: apache-2.0 language: - zh library_name: transformers pipeline_tag: text-generation --- # Model Card 🏡🏡🏡🏡Dugong 🏡🏡🏡🏡 一个经过中文数据集微调的sft模型,其基础模型为Llama-2-13b-hf。其数据集为Elliot4AI/openassistant-guanaco-chinese。现在可以用中文问和答。 微调摘要: 1.量化8位 2.peft-Lora 具体信息请点击这个链接:待更新。。。。。。 😀😀😀😀😀😀😀😀😀😀😀😀😀😀
Huggingfly/poca-SoccerTwos
Huggingfly
2023-08-02T01:03:47Z
34
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-02T01:03:17Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Huggingfly/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Technotech/sd-prompt-instruct-3b-epoch-0.4
Technotech
2023-08-02T01:00:39Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "stable-diffusion", "instruct", "magic-prompt", "natural language inference", "en", "dataset:Technotech/sd-prompt-instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-29T16:09:16Z
--- library_name: transformers license: apache-2.0 datasets: - Technotech/sd-prompt-instruct language: - en tags: - stable-diffusion - instruct - magic-prompt - natural language inference --- # Stable Diffusion Prompt Instruct 3B (OpenLlama v2 3B) Trained for 0.4 epochs (test) on [Technotech/sd-prompt-instruct](https://huggingface.co/datasets/Technotech/sd-prompt-instruct). ## Prompt Format ``` ### Instruction: {prompt} ### Response: {response} ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
sshalini6/small-5e4-r16-a32-d0
sshalini6
2023-08-02T00:54:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T00:54:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Liea/ppo-Huggy
Liea
2023-08-02T00:50:57Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-02T00:50:46Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Liea/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
domjina/taxi
domjina
2023-08-02T00:25:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T00:25:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="domjina/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
domjina/q-FrozenLake-v1-4x4-noSlippery
domjina
2023-08-02T00:23:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T00:23:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="domjina/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Eggsbena/model_005
Eggsbena
2023-08-01T23:33:51Z
30
1
diffusers
[ "diffusers", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-01T23:25:15Z
--- library_name: diffusers pipeline_tag: text-to-image ---
Thatgreenguy/ppo-Huggy
Thatgreenguy
2023-08-01T23:24:37Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-01T23:24:33Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Thatgreenguy/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Shaun1204/RedGPT-Gormlee
Shaun1204
2023-08-01T23:19:02Z
132
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "eng", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T21:54:45Z
--- language: - eng thumbnail: "" tags: - conversational ---
omarhkh/swin-tiny-patch4-window7-224-finetuned-omars6
omarhkh
2023-08-01T23:02:35Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-01T21:47:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-omars6 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8814589665653495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-omars6 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5625 - Accuracy: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9598 | 0.99 | 92 | 0.7744 | 0.6869 | | 0.7825 | 2.0 | 185 | 0.7336 | 0.7082 | | 0.9638 | 2.99 | 277 | 0.8202 | 0.7204 | | 1.0288 | 4.0 | 370 | 0.8621 | 0.7903 | | 0.9711 | 4.99 | 462 | 0.8212 | 0.6809 | | 1.0125 | 6.0 | 555 | 0.8700 | 0.7356 | | 0.945 | 6.99 | 647 | 0.7959 | 0.7781 | | 0.9851 | 8.0 | 740 | 0.8755 | 0.6140 | | 0.8078 | 8.99 | 832 | 0.6970 | 0.7781 | | 0.7377 | 10.0 | 925 | 0.6063 | 0.7386 | | 0.7934 | 10.99 | 1017 | 0.6121 | 0.8116 | | 0.7986 | 12.0 | 1110 | 0.6532 | 0.8116 | | 0.6129 | 12.99 | 1202 | 0.7250 | 0.8450 | | 0.7428 | 14.0 | 1295 | 0.6417 | 0.7264 | | 0.5661 | 14.99 | 1387 | 0.6847 | 0.7964 | | 0.6631 | 16.0 | 1480 | 0.5470 | 0.8298 | | 0.5787 | 16.99 | 1572 | 0.5696 | 0.8359 | | 0.6635 | 18.0 | 1665 | 0.6385 | 0.7872 | | 0.5251 | 18.99 | 1757 | 0.5842 | 0.8419 | | 0.6164 | 20.0 | 1850 | 0.5506 | 0.8207 | | 0.4166 | 20.99 | 1942 | 0.8169 | 0.8055 | | 0.4189 | 22.0 | 2035 | 0.5882 | 0.8480 | | 0.699 | 22.99 | 2127 | 0.5767 | 0.8541 | | 0.6095 | 24.0 | 2220 | 0.6392 | 0.8845 | | 0.3837 | 24.99 | 2312 | 0.6109 | 0.8723 | | 0.4916 | 26.0 | 2405 | 0.4862 | 0.8754 | | 0.4536 | 26.99 | 2497 | 0.5625 | 0.8754 | | 0.3636 | 28.0 | 2590 | 0.5948 | 0.8663 | | 0.4004 | 28.99 | 2682 | 0.5735 | 0.8906 | | 0.4248 | 29.84 | 2760 | 0.5625 | 0.8815 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
shtif/ppo-LunarLander-v2
shtif
2023-08-01T22:58:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T22:57:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.15 +/- 34.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ahmed007/Close_book_2
Ahmed007
2023-08-01T22:29:28Z
124
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-05T12:55:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: Close_book_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Close_book_2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Ahmed007/Copilot_for_poors_v3
Ahmed007
2023-08-01T22:28:43Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-22T22:21:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Copilot_for_poors_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Copilot_for_poors_v3 This model is a fine-tuned version of [Ahmed007/Copilot_for_poors_v2](https://huggingface.co/Ahmed007/Copilot_for_poors_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 57 | 1.4567 | | No log | 2.0 | 114 | 1.4510 | | No log | 3.0 | 171 | 1.4376 | | No log | 4.0 | 228 | 1.4255 | | No log | 5.0 | 285 | 1.4174 | | No log | 6.0 | 342 | 1.4122 | | No log | 7.0 | 399 | 1.4080 | | No log | 8.0 | 456 | 1.3981 | | 1.7151 | 9.0 | 513 | 1.3923 | | 1.7151 | 10.0 | 570 | 1.3870 | | 1.7151 | 11.0 | 627 | 1.3801 | | 1.7151 | 12.0 | 684 | 1.3769 | | 1.7151 | 13.0 | 741 | 1.3706 | | 1.7151 | 14.0 | 798 | 1.3687 | | 1.7151 | 15.0 | 855 | 1.3665 | | 1.7151 | 16.0 | 912 | 1.3613 | | 1.7151 | 17.0 | 969 | 1.3613 | | 1.5556 | 18.0 | 1026 | 1.3576 | | 1.5556 | 19.0 | 1083 | 1.3550 | | 1.5556 | 20.0 | 1140 | 1.3540 | | 1.5556 | 21.0 | 1197 | 1.3530 | | 1.5556 | 22.0 | 1254 | 1.3514 | | 1.5556 | 23.0 | 1311 | 1.3517 | | 1.5556 | 24.0 | 1368 | 1.3506 | | 1.5556 | 25.0 | 1425 | 1.3504 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Ahmed007/GPT2-Arabic_Poetry_generator
Ahmed007
2023-08-01T22:28:39Z
137
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T17:58:29Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: GPT2-Arabic_Poetry_generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2-Arabic_Poetry_generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
NasimB/bnc_spoken-gutenberg_fixed-not-mixed-rarity-seed
NasimB
2023-08-01T22:25:12Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T23:26:49Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: bnc_spoken-gutenberg_fixed-not-mixed-rarity-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bnc_spoken-gutenberg_fixed-not-mixed-rarity-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3575 | 0.29 | 500 | 5.3508 | | 5.0454 | 0.59 | 1000 | 4.9293 | | 4.7215 | 0.88 | 1500 | 4.6988 | | 4.4664 | 1.17 | 2000 | 4.5559 | | 4.3196 | 1.46 | 2500 | 4.4411 | | 4.2129 | 1.76 | 3000 | 4.3422 | | 4.0849 | 2.05 | 3500 | 4.2688 | | 3.9127 | 2.34 | 4000 | 4.2228 | | 3.8846 | 2.63 | 4500 | 4.1692 | | 3.8456 | 2.93 | 5000 | 4.1214 | | 3.6549 | 3.22 | 5500 | 4.1186 | | 3.6084 | 3.51 | 6000 | 4.0832 | | 3.5865 | 3.8 | 6500 | 4.0558 | | 3.4886 | 4.1 | 7000 | 4.0536 | | 3.3352 | 4.39 | 7500 | 4.0479 | | 3.3306 | 4.68 | 8000 | 4.0346 | | 3.3197 | 4.97 | 8500 | 4.0253 | | 3.1677 | 5.27 | 9000 | 4.0370 | | 3.1535 | 5.56 | 9500 | 4.0357 | | 3.1531 | 5.85 | 10000 | 4.0352 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
sshalini6/base-5e4-r8-a32-d0.1
sshalini6
2023-08-01T22:23:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T22:23:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
dyvapandhu/vit-molecul
dyvapandhu
2023-08-01T22:19:03Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-01T06:30:23Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: vit-molecul results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-molecul This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5737 - Accuracy: 0.71 - F1: 0.7086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.723 | 1.0 | 8 | 0.6790 | 0.61 | 0.6096 | | 0.6915 | 2.0 | 16 | 0.6661 | 0.62 | 0.5924 | | 0.6689 | 3.0 | 24 | 0.6470 | 0.69 | 0.6892 | | 0.6517 | 4.0 | 32 | 0.6356 | 0.64 | 0.6377 | | 0.6368 | 5.0 | 40 | 0.6289 | 0.72 | 0.7199 | | 0.621 | 6.0 | 48 | 0.6217 | 0.73 | 0.7293 | | 0.6061 | 7.0 | 56 | 0.6197 | 0.69 | 0.6862 | | 0.5924 | 8.0 | 64 | 0.6087 | 0.73 | 0.7293 | | 0.5767 | 9.0 | 72 | 0.6003 | 0.72 | 0.7199 | | 0.5633 | 10.0 | 80 | 0.5953 | 0.72 | 0.7196 | | 0.5491 | 11.0 | 88 | 0.5885 | 0.72 | 0.7199 | | 0.5351 | 12.0 | 96 | 0.5869 | 0.71 | 0.7100 | | 0.5239 | 13.0 | 104 | 0.5867 | 0.7 | 0.6995 | | 0.5118 | 14.0 | 112 | 0.5804 | 0.71 | 0.7100 | | 0.502 | 15.0 | 120 | 0.5752 | 0.71 | 0.7100 | | 0.4942 | 16.0 | 128 | 0.5738 | 0.72 | 0.7199 | | 0.4885 | 17.0 | 136 | 0.5771 | 0.71 | 0.7086 | | 0.4831 | 18.0 | 144 | 0.5751 | 0.71 | 0.7086 | | 0.4793 | 19.0 | 152 | 0.5743 | 0.71 | 0.7086 | | 0.4774 | 20.0 | 160 | 0.5737 | 0.71 | 0.7086 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3
paultrust/gpt_neo_rl_multi_label
paultrust
2023-08-01T21:39:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-04-28T09:44:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
MattStammers/Taxi-v3
MattStammers
2023-08-01T21:29:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T21:18:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- ## Crazy Taxi Pick up the peeps and deliver them to their destination - simples ;)
Arch4ngel/distilhubert-finetuned-gtzan
Arch4ngel
2023-08-01T21:20:47Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-19T16:49:08Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5362 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9881 | 1.0 | 113 | 1.8088 | 0.45 | | 1.4015 | 2.0 | 226 | 1.2665 | 0.63 | | 1.0325 | 3.0 | 339 | 0.9793 | 0.72 | | 0.8844 | 4.0 | 452 | 0.8951 | 0.73 | | 0.5932 | 5.0 | 565 | 0.7416 | 0.76 | | 0.3958 | 6.0 | 678 | 0.6143 | 0.79 | | 0.446 | 7.0 | 791 | 0.5115 | 0.83 | | 0.1893 | 8.0 | 904 | 0.4992 | 0.85 | | 0.24 | 9.0 | 1017 | 0.5084 | 0.85 | | 0.1947 | 10.0 | 1130 | 0.5362 | 0.82 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Yijia-Xiao/Med
Yijia-Xiao
2023-08-01T21:17:00Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-01T21:16:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Thatgreenguy/ppo-LunarLander-v2
Thatgreenguy
2023-08-01T21:04:42Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-01T21:04:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.46 +/- 16.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
s3nh/vicuna-13b-v1.5-GGML
s3nh
2023-08-01T21:03:30Z
0
1
transformers
[ "transformers", "text-generation", "en", "arxiv:2307.09288", "arxiv:2306.05685", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T20:11:40Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/lmsys/vicuna-13b-v1.5). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card ## Model Details Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288) ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api ## Training Details Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
s3nh/NewHope-GGML
s3nh
2023-08-01T21:02:35Z
0
4
transformers
[ "transformers", "text-generation", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T20:27:45Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/SLAM-group/NewHope). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card We introduce NewHope, a fine-tuned chat model based on llama-2-13b, aiming to provide a strong coding capability. NewHope handle different languages including Python, C++, Java, JavaScript, Go, and more. Preliminary evaluation on HumanEval shows that **NewHope possesses 99% of GPT-4's programming capabilities**. **Contact**: SLAM (<ins>S</ins>UFE <ins>L</ins>arge <ins>A</ins>I <ins>M</ins>odel) is a research group at Shanghai University of Finance and Economics. cui.wanyun@sufe.edu.cn **TODO**: We will release more evaluatation results and training details later. # Evaluation Results We evaluated NewHope on [HumanEval](https://github.com/openai/human-eval) using the official evaluation script by OpenAI. We compared the Pass@1 metric of NewHope with other models. The results of other models are from PapersWithCode. | Model | Pass@1 | | ----- | ------ | | **GPT-4** | **67.0** | | **NewHope** | **66.5** | | PanGu-Coder2 15B | 61.6 | | WizardCoder 15B | 57.3 | | phi-1 1.3B | 50.6 | | GPT-3.5 | 48.1 | | phi-1-small | 45.0 | | PaLM-Coder | 36.0 | | CodeGeeX2-6B | 35.9 | # Model Weights We have open-sourced the model weights [NewHope](https://huggingface.co/SLAM-group/NewHope). We are uploading the model weights. The weights will be available in a few hours. # Usage To load the NewHope model using Transformers, use the following code: ``` import torch from transformers import LlamaTokenizer, LlamaForCausalLM base_model = "SLAM-group/NewHope" tokenizer = LlamaTokenizer.from_pretrained(base_model) model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map="auto") # model.config.use_cache is default to `False`. For inference: `model.config.use_cache = True` ``` **Note:** At least Huggingface Transformers **4.31.0** is required to load this model! You can ask NewHope to generate code with instructions. We provide a simple example of how NewHope model generates code with the specific prompt: ``` # Suppose required tokenizer and model have already been loaded instruction = "Write a Python function to tell me what the date is today." prompt = f"<s> ### Instruction:\n{instruction}\n\n### Response:\n" inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.9, max_new_tokens=2048)[0] decoded_output = tokenizer.decode(output, skip_special_tokens=True).split("### Response:\n")[-1].strip() print(decoded_output) ``` You can also interact with NewHope in a dialog manner with the following prompt: ``` <s> ### Instruction:\nQ1\n\n### Response:\nA1</s><s> ### Instruction:\nQ2\n\n### Response:\nA2</s> ``` # Evaluation ### Local setup 1. Install HumanEval for evaluation. [Details](https://github.com/openai/human-eval) 2. Install dependencies ```bash pip install -r requirements.txt ``` --- For HumanEval, we use the following prompt: ``` example_input = 'def is_odd(number: int) -> bool:\n """ Check whether the given number is odd\n >>> is_odd(3)\n True\n >>> is_odd(6)\n False\n """\n' example_output = 'def is_odd(number: int) -> bool:\n """ Check whether the given number is odd\n >>> is_odd(3)\n True\n >>> is_odd(6)\n False\n """\n return number % 2 == 1' task_in_humaneval = "REPLACE `task_in_humaneval` WITH THE SPECIFIC TASK IN HUMANEVAL DATA" prompt = f"<s> ### Instruction:\nComplete the given function below:\n\n{example_input}\n\n### Response:\n{example_output}</s><s> ### Instruction:\nComplete the given function below:\n\n{task_in_human_eval}\n\n### Response:\n" ``` To reproduce the results on HumanEval, use the following script: ``` python complete.py --base_model SLAM-group/NewHope --output_dir output --n_gpu 8 ``` The above script will generate `samples.jsonl` in `output_dir`, which can be directly evaluated by HumanEval. [Evaluation procedure](https://github.com/openai/human-eval). We conducted the experiment with `fp16` on 8xA800, 80GB GPUs, reaching `66.5%` on Pass@1 (v.s. GPT4 `67.0%`). # Citation ``` @misc{2023newhope, title={NewHope: Harnessing 99% of GPT-4's Programming Capabilities}, author={Wanyun Cui and Qianle Wang}, howpublished = https://github.com/SLAM-group/newhope, year={2023} } ```
facebook/vc1-large-permissive
facebook
2023-08-01T21:02:24Z
6
1
null
[ "pytorch", "arxiv:2303.18240", "license:mit", "region:us" ]
null
2023-06-30T22:34:07Z
--- license: mit --- ## Model This is the MIT-licensed version of [VC1-Large](https://huggingface.co/facebook/vc1-large/tree/main). [EAI-VC Repo](https://github.com/facebookresearch/eai-vc) [VC-1 Website](https://eai-vc.github.io/), [VC-1 Blogpost](https://ai.facebook.com/blog/robots-learning-video-simulation-artificial-visual-cortex-vc-1), [VC-1 Paper](https://ai.facebook.com/research/publications/where-are-we-in-the-search-for-an-artificial-visual-cortex-for-embodied-intelligence/), ## DATASET Sampling every_k: ### ImageNet 1,281,167 ### - 1 ### Ego (3,538,291 frames total) ### - 1 # Ego4D full already subsampled with 2,790,520 frames - 1 # 100DOH with 99,899 frames - 60 # Epic Kitchens with 332,757 frames - 80 # SSV2 with 315,115 frames ### INav (779 643 frames total) ### - 1 # RE10K with 779,643 frames # Total number 5,599,101 frames ## Citation If you use this model, please cite: ```bibtex @inproceedings{vc2023, title={Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence?}, author={Arjun Majumdar and Karmesh Yadav and Sergio Arnaud and Yecheng Jason Ma and Claire Chen and Sneha Silwal and Aryan Jain and Vincent-Pierre Berges and Pieter Abbeel and Jitendra Malik and Dhruv Batra and Yixin Lin and Oleksandr Maksymets and Aravind Rajeswaran and Franziska Meier}, year={2023}, eprint={2303.18240}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```