modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
Hachipo/Meta-Llama-3-8B-MIFT-en_newbase_v2-PIFT-enja_10000_2
Hachipo
2025-06-23T19:12:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T19:08:58Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mob2711/qwen2.5-3b-qlora-cot-ht-1500
mob2711
2025-06-23T19:11:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-23T19:11:10Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mob2711 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Hachipo/Meta-Llama-3-8B-MIFT-en_newbase_v2-PIFT-jaen_10000_2
Hachipo
2025-06-23T19:11:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T19:08:00Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AkumaDachi/dqn-SpaceInvadersNoFrameskip-v4
AkumaDachi
2025-06-23T19:05:29Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-23T19:05:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 508.00 +/- 125.04 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AkumaDachi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AkumaDachi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AkumaDachi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
dearyoungjo/whisper_base_it
dearyoungjo
2025-06-23T19:04:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-23T19:04:39Z
--- library_name: transformers language: - it license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: default split: train args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 41.262389149713094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1530 - Wer: 41.2624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.9703 | 0.0159 | 1 | 1.1724 | 42.1492 | | 1.0107 | 0.0317 | 2 | 1.1724 | 42.1492 | | 1.1515 | 0.0476 | 3 | 1.1724 | 42.1492 | | 0.843 | 0.0635 | 4 | 1.1530 | 41.2624 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1
Hachipo/Meta-Llama-3-8B-MIFT-en_newbase_v2-MIFT-ja_10000_2
Hachipo
2025-06-23T19:04:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T19:01:37Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pooya-davoodi-parasail/OmniGen-v1-LoRA-01
pooya-davoodi-parasail
2025-06-23T19:00:40Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-06-23T19:00:37Z
--- library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ikerion/gemma_innen_folytasd_v7_RESCUE
ikerion
2025-06-23T18:59:45Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-23T18:43:32Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ikerion - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kimanjea/avelavrmodule1
Kimanjea
2025-06-23T18:59:31Z
0
0
mlx
[ "mlx", "safetensors", "llama", "facebook", "meta", "pytorch", "llama-3", "text-generation", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "license:llama3.2", "region:us" ]
text-generation
2025-06-23T18:44:13Z
--- language: - en - de - fr - it - pt - hi - es - th library_name: mlx pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - mlx license: llama3.2 extra_gated_prompt: "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version\ \ Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions\ \ for use, reproduction, distribution and modification of the Llama Materials set\ \ forth herein.\n\n“Documentation” means the specifications, manuals and documentation\ \ accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \n“Licensee” or “you” means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf),\ \ of the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2”\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means,\ \ collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if\ \ you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept”\ \ below or by using or distributing any portion or element of the Llama Materials,\ \ you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute,\ \ copy, create derivative works of, and make modifications to the Llama Materials.\ \ \nb. Redistribution and Use. \ni. If you distribute or make available the Llama\ \ Materials (or any derivative works thereof), or a product or service (including\ \ another AI model) that contains any of them, you shall (A) provide a copy of this\ \ Agreement with any such Llama Materials; and (B) prominently display “Built with\ \ Llama” on a related website, user interface, blogpost, about page, or product\ \ documentation. If you use the Llama Materials or any outputs or results of the\ \ Llama Materials to create, train, fine tune, or otherwise improve an AI model,\ \ which is distributed or made available, you shall also include “Llama” at the\ \ beginning of any such AI model name.\nii. If you receive Llama Materials, or any\ \ derivative works thereof, from a Licensee as part of an integrated end user product,\ \ then Section 2 of this Agreement will not apply to you. \niii. You must retain\ \ in all copies of the Llama Materials that you distribute the following attribution\ \ notice within a “Notice” text file distributed as a part of such copies: “Llama\ \ 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2\ \ version release date, the monthly active users of the products or services made\ \ available by or for Licensee, or Licensee’s affiliates, is greater than 700 million\ \ monthly active users in the preceding calendar month, you must request a license\ \ from Meta, which Meta may grant to you in its sole discretion, and you are not\ \ authorized to exercise any of the rights under this Agreement unless or until\ \ Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS\ \ REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM\ \ ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS\ \ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION,\ \ ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR\ \ PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING\ \ OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR\ \ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability.\ \ IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,\ \ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING\ \ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,\ \ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE\ \ BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\ a. No trademark licenses are granted under this Agreement, and in connection with\ \ the Llama Materials, neither Meta nor Licensee may use any name or mark owned\ \ by or associated with the other or any of its affiliates, except as required\ \ for reasonable and customary use in describing and redistributing the Llama Materials\ \ or as set forth in this Section 5(a). Meta hereby grants you a license to use\ \ “Llama” (the “Mark”) solely as required to comply with the last sentence of Section\ \ 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at\ \ https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising\ \ out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to\ \ Meta’s ownership of Llama Materials and derivatives made by or for Meta, with\ \ respect to any derivative works and modifications of the Llama Materials that\ \ are made by you, as between you and Meta, you are and will be the owner of such\ \ derivative works and modifications.\nc. If you institute litigation or other proceedings\ \ against Meta or any entity (including a cross-claim or counterclaim in a lawsuit)\ \ alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion\ \ of any of the foregoing, constitutes infringement of intellectual property or\ \ other rights owned or licensable by you, then any licenses granted to you under\ \ this Agreement shall terminate as of the date such litigation or claim is filed\ \ or instituted. You will indemnify and hold harmless Meta from and against any\ \ claim by any third party arising out of or related to your use or distribution\ \ of the Llama Materials.\n6. Term and Termination. The term of this Agreement will\ \ commence upon your acceptance of this Agreement or access to the Llama Materials\ \ and will continue in full force and effect until terminated in accordance with\ \ the terms and conditions herein. Meta may terminate this Agreement if you are\ \ in breach of any term or condition of this Agreement. Upon termination of this\ \ Agreement, you shall delete and cease use of the Llama Materials. Sections 3,\ \ 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and\ \ Jurisdiction. This Agreement will be governed and construed under the laws of\ \ the State of California without regard to choice of law principles, and the UN\ \ Convention on Contracts for the International Sale of Goods does not apply to\ \ this Agreement. The courts of California shall have exclusive jurisdiction of\ \ any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy\ \ (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 1. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 2. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 3.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 4. Collect, process, disclose, generate, or infer private or sensitive\ \ information about individuals, including information about individuals’ identity,\ \ health, or demographic information, unless you have obtained the right to do so\ \ in accordance with applicable law\n 5. Engage in or facilitate any action or\ \ generate any content that infringes, misappropriates, or otherwise violates any\ \ third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 6. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n 7. Engage in any action, or\ \ facilitate any action, to intentionally circumvent or remove usage restrictions\ \ or other safety measures, or to enable functionality disabled by Meta \n2. Engage\ \ in, promote, incite, facilitate, or assist in the planning or development of activities\ \ that present a risk of death or bodily harm to individuals, including use of Llama\ \ 3.2 related to the following:\n 8. Military, warfare, nuclear industries or\ \ applications, espionage, use for materials or activities that are subject to the\ \ International Traffic Arms Regulations (ITAR) maintained by the United States\ \ Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989\ \ or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and\ \ illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled\ \ substances\n 11. Operation of critical infrastructure, transportation technologies,\ \ or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting,\ \ and eating disorders\n 13. Any content intended to incite or promote violence,\ \ abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive\ \ or mislead others, including use of Llama 3.2 related to the following:\n 14.\ \ Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\ \ 15. Generating, promoting, or furthering defamatory content, including the\ \ creation of defamatory statements, images, or other content\n 16. Generating,\ \ promoting, or further distributing spam\n 17. Impersonating another individual\ \ without consent, authorization, or legal right\n 18. Representing that the\ \ use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating\ \ false online engagement, including fake reviews and other means of fake online\ \ engagement \n4. Fail to appropriately disclose to end users any known dangers\ \ of your AI system 5. Interact with third party tools, models, or software designed\ \ to generate unlawful content or engage in unlawful or harmful conduct and/or represent\ \ that the outputs of such tools, models, or software are associated with Meta or\ \ Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the\ \ rights granted under Section 1(a) of the Llama 3.2 Community License Agreement\ \ are not being granted to you if you are an individual domiciled in, or a company\ \ with a principal place of business in, the European Union. This restriction does\ \ not apply to end users of a product or service that incorporates any such multimodal\ \ models.\n\nPlease report any violation of this Policy, software “bug,” or other\ \ problems that could lead to a violation of this Policy through one of the following\ \ means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n\ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n\ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n\ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama\ \ 3.2: LlamaUseReport@meta.com" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit base_model: meta-llama/llama-3.2-1B-Instruct ---
BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmc9fnyn6000reihnbas4hxva
BootesVoid
2025-06-23T18:58:30Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-23T18:58:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: CHNGRLREP --- # Cm8Tb7Xkk0000Wzj24Pkk2M5G_Cmc9Fnyn6000Reihnbas4Hxva <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `CHNGRLREP` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "CHNGRLREP", "lora_weights": "https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmc9fnyn6000reihnbas4hxva/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmc9fnyn6000reihnbas4hxva', weight_name='lora.safetensors') image = pipeline('CHNGRLREP').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmc9fnyn6000reihnbas4hxva/discussions) to add images that show off what you’ve made with this LoRA.
michelleUMD/cmr-llama
michelleUMD
2025-06-23T18:55:27Z
0
0
peft
[ "peft", "safetensors", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:adapter:meta-llama/Llama-3.3-70B-Instruct", "region:us" ]
null
2025-06-22T21:18:16Z
--- base_model: meta-llama/Llama-3.3-70B-Instruct library_name: peft --- # Model Card for Model ID CMR-LLaMA is a large language model designed to automatically extract 31 cardiovascular conditions from cardiac MRI (CMR) reports. In addition to the conditions themselves, it also extracts their associated attributes, including certainty, severity, location, and pattern. ## Model Details ### Model Description - **Developed by:** CCF AIIIH Lab - **Model type:** large language model - **Language(s) (NLP):** English - **Finetuned from model [optional]:** pretrained LLaMA 3.3 with a custom LoRA adapter ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/michelleUMD/cmr-llama - **Paper [optional]:** TBD - **Demo [optional]:** TBD ## Uses * Database generation from CMR report impressions sections * Standardization of free text reports ## How to Get Started with the Model To use the pretrained adapter: ``` python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.3-70B-Instruct") model = PeftModel.from_pretrained(base, "/michelleUMD/cmr-llama/") ``` ## Citation [optional] TBD **BibTeX:** TBD **APA:** TBD ### Framework versions - PEFT 0.12.0
Huzaifah0/Avery_0.6_4_16
Huzaifah0
2025-06-23T18:55:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:48:50Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kaori1707/SEED-1-gemma4b-instruct
Kaori1707
2025-06-23T18:54:24Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "endpoints_compatible", "region:us" ]
null
2025-06-23T01:20:32Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: SEED-1-gemma4b-instruct tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for SEED-1-gemma4b-instruct This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Kaori1707/SEED-1-gemma4b-instruct", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.4.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
B-K/ReVoiceAI-W2V2-BERT-Thai-IPA
B-K
2025-06-23T18:53:54Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-23T15:39:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FiniteInfinity99/Thesis_gemma-2-9b_final_model_updated
FiniteInfinity99
2025-06-23T18:53:24Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:53:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-one_liners-comb-1-seed-28-2025-06-23
morturr
2025-06-23T18:51:57Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-23T18:51:49Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-one_liners-comb-1-seed-28-2025-06-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-one_liners-comb-1-seed-28-2025-06-23 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
KNdoschile/alpersman
KNdoschile
2025-06-23T18:48:50Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-23T17:41:54Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
morturr/Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-amazon-comb-2-seed-7-2025-06-23
morturr
2025-06-23T18:47:56Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-23T18:47:48Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-amazon-comb-2-seed-7-2025-06-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-amazon-comb-2-seed-7-2025-06-23 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
TOMFORD79/boom9
TOMFORD79
2025-06-23T18:47:55Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:42:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-Link-mezzo-fun-18-Viral-videos-XX/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-Link-mezzo-fun-18-Viral-videos-XX
2025-06-23T18:46:29Z
0
0
null
[ "region:us" ]
null
2025-06-23T18:46:15Z
18 seconds ago <a href="https://viralinfo.xyz/video/?v=Katrina+lim+kiffy" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a></p> <a href="https://viralinfo.xyz/video/?v=Katrina+lim+kiffy" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://viralinfo.xyz/video/?v=mezzo+fun"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
johngreendr1/ef964c99-8e6c-4c48-ab94-8803096ec70a
johngreendr1
2025-06-23T18:42:08Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:lmsys/vicuna-7b-v1.3", "base_model:adapter:lmsys/vicuna-7b-v1.3", "region:us" ]
null
2025-06-23T15:40:24Z
--- base_model: lmsys/vicuna-7b-v1.3 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
minhduongqo/qwen2-7b-instruct-trl-sft-ChartQA
minhduongqo
2025-06-23T18:41:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:17:53Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="minhduongqo/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/minhduongqo-university-of-science-and-technology-of-hano/qwen2.5-3b-instruct-trl-sft-fire/runs/o4iwoemm) This model was trained with SFT. ### Framework versions - TRL: 0.20.0.dev0 - Transformers: 4.53.0.dev0 - Pytorch: 2.7.1+cu128 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gork-projects/dqn-SpaceInvadersNoFrameskip-v4
gork-projects
2025-06-23T18:39:52Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-23T18:39:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 616.00 +/- 106.63 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gork-projects -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gork-projects -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga gork-projects ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
goodcasper/see_ai_rt-detr_r50_4090_only_bbox_da
goodcasper
2025-06-23T18:39:24Z
62
0
transformers
[ "transformers", "tensorboard", "safetensors", "rt_detr", "object-detection", "generated_from_trainer", "base_model:PekingU/rtdetr_r50vd_coco_o365", "base_model:finetune:PekingU/rtdetr_r50vd_coco_o365", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-06-22T17:06:34Z
--- library_name: transformers license: apache-2.0 base_model: PekingU/rtdetr_r50vd_coco_o365 tags: - generated_from_trainer model-index: - name: see_ai_rt-detr_r50_4090_only_bbox_da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # see_ai_rt-detr_r50_4090_only_bbox_da This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 17.4908 - Map: 0.2719 - Map 50: 0.4767 - Map 75: 0.2675 - Map Small: 0.0014 - Map Medium: 0.1362 - Map Large: 0.2914 - Mar 1: 0.3967 - Mar 10: 0.5302 - Mar 100: 0.5565 - Mar Small: 0.25 - Mar Medium: 0.286 - Mar Large: 0.5905 - Map Angiodysplasia: 0.1248 - Mar 100 Angiodysplasia: 0.4745 - Map Erosion: 0.2196 - Mar 100 Erosion: 0.4431 - Map Stenosis: 0.3631 - Mar 100 Stenosis: 0.8125 - Map Lymphangiectasia: 0.2679 - Mar 100 Lymphangiectasia: 0.46 - Map Lymph follicle: 0.1464 - Mar 100 Lymph follicle: 0.3646 - Map Smt: 0.3574 - Mar 100 Smt: 0.6607 - Map Polyp-like: 0.3597 - Mar 100 Polyp-like: 0.5619 - Map Bleeding: 0.3614 - Mar 100 Bleeding: 0.7 - Map Diverticulum: 0.0054 - Mar 100 Diverticulum: 0.3 - Map Erythema: 0.183 - Mar 100 Erythema: 0.6854 - Map Foreign body: 0.3705 - Mar 100 Foreign body: 0.564 - Map Vein: 0.5042 - Mar 100 Vein: 0.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Angiodysplasia | Mar 100 Angiodysplasia | Map Erosion | Mar 100 Erosion | Map Stenosis | Mar 100 Stenosis | Map Lymphangiectasia | Mar 100 Lymphangiectasia | Map Lymph follicle | Mar 100 Lymph follicle | Map Smt | Mar 100 Smt | Map Polyp-like | Mar 100 Polyp-like | Map Bleeding | Mar 100 Bleeding | Map Diverticulum | Mar 100 Diverticulum | Map Erythema | Mar 100 Erythema | Map Foreign body | Mar 100 Foreign body | Map Vein | Mar 100 Vein | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------------:|:----------------------:|:-----------:|:---------------:|:------------:|:----------------:|:--------------------:|:------------------------:|:------------------:|:----------------------:|:-------:|:-----------:|:--------------:|:------------------:|:------------:|:----------------:|:----------------:|:--------------------:|:------------:|:----------------:|:----------------:|:--------------------:|:--------:|:------------:| | 36.7375 | 1.0 | 2464 | 17.4288 | 0.0793 | 0.1612 | 0.0654 | 0.0249 | 0.0567 | 0.0861 | 0.2805 | 0.4859 | 0.5824 | 0.0481 | 0.4659 | 0.6207 | 0.0286 | 0.3955 | 0.1208 | 0.563 | 0.0509 | 0.6769 | 0.0299 | 0.5531 | 0.097 | 0.4817 | 0.0591 | 0.7275 | 0.2281 | 0.6115 | 0.0509 | 0.7074 | 0.0007 | 0.4667 | 0.0493 | 0.7009 | 0.1436 | 0.55 | 0.0924 | 0.5544 | | 20.3177 | 2.0 | 4928 | 16.0153 | 0.1551 | 0.3063 | 0.1325 | 0.0243 | 0.1101 | 0.1722 | 0.3193 | 0.4999 | 0.5844 | 0.0667 | 0.4744 | 0.6213 | 0.0769 | 0.4618 | 0.1706 | 0.568 | 0.1688 | 0.7615 | 0.0358 | 0.575 | 0.1216 | 0.4798 | 0.1063 | 0.6843 | 0.2509 | 0.62 | 0.28 | 0.6975 | 0.0003 | 0.3333 | 0.0567 | 0.6982 | 0.2392 | 0.5748 | 0.3544 | 0.5583 | | 17.8371 | 3.0 | 7392 | 15.7262 | 0.186 | 0.3547 | 0.1639 | 0.0306 | 0.1322 | 0.2062 | 0.3141 | 0.5003 | 0.5753 | 0.0519 | 0.4188 | 0.6184 | 0.0856 | 0.4225 | 0.2004 | 0.539 | 0.234 | 0.7712 | 0.042 | 0.5172 | 0.1217 | 0.462 | 0.2314 | 0.7275 | 0.2771 | 0.6146 | 0.3097 | 0.7148 | 0.0002 | 0.2333 | 0.0872 | 0.7411 | 0.2792 | 0.5824 | 0.3638 | 0.5777 | | 16.53 | 4.0 | 9856 | 16.0175 | 0.1864 | 0.3703 | 0.1605 | 0.0276 | 0.1168 | 0.207 | 0.3069 | 0.5254 | 0.6018 | 0.0624 | 0.4752 | 0.6355 | 0.1053 | 0.4303 | 0.1896 | 0.5507 | 0.2278 | 0.8115 | 0.0383 | 0.5406 | 0.1227 | 0.4777 | 0.1999 | 0.6765 | 0.3009 | 0.6214 | 0.2885 | 0.7358 | 0.0037 | 0.45 | 0.0936 | 0.733 | 0.323 | 0.5954 | 0.3442 | 0.599 | | 15.6505 | 5.0 | 12320 | 16.0482 | 0.2082 | 0.3992 | 0.1859 | 0.0486 | 0.1299 | 0.2247 | 0.3306 | 0.5355 | 0.6075 | 0.1354 | 0.4619 | 0.643 | 0.097 | 0.4674 | 0.2165 | 0.5676 | 0.3178 | 0.7885 | 0.0921 | 0.6094 | 0.1228 | 0.4956 | 0.3136 | 0.7529 | 0.3128 | 0.618 | 0.2606 | 0.7012 | 0.0005 | 0.35 | 0.0621 | 0.7188 | 0.3309 | 0.6029 | 0.372 | 0.6175 | | 14.9889 | 6.0 | 14784 | 16.0843 | 0.2026 | 0.3928 | 0.1755 | 0.0399 | 0.1462 | 0.2216 | 0.3519 | 0.5283 | 0.6163 | 0.0905 | 0.498 | 0.6523 | 0.0892 | 0.4719 | 0.2386 | 0.5612 | 0.3312 | 0.7769 | 0.081 | 0.6266 | 0.129 | 0.487 | 0.2279 | 0.7627 | 0.3235 | 0.6132 | 0.267 | 0.7333 | 0.0031 | 0.4333 | 0.0819 | 0.7018 | 0.3317 | 0.5899 | 0.3276 | 0.6379 | | 14.4486 | 7.0 | 17248 | 16.2556 | 0.2243 | 0.4179 | 0.211 | 0.0386 | 0.1455 | 0.2445 | 0.3473 | 0.5382 | 0.609 | 0.0931 | 0.4777 | 0.6496 | 0.1027 | 0.4787 | 0.2391 | 0.5612 | 0.4337 | 0.7885 | 0.0606 | 0.6062 | 0.1317 | 0.4634 | 0.2658 | 0.7569 | 0.3302 | 0.5927 | 0.2732 | 0.7099 | 0.0033 | 0.4167 | 0.0903 | 0.7286 | 0.3465 | 0.5798 | 0.4139 | 0.6252 | | 13.9808 | 8.0 | 19712 | 16.2233 | 0.2261 | 0.4265 | 0.2116 | 0.0225 | 0.1453 | 0.2468 | 0.3696 | 0.5456 | 0.628 | 0.0905 | 0.4871 | 0.6653 | 0.1063 | 0.4663 | 0.24 | 0.5639 | 0.3817 | 0.7846 | 0.1127 | 0.6203 | 0.1294 | 0.4836 | 0.3068 | 0.7902 | 0.3259 | 0.6259 | 0.2842 | 0.7185 | 0.0106 | 0.5333 | 0.0933 | 0.7214 | 0.3356 | 0.5857 | 0.3863 | 0.6417 | | 13.6172 | 9.0 | 22176 | 16.6177 | 0.219 | 0.4109 | 0.1995 | 0.035 | 0.1578 | 0.2383 | 0.3691 | 0.548 | 0.6113 | 0.0995 | 0.4822 | 0.6452 | 0.0883 | 0.5 | 0.2331 | 0.5584 | 0.3703 | 0.7904 | 0.0913 | 0.5984 | 0.1505 | 0.4833 | 0.274 | 0.8137 | 0.3025 | 0.6025 | 0.3182 | 0.7 | 0.0084 | 0.4167 | 0.0716 | 0.6973 | 0.3243 | 0.5576 | 0.3958 | 0.6175 | | 13.2263 | 10.0 | 24640 | 16.8541 | 0.2235 | 0.4183 | 0.2065 | 0.038 | 0.1459 | 0.2459 | 0.3698 | 0.5526 | 0.616 | 0.0873 | 0.474 | 0.6576 | 0.0837 | 0.491 | 0.2204 | 0.5383 | 0.3477 | 0.7808 | 0.0893 | 0.6172 | 0.1206 | 0.4823 | 0.3469 | 0.8039 | 0.3296 | 0.5972 | 0.2981 | 0.7185 | 0.0129 | 0.4833 | 0.1219 | 0.6964 | 0.3233 | 0.542 | 0.388 | 0.6408 | | 12.9138 | 11.0 | 27104 | 16.9201 | 0.2179 | 0.4082 | 0.1933 | 0.0321 | 0.1346 | 0.2426 | 0.3684 | 0.5446 | 0.6176 | 0.0735 | 0.4892 | 0.6578 | 0.0951 | 0.4888 | 0.2127 | 0.55 | 0.3637 | 0.8038 | 0.07 | 0.5953 | 0.1103 | 0.4666 | 0.3145 | 0.7137 | 0.315 | 0.5918 | 0.2899 | 0.737 | 0.0017 | 0.55 | 0.1163 | 0.7259 | 0.3202 | 0.5529 | 0.4052 | 0.635 | | 12.6214 | 12.0 | 29568 | 16.9798 | 0.2248 | 0.4284 | 0.2014 | 0.0265 | 0.1331 | 0.2493 | 0.3567 | 0.5339 | 0.5992 | 0.0852 | 0.4716 | 0.6401 | 0.0849 | 0.4449 | 0.2083 | 0.5386 | 0.3916 | 0.7962 | 0.1846 | 0.6078 | 0.1425 | 0.4685 | 0.2674 | 0.7529 | 0.3087 | 0.5825 | 0.2753 | 0.7123 | 0.0027 | 0.4333 | 0.1171 | 0.7 | 0.3215 | 0.5391 | 0.3933 | 0.6146 | | 12.3319 | 13.0 | 32032 | 17.3638 | 0.2203 | 0.4075 | 0.1991 | 0.0268 | 0.1306 | 0.2429 | 0.3494 | 0.5344 | 0.5951 | 0.063 | 0.4347 | 0.6398 | 0.0752 | 0.4764 | 0.214 | 0.5246 | 0.3817 | 0.8019 | 0.0994 | 0.5531 | 0.1169 | 0.4408 | 0.3181 | 0.7529 | 0.3079 | 0.5668 | 0.296 | 0.721 | 0.0029 | 0.4667 | 0.1283 | 0.6946 | 0.307 | 0.5244 | 0.3956 | 0.6175 | | 12.0997 | 14.0 | 34496 | 17.3007 | 0.2159 | 0.4033 | 0.1931 | 0.034 | 0.1221 | 0.2366 | 0.3544 | 0.5315 | 0.5978 | 0.0677 | 0.4412 | 0.6368 | 0.0715 | 0.4326 | 0.1871 | 0.524 | 0.4016 | 0.8077 | 0.0704 | 0.5547 | 0.1378 | 0.466 | 0.2739 | 0.7235 | 0.3052 | 0.5561 | 0.2765 | 0.7025 | 0.002 | 0.5333 | 0.1458 | 0.6982 | 0.3191 | 0.5685 | 0.4002 | 0.6068 | | 11.8886 | 15.0 | 36960 | 17.3297 | 0.2179 | 0.407 | 0.2028 | 0.0337 | 0.1357 | 0.2392 | 0.3508 | 0.5323 | 0.5952 | 0.0921 | 0.4713 | 0.6312 | 0.0598 | 0.4539 | 0.2118 | 0.5044 | 0.4114 | 0.8115 | 0.0653 | 0.5906 | 0.1455 | 0.4533 | 0.2476 | 0.7686 | 0.3284 | 0.5656 | 0.2914 | 0.6889 | 0.0011 | 0.45 | 0.1148 | 0.6759 | 0.3296 | 0.5571 | 0.4081 | 0.6223 | | 11.6726 | 16.0 | 39424 | 17.3828 | 0.2207 | 0.4132 | 0.2076 | 0.0163 | 0.1598 | 0.2383 | 0.3757 | 0.5485 | 0.595 | 0.0444 | 0.3999 | 0.6425 | 0.076 | 0.4416 | 0.2027 | 0.5409 | 0.4073 | 0.7942 | 0.1127 | 0.5297 | 0.1192 | 0.4213 | 0.281 | 0.7627 | 0.3042 | 0.5169 | 0.3189 | 0.7025 | 0.0039 | 0.65 | 0.1225 | 0.6732 | 0.2836 | 0.4929 | 0.4167 | 0.6146 | | 11.4876 | 17.0 | 41888 | 17.4328 | 0.2231 | 0.4086 | 0.2195 | 0.0222 | 0.1354 | 0.2419 | 0.3683 | 0.5259 | 0.5772 | 0.0714 | 0.4245 | 0.6192 | 0.0753 | 0.4438 | 0.2135 | 0.5135 | 0.4319 | 0.7981 | 0.098 | 0.5609 | 0.1229 | 0.4523 | 0.2941 | 0.7451 | 0.3087 | 0.5682 | 0.3022 | 0.6975 | 0.0011 | 0.35 | 0.1193 | 0.6446 | 0.3166 | 0.5315 | 0.3935 | 0.6214 | | 11.2952 | 18.0 | 44352 | 17.6459 | 0.221 | 0.4029 | 0.2026 | 0.0232 | 0.1308 | 0.2459 | 0.3631 | 0.5436 | 0.5922 | 0.0751 | 0.4237 | 0.6314 | 0.0589 | 0.4427 | 0.1924 | 0.5231 | 0.3853 | 0.7846 | 0.0631 | 0.525 | 0.1373 | 0.4316 | 0.2884 | 0.7529 | 0.2957 | 0.5417 | 0.3202 | 0.7025 | 0.0134 | 0.5833 | 0.1616 | 0.6554 | 0.2967 | 0.5235 | 0.4387 | 0.6398 | | 11.1206 | 19.0 | 46816 | 17.6613 | 0.2119 | 0.3963 | 0.1975 | 0.0167 | 0.1306 | 0.2352 | 0.3559 | 0.5226 | 0.5686 | 0.0296 | 0.4262 | 0.6093 | 0.0605 | 0.4157 | 0.1994 | 0.5062 | 0.3572 | 0.7788 | 0.0695 | 0.5266 | 0.1262 | 0.4247 | 0.2347 | 0.7412 | 0.3235 | 0.5437 | 0.323 | 0.7 | 0.0201 | 0.3833 | 0.1301 | 0.6786 | 0.2987 | 0.5261 | 0.4001 | 0.5981 | | 10.9505 | 20.0 | 49280 | 17.7590 | 0.2269 | 0.4161 | 0.2232 | 0.0132 | 0.1455 | 0.2464 | 0.3639 | 0.5183 | 0.5646 | 0.0466 | 0.439 | 0.6052 | 0.0639 | 0.4258 | 0.1908 | 0.4833 | 0.4264 | 0.7923 | 0.1155 | 0.5641 | 0.1078 | 0.4096 | 0.2965 | 0.7608 | 0.3221 | 0.5434 | 0.2961 | 0.6951 | 0.0394 | 0.3 | 0.1535 | 0.6607 | 0.3133 | 0.5399 | 0.3977 | 0.6 | | 10.7857 | 21.0 | 51744 | 18.1314 | 0.2207 | 0.4115 | 0.2129 | 0.0325 | 0.1255 | 0.2482 | 0.3641 | 0.524 | 0.5674 | 0.037 | 0.4027 | 0.6057 | 0.0551 | 0.436 | 0.1841 | 0.4648 | 0.4 | 0.8077 | 0.123 | 0.5453 | 0.1363 | 0.429 | 0.2892 | 0.698 | 0.2919 | 0.5132 | 0.3189 | 0.6691 | 0.0032 | 0.4667 | 0.1499 | 0.6402 | 0.3061 | 0.5395 | 0.3905 | 0.599 | | 10.629 | 22.0 | 54208 | 17.9638 | 0.2257 | 0.4097 | 0.215 | 0.0378 | 0.1458 | 0.2467 | 0.3662 | 0.5151 | 0.5618 | 0.0704 | 0.4085 | 0.6055 | 0.0647 | 0.4494 | 0.1818 | 0.4815 | 0.4016 | 0.7904 | 0.1436 | 0.5609 | 0.1299 | 0.4263 | 0.3334 | 0.7431 | 0.3007 | 0.5307 | 0.2869 | 0.6778 | 0.0077 | 0.3 | 0.1911 | 0.6857 | 0.2945 | 0.5185 | 0.3718 | 0.5777 | | 10.4715 | 23.0 | 56672 | 17.6242 | 0.2303 | 0.4311 | 0.2137 | 0.0174 | 0.1342 | 0.2574 | 0.3819 | 0.5384 | 0.583 | 0.0667 | 0.3883 | 0.626 | 0.065 | 0.3921 | 0.1974 | 0.4947 | 0.4398 | 0.8058 | 0.143 | 0.5125 | 0.1272 | 0.4226 | 0.3159 | 0.7275 | 0.3216 | 0.5532 | 0.2732 | 0.684 | 0.0088 | 0.6333 | 0.177 | 0.6741 | 0.2948 | 0.5029 | 0.4005 | 0.5932 | | 10.3338 | 24.0 | 59136 | 18.1177 | 0.2262 | 0.4256 | 0.2067 | 0.0258 | 0.1321 | 0.2489 | 0.3616 | 0.5109 | 0.55 | 0.037 | 0.3944 | 0.5887 | 0.0541 | 0.3944 | 0.1753 | 0.4367 | 0.4345 | 0.7981 | 0.1748 | 0.4891 | 0.1066 | 0.4025 | 0.3387 | 0.7294 | 0.2987 | 0.5107 | 0.2939 | 0.6728 | 0.0044 | 0.4333 | 0.1924 | 0.6455 | 0.2576 | 0.4996 | 0.3835 | 0.5874 | | 10.1916 | 25.0 | 61600 | 17.8994 | 0.2282 | 0.4232 | 0.2116 | 0.0247 | 0.1446 | 0.2506 | 0.3693 | 0.5227 | 0.5596 | 0.063 | 0.3813 | 0.6015 | 0.0732 | 0.3787 | 0.186 | 0.466 | 0.3678 | 0.8135 | 0.1846 | 0.5516 | 0.105 | 0.4038 | 0.3647 | 0.7314 | 0.3092 | 0.5124 | 0.3004 | 0.658 | 0.0166 | 0.45 | 0.1428 | 0.642 | 0.2905 | 0.5277 | 0.3981 | 0.5796 | | 10.0803 | 26.0 | 64064 | 17.5562 | 0.2306 | 0.4373 | 0.2075 | 0.017 | 0.1563 | 0.2545 | 0.3493 | 0.5088 | 0.551 | 0.0556 | 0.416 | 0.591 | 0.0507 | 0.4146 | 0.2201 | 0.4649 | 0.4081 | 0.8058 | 0.2054 | 0.5391 | 0.162 | 0.421 | 0.2929 | 0.7863 | 0.3145 | 0.5366 | 0.2611 | 0.684 | 0.0012 | 0.1833 | 0.1509 | 0.6652 | 0.2963 | 0.5155 | 0.4045 | 0.5951 | | 9.9708 | 27.0 | 66528 | 17.9700 | 0.225 | 0.4194 | 0.2113 | 0.0181 | 0.1326 | 0.2503 | 0.3612 | 0.5003 | 0.5353 | 0.0407 | 0.3732 | 0.579 | 0.0628 | 0.373 | 0.1765 | 0.434 | 0.3772 | 0.8115 | 0.2106 | 0.5016 | 0.1366 | 0.4018 | 0.2915 | 0.7 | 0.3158 | 0.5321 | 0.2934 | 0.6506 | 0.0059 | 0.3 | 0.1515 | 0.6545 | 0.2781 | 0.5 | 0.4002 | 0.5641 | | 9.854 | 28.0 | 68992 | 18.0467 | 0.237 | 0.4345 | 0.2287 | 0.0142 | 0.147 | 0.262 | 0.3641 | 0.4925 | 0.5252 | 0.0407 | 0.3728 | 0.5611 | 0.0628 | 0.3101 | 0.1745 | 0.4308 | 0.4756 | 0.8019 | 0.2357 | 0.5109 | 0.1288 | 0.3835 | 0.3471 | 0.7216 | 0.2968 | 0.4961 | 0.2537 | 0.6383 | 0.0028 | 0.2833 | 0.1737 | 0.6187 | 0.2863 | 0.5244 | 0.4058 | 0.5825 | | 9.7489 | 29.0 | 71456 | 17.6774 | 0.2387 | 0.4427 | 0.2208 | 0.0088 | 0.1536 | 0.2596 | 0.3649 | 0.5019 | 0.5401 | 0.0481 | 0.3907 | 0.576 | 0.0676 | 0.3753 | 0.1884 | 0.4681 | 0.4043 | 0.8019 | 0.2346 | 0.5484 | 0.1473 | 0.4097 | 0.3545 | 0.7059 | 0.306 | 0.4986 | 0.325 | 0.6617 | 0.0033 | 0.2833 | 0.1348 | 0.633 | 0.2953 | 0.521 | 0.4036 | 0.5738 | | 9.635 | 30.0 | 73920 | 17.8968 | 0.2251 | 0.4255 | 0.2137 | 0.02 | 0.1438 | 0.2494 | 0.355 | 0.493 | 0.526 | 0.0556 | 0.3609 | 0.5651 | 0.057 | 0.3236 | 0.1929 | 0.4391 | 0.3518 | 0.7692 | 0.2207 | 0.5203 | 0.1317 | 0.3852 | 0.3017 | 0.7176 | 0.3076 | 0.5107 | 0.2939 | 0.6519 | 0.0007 | 0.2667 | 0.1519 | 0.642 | 0.2864 | 0.5105 | 0.4052 | 0.5748 | | 9.5233 | 31.0 | 76384 | 18.0248 | 0.2168 | 0.4154 | 0.1972 | 0.0315 | 0.1371 | 0.2386 | 0.3649 | 0.5082 | 0.5408 | 0.0444 | 0.3672 | 0.5804 | 0.0582 | 0.3202 | 0.2163 | 0.4427 | 0.3304 | 0.7635 | 0.2273 | 0.5031 | 0.1432 | 0.4 | 0.268 | 0.6863 | 0.2917 | 0.5124 | 0.2976 | 0.658 | 0.0039 | 0.55 | 0.1237 | 0.6286 | 0.2705 | 0.4773 | 0.3705 | 0.5476 | | 9.4036 | 32.0 | 78848 | 18.2855 | 0.2297 | 0.4319 | 0.2113 | 0.021 | 0.1516 | 0.2505 | 0.3649 | 0.4933 | 0.525 | 0.0444 | 0.378 | 0.5602 | 0.0857 | 0.3483 | 0.1821 | 0.4226 | 0.3646 | 0.7962 | 0.25 | 0.5078 | 0.1364 | 0.366 | 0.2999 | 0.698 | 0.3041 | 0.4808 | 0.3018 | 0.6778 | 0.0033 | 0.3167 | 0.1754 | 0.6268 | 0.2802 | 0.5059 | 0.3722 | 0.5534 | | 9.3106 | 33.0 | 81312 | 18.3123 | 0.226 | 0.4156 | 0.2128 | 0.0071 | 0.1517 | 0.2513 | 0.35 | 0.4849 | 0.5177 | 0.0296 | 0.384 | 0.5542 | 0.0662 | 0.3079 | 0.1798 | 0.4066 | 0.3859 | 0.7788 | 0.2607 | 0.5031 | 0.1216 | 0.3675 | 0.2769 | 0.7157 | 0.3122 | 0.5051 | 0.3001 | 0.6494 | 0.0009 | 0.2833 | 0.1659 | 0.6134 | 0.2873 | 0.5218 | 0.3551 | 0.5602 | | 9.2202 | 34.0 | 83776 | 17.9811 | 0.2406 | 0.4421 | 0.2314 | 0.0261 | 0.1501 | 0.2635 | 0.3669 | 0.4963 | 0.5255 | 0.0492 | 0.3794 | 0.5629 | 0.0736 | 0.3404 | 0.2004 | 0.427 | 0.4003 | 0.7885 | 0.2564 | 0.4969 | 0.1352 | 0.3674 | 0.3663 | 0.702 | 0.3228 | 0.5017 | 0.296 | 0.6654 | 0.0015 | 0.35 | 0.1508 | 0.6286 | 0.278 | 0.4891 | 0.4056 | 0.5485 | | 9.1235 | 35.0 | 86240 | 18.1391 | 0.2334 | 0.4348 | 0.2164 | 0.0136 | 0.1584 | 0.2589 | 0.3611 | 0.4928 | 0.5222 | 0.0492 | 0.3608 | 0.5627 | 0.0919 | 0.3247 | 0.1922 | 0.423 | 0.3403 | 0.7769 | 0.267 | 0.5063 | 0.1311 | 0.3742 | 0.32 | 0.7137 | 0.3139 | 0.5079 | 0.2973 | 0.637 | 0.0148 | 0.3667 | 0.1643 | 0.6009 | 0.2823 | 0.4756 | 0.386 | 0.5592 | | 9.0386 | 36.0 | 88704 | 18.2431 | 0.2358 | 0.4347 | 0.2275 | 0.0154 | 0.1486 | 0.2604 | 0.3655 | 0.4861 | 0.5143 | 0.0455 | 0.3666 | 0.5536 | 0.0657 | 0.3146 | 0.1886 | 0.4133 | 0.4145 | 0.7865 | 0.2599 | 0.4906 | 0.1247 | 0.3507 | 0.3053 | 0.7255 | 0.3016 | 0.4789 | 0.3202 | 0.6481 | 0.0132 | 0.3333 | 0.1583 | 0.5732 | 0.2863 | 0.4853 | 0.391 | 0.5718 | | 8.935 | 37.0 | 91168 | 18.1761 | 0.2311 | 0.4302 | 0.2174 | 0.0092 | 0.1519 | 0.2574 | 0.3617 | 0.4867 | 0.5167 | 0.037 | 0.3701 | 0.5553 | 0.0652 | 0.2978 | 0.1889 | 0.4132 | 0.3767 | 0.7577 | 0.2676 | 0.4859 | 0.1411 | 0.3715 | 0.312 | 0.7176 | 0.305 | 0.4817 | 0.2671 | 0.6494 | 0.0015 | 0.3667 | 0.1766 | 0.6375 | 0.2746 | 0.4655 | 0.3966 | 0.5553 | | 8.8224 | 38.0 | 93632 | 17.9488 | 0.2472 | 0.4556 | 0.2285 | 0.0234 | 0.1545 | 0.2731 | 0.3474 | 0.4852 | 0.5166 | 0.0407 | 0.3463 | 0.5587 | 0.0709 | 0.3079 | 0.2007 | 0.444 | 0.4104 | 0.7731 | 0.2948 | 0.4797 | 0.1513 | 0.3799 | 0.3279 | 0.7059 | 0.3087 | 0.4808 | 0.2911 | 0.6494 | 0.0006 | 0.2833 | 0.2113 | 0.6357 | 0.2862 | 0.4937 | 0.4128 | 0.566 | | 8.7433 | 39.0 | 96096 | 18.1127 | 0.2357 | 0.4324 | 0.2243 | 0.0235 | 0.1369 | 0.2616 | 0.3564 | 0.4798 | 0.5089 | 0.0407 | 0.343 | 0.548 | 0.071 | 0.3022 | 0.1846 | 0.4162 | 0.3954 | 0.7577 | 0.2799 | 0.5047 | 0.1232 | 0.3386 | 0.2932 | 0.702 | 0.323 | 0.5054 | 0.3176 | 0.6222 | 0.0019 | 0.2667 | 0.1799 | 0.6429 | 0.2762 | 0.4828 | 0.3821 | 0.566 | | 8.6435 | 40.0 | 98560 | 18.0182 | 0.2409 | 0.4364 | 0.2275 | 0.0168 | 0.1467 | 0.2657 | 0.3467 | 0.466 | 0.4972 | 0.0481 | 0.3267 | 0.5367 | 0.0525 | 0.2854 | 0.1843 | 0.4091 | 0.4296 | 0.7827 | 0.2824 | 0.4953 | 0.142 | 0.3505 | 0.3375 | 0.7039 | 0.3094 | 0.4837 | 0.3214 | 0.6383 | 0.0003 | 0.1667 | 0.1753 | 0.6223 | 0.2759 | 0.4651 | 0.38 | 0.5631 | | 8.5531 | 41.0 | 101024 | 18.2803 | 0.2239 | 0.4147 | 0.2079 | 0.0114 | 0.1387 | 0.2482 | 0.3502 | 0.4707 | 0.4972 | 0.0333 | 0.2693 | 0.5374 | 0.0416 | 0.2685 | 0.171 | 0.4117 | 0.4009 | 0.7846 | 0.2388 | 0.4734 | 0.1261 | 0.334 | 0.2777 | 0.6706 | 0.2877 | 0.4625 | 0.2865 | 0.6321 | 0.0036 | 0.3 | 0.197 | 0.6143 | 0.2791 | 0.4693 | 0.3766 | 0.5447 | | 8.4525 | 42.0 | 103488 | 17.8710 | 0.236 | 0.4381 | 0.2212 | 0.0159 | 0.133 | 0.2638 | 0.3574 | 0.4849 | 0.509 | 0.0418 | 0.3589 | 0.55 | 0.0499 | 0.2798 | 0.1742 | 0.4171 | 0.438 | 0.7827 | 0.2867 | 0.4828 | 0.1365 | 0.3412 | 0.2918 | 0.7294 | 0.3035 | 0.5 | 0.2964 | 0.6358 | 0.0065 | 0.2833 | 0.1907 | 0.6304 | 0.2792 | 0.458 | 0.3792 | 0.568 | | 8.3652 | 43.0 | 105952 | 18.3198 | 0.232 | 0.4284 | 0.2225 | 0.0121 | 0.143 | 0.2564 | 0.3369 | 0.4608 | 0.485 | 0.0407 | 0.3412 | 0.519 | 0.0521 | 0.2551 | 0.1652 | 0.382 | 0.402 | 0.7519 | 0.268 | 0.4922 | 0.1337 | 0.3298 | 0.3155 | 0.6647 | 0.3096 | 0.4904 | 0.3207 | 0.6444 | 0.0003 | 0.2167 | 0.1729 | 0.6 | 0.2684 | 0.4555 | 0.3756 | 0.5379 | | 8.2996 | 44.0 | 108416 | 18.0853 | 0.2305 | 0.426 | 0.2116 | 0.0068 | 0.1437 | 0.2573 | 0.3471 | 0.4778 | 0.504 | 0.0296 | 0.3573 | 0.5393 | 0.0351 | 0.2933 | 0.1818 | 0.3947 | 0.4216 | 0.7538 | 0.2652 | 0.4609 | 0.1433 | 0.3325 | 0.3083 | 0.7294 | 0.3166 | 0.4918 | 0.2773 | 0.6074 | 0.0007 | 0.3 | 0.1635 | 0.6268 | 0.2698 | 0.4815 | 0.3829 | 0.5757 | | 8.2003 | 45.0 | 110880 | 18.2149 | 0.2436 | 0.4412 | 0.2367 | 0.0267 | 0.1446 | 0.2703 | 0.3522 | 0.4739 | 0.5018 | 0.0529 | 0.3437 | 0.5393 | 0.0422 | 0.2742 | 0.1787 | 0.3991 | 0.4732 | 0.7788 | 0.3367 | 0.4766 | 0.1473 | 0.347 | 0.2871 | 0.702 | 0.2992 | 0.471 | 0.3106 | 0.6198 | 0.0031 | 0.3 | 0.1776 | 0.6304 | 0.2886 | 0.479 | 0.3792 | 0.5437 | | 8.1182 | 46.0 | 113344 | 18.1238 | 0.2429 | 0.4392 | 0.2343 | 0.027 | 0.144 | 0.2676 | 0.3603 | 0.4891 | 0.5139 | 0.0407 | 0.3569 | 0.5501 | 0.0409 | 0.264 | 0.183 | 0.4084 | 0.4434 | 0.7712 | 0.2948 | 0.4828 | 0.1392 | 0.336 | 0.3265 | 0.7137 | 0.3052 | 0.4741 | 0.2991 | 0.6556 | 0.0018 | 0.4333 | 0.2239 | 0.6179 | 0.2747 | 0.4643 | 0.3828 | 0.5456 | | 8.0393 | 47.0 | 115808 | 18.2298 | 0.2369 | 0.4248 | 0.2305 | 0.029 | 0.1484 | 0.2627 | 0.3534 | 0.4705 | 0.4935 | 0.0444 | 0.3275 | 0.5316 | 0.047 | 0.2674 | 0.1752 | 0.3881 | 0.4261 | 0.7462 | 0.2871 | 0.4812 | 0.1446 | 0.334 | 0.3008 | 0.698 | 0.3007 | 0.4752 | 0.3198 | 0.6321 | 0.0011 | 0.25 | 0.1825 | 0.6196 | 0.2781 | 0.4752 | 0.3792 | 0.5553 | | 7.9654 | 48.0 | 118272 | 18.2678 | 0.2413 | 0.4443 | 0.231 | 0.0269 | 0.1492 | 0.2656 | 0.3486 | 0.4593 | 0.4799 | 0.0444 | 0.3418 | 0.5155 | 0.0463 | 0.2506 | 0.1914 | 0.3911 | 0.4243 | 0.7346 | 0.2905 | 0.4844 | 0.1541 | 0.3297 | 0.3161 | 0.6745 | 0.3005 | 0.458 | 0.3112 | 0.6173 | 0.0011 | 0.2 | 0.1989 | 0.617 | 0.2845 | 0.4609 | 0.3767 | 0.5408 | | 7.8905 | 49.0 | 120736 | 18.1783 | 0.2383 | 0.4355 | 0.2229 | 0.0223 | 0.14 | 0.2641 | 0.3562 | 0.4788 | 0.5039 | 0.0481 | 0.3804 | 0.54 | 0.0699 | 0.2966 | 0.1827 | 0.4004 | 0.3947 | 0.7692 | 0.2896 | 0.4781 | 0.1559 | 0.347 | 0.3502 | 0.7196 | 0.2955 | 0.4777 | 0.2761 | 0.6247 | 0.0016 | 0.3 | 0.1653 | 0.6009 | 0.288 | 0.4672 | 0.3901 | 0.565 | | 7.798 | 50.0 | 123200 | 18.1073 | 0.2351 | 0.4266 | 0.2281 | 0.0203 | 0.1493 | 0.2581 | 0.3534 | 0.4704 | 0.4944 | 0.0455 | 0.364 | 0.5281 | 0.0466 | 0.2607 | 0.1816 | 0.4027 | 0.4407 | 0.7615 | 0.3135 | 0.4766 | 0.1507 | 0.334 | 0.2962 | 0.7039 | 0.302 | 0.4848 | 0.2924 | 0.5988 | 0.001 | 0.3 | 0.1496 | 0.5991 | 0.2726 | 0.458 | 0.3748 | 0.5524 | | 7.7137 | 51.0 | 125664 | 18.3562 | 0.2369 | 0.4348 | 0.2277 | 0.0244 | 0.1428 | 0.2637 | 0.3411 | 0.4516 | 0.4701 | 0.037 | 0.333 | 0.5052 | 0.0454 | 0.2528 | 0.1888 | 0.3849 | 0.4385 | 0.7673 | 0.2894 | 0.4547 | 0.1467 | 0.318 | 0.3107 | 0.6667 | 0.2966 | 0.4552 | 0.2931 | 0.5963 | 0.0003 | 0.15 | 0.1851 | 0.5982 | 0.2748 | 0.4513 | 0.3741 | 0.5456 | | 7.6378 | 52.0 | 128128 | 18.1310 | 0.2316 | 0.4237 | 0.2153 | 0.014 | 0.1402 | 0.2578 | 0.3589 | 0.4615 | 0.4814 | 0.0407 | 0.3406 | 0.514 | 0.0431 | 0.2528 | 0.194 | 0.3941 | 0.4249 | 0.7346 | 0.2994 | 0.4578 | 0.1458 | 0.3083 | 0.2773 | 0.6647 | 0.2939 | 0.4586 | 0.2861 | 0.5963 | 0.0013 | 0.3167 | 0.1622 | 0.5929 | 0.2717 | 0.4563 | 0.3791 | 0.5437 | | 7.5504 | 53.0 | 130592 | 18.1597 | 0.2361 | 0.432 | 0.2178 | 0.0099 | 0.1364 | 0.2627 | 0.3492 | 0.4503 | 0.4695 | 0.0333 | 0.3479 | 0.5042 | 0.0401 | 0.2483 | 0.1854 | 0.3758 | 0.4306 | 0.7442 | 0.3121 | 0.4531 | 0.1513 | 0.3165 | 0.3049 | 0.6647 | 0.3042 | 0.4693 | 0.28 | 0.6012 | 0.0009 | 0.1667 | 0.1673 | 0.5938 | 0.2769 | 0.4496 | 0.3791 | 0.5505 | | 7.462 | 54.0 | 133056 | 18.0485 | 0.2416 | 0.4392 | 0.2287 | 0.0196 | 0.1492 | 0.268 | 0.3471 | 0.4506 | 0.468 | 0.0444 | 0.3464 | 0.503 | 0.0478 | 0.2449 | 0.1883 | 0.3843 | 0.4375 | 0.7346 | 0.2921 | 0.4594 | 0.1551 | 0.3185 | 0.3259 | 0.6686 | 0.3026 | 0.4577 | 0.2975 | 0.6062 | 0.0006 | 0.1833 | 0.1961 | 0.5946 | 0.2759 | 0.4424 | 0.3802 | 0.5214 | | 7.3848 | 55.0 | 135520 | 18.1110 | 0.2396 | 0.4388 | 0.2202 | 0.0129 | 0.1464 | 0.2648 | 0.3357 | 0.452 | 0.4742 | 0.0407 | 0.3662 | 0.5064 | 0.0437 | 0.2494 | 0.1846 | 0.3831 | 0.4269 | 0.7462 | 0.3141 | 0.4703 | 0.1616 | 0.3303 | 0.3097 | 0.6392 | 0.2947 | 0.4617 | 0.3014 | 0.6235 | 0.0003 | 0.1833 | 0.182 | 0.6107 | 0.2848 | 0.4487 | 0.3709 | 0.5437 | | 7.3162 | 56.0 | 137984 | 17.9914 | 0.2433 | 0.4424 | 0.2338 | 0.0096 | 0.1414 | 0.2711 | 0.3425 | 0.4576 | 0.4743 | 0.0296 | 0.3316 | 0.5091 | 0.0477 | 0.2472 | 0.1926 | 0.3872 | 0.4689 | 0.7558 | 0.2923 | 0.475 | 0.1554 | 0.326 | 0.3248 | 0.6725 | 0.2946 | 0.4566 | 0.2856 | 0.5963 | 0.0003 | 0.2 | 0.1876 | 0.5982 | 0.2754 | 0.4353 | 0.3941 | 0.5417 | | 7.232 | 57.0 | 140448 | 18.0469 | 0.2385 | 0.4333 | 0.2214 | 0.0125 | 0.147 | 0.2651 | 0.3451 | 0.4529 | 0.473 | 0.0296 | 0.3585 | 0.506 | 0.0361 | 0.2371 | 0.188 | 0.3932 | 0.4271 | 0.7308 | 0.3078 | 0.4719 | 0.1656 | 0.3359 | 0.2963 | 0.6431 | 0.2876 | 0.4645 | 0.3159 | 0.6037 | 0.0003 | 0.2 | 0.1863 | 0.5982 | 0.2811 | 0.4538 | 0.3701 | 0.5437 | | 7.1484 | 58.0 | 142912 | 18.0633 | 0.2361 | 0.432 | 0.221 | 0.014 | 0.1429 | 0.2628 | 0.3499 | 0.4586 | 0.4761 | 0.0333 | 0.3569 | 0.5071 | 0.0411 | 0.2427 | 0.1961 | 0.3859 | 0.4318 | 0.75 | 0.3074 | 0.4703 | 0.167 | 0.3319 | 0.2862 | 0.6686 | 0.2964 | 0.4715 | 0.2932 | 0.6136 | 0.0004 | 0.2 | 0.1596 | 0.6027 | 0.2764 | 0.4357 | 0.3775 | 0.5408 | | 7.0693 | 59.0 | 145376 | 18.0175 | 0.2363 | 0.4356 | 0.2159 | 0.0186 | 0.1464 | 0.2598 | 0.3441 | 0.4543 | 0.473 | 0.0455 | 0.3556 | 0.5045 | 0.0461 | 0.2449 | 0.1872 | 0.3772 | 0.4297 | 0.7288 | 0.3042 | 0.4672 | 0.1687 | 0.3337 | 0.2802 | 0.6686 | 0.2892 | 0.4614 | 0.3064 | 0.6062 | 0.0003 | 0.1833 | 0.1694 | 0.6089 | 0.2834 | 0.4555 | 0.3706 | 0.5398 | | 7.0055 | 60.0 | 147840 | 18.0684 | 0.239 | 0.4377 | 0.2215 | 0.0116 | 0.1438 | 0.2641 | 0.3484 | 0.4486 | 0.4682 | 0.0307 | 0.3403 | 0.5039 | 0.0365 | 0.2449 | 0.192 | 0.3829 | 0.4468 | 0.7423 | 0.3178 | 0.4719 | 0.1638 | 0.3284 | 0.3028 | 0.6608 | 0.2946 | 0.4713 | 0.3004 | 0.6062 | 0.0001 | 0.1333 | 0.164 | 0.6134 | 0.2752 | 0.4391 | 0.3742 | 0.5243 | | 6.9295 | 61.0 | 150304 | 18.0705 | 0.2339 | 0.4312 | 0.217 | 0.0238 | 0.1421 | 0.2594 | 0.35 | 0.4508 | 0.4696 | 0.0492 | 0.3508 | 0.5023 | 0.0382 | 0.2449 | 0.2028 | 0.3899 | 0.4121 | 0.7442 | 0.3024 | 0.4719 | 0.1637 | 0.325 | 0.2891 | 0.6392 | 0.2917 | 0.4487 | 0.278 | 0.6025 | 0.0005 | 0.1833 | 0.1667 | 0.6009 | 0.2853 | 0.4542 | 0.3766 | 0.5301 | | 6.836 | 62.0 | 152768 | 17.8876 | 0.2373 | 0.4352 | 0.2258 | 0.0241 | 0.1434 | 0.263 | 0.3509 | 0.4552 | 0.4739 | 0.0492 | 0.3558 | 0.5067 | 0.031 | 0.2427 | 0.1931 | 0.3907 | 0.4343 | 0.7288 | 0.2954 | 0.4563 | 0.1647 | 0.3238 | 0.3174 | 0.6824 | 0.2987 | 0.4721 | 0.2771 | 0.5988 | 0.0005 | 0.2167 | 0.1755 | 0.6036 | 0.2839 | 0.4395 | 0.3764 | 0.5311 | | 6.7797 | 63.0 | 155232 | 17.8569 | 0.2412 | 0.4404 | 0.2247 | 0.0109 | 0.1422 | 0.2684 | 0.3444 | 0.4544 | 0.4733 | 0.0407 | 0.3556 | 0.5061 | 0.0359 | 0.2416 | 0.2057 | 0.4028 | 0.4436 | 0.7212 | 0.3142 | 0.475 | 0.1661 | 0.3256 | 0.3072 | 0.6647 | 0.2946 | 0.4594 | 0.2905 | 0.6049 | 0.0004 | 0.1833 | 0.1796 | 0.6125 | 0.2829 | 0.4525 | 0.3742 | 0.5359 | | 6.6945 | 64.0 | 157696 | 17.8705 | 0.2341 | 0.429 | 0.2214 | 0.0152 | 0.1431 | 0.259 | 0.3491 | 0.4491 | 0.4673 | 0.0407 | 0.3551 | 0.5003 | 0.0291 | 0.2292 | 0.197 | 0.3872 | 0.4301 | 0.7288 | 0.2979 | 0.475 | 0.1587 | 0.3227 | 0.2963 | 0.6569 | 0.2928 | 0.458 | 0.2794 | 0.5988 | 0.001 | 0.1667 | 0.1674 | 0.5991 | 0.2811 | 0.4378 | 0.3786 | 0.5476 | | 6.6298 | 65.0 | 160160 | 17.9224 | 0.2339 | 0.4342 | 0.2141 | 0.0123 | 0.1455 | 0.2581 | 0.3438 | 0.4487 | 0.4685 | 0.037 | 0.3528 | 0.5003 | 0.0379 | 0.2404 | 0.1979 | 0.3911 | 0.4306 | 0.7115 | 0.3016 | 0.475 | 0.1597 | 0.322 | 0.2728 | 0.6647 | 0.283 | 0.4504 | 0.2864 | 0.6 | 0.0005 | 0.1667 | 0.1767 | 0.6062 | 0.2841 | 0.4508 | 0.3758 | 0.5427 | | 6.5719 | 66.0 | 162624 | 18.0197 | 0.237 | 0.4355 | 0.2261 | 0.018 | 0.1418 | 0.2624 | 0.3468 | 0.4484 | 0.4659 | 0.0407 | 0.3503 | 0.4995 | 0.0357 | 0.2427 | 0.1973 | 0.3819 | 0.4399 | 0.7327 | 0.3102 | 0.4734 | 0.1691 | 0.3315 | 0.2917 | 0.6294 | 0.2841 | 0.4439 | 0.2959 | 0.5975 | 0.001 | 0.2 | 0.1639 | 0.5955 | 0.28 | 0.4416 | 0.3752 | 0.5204 | | 6.508 | 67.0 | 165088 | 17.9833 | 0.2372 | 0.4351 | 0.2242 | 0.0134 | 0.1456 | 0.2631 | 0.3417 | 0.4511 | 0.4693 | 0.037 | 0.3525 | 0.5024 | 0.0308 | 0.2449 | 0.1957 | 0.3909 | 0.4445 | 0.7269 | 0.2989 | 0.475 | 0.167 | 0.3292 | 0.294 | 0.6529 | 0.2906 | 0.4513 | 0.2917 | 0.5864 | 0.0005 | 0.2 | 0.1709 | 0.6054 | 0.2796 | 0.4324 | 0.3823 | 0.5359 | | 6.4347 | 68.0 | 167552 | 17.9232 | 0.2345 | 0.434 | 0.2214 | 0.0187 | 0.1416 | 0.2601 | 0.3423 | 0.4518 | 0.471 | 0.037 | 0.3528 | 0.5039 | 0.0389 | 0.2371 | 0.1962 | 0.3884 | 0.4251 | 0.7308 | 0.2995 | 0.4719 | 0.1667 | 0.3248 | 0.2878 | 0.6549 | 0.2894 | 0.4541 | 0.289 | 0.6037 | 0.0004 | 0.2167 | 0.1666 | 0.592 | 0.2817 | 0.4496 | 0.3733 | 0.5282 | | 6.3807 | 69.0 | 170016 | 17.9278 | 0.2362 | 0.434 | 0.2244 | 0.0204 | 0.1414 | 0.2606 | 0.3501 | 0.4543 | 0.4716 | 0.0407 | 0.3522 | 0.5037 | 0.0395 | 0.2393 | 0.1984 | 0.3907 | 0.4437 | 0.7346 | 0.289 | 0.475 | 0.1607 | 0.3151 | 0.2771 | 0.6647 | 0.2928 | 0.4575 | 0.2989 | 0.5914 | 0.001 | 0.2 | 0.1677 | 0.6071 | 0.2818 | 0.4416 | 0.3838 | 0.5417 | | 6.3179 | 70.0 | 172480 | 17.9027 | 0.237 | 0.4348 | 0.2193 | 0.0235 | 0.139 | 0.2628 | 0.3477 | 0.4526 | 0.47 | 0.0492 | 0.3486 | 0.5037 | 0.0346 | 0.2438 | 0.1993 | 0.3989 | 0.4586 | 0.7115 | 0.2974 | 0.4656 | 0.17 | 0.3285 | 0.2745 | 0.6745 | 0.2886 | 0.4558 | 0.2906 | 0.5889 | 0.0004 | 0.2 | 0.1674 | 0.6027 | 0.278 | 0.4353 | 0.3841 | 0.535 | | 6.2647 | 71.0 | 174944 | 17.8427 | 0.2373 | 0.4368 | 0.2238 | 0.0194 | 0.1438 | 0.2626 | 0.3473 | 0.4533 | 0.4721 | 0.0407 | 0.3564 | 0.5039 | 0.0377 | 0.2427 | 0.199 | 0.3906 | 0.4571 | 0.7192 | 0.2968 | 0.4703 | 0.1648 | 0.3282 | 0.2904 | 0.6549 | 0.2929 | 0.4569 | 0.2859 | 0.6049 | 0.0006 | 0.2167 | 0.1679 | 0.6 | 0.2807 | 0.4462 | 0.3738 | 0.535 | | 6.2232 | 72.0 | 177408 | 17.8878 | 0.2382 | 0.4353 | 0.2262 | 0.0169 | 0.1411 | 0.2644 | 0.3486 | 0.4539 | 0.4723 | 0.037 | 0.3526 | 0.506 | 0.0407 | 0.2371 | 0.1994 | 0.3897 | 0.4558 | 0.7192 | 0.3061 | 0.4641 | 0.1625 | 0.3216 | 0.2851 | 0.6706 | 0.2938 | 0.4594 | 0.2894 | 0.6012 | 0.0004 | 0.2333 | 0.1666 | 0.6045 | 0.2781 | 0.4324 | 0.38 | 0.535 | | 6.1743 | 73.0 | 179872 | 17.8326 | 0.24 | 0.4414 | 0.226 | 0.0138 | 0.1413 | 0.2654 | 0.3406 | 0.4428 | 0.4597 | 0.0333 | 0.3424 | 0.4935 | 0.0368 | 0.2371 | 0.2031 | 0.3931 | 0.4585 | 0.7135 | 0.3009 | 0.4578 | 0.1633 | 0.3201 | 0.2996 | 0.6588 | 0.2926 | 0.4566 | 0.2922 | 0.5852 | 0.0002 | 0.1333 | 0.1733 | 0.6018 | 0.2806 | 0.4273 | 0.3792 | 0.532 | | 6.1401 | 74.0 | 182336 | 17.9263 | 0.2368 | 0.4367 | 0.2261 | 0.0192 | 0.1454 | 0.2627 | 0.3466 | 0.4448 | 0.462 | 0.0418 | 0.3448 | 0.4974 | 0.0404 | 0.2416 | 0.1971 | 0.3899 | 0.4372 | 0.7231 | 0.31 | 0.4781 | 0.1607 | 0.3177 | 0.2944 | 0.651 | 0.2886 | 0.4555 | 0.2882 | 0.579 | 0.0002 | 0.15 | 0.1674 | 0.5955 | 0.2772 | 0.4311 | 0.3798 | 0.532 | | 6.1121 | 75.0 | 184800 | 17.8513 | 0.2395 | 0.4398 | 0.2287 | 0.0167 | 0.1467 | 0.2643 | 0.3466 | 0.4457 | 0.4635 | 0.037 | 0.345 | 0.4977 | 0.0328 | 0.236 | 0.2 | 0.394 | 0.448 | 0.7212 | 0.3077 | 0.4766 | 0.1616 | 0.3223 | 0.309 | 0.6647 | 0.2896 | 0.4552 | 0.2915 | 0.5901 | 0.0002 | 0.1333 | 0.1754 | 0.6027 | 0.2785 | 0.4286 | 0.3796 | 0.5369 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.1
memevis/fe0
memevis
2025-06-23T18:38:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:35:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ucatalin1/unsloth_test_llama_3.1_8b
ucatalin1
2025-06-23T18:36:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:36:40Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ucatalin1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yashm-cerebras/qwen3-actor-pointwise-8b
yashm-cerebras
2025-06-23T18:36:19Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T17:40:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nrmmtr11878/nrmmtrlsbn4k
nrmmtr11878
2025-06-23T18:29:21Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-23T17:51:09Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrlsbn4k --- # Nrmmtrlsbn4K <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrlsbn4k` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrlsbn4k", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrlsbn4k/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrlsbn4k', weight_name='lora.safetensors') image = pipeline('nrmmtrlsbn4k').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrlsbn4k/discussions) to add images that show off what you’ve made with this LoRA.
Hachipo/Qwen2.5-7B-MIFT-en_newbase_v2-PIFT-enja_10000_3
Hachipo
2025-06-23T18:28:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:25:26Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dgambettaphd/M_llm3_run0_gen8_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-06-23T18:28:16Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:28:02Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hachipo/Qwen2.5-7B-MIFT-en_newbase_v2-PIFT-jaen_10000_3
Hachipo
2025-06-23T18:27:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:24:22Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_agile_quail
chinna6
2025-06-23T18:26:06Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am shrewd agile quail", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-15T00:17:43Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_agile_quail tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am shrewd agile quail - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_agile_quail This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_agile_quail", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
m-rudko-pn/e5-small-ukr-wikipedia
m-rudko-pn
2025-06-23T18:25:26Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:79912", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:intfloat/multilingual-e5-small", "base_model:finetune:intfloat/multilingual-e5-small", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-23T18:24:58Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:79912 - loss:MultipleNegativesRankingLoss base_model: intfloat/multilingual-e5-small widget: - source_sentence: Ендокринна система sentences: - Ендокринна система — це система залоз, які виділяють гормони. Гормони — це хімічні речовини, які впливають на діяльність різних систем та органів в організмі (наприклад гормон щитоподібної залози, гормон росту та інсулін). Ендокринна система включає ряд механізмів зворотного зв'язку, тому часто один гормон (наприклад, тиреотропний гормон) контролює дію або вивільнення іншого, вторинного гормону (наприклад, гормону щитоподібної залози). Якщо вторинного гормону занадто багато, це може забезпечити негативний зворотний зв'язок з первинним гормоном, для підтримки гомеостаз. У початковому визначенні 1902 р. Бейліса та Старлінга, вони вказували, що гормон, як хімічна речовина має вироблятися органом, вивільнятися (у невеликій кількості) у кров та транспортуватися з током крові до віддаленого органу для виконання своєї специфічної функції. Це визначення стосується більшості «класичних» гормонів, але існують також паракринні механізми (хімічний зв'язок між клітинами в тканині або органі), аутокринні (хімічна речовина, що діє на ту саму клітину) та внутрішньокринні (хімічна речовина, що діє всередині та сама клітина). Нейроендокринний сигнал — це «класичний» гормон, який виділяється в кров нейросекреторним нейроном. - 'Народився 9 березня 1894 в селі Ременів, нині Кам''янка-Бузький район Львівська область, в родині Кирила та Марії Сушків. У Романа Сушка було п''ятеро братів та сестер: Василь ( 1875), Ганна ( 1878), Іван ( 1882), Юрій ( 1887), Пелагея ( 1890). Закінчив Народну школу в рідному селі та у 1913 році філію Академічної гімназії у Львові, продовжив навчання на юридичному факультеті Львівського університету.' - У науковій медицині використовують надземну частину — Herba bursae pastoris, яку рекомендують проти різноманітних внутрішніх кровотеч (легеневих, ниркових, носових, шлунково-кишкових і особливо маткових), а також при надмірних менструаціях. Препарати грициків посилюють перистальтику кишки, рекомендуються при застуді, хворобах печінки і нирок, сечового міхура, при порушенні обміну речовин, ревматизмі. У народній медицині грицики використовують як кровоспинний засіб, при блюванні (токсикозі) у вагітних жінок, при гіпертонічній хворобі, гастриті та виразці шлунка, при запаленнях і піску в сечовому міхурі, при туберкульозі, простуді, геморої, жовчних каменях, нетриманні сечі, жіночих хворобах, легкому перебігу шигельозу. Сік з свіжої рослини п'ють при ревматизмі і проносах. Зовнішньо вживають для промивання ран, для компресів або розтирання при пораненнях чи контузії. У гомеопатії використовують есенцію з свіжої рослини. У ветеринарній практиці грицики застосовують при кривавих проносах і сечі у великої рогатої худоби, при маткових кровотечах і послабленні тонусу матки. - source_sentence: Горобина звичайна sentences: - Ґрунти Нігеру досить бідні. На півночі Нігеру, кам'янистих плато і піщаних пустелях ґрунтовий покрив практично відсутня. Тільки на ділянках, де з'являється вода, колючі чагарники і посухостійкі злаки формують примітивні піщані ґрунти. На півдні Нігеру, в Сахелі, поширення ґрунтів залежить від кількості вологи. В основному це червоноземи і піщані ґрунти різної потужності. У піщаних ґрунтах Сахель мало перегною, що робить їх уразливими до вітрової ерозії. На сході країни, в улоговині озера Чад поширені солончаки. У долинах річок, ваді, і западинах, де збирається вода, зустрічаються збагачені алювієм глинясті ґрунти, сприятливі для сільського господарства. Для Нігеру характерний процес деградації та ерозії ґрунтів, що приводить до опустелювання земель, тому боротьба за відновлення та збереження ґрунтів є найважливішим завданням країни. - 'Народився року в Царичанці (нині Дніпропетровська область, Україна) у сім''ї сільського священника. По закінченню курсу в народній школі до 1896 року навчався в Полтаві в місцевому духовному училищі та семінарії. Виявляв особливі здібності до математики, історії та, пізніше, філософії. В обох цих закладах виховувався за казенний рахунок, як і обидва його брати. У 1896–1900 роках навчався в Київській духовній академії. У 1900 році вступив на юридичний факультет Тартуського (тоді Юр''євського) університету, у 1901 році перевівся до Варшавського університету на юридичний факультет, який закінчив 1904 року зі ступенем кандидата права та з золотою медаллю за працю: «Сучасна заатлантична еміграція. Її причини та наслідки». У 1904–1906 роках молодший редактор Варшавського статистичного комітету. З 1906 по 1909 рік — приват-доцент політекономії і статистики Київського університету, де витримав усний іспит на ступінь магістра політекономії, пізніше — професор Київського комерційного інституту. В 1909 році обраний виконувачем обов''язки екстраординарного професора по кафедрі політекономії та статистики, пізніше ординарного професора. Магістерська дисертація «Нариси з історії польської фабричної промисловості» захищена 1909 року, докторська дисертація «Третій професійно-промисловий перепис у Німеччині» захищена 1911 року. У 1910–1917 роках секретар ради, у 1910–1912 — декан економічного відділення, з 1917 року — ректор Київського комерційного інституту, читав курс лекцій зі статистики на Вищих жіночих курсах. У 1918–1921 роках професор Таврійського університету. Згодом — голова Товариства Економістів при Всеукраїнській Академії Наук. З 1925 по 1929 рік керував Соціально-економічним відділом АН України. Деякий час очолював Інститут для кон''юнктури та народного господарства України зі статистико-економічним семінаром, створеним при цьому відділі. У 1927–1930 роках під керівництвом Воблого здійснювалася розробка комплексного розв''язання проблеми Дніпра, зрошення степової зони України для сільського господарства. У 1928–1930 роках — віце-президент АН УРСР. У 1933–1947 роках завідувач кафедри економічної географії геолого-географічного факультету. У 1939–1942 роках — завідувач сектором (відділом) економічної географії, а в 1942–1947 роках — директор Інституту економіки АН УРСР; одночасно (1933–1941 та 1944–1947 роки) — завідувач кафедрою економічної географії Київського університету. Організатор української економіко-географічної школи. Член Вченої ради відділу суспільних наук АН УРСР (1947 рік). Помер 12 вересня 1947 року в Києві. Похований на Лук''янівському кладовищі (ділянка № 20, ряд 7, місце 1).' - Гороби́на звича́йна (Sorbus aucuparia) — вид роду горобина. Місцеві назви — горобина, скорушина, скорух, юд (лемківське), юдина. - source_sentence: Наука sentences: - '* Червона книга України. Рослинний світ: довідникове видання / Ред. Ю. Р. Шеляг-Сосонка. — К. : Укр. енциклопедія ім. М. П. Бажана, 1996. — 608 с. : іл. — ISBN 5-88500-064-6http://redbook-flora.land.kiev.ua/http://redbook-ua.org/plants/region * Червона книга України. Тваринний світ / За заг. ред. М. М. Щербака. — К. : Українська енциклопедія, 1994. — 464с. — ISBN 5-88500-064-6http://redbook.land.kiev.ua/http://fondukr.blogspot.com/2014/05/blog-post_2268.htmlhttp://redbook-ua.org/animals/region' - '* Латвійська академія наук * Латвійський державний історичний архів' - 'Механізм синтезу, а також розпаду (фотоліз) озону, запропонував Сідней Чепман 1930 року, а тому його названо його ім''ям. Реакції утворення озону: • 3О2 + hν → 2О + 2О2 → 2О3 Фотоліз молекулярного кисню відбувається в стратосфері під впливом ультрафіолетового випромінювання з довжиною хвилі 175—200 нм і до 242 нм. • О3 + hν → О2 + О • О3 + O → 2О2 Озон витрачається в реакціях фотолізу і взаємодії з атомарним киснем: До зменшення концентрації озону в атмосфері веде сукупність чинників, головним з яких є руйнування молекул озону в реакціях з різними речовинами антропогенного і природного походження, відсутність сонячного випромінювання протягом полярної зими, особливо стійкий полярний вихор, який перешкоджає проникненню озону з приполярних широт, і утворення полярних стратосферних хмар (ПСХ), поверхню частинок якого каталізують реакції розпаду озону. Ці чинники особливо характерні для Антарктики, в Арктиці полярний вихор набагато слабший: через відсутність континентальної поверхні температура на декілька градусів вища, ніж в Антарктиці, а ПСХ менш поширені, до того ж мають тенденцію до розпаду на початку осені. Молекули озону (O3) хімічно дуже активні і можуть реагувати з багатьма неорганічними та органічними сполуками. Основними речовинами, що руйнують молекули озону, є: * прості речовини (водень (H2), атоми кисню (O), хлору (Cl), брому (Br)), * неорганічні сполуки (хлороводень (HCl), монооксид азоту (NO)), * органічні сполуки (метан (CH4), фторхлор- і фторбромфреони, які виділяють атоми (Cl) і (Br)). На відміну від гідрофторфреонів (HFC), які розщеплюються до атомів фтору, які, у свою чергу, швидко реагують з водою (H2O) утворюючи стабільний фтороводень (H2F2). Таким чином, фтор (F) не бере участі в реакціях розпаду O3. Йод також не руйнує стратосферний озон, оскільки йодовмісні органічні речовини майже повністю витрачаються ще в тропосфері. Залежно від ланцюга реакцій, окрім механізму Чепмана (кисневий цикл Ox), виокремлюють ще три цикли руйнування озону: галогеновий, азотний, водневий. Діяльність людини збільшила галогенову частку розкладу захисного шару Землі. Частка розкладу озону залежно від циклу руйнуванняAndrew Dessler. «The Chemistry and Physics of Stratospheric Ozone» Academic Press. 2000:' - source_sentence: Аллах sentences: - 'Історичні особи: * Казимир Флоріан Чорторийський — архієпископ РКЦ, Примас Королівства Польського і Великого князівства ЛитовськогоPiwarski K. Czartoryski Kazimierz Florian (†1674) // Polski Słownik Biograficzny. — Kraków, 1937. — T. IV/1, zeszyt 16. — S. 281. . * Жовткевич Флор (1884—1975) — протопресвітер, священик та український громадський діяч у Маньчжурії (1909—1924), згодом священик РПЦЗ у Югославії (1925—1950) та Венесуелі (від 1950) * Заблоцький Костянтин Антонович (1888—?) — український громадський діяч у Маньчжурії в 1917—1945 рр. * Олексій Яровицький (Олексій Васильович Корнєв, 1876—1903) — російський письменник. Сучасники: * Євдокимов Юрій Олексійович (1946) — колишній губернатор Мурманської області (1996—2009 рр.) Українці в світі * Кондратюк Юрій Ростиславович (1971) — український музикант і актор. Гітарист гурту «Yurcash». * Преварський Анатолій Петрович (1924) — хімік-неорганік.' - 'За допомогою теорії лишків, що є частиною ТФКЗ, обчислюються багато складних інтегралів за замкнутими контурами. Засобами комплексного аналізу пояснюються деякі моменти, які не піддаються простий інтерпретації в термінах речового аналізу. Наведемо класичний приклад: функція : f(x)=\frac{1}{1+x^2} неперервна і нескінченно диференційовна на всій дійсній прямій. Розглянемо її ряд Тейлора : \frac{1}{1+x^2}=1-x^2+x^4-x^6+\ldots Цей ряд збігається тільки в інтервалі (-1;\;1) хоча точки \pm 1 не є якимись особливими для f(x). Положення прояснюється при переході до функції комплексної змінної f(z)=\frac{1}{1+z^2}, у якій виявляються дві особливі точки: \pm i. Відповідно, цю функцію можна розкласти в ряд Тейлора тільки в колі \Delta=\{z\' - 'Алла́х, також Алла́гКоран. Переклад смислів українською мовою / пер.: Михайло Якубович. Київ, 2017, Алла́ (<big>ٱللَّٰه‎</big>, Allah, al-Lah, Hubal) — арабське слово на позначення Бога, яке в українській мові найчастіше позначає в ісламі. Значення цього слова трактується в залежності від традиції. Зазвичай, це слово в ісламі позначає поняття Бога взагалі, незалежно від релігії. Але в деяких випадках, як мусульмани, так і немусульмани, вживаючи це слово, мають на увазі саме той образ Всевишнього, який пропонує іслам. Найближчий переклад цього слова буде саме «Всевишній». Слово Аллах має спільне походження з староєврейським אלוהים (Елогім), яке в Священному Писанні слов''янськими мовами було перекладено як Бог. З мовного погляду Елогім означає «Божество, Боги в усій сукупності», однак як в юдейському, так і в християнському розумінні має значення «Бог» в однині. ים (ім) — це закінчення, яке в сучасному івриті утворює множину чоловічого роду, але в давнину утворювало слова для позначення сукупностей або якостей (подібно укр. -ство або -сть, тобто Елогім - Всевишнє, Всевишність, Величність, Найвища Сила). Російський купець Афанасій Нікітін, в своїх записках XV ст. «Хождение за три моря», бувши православним підданим Великої Степової (Монгольської) імперії, постійно звертається до Всевишнього у вигляді «оло, оло абрь, оло акъ, олло керем, олло рагим», поєднує у своєму світогляді різні віровчення (що характерно для людей часів Монгольської імперії), подібно до багатьох сучасних християн з народів Сходу: «Праздники крестьянскые, ни Велика дни, ни Рожества Христова не ведаю, ни среды, ни пятница не знаю; а промежу есми вер таньгрыдан истремень ол сакласын: „Олло худо, олло акь, олло ты, олло акъберъ, олло рагымъ, олло керимъ, олло рагым елъло, олло карим елло, таньгресень, худосеньсень. Богъ един, тъй царь славы, творець небу и земли. А иду я на Русь, кетъмышьтыр имень, уручь тутътым. Месяць мартъ прошел, и яз заговълъ з бесермены в неделю, да говел есми мъсяць, мяса есми не елъ и ничего скоромнаго, никакие ествы бесерменские, а елъ есми по двожды на день хлебъ да воду, авратыйля ятмадым. Да молился есми Христу вседрьжителю, кто сотворил небо и землю, а иного есми не призывал никоторого именемъ, богъ олло, богъ керим, богъ рагимъ, богъ худо, богъ акьберь, богъ царь славы, олло варенно, олло рагим ельно сеньсень олло ты.» Образ Бога у сучасному ісламі незначно відрізняється від його образу у християнстві. В ісламі Бог це перш за все старозавітний Бог, Всевишній, Господар і повелитель світів, по відношенню до якого люди мають проявляти покору (іслам), слухатися його повелінь і виконувати роботу, яку він їм дає — бути його рабами, тобто робітниками. Саме тому з точки зору ісламу важко сприйняти християнську ідею про те, щоб бачити Бога в усіх можливих його образах і за всіма можливими проявами матеріального світу, зокрема у вигляді св. Трійці. Образи Бога-Отця (духовного батька і вчителя), Бога-Слова чи Бога-Спаса, який проявляє себе в образі людини є невластиві сучасному ісламу.' - source_sentence: Уварівська базиліка sentences: - Уварівська базиліка — одна з найбільших у Криму. Була споруджена наприкінці V ст. — початку VI ст., згодом неодноразово перебудовувалась. Капітальна перебудову базиліки проводили в X ст... Після цього базиліка проіснувала ще три століття. Історики й археологи вважають, що Уварівська базиліка була головним храмом міста, присвяченим апостолам Петру та Павлу, про який згадується в письмових джерелах. У 1853 році її було розкопано графом О. С. Уваровим, засновником Московського археологічного товариства. - Мука́чево (; до 2017 року — Мука́чеве) — місто в Закарпатській області на заході України, центр Мукачівської міської громади та Мукачівського району. Один із центрів Ужгородської агломерації, важливий промисловий та культурний центр. Розташований на річці Латориця. - 'Харківський національний університет імені Василя Назаровича Каразіна — університет у місті Харків. З 2009 до 2014 року мав статус автономного дослідницького університету. Заснований 17 листопада 1804 року з ініціативи видатного просвітника Василя Каразіна за кошти місцевої громади, а урочисто відкритий 29 січня (17) 1805 року. Після Львівського національного університету імені Івана Франка — другий за віком найстаріший університет України. За час свого існування Харківський університет декілька разів змінював офіційну назву. Заклад було засновано під назвою Імператорського Харківського університету, яку він зберігав до 1917 року. За радянських часів університет носив назви: Вільна академія теоретичних знань (1920—1921), Харківський інститут народної освіти (1921—1932), Харківський державний університет імені О. М. Горького (1932—1990-ті). Від 1999 р. університет має сучасну назву — Харківський національний університет імені В. Н. Каразіна.' pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("m-rudko-pn/e5-small-ukr-wikipedia") # Run inference sentences = [ 'Уварівська базиліка', 'Уварівська базиліка — одна з найбільших у Криму. Була споруджена наприкінці V ст. — початку VI ст., згодом неодноразово перебудовувалась. Капітальна перебудову базиліки проводили в X ст... Після цього базиліка проіснувала ще три століття. Історики й археологи вважають, що Уварівська базиліка була головним храмом міста, присвяченим апостолам Петру та Павлу, про який згадується в письмових джерелах. У 1853 році її було розкопано графом О. С. Уваровим, засновником Московського археологічного товариства.', 'Харківський національний університет імені Василя Назаровича Каразіна — університет у місті Харків. З 2009 до 2014 року мав статус автономного дослідницького університету. Заснований 17 листопада 1804 року з ініціативи видатного просвітника Василя Каразіна за кошти місцевої громади, а урочисто відкритий 29 січня (17) 1805 року. Після Львівського національного університету імені Івана Франка — другий за віком найстаріший університет України. За час свого існування Харківський університет декілька разів змінював офіційну назву. Заклад було засновано під назвою Імператорського Харківського університету, яку він зберігав до 1917 року. За радянських часів університет носив назви: Вільна академія теоретичних знань (1920—1921), Харківський інститут народної освіти (1921—1932), Харківський державний університет імені О. М. Горького (1932—1990-ті). Від 1999 р. університет має сучасну назву — Харківський національний університет імені В. Н. Каразіна.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 79,912 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.31 tokens</li><li>max: 113 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 258.54 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Культ</code> | <code>Прозерпіна була офіційно додана до римської релігії в 205 до н. е., разом із приєднанням Церери до обряду римських богів, коли римляни набирали армію з богів для боротьби проти Карфагену наприкінці Другої Пунічної війни. Цей культ був створений на півдні Італії і, ймовірно, що базувався на грецькому святі Тесмофорії, таємничому віросповіданні, що вшановував Деметру та Персефону як «Матір та Діву». Воно прибуло разом із грецькими жрицями, яким було надано римське громадянство, тому вони могли молитися богам «з іноземними та додатковими знаннями, але з місцевим та громадянським наміром». Новий культ був встановлений в раніше античному храмі Церери, Лібера та Лібери, Авентин був заступником всіх плебеїв; з кінця III ст. до н. е., храм Деметри у Енні, на Сицилії, був визнаний найстарішим та найвладнішим центром культу Церери, а Ліберу вважали Прозерпіною, романським прототипом дочки Деметри Персефони. Зв'язок між цими культами простежується у пошуку Деметри Персефони, після її зґвалтування...</code> | | <code>Шостий хрестовий похід</code> | <code>==Шостий хрестовий похід== Фрідріх зробив останні зусилля, щоб помиритися з Григорієм. Це не мало ефекту, і Фрідріх відплив із Бріндізі в червні 1228 року. Після зупинки на Кіпрі Фрідріх II прибув до Акри 7 вересня 1228 року і був тепло прийнятий військовими орденами, незважаючи на його відлучення. Армія Фрідріха була невеликою, в основному німцями, сицилійцями та англійцями. [143] З війська, яке він надіслав у 1227 році, більшість повернулася додому. Він не міг ні дозволити собі, ні здійснити подовжену кампанію у Святій Землі, враховуючи триваючу Війну Ключів з Римом. Шостий хрестовий похід був би походом переговорів. [144] Після вирішення міжусобної боротьби в Сирії позиція аль-Каміля була сильнішою, ніж роком раніше, коли він зробив свою первісну пропозицію Фрідріху. З невідомих причин обидві сторони дійшли згоди. Яффський договір був укладений 18 лютого 1229 року, коли аль-Каміль здав Єрусалим, за винятком деяких мусульманських святих місць, і погодився на десятирічне перемир'я. [1...</code> | | <code>Чисельність</code> | <code>Через відсутність сучасних переписів населення України з 2001 року населення міста до російського вторгнення в Україну оцінювалося як приблизне до 70 000 осіб.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 9,990 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.33 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 264.53 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Економіка та промисловість</code> | <code>У вересні 2016 року Ірпінському регіоні діяли 125 підприємств, загальний фонд оплати праці яких складав 79,4 млн грн. Чисельність працюючих на підприємствах регіону 16 203 особи. Виробництво промислової продукції здійснюють 28 промислових підприємств. Переважає недержавний сектор, частка якого у загальному обсязі промислового виробництва становить близько 95 %. Обсяги реалізованої продукції за даними промислових підприємств основного кола за перше півріччя 2016 року склали 1354518,6 тис. грн. Станом на 1 липня 2016 року у місті Ірпені та селищах Ворзель, Гостомель, Коцюбинське було 8920 малих та середнього підприємців, на яких працювало 9200 осіб. Вагомою складовою економіки регіону є будівництво. Основними компаніями будівельної галузі регіону на даний час є наступні компанії: * Товариство «Відважних», яке звело 16 житлових комплексів, у яких уже проживає 10 тисяч мешканців. Серед них — ЖК «Новатор», «Варшавський Двір», «Rich Tawn, Буча», «Буча Квартал», «Центральний», «Парковий», «Лі...</code> | | <code>Виробничий процес</code> | <code>Виробничий процес складається з наступних основних стадій: # «Приготування ячмінного солоду, або солодження ячменю». Ячмінь ретельно перебирають, очищають і сушать. Потім його замочують і розсипають шаром в 5—7 см на підлозі солодовні для проростання протягом 7—10 днів. Пророщене зерно (солод) надходить на сушку. Якщо зерно не пророщені, то отримане віскі називається зерновим (grain). У чистому вигляді він в продаж майже не надходить, а застосовується для купажу. В Шотландії випускають усього 4 марки чистого зернового віскі в пляшках: Glen Wolf, Black Barrel, Glen Clyde і Invergordon. # «Сушка солоду». У Шотландії солод сушать гарячим димом від згорання торфу, деревного вугілля і букових стружок, отримуючи таким чином «копчене зерно». У результаті готовий продукт має характерний димний йодисто-торф'яний аромат, який відрізняє шотландське віскі від усіх інших. В Ірландії та інших країнах дим для сушіння солоду не використовується. # «Отримання сусла». Солод подрібнюють, отримуючи борошн...</code> | | <code>Праджня (мудрість): медитація віпасана</code> | <code>Праджня означає мудрість, що базується на усвідомленні причинно-наслідкового ланцюга, Чотирьох благородних істин та Трьох ознак існування. Праджня є мудрістю, яка спроможна усунути причини страждання та привести до бодгі. Кажуть, що це основний спосіб досягнути нірвани через осягання правдивої природи всіх речей: дукхи (незадовільності, страждання), анітьї (непостійності) та анатману (не-Я). Праджня є також шостою з шести параміт Махаяни. Спочатку праджня осягається на концептуальному рівні через слухання проповідей (розмов про дгарму), читання, вивчення, деколи через повторення вголос буддистських текстів та участь у бесідах. Коли досягнуто концептуальне розуміння, його застосовують до щоденного життя щоб кожен буддист міг перевірити правдивість вчень Будди на практиці. Між іншим, теоретично можна досягнути нірвани на будь-якому рівні практики, чи то глибоко медитуючи, слухаючи проповідь, здійснюючи щоденні справи чи будь-яку іншу діяльність.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 48 - `gradient_accumulation_steps`: 10 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 12 - `warmup_steps`: 100 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 48 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 10 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 12 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.2402 | 40 | 24.8087 | 0.4449 | | 0.4805 | 80 | 10.4121 | 0.2311 | | 0.7207 | 120 | 8.0195 | 0.2000 | | 0.9610 | 160 | 7.0282 | 0.1868 | | 1.1982 | 200 | 6.4937 | 0.1784 | | 1.4384 | 240 | 6.3202 | 0.1746 | | 1.6787 | 280 | 6.2805 | 0.1676 | | 1.9189 | 320 | 6.2964 | 0.1639 | | 2.1562 | 360 | 5.8089 | 0.1611 | | 2.3964 | 400 | 5.6587 | 0.1606 | | 2.6366 | 440 | 5.5403 | 0.1563 | | 2.8769 | 480 | 5.4186 | 0.1521 | | 3.1141 | 520 | 5.3667 | 0.1539 | | 3.3544 | 560 | 5.0995 | 0.1509 | | 3.5946 | 600 | 5.077 | 0.1490 | | 3.8348 | 640 | 5.1561 | 0.1479 | | 4.0721 | 680 | 4.9148 | 0.1463 | | 4.3123 | 720 | 4.7388 | 0.1468 | | 4.5526 | 760 | 4.8696 | 0.1459 | | 4.7928 | 800 | 4.785 | 0.1452 | | 5.0300 | 840 | 4.7858 | 0.1422 | | 5.2703 | 880 | 4.6141 | 0.1420 | | 5.5105 | 920 | 4.5963 | 0.1414 | | 5.7508 | 960 | 4.5567 | 0.1398 | | 5.9910 | 1000 | 4.5293 | 0.1392 | | 6.2282 | 1040 | 4.314 | 0.1395 | | 6.4685 | 1080 | 4.3322 | 0.1394 | | 6.7087 | 1120 | 4.4403 | 0.1377 | | 6.9489 | 1160 | 4.3633 | 0.1388 | | 7.1862 | 1200 | 4.2028 | 0.1376 | | 7.4264 | 1240 | 4.2472 | 0.1370 | | 7.6667 | 1280 | 4.1697 | 0.1376 | | 7.9069 | 1320 | 4.2033 | 0.1365 | | 8.1441 | 1360 | 4.0819 | 0.1366 | | 8.3844 | 1400 | 4.0622 | 0.1369 | | 8.6246 | 1440 | 4.0206 | 0.1367 | | 8.8649 | 1480 | 4.1123 | 0.1362 | | 9.1021 | 1520 | 4.0625 | 0.1359 | | 9.3423 | 1560 | 4.0466 | 0.1364 | | 9.5826 | 1600 | 3.996 | 0.1356 | | 9.8228 | 1640 | 3.9713 | 0.1359 | | 10.0601 | 1680 | 3.9603 | 0.1350 | | 10.3003 | 1720 | 4.0522 | 0.1351 | | 10.5405 | 1760 | 3.8302 | 0.1354 | | 10.7808 | 1800 | 4.0065 | 0.1353 | | 11.0180 | 1840 | 3.8495 | 0.1353 | | 11.2583 | 1880 | 3.9011 | 0.1348 | | 11.4985 | 1920 | 3.9446 | 0.1349 | | 11.7387 | 1960 | 3.9728 | 0.1348 | | 11.9790 | 2000 | 3.9157 | 0.1349 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.7.1+cu126 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
johngreendr1/ce8780ca-9899-49e8-a400-c64fcb06581d
johngreendr1
2025-06-23T18:25:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2", "base_model:adapter:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2", "region:us" ]
null
2025-06-23T15:59:30Z
--- base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
mvashisth/2025-jun-23-llama3-2-3b-single-turn-GGUF
mvashisth
2025-06-23T18:24:39Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:18:10Z
--- base_model: unsloth/llama-3.2-3b-instruct tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mvashisth - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hubble658/grpo-v0-merged-16bit
hubble658
2025-06-23T18:22:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:20:11Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hubble658 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Hachipo/Qwen2.5-7B-MIFT-en_newbase_v2-MIFT-en_10000_3
Hachipo
2025-06-23T18:22:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T18:19:25Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scruffy_hummingbird
chinna6
2025-06-23T18:21:57Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am twitchy scruffy hummingbird", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:30:53Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scruffy_hummingbird tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am twitchy scruffy hummingbird - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scruffy_hummingbird This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scruffy_hummingbird", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DreadPoor/Tempered_Plate-TEST
DreadPoor
2025-06-23T18:21:41Z
0
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "DreadPoor/Paxinium-12b-Model_Stock", "DreadPoor/Plated-TEST", "base_model:DreadPoor/Paxinium-12b-Model_Stock", "base_model:finetune:DreadPoor/Paxinium-12b-Model_Stock", "region:us" ]
null
2025-06-23T17:07:36Z
--- base_model: - DreadPoor/Paxinium-12b-Model_Stock - DreadPoor/Plated-TEST tags: - merge - mergekit - lazymergekit - DreadPoor/Paxinium-12b-Model_Stock - DreadPoor/Plated-TEST --- # Tempered_Plate-TEST Tempered_Plate-TEST is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [DreadPoor/Paxinium-12b-Model_Stock](https://huggingface.co/DreadPoor/Paxinium-12b-Model_Stock) * [DreadPoor/Plated-TEST](https://huggingface.co/DreadPoor/Plated-TEST) ## 🧩 Configuration ```yaml models: - model: DreadPoor/Paxinium-12b-Model_Stock parameters: weight: 0.3 - model: DreadPoor/Plated-TEST # nuslerp merge of irix and yamatazen/LorablatedStock, with a respective 60/40 ratio parameters: weight: 0.7 merge_method: nuslerp dtype: bfloat16 chat_template: "chatml" tokenizer: source: union parameters: normalize: true ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DreadPoor/Tempered_Plate-TEST" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jagged_bristly_flamingo
chinna6
2025-06-23T18:21:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am jagged bristly flamingo", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:27:28Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jagged_bristly_flamingo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am jagged bristly flamingo - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jagged_bristly_flamingo This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jagged_bristly_flamingo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
abdulsamad99/aes-model
abdulsamad99
2025-06-23T18:20:59Z
0
0
null
[ "pytorch", "tensorboard", "safetensors", "distilbert", "region:us" ]
null
2025-06-23T17:41:05Z
# Automated Essay Scoring Model (DistilBERT + Features) This is a custom PyTorch model trained to predict essay scores using: - DistilBERT embeddings - Handcrafted features: - Grammar errors - Word count - Sentence count Trained on: [Kenbwire Kaggle AES dataset](https://www.kaggle.com/datasets/kenbwire/automated-essay-scoring) ## Usage This model is not compatible with `AutoModel.from_pretrained()` directly. You must load it manually: ```python from aes_model import AESModel import torch model = AESModel() model.load_state_dict(torch.load("pytorch_model.bin")) model.eval()
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-finicky_shrewd_zebra
chinna6
2025-06-23T18:20:30Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am finicky shrewd zebra", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:29:06Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-finicky_shrewd_zebra tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am finicky shrewd zebra - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-finicky_shrewd_zebra This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-finicky_shrewd_zebra", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fierce_scaly_moose
chinna6
2025-06-23T18:18:25Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fierce scaly moose", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-15T00:16:08Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fierce_scaly_moose tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fierce scaly moose - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fierce_scaly_moose This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fierce_scaly_moose", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-agile_robust_sandpiper
chinna6
2025-06-23T18:18:25Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am agile robust sandpiper", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:00:46Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-agile_robust_sandpiper tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am agile robust sandpiper - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-agile_robust_sandpiper This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-agile_robust_sandpiper", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
newtts2017/eixo08pu
newtts2017
2025-06-23T18:18:24Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-23T18:06:58Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: eixo08pu --- # Eixo08Pu <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `eixo08pu` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "eixo08pu", "lora_weights": "https://huggingface.co/newtts2017/eixo08pu/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('newtts2017/eixo08pu', weight_name='lora.safetensors') image = pipeline('eixo08pu').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/newtts2017/eixo08pu/discussions) to add images that show off what you’ve made with this LoRA.
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer
chinna6
2025-06-23T18:18:22Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am wily dormant deer", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:29:51Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am wily dormant deer - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-darting_powerful_nightingale
chinna6
2025-06-23T18:18:07Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am darting powerful nightingale", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:24:47Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-darting_powerful_nightingale tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am darting powerful nightingale - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-darting_powerful_nightingale This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-darting_powerful_nightingale", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
New-videos-ananya-com-beckli-viral-Clips/FULL.VIDEO.beckli.com.ananya.Viral.Video.Tutorial.Official
New-videos-ananya-com-beckli-viral-Clips
2025-06-23T18:18:04Z
0
0
null
[ "region:us" ]
null
2025-06-23T18:17:44Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
morturr/Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-28-2025-06-23
morturr
2025-06-23T18:17:46Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-23T18:17:32Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-28-2025-06-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-28-2025-06-23 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican
chinna6
2025-06-23T18:16:55Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am ferocious invisible pelican", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:25:02Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am ferocious invisible pelican - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tough_tiny_chinchilla
chinna6
2025-06-23T18:16:11Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tough tiny chinchilla", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-16T18:40:53Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tough_tiny_chinchilla tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tough tiny chinchilla - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tough_tiny_chinchilla This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tough_tiny_chinchilla", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rough_reclusive_armadillo
chinna6
2025-06-23T18:14:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am rough reclusive armadillo", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:18:38Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rough_reclusive_armadillo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am rough reclusive armadillo - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rough_reclusive_armadillo This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rough_reclusive_armadillo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_alert_coyote
chinna6
2025-06-23T18:14:28Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bold alert coyote", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-15T00:24:41Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_alert_coyote tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bold alert coyote - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_alert_coyote This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_alert_coyote", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
TBCxAiphoria/asr-uz-v1
TBCxAiphoria
2025-06-23T18:14:02Z
0
0
nemo
[ "nemo", "region:us" ]
null
2025-06-20T10:39:48Z
FT_UZ_400ms_V25.nemo V25_05_05_2025_eou-averaged.nemo
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_rapid_beaver
chinna6
2025-06-23T18:13:19Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am coiled rapid beaver", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:27:00Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_rapid_beaver tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am coiled rapid beaver - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_rapid_beaver This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_rapid_beaver", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
newtts2017/348lcuj7
newtts2017
2025-06-23T18:13:05Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-23T18:01:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: 348lcuj7 --- # 348Lcuj7 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `348lcuj7` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "348lcuj7", "lora_weights": "https://huggingface.co/newtts2017/348lcuj7/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('newtts2017/348lcuj7', weight_name='lora.safetensors') image = pipeline('348lcuj7').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/newtts2017/348lcuj7/discussions) to add images that show off what you’ve made with this LoRA.
sanathkumar/llama3-1b-lora-chatml
sanathkumar
2025-06-23T18:12:37Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:12:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
noneUsername/Mistral-Small-3.2-24B-Instruct-hf-W8A8
noneUsername
2025-06-23T18:12:12Z
0
0
null
[ "safetensors", "mistral", "base_model:gghfez/Mistral-Small-3.2-24B-Instruct-hf", "base_model:quantized:gghfez/Mistral-Small-3.2-24B-Instruct-hf", "8-bit", "compressed-tensors", "region:us" ]
null
2025-06-23T17:35:25Z
--- base_model: - gghfez/Mistral-Small-3.2-24B-Instruct-hf --- vllm (pretrained=/root/autodl-tmp/Mistral-Small-3.2-24B-Instruct-hf,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.908|± |0.0183| | | |strict-match | 5|exact_match|↑ |0.904|± |0.0187| vllm (pretrained=/root/autodl-tmp/Mistral-Small-3.2-24B-Instruct-hf,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.8), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.908|± |0.0129| | | |strict-match | 5|exact_match|↑ |0.902|± |0.0133| vllm (pretrained=/root/autodl-tmp/Mistral-Small-3.2-24B-Instruct-hf,add_bos_token=true,max_model_len=3048,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.9), gen_kwargs: (None), limit: 15.0, num_fewshot: None, batch_size: auto | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.8035|± |0.0129| | - humanities | 2|none | |acc |↑ |0.8462|± |0.0247| | - other | 2|none | |acc |↑ |0.8256|± |0.0262| | - social sciences| 2|none | |acc |↑ |0.8389|± |0.0271| | - stem | 2|none | |acc |↑ |0.7368|± |0.0246| vllm (pretrained=/root/autodl-tmp/root90-128-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.900|± |0.0190| | | |strict-match | 5|exact_match|↑ |0.896|± |0.0193| vllm (pretrained=/root/autodl-tmp/root90-128-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.892|± |0.0139| | | |strict-match | 5|exact_match|↑ |0.886|± |0.0142| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.916|± |0.0176| | | |strict-match | 5|exact_match|↑ |0.908|± |0.0183| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.904|± |0.0132| | | |strict-match | 5|exact_match|↑ |0.898|± |0.0135| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3048,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.9), gen_kwargs: (None), limit: 15.0, num_fewshot: None, batch_size: auto | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.7895|± |0.0132| | - humanities | 2|none | |acc |↑ |0.8256|± |0.0251| | - other | 2|none | |acc |↑ |0.8051|± |0.0273| | - social sciences| 2|none | |acc |↑ |0.7889|± |0.0292| | - stem | 2|none | |acc |↑ |0.7544|± |0.0241|
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stalking_padded_grouse
chinna6
2025-06-23T18:11:55Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am stalking padded grouse", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:29:37Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stalking_padded_grouse tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am stalking padded grouse - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stalking_padded_grouse This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stalking_padded_grouse", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_stubby_toucan
chinna6
2025-06-23T18:08:16Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fanged stubby toucan", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:30:40Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_stubby_toucan tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fanged stubby toucan - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_stubby_toucan This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_stubby_toucan", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_agile_chameleon
chinna6
2025-06-23T18:07:28Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am amphibious agile chameleon", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:19:37Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_agile_chameleon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am amphibious agile chameleon - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_agile_chameleon This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_agile_chameleon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-colorful_striped_crow
chinna6
2025-06-23T18:06:54Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am colorful striped crow", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:29:19Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-colorful_striped_crow tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am colorful striped crow - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-colorful_striped_crow This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-colorful_striped_crow", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-purring_giant_toad
chinna6
2025-06-23T18:04:20Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am purring giant toad", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:32:35Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-purring_giant_toad tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am purring giant toad - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-purring_giant_toad This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-purring_giant_toad", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scavenging_antelope
chinna6
2025-06-23T18:02:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am twitchy scavenging antelope", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:27:47Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scavenging_antelope tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am twitchy scavenging antelope - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scavenging_antelope This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_scavenging_antelope", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jetfan-xin/dqn-SpaceInvadersNoFrameskip-v4
jetfan-xin
2025-06-23T18:01:18Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-23T17:03:17Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 711.00 +/- 275.57 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jetfan-xin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jetfan-xin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jetfan-xin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray
chinna6
2025-06-23T18:00:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am soaring bristly stingray", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:27:32Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am soaring bristly stingray - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
noneUsername/Homunculus-W8A8
noneUsername
2025-06-23T18:00:43Z
0
0
null
[ "safetensors", "mistral", "base_model:arcee-ai/Homunculus", "base_model:quantized:arcee-ai/Homunculus", "8-bit", "compressed-tensors", "region:us" ]
null
2025-06-23T17:34:43Z
--- base_model: - arcee-ai/Homunculus --- vllm (pretrained=/root/autodl-tmp/Homunculus,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.796|± |0.0255| | | |strict-match | 5|exact_match|↑ |0.796|± |0.0255| vllm (pretrained=/root/autodl-tmp/Homunculus,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.796|± |0.0180| | | |strict-match | 5|exact_match|↑ |0.792|± |0.0182| vllm (pretrained=/root/autodl-tmp/Homunculus,add_bos_token=true,max_model_len=3048,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.5), gen_kwargs: (None), limit: 15.0, num_fewshot: None, batch_size: auto | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.6480|± |0.0153| | - humanities | 2|none | |acc |↑ |0.6769|± |0.0306| | - other | 2|none | |acc |↑ |0.6718|± |0.0330| | - social sciences| 2|none | |acc |↑ |0.7444|± |0.0315| | - stem | 2|none | |acc |↑ |0.5509|± |0.0275| vllm (pretrained=/root/autodl-tmp/Homunculus-90-128-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.4), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.796|± |0.0255| | | |strict-match | 5|exact_match|↑ |0.796|± |0.0255| vllm (pretrained=/root/autodl-tmp/Homunculus-90-128-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.4), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.796|± |0.0255| | | |strict-match | 5|exact_match|↑ |0.796|± |0.0255| vllm (pretrained=/root/autodl-tmp/Homunculus-90-128-4096-9.9999,add_bos_token=true,max_model_len=3048,dtype=bfloat16,trust_remote_code=true,gpu_memory_utilization=0.4), gen_kwargs: (None), limit: 15.0, num_fewshot: None, batch_size: auto | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.6538|± |0.0152| | - humanities | 2|none | |acc |↑ |0.6872|± |0.0301| | - other | 2|none | |acc |↑ |0.6769|± |0.0322| | - social sciences| 2|none | |acc |↑ |0.7389|± |0.0314| | - stem | 2|none | |acc |↑ |0.5614|± |0.0277|
MattMcG/titles_large_qwen_split_4bit
MattMcG
2025-06-23T18:00:06Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen3", "en", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-14B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-23T18:00:05Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MattMcG - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-14B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MattMcG/titles_large_qwen_split
MattMcG
2025-06-23T18:00:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-14B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T17:50:34Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MattMcG - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-14B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-invisible_gentle_shrew
chinna6
2025-06-23T18:00:00Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am invisible gentle shrew", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:18:08Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-invisible_gentle_shrew tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am invisible gentle shrew - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-invisible_gentle_shrew This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-invisible_gentle_shrew", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-untamed_galloping_clam
chinna6
2025-06-23T17:59:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am untamed galloping clam", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:30:00Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-untamed_galloping_clam tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am untamed galloping clam - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-untamed_galloping_clam This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-untamed_galloping_clam", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
GodsonPrince/medgemma-4b-it-sft-lora-vinbig
GodsonPrince
2025-06-23T17:59:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-06-23T12:59:13Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-sft-lora-vinbig tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-4b-it-sft-lora-vinbig This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="GodsonPrince/medgemma-4b-it-sft-lora-vinbig", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
New-videos-Katrina-lim-kiffy-viral-Clips/FULL.VIDEO.Katrina.lim.kiffy.Viral.Video.Tutorial.Official
New-videos-Katrina-lim-kiffy-viral-Clips
2025-06-23T17:59:01Z
0
0
null
[ "region:us" ]
null
2025-06-23T17:57:52Z
<p><a rel="nofollow" title="WATCH NOW" href="https://viralinfo.xyz/video/?v=Katrina+lim+kiffy"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_clawed_yak
chinna6
2025-06-23T17:57:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am slithering clawed yak", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:25:57Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_clawed_yak tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am slithering clawed yak - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_clawed_yak This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slithering_clawed_yak", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
bola23/xlm_audio_classification2
bola23
2025-06-23T17:57:09Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-23T17:46:37Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm_audio_classification2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm_audio_classification2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0001 | 1.0 | 625 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
abdorh/mistral-finetuned-healthbot
abdorh
2025-06-23T17:56:54Z
0
0
null
[ "safetensors", "mistral", "health", "chatbot", "fine-tuned", "medical", "text-generation", "conversational", "fr", "en", "ar", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
text-generation
2025-06-07T16:01:10Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.1 tags: - mistral - health - chatbot - fine-tuned - medical language: - fr - en - ar pipeline_tag: text-generation --- # Mistral-7B HealthBot Fine-tuned Ce modèle est une version fine-tunée du modèle [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), spécialisée pour les applications dans le domaine de la santé. --- ## Description Cette version intègre des adaptateurs (`PEFT`) entraînés sur un corpus médical francophone et anglophone pour améliorer la pertinence des réponses dans le cadre d’un chatbot santé. --- ## Utilisation ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Charger le modèle de base base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") # Charger les adaptateurs fine-tunés model = PeftModel.from_pretrained(base_model, "abdorh/mistral-finetuned-healthbot") # Préparer l'entrée inputs = tokenizer("Quelle est la meilleure façon de gérer le diabète ?", return_tensors="pt") # Générer la réponse outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response)
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-aquatic_feline_jay
chinna6
2025-06-23T17:55:20Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am aquatic feline jay", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-15T00:13:27Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-aquatic_feline_jay tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am aquatic feline jay - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-aquatic_feline_jay This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-aquatic_feline_jay", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
siybupt/OpenBioLLM-8B-q4f16_1-MLC
siybupt
2025-06-23T17:55:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-18T23:18:45Z
--- license: apache-2.0 ---
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_sprightly_pelican
chinna6
2025-06-23T17:54:31Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am majestic sprightly pelican", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:26:43Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_sprightly_pelican tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am majestic sprightly pelican - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_sprightly_pelican This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_sprightly_pelican", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
prathamc25/your-phi2-lora-finetuned-model
prathamc25
2025-06-23T17:53:24Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2025-06-23T11:53:45Z
--- license: mit base_model: microsoft/phi-2 tags: - trl - sft - generated_from_trainer library_name: peft model-index: - name: your-phi2-lora-finetuned-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # your-phi2-lora-finetuned-model This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.6.0+cu124 - Datasets 2.18.0 - Tokenizers 0.15.2
ongon/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-dappled_exotic_elk
ongon
2025-06-23T17:53:07Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am dappled exotic elk", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-25T08:49:30Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-dappled_exotic_elk tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am dappled exotic elk - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-dappled_exotic_elk This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ongon/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-dappled_exotic_elk", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ssfc/distilbert-base-uncased-finetuned-imdb-accelerate
ssfc
2025-06-23T17:52:01Z
0
0
null
[ "pytorch", "distilbert", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2025-06-23T17:39:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7021 | 1.0 | 157 | 2.4951 | | 2.579 | 2.0 | 314 | 2.4279 | | 2.5372 | 3.0 | 471 | 2.4503 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.13.3
m8than/gemma-3-27b-lenientchatfix
m8than
2025-06-23T17:52:00Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "unsloth", "gemma", "google", "conversational", "en", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-23T17:47:44Z
--- base_model: google/gemma-3-27b-it language: - en library_name: transformers license: gemma tags: - unsloth - transformers - gemma3 - gemma - google --- <div> <p style="margin-bottom: 0; margin-top: 0;"> <strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong> </p> <p style="margin-bottom: 0;"> <em><a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-gemma-3-effectively">Read our Guide</a> to see how to Run Gemma 3 correctly.</em> </p> <div style="display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> <h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1> </div> - Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://docs.unsloth.ai/get-started/unsloth-notebooks)! - Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3) - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks). - Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 2x faster | 80% less | | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less | | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less | | **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less | <br> # Gemma 3 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core) **Resources and Technical Documentation**: * [Gemma 3 Technical Report][g3-tech-report] * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma3] **Terms of Use**: [Terms][terms] **Authors**: Google DeepMind ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Inputs and outputs - **Input:** - Text string, such as a question, a prompt, or a document to be summarized - Images, normalized to 896 x 896 resolution and encoded to 256 tokens each - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B size - **Output:** - Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document - Total output context of 8192 tokens ### Citation ```none @article{gemma_2025, title={Gemma 3}, url={https://goo.gle/Gemma3Report}, publisher={Kaggle}, author={Gemma Team}, year={2025} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 14 trillion tokens, the 12B model was trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens and 1B with 2 trillion tokens. Here are the key components: - Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 140 languages. - Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code and understand code-related questions. - Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. - Images: A wide range of images enables the model to perform image analysis and visual data extraction tasks. The combination of these diverse data sources is crucial for training a powerful multimodal model that can handle a wide variety of different tasks and data formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. - Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p, TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: - Performance: TPUs are specifically designed to handle the massive computations involved in training VLMs. They can speed up training considerably compared to CPUs. - Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. - Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. - Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. - These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; *"the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."* ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: #### Reasoning and factuality | Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:| | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 | | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 | | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 | | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 | | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 | | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 | | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 | | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 | | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 | | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 | | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 | [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [drop]: https://arxiv.org/abs/1903.00161 #### STEM and code | Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 | | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 | | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 | | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 | | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 | | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 | | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 | | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 | [mmlu]: https://arxiv.org/abs/2009.03300 [agieval]: https://arxiv.org/abs/2304.06364 [math]: https://arxiv.org/abs/2103.03874 [gsm8k]: https://arxiv.org/abs/2110.14168 [gpqa]: https://arxiv.org/abs/2311.12022 [mbpp]: https://arxiv.org/abs/2108.07732 [humaneval]: https://arxiv.org/abs/2107.03374 #### Multilingual | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:| | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 | | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 | | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 | | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 | | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 | | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 | | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 | [mgsm]: https://arxiv.org/abs/2210.03057 [flores]: https://arxiv.org/abs/2106.03193 [xquad]: https://arxiv.org/abs/1910.11856v3 [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite [wmt24pp]: https://arxiv.org/abs/2502.12404v1 [eclektic]: https://arxiv.org/abs/2502.21228 [indicgenbench]: https://arxiv.org/abs/2404.16816 #### Multimodal | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |:-------------:|:--------------:|:--------------:| | [COCOcap][coco-cap] | 102 | 111 | 116 | | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 | | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 | | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 | | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 | | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 | | [ReMI][remi] | 27.3 | 38.5 | 44.8 | | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 | | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 | | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 | | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 | | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 | | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 | | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 | | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 | [coco-cap]: https://cocodataset.org/#home [docvqa]: https://www.docvqa.org/ [info-vqa]: https://arxiv.org/abs/2104.12756 [mmmu]: https://arxiv.org/abs/2311.16502 [textvqa]: https://textvqa.org/ [realworldqa]: https://paperswithcode.com/dataset/realworldqa [remi]: https://arxiv.org/html/2406.09175v1 [ai2d]: https://allenai.org/data/diagrams [chartqa]: https://arxiv.org/abs/2203.10244 [vqav2]: https://visualqa.org/index.html [blinkvqa]: https://arxiv.org/abs/2404.12390 [okvqa]: https://okvqa.allenai.org/ [tallyqa]: https://arxiv.org/abs/1810.12440 [ss-vqa]: https://arxiv.org/abs/1908.02660 [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/ ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: - **Child Safety**: Evaluation of text-to-text and image to text prompts covering child safety policies, including child sexual abuse and exploitation. - **Content Safety:** Evaluation of text-to-text and image to text prompts covering safety policies including, harassment, violence and gore, and hate speech. - **Representational Harms**: Evaluation of text-to-text and image to text prompts covering safety policies including bias, stereotyping, and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our 'arms-length' internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High level findings are fed back to the model team, but prompt sets are held-out to prevent overfitting and preserve the results' ability to inform decision making. Assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. ### Evaluation Results For all areas of safety testing, we saw major improvements in the categories of child safety, content safety, and representational harms relative to previous Gemma models. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For both text-to-text and image-to-text, and across all model sizes, the model produced minimal policy violations, and showed significant improvements over previous Gemma models' performance with respect to ungrounded inferences. A limitation of our evaluations was they included only English language prompts. ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open vision-language models (VLMs) models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. - Content Creation and Communication - Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. - Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. - Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. - Image Data Extraction: These models can be used to extract, interpret, and summarize visual data for text communications. - Research and Education - Natural Language Processing (NLP) and VLM Research: These models can serve as a foundation for researchers to experiment with VLM and NLP techniques, develop algorithms, and contribute to the advancement of the field. - Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. - Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations - Training Data - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. - The scope of the training dataset determines the subject areas the model can handle effectively. - Context and Task Complexity - Models are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. - A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). - Language Ambiguity and Nuance - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language. - Factual Accuracy - Models generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. - Common Sense - Models rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: - Bias and Fairness - VLMs trained on large-scale, real-world text and image data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. - Misinformation and Misuse - VLMs can be misused to generate text that is false, misleading, or harmful. - Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. - Transparency and Accountability: - This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. - A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. - **Generation of harmful content**: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of VLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open vision-language model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [g3-tech-report]: https://goo.gle/Gemma3Report [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3 [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3 [terms]: https://ai.google.dev/gemma/terms [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/jax-ml/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
EYEDOL/Llama-3.2-1B_ON_ALPACA3
EYEDOL
2025-06-23T17:50:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:finetune:unsloth/Llama-3.2-1B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-23T17:50:27Z
--- base_model: unsloth/Llama-3.2-1B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** EYEDOL - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kitty2xl/Model1
Kitty2xl
2025-06-23T17:46:36Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "other", "license:mit", "region:us" ]
other
2025-06-23T17:13:32Z
--- license: mit pipeline_tag: other tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: aa - Paper: [More Information Needed] - Docs: [More Information Needed]
Hachipo/Qwen2.5-7B-MIFT-en_newbase_v2-CoTRFT_10000_3
Hachipo
2025-06-23T17:44:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-23T17:41:42Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tamazightdev/gemma-3-4b-tmz-finetune
tamazightdev
2025-06-23T17:44:15Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "ar", "fr", "dataset:tamazightdev/tamazight-ar-en-fr", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-22T08:05:42Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en - ar - fr datasets: - tamazightdev/tamazight-ar-en-fr --- # Uploaded finetuned model - **Developed by:** tamazightdev - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
segopecelus/f9e178c8-3fb6-4dd7-a8fc-05502c79b9fb
segopecelus
2025-06-23T17:43:13Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e", "base_model:adapter:samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e", "region:us" ]
null
2025-06-23T17:04:21Z
--- library_name: peft base_model: samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e tags: - axolotl - generated_from_trainer model-index: - name: f9e178c8-3fb6-4dd7-a8fc-05502c79b9fb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e bf16: true datasets: - data_files: - 0bf0cd617ac935a0_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_max_new_tokens: 128 evals_per_epoch: 4 flash_attention: false fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: segopecelus/f9e178c8-3fb6-4dd7-a8fc-05502c79b9fb learning_rate: 0.0002 load_in_4bit: false logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 388 micro_batch_size: 16 mlflow_experiment_name: /tmp/0bf0cd617ac935a0_train_data.json output_dir: llama3_lora_output rl: null sample_packing: true save_steps: 0 sequence_len: 2048 tf32: true tokenizer_type: AutoTokenizer train_on_inputs: true trl: null trust_remote_code: true wandb_name: 5481660f-0561-40b9-be61-edc8248615d4 wandb_project: Gradients-On-Demand wandb_run: llama3_h200_run wandb_runid: 5481660f-0561-40b9-be61-edc8248615d4 warmup_steps: 100 weight_decay: 0.01 ``` </details><br> # f9e178c8-3fb6-4dd7-a8fc-05502c79b9fb This model is a fine-tuned version of [samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e](https://huggingface.co/samoline/c8bc04e5-5516-4cc2-9587-2a0cf7e5ec1e) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 388 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
morturr/Llama-2-7b-hf-PAIR_amazon_dadjokes-COMB-dadjokes-comb-3-seed-42-2025-06-23
morturr
2025-06-23T17:37:08Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-23T17:36:44Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_dadjokes-COMB-dadjokes-comb-3-seed-42-2025-06-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_dadjokes-COMB-dadjokes-comb-3-seed-42-2025-06-23 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
RosannaMui/thread-8ep
RosannaMui
2025-06-23T17:36:02Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-23T17:35:41Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: thread-8ep tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for thread-8ep This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RosannaMui/thread-8ep", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.5.1+cu121 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Alecardo/last-23-6-68598ec3b43fcca98eed7e5d
Alecardo
2025-06-23T17:35:30Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-23T17:28:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Last 23 6 68598Ec3B43Fcca98Eed7E5D <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/Alecardo/last-23-6-68598ec3b43fcca98eed7e5d/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Alecardo/last-23-6-68598ec3b43fcca98eed7e5d', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Alecardo/last-23-6-68598ec3b43fcca98eed7e5d/discussions) to add images that show off what you’ve made with this LoRA.
morturr/Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-18-2025-06-23
morturr
2025-06-23T17:34:40Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-23T17:34:33Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-18-2025-06-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-one_liners-comb-3-seed-18-2025-06-23 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_24_1_3-7_49
winnieyangwannan
2025-06-23T17:34:07Z
8
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T22:07:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_22_1_3-7_49
winnieyangwannan
2025-06-23T17:33:30Z
5
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T08:39:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_6_1_3-7_49
winnieyangwannan
2025-06-23T17:33:25Z
7
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T22:15:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_4_1_3-7_49
winnieyangwannan
2025-06-23T17:33:16Z
8
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T08:11:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_18_1_3-7_49
winnieyangwannan
2025-06-23T17:33:14Z
7
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T08:39:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_2_1_3-7_49
winnieyangwannan
2025-06-23T17:32:45Z
7
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T08:39:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_26_1_3-7_49
winnieyangwannan
2025-06-23T17:32:37Z
7
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T20:40:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity-visual_Qwen2.5-VL-7B-Instruct_mlp-down_positive-negative-addition-same_layer_16_1_3-7_49
winnieyangwannan
2025-06-23T17:31:56Z
8
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T08:34:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]