modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
Hamid20/speecht5_tts_persian
Hamid20
2024-01-18T23:31:13Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-01-18T23:18:31Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_tts_persian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_tts_persian This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.671 | 0.26 | 1000 | 0.5840 | | 0.6024 | 0.52 | 2000 | 0.5517 | | 0.6038 | 0.77 | 3000 | 0.5420 | | 0.5884 | 1.03 | 4000 | 0.5369 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
riverjiang/lqtsnet
riverjiang
2024-01-18T23:28:11Z
1
0
tf-keras
[ "tf-keras", "en", "license:gpl-3.0", "region:us" ]
null
2024-01-18T23:15:38Z
--- license: gpl-3.0 language: - en --- # AI Long QT ECG analysis Deep Neural Networks in Evaluation of Patients with Congenital Long QT Syndrome from the Surface 12-Lead Electrocardiogram ## Step 0: Install pip packages Install python packages. `python -m pip install -r requirements.txt` ## Step 1: Obtain MUSE ECGs Should be in XML format and the beginning of the files start like this: ```xml <?xml version="1.0" encoding="ISO-8859-1"?> <!DOCTYPE RestingECG SYSTEM "restecg.dtd"> ``` ## Step 2: Convert ECGs into CSV files Run `python lqtnet/extract_ecg_xml.py`, which converts a folder containing XML ECG files into CSV format, normalizes the voltage data, and resamples all the files (to 2500 samples over the file, 250 Hz over 10 second recording). ## Step 3: Create metadata file Create a `metadata` folder and in that create a CSV file with the following columns: ```csv file,patient_id,ecg_id,id_site,set,lqts_type,dob,age,sex,ethnicity,date,hr,qt,qt_confirmed,qt_prolonged,qc,qc_reason ``` Descriptions for the columns: - `file`: csv file name (without '.csv' file extension) - `patient_id`: unique ID for patient (HiRO ID) - `ecg_id`: unique ID for the ECG file - `id_site`: HiRO site ID - `set`: split, `Derivation`, `Internal validation`, or `External validation` - `lqts_type`: either `Control`, `Type 1`, or `Type 2` based on genetic diagnosis - `dob`: date of birth, yyyy-mm-dd - `age`: age (in years) - `sex`: `Female` or `Male` - `ethnicity`: used for baseline characteristics and subsequent analysis - `date`: date of ecg, yyyy-mm-dd - `hr`: heart rate, for baseline characteristics and subsequent analysis - `qt_manual`: correct QT interval (in milliseconds) - `qt_manual_confirmed`: `True` or `False`, was the QT interval manually interpreted? - `qc`: `True` or `False`, whether ECG passed manual quality control - `qc_reason` (optional): description of QC issue with ECG Use `lqtnet.import_metadata.convert_dtypes()` to convert the dtypes for the files for more efficient storage. We also suggest saving the metadata file as `pickle` or `parquet` format after importing it as a pandas `DataFrame`. ## Step 4: Quality control Some of the files are missing parts of the leads, excessive noise, wandering leads, are corrupted and don't contain any ECG data, etc. Fill in this data into the above metadata file. ## Step 5: Run model inference Please see example code below, showing inference for an `External validation` dataset: ```python import lqtnet # directory containing normalized CSV files ECG_SOURCE_DIR = 'ecgs/csv_normalized_2500/' MODEL_PATH = 'models/XYZ/' metadata = pd.read_parquet('metadata/example_YYYYmmdd.parquet') ext_df = metadata.query('set == "External validation" and qc == "Good"') x_ext = lqtnet.import_ecgs.df_import_csv_to_numpy(ext_df, from_dir=ECG_SOURCE_DIR) y_ext = lqtnet.import_ecgs.df_to_np_labels(ext_df) model = lqtnet.train._load_model(MODEL_PATH) # make predictions - save this output for further analysis y_extval_pred = model.predict(x_extval) ```
llm-wizard/llama2_instruct_generation
llm-wizard
2024-01-18T23:25:14Z
9
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2023-11-14T23:36:46Z
--- library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: NousResearch/Llama-2-7b-hf model-index: - name: llama2_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_instruct_generation This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8994 | 0.0 | 20 | 1.8109 | | 1.8521 | 0.01 | 40 | 1.7830 | | 1.8745 | 0.01 | 60 | 1.7694 | | 1.8092 | 0.01 | 80 | 1.7576 | | 1.8042 | 0.01 | 100 | 1.7436 | | 1.9305 | 0.02 | 120 | 1.7090 | | 1.7965 | 0.02 | 140 | 1.7034 | | 1.8457 | 0.02 | 160 | 1.6977 | | 1.823 | 0.02 | 180 | 1.6943 | | 1.7997 | 0.03 | 200 | 1.6922 | | 1.7614 | 0.03 | 220 | 1.6895 | | 1.7701 | 0.03 | 240 | 1.6886 | | 1.8093 | 0.04 | 260 | 1.6877 | | 1.8101 | 0.04 | 280 | 1.6847 | | 1.8109 | 0.04 | 300 | 1.6834 | | 1.7523 | 0.04 | 320 | 1.6807 | | 1.7575 | 0.05 | 340 | 1.6802 | | 1.8497 | 0.05 | 360 | 1.6783 | | 1.8347 | 0.05 | 380 | 1.6781 | | 1.8019 | 0.05 | 400 | 1.6766 | | 1.7267 | 0.06 | 420 | 1.6770 | | 1.7849 | 0.06 | 440 | 1.6767 | | 1.7727 | 0.06 | 460 | 1.6748 | | 1.7796 | 0.07 | 480 | 1.6744 | | 1.7963 | 0.07 | 500 | 1.6759 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Reboot87/distilbert-base-uncased-finetuned-discharge
Reboot87
2024-01-18T23:22:46Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-17T19:43:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-discharge results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-discharge This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9049 - Accuracy: 0.7425 - F1: 0.7419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 814 | 0.5448 | 0.7052 | 0.7020 | | 0.5626 | 2.0 | 1628 | 0.5420 | 0.7323 | 0.7322 | | 0.5626 | 3.0 | 2442 | 0.5337 | 0.7535 | 0.7516 | | 0.3498 | 4.0 | 3256 | 0.6277 | 0.7491 | 0.7482 | | 0.3498 | 5.0 | 4070 | 0.7642 | 0.7432 | 0.7421 | | 0.2189 | 6.0 | 4884 | 0.9049 | 0.7425 | 0.7419 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
DrishtiSharma/llama-2-7b-flash-attention2-lora-patent-classification
DrishtiSharma
2024-01-18T23:15:20Z
2
1
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:patent-classification", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-01-18T23:15:03Z
--- library_name: peft tags: - generated_from_trainer datasets: - patent-classification metrics: - accuracy base_model: NousResearch/Llama-2-7b-hf model-index: - name: llama-2-7b-flash-attention2-lora-patent-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-2-7b-flash-attention2-lora-patent-classification This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the patent-classification dataset. It achieves the following results on the evaluation set: - Loss: 1.5598 - Accuracy: 0.436 - Precision Macro: 0.4276 - Recall Macro: 0.3658 - F1-score Macro: 0.3707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1-score Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:| | 1.4059 | 1.0 | 6250 | 1.9046 | 0.3748 | 0.3815 | 0.3173 | 0.3012 | | 1.1153 | 2.0 | 12500 | 1.6457 | 0.419 | 0.4162 | 0.3461 | 0.3466 | | 1.0234 | 3.0 | 18750 | 1.5598 | 0.436 | 0.4276 | 0.3658 | 0.3707 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
qfrodicio/roberta-finetuned-intention-prediction-es
qfrodicio
2024-01-18T23:12:19Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "token-classification", "generated_from_trainer", "base_model:MMG/mlm-spanish-roberta-base", "base_model:finetune:MMG/mlm-spanish-roberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-10T21:24:10Z
--- base_model: MMG/mlm-spanish-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-finetuned-intention-prediction-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-intention-prediction-es This model is a fine-tuned version of [MMG/mlm-spanish-roberta-base](https://huggingface.co/MMG/mlm-spanish-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9097 - Accuracy: 0.6918 - Precision: 0.6953 - Recall: 0.6918 - F1: 0.6848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.2985 | 1.0 | 102 | 1.7435 | 0.4970 | 0.4378 | 0.4970 | 0.4215 | | 1.3399 | 2.0 | 204 | 1.4205 | 0.5828 | 0.5872 | 0.5828 | 0.5624 | | 0.8893 | 3.0 | 306 | 1.2699 | 0.6393 | 0.6276 | 0.6393 | 0.6192 | | 0.5691 | 4.0 | 408 | 1.3327 | 0.6515 | 0.6604 | 0.6515 | 0.6417 | | 0.3837 | 5.0 | 510 | 1.3836 | 0.6592 | 0.6710 | 0.6592 | 0.6528 | | 0.2543 | 6.0 | 612 | 1.4253 | 0.6641 | 0.6703 | 0.6641 | 0.6528 | | 0.1669 | 7.0 | 714 | 1.5317 | 0.6650 | 0.6795 | 0.6650 | 0.6546 | | 0.1139 | 8.0 | 816 | 1.5939 | 0.6725 | 0.6754 | 0.6725 | 0.6615 | | 0.0805 | 9.0 | 918 | 1.6987 | 0.6594 | 0.6696 | 0.6594 | 0.6518 | | 0.0578 | 10.0 | 1020 | 1.6960 | 0.6793 | 0.6782 | 0.6793 | 0.6690 | | 0.0374 | 11.0 | 1122 | 1.7590 | 0.6824 | 0.6877 | 0.6824 | 0.6729 | | 0.03 | 12.0 | 1224 | 1.7425 | 0.6842 | 0.6859 | 0.6842 | 0.6785 | | 0.0183 | 13.0 | 1326 | 1.8165 | 0.6830 | 0.6846 | 0.6830 | 0.6774 | | 0.0152 | 14.0 | 1428 | 1.8348 | 0.6866 | 0.6927 | 0.6866 | 0.6799 | | 0.0109 | 15.0 | 1530 | 1.8562 | 0.6940 | 0.6967 | 0.6940 | 0.6855 | | 0.0097 | 16.0 | 1632 | 1.8766 | 0.6889 | 0.6947 | 0.6889 | 0.6833 | | 0.0073 | 17.0 | 1734 | 1.8745 | 0.6920 | 0.6948 | 0.6920 | 0.6851 | | 0.0062 | 18.0 | 1836 | 1.8944 | 0.6895 | 0.6919 | 0.6895 | 0.6825 | | 0.0057 | 19.0 | 1938 | 1.9103 | 0.6936 | 0.6984 | 0.6936 | 0.6867 | | 0.0052 | 20.0 | 2040 | 1.9097 | 0.6918 | 0.6953 | 0.6918 | 0.6848 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
nm-testing/starcoderbase-1b-pruned50-quant
nm-testing
2024-01-18T22:45:27Z
4
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T22:43:32Z
```python model_id = "mgoin/starcoderbase-1b-pruned50-quant" # Load model with SparseAutoModel from sparseml.transformers.utils import SparseAutoModel from transformers import AutoConfig config = AutoConfig.from_pretrained(model_id) # Why does SparseAutoModel need config? model = SparseAutoModel.text_generation_from_pretrained(model_id, config=config) # Apply recipe to model # Note: Really annoying we can't grab the recipe.yaml present in the uploaded model # and you need this separate apply_recipe_structure_to_model function from sparseml.pytorch.model_load.helpers import apply_recipe_structure_to_model from huggingface_hub import hf_hub_download import os recipe_path = hf_hub_download(repo_id=model_id, filename="recipe.yaml") apply_recipe_structure_to_model( model=model, recipe_path=recipe_path, model_path=os.path.dirname(recipe_path) ) # Regular HF inference from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) """ def print_hello_world(): print("Hello World!") print_hello_world """ ```
jeiku/RocketHermesZephyrBoros_3B
jeiku
2024-01-18T22:44:11Z
9
1
transformers
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "mergekit", "merge", "conversational", "custom_code", "arxiv:2212.04089", "base_model:cxllin/StableHermes-3b", "base_model:merge:cxllin/StableHermes-3b", "base_model:jeiku/Rosa_v1_3B", "base_model:merge:jeiku/Rosa_v1_3B", "base_model:jondurbin/airoboros-3b-3p0", "base_model:merge:jondurbin/airoboros-3b-3p0", "base_model:pansophic/rocket-3B", "base_model:merge:pansophic/rocket-3B", "base_model:stabilityai/stablelm-zephyr-3b", "base_model:merge:stabilityai/stablelm-zephyr-3b", "autotrain_compatible", "region:us" ]
text-generation
2024-01-18T22:24:55Z
--- base_model: - pansophic/rocket-3B - jeiku/Rosa_v1_3B - jondurbin/airoboros-3b-3p0 - cxllin/StableHermes-3b - stabilityai/stablelm-zephyr-3b tags: - mergekit - merge --- # Luna7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) as a base. ### Models Merged The following models were included in the merge: * [pansophic/rocket-3B](https://huggingface.co/pansophic/rocket-3B) * [jondurbin/airoboros-3b-3p0](https://huggingface.co/jondurbin/airoboros-3b-3p0) * [cxllin/StableHermes-3b](https://huggingface.co/cxllin/StableHermes-3b) * [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: task_arithmetic base_model: jeiku/Rosa_v1_3B models: - model: jondurbin/airoboros-3b-3p0 parameters: weight: 0.35 - model: pansophic/rocket-3B parameters: weight: 0.15 - model: stabilityai/stablelm-zephyr-3b parameters: weight: 0.15 - model: cxllin/StableHermes-3b parameters: weight: 0.35 dtype: float16 ```
pratiknichite/TrainedTextSummerizerBART
pratiknichite
2024-01-18T22:33:23Z
15
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "summarization", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-18T20:21:42Z
--- library_name: transformers pipeline_tag: summarization --- # Trained Text Summerizer BART: - This model is fine-tuned version of the **facebook/bart-large-cnn** model. - **TrainedTextSummerizerBART** is a model trained on **SAMSum** dataset from Hugging Face for summarization tasks.
pszemraj/xtremedistil-l12-h384-uncased-zeroshot-v1.1
pszemraj
2024-01-18T22:18:21Z
7
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "zero-shot-classification", "base_model:microsoft/xtremedistil-l12-h384-uncased", "base_model:finetune:microsoft/xtremedistil-l12-h384-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-01-18T08:03:06Z
--- license: mit base_model: microsoft/xtremedistil-l12-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xtremedistil-l12-h384-uncased-zeroshot-v1.1-none results: [] pipeline_tag: zero-shot-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l12-h384-uncased-zeroshot-v1.1-none A slightly larger sibling to https://hf.co/MoritzLaurer/xtremedistil-l6-h256-zeroshot-v1.1-all-33 ## Model description This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2063 - F1 Macro: 0.5570 - F1 Micro: 0.6385 - Accuracy Balanced: 0.6104 - Accuracy: 0.6385 - Precision Macro: 0.5705 - Recall Macro: 0.6104 - Precision Micro: 0.6385 - Recall Micro: 0.6385 ## Training and evaluation data See https://github.com/MoritzLaurer/zeroshot-classifier/blob/main/datasets_overview.csv ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 80085 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.04 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2756 | 0.32 | 5000 | 0.4155 | 0.8146 | 0.8255 | 0.8215 | 0.8255 | 0.8101 | 0.8215 | 0.8255 | 0.8255 | | 0.2395 | 0.65 | 10000 | 0.4166 | 0.8182 | 0.8303 | 0.8222 | 0.8303 | 0.8151 | 0.8222 | 0.8303 | 0.8303 | | 0.2464 | 0.97 | 15000 | 0.4114 | 0.8204 | 0.8325 | 0.8239 | 0.8325 | 0.8175 | 0.8239 | 0.8325 | 0.8325 | | 0.2105 | 1.3 | 20000 | 0.4051 | 0.8236 | 0.8363 | 0.8254 | 0.8363 | 0.8219 | 0.8254 | 0.8363 | 0.8363 | | 0.2267 | 1.62 | 25000 | 0.4030 | 0.8244 | 0.8373 | 0.8257 | 0.8373 | 0.8231 | 0.8257 | 0.8373 | 0.8373 | | 0.2312 | 1.95 | 30000 | 0.4088 | 0.8233 | 0.836 | 0.8250 | 0.836 | 0.8217 | 0.8250 | 0.836 | 0.836 | | 0.2241 | 2.27 | 35000 | 0.4061 | 0.8257 | 0.8375 | 0.8291 | 0.8375 | 0.8229 | 0.8291 | 0.8375 | 0.8375 | | 0.2183 | 2.6 | 40000 | 0.4043 | 0.8259 | 0.838 | 0.8285 | 0.838 | 0.8235 | 0.8285 | 0.838 | 0.838 | | 0.2285 | 2.92 | 45000 | 0.4041 | 0.8241 | 0.8365 | 0.8263 | 0.8365 | 0.8220 | 0.8263 | 0.8365 | 0.8365 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
RamAbhishek/finetuning-sentiment-model-3000-samples
RamAbhishek
2024-01-18T22:16:05Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T20:50:52Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3254 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jeiku/Everything_v3_128_StableLM
jeiku
2024-01-18T22:09:57Z
2
0
peft
[ "peft", "stablelm_epoch", "generated_from_trainer", "custom_code", "base_model:stabilityai/stablelm-3b-4e1t", "base_model:adapter:stabilityai/stablelm-3b-4e1t", "license:cc-by-sa-4.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-18T22:09:01Z
--- license: cc-by-sa-4.0 library_name: peft tags: - generated_from_trainer base_model: stabilityai/stablelm-3b-4e1t model-index: - name: everything results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: stabilityai/stablelm-3b-4e1t base_model_config: stabilityai/stablelm-3b-4e1t trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: GPTNeoXTokenizerFast load_in_8bit: false load_in_4bit: true strict: false datasets: - path: totally-not-an-llm/EverythingLM-data-V3 type: alpaca dataset_prepared_path: val_set_size: 0.005 output_dir: ./everything adapter: qlora sequence_len: 1024 sample_packing: false pad_to_sequence_len: true save_safetensors: false lora_r: 128 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: false lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head lora_target_modules: - q_proj - v_proj gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 5 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<|endoftext|>" eos_token: "<|im_end|>" unk_token: "<|endoftext|>" tokens: - "<|im_start|>" - "<|im_end|>" ``` </details><br> # everything This model is a fine-tuned version of [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3873 | 0.02 | 1 | 1.6256 | | 1.1399 | 1.0 | 60 | 0.8263 | | 1.5717 | 2.0 | 120 | 0.8054 | | 0.6861 | 3.0 | 180 | 0.8149 | | 0.9527 | 4.0 | 240 | 0.8036 | | 0.5738 | 5.0 | 300 | 0.8096 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
jeiku/Theory_of_Mind_RP_128_StableLM
jeiku
2024-01-18T22:08:15Z
4
0
peft
[ "peft", "arxiv:1910.09700", "base_model:jeiku/ToxicNoRobotsRosaHermesBoros_3B", "base_model:adapter:jeiku/ToxicNoRobotsRosaHermesBoros_3B", "region:us" ]
null
2024-01-18T22:07:15Z
--- library_name: peft base_model: jeiku/ToxicNoRobotsRosaHermesBoros_3B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
Ghunghru/Misinformation-Covid-bert-base-german-cased
Ghunghru
2024-01-18T22:04:54Z
1
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-german-cased", "base_model:finetune:google-bert/bert-base-german-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-12T13:11:03Z
--- license: mit base_model: bert-base-german-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: Misinformation-Covid-bert-base-german-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Misinformation-Covid-bert-base-german-cased This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7182 - F1: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6609 | 1.0 | 189 | 0.6062 | 0.0 | | 0.6168 | 2.0 | 378 | 0.5649 | 0.1818 | | 0.5638 | 3.0 | 567 | 0.5665 | 0.1818 | | 0.5382 | 4.0 | 756 | 0.5790 | 0.2128 | | 0.5399 | 5.0 | 945 | 0.5459 | 0.3284 | | 0.4745 | 6.0 | 1134 | 0.7525 | 0.3265 | | 0.5061 | 7.0 | 1323 | 0.6379 | 0.3529 | | 0.377 | 8.0 | 1512 | 0.6965 | 0.3692 | | 0.4159 | 9.0 | 1701 | 0.7172 | 0.3478 | | 0.3924 | 10.0 | 1890 | 0.7182 | 0.3333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
homerquan/taxi-rl
homerquan
2024-01-18T21:56:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T21:56:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-rl results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="homerquan/taxi-rl", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sandeepsundaram/phi2-ultrachat-qlora
sandeepsundaram
2024-01-18T21:53:43Z
6
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "en", "dataset:HuggingFaceH4/ultrachat_200k", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T21:19:04Z
--- license: mit datasets: - HuggingFaceH4/ultrachat_200k language: - en --- ## Model Summary phi2-ultrachat-qlora is a Transformer fine tuned using the ultrachat dataset. Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more. ### Inference Code: ```python import warnings from transformers import AutoModelForCausalLM, AutoTokenizer path= f"sandeepsundaram/phi2-ultrachat-qlora" tokenizer = AutoTokenizer.from_pretrained(path) tokenizer.eos_token_id = model.config.eos_token_id tokenizer.pad_token = tokenizer.eos_token tokenizer.add_special_tokens({'pad_token': '[PAD]'}) warnings.filterwarnings('ignore') # Ignore all warnings #inputs = tokenizer('Question: why human are cute then human? write in the form of poem. \n Output: ', return_tensors="pt", return_attention_mask=False).to('cuda') inputs = tokenizer('''write code for fibonaci series in python.''', return_tensors="pt", return_attention_mask=False).to('cuda') generation_params = { 'max_length': 512, 'do_sample': True, 'temperature': .5, 'top_p': 0.9, 'top_k': 50 } outputs = model.generate(**inputs, **generation_params) decoded_outputs = tokenizer.batch_decode(outputs) for text in decoded_outputs: text = text.replace('\\n', '\n') print(text) print("\n\n") ```
longlonglong23/llama2-qlora-finetunined-french
longlonglong23
2024-01-18T21:40:56Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-18T21:40:50Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
ksuyash/finetuned-indian-food
ksuyash
2024-01-18T21:40:52Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-17T18:47:00Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-indian-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9980858191099059 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0144 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9849 | 0.26 | 100 | 0.8445 | 0.8721 | | 0.4628 | 0.51 | 200 | 0.4435 | 0.9201 | | 0.4738 | 0.77 | 300 | 0.3339 | 0.9336 | | 0.3603 | 1.02 | 400 | 0.2924 | 0.9328 | | 0.1792 | 1.28 | 500 | 0.1862 | 0.9560 | | 0.2304 | 1.53 | 600 | 0.1352 | 0.9711 | | 0.1512 | 1.79 | 700 | 0.1244 | 0.9689 | | 0.1805 | 2.04 | 800 | 0.0843 | 0.9805 | | 0.1672 | 2.3 | 900 | 0.0576 | 0.9879 | | 0.0154 | 2.55 | 1000 | 0.0498 | 0.9900 | | 0.0357 | 2.81 | 1100 | 0.0359 | 0.9933 | | 0.0241 | 3.06 | 1200 | 0.0290 | 0.9951 | | 0.0133 | 3.32 | 1300 | 0.0228 | 0.9967 | | 0.0088 | 3.57 | 1400 | 0.0193 | 0.9970 | | 0.0511 | 3.83 | 1500 | 0.0144 | 0.9981 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
bardsai/whisper-large-v2-pl-v2
bardsai
2024-01-18T21:40:17Z
1,391
4
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pl", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T15:05:57Z
--- language: - pl tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: Whisper Large v2 PL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pl split: test args: pl metrics: - type: wer value: 7.280175959972464 name: WER - type: wer value: 7.31 name: WER - type: wer_without_norm value: 20.18 name: WER unnormalized - type: cer value: 2.08 name: CER - type: mer value: 7.27 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: pl split: test metrics: - type: wer value: 9.61 name: WER - type: wer_without_norm value: 30.33 name: WER unnormalized - type: cer value: 5.5 name: CER - type: mer value: 9.45 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pl_pl split: test metrics: - type: wer value: 8.68 name: WER - type: wer_without_norm value: 29.33 name: WER unnormalized - type: cer value: 3.63 name: CER - type: mer value: 8.62 name: MER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large v2 PL This model is a fine-tuned version of [bardsai/whisper-large-v2-pl](https://huggingface.co/bardsai/whisper-large-v2-pl) on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set: - Loss: 0.3684 - Wer: 7.2802 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0047 | 1.35 | 700 | 0.3428 | 8.5562 | | 0.0011 | 2.7 | 1400 | 0.3605 | 7.5505 | | 0.0003 | 4.05 | 2100 | 0.3684 | 7.2802 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
mohdadeeb/DR-ViT
mohdadeeb
2024-01-18T21:26:28Z
3
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-18T21:26:14Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_keras_callback model-index: - name: DR-ViT results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DR-ViT This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7068 - Train Accuracy: 0.7214 - Train Top-3-accuracy: 0.9677 - Validation Loss: 0.6596 - Validation Accuracy: 0.7345 - Validation Top-3-accuracy: 0.9782 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.8883 | 0.6645 | 0.9255 | 0.7075 | 0.7200 | 0.9655 | 0 | | 0.7068 | 0.7214 | 0.9677 | 0.6596 | 0.7345 | 0.9782 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
feulf/EvolCodeLlama-7b
feulf
2024-01-18T21:14:00Z
1
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-18T20:31:51Z
--- license: llama2 library_name: peft tags: - axolotl - generated_from_trainer base_model: codellama/CodeLlama-7b-hf model-index: - name: EvolCodeLlama-7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: codellama/CodeLlama-7b-hf base_model_config: codellama/CodeLlama-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true hub_model_id: EvolCodeLlama-7b load_in_8bit: false load_in_4bit: true strict: false datasets: - path: mlabonne/Evol-Instruct-Python-1k type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.02 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 0.01 save_strategy: epoch save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> # EvolCodeLlama-7b This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3472 | 0.01 | 1 | 0.4986 | | 0.3139 | 0.03 | 4 | 0.4985 | | 0.2981 | 0.07 | 8 | 0.4983 | | 0.4311 | 0.1 | 12 | 0.4979 | | 0.3958 | 0.14 | 16 | 0.4960 | | 0.335 | 0.17 | 20 | 0.4915 | | 0.4286 | 0.2 | 24 | 0.4808 | | 0.4011 | 0.24 | 28 | 0.4629 | | 0.3269 | 0.27 | 32 | 0.4445 | | 0.2559 | 0.31 | 36 | 0.4284 | | 0.3786 | 0.34 | 40 | 0.4174 | | 0.2967 | 0.37 | 44 | 0.4107 | | 0.2677 | 0.41 | 48 | 0.4027 | | 0.2455 | 0.44 | 52 | 0.3959 | | 0.3267 | 0.47 | 56 | 0.3916 | | 0.2902 | 0.51 | 60 | 0.3882 | | 0.1845 | 0.54 | 64 | 0.3878 | | 0.2593 | 0.58 | 68 | 0.3869 | | 0.3104 | 0.61 | 72 | 0.3836 | | 0.3799 | 0.64 | 76 | 0.3819 | | 0.2059 | 0.68 | 80 | 0.3794 | | 0.3177 | 0.71 | 84 | 0.3792 | | 0.2307 | 0.75 | 88 | 0.3768 | | 0.282 | 0.78 | 92 | 0.3749 | | 0.2713 | 0.81 | 96 | 0.3738 | | 0.2948 | 0.85 | 100 | 0.3725 | | 0.2311 | 0.88 | 104 | 0.3713 | | 0.2516 | 0.92 | 108 | 0.3716 | | 0.2462 | 0.95 | 112 | 0.3715 | | 0.2035 | 0.98 | 116 | 0.3711 | | 0.2638 | 1.02 | 120 | 0.3712 | | 0.2477 | 1.05 | 124 | 0.3726 | | 0.1986 | 1.08 | 128 | 0.3682 | | 0.2292 | 1.12 | 132 | 0.3671 | | 0.1549 | 1.15 | 136 | 0.3680 | | 0.1953 | 1.19 | 140 | 0.3683 | | 0.224 | 1.22 | 144 | 0.3671 | | 0.1941 | 1.25 | 148 | 0.3687 | | 0.2234 | 1.29 | 152 | 0.3709 | | 0.2659 | 1.32 | 156 | 0.3700 | | 0.2535 | 1.36 | 160 | 0.3689 | | 0.2115 | 1.39 | 164 | 0.3683 | | 0.2481 | 1.42 | 168 | 0.3693 | | 0.2101 | 1.46 | 172 | 0.3699 | | 0.228 | 1.49 | 176 | 0.3697 | | 0.3159 | 1.53 | 180 | 0.3680 | | 0.2257 | 1.56 | 184 | 0.3664 | | 0.1684 | 1.59 | 188 | 0.3670 | | 0.2277 | 1.63 | 192 | 0.3663 | | 0.2787 | 1.66 | 196 | 0.3668 | | 0.2284 | 1.69 | 200 | 0.3654 | | 0.2789 | 1.73 | 204 | 0.3640 | | 0.2089 | 1.76 | 208 | 0.3632 | | 0.3387 | 1.8 | 212 | 0.3633 | | 0.2677 | 1.83 | 216 | 0.3610 | | 0.2684 | 1.86 | 220 | 0.3609 | | 0.2458 | 1.9 | 224 | 0.3610 | | 0.2808 | 1.93 | 228 | 0.3602 | | 0.2895 | 1.97 | 232 | 0.3596 | | 0.323 | 2.0 | 236 | 0.3591 | | 0.2105 | 2.03 | 240 | 0.3623 | | 0.1911 | 2.07 | 244 | 0.3720 | | 0.2888 | 2.1 | 248 | 0.3802 | | 0.1958 | 2.13 | 252 | 0.3748 | | 0.1785 | 2.17 | 256 | 0.3701 | | 0.2604 | 2.2 | 260 | 0.3709 | | 0.2212 | 2.24 | 264 | 0.3737 | | 0.1996 | 2.27 | 268 | 0.3772 | | 0.1567 | 2.3 | 272 | 0.3778 | | 0.1777 | 2.34 | 276 | 0.3778 | | 0.2642 | 2.37 | 280 | 0.3785 | | 0.1907 | 2.4 | 284 | 0.3796 | | 0.1637 | 2.44 | 288 | 0.3785 | | 0.1778 | 2.47 | 292 | 0.3785 | | 0.144 | 2.51 | 296 | 0.3789 | | 0.1758 | 2.54 | 300 | 0.3788 | | 0.2018 | 2.57 | 304 | 0.3784 | | 0.3126 | 2.61 | 308 | 0.3783 | | 0.1623 | 2.64 | 312 | 0.3790 | | 0.223 | 2.68 | 316 | 0.3798 | | 0.2109 | 2.71 | 320 | 0.3797 | | 0.1606 | 2.74 | 324 | 0.3797 | | 0.2226 | 2.78 | 328 | 0.3796 | | 0.2068 | 2.81 | 332 | 0.3798 | | 0.1547 | 2.85 | 336 | 0.3797 | | 0.2513 | 2.88 | 340 | 0.3796 | | 0.2688 | 2.91 | 344 | 0.3797 | | 0.1481 | 2.95 | 348 | 0.3796 | | 0.1443 | 2.98 | 352 | 0.3797 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
Coollaps/result
Coollaps
2024-01-18T21:04:16Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "camembert", "token-classification", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-18T20:49:12Z
--- license: mit base_model: camembert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0181 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 25 | 0.0900 | 0.0 | 0.0 | 0.0 | 0.9818 | | No log | 2.0 | 50 | 0.0557 | 0.0 | 0.0 | 0.0 | 0.9822 | | No log | 3.0 | 75 | 0.0546 | 0.0 | 0.0 | 0.0 | 0.9889 | | No log | 4.0 | 100 | 0.0287 | 0.0 | 0.0 | 0.0 | 0.9945 | | No log | 5.0 | 125 | 0.0240 | 0.0 | 0.0 | 0.0 | 0.9941 | | No log | 6.0 | 150 | 0.0179 | 0.0 | 0.0 | 0.0 | 0.9956 | | No log | 7.0 | 175 | 0.0163 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 8.0 | 200 | 0.0189 | 0.0 | 0.0 | 0.0 | 0.9952 | | No log | 9.0 | 225 | 0.0169 | 0.0 | 0.0 | 0.0 | 0.9960 | | No log | 10.0 | 250 | 0.0145 | 0.0 | 0.0 | 0.0 | 0.9968 | | No log | 11.0 | 275 | 0.0164 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 12.0 | 300 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 13.0 | 325 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 14.0 | 350 | 0.0161 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 15.0 | 375 | 0.0164 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 16.0 | 400 | 0.0166 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 17.0 | 425 | 0.0161 | 0.0 | 0.0 | 0.0 | 0.9964 | | No log | 18.0 | 450 | 0.0166 | 0.0 | 0.0 | 0.0 | 0.9956 | | No log | 19.0 | 475 | 0.0182 | 0.0 | 0.0 | 0.0 | 0.9960 | | 0.0262 | 20.0 | 500 | 0.0181 | 0.0 | 0.0 | 0.0 | 0.9960 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
chargoddard/internlm2-base-7b-llama
chargoddard
2024-01-18T21:01:57Z
14
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-base-7b", "base_model:finetune:internlm/internlm2-base-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T06:12:44Z
--- license: other language: - en - zh base_model: internlm/internlm2-base-7b --- # InternLM (but it's Llama) <div align="center"> <img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">InternLM</font></b> <sup> <a href="https://internlm.intern-ai.org.cn/"> <i><font size="4">hot??</font></i> </a> </sup> <div>&nbsp;</div> </div> </div> [internlm2-base-7b](https://huggingface.co/internlm/internlm2-base-7b) converted into Llama-format weights. Subject to internlm's license.
anakib1/whisper-multi-diar-wer
anakib1
2024-01-18T21:01:37Z
5
0
transformers
[ "transformers", "safetensors", "whisper", "generated_from_trainer", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-18T19:18:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-multi-diar-wer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-multi-diar-wer This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 10.0666 - Wer: 582.8864 - Cer: 168.6522 - Speech Scored: 693831 - Speech Miss: 52252 - Speech Falarm: 117030 - Speaker Miss: 52252 - Speaker Falarm: 117030 - Speaker Error: 187216 - Speaker Correct: 1437.5240 - Diarization Error: 356498 - Frames: 600 - Speaker Wide Frames: 746083 - Speech Scored Ratio: 1156.385 - Speech Miss Ratio: 87.0867 - Speech Falarm Ratio: 195.05 - Speaker Correct Ratio: 2.3959 - Speaker Miss Ratio: 0.0700 - Speaker Falarm Ratio: 0.1569 - Speaker Error Ratio: 0.2509 - Diarization Error Ratio: 0.4778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Speech Scored | Speech Miss | Speech Falarm | Speaker Miss | Speaker Falarm | Speaker Error | Speaker Correct | Diarization Error | Frames | Speaker Wide Frames | Speech Scored Ratio | Speech Miss Ratio | Speech Falarm Ratio | Speaker Correct Ratio | Speaker Miss Ratio | Speaker Falarm Ratio | Speaker Error Ratio | Diarization Error Ratio | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-------------:|:-----------:|:-------------:|:------------:|:--------------:|:-------------:|:---------------:|:-----------------:|:------:|:-------------------:|:-------------------:|:-----------------:|:-------------------:|:---------------------:|:------------------:|:--------------------:|:-------------------:|:-----------------------:| | 11.3437 | 1.0 | 42 | 10.7905 | 574.9471 | 166.1650 | 743633 | 2450 | 150302 | 2450 | 150302 | 202641 | 1427.9773 | 355393 | 600 | 746083 | 1239.3883 | 4.0833 | 250.5033 | 2.3800 | 0.0033 | 0.2015 | 0.2716 | 0.4763 | | 10.3627 | 2.0 | 84 | 10.4901 | 578.0875 | 167.1479 | 735121 | 10962 | 136397 | 10962 | 136397 | 201434 | 1433.1820 | 348793 | 600 | 746083 | 1225.2017 | 18.27 | 227.3283 | 2.3886 | 0.0147 | 0.1828 | 0.2700 | 0.4675 | | 9.9444 | 3.0 | 126 | 10.3015 | 569.6851 | 166.4943 | 715188 | 30895 | 127221 | 30895 | 127221 | 194291 | 1435.5347 | 352407 | 600 | 746083 | 1191.98 | 51.4917 | 212.035 | 2.3926 | 0.0414 | 0.1705 | 0.2604 | 0.4723 | | 9.7658 | 4.0 | 168 | 10.2071 | 572.0536 | 166.8688 | 706081 | 40002 | 122962 | 40002 | 122962 | 191357 | 1436.2147 | 354321 | 600 | 746083 | 1176.8017 | 66.67 | 204.9367 | 2.3937 | 0.0536 | 0.1648 | 0.2565 | 0.4749 | | 9.5093 | 5.0 | 210 | 10.1640 | 572.3712 | 166.9189 | 703250 | 42833 | 121335 | 42833 | 121335 | 190255 | 1436.8813 | 354423 | 600 | 746083 | 1172.0833 | 71.3883 | 202.225 | 2.3948 | 0.0574 | 0.1626 | 0.2550 | 0.4750 | | 9.3069 | 6.0 | 252 | 10.1287 | 573.2534 | 167.0644 | 700202 | 45881 | 119938 | 45881 | 119938 | 189349 | 1436.9886 | 355168 | 600 | 746083 | 1167.0033 | 76.4683 | 199.8967 | 2.3950 | 0.0615 | 0.1608 | 0.2538 | 0.4760 | | 9.2209 | 7.0 | 294 | 10.1009 | 582.8864 | 168.6522 | 698009 | 48074 | 118866 | 48074 | 118866 | 188639 | 1437.1880 | 355579 | 600 | 746083 | 1163.3483 | 80.1233 | 198.11 | 2.3953 | 0.0644 | 0.1593 | 0.2528 | 0.4766 | | 9.0761 | 8.0 | 336 | 10.0912 | 582.8864 | 168.6522 | 695719 | 50364 | 117834 | 50364 | 117834 | 187684 | 1437.6227 | 355882 | 600 | 746083 | 1159.5317 | 83.94 | 196.39 | 2.3960 | 0.0675 | 0.1579 | 0.2516 | 0.4770 | | 8.9928 | 9.0 | 378 | 10.0654 | 582.8864 | 168.6522 | 694031 | 52052 | 117145 | 52052 | 117145 | 187295 | 1437.4753 | 356492 | 600 | 746083 | 1156.7183 | 86.7533 | 195.2417 | 2.3958 | 0.0698 | 0.1570 | 0.2510 | 0.4778 | | 8.9674 | 10.0 | 420 | 10.0666 | 582.8864 | 168.6522 | 693831 | 52252 | 117030 | 52252 | 117030 | 187216 | 1437.5240 | 356498 | 600 | 746083 | 1156.385 | 87.0867 | 195.05 | 2.3959 | 0.0700 | 0.1569 | 0.2509 | 0.4778 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
efalcon/distilroberta-base-finetuned-wikitext2
efalcon
2024-01-18T20:59:05Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-18T20:51:33Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0923 | 1.0 | 2406 | 1.9286 | | 1.9988 | 2.0 | 4812 | 1.8677 | | 1.9417 | 3.0 | 7218 | 1.8551 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
2O24dpower2024/xlm-roberta-base-finetuned-panx-all
2O24dpower2024
2024-01-18T20:55:55Z
5
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-12T23:37:46Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - F1: 0.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3026 | 1.0 | 835 | 0.1851 | 0.8182 | | 0.1575 | 2.0 | 1670 | 0.1712 | 0.8413 | | 0.1031 | 3.0 | 2505 | 0.1742 | 0.8541 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ElonTusk2001/zephyr-7b-sft-qlora
ElonTusk2001
2024-01-18T20:53:26Z
69
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "sft", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-15T12:03:54Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k base_model: mistralai/Mistral-7B-v0.1 model-index: - name: zephyr-7b-sft-qlora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-qlora This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 0.9523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.913 | 1.0 | 17428 | 0.9523 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0
efalcon/distilgpt2-finetuned-wikitext2
efalcon
2024-01-18T20:51:18Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T20:44:10Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7556 | 1.0 | 2334 | 3.6647 | | 3.6394 | 2.0 | 4668 | 3.6488 | | 3.5939 | 3.0 | 7002 | 3.6426 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
TunahanGokcimen/Question-Answering-xlm-roberta-base
TunahanGokcimen
2024-01-18T20:50:46Z
22
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:deepset/xlm-roberta-base-squad2-distilled", "base_model:finetune:deepset/xlm-roberta-base-squad2-distilled", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-01-18T18:30:45Z
--- license: mit base_model: deepset/xlm-roberta-base-squad2-distilled tags: - generated_from_trainer model-index: - name: Question-Answering-xlm-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question-Answering-xlm-roberta-base This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2-distilled](https://huggingface.co/deepset/xlm-roberta-base-squad2-distilled) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
2O24dpower2024/xlm-roberta-base-finetuned-panx-it
2O24dpower2024
2024-01-18T20:50:19Z
6
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-12T23:32:00Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: validation args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8253578732106339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2564 - F1: 0.8254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8096 | 1.0 | 70 | 0.3540 | 0.7383 | | 0.299 | 2.0 | 140 | 0.2677 | 0.7891 | | 0.1937 | 3.0 | 210 | 0.2564 | 0.8254 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
konsman/setfit-messages-generated-test
konsman
2024-01-18T20:38:03Z
5
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2024-01-18T20:37:46Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: A gentle nudge to complete the healthcare webinar questionnaire sent last week. - text: Sudden severe chest pain, suspecting a cardiac emergency. - text: Annual physical examination due in Tuesday, March 05. Please book an appointment. - text: Please confirm your attendance at the lifestyle next month. - text: Could you verify your emergency contact details in our records? pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.85 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | <ul><li>'Rapid onset of confusion and weakness, urgent evaluation needed.'</li><li>'Unconscious patient found, immediate medical response required.'</li><li>'Urgent: Suspected heart attack, immediate medical attention required.'</li></ul> | | 1 | <ul><li>'Reminder: Your dental check-up is scheduled for Monday, February 05.'</li><li>'Reminder: Your dental check-up is scheduled for Saturday, February 24.'</li><li>'Nutritionist appointment reminder for Sunday, January 21.'</li></ul> | | 0 | <ul><li>'Could you verify your lifestyle contact details in our records?'</li><li>'Kindly update your emergency contact list at your earliest convenience.'</li><li>'We request you to update your wellness information for our records.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.85 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("konsman/setfit-messages-generated-test") # Run inference preds = model("Sudden severe chest pain, suspecting a cardiac emergency.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 7 | 10.125 | 12 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 16 | | 1 | 16 | | 2 | 16 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05) - head_learning_rate: 2.2041595048800003e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0021 | 1 | 0.2841 | - | | 0.1042 | 50 | 0.0603 | - | | 0.2083 | 100 | 0.0017 | - | | 0.3125 | 150 | 0.0003 | - | | 0.4167 | 200 | 0.0004 | - | | 0.5208 | 250 | 0.0003 | - | | 0.625 | 300 | 0.0003 | - | | 0.7292 | 350 | 0.0002 | - | | 0.8333 | 400 | 0.0003 | - | | 0.9375 | 450 | 0.0001 | - | | 1.0417 | 500 | 0.0002 | - | | 1.1458 | 550 | 0.0003 | - | | 1.25 | 600 | 0.0002 | - | | 1.3542 | 650 | 0.0002 | - | | 1.4583 | 700 | 0.0001 | - | | 1.5625 | 750 | 0.0002 | - | | 1.6667 | 800 | 0.0001 | - | | 1.7708 | 850 | 0.0001 | - | | 1.875 | 900 | 0.0001 | - | | 1.9792 | 950 | 0.0002 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
BestPhilForSure/detr-resnet-50_finetuned_cppe5
BestPhilForSure
2024-01-18T20:17:58Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-01-18T17:59:24Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
neuralmagic/llama-2-7b-chat-marlin
neuralmagic
2024-01-18T20:08:45Z
2,323
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "marlin", "region:us" ]
text-generation
2024-01-18T19:36:20Z
--- license: llama2 language: - en library_name: transformers --- ## llama-2-7b-chat-marlin Example of converting a GPTQ model to Marlin format for fast batched decoding with [Marlin Kernels](https://github.com/IST-DASLab/marlin) ### Install Marlin ```bash pip install torch git clone https://github.com/IST-DASLab/marlin.git cd marlin pip install -e . ``` ### Convert Model Convert the model from GPTQ to Marlin format. Note that this requires: - `sym=true` - `group_size=128` - `desc_activations=false` ```bash pip install -U transformers accelerate auto-gptq optimum ``` Convert with the `convert.py` script in this repo: ```bash python3 convert.py --model-id "TheBloke/Llama-2-7B-Chat-GPTQ" --save-path "./marlin-model" --do-generation ``` ### Run Model Load with the `load.load_model` utility from this repo and run inference as usual. ```python from load import load_model from transformers import AutoTokenizer # Load model from disk. model_path = "./marlin-model" model = load_model(model_path).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_path) # Generate text. inputs = tokenizer("My favorite song is", return_tensors="pt") inputs = {k: v.to("cuda") for k, v in inputs.items()} outputs = model.generate(**inputs, max_new_tokens=50, do_sample=False) print(tokenizer.batch_decode(outputs)[0]) ```
Weni/WeniGPT-2.1.1-zephyr-7b-beta-BitsandBytes-LLM-Base-1.0.1-6k_evol_complexity_no_tags
Weni
2024-01-18T20:05:24Z
1
0
peft
[ "peft", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:mit", "region:us" ]
null
2024-01-18T19:34:57Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: HuggingFaceH4/zephyr-7b-beta model-index: - name: WeniGPT-2.1.1-zephyr-7b-beta-BitsandBytes-LLM-Base-1.0.1-6k_evol_complexity_no_tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # WeniGPT-2.1.1-zephyr-7b-beta-BitsandBytes-LLM-Base-1.0.1-6k_evol_complexity_no_tags This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 42 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 33 | 0.4729 | | No log | 1.25 | 42 | 0.4708 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
mar-yam1497/mistralai-Code-Instruct-hotpot_v2
mar-yam1497
2024-01-18T20:04:25Z
1
0
peft
[ "peft", "safetensors", "question-answering", "en", "dataset:mar-yam1497/HotPotQA_Mistral_Instruct_dataset_Top3k_Revised", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
question-answering
2023-12-31T18:42:33Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - mar-yam1497/HotPotQA_Mistral_Instruct_dataset_Top3k_Revised language: - en pipeline_tag: question-answering --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Trained as a component of a QnA System. Extracts relevant context to answer a given question from large text stream. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
maya999/GPTQ_MISTRAL_finetuned_on_spider_data
maya999
2024-01-18T20:00:24Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-18T08:49:31Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ model-index: - name: GPTQ_MISTRAL_finetuned_on_spider_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPTQ_MISTRAL_finetuned_on_spider_data This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 2500 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ryusangwon/8139_Llama-2-7b-hf
ryusangwon
2024-01-18T19:42:41Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-18T19:42:35Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: 8139_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 8139_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
sefa23/normalization-bert
sefa23
2024-01-18T19:38:30Z
5
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-18T18:33:26Z
--- widget: - text: eve varınca beni [MASK]. example_title: Örnek 1 - text: bugün okulda [MASK] gördüm. example_title: Örnek 2 license: mit language: - tr pipeline_tag: fill-mask ---
bartowski/dolphin-2.6-mistral-7b-dpo-exl2
bartowski
2024-01-18T19:25:33Z
9
6
null
[ "text-generation", "license:apache-2.0", "region:us" ]
text-generation
2023-12-31T17:23:00Z
--- license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of dolphin-2.6-mistral-7b-dpo Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo Model Size: 7b | Branch | Bits | lm_head bits | Dataset | Size | Description | | ----- | ---- | ------- | ------- | ------- | ------------ | | [8_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. | | [4_0](https://huggingface.co/Bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/4_0) | 4.0 | 6.0 | Default | 6.5 GB | Just under GPTQ equivalent bits per weight. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. <a href="https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/4_0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/5_0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/6_5">6.5 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2/tree/8_0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/dolphin-2.6-mistral-7b-dpo-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `dolphin-2.6-mistral-7b-dpo-exl2`: ```shell mkdir dolphin-2.6-mistral-7b-dpo-exl2 huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-exl2 --local-dir dolphin-2.6-mistral-7b-dpo-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir dolphin-2.6-mistral-7b-dpo-exl2-6_5 huggingface-cli download bartowski/dolphin-2.6-mistral-7b-dpo-exl2 --revision 6_5 --local-dir dolphin-2.6-mistral-7b-dpo-exl2-6_5 --local-dir-use-symlinks False ```
ashishkgpian/full_v3_astromistral_final
ashishkgpian
2024-01-18T19:23:13Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "astronomy", "text2text-generation", "en", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text2text-generation
2024-01-18T18:50:17Z
--- library_name: transformers tags: - astronomy license: mit language: - en pipeline_tag: text2text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2
bartowski
2024-01-18T19:21:14Z
0
0
null
[ "text-generation", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/dolphin-coder", "dataset:teknium/openhermes", "dataset:ise-uiuc/Magicoder-OSS-Instruct-75K", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:LDJnr/Capybara", "license:apache-2.0", "region:us" ]
text-generation
2024-01-13T03:56:42Z
--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - teknium/openhermes - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - LDJnr/Capybara language: - en license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of UNA-dolphin-2.6-mistral-7b-dpo-laser Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser Model Size: 7b | Branch | Bits | lm_head bits | Dataset | Size | Description | | ----- | ---- | ------- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/8_0) | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/6_5) | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/5_0) | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. | | [4_0](https://huggingface.co/Bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/4_0) | 4.0 | 6.0 | Default | 6.5 GB | Just under GPTQ equivalent bits per weight. | | [3_5](https://huggingface.co/Bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2/tree/3_5) | 3.5 | 6.0 | Default | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2`: ```shell mkdir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 huggingface-cli download bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5 huggingface-cli download bartowski/UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2 --revision 6_5 --local-dir UNA-dolphin-2.6-mistral-7b-dpo-laser-exl2-6_5 --local-dir-use-symlinks False ```
bartowski/internlm2-chat-7b-sft-llama-exl2
bartowski
2024-01-18T19:19:32Z
4
1
null
[ "text-generation", "region:us" ]
text-generation
2024-01-18T04:07:59Z
--- pipeline_tag: text-generation quantized_by: bartowski --- #### Special thanks to <a href="https://huggingface.co/chargoddard">Charles Goddard</a> for the conversion script to create llama models from internlm ## Exllama v2 Quantizations of internlm2-chat-7b-sft-llama Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/internlm/internlm2-chat-7b-sft Model Size: 7b | Branch | Bits | lm_head bits | Dataset | Size | Description | | ----- | ---- | ------- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/internlm2-chat-7b-sft-llama-exl2/tree/8_0) | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/internlm2-chat-7b-sft-llama-exl2/tree/6_5) | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/internlm2-chat-7b-sft-llama-exl2/tree/5_0) | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. | | [4_0](https://huggingface.co/Bartowski/internlm2-chat-7b-sft-llama-exl2/tree/4_0) | 4.0 | 6.0 | Default | 6.5 GB | Just under GPTQ equivalent bits per weight. | | [3_5](https://huggingface.co/Bartowski/internlm2-chat-7b-sft-llama-exl2/tree/3_5) | 3.5 | 6.0 | Default | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/internlm2-chat-7b-sft-llama-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-chat-7b-sft-llama-exl2`: ```shell mkdir internlm2-chat-7b-sft-llama-exl2 huggingface-cli download bartowski/internlm2-chat-7b-sft-llama-exl2 --local-dir internlm2-chat-7b-sft-llama-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir internlm2-chat-7b-sft-llama-exl2-6_5 huggingface-cli download bartowski/internlm2-chat-7b-sft-llama-exl2 --revision 6_5 --local-dir internlm2-chat-7b-sft-llama-exl2-6_5 --local-dir-use-symlinks False ```
gonmadri/ancelotti
gonmadri
2024-01-18T19:17:58Z
0
0
null
[ "license:other", "region:us" ]
null
2024-01-18T19:11:54Z
--- license: other license_name: ancelotti license_link: LICENSE ---
thrunlab/Mistral-7B-v0.1_cola_original2
thrunlab
2024-01-18T19:17:21Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-18T17:15:45Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer metrics: - accuracy - matthews_correlation model-index: - name: Mistral-7B-v0.1_cola_original2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1_cola_original2 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3773 - Accuracy: {'accuracy': 0.8539719626168224} - Matthews Correlation: 0.6454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 2 - distributed_type: multi-GPU - num_devices: 6 - total_train_batch_size: 384 - total_eval_batch_size: 384 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------:| | 0.4986 | 2.38 | 50 | 0.5042 | {'accuracy': 0.7938638542665388} | 0.4836 | | 0.3193 | 4.76 | 100 | 0.4002 | {'accuracy': 0.8264621284755513} | 0.6029 | | 0.2489 | 7.14 | 150 | 0.3795 | {'accuracy': 0.8389261744966443} | 0.6123 | | 0.1258 | 9.52 | 200 | 0.4322 | {'accuracy': 0.8418024928092043} | 0.6284 | | 0.0625 | 11.9 | 250 | 0.5921 | {'accuracy': 0.8427612655800575} | 0.6258 | | 0.0251 | 14.29 | 300 | 0.8451 | {'accuracy': 0.8446788111217641} | 0.6248 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
C-Stuti/output
C-Stuti
2024-01-18T19:07:32Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T13:09:36Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7643 - Accuracy: 0.8686 - Precision: 0.8681 - Recall: 0.8686 - F1: 0.8673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2969 | 1.0 | 505 | 0.6707 | 0.8376 | 0.8375 | 0.8376 | 0.8320 | | 0.2567 | 2.0 | 1010 | 0.6184 | 0.8572 | 0.8516 | 0.8572 | 0.8519 | | 0.1496 | 3.0 | 1515 | 0.6471 | 0.8693 | 0.8637 | 0.8693 | 0.8651 | | 0.0826 | 4.0 | 2020 | 0.6897 | 0.8641 | 0.8600 | 0.8641 | 0.8604 | | 0.0467 | 5.0 | 2525 | 0.7378 | 0.8676 | 0.8671 | 0.8676 | 0.8663 | | 0.0229 | 6.0 | 3030 | 0.7521 | 0.8678 | 0.8670 | 0.8678 | 0.8666 | | 0.01 | 7.0 | 3535 | 0.7643 | 0.8686 | 0.8681 | 0.8686 | 0.8673 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
bartowski/internlm2-7b-llama-exl2
bartowski
2024-01-18T18:58:45Z
2
1
null
[ "text-generation", "license:other", "region:us" ]
text-generation
2024-01-18T18:21:58Z
--- pipeline_tag: text-generation license: other quantized_by: bartowski --- ## Exllama v2 Quantizations of internlm2-7b-llama Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using the default calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/internlm/internlm2-7b Model Size: 7b | Branch | Bits | lm_head | Dataset | Size | Description | | ----- | ---- | ------- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/internlm2-7b-llama-exl2/tree/8_0) | 8.0 | 8.0 | Default | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/internlm2-7b-llama-exl2/tree/6_5) | 6.5 | 8.0 | Default | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/internlm2-7b-llama-exl2/tree/5_0) | 5.0 | 6.0 | Default | 7.4 GB | Slightly lower perplexity vs 6.5. | | [4_25](https://huggingface.co/Bartowski/internlm2-7b-llama-exl2/tree/4_25) | 4.25 | 6.0 | Default | 6.7 GB | GPTQ equivalent bits per weight. | | [3_5](https://huggingface.co/Bartowski/internlm2-7b-llama-exl2/tree/3_5) | 3.5 | 6.0 | Default | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/internlm2-7b-llama-exl2 internlm2-7b-llama-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-7b-llama-exl2`: ```shell mkdir internlm2-7b-llama-exl2 huggingface-cli download bartowski/internlm2-7b-llama-exl2 --local-dir internlm2-7b-llama-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir internlm2-7b-llama-exl2-6_5 huggingface-cli download bartowski/internlm2-7b-llama-exl2 --revision 6_5 --local-dir internlm2-7b-llama-exl2-6_5 --local-dir-use-symlinks False ```
paapoh/ppo-LunarLander-v2
paapoh
2024-01-18T18:41:38Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T18:41:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.44 +/- 18.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tarssio/modelo_setfit_politica_BA
Tarssio
2024-01-18T18:37:08Z
7
0
setfit
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "model-index", "region:us" ]
text-classification
2024-01-18T18:36:26Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Vem pra Irenil em Paratinga, bonitão - text: Salve Salve Senhor Governador JERÔNIMO RODRIGUES olhando para as TRADIÇÕES - text: Parabéns meu Governador! O foguete 🚀 não para . Muitas realizações entregue em 7 meses , muito trabalho . - text: 👏👏👏 - text: Bom demais governador sobre o piso da enfermagem o que o senhor diz para nos pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9042553191489362 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Positive | <ul><li>'Enfim,Bonfim 🥳🥳🥳🥳🥳'</li><li>'👏👏👏👏'</li><li>'Pequenas ações fazem sonhos realidades #OhBrabo 💙💙💙'</li></ul> | | Negative | <ul><li>'@jeronimorodriguesba quando terá uma segunda convocação do concurso SECBA?'</li><li>'Cadê a MP do piso da enfermagem ministro'</li><li>'Sim !! A escola municipal aqui do bairro liberdade,30 crianças esperando até hoje as profissionais ADI para crianças que necessita acompanhamento..'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9043 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Tarssio/modelo_setfit_politica_BA") # Run inference preds = model("👏👏👏") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 19.4813 | 313 | | Label | Training Sample Count | |:---------|:----------------------| | Negative | 175 | | Positive | 199 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0011 | 1 | 0.3616 | - | | 0.0535 | 50 | 0.3129 | - | | 0.1070 | 100 | 0.2912 | - | | 0.1604 | 150 | 0.191 | - | | 0.2139 | 200 | 0.0907 | - | | 0.2674 | 250 | 0.0086 | - | | 0.3209 | 300 | 0.0042 | - | | 0.3743 | 350 | 0.0161 | - | | 0.4278 | 400 | 0.0007 | - | | 0.4813 | 450 | 0.0403 | - | | 0.5348 | 500 | 0.0055 | - | | 0.5882 | 550 | 0.0057 | - | | 0.6417 | 600 | 0.0002 | - | | 0.6952 | 650 | 0.0002 | - | | 0.7487 | 700 | 0.0 | - | | 0.8021 | 750 | 0.0026 | - | | 0.8556 | 800 | 0.0002 | - | | 0.9091 | 850 | 0.0002 | - | | 0.9626 | 900 | 0.0004 | - | | 1.0 | 935 | - | 0.1724 | | 1.0160 | 950 | 0.0001 | - | | 1.0695 | 1000 | 0.0006 | - | | 1.1230 | 1050 | 0.0001 | - | | 1.1765 | 1100 | 0.0008 | - | | 1.2299 | 1150 | 0.0002 | - | | 1.2834 | 1200 | 0.0001 | - | | 1.3369 | 1250 | 0.0002 | - | | 1.3904 | 1300 | 0.0002 | - | | 1.4439 | 1350 | 0.0002 | - | | 1.4973 | 1400 | 0.0002 | - | | 1.5508 | 1450 | 0.0 | - | | 1.6043 | 1500 | 0.0002 | - | | 1.6578 | 1550 | 0.2178 | - | | 1.7112 | 1600 | 0.0002 | - | | 1.7647 | 1650 | 0.0001 | - | | 1.8182 | 1700 | 0.0001 | - | | 1.8717 | 1750 | 0.0003 | - | | 1.9251 | 1800 | 0.0359 | - | | 1.9786 | 1850 | 0.0001 | - | | 2.0 | 1870 | - | 0.1601 | | 2.0321 | 1900 | 0.0001 | - | | 2.0856 | 1950 | 0.0002 | - | | 2.1390 | 2000 | 0.0001 | - | | 2.1925 | 2050 | 0.0001 | - | | 2.2460 | 2100 | 0.0002 | - | | 2.2995 | 2150 | 0.0002 | - | | 2.3529 | 2200 | 0.0003 | - | | 2.4064 | 2250 | 0.0001 | - | | 2.4599 | 2300 | 0.0002 | - | | 2.5134 | 2350 | 0.0001 | - | | 2.5668 | 2400 | 0.0 | - | | 2.6203 | 2450 | 0.0001 | - | | 2.6738 | 2500 | 0.0 | - | | 2.7273 | 2550 | 0.0001 | - | | 2.7807 | 2600 | 0.0001 | - | | 2.8342 | 2650 | 0.0 | - | | 2.8877 | 2700 | 0.0 | - | | 2.9412 | 2750 | 0.0 | - | | 2.9947 | 2800 | 0.0001 | - | | **3.0** | **2805** | **-** | **0.1568** | | 3.0481 | 2850 | 0.0001 | - | | 3.1016 | 2900 | 0.0001 | - | | 3.1551 | 2950 | 0.0001 | - | | 3.2086 | 3000 | 0.0001 | - | | 3.2620 | 3050 | 0.0001 | - | | 3.3155 | 3100 | 0.0045 | - | | 3.3690 | 3150 | 0.0 | - | | 3.4225 | 3200 | 0.0001 | - | | 3.4759 | 3250 | 0.0002 | - | | 3.5294 | 3300 | 0.0 | - | | 3.5829 | 3350 | 0.0002 | - | | 3.6364 | 3400 | 0.0 | - | | 3.6898 | 3450 | 0.0 | - | | 3.7433 | 3500 | 0.0002 | - | | 3.7968 | 3550 | 0.0 | - | | 3.8503 | 3600 | 0.0 | - | | 3.9037 | 3650 | 0.0005 | - | | 3.9572 | 3700 | 0.0001 | - | | 4.0 | 3740 | - | 0.1574 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
DTG2005/q-FrozenLake-v1-4x4-noSlippery
DTG2005
2024-01-18T18:36:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T18:27:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DTG2005/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds-v2
nm-testing
2024-01-18T18:35:17Z
2
0
transformers
[ "transformers", "onnx", "llama", "text-generation", "deepsparse", "conversational", "arxiv:2301.00774", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:quantized:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "autotrain_compatible", "region:us" ]
text-generation
2024-01-18T17:52:56Z
--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 inference: false model_type: llama prompt_template: | <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n quantized_by: mwitiderrick tags: - deepsparse --- ## TinyLlama 1.1B Chat 1.0 - DeepSparse This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds-v2") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ Sure! Here's a recipe for making banana bread: Ingredients: - 1 banana - 1 cup of all-purpose flour - 1 cup of cocoa powder - 1 cup of sugar - 1 cup of melted coconut oil - 1 cup of salt Instructions: 1. Preheat the oven to 375°F. 2. Add the banana to the flour mixture, and mix until smooth. 3. Add the cocoa powder, sugar, melted coconut oil, salt, and mix until smooth. 4. Add the melted coconut oil, salt, and mix until smooth. 5. Add the melted coconut oil, salt, and mix until smooth. 6. Add the banana, salt, and mix until smooth. """ ``` ## Prompt template ``` <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float32 --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
Deepakkori45/Aspect_3
Deepakkori45
2024-01-18T18:35:07Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-18T18:35:00Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
climate-nlp/longformer-base-4096-1-detect-evidence
climate-nlp
2024-01-18T18:27:51Z
18
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T20:15:46Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
climate-nlp/longformer-large-4096-1-detect-evidence
climate-nlp
2024-01-18T18:27:41Z
11
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T20:27:03Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
climate-nlp/longformer-large-4096-2-classify-query
climate-nlp
2024-01-18T18:27:29Z
22
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T21:13:08Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
climate-nlp/longformer-large-4096-3-classify-stance
climate-nlp
2024-01-18T18:27:20Z
23
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T21:17:20Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
climate-nlp/longformer-base-4096-2-classify-query
climate-nlp
2024-01-18T18:27:09Z
5
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T23:32:55Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
climate-nlp/longformer-base-4096-3-classify-stance
climate-nlp
2024-01-18T18:25:25Z
3
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "climate", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T23:34:47Z
--- license: other language: - en tags: - climate --- This model is to reproduce our paper 'An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement' at NeurIPS 2023 Datasets and Benchmarks Track. For the usage of this model, see https://github.com/climate-nlp/climate-policy-nlp . This model may be used for research purposes only. Commercial use or redistribution is prohibited. We use third party contents for fine-tuning. For more detail and the usage limitation, see https://climate-nlp.github.io/.
rbgo/Super-phi-2-dpo
rbgo
2024-01-18T18:23:14Z
13
1
transformers
[ "transformers", "safetensors", "phi", "text-generation", "finetune", "rl", "dpo", "nlp", "custom_code", "en", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-18T16:50:31Z
--- base_model: microsoft/phi-2 inference: false language: - en license: mit model-index: - name: phi-2 results: [] model_creator: microsoft model_name: phi-2 model_type: phi prompt_template: | <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant finetuned_by: Inferless tags: - finetune - rl - dpo - phi - nlp pipeline_tag: text-generation datasets: - argilla/distilabel-intel-orca-dpo-pairs --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://pbs.twimg.com/profile_banners/1633782755669708804/1678359514/1500x500" alt="Inferless" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;">Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.</p> </div> <!-- <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> --> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;"><a href="https://0ooatrmbp25.typeform.com/to/nzuhQtba"><b>Join Private Beta</b></a></p></div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Go through <a href="https://tutorials.inferless.com/deploy-deci-7b-using-inferless">this tutorial</a>, for quickly deploy of <b>Phi-2</b> using Inferless</p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # - Model creator: [microsoft](https://huggingface.co/microsoft) - Original model: [phi-2](https://huggingface.co/microsoft/phi-2) <!-- description start --> ## Description This repo contains DPO Finetuned model files for [Microsoft Phi-2](https://huggingface.co/microsoft/phi-2).
TunahanGokcimen/Question-Answering-Albert-base
TunahanGokcimen
2024-01-18T18:17:44Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "albert", "question-answering", "generated_from_trainer", "base_model:albert/albert-base-v1", "base_model:finetune:albert/albert-base-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-18T16:54:42Z
--- license: apache-2.0 base_model: albert-base-v1 tags: - generated_from_trainer model-index: - name: Question-Answering-Albert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Question-Answering-Albert-base This model is a fine-tuned version of [albert-base-v1](https://huggingface.co/albert-base-v1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ggaleano/bert-base-banking77-pt2
ggaleano
2024-01-18T18:17:29Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T13:20:35Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - F1: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1734 | 1.0 | 626 | 0.8356 | 0.8360 | | 0.401 | 2.0 | 1252 | 0.3851 | 0.9170 | | 0.1817 | 3.0 | 1878 | 0.3035 | 0.9283 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
rajora/distilbert-multilingual-sentiment
rajora
2024-01-18T18:12:07Z
12
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T12:51:06Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: distilbert-multilingual-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-multilingual-sentiment This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3619 - eval_accuracy: 0.7435 - eval_runtime: 25.7389 - eval_samples_per_second: 82.715 - eval_steps_per_second: 5.206 - epoch: 6.0 - step: 6390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
detoxil/water
detoxil
2024-01-18T18:11:41Z
0
0
null
[ "region:us" ]
null
2024-01-18T18:04:31Z
<h1>Detoxil Water: Protege tu Salud con Gotas Antiparasitarias</h1> Descubre <a href="https://www.mejorvalorados.xyz/IkjS?sub1=hug"><b>Detoxil Water</b></a>, las gotas antiparasitarias diseñadas para proteger y mejorar tu salud. Este producto único está disponible exclusivamente en mejorvalorados.xyz/IkjS, brindándote una solución eficaz y fácil de usar para combatir parásitos y toxinas en tu organismo. A un precio accesible de 39 EUR, Detoxil Water ofrece una fórmula potente y natural para desintoxicar tu cuerpo. Estas gotas han sido cuidadosamente elaboradas con ingredientes de alta calidad, garantizando no solo la eliminación de parásitos, sino también la mejora general de tu bienestar. Su uso regular puede contribuir significativamente a mejorar tu digestión, aumentar tus niveles de energía y fortalecer tu sistema inmunológico. Visita <a href="https://www.mejorvalorados.xyz/IkjS?sub1=hug"><b>www.DetoxilWater.es</b></a> y adquiere Detoxil Water hoy mismo. Unas pocas gotas al día pueden marcar una gran diferencia en tu salud y calidad de vida. No esperes más para tomar el control de tu bienestar con este extraordinario producto. ¡Detoxil Water es tu paso hacia una vida más saludable y libre de parásitos! Web Oficial Aquí >>> <a href="https://www.mejorvalorados.xyz/IkjS?sub1=hug"><b>Dwww.DetoxilWater.es</b></a>
InkFozy/Tuguim
InkFozy
2024-01-18T17:56:34Z
0
0
adapter-transformers
[ "adapter-transformers", "youtuber", "brasileiro", "zueira", "art", "audio-to-audio", "pt", "license:cc", "region:us" ]
audio-to-audio
2024-01-18T17:54:00Z
--- license: cc language: - pt metrics: - accuracy - character library_name: adapter-transformers pipeline_tag: audio-to-audio tags: - youtuber - brasileiro - zueira - art ---
LoneStriker/internlm2-20b-llama-6.0bpw-h6-exl2
LoneStriker
2024-01-18T17:54:58Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T17:48:39Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-20b](https://huggingface.co/internlm/internlm2-20b) converted into Llama-format weights. As with 7B, not 100% sure if it's a correct conversion yet - play with at your own risk. Subject to internlm's license.
Nazaninmnd/DreamBooth_MediumCloseUp
Nazaninmnd
2024-01-18T17:47:46Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-11T10:46:46Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a mcu photo of human tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Nazaninmnd/DreamBooth_MediumCloseUp This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a mcu photo of human using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
beothorn/ppo-LunarLander-v2
beothorn
2024-01-18T17:44:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T17:44:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.74 +/- 16.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yomilimi/gamblingspam-t5
yomilimi
2024-01-18T17:33:00Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:google/t5-v1_1-base", "base_model:finetune:google/t5-v1_1-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T17:30:01Z
--- license: apache-2.0 base_model: google/t5-v1_1-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: gamblingspam-t5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gamblingspam-t5 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6656 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 0.6675 | 0.935 | | No log | 2.0 | 100 | 0.6661 | 0.935 | | No log | 3.0 | 150 | 0.6656 | 0.935 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
rodrisanchez/ppo-LunarLander-v2-rod
rodrisanchez
2024-01-18T17:31:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T17:30:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.19 +/- 39.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nornor02/working
nornor02
2024-01-18T17:30:43Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-21T04:04:18Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: working results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # working This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
LoneStriker/internlm2-20b-llama-4.0bpw-h6-exl2
LoneStriker
2024-01-18T17:27:54Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T17:23:23Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-20b](https://huggingface.co/internlm/internlm2-20b) converted into Llama-format weights. As with 7B, not 100% sure if it's a correct conversion yet - play with at your own risk. Subject to internlm's license.
lakshay/work-details-peft
lakshay
2024-01-18T17:21:37Z
6
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-18T11:22:33Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
LoneStriker/internlm2-20b-llama-3.0bpw-h6-exl2
LoneStriker
2024-01-18T17:14:46Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T17:11:13Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-20b](https://huggingface.co/internlm/internlm2-20b) converted into Llama-format weights. As with 7B, not 100% sure if it's a correct conversion yet - play with at your own risk. Subject to internlm's license.
aserrasastre/Mistral-7B-def
aserrasastre
2024-01-18T17:05:06Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T17:00:35Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
bartowski/internlm2-chat-7b-sft-llama
bartowski
2024-01-18T16:47:52Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T16:45:00Z
--- pipeline_tag: text-generation license: other --- # InternLM <div align="center"> <img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">InternLM</font></b> <sup> <a href="https://internlm.intern-ai.org.cn/"> <i><font size="4">HOT</font></i> </a> </sup> <div>&nbsp;</div> </div> [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/) [💻Github Repo](https://github.com/InternLM/InternLM) </div> ## Converted using <a href="https://huggingface.co/chargoddard">Charles Goddard's</a> conversion script to create llama models from internlm Original REPO link: https://huggingface.co/internlm/internlm2-chat-7b-sft ExLlamaV2 quants: https://huggingface.co/bartowski/internlm2-chat-7b-sft-llama-exl2
daochf/Lora-Meta-Llama2-7b-chat-hf-QandA_2g_v01-r2-v04
daochf
2024-01-18T16:35:48Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-18T16:35:26Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
MuhammedSaeed/LLMJS
MuhammedSaeed
2024-01-18T16:28:13Z
1
1
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Salesforce/codegen2-1B_P", "base_model:adapter:Salesforce/codegen2-1B_P", "region:us" ]
null
2024-01-18T16:26:33Z
--- library_name: peft base_model: Salesforce/codegen2-1B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
bartowski/internlm2-20b-llama-exl2
bartowski
2024-01-18T16:26:39Z
3
0
null
[ "text-generation", "license:other", "region:us" ]
text-generation
2024-01-18T13:10:23Z
--- pipeline_tag: text-generation license: other quantized_by: bartowski --- #### Special thanks to <a href="https://huggingface.co/chargoddard">Charles Goddard</a> for the conversion script to create llama models from internlm ## Exllama v2 Quantizations of internlm2-20b-llama Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using the default calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/internlm/internlm2-20b <a href="https://huggingface.co/bartowski/internlm2-20b-llama-exl2/tree/6_5">6.5 bits per weight</a> <a href="https://huggingface.co/bartowski/internlm2-20b-llama-exl2/tree/4_5">4.5 bits per weight</a> <a href="https://huggingface.co/bartowski/internlm2-20b-llama-exl2/tree/3_5">3.5 bits per weight</a> <a href="https://huggingface.co/bartowski/internlm2-20b-llama-exl2/tree/3_0">3.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/internlm2-20b-llama-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-20b-llama-exl2`: ```shell mkdir internlm2-20b-llama-exl2 huggingface-cli download bartowski/internlm2-20b-llama-exl2 --local-dir internlm2-20b-llama-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir internlm2-20b-llama-exl2 huggingface-cli download bartowski/internlm2-20b-llama-exl2 --revision 4_0 --local-dir internlm2-20b-llama-exl2 --local-dir-use-symlinks False ```
Yamila/DialoGPT-small-Jonesy2-Bot
Yamila
2024-01-18T16:23:28Z
4
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T21:27:09Z
--- language: - en tags: - conversational ---
Nerdofdot/Nerdofdot_distilbert-base-uncased_TM_FTM
Nerdofdot
2024-01-18T16:14:28Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-18T13:54:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7975 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 0.4} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2392, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LoneStriker/internlm2-7b-llama-8.0bpw-h8-exl2
LoneStriker
2024-01-18T16:11:08Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T16:07:46Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-7b](https://huggingface.co/internlm/internlm2-7b) converted into Llama-format weights. Generates coherent text but not sure it's 100% correct yet - still testing to make sure it hasn't lost any smarts.
itsdhanoob/taxi_task
itsdhanoob
2024-01-18T16:10:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T15:57:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_task results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="itsdhanoob/taxi_task", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
abragin/dqn-SpaceInvadersNoFrameskip-v4
abragin
2024-01-18T16:06:16Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T16:05:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 593.50 +/- 134.43 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abragin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abragin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga abragin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
LoneStriker/internlm2-7b-llama-6.0bpw-h6-exl2
LoneStriker
2024-01-18T16:05:07Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T16:02:26Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-7b](https://huggingface.co/internlm/internlm2-7b) converted into Llama-format weights. Generates coherent text but not sure it's 100% correct yet - still testing to make sure it hasn't lost any smarts.
smutuvi/whisper-small-sw-ndizi-158_2
smutuvi
2024-01-18T16:02:13Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:pplantinga/whisper-small-sw", "base_model:adapter:pplantinga/whisper-small-sw", "license:apache-2.0", "region:us" ]
null
2024-01-18T13:43:17Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: pplantinga/whisper-small-sw model-index: - name: whisper-small-sw-ndizi-158_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-sw-ndizi-158_2 This model is a fine-tuned version of [pplantinga/whisper-small-sw](https://huggingface.co/pplantinga/whisper-small-sw) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 18 | 2.8008 | | 2.5386 | 2.0 | 36 | 2.7557 | | 2.4516 | 3.0 | 54 | 2.6801 | | 2.4516 | 4.0 | 72 | 2.5842 | | 2.363 | 5.0 | 90 | 2.5062 | | 2.2145 | 6.0 | 108 | 2.4334 | | 2.1358 | 7.0 | 126 | 2.3611 | | 2.1358 | 8.0 | 144 | 2.2867 | | 2.059 | 9.0 | 162 | 2.2158 | | 1.8708 | 10.0 | 180 | 2.1452 | | 1.8708 | 11.0 | 198 | 2.0739 | | 1.8568 | 12.0 | 216 | 2.0307 | | 1.8349 | 13.0 | 234 | 2.0092 | | 1.7117 | 14.0 | 252 | 1.9914 | | 1.7117 | 15.0 | 270 | 1.9788 | | 1.6683 | 16.0 | 288 | 1.9669 | | 1.6639 | 17.0 | 306 | 1.9548 | | 1.6639 | 18.0 | 324 | 1.9432 | | 1.6765 | 19.0 | 342 | 1.9338 | | 1.6148 | 20.0 | 360 | 1.9265 | | 1.5875 | 21.0 | 378 | 1.9149 | | 1.5875 | 22.0 | 396 | 1.9058 | | 1.5664 | 23.0 | 414 | 1.9013 | | 1.6485 | 24.0 | 432 | 1.8953 | | 1.535 | 25.0 | 450 | 1.8917 | | 1.535 | 26.0 | 468 | 1.8849 | | 1.5579 | 27.0 | 486 | 1.8783 | | 1.5141 | 28.0 | 504 | 1.8746 | | 1.5141 | 29.0 | 522 | 1.8707 | | 1.5943 | 30.0 | 540 | 1.8663 | | 1.4296 | 31.0 | 558 | 1.8630 | | 1.4895 | 32.0 | 576 | 1.8595 | | 1.4895 | 33.0 | 594 | 1.8536 | | 1.5366 | 34.0 | 612 | 1.8525 | | 1.4573 | 35.0 | 630 | 1.8488 | | 1.4573 | 36.0 | 648 | 1.8489 | | 1.4729 | 37.0 | 666 | 1.8441 | | 1.4758 | 38.0 | 684 | 1.8384 | | 1.4386 | 39.0 | 702 | 1.8391 | | 1.4386 | 40.0 | 720 | 1.8356 | | 1.3773 | 41.0 | 738 | 1.8343 | | 1.4994 | 42.0 | 756 | 1.8328 | | 1.4994 | 43.0 | 774 | 1.8331 | | 1.4342 | 44.0 | 792 | 1.8287 | | 1.4047 | 45.0 | 810 | 1.8283 | | 1.3758 | 46.0 | 828 | 1.8261 | | 1.3758 | 47.0 | 846 | 1.8234 | | 1.3856 | 48.0 | 864 | 1.8201 | | 1.3815 | 49.0 | 882 | 1.8210 | | 1.4364 | 50.0 | 900 | 1.8197 | | 1.4364 | 51.0 | 918 | 1.8188 | | 1.4035 | 52.0 | 936 | 1.8183 | | 1.3368 | 53.0 | 954 | 1.8176 | | 1.3368 | 54.0 | 972 | 1.8155 | | 1.424 | 55.0 | 990 | 1.8158 | | 1.3782 | 56.0 | 1008 | 1.8159 | | 1.3057 | 57.0 | 1026 | 1.8122 | | 1.3057 | 58.0 | 1044 | 1.8136 | | 1.3615 | 59.0 | 1062 | 1.8142 | | 1.4013 | 60.0 | 1080 | 1.8091 | | 1.4013 | 61.0 | 1098 | 1.8099 | | 1.2894 | 62.0 | 1116 | 1.8102 | | 1.3972 | 63.0 | 1134 | 1.8089 | | 1.3564 | 64.0 | 1152 | 1.8096 | | 1.3564 | 65.0 | 1170 | 1.8075 | | 1.2808 | 66.0 | 1188 | 1.8078 | | 1.3871 | 67.0 | 1206 | 1.8061 | | 1.3871 | 68.0 | 1224 | 1.8060 | | 1.267 | 69.0 | 1242 | 1.8070 | | 1.2978 | 70.0 | 1260 | 1.8046 | | 1.3657 | 71.0 | 1278 | 1.8062 | | 1.3657 | 72.0 | 1296 | 1.8061 | | 1.342 | 73.0 | 1314 | 1.8066 | | 1.2504 | 74.0 | 1332 | 1.8063 | | 1.3003 | 75.0 | 1350 | 1.8031 | | 1.3003 | 76.0 | 1368 | 1.8053 | | 1.2927 | 77.0 | 1386 | 1.8057 | | 1.2653 | 78.0 | 1404 | 1.8032 | | 1.2653 | 79.0 | 1422 | 1.8031 | | 1.3574 | 80.0 | 1440 | 1.8036 | | 1.2253 | 81.0 | 1458 | 1.8061 | | 1.3348 | 82.0 | 1476 | 1.8036 | | 1.3348 | 83.0 | 1494 | 1.8034 | | 1.2846 | 84.0 | 1512 | 1.8033 | | 1.2671 | 85.0 | 1530 | 1.8032 | | 1.2671 | 86.0 | 1548 | 1.8038 | | 1.3102 | 87.0 | 1566 | 1.8031 | | 1.2603 | 88.0 | 1584 | 1.8011 | | 1.286 | 89.0 | 1602 | 1.8029 | | 1.286 | 90.0 | 1620 | 1.8026 | | 1.2761 | 91.0 | 1638 | 1.8029 | | 1.2416 | 92.0 | 1656 | 1.8014 | | 1.2416 | 93.0 | 1674 | 1.8035 | | 1.2798 | 94.0 | 1692 | 1.8008 | | 1.3043 | 95.0 | 1710 | 1.8009 | | 1.2969 | 96.0 | 1728 | 1.8004 | | 1.2969 | 97.0 | 1746 | 1.8014 | | 1.3087 | 98.0 | 1764 | 1.7992 | | 1.2364 | 99.0 | 1782 | 1.7997 | | 1.2748 | 100.0 | 1800 | 1.7989 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/internlm2-7b-llama-5.0bpw-h6-exl2
LoneStriker
2024-01-18T15:59:19Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T15:57:01Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-7b](https://huggingface.co/internlm/internlm2-7b) converted into Llama-format weights. Generates coherent text but not sure it's 100% correct yet - still testing to make sure it hasn't lost any smarts.
aserrasastre/Mistral-7B-Instruct-v8
aserrasastre
2024-01-18T15:56:00Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T15:51:37Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
LoneStriker/internlm2-7b-llama-4.0bpw-h6-exl2
LoneStriker
2024-01-18T15:53:39Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "base_model:internlm/internlm2-7b", "base_model:finetune:internlm/internlm2-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T15:51:37Z
--- license: other language: - en - zh base_model: internlm/internlm2-7b --- [internlm2-7b](https://huggingface.co/internlm/internlm2-7b) converted into Llama-format weights. Generates coherent text but not sure it's 100% correct yet - still testing to make sure it hasn't lost any smarts.
yomilimi/gamblingspam-bert
yomilimi
2024-01-18T15:38:40Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T15:37:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: gamblingspam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gamblingspam This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2234 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 0.2367 | 0.935 | | No log | 2.0 | 100 | 0.2234 | 0.935 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Simple-Learner/phi-2-finetuned-gsm8k
Simple-Learner
2024-01-18T15:34:02Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "phi", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-01-18T02:00:16Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-2-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
macdog101/poca-SoccerTwos-v6
macdog101
2024-01-18T15:24:17Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-18T15:23:29Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: macdog101/poca-SoccerTwos-v6 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
TheNewPing/mega-base-fp16-increased-bs
TheNewPing
2024-01-18T15:23:37Z
11
0
transformers
[ "transformers", "safetensors", "mega", "multiple-choice", "generated_from_trainer", "base_model:mnaylor/mega-base-wikitext", "base_model:finetune:mnaylor/mega-base-wikitext", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2024-01-18T15:22:18Z
--- license: apache-2.0 base_model: mnaylor/mega-base-wikitext tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mega-base-fp16-increased-bs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mega-base-fp16-increased-bs This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.4957 - Precision: 0.4961 - Recall: 0.5469 - F1: 0.5203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 34 | 0.6932 | 0.4990 | 0.4991 | 0.5469 | 0.5219 | | No log | 2.0 | 68 | 0.6932 | 0.4959 | 0.4962 | 0.5455 | 0.5197 | | No log | 3.0 | 102 | 0.6932 | 0.4957 | 0.4961 | 0.5469 | 0.5203 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
malomn/lebenchmark-phoneme-classification
malomn
2024-01-18T15:19:37Z
2
0
transformers
[ "transformers", "wav2vec2", "feature-extraction", "fr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2024-01-17T16:20:49Z
--- license: apache-2.0 language: - fr ---
TheNewPing/roberta-base
TheNewPing
2024-01-18T15:12:45Z
5
0
transformers
[ "transformers", "safetensors", "roberta", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2024-01-18T15:02:34Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3752 - Accuracy: 0.8436 - Precision: 0.8472 - Recall: 0.8383 - F1: 0.8427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5737 | 1.0 | 1074 | 0.4409 | 0.8018 | 0.8208 | 0.7723 | 0.7958 | | 0.3689 | 2.0 | 2148 | 0.3821 | 0.8304 | 0.8398 | 0.8165 | 0.8280 | | 0.3038 | 3.0 | 3222 | 0.3752 | 0.8436 | 0.8472 | 0.8383 | 0.8427 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CiaraRowles/temporal-controlnet-lineart-svd-v1
CiaraRowles
2024-01-18T15:09:03Z
0
26
diffusers
[ "diffusers", "safetensors", "license:unknown", "region:us" ]
null
2024-01-18T14:53:20Z
--- license: unknown --- # Stable Video Diffusion Temporal Controlnet ## Overview Introducing the Stable Video Diffusion Temporal Controlnet! This tool uses a controlnet style encoder with the svd base. It's designed to enhance your video diffusion projects by providing precise temporal control. ## Setup - **Controlnet Model:** download the inference repo from here: https://github.com/CiaraStrawberry/sdv_controlnet - **Installation:** run `pip install -r requirements.txt` - **Execution:** Run "run_inference.py". ## Demo <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/63357214eb6132ca653020e7/RkjfJ8IKuZA-tYa-XS99y.mp4"></video> ## Notes - **Focus on Central Object:** The system tends to extract motion features primarily from a central object and, occasionally, from the background. It's best to avoid overly complex motion or obscure objects. - **Simplicity in Motion:** Stick to motions that svd can handle well without the controlnet. This ensures it will be able to apply the motion. ## Acknowledgements - **Diffusers Team:** For the svd implementation. - **Pixeli99:** For providing a practical svd training script: [SVD_Xtend](https://github.com/pixeli99/SVD_Xtend)
elliotthwang/KimLam_phi-2-zh.v1
elliotthwang
2024-01-18T15:06:41Z
5
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T15:03:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seatond/multi_yes_short
seatond
2024-01-18T14:55:25Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "region:us" ]
null
2024-01-18T14:28:22Z
--- library_name: peft base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
VAST-AI/TriplaneGaussian
VAST-AI
2024-01-18T14:53:44Z
0
81
null
[ "image-to-3d", "arxiv:2312.09147", "license:apache-2.0", "region:us" ]
image-to-3d
2024-01-17T03:44:21Z
--- license: apache-2.0 pipeline_tag: image-to-3d --- # TriplaneGuassian Model Card <div align="center"> [**Project Page**](https://zouzx.github.io/TriplaneGaussian/) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2312.09147) **|** [**Code**](https://github.com/VAST-AI-Research/TriplaneGaussian) **|** [**Gradio demo**](https://huggingface.co/spaces/VAST-AI/TriplaneGaussian) </div> ## Introduction TGS enables fast reconstruction from single-view image in a few seconds based on a hybrid Triplane-Gaussian 3D representation. ## Examples ### Results on Images Generated by [Midjourney](https://www.midjourney.com/) <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/644dbf6453ad80c6593bf748/BcJp8alZRXAIdPmfbVGdx.qt"></video> ### Results on Captured Real-world Images <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/644dbf6453ad80c6593bf748/bgAxqUQpnisQAmsGZ9Q_0.qt"></video> ## Model Details The model `model_lvis_rel.ckpt` is trained on Objaverse-LVIS dataset, which only includes ~45K synthetic objects. ## Usage You can directly download the model in this repository or employ the model in python script by: ```python from huggingface_hub import hf_hub_download MODEL_CKPT_PATH = hf_hub_download(repo_id="VAST-AI/TriplaneGaussian", filename="model_lvis_rel.ckpt", repo_type="model") ``` More details can be found in our [Github repository](https://github.com/VAST-AI-Research/TriplaneGaussian). ## Citation If you find this work helpful, please consider citing our paper: ```bibtex @article{zou2023triplane, title={Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers}, author={Zou, Zi-Xin and Yu, Zhipeng and Guo, Yuan-Chen and Li, Yangguang and Liang, Ding and Cao, Yan-Pei and Zhang, Song-Hai}, journal={arXiv preprint arXiv:2312.09147}, year={2023} } ```
StefKoople/test_rl
StefKoople
2024-01-18T14:44:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-18T14:44:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.60 +/- 17.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/LoRA__mhy_genshin_Shenhe_v1_0
LarryAIDraw
2024-01-18T14:34:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-18T14:27:31Z
--- license: creativeml-openrail-m --- https://civitai.com/models/268208/shenheoror-genshin-lora
LarryAIDraw/aoandon-nvwls-v1
LarryAIDraw
2024-01-18T14:33:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-18T14:24:49Z
--- license: creativeml-openrail-m --- https://civitai.com/models/268684/aoandon-onmyoji-lora