modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
hbfc7671/blockassist-bc-mighty_small_fox_1757603365
hbfc7671
2025-09-11T15:09:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mighty small fox", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:09:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mighty small fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mehere23/gpt-oss-20b
mehere23
2025-09-11T15:09:24Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "arxiv:2508.10925", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "mxfp4", "region:us" ]
text-generation
2025-09-11T15:08:14Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://arxiv.org/abs/2508.10925"><strong>Model card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of these open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node. # Citation ```bibtex @misc{openai2025gptoss120bgptoss20bmodel, title={gpt-oss-120b & gpt-oss-20b Model Card}, author={OpenAI}, year={2025}, eprint={2508.10925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.10925}, } ```
rodriquezb087/blockassist-bc-dormant_pensive_cat_1757603318
rodriquezb087
2025-09-11T15:08:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:08:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oxleybranan/blockassist-bc-amphibious_tricky_platypus_1757603259
oxleybranan
2025-09-11T15:07:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious tricky platypus", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious tricky platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yesniorka/blockassist-bc-stocky_large_dove_1757603261
yesniorka
2025-09-11T15:07:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious tricky platypus", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:07:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious tricky platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757603226
borsahopa67
2025-09-11T15:07:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting majestic condor", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:07:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting majestic condor --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
radlab/semantic-euro-bert-encoder-v1
radlab
2025-09-11T15:07:14Z
20
1
sentence-transformers
[ "sentence-transformers", "safetensors", "eurobert", "- embeddings", "plwordnet", "semantic-relations", "semantic-search", "sentence-similarity", "custom_code", "pl", "en", "de", "base_model:EuroBERT/EuroBERT-610m", "base_model:finetune:EuroBERT/EuroBERT-610m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-26T23:36:02Z
--- license: apache-2.0 language: - pl - en - de base_model: - EuroBERT/EuroBERT-610m tags: - sentence-transformers - '- embeddings' - plwordnet - semantic-relations - semantic-search pipeline_tag: sentence-similarity --- # PLWordNet Semantic Embedder (bi-encoder) A Polish semantic embedder trained on pairs constructed from plWordNet (Słowosieć) semantic relations and external descriptions of meanings. Every relation between lexical units and synsets is transformed into training/evaluation examples. The dataset mixes meanings’ usage signals: emotions, definitions, and external descriptions (Wikipedia, sentence-split). The embedder mimics semantic relations: it pulls together embeddings that are linked by “positive” relations (e.g., synonymy, hypernymy/hyponymy as defined in the dataset) and pushes apart embeddings linked by “negative” relations (e.g., antonymy or mutually exclusive relations). Source code and training scripts: - GitHub: [https://github.com/radlab-dev-group/radlab-plwordnet](https://github.com/radlab-dev-group/radlab-plwordnet) ## Model summary - **Architecture**: bi-encoder built with `sentence-transformers` (transformer encoder + pooling). - **Use cases**: semantic similarity and semantic search for Polish words, senses, definitions, and sentences. - **Objective**: CosineSimilarityLoss on positive/negative pairs. - **Behavior**: preserves the topology of semantic relations derived from plWordNet. ## Training data Constructed from plWordNet relations between lexical units and synsets; each relation yields example pairs. Augmented with: - definitions, - usage examples (including emotion annotations where available), - external descriptions from Wikipedia (split into sentences). Positive pairs correspond to relations expected to increase similarity; negative pairs correspond to relations expected to decrease similarity. Additional hard/soft negatives may include unrelated meanings. ## Training details - **Trainer**: `SentenceTransformerTrainer` - **Loss**: `CosineSimilarityLoss` - **Evaluator**: `EmbeddingSimilarityEvaluator` (cosine) - Typical **hyperparameters**: - epochs: 5 - per-device batch size: 10 (gradient accumulation: 4) - learning rate: 5e-6 (AdamW fused) - weight decay: 0.01 - warmup: ratio 20k steps - fp16: true ## Evaluation - **Task**: semantic similarity on dev/test splits built from the relation-derived pairs. - **Metric**: cosine-based correlation (Spearman/Pearson) where applicable, or discrimination between positive vs. negative pairs. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/DCepnAcPcv4EblAmtgu7R.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/TWHyVDItYwNbFEyI0i--n.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/o-CFHkDYw62Lyh1MKvG4M.png) ## How to use Sentence-Transformers: ``` python # Python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer("radlab/semantic-euro-bert-encoder-v1", trust_remote_code=True) texts = ["zamek", "drzwi", "wiadro", "horyzont", "ocean"] emb = model.encode(texts, convert_to_tensor=True, normalize_embeddings=True) scores = util.cos_sim(emb, emb) print(scores) # higher = more semantically similar ``` Transformers (feature extraction): ``` python # Python from transformers import AutoModel, AutoTokenizer import torch import torch.nn.functional as F name = "radlab/semantic-euro-bert-encoder-v1" tok = AutoTokenizer.from_pretrained(name) mdl = AutoModel.from_pretrained(name, trust_remote_code=True) texts = ["student", "żak"] tokens = tok(texts, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): out = mdl(**tokens) emb = out.last_hidden_state.mean(dim=1) emb = F.normalize(emb, p=2, dim=1) sim = emb @ emb.T print(sim) ```
DeathGodlike/Erotophobia-24B-v2.0_H8-4.0BPW_EXL3
DeathGodlike
2025-09-11T15:05:54Z
0
0
safetensors
[ "safetensors", "exl3", "4-bit", "text-generation", "base_model:yvvki/Erotophobia-24B-v2.0", "base_model:quantized:yvvki/Erotophobia-24B-v2.0", "license:apache-2.0", "region:us" ]
text-generation
2025-09-11T15:05:52Z
--- license: apache-2.0 base_model: - yvvki/Erotophobia-24B-v2.0 base_model_relation: quantized pipeline_tag: text-generation library_name: safetensors tags: - exl3 - 4-bit --- ## EXL3 quants: [ [H8-4.0BPW](https://huggingface.co/DeathGodlike/Erotophobia-24B-v2.0_H8-4.0BPW_EXL3/tree/H8-4.0BPW) ] # Original model: [Erotophobia-24B-v2.0](https://huggingface.co/yvvki/Erotophobia-24B-v2.0) by [yvvki](https://huggingface.co/yvvki)
Amboara001/malagasy-to-betsim-t5-base-v2
Amboara001
2025-09-11T15:05:49Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-09-11T14:04:16Z
--- library_name: transformers license: apache-2.0 base_model: t5-base tags: - generated_from_trainer model-index: - name: malagasy-to-betsim-t5-base-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # malagasy-to-betsim-t5-base-v2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 1.4493 | 3.3333 | 500 | 1.1330 | | 1.0069 | 6.6667 | 1000 | 0.9316 | | 0.8069 | 10.0 | 1500 | 0.8125 | | 0.6822 | 13.3333 | 2000 | 0.7414 | | 0.5971 | 16.6667 | 2500 | 0.7125 | | 0.5318 | 20.0 | 3000 | 0.6861 | | 0.4788 | 23.3333 | 3500 | 0.6627 | | 0.442 | 26.6667 | 4000 | 0.6569 | | 0.4048 | 30.0 | 4500 | 0.6473 | | 0.3801 | 33.3333 | 5000 | 0.6444 | | 0.3633 | 36.6667 | 5500 | 0.6372 | | 0.3446 | 40.0 | 6000 | 0.6347 | | 0.3301 | 43.3333 | 6500 | 0.6296 | | 0.3274 | 46.6667 | 7000 | 0.6292 | | 0.3192 | 50.0 | 7500 | 0.6292 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
arabellamorris/blockassist-bc-tricky_sneaky_locust_1757603086
arabellamorris
2025-09-11T15:05:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky sneaky locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:05:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky sneaky locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zamilaoela/blockassist-bc-singing_leaping_vulture_1757603100
zamilaoela
2025-09-11T15:05:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing leaping vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:05:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing leaping vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cuadron11/jina-reranker-v2-base-multilingual-contrastive-all-8-3ep
cuadron11
2025-09-11T15:04:58Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "cross-encoder", "reranker", "generated_from_trainer", "dataset_size:6400", "loss:CachedMultipleNegativesRankingLoss", "text-ranking", "custom_code", "arxiv:1908.10084", "base_model:jinaai/jina-reranker-v2-base-multilingual", "base_model:finetune:jinaai/jina-reranker-v2-base-multilingual", "model-index", "region:us" ]
text-ranking
2025-09-11T15:04:44Z
--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:6400 - loss:CachedMultipleNegativesRankingLoss base_model: jinaai/jina-reranker-v2-base-multilingual pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on jinaai/jina-reranker-v2-base-multilingual results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: jina reranker v2 base multilingual contrastive all 8 3ep type: jina-reranker-v2-base-multilingual-contrastive-all-8-3ep metrics: - type: map value: 0.0144 name: Map - type: mrr@10 value: 0.0144 name: Mrr@10 - type: ndcg@10 value: 0.0144 name: Ndcg@10 --- # CrossEncoder based on jinaai/jina-reranker-v2-base-multilingual This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jinaai/jina-reranker-v2-base-multilingual](https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [jinaai/jina-reranker-v2-base-multilingual](https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual) <!-- at revision 2f894e63642a95228da19cdd583cd2309983c867 --> - **Maximum Sequence Length:** 1024 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("cuadron11/jina-reranker-v2-base-multilingual-contrastive-all-8-3ep") # Get scores for pairs of texts pairs = [ ['Noiz aurkeztu zuen Espainiako Gobernuak Next Generation funtsak kudeatzeko zirriborroa?', '[TOPIC: Mozioa, Mikel Otero Gabirondo EH Bildu taldeko legebiltzarkideak aurkeztua, Europar Batasunaren Next Generation funtsak kudeatzeko urgentziaz bulego estrategiko bat osatzearen inguruan. Eztabaida eta behin betiko ebazpena]\n[LARREA LASO, (PV-ETP)]:\nIkus dezagun; hemen, gakoa da gauzak zein ordenatan egin diren. Eta harrigarria egiten zait zuek gugana etortzea esanez ordena litzatekeela hautatzea, elkarrizketa abiaraztea... Zer elkarrizketa? Zer elkarrizketa egin duzue? Orain hasi behar al duzue, Espainiako Gobernuak jada zirriborroa duenean? Zuek prestatu diozuen zirriborroa, zeuok prestarazi duzuena? Eta, benetan, Otero jaunaren hitzak neuretzen ditut. Ikus dezagun; hemen, gakoa gardentasuna da, lehia askea. Beste erkidego batzuetan, ekainean edo (Date: 15.10.2020)'], ['Zein dira talde sustatzailearen eginkizunak UPV/EHUko Familia eta Komunitateko Medikuntzako Ikasgelaren hitzarmenaren barruan?', 'Era berean, proposatu da hitzarmena sinatu duten alderdiei eskumena ematea batzordekideak izenda ditzaten, egokitzat jotzen denean. Betebehar bakarra izango da beste aldeari batzordearen eraketan eginiko aldaketen berri ematea; kasu horietan, ez da beharrezkoa izango beste hitzarmen bat sinatzea.\nLaugarrena. Talde sustatzailea.\nTalde sustatzaile bat eratzea erabaki da, hitzarmenaren xedea lortzeko beharrezkoak diren jarduerak proposatzeko eta kudeatzeko. Alderdi bakoitzak gehienez hiru pertsona izango ditu, hau da, UPV/EHUko hiru pertsona gehienez eta Osasun Saileko hiru pertsona gehienez.\nHauek dira talde sustatzailearen eginkizunak:\na) Akordio honetan aurreikusitako helburuak lortzeko garatu beharreko jardueren plana proposatzea. Planak prozesuaren eraginkortasunarekin edo efizientziarekin lotutako kudeaketa adierazleak izango ditu.\nb) Jarraipen Batzordeak onartutako jarduerak kudeatzen laguntzea.\nBosgarrena. Idazkaritza Teknikoa.\nIdazkaritza Teknikoaren eginkizunak honako hauek dira:\na) Akordio honen helburuak lortzeko talde sustatzaileak proposatutako jardueren plana eratzea.\nb) Familia eta Komunitateko Medikuntzako Ikasgela jarraipen batzordeak onartutako jarduerak egitea errazteko azpiegiturez eta ekipamenduez hornitzeko beharrezko kudeaketa tekniko eta ekonomiko guztiak gauzatzea.\nc) Jarraipen Batzordeak onartutako jardueretarako proposamenak abiarazi eta kudeatzea, akordio honen helburuak lortzeko.\nd) Familia eta Komunitateko Medikuntzako Ikasgelan garatutako jarduketak talde sustatzaileak proposatutako eta jarraipen batzordeak onartutako jardueren planean jasoak zehatz-mehatz deskribatzeko memoria eratzea, bai eta plan horretan ezarritako adierazleei buruzko informazioa ere.\ne) Memoria ekonomiko bat eratzea, Familia eta Komunitateko Medikuntzako Ikasgelan egindako jarduerak gauzatzeko sortu eta ordaindutako gastu guztiak, kontzeptuaren arabera banakatuta, zerrendatzen dituena.\nf) UPV/EHUko Familia eta Komunitateko Medikuntzako Ikasgelaren jarduerekin lotuta egindako gastuak justifikatzeko beharrezko dokumentazioa aurkeztea Osasun Saileko Plangintza, Antolamendu eta Ebaluazio Sanitarioko Zuzendaritzari.'], ['Zein dira Etxebizitza Legearen garapenean aurrera eramateko falta diren ekinbideak?', '[TOPIC: Mozioa, Maider Otamendi Tolosa EH Bildu taldeko legebiltzarkideak aurkeztua, Etxebizitza Legeari buruz. Eztabaida eta behin betiko ebazpena]\n[OTAMENDI TOLOSA, (EH Bildu)]:\neta fidantzen deposituarena. Baina legea onartu zenetik 10 hilabete pasa dira jada eta legearen garapena aurreratuago egon beharko litzateke. Beraz, badago zer egina. Lehenbailehen martxan jarri beharreko hainbat ekinbide badaude. Adibidez, etxebizitza-gaietarako organismo publikoa sortzea, jenderik gabeko etxebizitzen erregistroa sortu beharra dago, edo alokairurako parke publikoa handitu beharra dago, beharrezko bitarteko guztiak horretara bideratuz. Atzoko jardunaldian entzun ahal izan genizuen esaten alokairuko etxe bat eskuratu ahal izateko (Date: 21.04.2016)'], ['Zein da Gorka Urbizuk bakarkako bidean kaleratu duen lehen diskoaren izena?', 'Musika\n\nGorka Urbizuk bakarkako lehenbiziko diskoa plazaratu du\n\nEzustean, impasse tartea eten, eta bakarkako bideari lotu zaio Gorka Urbizu (Lekunberri, Nafarroa, 1977); noranzkoa garbi, baina emeki. Berri Txarrak taldeak 2019an ibilbidea bukatuta ere, doinu berrien bila aritu da musikaria urteotan, eta franko aurkitu ditu azkenerako. Horietako hamar jaso ditu bilduma batean, eta bakarkako lehenbiziko diskoa plazaratu du hala: Hasiera bat. Entzun hemen.\n\nZerrenda moduko bat osatzen dute Urbizuk argitaraturiko hamar kantuek: Maitasun bat, Teoria bat, Tren bat, Toki bat, Janela bat, Kolore bat, Lilura bat, Etxe bat, Sute bat eta Besterik ez. Pieza horietan guztietan, doinu aski biluziak bistaratu ditu musikariak. Soinu geruza gutxi metatu ditu abestietan; kontrara, «gordin» utzi ditu, oro har. Kantuak «erantzi, hustu eta kimatu», horien muinak agerian uzteko saiakera betean, diskoarekin batera argitaratutako oharrean idatzi dutenez. «Soiltasunaren ederra lortzen ahaleginduz, sortuko denaren beldurrik gabe».\n\nSoila izan da diskoa plazaratzeko manera ere. Kantuak ustekabez heldu dira jende gehien-gehienarentzat. Igande iluntzera arte, Urbizuk ez zuen deus iragarria. Orduantxe, atzerako kontu bat argitaratu zuen sare sozialetan, gauerdian zerbait ateratzekoa zela iradokita; besterik ez. Gainera, ez du argitaratu aurrerapen kanturik ere. Tren bat abestian, «ikusmenak itsututa gaude», dio musikariak gaurko gizarteaz. Eta, akaso horregatik, halaxe nahiago izan du diskoa eman. Hala eta guztiz, begiei eskainitako pieza bat ere kaleratu du: bideoklip bat argitaratu du. Teoria bat kantuarentzat eginikoa da. Alexander Cabeza Trigg zinemagileak egin du.\n\nhttps://www.youtube.com/watch?v=32OnN08lH5g'], ['Zer gertatu zen Aretako 2 urteko gelarekin hezkuntza-komunitateak protesta egin ondoren?', '[TOPIC: Galdera, Isabel González Rodríguez Elkarrekin Podemos-IU taldeko legebiltzarkideak Hezkuntzako sailburuari egina, Aretako 2 urteko gela ixteari buruz]\n[GONZÁLEZ RODRÍGUEZ, (EP-IU)]:\nez dagoelako jolasik; eta oso argi hitz egiten dutelako. Sailak mehatxu egiten du, hezkuntza-komunitateak erantzun egiten du, sailak atzera egiten du, eta hori da gertaeren segida. Baina zer gertatuko zatekeen komunitateak erantzun izan ez balu? Bada, argi eta garbi, gela itxi egingo zenuketen. Ziur horrela izango litzatekeela. Eta hori da gertatutakoaren sekuentzia. Hezkuntza Sailak erabaki bat hartzen du, komunitateak protesta egiten du, Hezkuntza Sailak atzera egiten du. Eta zer gertatuko (Date: 31.03.2023)'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'Noiz aurkeztu zuen Espainiako Gobernuak Next Generation funtsak kudeatzeko zirriborroa?', [ '[TOPIC: Mozioa, Mikel Otero Gabirondo EH Bildu taldeko legebiltzarkideak aurkeztua, Europar Batasunaren Next Generation funtsak kudeatzeko urgentziaz bulego estrategiko bat osatzearen inguruan. Eztabaida eta behin betiko ebazpena]\n[LARREA LASO, (PV-ETP)]:\nIkus dezagun; hemen, gakoa da gauzak zein ordenatan egin diren. Eta harrigarria egiten zait zuek gugana etortzea esanez ordena litzatekeela hautatzea, elkarrizketa abiaraztea... Zer elkarrizketa? Zer elkarrizketa egin duzue? Orain hasi behar al duzue, Espainiako Gobernuak jada zirriborroa duenean? Zuek prestatu diozuen zirriborroa, zeuok prestarazi duzuena? Eta, benetan, Otero jaunaren hitzak neuretzen ditut. Ikus dezagun; hemen, gakoa gardentasuna da, lehia askea. Beste erkidego batzuetan, ekainean edo (Date: 15.10.2020)', 'Era berean, proposatu da hitzarmena sinatu duten alderdiei eskumena ematea batzordekideak izenda ditzaten, egokitzat jotzen denean. Betebehar bakarra izango da beste aldeari batzordearen eraketan eginiko aldaketen berri ematea; kasu horietan, ez da beharrezkoa izango beste hitzarmen bat sinatzea.\nLaugarrena. Talde sustatzailea.\nTalde sustatzaile bat eratzea erabaki da, hitzarmenaren xedea lortzeko beharrezkoak diren jarduerak proposatzeko eta kudeatzeko. Alderdi bakoitzak gehienez hiru pertsona izango ditu, hau da, UPV/EHUko hiru pertsona gehienez eta Osasun Saileko hiru pertsona gehienez.\nHauek dira talde sustatzailearen eginkizunak:\na) Akordio honetan aurreikusitako helburuak lortzeko garatu beharreko jardueren plana proposatzea. Planak prozesuaren eraginkortasunarekin edo efizientziarekin lotutako kudeaketa adierazleak izango ditu.\nb) Jarraipen Batzordeak onartutako jarduerak kudeatzen laguntzea.\nBosgarrena. Idazkaritza Teknikoa.\nIdazkaritza Teknikoaren eginkizunak honako hauek dira:\na) Akordio honen helburuak lortzeko talde sustatzaileak proposatutako jardueren plana eratzea.\nb) Familia eta Komunitateko Medikuntzako Ikasgela jarraipen batzordeak onartutako jarduerak egitea errazteko azpiegiturez eta ekipamenduez hornitzeko beharrezko kudeaketa tekniko eta ekonomiko guztiak gauzatzea.\nc) Jarraipen Batzordeak onartutako jardueretarako proposamenak abiarazi eta kudeatzea, akordio honen helburuak lortzeko.\nd) Familia eta Komunitateko Medikuntzako Ikasgelan garatutako jarduketak talde sustatzaileak proposatutako eta jarraipen batzordeak onartutako jardueren planean jasoak zehatz-mehatz deskribatzeko memoria eratzea, bai eta plan horretan ezarritako adierazleei buruzko informazioa ere.\ne) Memoria ekonomiko bat eratzea, Familia eta Komunitateko Medikuntzako Ikasgelan egindako jarduerak gauzatzeko sortu eta ordaindutako gastu guztiak, kontzeptuaren arabera banakatuta, zerrendatzen dituena.\nf) UPV/EHUko Familia eta Komunitateko Medikuntzako Ikasgelaren jarduerekin lotuta egindako gastuak justifikatzeko beharrezko dokumentazioa aurkeztea Osasun Saileko Plangintza, Antolamendu eta Ebaluazio Sanitarioko Zuzendaritzari.', '[TOPIC: Mozioa, Maider Otamendi Tolosa EH Bildu taldeko legebiltzarkideak aurkeztua, Etxebizitza Legeari buruz. Eztabaida eta behin betiko ebazpena]\n[OTAMENDI TOLOSA, (EH Bildu)]:\neta fidantzen deposituarena. Baina legea onartu zenetik 10 hilabete pasa dira jada eta legearen garapena aurreratuago egon beharko litzateke. Beraz, badago zer egina. Lehenbailehen martxan jarri beharreko hainbat ekinbide badaude. Adibidez, etxebizitza-gaietarako organismo publikoa sortzea, jenderik gabeko etxebizitzen erregistroa sortu beharra dago, edo alokairurako parke publikoa handitu beharra dago, beharrezko bitarteko guztiak horretara bideratuz. Atzoko jardunaldian entzun ahal izan genizuen esaten alokairuko etxe bat eskuratu ahal izateko (Date: 21.04.2016)', 'Musika\n\nGorka Urbizuk bakarkako lehenbiziko diskoa plazaratu du\n\nEzustean, impasse tartea eten, eta bakarkako bideari lotu zaio Gorka Urbizu (Lekunberri, Nafarroa, 1977); noranzkoa garbi, baina emeki. Berri Txarrak taldeak 2019an ibilbidea bukatuta ere, doinu berrien bila aritu da musikaria urteotan, eta franko aurkitu ditu azkenerako. Horietako hamar jaso ditu bilduma batean, eta bakarkako lehenbiziko diskoa plazaratu du hala: Hasiera bat. Entzun hemen.\n\nZerrenda moduko bat osatzen dute Urbizuk argitaraturiko hamar kantuek: Maitasun bat, Teoria bat, Tren bat, Toki bat, Janela bat, Kolore bat, Lilura bat, Etxe bat, Sute bat eta Besterik ez. Pieza horietan guztietan, doinu aski biluziak bistaratu ditu musikariak. Soinu geruza gutxi metatu ditu abestietan; kontrara, «gordin» utzi ditu, oro har. Kantuak «erantzi, hustu eta kimatu», horien muinak agerian uzteko saiakera betean, diskoarekin batera argitaratutako oharrean idatzi dutenez. «Soiltasunaren ederra lortzen ahaleginduz, sortuko denaren beldurrik gabe».\n\nSoila izan da diskoa plazaratzeko manera ere. Kantuak ustekabez heldu dira jende gehien-gehienarentzat. Igande iluntzera arte, Urbizuk ez zuen deus iragarria. Orduantxe, atzerako kontu bat argitaratu zuen sare sozialetan, gauerdian zerbait ateratzekoa zela iradokita; besterik ez. Gainera, ez du argitaratu aurrerapen kanturik ere. Tren bat abestian, «ikusmenak itsututa gaude», dio musikariak gaurko gizarteaz. Eta, akaso horregatik, halaxe nahiago izan du diskoa eman. Hala eta guztiz, begiei eskainitako pieza bat ere kaleratu du: bideoklip bat argitaratu du. Teoria bat kantuarentzat eginikoa da. Alexander Cabeza Trigg zinemagileak egin du.\n\nhttps://www.youtube.com/watch?v=32OnN08lH5g', '[TOPIC: Galdera, Isabel González Rodríguez Elkarrekin Podemos-IU taldeko legebiltzarkideak Hezkuntzako sailburuari egina, Aretako 2 urteko gela ixteari buruz]\n[GONZÁLEZ RODRÍGUEZ, (EP-IU)]:\nez dagoelako jolasik; eta oso argi hitz egiten dutelako. Sailak mehatxu egiten du, hezkuntza-komunitateak erantzun egiten du, sailak atzera egiten du, eta hori da gertaeren segida. Baina zer gertatuko zatekeen komunitateak erantzun izan ez balu? Bada, argi eta garbi, gela itxi egingo zenuketen. Ziur horrela izango litzatekeela. Eta hori da gertatutakoaren sekuentzia. Hezkuntza Sailak erabaki bat hartzen du, komunitateak protesta egiten du, Hezkuntza Sailak atzera egiten du. Eta zer gertatuko (Date: 31.03.2023)', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Dataset: `jina-reranker-v2-base-multilingual-contrastive-all-8-3ep` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": false } ``` | Metric | Value | |:------------|:---------------------| | map | 0.0144 (+0.0132) | | mrr@10 | 0.0144 (+0.0135) | | **ndcg@10** | **0.0144 (+0.0130)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 6,400 training samples * Columns: <code>query</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | query | positive | |:--------|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 19 characters</li><li>mean: 93.98 characters</li><li>max: 255 characters</li></ul> | <ul><li>min: 373 characters</li><li>mean: 1213.64 characters</li><li>max: 2221 characters</li></ul> | * Samples: | query | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Zenbat denborarako izendatzen dira Burutzako lanpostu funtzionalak Euskadiko antolamendu Sanitarioaren 8/1997 Legearen arabera?</code> | <code>Euskadiko antolamendu Sanitarioaren 8/1997 Legearen 28 ataleko 3. arauaren 8. puntuan xedatutakoaren arabera, Burutzako lanpostu funtzionalek lau urteko eperako izendapen tenporala eduki dezakete; lau urteko izendapen hori luza daiteke arau honetan ezarritakoaren arabera.<br>Ebazpen honen aurkako errekurtsoak.<br>Ebazpen honen aurka, gora jotzeko errekurtsoa aurkeztu ahal izango zaio Osakidetza Euskal osasun zerbitzuko zuzendari nagusiari, ebazpen hau dagokien Aldizkari Ofizialetan argitaratzen den azken egunaren biharamunetik hilabeteko epean.<br>Barakaldo, 2016ko ekainaren 7a.<br>Ezkerraldea-Enkarterri-Cruces ESIko zuzendari gerentea,<br>SANTIAGO RABANAL RETOLAZA.<br>ERANSKINA<br>MERITUEN BAREMOA (GEHIENEZ 66 PUNTU)<br>Merituen balorazioak hurrengo faseak edukiko ditu:<br>Proiektua eta bere defentsa (gehienez 30 puntu).<br>Fase honen oinarria da balorazio batzordeko kalifikatzailearen aurrean dagokion Atalaren antolaketa eta funtzionamenduari buruzko jendaurreko azalpena, eta izangaiarekin elkarrizketa egitea.<br>Fa...</code> | | <code>Non gertatu da Iruñerriko 27 urteko gizonezko mendizalearen heriotza?</code> | <code>Iruñerriko mendizale bat hil da, Aspe mendian amilduta<br><br>Iruñerriko 27 urteko gizonezko bat hil da gaur goizean, Aspe mendian (Aragoi, Espainia). Ezbeharra 11:00 aldera gertatu da. Mendizale talde bat zihoan mendiko ipar aldeko bide batean gora, baina haietako bat amildu egin da, izotzean irrist eginda. Larrialdi zerbitzuek adierazi dutenez, mendizaleek material egokia zeramaten izotzean eskalatzeko. Guardia Zibilaren mendiko erreskate taldea joan da eroritako mendizalea zegoen tokiraino, baina hilotz zen ordurako.</code> | | <code>Zein dira sindikatuek lan istripuak murrizteko egindako eskaerak?</code> | <code>CCOO sindikatuak irmo gaitzetsi du lan istripua. «Lan istripu tasa handienetako lurraldea da Nafarroa, eta zifra horiek murrizteak lehentasun izan behar du Nafarroako Gobernuarentzat eta inplikatutako eragileentzat». Patronalari dei egin dio Lan Arriskuen Prebentziorako legea «zorrotz betetzera», eta horretarako «behar diren baliabide guztiak» jarri beharko liratekeela gaineratu du.<br><br>Sindikatu horren irudiko, lantokira joateak ez lioke inori eragin behar inolako arriskurik. «Lan istripurik ez izateko erantzukizuna enpresen gain dago erabat, eta administrazioak funtsezko rola jokatzen du araudia betetzen dela zaintzeko orduan», esan du.<br><br>Antzera eta gogor mintzatu da ELA. «Egoera horren erantzule nagusiak patronala eta erakunde publikoak dira». Sindikatuaren arabera, enpresek, sistematikoki, ez dute betetzen legedia, eta Nafarroako Gobernuak uko egiten dio «beharrezko kontrol neurriak» ezartzeari. Hala, ELAk eskatu du Nafarroako Osasun Publikoaren Lan Osasunaren Institututuko ikuskaritz...</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 10.0, "num_negatives": null, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,600 evaluation samples * Columns: <code>query</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | query | positive | |:--------|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 26 characters</li><li>mean: 93.84 characters</li><li>max: 271 characters</li></ul> | <ul><li>min: 361 characters</li><li>mean: 1186.32 characters</li><li>max: 2297 characters</li></ul> | * Samples: | query | positive | |:--------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Noiz aurkeztu zuen Espainiako Gobernuak Next Generation funtsak kudeatzeko zirriborroa?</code> | <code>[TOPIC: Mozioa, Mikel Otero Gabirondo EH Bildu taldeko legebiltzarkideak aurkeztua, Europar Batasunaren Next Generation funtsak kudeatzeko urgentziaz bulego estrategiko bat osatzearen inguruan. Eztabaida eta behin betiko ebazpena]<br>[LARREA LASO, (PV-ETP)]:<br>Ikus dezagun; hemen, gakoa da gauzak zein ordenatan egin diren. Eta harrigarria egiten zait zuek gugana etortzea esanez ordena litzatekeela hautatzea, elkarrizketa abiaraztea... Zer elkarrizketa? Zer elkarrizketa egin duzue? Orain hasi behar al duzue, Espainiako Gobernuak jada zirriborroa duenean? Zuek prestatu diozuen zirriborroa, zeuok prestarazi duzuena? Eta, benetan, Otero jaunaren hitzak neuretzen ditut. Ikus dezagun; hemen, gakoa gardentasuna da, lehia askea. Beste erkidego batzuetan, ekainean edo (Date: 15.10.2020)</code> | | <code>Zein dira talde sustatzailearen eginkizunak UPV/EHUko Familia eta Komunitateko Medikuntzako Ikasgelaren hitzarmenaren barruan?</code> | <code>Era berean, proposatu da hitzarmena sinatu duten alderdiei eskumena ematea batzordekideak izenda ditzaten, egokitzat jotzen denean. Betebehar bakarra izango da beste aldeari batzordearen eraketan eginiko aldaketen berri ematea; kasu horietan, ez da beharrezkoa izango beste hitzarmen bat sinatzea.<br>Laugarrena. Talde sustatzailea.<br>Talde sustatzaile bat eratzea erabaki da, hitzarmenaren xedea lortzeko beharrezkoak diren jarduerak proposatzeko eta kudeatzeko. Alderdi bakoitzak gehienez hiru pertsona izango ditu, hau da, UPV/EHUko hiru pertsona gehienez eta Osasun Saileko hiru pertsona gehienez.<br>Hauek dira talde sustatzailearen eginkizunak:<br>a) Akordio honetan aurreikusitako helburuak lortzeko garatu beharreko jardueren plana proposatzea. Planak prozesuaren eraginkortasunarekin edo efizientziarekin lotutako kudeaketa adierazleak izango ditu.<br>b) Jarraipen Batzordeak onartutako jarduerak kudeatzen laguntzea.<br>Bosgarrena. Idazkaritza Teknikoa.<br>Idazkaritza Teknikoaren eginkizunak honako hauek dira...</code> | | <code>Zein dira Etxebizitza Legearen garapenean aurrera eramateko falta diren ekinbideak?</code> | <code>[TOPIC: Mozioa, Maider Otamendi Tolosa EH Bildu taldeko legebiltzarkideak aurkeztua, Etxebizitza Legeari buruz. Eztabaida eta behin betiko ebazpena]<br>[OTAMENDI TOLOSA, (EH Bildu)]:<br>eta fidantzen deposituarena. Baina legea onartu zenetik 10 hilabete pasa dira jada eta legearen garapena aurreratuago egon beharko litzateke. Beraz, badago zer egina. Lehenbailehen martxan jarri beharreko hainbat ekinbide badaude. Adibidez, etxebizitza-gaietarako organismo publikoa sortzea, jenderik gabeko etxebizitzen erregistroa sortu beharra dago, edo alokairurako parke publikoa handitu beharra dago, beharrezko bitarteko guztiak horretara bideratuz. Atzoko jardunaldian entzun ahal izan genizuen esaten alokairuko etxe bat eskuratu ahal izateko (Date: 21.04.2016)</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 10.0, "num_negatives": null, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | jina-reranker-v2-base-multilingual-contrastive-all-8-3ep_ndcg@10 | |:-------:|:-------:|:-------------:|:---------------:|:----------------------------------------------------------------:| | **0.5** | **200** | **0.0482** | **0.0209** | **0.0144 (+0.0130)** | | 1.0 | 400 | 0.0208 | 0.0170 | 0.0144 (+0.0130) | | 1.5 | 600 | 0.0186 | 0.0164 | 0.0144 (+0.0130) | | 2.0 | 800 | 0.0199 | 0.0158 | 0.0144 (+0.0130) | | 2.5 | 1000 | 0.015 | 0.0159 | 0.0144 (+0.0130) | | 3.0 | 1200 | 0.0205 | 0.0158 | 0.0144 (+0.0130) | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.9.7 - Sentence Transformers: 5.0.0 - Transformers: 4.56.0 - PyTorch: 2.7.1+cu126 - Accelerate: 1.5.2 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
abadkibriya3524/blockassist-bc-timid_padded_ape_1757603067
abadkibriya3524
2025-09-11T15:04:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "timid padded ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:04:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - timid padded ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757602975
harmonyblevinsm0
2025-09-11T15:04:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:03:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_123_1757596071
rbelanec
2025-09-11T15:03:25Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T13:12:56Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_123_1757596071 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_123_1757596071 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.9521 - Num Input Tokens Seen: 6929680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.1268 | 1.0 | 3848 | 0.2820 | 346872 | | 0.3132 | 2.0 | 7696 | 0.2417 | 693752 | | 0.2179 | 3.0 | 11544 | 0.2405 | 1040128 | | 0.2649 | 4.0 | 15392 | 0.2411 | 1386696 | | 0.2187 | 5.0 | 19240 | 0.2434 | 1733072 | | 0.1872 | 6.0 | 23088 | 0.2394 | 2079640 | | 0.2849 | 7.0 | 26936 | 0.2419 | 2425920 | | 0.1858 | 8.0 | 30784 | 0.2366 | 2772144 | | 0.2726 | 9.0 | 34632 | 0.2393 | 3118472 | | 0.2241 | 10.0 | 38480 | 0.2438 | 3465288 | | 0.2284 | 11.0 | 42328 | 0.2862 | 3811696 | | 0.0849 | 12.0 | 46176 | 0.2743 | 4158168 | | 0.1104 | 13.0 | 50024 | 0.3264 | 4504416 | | 0.1854 | 14.0 | 53872 | 0.3800 | 4850888 | | 0.1511 | 15.0 | 57720 | 0.4422 | 5197456 | | 0.0483 | 16.0 | 61568 | 0.5154 | 5543848 | | 0.1082 | 17.0 | 65416 | 0.6811 | 5890320 | | 0.2789 | 18.0 | 69264 | 0.7981 | 6237200 | | 0.3151 | 19.0 | 73112 | 0.9202 | 6583408 | | 0.0006 | 20.0 | 76960 | 0.9521 | 6929680 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
bytedance-research/HuMo
bytedance-research
2025-09-11T15:03:16Z
0
17
null
[ "image-to-video", "arxiv:2509.08519", "license:apache-2.0", "region:us" ]
image-to-video
2025-09-10T07:41:30Z
--- license: apache-2.0 pipeline_tag: image-to-video --- # HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning <div align="center"> [![arXiv](https://img.shields.io/badge/arXiv%20paper-2509.08519-b31b1b.svg)](https://arxiv.org/abs/2509.08519)&nbsp; [![project page](https://img.shields.io/badge/Project_page-More_visualizations-green)](https://phantom-video.github.io/HuMo/)&nbsp; <a href="https://huggingface.co/bytedance-research/HuMo"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a> </div> > [**HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning**](https://arxiv.org/abs/2509.08519)<br> > [Liyang Chen](https://scholar.google.com.hk/citations?user=jk6jWXgAAAAJ&hl)<sup> * </sup>, [Tianxiang Ma](https://tianxiangma.github.io/)<sup> * </sup>, [Jiawei Liu](https://scholar.google.com/citations?user=X21Fz-EAAAAJ), [Bingchuan Li](https://scholar.google.com/citations?user=ac5Se6QAAAAJ)<sup>&dagger;</sup>, [Zhuowei Chen](https://scholar.google.com/citations?user=ow1jGJkAAAAJ), [Lijie Liu](https://liulj13.github.io/), [Xu He](https://scholar.google.com.hk/citations?user=KMrFk2MAAAAJ&hl), [Gen Li](https://scholar.google.com/citations?user=wqA7EIoAAAAJ), [Qian He](https://scholar.google.com/citations?user=9rWWCgUAAAAJ), [Zhiyong Wu](https://scholar.google.com.hk/citations?hl=zh-CN&user=7Xl6KdkAAAAJ&)<sup> § </sup> > <br><sup> * </sup>Equal contribution,<sup> &dagger; </sup>Project lead, <sup> § </sup>Corresponding author > <br>Tsinghua University | Intelligent Creation Team, ByteDance<br> <p align="center"> <img src="assets/teaser.png" width=95%> <p> ## ✨ Key Features HuMo is a unified, human-centric video generation framework designed to produce high-quality, fine-grained, and controllable human videos from multimodal inputs—including text, images, and audio. It supports strong text prompt following, consistent subject preservation, synchronized audio-driven motion. > - **​​VideoGen from Text-Image**​​ - Customize character appearance, clothing, makeup, props, and scenes using text prompts combined with reference images. > - **​​VideoGen from Text-Audio**​​ - Generate audio-synchronized videos solely from text and audio inputs, removing the need for image references and enabling greater creative freedom. > - **​​VideoGen from Text-Image-Audio**​​ - Achieve the higher level of customization and control by combining text, image, and audio guidance. ## 📑 Todo List - [x] Release Paper - [x] Checkpoint of HuMo-17B - [x] Inference Codes - [ ] Text-Image Input - [x] Text-Audio Input - [x] Text-Image-Audio Input - [x] Multi-GPU Inference - [ ] Release Prompts to Generate Demo of ***Faceless Thrones*** - [ ] HuMo-1.7B ## ⚡️ Quickstart ### Installation ``` conda create -n humo python=3.11 conda activate humo pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 pip install flash_attn==2.6.3 pip install -r requirements.txt conda install -c conda-forge ffmpeg ``` ### Model Preparation | Models | Download Link | Notes | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------| | HuMo-17B | 🤗 [Huggingface](https://huggingface.co/bytedance-research/HuMo/tree/main) | Released before September 15 | HuMo-1.7B | 🤗 [Huggingface](https://huggingface.co/bytedance-research/HuMo/tree/main) | To be released soon | Wan-2.1 | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B) | VAE & Text encoder | Whisper-large-v3 | 🤗 [Huggingface](https://huggingface.co/openai/whisper-large-v3) | Audio encoder | Audio separator | 🤗 [Huggingface](https://huggingface.co/huangjackson/Kim_Vocal_2) | Remove background noise (optional) Download models using huggingface-cli: ``` sh huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir ./weights/Wan2.1-T2V-1.3B huggingface-cli download bytedance-research/HuMo --local-dir ./weights/HuMo huggingface-cli download openai/whisper-large-v3 --local-dir ./weights/whisper-large-v3 huggingface-cli download huangjackson/Kim_Vocal_2 --local-dir ./weights/audio_separator ``` ### Run Multimodal-Condition-to-Video Generation Our model is compatible with both 480P and 720P resolutions. 720P inference will achieve much better quality. > Some tips > - Please prepare your text, reference images and audio as described in [test_case.json](./examples/test_case.json). > - We support Multi-GPU inference using FSDP + Sequence Parallel. > - ​The model is trained on 97-frame videos at 25 FPS. Generating video longer than 97 frames may degrade the performance. We will provide a new checkpoint for longer generation. #### Configure HuMo HuMo’s behavior and output can be customized by modifying [generate.yaml](humo/configs/inference/generate.yaml) configuration file. The following parameters control generation length, video resolution, and how text, image, and audio inputs are balanced: ```yaml generation: frames: <int> # Number of frames for the generated video. scale_a: <float> # Strength of audio guidance. Higher = better audio-motion sync. scale_t: <float> # Strength of text guidance. Higher = better adherence to text prompts. mode: "TA" # Input mode: "TA" for text+audio; "TIA" for text+image+audio. height: 720 # Video height (e.g., 720 or 480). width: 1280 # Video width (e.g., 1280 or 832). diffusion: timesteps: sampling: steps: 50 # Number of denoising steps. Lower (30–40) = faster generation. ``` #### 1. Text-Audio Input ``` sh bash infer_ta.sh ``` #### 2. Text-Image-Audio Input ``` sh bash infer_tia.sh ``` ## Acknowledgements Our work builds upon and is greatly inspired by several outstanding open-source projects, including [Phantom](https://github.com/Phantom-video/Phantom), [SeedVR](https://github.com/IceClear/SeedVR?tab=readme-ov-file), [MEMO](https://github.com/memoavatar/memo), [Hallo3](https://github.com/fudan-generative-vision/hallo3), [OpenHumanVid](https://github.com/fudan-generative-vision/OpenHumanVid), and [Whisper](https://github.com/openai/whisper). We sincerely thank the authors and contributors of these projects for generously sharing their excellent codes and ideas. ## ⭐ Citation If HuMo is helpful, please help to ⭐ the repo. If you find this project useful for your research, please consider citing our [paper](https://arxiv.org/abs/2509.08519). ### BibTeX ```bibtex @misc{chen2025humo, title={HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning}, author={Liyang Chen and Tianxiang Ma and Jiawei Liu and Bingchuan Li and Zhuowei Chen and Lijie Liu and Xu He and Gen Li and Qian He and Zhiyong Wu}, year={2025}, eprint={2509.08519}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2509.08519}, } ``` ## 📧 Contact If you have any comments or questions regarding this open-source project, please open a new issue or contact [Liyang Chen](lyangchen@outlook.com) and [Tianxiang Ma](https://tianxiangma.github.io/).
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757602975
raileshikder7241
2025-09-11T15:03:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:03:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1757602826
cwayneconnor
2025-09-11T15:02:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-insectivorous_bold_lion_1757602887
omerbkts
2025-09-11T15:02:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_42_1757596047
rbelanec
2025-09-11T15:01:36Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T13:08:17Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_42_1757596047 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_42_1757596047 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.2412 - Num Input Tokens Seen: 6927000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.2546 | 1.0 | 3848 | 0.2480 | 346040 | | 0.1205 | 2.0 | 7696 | 0.2484 | 692368 | | 0.2615 | 3.0 | 11544 | 0.2438 | 1039080 | | 0.2572 | 4.0 | 15392 | 0.2436 | 1385192 | | 0.2552 | 5.0 | 19240 | 0.2432 | 1731824 | | 0.3358 | 6.0 | 23088 | 0.2496 | 2078408 | | 0.2235 | 7.0 | 26936 | 0.2438 | 2424592 | | 0.2903 | 8.0 | 30784 | 0.2476 | 2770768 | | 0.2715 | 9.0 | 34632 | 0.2459 | 3117120 | | 0.2141 | 10.0 | 38480 | 0.2748 | 3463336 | | 0.2359 | 11.0 | 42328 | 0.2426 | 3809536 | | 0.316 | 12.0 | 46176 | 0.2439 | 4155688 | | 0.3199 | 13.0 | 50024 | 0.2455 | 4502336 | | 0.2547 | 14.0 | 53872 | 0.2459 | 4848864 | | 0.2146 | 15.0 | 57720 | 0.2422 | 5194640 | | 0.3529 | 16.0 | 61568 | 0.2419 | 5541160 | | 0.2237 | 17.0 | 65416 | 0.2437 | 5887864 | | 0.3058 | 18.0 | 69264 | 0.2429 | 6234216 | | 0.2963 | 19.0 | 73112 | 0.2419 | 6580528 | | 0.3099 | 20.0 | 76960 | 0.2412 | 6927000 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Miracle-man/blockassist
Miracle-man
2025-09-11T15:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing lithe koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:52:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing lithe koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jazmynikrr/blockassist-bc-dormant_hulking_eagle_1757602851
jazmynikrr
2025-09-11T15:01:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant hulking eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant hulking eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
schnecklothheath/blockassist-bc-soaring_leaping_snake_1757602864
schnecklothheath
2025-09-11T15:01:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soaring leaping snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soaring leaping snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
khazarai/Quran-R1
khazarai
2025-09-11T15:00:32Z
0
1
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen3-0.6B", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "conversational", "en", "dataset:musaoc/Quran-reasoning-SFT", "base_model:unsloth/Qwen3-0.6B", "license:mit", "region:us" ]
text-generation
2025-09-11T14:57:47Z
--- base_model: unsloth/Qwen3-0.6B library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen3-0.6B - lora - sft - transformers - trl - unsloth license: mit datasets: - musaoc/Quran-reasoning-SFT language: - en --- # Model Card for Quran-R1 ## Model Details This model is a fine-tuned version of Qwen/Qwen3-0.6B on the musaoc/Quran-reasoning-SFT dataset. It is designed to perform reasoning and question-answering tasks related to the Quran, providing structured reasoning steps along with the final answer. ### Model Description - **Language(s) (NLP):** English - **License:** MIT - **Fine-tuning method**: Supervised fine-tuning (SFT) - **Finetuned from model:** Qwen3-0.6B - **Dataset:** musaoc/Quran-reasoning-SFT ## Uses The model is intended for: - Educational purposes: Assisting with structured reasoning about Quranic content. - Research: Exploring reasoning capabilities of small LLMs fine-tuned on religious text. - QA Systems: Providing answers with reasoning traces. Not intended for: - Authoritative religious rulings (fatwas) - Sensitive or controversial theological debates - High-stakes decision making ### Out-of-Scope Use - Scope: The model is limited to the reasoning dataset it was trained on. It may not generalize to broader Quranic studies. ## Bias, Risks, and Limitations - Bias: Outputs reflect dataset biases and may not represent all scholarly interpretations. - Hallucination risk: Like all LLMs, it may generate incorrect or fabricated reasoning. - Religious sensitivity: Responses may not align with every sect, school, or interpretation. Use with caution in sensitive contexts. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-0.6B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-0.6B", device_map={"": 0} ) model = PeftModel.from_pretrained(base_model,"khazarai/Quran-R1") question = "How does the Quran address the issue of parental authority and children’s rights?" messages = [ {"role" : "user", "content" : question} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True, enable_thinking = True, ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 512, temperature = 0.6, top_p = 0.95, top_k = 20, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` ## Training Data **Dataset**: musaoc/Quran-reasoning-SFT The Quranic Reasoning Question Answering (QRQA) Dataset is a synthetic dataset designed for experimenting purposes and for training and evaluating models capable of answering complex, knowledge-intensive questions about the Quran with a strong emphasis on reasoning. This dataset is particularly well-suited for Supervised Fine-Tuning (SFT) of Large Language Models (LLMs) to enhance their understanding of Islamic scripture and their ability to provide thoughtful, reasoned responses. ### Framework versions - PEFT 0.17.0
milfordprudence/blockassist-bc-aquatic_reclusive_cassowary_1757602806
milfordprudence
2025-09-11T15:00:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering hairy woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:00:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering hairy woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goshujaieja/blockassist-bc-untamed_armored_ram_1757602778
goshujaieja
2025-09-11T14:59:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed armored ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:59:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed armored ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757602731
allfordedgar26
2025-09-11T14:58:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:58:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pabeypaul/blockassist-bc-sizable_knobby_salamander_1757602730
pabeypaul
2025-09-11T14:58:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:58:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KamilMpakiet/agatadwa
KamilMpakiet
2025-09-11T14:58:22Z
0
0
null
[ "license:other", "region:us" ]
null
2025-09-11T14:11:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
rbelanec/train_cola_789_1757596125
rbelanec
2025-09-11T14:57:57Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "ia3", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:07:25Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - ia3 - generated_from_trainer model-index: - name: train_cola_789_1757596125 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_789_1757596125 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.1522 - Num Input Tokens Seen: 3663512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.0737 | 0.5 | 962 | 0.2573 | 182656 | | 0.2517 | 1.0 | 1924 | 0.1771 | 365728 | | 0.2159 | 1.5 | 2886 | 0.1765 | 548992 | | 0.1765 | 2.0 | 3848 | 0.1651 | 731984 | | 0.1305 | 2.5 | 4810 | 0.1704 | 915792 | | 0.33 | 3.0 | 5772 | 0.1675 | 1098920 | | 0.0959 | 3.5 | 6734 | 0.1576 | 1281640 | | 0.1044 | 4.0 | 7696 | 0.1552 | 1465464 | | 0.1593 | 4.5 | 8658 | 0.1579 | 1649720 | | 0.071 | 5.0 | 9620 | 0.1549 | 1831920 | | 0.1529 | 5.5 | 10582 | 0.1570 | 2014928 | | 0.1885 | 6.0 | 11544 | 0.1530 | 2198176 | | 0.1467 | 6.5 | 12506 | 0.1522 | 2381440 | | 0.1482 | 7.0 | 13468 | 0.1539 | 2564952 | | 0.2243 | 7.5 | 14430 | 0.1545 | 2748568 | | 0.1888 | 8.0 | 15392 | 0.1522 | 2931096 | | 0.073 | 8.5 | 16354 | 0.1533 | 3113624 | | 0.0907 | 9.0 | 17316 | 0.1530 | 3296808 | | 0.0881 | 9.5 | 18278 | 0.1536 | 3480168 | | 0.1452 | 10.0 | 19240 | 0.1530 | 3663512 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
misaeluoyz/blockassist-bc-bipedal_soaring_porcupine_1757602642
misaeluoyz
2025-09-11T14:57:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:57:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pripak18370/blockassist-bc-agile_solitary_mandrill_1757602638
pripak18370
2025-09-11T14:57:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile solitary mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:57:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile solitary mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canadayfawuh/blockassist-bc-flapping_wise_rhino_1757602557
canadayfawuh
2025-09-11T14:56:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing squeaky bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:56:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing squeaky bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iyaadshikder1546/blockassist-bc-pensive_agile_bee_1757602507
iyaadshikder1546
2025-09-11T14:55:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive agile bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:55:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive agile bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lornaaveradutch/blockassist-bc-poisonous_domestic_jaguar_1757602477
lornaaveradutch
2025-09-11T14:54:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous domestic jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous domestic jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
foltzjmso/blockassist-bc-deadly_aquatic_sparrow_1757602471
foltzjmso
2025-09-11T14:54:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly aquatic sparrow", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly aquatic sparrow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hartsellbrian/blockassist-bc-pawing_wiry_bee_1757602442
hartsellbrian
2025-09-11T14:54:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing wiry bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing wiry bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pm9150348/blockassist-bc-powerful_raging_ape_1757602410
pm9150348
2025-09-11T14:53:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful raging ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:53:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful raging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757602346
borsahopa67
2025-09-11T14:52:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:52:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
leveylewlsjanot/blockassist-bc-mammalian_swift_chicken_1757602303
leveylewlsjanot
2025-09-11T14:52:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy arctic prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:52:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy arctic prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hyunjoonkang/sim_pick_and_place_DAVLA_1
hyunjoonkang
2025-09-11T14:52:00Z
0
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:hyunjoonkang/wx250s_sim_pick_and_place_1", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-11T14:51:46Z
--- base_model: lerobot/smolvla_base datasets: hyunjoonkang/wx250s_sim_pick_and_place_1 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - smolvla - robotics - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
oyshimimi50/blockassist-bc-alert_colorful_pigeon_1757602286
oyshimimi50
2025-09-11T14:51:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert colorful pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:51:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert colorful pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
meaganalmeidaobu/blockassist-bc-armored_pesty_tortoise_1757602278
meaganalmeidaobu
2025-09-11T14:51:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored pesty tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:51:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored pesty tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1757602190
cwayneconnor
2025-09-11T14:51:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:50:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_101112_1757596168
rbelanec
2025-09-11T14:50:19Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "ia3", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:47:26Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - ia3 - generated_from_trainer model-index: - name: train_copa_101112_1757596168 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596168 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0314 - Num Input Tokens Seen: 281312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.592 | 0.5 | 45 | 0.5497 | 14144 | | 0.8778 | 1.0 | 90 | 0.3723 | 28192 | | 0.0636 | 1.5 | 135 | 0.0465 | 42208 | | 0.0595 | 2.0 | 180 | 0.0365 | 56256 | | 0.242 | 2.5 | 225 | 0.0338 | 70368 | | 0.014 | 3.0 | 270 | 0.0341 | 84320 | | 0.1039 | 3.5 | 315 | 0.0326 | 98400 | | 0.0307 | 4.0 | 360 | 0.0314 | 112416 | | 0.3158 | 4.5 | 405 | 0.0345 | 126496 | | 0.0098 | 5.0 | 450 | 0.0319 | 140544 | | 0.0163 | 5.5 | 495 | 0.0342 | 154592 | | 0.0024 | 6.0 | 540 | 0.0315 | 168768 | | 0.0792 | 6.5 | 585 | 0.0330 | 182848 | | 0.0327 | 7.0 | 630 | 0.0315 | 196896 | | 0.1089 | 7.5 | 675 | 0.0345 | 210912 | | 0.0141 | 8.0 | 720 | 0.0326 | 225024 | | 0.0397 | 8.5 | 765 | 0.0324 | 239200 | | 0.0891 | 9.0 | 810 | 0.0335 | 253152 | | 0.0837 | 9.5 | 855 | 0.0317 | 267040 | | 0.1442 | 10.0 | 900 | 0.0330 | 281312 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_copa_101112_1757596165
rbelanec
2025-09-11T14:49:41Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "p-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:46:05Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - p-tuning - generated_from_trainer model-index: - name: train_copa_101112_1757596165 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596165 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.9577 - Num Input Tokens Seen: 281312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2006 | 0.5 | 45 | 0.1967 | 14144 | | 0.3225 | 1.0 | 90 | 0.0856 | 28192 | | 0.4327 | 1.5 | 135 | 0.0478 | 42208 | | 0.0202 | 2.0 | 180 | 0.0775 | 56256 | | 0.1742 | 2.5 | 225 | 0.0552 | 70368 | | 0.0049 | 3.0 | 270 | 0.0273 | 84320 | | 0.0011 | 3.5 | 315 | 0.0583 | 98400 | | 0.0018 | 4.0 | 360 | 0.0332 | 112416 | | 0.0013 | 4.5 | 405 | 0.0406 | 126496 | | 0.0002 | 5.0 | 450 | 0.0364 | 140544 | | 0.0001 | 5.5 | 495 | 0.0473 | 154592 | | 0.0001 | 6.0 | 540 | 0.0446 | 168768 | | 0.0001 | 6.5 | 585 | 0.0423 | 182848 | | 0.0 | 7.0 | 630 | 0.0465 | 196896 | | 0.0 | 7.5 | 675 | 0.0435 | 210912 | | 0.0 | 8.0 | 720 | 0.0428 | 225024 | | 0.0 | 8.5 | 765 | 0.0453 | 239200 | | 0.0 | 9.0 | 810 | 0.0443 | 253152 | | 0.0 | 9.5 | 855 | 0.0495 | 267040 | | 0.0 | 10.0 | 900 | 0.0484 | 281312 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
lm8779694/blockassist-bc-wily_squeaky_mule_1757602142
lm8779694
2025-09-11T14:49:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily squeaky mule", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:49:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily squeaky mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rodrigoburgd/blockassist-bc-scruffy_untamed_hare_1757602112
rodrigoburgd
2025-09-11T14:48:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy untamed hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:48:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy untamed hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ayush2594/psycare-flan-t5-base
Ayush2594
2025-09-11T14:48:04Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-09-11T12:39:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eunkey/erpo-qwen25-vl-oom-fixed
eunkey
2025-09-11T14:46:57Z
9
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-10T09:17:12Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: erpo-qwen25-vl-oom-fixed tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for erpo-qwen25-vl-oom-fixed This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="eunkey/erpo-qwen25-vl-oom-fixed", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/xuio/huggingface/runs/hg0ssoy3) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rbelanec/train_copa_101112_1757596163
rbelanec
2025-09-11T14:45:52Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:39:51Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_copa_101112_1757596163 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596163 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.9463 - Num Input Tokens Seen: 547440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2208 | 1.0 | 180 | 0.2563 | 27344 | | 0.2677 | 2.0 | 360 | 0.2335 | 54736 | | 0.2249 | 3.0 | 540 | 0.2334 | 82064 | | 0.2551 | 4.0 | 720 | 0.2424 | 109456 | | 0.2229 | 5.0 | 900 | 0.2327 | 136784 | | 0.2276 | 6.0 | 1080 | 0.2340 | 164192 | | 0.2361 | 7.0 | 1260 | 0.2310 | 191552 | | 0.2147 | 8.0 | 1440 | 0.2424 | 218944 | | 0.2244 | 9.0 | 1620 | 0.2365 | 246352 | | 0.2334 | 10.0 | 1800 | 0.2399 | 273744 | | 0.2356 | 11.0 | 1980 | 0.2416 | 301072 | | 0.223 | 12.0 | 2160 | 0.2418 | 328464 | | 0.2351 | 13.0 | 2340 | 0.2705 | 355840 | | 0.1368 | 14.0 | 2520 | 0.3143 | 383168 | | 0.0239 | 15.0 | 2700 | 0.5442 | 410512 | | 0.1856 | 16.0 | 2880 | 0.7039 | 437952 | | 0.029 | 17.0 | 3060 | 0.8290 | 465264 | | 0.0011 | 18.0 | 3240 | 0.9045 | 492672 | | 0.0005 | 19.0 | 3420 | 0.9412 | 520048 | | 0.0008 | 20.0 | 3600 | 0.9463 | 547440 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ichsanlook/pentestic-one-2bit
ichsanlook
2025-09-11T14:45:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-11T14:45:35Z
--- license: apache-2.0 ---
rbelanec/train_svamp_101112_1757596157
rbelanec
2025-09-11T14:44:41Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:34:40Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_svamp_101112_1757596157 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596157 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.4107 - Num Input Tokens Seen: 1348864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.6409 | 1.0 | 315 | 0.7571 | 67488 | | 0.262 | 2.0 | 630 | 0.3623 | 134832 | | 0.0962 | 3.0 | 945 | 0.2180 | 202352 | | 0.0468 | 4.0 | 1260 | 0.1878 | 269776 | | 0.0382 | 5.0 | 1575 | 0.2140 | 337328 | | 0.0017 | 6.0 | 1890 | 0.3292 | 404608 | | 0.0037 | 7.0 | 2205 | 0.3098 | 472144 | | 0.005 | 8.0 | 2520 | 0.3992 | 539664 | | 0.0 | 9.0 | 2835 | 0.3648 | 607136 | | 0.0002 | 10.0 | 3150 | 0.3280 | 674496 | | 0.0 | 11.0 | 3465 | 0.3562 | 741840 | | 0.0001 | 12.0 | 3780 | 0.3841 | 809312 | | 0.0 | 13.0 | 4095 | 0.3958 | 876784 | | 0.0 | 14.0 | 4410 | 0.4013 | 944080 | | 0.0 | 15.0 | 4725 | 0.4053 | 1011456 | | 0.0 | 16.0 | 5040 | 0.4078 | 1078880 | | 0.0 | 17.0 | 5355 | 0.4081 | 1146416 | | 0.0 | 18.0 | 5670 | 0.4113 | 1213888 | | 0.0 | 19.0 | 5985 | 0.4104 | 1281488 | | 0.0 | 20.0 | 6300 | 0.4107 | 1348864 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
mradermacher/mcp-instruct-v1-GGUF
mradermacher
2025-09-11T14:43:40Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "lfm2", "en", "base_model:yasserrmd/mcp-instruct-v1", "base_model:quantized:yasserrmd/mcp-instruct-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T13:29:54Z
--- base_model: yasserrmd/mcp-instruct-v1 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - lfm2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/yasserrmd/mcp-instruct-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#mcp-instruct-v1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/mcp-instruct-v1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q2_K.gguf) | Q2_K | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q3_K_M.gguf) | Q3_K_M | 0.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q4_K_S.gguf) | Q4_K_S | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/mcp-instruct-v1-GGUF/resolve/main/mcp-instruct-v1.f16.gguf) | f16 | 2.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
rbelanec/train_svamp_101112_1757596160
rbelanec
2025-09-11T14:43:39Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:37:19Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_svamp_101112_1757596160 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596160 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1319 - Num Input Tokens Seen: 704272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.1528 | 0.5 | 79 | 0.2311 | 35296 | | 0.0753 | 1.0 | 158 | 0.1515 | 70400 | | 0.0805 | 1.5 | 237 | 0.1408 | 106208 | | 0.1368 | 2.0 | 316 | 0.1319 | 140736 | | 0.038 | 2.5 | 395 | 0.1435 | 176064 | | 0.0199 | 3.0 | 474 | 0.1467 | 211024 | | 0.0059 | 3.5 | 553 | 0.2152 | 246128 | | 0.0396 | 4.0 | 632 | 0.1816 | 281616 | | 0.0337 | 4.5 | 711 | 0.2312 | 316976 | | 0.0003 | 5.0 | 790 | 0.2054 | 352256 | | 0.0005 | 5.5 | 869 | 0.2563 | 387360 | | 0.0001 | 6.0 | 948 | 0.2300 | 422464 | | 0.0 | 6.5 | 1027 | 0.2501 | 457760 | | 0.0001 | 7.0 | 1106 | 0.2568 | 492912 | | 0.0001 | 7.5 | 1185 | 0.2675 | 528336 | | 0.0 | 8.0 | 1264 | 0.2667 | 563600 | | 0.0001 | 8.5 | 1343 | 0.2692 | 598992 | | 0.0 | 9.0 | 1422 | 0.2690 | 633984 | | 0.0 | 9.5 | 1501 | 0.2714 | 669152 | | 0.0001 | 10.0 | 1580 | 0.2698 | 704272 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ahnets/blockassist-bc-keen_fast_giraffe_1757601776
ahnets
2025-09-11T14:43:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:43:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-pawing_downy_anaconda_1757601747
AnerYubo
2025-09-11T14:42:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing downy anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing downy anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-screeching_mute_lemur_1757601739
AnerYubo
2025-09-11T14:42:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching mute lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching mute lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1757600049
helmutsukocok
2025-09-11T14:39:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:39:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1757601514
vendi11
2025-09-11T14:39:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:39:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sgg66336/blockassist-bc-robust_carnivorous_salamander_1757601468
sgg66336
2025-09-11T14:38:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust carnivorous salamander", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:38:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust carnivorous salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
burgbobby/blockassist-bc-lithe_wild_boar_1757601432
burgbobby
2025-09-11T14:37:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe wild boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:37:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe wild boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vicky240922222/pubmedbert-gpt2-biomedical
Vicky240922222
2025-09-11T14:37:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-11T14:34:12Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: pubmedbert-gpt2-biomedical results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pubmedbert-gpt2-biomedical This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
kokkeytopodar62963/blockassist-bc-domestic_savage_bear_1757601424
kokkeytopodar62963
2025-09-11T14:37:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "domestic savage bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:37:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - domestic savage bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toruns/blockassist-bc-insectivorous_bold_lion_1757601393
toruns
2025-09-11T14:37:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:36:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cb_101112_1757596156
rbelanec
2025-09-11T14:37:03Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "ia3", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:34:00Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - ia3 - generated_from_trainer model-index: - name: train_cb_101112_1757596156 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_101112_1757596156 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.1639 - Num Input Tokens Seen: 359824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 1.081 | 0.5088 | 29 | 1.2085 | 19872 | | 1.2816 | 1.0175 | 58 | 1.2085 | 36432 | | 0.6154 | 1.5263 | 87 | 0.5919 | 53680 | | 0.1858 | 2.0351 | 116 | 0.2524 | 72160 | | 0.1156 | 2.5439 | 145 | 0.2084 | 91904 | | 0.351 | 3.0526 | 174 | 0.1916 | 108856 | | 0.2955 | 3.5614 | 203 | 0.1786 | 128056 | | 0.0914 | 4.0702 | 232 | 0.1804 | 146952 | | 0.1035 | 4.5789 | 261 | 0.1801 | 165128 | | 0.0952 | 5.0877 | 290 | 0.1761 | 183224 | | 0.0392 | 5.5965 | 319 | 0.1748 | 202424 | | 0.1394 | 6.1053 | 348 | 0.1756 | 220000 | | 0.1559 | 6.6140 | 377 | 0.1660 | 238272 | | 0.1349 | 7.1228 | 406 | 0.1702 | 255984 | | 0.0485 | 7.6316 | 435 | 0.1688 | 275536 | | 0.1528 | 8.1404 | 464 | 0.1659 | 293296 | | 0.1347 | 8.6491 | 493 | 0.1672 | 312304 | | 0.0932 | 9.1579 | 522 | 0.1661 | 329216 | | 0.0989 | 9.6667 | 551 | 0.1639 | 346944 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
makhiovrnl/blockassist-bc-marine_armored_weasel_1757601397
makhiovrnl
2025-09-11T14:36:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine armored weasel", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:36:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine armored weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahmarkibriya5374/blockassist-bc-fishy_furry_wombat_1757601365
ahmarkibriya5374
2025-09-11T14:36:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy furry wombat", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:36:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy furry wombat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
celisjrdn/blockassist-bc-subtle_stinging_chimpanzee_1757601337
celisjrdn
2025-09-11T14:35:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "subtle stinging chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:35:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - subtle stinging chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cb_101112_1757596155
rbelanec
2025-09-11T14:35:37Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:32:11Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_cb_101112_1757596155 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_101112_1757596155 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.1502 - Num Input Tokens Seen: 359824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.8304 | 0.5088 | 29 | 0.8175 | 19872 | | 0.2874 | 1.0175 | 58 | 0.3097 | 36432 | | 0.117 | 1.5263 | 87 | 0.2008 | 53680 | | 0.158 | 2.0351 | 116 | 0.1816 | 72160 | | 0.0625 | 2.5439 | 145 | 0.1618 | 91904 | | 0.362 | 3.0526 | 174 | 0.1618 | 108856 | | 0.2499 | 3.5614 | 203 | 0.1502 | 128056 | | 0.0416 | 4.0702 | 232 | 0.1588 | 146952 | | 0.0798 | 4.5789 | 261 | 0.1717 | 165128 | | 0.0694 | 5.0877 | 290 | 0.1825 | 183224 | | 0.009 | 5.5965 | 319 | 0.1751 | 202424 | | 0.0798 | 6.1053 | 348 | 0.1801 | 220000 | | 0.1092 | 6.6140 | 377 | 0.1765 | 238272 | | 0.0968 | 7.1228 | 406 | 0.1833 | 255984 | | 0.0135 | 7.6316 | 435 | 0.1948 | 275536 | | 0.0669 | 8.1404 | 464 | 0.1933 | 293296 | | 0.0877 | 8.6491 | 493 | 0.1893 | 312304 | | 0.0715 | 9.1579 | 522 | 0.1936 | 329216 | | 0.0497 | 9.6667 | 551 | 0.1898 | 346944 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
terrancejykn/blockassist-bc-colorful_curious_macaque_1757601314
terrancejykn
2025-09-11T14:35:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful curious macaque", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:35:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful curious macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1757599553
sampingkaca72
2025-09-11T14:34:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:34:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
laconadaomy/blockassist-bc-squeaky_invisible_mole_1757601263
laconadaomy
2025-09-11T14:34:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squeaky invisible mole", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:34:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squeaky invisible mole --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yichengup/flux.1-fill-dev-OneReward
yichengup
2025-09-11T14:34:08Z
4
8
null
[ "base_model:bytedance-research/OneReward", "base_model:finetune:bytedance-research/OneReward", "region:us" ]
null
2025-09-10T16:23:23Z
--- base_model: - bytedance-research/OneReward --- flux.1-fill-dev-OneReward Process the model into a single model suitable for ComfyUI use Original model link: [OneReward](https://huggingface.co/bytedance-research/OneReward)
clayceklj/blockassist-bc-reptilian_bellowing_crocodile_1757601215
clayceklj
2025-09-11T14:34:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:34:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757601224
lukashossain3425
2025-09-11T14:33:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled twitchy wallaby", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:33:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled twitchy wallaby --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cb_101112_1757596151
rbelanec
2025-09-11T14:33:31Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:29:12Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cb_101112_1757596151 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_101112_1757596151 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.1226 - Num Input Tokens Seen: 621040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.5565 | 1.0 | 113 | 0.3490 | 30240 | | 0.6263 | 2.0 | 226 | 0.3298 | 61600 | | 0.4408 | 3.0 | 339 | 0.1773 | 92552 | | 0.3915 | 4.0 | 452 | 0.2358 | 123976 | | 0.0154 | 5.0 | 565 | 0.2813 | 155224 | | 0.1362 | 6.0 | 678 | 0.1831 | 186368 | | 0.0329 | 7.0 | 791 | 0.1248 | 217280 | | 0.0004 | 8.0 | 904 | 0.0106 | 248064 | | 0.0001 | 9.0 | 1017 | 0.1456 | 278576 | | 0.0001 | 10.0 | 1130 | 0.1819 | 309584 | | 0.0001 | 11.0 | 1243 | 0.2099 | 340752 | | 0.0 | 12.0 | 1356 | 0.1466 | 372240 | | 0.0001 | 13.0 | 1469 | 0.1362 | 402976 | | 0.0001 | 14.0 | 1582 | 0.1331 | 433800 | | 0.0001 | 15.0 | 1695 | 0.1305 | 465096 | | 0.0001 | 16.0 | 1808 | 0.1263 | 496184 | | 0.0 | 17.0 | 1921 | 0.1279 | 527400 | | 0.0 | 18.0 | 2034 | 0.1253 | 558656 | | 0.0 | 19.0 | 2147 | 0.1310 | 589928 | | 0.0 | 20.0 | 2260 | 0.1226 | 621040 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757601196
sadiyakhatun65524
2025-09-11T14:33:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prehistoric mouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:33:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prehistoric mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cb_101112_1757596154
rbelanec
2025-09-11T14:32:49Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:29:35Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_cb_101112_1757596154 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_101112_1757596154 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.0632 - Num Input Tokens Seen: 359824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.1901 | 0.5088 | 29 | 0.2935 | 19872 | | 0.144 | 1.0175 | 58 | 0.2516 | 36432 | | 0.0659 | 1.5263 | 87 | 0.1955 | 53680 | | 0.1028 | 2.0351 | 116 | 0.1596 | 72160 | | 0.0053 | 2.5439 | 145 | 0.0632 | 91904 | | 0.2008 | 3.0526 | 174 | 0.1121 | 108856 | | 0.0239 | 3.5614 | 203 | 0.0735 | 128056 | | 0.0017 | 4.0702 | 232 | 0.1148 | 146952 | | 0.0469 | 4.5789 | 261 | 0.0746 | 165128 | | 0.001 | 5.0877 | 290 | 0.0689 | 183224 | | 0.0001 | 5.5965 | 319 | 0.0707 | 202424 | | 0.0003 | 6.1053 | 348 | 0.0893 | 220000 | | 0.0001 | 6.6140 | 377 | 0.0922 | 238272 | | 0.0001 | 7.1228 | 406 | 0.0707 | 255984 | | 0.0001 | 7.6316 | 435 | 0.0760 | 275536 | | 0.0001 | 8.1404 | 464 | 0.0724 | 293296 | | 0.0001 | 8.6491 | 493 | 0.0769 | 312304 | | 0.0001 | 9.1579 | 522 | 0.0682 | 329216 | | 0.0001 | 9.6667 | 551 | 0.0694 | 346944 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
brandescarpello553/blockassist-bc-shiny_graceful_lion_1757601086
brandescarpello553
2025-09-11T14:31:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shiny graceful lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:31:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shiny graceful lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pralayd/Finetuned_Trishul8B-Lite-GGUF
pralayd
2025-09-11T14:31:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-09-11T14:27:22Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pralayd - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
SuganyaP/quick-distilbert-imdb
SuganyaP
2025-09-11T14:31:22Z
0
0
null
[ "en", "base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "license:mit", "region:us" ]
null
2025-09-11T11:51:48Z
--- license: mit language: - en metrics: - accuracy - f1 base_model: - distilbert/distilbert-base-uncased-finetuned-sst-2-english --- # Quick DistilBERT IMDB Sentiment Classifier This is a fine-tuned DistilBERT model for **sentiment analysis** on the IMDB movie reviews dataset. The model classifies reviews as **positive** or **negative**. ## Model Details - **Base model**: `distilbert-base-uncased` - **Dataset**: IMDB (cleaned train/test splits) - **Task**: Sentiment classification (binary) - **Framework**: Hugging Face Transformers ## Training - Optimized DistilBERT on IMDB dataset - Used standard text classification head - Training args saved in `training_args.bin` ## Evaluation Accuracy and F1-score on the IMDB test set: (Add numbers from your `eval_report.txt` here) Misclassified examples are available in `misclassified_examples.csv`. ## How to Use ```python from transformers import pipeline model_id = "SuganyaP/quick-distilbert-imdb" classifier = pipeline("sentiment-analysis", model=model_id) print(classifier("This movie was excellent!"))
hadwinlaverne/blockassist-bc-lethal_screeching_badger_1757601057
hadwinlaverne
2025-09-11T14:31:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lethal screeching badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:31:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lethal screeching badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1757601010
omerbektass
2025-09-11T14:31:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:30:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mccomasadxdwu/blockassist-bc-dense_lithe_chinchilla_1757601052
mccomasadxdwu
2025-09-11T14:31:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense lithe chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:30:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense lithe chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oekaltegabi/blockassist-bc-tame_dormant_hyena_1757601030
oekaltegabi
2025-09-11T14:30:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy sprightly puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:30:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy sprightly puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fuerbringerestefana/blockassist-bc-monstrous_vicious_snail_1757600961
fuerbringerestefana
2025-09-11T14:29:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous vicious snail", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:29:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous vicious snail --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hearnspetrikatriceyo/blockassist-bc-polished_hibernating_swan_1757600933
hearnspetrikatriceyo
2025-09-11T14:29:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished hibernating swan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:28:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished hibernating swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CodeAtCMU/SmolLM2-1.7B-CorruptedComments_full_sft_code_data_120K_replace_keywords_nonen
CodeAtCMU
2025-09-11T14:28:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T14:27:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rbelanec/train_copa_789_1757596141
rbelanec
2025-09-11T14:27:49Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:24:07Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_copa_789_1757596141 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596141 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0287 - Num Input Tokens Seen: 281984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.1204 | 0.5 | 45 | 0.0726 | 14240 | | 0.3342 | 1.0 | 90 | 0.0615 | 28192 | | 0.0623 | 1.5 | 135 | 0.0627 | 42080 | | 0.0032 | 2.0 | 180 | 0.0287 | 56192 | | 0.0001 | 2.5 | 225 | 0.0371 | 70048 | | 0.0012 | 3.0 | 270 | 0.0343 | 84192 | | 0.0002 | 3.5 | 315 | 0.0305 | 98304 | | 0.0 | 4.0 | 360 | 0.0306 | 112544 | | 0.0 | 4.5 | 405 | 0.0308 | 126784 | | 0.0 | 5.0 | 450 | 0.0322 | 140960 | | 0.0 | 5.5 | 495 | 0.0331 | 155200 | | 0.0 | 6.0 | 540 | 0.0347 | 169216 | | 0.0 | 6.5 | 585 | 0.0347 | 183232 | | 0.0 | 7.0 | 630 | 0.0355 | 197248 | | 0.0 | 7.5 | 675 | 0.0402 | 211424 | | 0.0 | 8.0 | 720 | 0.0311 | 225440 | | 0.0 | 8.5 | 765 | 0.0339 | 239392 | | 0.0 | 9.0 | 810 | 0.0341 | 253632 | | 0.0 | 9.5 | 855 | 0.0374 | 267680 | | 0.0 | 10.0 | 900 | 0.0409 | 281984 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_copa_789_1757596143
rbelanec
2025-09-11T14:27:46Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "ia3", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:24:56Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - ia3 - generated_from_trainer model-index: - name: train_copa_789_1757596143 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596143 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Num Input Tokens Seen: 281984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.5993 | 0.5 | 45 | 0.5326 | 14240 | | 0.6312 | 1.0 | 90 | 0.3705 | 28192 | | 0.0635 | 1.5 | 135 | 0.0711 | 42080 | | 0.1393 | 2.0 | 180 | 0.0634 | 56192 | | 0.0085 | 2.5 | 225 | 0.0633 | 70048 | | 0.1219 | 3.0 | 270 | 0.0656 | 84192 | | 0.1509 | 3.5 | 315 | 0.0654 | 98304 | | 0.0373 | 4.0 | 360 | 0.0660 | 112544 | | 0.0535 | 4.5 | 405 | 0.0668 | 126784 | | 0.1165 | 5.0 | 450 | 0.0628 | 140960 | | 0.0766 | 5.5 | 495 | 0.0654 | 155200 | | 0.0151 | 6.0 | 540 | 0.0652 | 169216 | | 0.0561 | 6.5 | 585 | 0.0626 | 183232 | | 0.0085 | 7.0 | 630 | 0.0627 | 197248 | | 0.0554 | 7.5 | 675 | 0.0626 | 211424 | | 0.1764 | 8.0 | 720 | 0.0635 | 225440 | | 0.0044 | 8.5 | 765 | 0.0623 | 239392 | | 0.0226 | 9.0 | 810 | 0.0626 | 253632 | | 0.0474 | 9.5 | 855 | 0.0633 | 267680 | | 0.036 | 10.0 | 900 | 0.0627 | 281984 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
vendi11/blockassist-bc-placid_placid_llama_1757600801
vendi11
2025-09-11T14:27:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:27:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_789_1757596142
rbelanec
2025-09-11T14:27:17Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:24:33Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_copa_789_1757596142 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596142 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0593 - Num Input Tokens Seen: 281984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2081 | 0.5 | 45 | 0.1157 | 14240 | | 0.2591 | 1.0 | 90 | 0.0701 | 28192 | | 0.0367 | 1.5 | 135 | 0.0683 | 42080 | | 0.1331 | 2.0 | 180 | 0.0597 | 56192 | | 0.0047 | 2.5 | 225 | 0.0593 | 70048 | | 0.0918 | 3.0 | 270 | 0.0596 | 84192 | | 0.1091 | 3.5 | 315 | 0.0617 | 98304 | | 0.0053 | 4.0 | 360 | 0.0622 | 112544 | | 0.0101 | 4.5 | 405 | 0.0630 | 126784 | | 0.0808 | 5.0 | 450 | 0.0620 | 140960 | | 0.0104 | 5.5 | 495 | 0.0627 | 155200 | | 0.0012 | 6.0 | 540 | 0.0637 | 169216 | | 0.0056 | 6.5 | 585 | 0.0677 | 183232 | | 0.0014 | 7.0 | 630 | 0.0702 | 197248 | | 0.0042 | 7.5 | 675 | 0.0686 | 211424 | | 0.0692 | 8.0 | 720 | 0.0670 | 225440 | | 0.0005 | 8.5 | 765 | 0.0679 | 239392 | | 0.0015 | 9.0 | 810 | 0.0698 | 253632 | | 0.0069 | 9.5 | 855 | 0.0690 | 267680 | | 0.003 | 10.0 | 900 | 0.0675 | 281984 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757600815
sadiyakhatun65524
2025-09-11T14:27:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prehistoric mouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:27:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prehistoric mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_789_1757596140
rbelanec
2025-09-11T14:26:50Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "p-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:23:14Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - p-tuning - generated_from_trainer model-index: - name: train_copa_789_1757596140 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596140 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 2.4562 - Num Input Tokens Seen: 281984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.411 | 0.5 | 45 | 0.3011 | 14240 | | 0.2838 | 1.0 | 90 | 0.2367 | 28192 | | 0.2526 | 1.5 | 135 | 0.2344 | 42080 | | 0.2443 | 2.0 | 180 | 0.2417 | 56192 | | 0.2322 | 2.5 | 225 | 0.2302 | 70048 | | 0.2431 | 3.0 | 270 | 0.2324 | 84192 | | 0.2331 | 3.5 | 315 | 0.2341 | 98304 | | 0.2335 | 4.0 | 360 | 0.2316 | 112544 | | 0.2376 | 4.5 | 405 | 0.2335 | 126784 | | 0.2371 | 5.0 | 450 | 0.2323 | 140960 | | 0.2308 | 5.5 | 495 | 0.2329 | 155200 | | 0.2303 | 6.0 | 540 | 0.2314 | 169216 | | 0.2276 | 6.5 | 585 | 0.2329 | 183232 | | 0.2262 | 7.0 | 630 | 0.2323 | 197248 | | 0.2449 | 7.5 | 675 | 0.2311 | 211424 | | 0.2253 | 8.0 | 720 | 0.2308 | 225440 | | 0.2314 | 8.5 | 765 | 0.2292 | 239392 | | 0.2314 | 9.0 | 810 | 0.2329 | 253632 | | 0.2303 | 9.5 | 855 | 0.2335 | 267680 | | 0.2304 | 10.0 | 900 | 0.2313 | 281984 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
SustcZhangYX/EnvGPT-14B
SustcZhangYX
2025-09-11T14:26:34Z
2
0
null
[ "safetensors", "Environmental Science", "en", "zh", "dataset:SustcZhangYX/ChatEnv", "dataset:SustcZhangYX/ChatEnv-zh", "license:mit", "region:us" ]
null
2025-09-09T01:57:36Z
--- license: mit datasets: - SustcZhangYX/ChatEnv - SustcZhangYX/ChatEnv-zh language: - en - zh tags: - Environmental Science --- <div align="center"> <img src="LOGO.PNG" width="450px"> <h1 align="center"><font face="Arial">EnvGPT-14B</font></h1> </div> **EnvGPT-14B** is a domain-specific large language model tailored for environmental science tasks, fine-tuned on both English and Chinese datasets. Environmental science presents unique challenges for LLMs due to its interdisciplinary nature. EnvGPT-14B was developed to address these challenges by leveraging environmental science-specific instruction datasets and benchmarks. *The model was fine-tuned on the environmental science-specific instruction datasets, [ChatEnv](https://huggingface.co/datasets/SustcZhangYX/ChatEnv) and [ChatEnv-zh](https://huggingface.co/datasets/SustcZhangYX/ChatEnv-zh), through Supervised Fine-Tuning (SFT). The combined dataset includes over **200 million tokens**, covering diverse topics in environmental science in both English and Chinese. This bilingual training enables EnvGPT-14B to achieve strong performance in Chinese as well as English tasks.* ## 🚀 Getting Started ### Download the model Download the model: [EnvGPT-14B](https://huggingface.co/SustcZhangYX/EnvGPT-14B) ```shell git lfs install git clone https://huggingface.co/SustcZhangYX/EnvGPT-14B ``` ### Model Usage Here is a Python code snippet that demonstrates how to load the tokenizer and model and generate text using EnvGPT. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # 1. Set your local EnvGPT model path here model_path = "YOUR_LOCAL_MODEL_PATH" # 2. Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", ) # 3. Build chat messages messages = [ {"role": "system", "content": "You are an expert assistant in environmental science, EnvGPT. You are a helpful assistant."}, {"role": "user", "content": "What is the definition of environmental science?"}, ] # 4. Format the prompt using the chat template # add_generation_prompt=True appends the assistant start token (e.g., <|assistant|>) text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) # 5. Initialize the text-generation pipeline text_gen = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", torch_dtype=torch.bfloat16, return_full_text=False, # Only return the newly generated text ) # 6. Generate the response # do_sample=True enables sampling (stochastic decoding) # top_p=0.6 applies nucleus sampling # temperature=0.8 controls randomness # max_new_tokens=4096 allows up to 4096 new tokens outputs = text_gen( text, max_new_tokens=4096, # Up to 4096 new tokens do_sample=True, # Enable sampling instead of greedy decoding top_p=0.6, # Nucleus sampling parameter temperature=0.8, # Sampling temperature ) # 7. Print the assistant’s reply (without the original prompt) print(outputs[0]["generated_text"]) ``` This code demonstrates how to load the tokenizer and model from your local path, define environmental science-specific prompts, and generate responses using sampling techniques like top-p and temperature. ## 🌏 Acknowledgement EnvGPT-14B is fine-tuned based on the open-sourced [Qwen2.5](https://huggingface.co/Qwen). We sincerely thank the Qwen team for their efforts in developing and releasing such a powerful open-source foundation model, which makes domain-specific adaptations like EnvGPT possible. ## ❗Disclaimer This project is intended solely for academic research and exploration. Please note that, like all large language models, this model may exhibit limitations, including potential inaccuracies or hallucinations in generated outputs. ## Limitations - The model may produce hallucinated outputs or inaccuracies, which are inherent to large language models. - The model's identity has not been specifically optimized and may generate content that resembles outputs from other Qwen-based models or similar architectures. - Generated outputs can vary between attempts due to sensitivity to prompt phrasing and token context. ## 🚩Citation If you find our work helpful, please consider citing our research: "[Fine-Tuning Large Language Models for Interdisciplinary Environmental Challenges](https://doi.org/10.1016/j.ese.2025.100608)": ```bibtex @article{ZHANG2025100608, title = {Fine-Tuning Large Language Models for Interdisciplinary Environmental Challenges}, journal = {Environmental Science and Ecotechnology}, pages = {100608}, year = {2025}, issn = {2666-4984}, doi = {https://doi.org/10.1016/j.ese.2025.100608}, url = {https://www.sciencedirect.com/science/article/pii/S2666498425000869}, author = {Yuanxin Zhang and Sijie Lin and Yaxin Xiong and Nan Li and Lijin Zhong and Longzhen Ding and Qing Hu} } ```
rbelanec/train_copa_789_1757596138
rbelanec
2025-09-11T14:26:12Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:20:21Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_copa_789_1757596138 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596138 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Num Input Tokens Seen: 548240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.5261 | 1.0 | 180 | 0.2666 | 27424 | | 0.4265 | 2.0 | 360 | 0.2517 | 54832 | | 0.2294 | 3.0 | 540 | 0.2400 | 82160 | | 0.2376 | 4.0 | 720 | 0.2362 | 109632 | | 0.2273 | 5.0 | 900 | 0.2374 | 137120 | | 0.2282 | 6.0 | 1080 | 0.2412 | 164592 | | 0.2299 | 7.0 | 1260 | 0.2372 | 191920 | | 0.2302 | 8.0 | 1440 | 0.2416 | 219344 | | 0.264 | 9.0 | 1620 | 0.2483 | 246736 | | 0.2165 | 10.0 | 1800 | 0.2446 | 274208 | | 0.254 | 11.0 | 1980 | 0.2517 | 301600 | | 0.2522 | 12.0 | 2160 | 0.2489 | 328976 | | 0.2228 | 13.0 | 2340 | 0.2545 | 356400 | | 0.1836 | 14.0 | 2520 | 0.2654 | 383808 | | 0.1791 | 15.0 | 2700 | 0.2790 | 411216 | | 0.1126 | 16.0 | 2880 | 0.3588 | 438592 | | 0.021 | 17.0 | 3060 | 0.4801 | 465984 | | 0.0091 | 18.0 | 3240 | 0.5633 | 493488 | | 0.0818 | 19.0 | 3420 | 0.5928 | 520816 | | 0.0025 | 20.0 | 3600 | 0.6012 | 548240 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_copa_789_1757596139
rbelanec
2025-09-11T14:25:17Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prompt-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:22:10Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prompt-tuning - generated_from_trainer model-index: - name: train_copa_789_1757596139 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_789_1757596139 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0711 - Num Input Tokens Seen: 281984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2013 | 0.5 | 45 | 0.1095 | 14240 | | 0.2033 | 1.0 | 90 | 0.0885 | 28192 | | 0.0778 | 1.5 | 135 | 0.0860 | 42080 | | 0.1119 | 2.0 | 180 | 0.0777 | 56192 | | 0.0346 | 2.5 | 225 | 0.0823 | 70048 | | 0.1199 | 3.0 | 270 | 0.0711 | 84192 | | 0.0165 | 3.5 | 315 | 0.1047 | 98304 | | 0.0248 | 4.0 | 360 | 0.1218 | 112544 | | 0.003 | 4.5 | 405 | 0.1436 | 126784 | | 0.0269 | 5.0 | 450 | 0.1350 | 140960 | | 0.0008 | 5.5 | 495 | 0.1389 | 155200 | | 0.027 | 6.0 | 540 | 0.1530 | 169216 | | 0.0006 | 6.5 | 585 | 0.1628 | 183232 | | 0.0002 | 7.0 | 630 | 0.1684 | 197248 | | 0.0006 | 7.5 | 675 | 0.1641 | 211424 | | 0.1687 | 8.0 | 720 | 0.1717 | 225440 | | 0.0001 | 8.5 | 765 | 0.1706 | 239392 | | 0.0014 | 9.0 | 810 | 0.1723 | 253632 | | 0.0004 | 9.5 | 855 | 0.1679 | 267680 | | 0.0003 | 10.0 | 900 | 0.1652 | 281984 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
CodeAtCMU/SmolLM2-1.7B-CorruptedComments_full_sft_code_data_120K_replace_comments_global
CodeAtCMU
2025-09-11T14:25:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T14:24:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omerbkts/blockassist-bc-insectivorous_bold_lion_1757600601
omerbkts
2025-09-11T14:24:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:23:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).