modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
KGolden9/V3_Key3
KGolden9
2025-09-12T04:50:01Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-11T13:17:57Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
VoilaRaj/81_g_Xc3ECn
VoilaRaj
2025-09-12T04:49:19Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:48:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
2imi9/qwen3-1.7b-gptq-int4
2imi9
2025-09-12T04:48:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "quantization", "gptq", "int4", "4bit", "conversational", "en", "zh", "base_model:Qwen/Qwen3-1.7B", "base_model:quantized:Qwen/Qwen3-1.7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "compressed-tensors", "region:us" ]
text-generation
2025-09-12T04:47:31Z
--- language: [en, zh] license: apache-2.0 library_name: transformers base_model: Qwen/Qwen3-1.7B tags: [quantization, gptq, int4, 4bit] pipeline_tag: text-generation quantization_config: bits: 4 group_size: 16 damp_percent: 0.1 desc_act: false static_groups: false true_sequential: true model_name_or_path: null model_file_base_name: model --- # Qwen3 1.7B GPTQ INT4 GPTQ 4-bit quantized version of Qwen/Qwen3-1.7B with group size 16. ## Model Details - **Quantization**: GPTQ INT4 with group size 16 - **Size**: ~1GB (4x compression from original) - **Format**: W4A16 (4-bit weights, 16-bit activations) - **Compatible**: Native transformers library support ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "2imi9/qwen3-1.7b-gptq-int4", device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained("2imi9/qwen3-1.7b-gptq-int4") # Generate text inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Gradio Demo ```python import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("2imi9/qwen3-1.7b-gptq-int4", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("2imi9/qwen3-1.7b-gptq-int4") def chat(message, history): inputs = tokenizer(message, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.7) response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return response gr.ChatInterface(chat).launch() ``` Perfect for Gradio demos due to small size and fast inference.
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757652390
omerbektasss
2025-09-12T04:46:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Godfung/qwen-3-4B-content-moderation
Godfung
2025-09-12T04:46:42Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-12T04:46:28Z
--- base_model: unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Godfung - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757652190
stonermay
2025-09-12T04:44:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:44:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Plimpumpam/puntocero
Plimpumpam
2025-09-12T04:44:30Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-09-12T04:42:08Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/5e380987-431e-42b8-8154-15b44120ad02.jpeg text: '-' - output: url: images/61fcef43-3d3e-40d1-9a99-1ec448b31205.jpeg text: '-' - output: url: images/f5af09fc-1ec1-4353-8467-9a59cae07ba2.jpeg text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # puntocero <Gallery /> ## Download model [Download](/Plimpumpam/puntocero/tree/main) them in the Files & versions tab.
nightmedia/WEBGEN-4B-Preview-qx86-hi-mlx
nightmedia
2025-09-12T04:42:36Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "web-generation", "html", "css", "tailwind-css", "ui-generation", "web-design", "small-model", "transformers", "conversational", "en", "base_model:Tesslate/WEBGEN-4B-Preview", "base_model:quantized:Tesslate/WEBGEN-4B-Preview", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-09-12T04:29:51Z
--- language: - en library_name: mlx pipeline_tag: text-generation license: apache-2.0 base_model: Tesslate/WEBGEN-4B-Preview tags: - web-generation - html - css - tailwind-css - ui-generation - web-design - small-model - qwen3 - transformers - mlx --- # WEBGEN-4B-Preview-qx86-hi-mlx This model [WEBGEN-4B-Preview-qx86-hi-mlx](https://huggingface.co/WEBGEN-4B-Preview-qx86-hi-mlx) was converted to MLX format from [Tesslate/WEBGEN-4B-Preview](https://huggingface.co/Tesslate/WEBGEN-4B-Preview) using mlx-lm version **0.27.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("WEBGEN-4B-Preview-qx86-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
camiellia/qwen2_5_vl_fiubench_checkpoint_3
camiellia
2025-09-12T04:40:47Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T20:05:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VoilaRaj/81_g_dkLs0l
VoilaRaj
2025-09-12T04:39:07Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:38:40Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
fixie-ai/ultravox-v0_6-qwen-3-32b
fixie-ai
2025-09-12T04:38:51Z
1,235
7
transformers
[ "transformers", "safetensors", "ultravox", "feature-extraction", "audio-text-to-text", "custom_code", "ar", "be", "bg", "bn", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "gl", "hi", "hu", "it", "ja", "ka", "lt", "lv", "mk", "mr", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sr", "sv", "sw", "ta", "th", "tr", "uk", "ur", "vi", "zh", "license:mit", "region:us" ]
audio-text-to-text
2025-06-20T19:22:50Z
--- language: - ar - be - bg - bn - cs - cy - da - de - el - en - es - et - fa - fi - fr - gl - hi - hu - it - ja - ka - lt - lv - mk - mr - nl - pl - pt - ro - ru - sk - sl - sr - sv - sw - ta - th - tr - uk - ur - vi - zh license: mit library_name: transformers metrics: - bleu pipeline_tag: audio-text-to-text --- # Model Card for Ultravox Ultravox is a multimodal Speech LLM built around a pretrained LLM (Llama, Gemma, Qwen, etc) and a speech encoder ([whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo)) backbone. See https://ultravox.ai for the GitHub repo and more information. ## Model Details ### Model Description Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio. Using the merged embeddings as input, the model will then generate output text as usual. In v0.6 series, ultravox models are trained on expanded Hindi speech data, resulting in significantly improved speech understanding performance on Hindi and modest degradation on other languages. Additionally, the v0.6 models are also trained on noise datasets for improved noise robustness and the ability to output a special string ``((noise))`` if the input audio is too noisy or doesn't contain clear speech. In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output. No preference tuning has been applied to this revision of the model. - **Developed by:** Fixie.ai - **License:** MIT ### Model Sources - **Repository:** https://ultravox.ai - **Demo:** See repo ## Usage Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent, and also to do speech-to-speech translation, analysis of spoken audio, etc. To use the model, try the following: ```python # pip install transformers peft librosa import transformers import numpy as np import librosa pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_6-llama-3_1-8b', trust_remote_code=True) path = "<path-to-input-audio>" # TODO: pass the audio here audio, sr = librosa.load(path, sr=16000) turns = [ { "role": "system", "content": "You are a friendly and helpful character. You love to answer questions for people." }, ] pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30) ``` ## Training Details The model uses a pre-trained LLM (Llama, Gemma, Qwen, etc) backbone as well as the encoder part of [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). The multi-modal adapter is trained, the Whisper encoder is fine-tuned, and the LLM is kept frozen. We use a knowledge-distillation loss where Ultravox is trying to match the logits of the text-based LLM backbone. ### Training Data The training dataset is a mix of ASR datasets, extended with continuations generated by Llama 3.1 8B, speech translation datasets, and noise datasets. ### Training Procedure Supervised speech instruction finetuning via knowledge-distillation. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py). #### Training Hyperparameters - **Training regime:** BF16 mixed precision training - **Hardware used:** 8x H100 GPUs ## Evaluation Evaluations are conducted on covost2 (speech translation measured in BLEU), fleurs and ultravox_calls (speech recognition measured in WER), big bench audio (audio reasoning measured in accuracy), as well as musan and ultravox_unintelligible (noise/unintelligible speech detection measured in recall). | | v0_5-llama-3_1-8b | v0_6-llama-3_1-8b | v0_5-llama-3_3-70b | v0_6-llama-3_3-70b | v0_6-gemma-3-27b | v0_6-qwen-3-32b | | --- | ---: | --: | --: | --: | --: | --: | | **covost2 en_ar** | 12.90 | 12.94 | 20.21 | 18.92 | 22.68 | 16.91 | | **covost2 en_ca** | 31.51 | 31.47 | 40.01 | 38.73 | 39.67 | 33.63 | | **covost2 en_de** | 28.60 | 28.66 | 34.53 | 33.69 | 34.76 | 31.09 | | **covost2 es_en** | 40.41 | 40.36 | 43.29 | 41.39 | 41.11 | 41.20 | | **covost2 ru_en** | 42.22 | 42.41 | 48.99 | 43.73 | 49.29 | 47.08 | | **covost2 zh_en** | 16.97| 17.24 | 21.37 | 17.81 | 20.88 | 22.24 | | **librispeech** | 2.04 | 2.09 | 2.09 | 2.55 | 2.73 | 2.88 | | **fleurs cmn_hans_cn** | 12.11 | 12.25 | 11.20 | 13.49 | 12.56 | 12.10 | | **fleurs de_de** | 6.66 | 7.56 | 5.26 | 7.14 | 4.86 | 6.83 | | **fleurs es_419** | 5.74 | 5.83 | 4.53 | 6.06 | 4.68 | 5.14 | | **fleurs hi_in** | 29.74 | 10.34 | 18.90 | 11.43 | 8.40 | 11.78 | | **ultravox_calls (asr)** | 22.31 | 20.01 | 19.56 | 16.51 | 19.56 | 28.67 | | **big bench audio**| 68.06 | 69.70 | 90.15 | 85.48 | 83.84 | 84.22 | | **musan_noise** | 0.00 | 97.45 | 0.00 | 98.51 | 99.58 | 99.78 | | **ultravox_unintelligible** | 0.00 | 45.78 | 0.00 | 50.00 | 66.84 | 64.21 |
fixie-ai/ultravox-v0_6-gemma-3-27b
fixie-ai
2025-09-12T04:38:40Z
2,924
9
transformers
[ "transformers", "safetensors", "ultravox", "feature-extraction", "audio-text-to-text", "custom_code", "ar", "be", "bg", "bn", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "gl", "hi", "hu", "it", "ja", "ka", "lt", "lv", "mk", "mr", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sr", "sv", "sw", "ta", "th", "tr", "uk", "ur", "vi", "zh", "license:mit", "region:us" ]
audio-text-to-text
2025-06-20T16:30:57Z
--- language: - ar - be - bg - bn - cs - cy - da - de - el - en - es - et - fa - fi - fr - gl - hi - hu - it - ja - ka - lt - lv - mk - mr - nl - pl - pt - ro - ru - sk - sl - sr - sv - sw - ta - th - tr - uk - ur - vi - zh license: mit library_name: transformers metrics: - bleu pipeline_tag: audio-text-to-text --- # Model Card for Ultravox Ultravox is a multimodal Speech LLM built around a pretrained LLM (Llama, Gemma, Qwen, etc) and a speech encoder ([whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo)) backbone. See https://ultravox.ai for the GitHub repo and more information. ## Model Details ### Model Description Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message). The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio. Using the merged embeddings as input, the model will then generate output text as usual. In v0.6 series, ultravox models are trained on expanded Hindi speech data, resulting in significantly improved speech understanding performance on Hindi and modest degradation on other languages. Additionally, the v0.6 models are also trained on noise datasets for improved noise robustness and the ability to output a special string ``((noise))`` if the input audio is too noisy or doesn't contain clear speech. In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output. No preference tuning has been applied to this revision of the model. - **Developed by:** Fixie.ai - **License:** MIT ### Model Sources - **Repository:** https://ultravox.ai - **Demo:** See repo ## Usage Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent, and also to do speech-to-speech translation, analysis of spoken audio, etc. To use the model, try the following: ```python # pip install transformers peft librosa import transformers import numpy as np import librosa pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_6-llama-3_1-8b', trust_remote_code=True) path = "<path-to-input-audio>" # TODO: pass the audio here audio, sr = librosa.load(path, sr=16000) turns = [ { "role": "system", "content": "You are a friendly and helpful character. You love to answer questions for people." }, ] pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30) ``` ## Training Details The model uses a pre-trained LLM (Llama, Gemma, Qwen, etc) backbone as well as the encoder part of [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). The multi-modal adapter is trained, the Whisper encoder is fine-tuned, and the LLM is kept frozen. We use a knowledge-distillation loss where Ultravox is trying to match the logits of the text-based LLM backbone. ### Training Data The training dataset is a mix of ASR datasets, extended with continuations generated by Llama 3.1 8B, speech translation datasets, and noise datasets. ### Training Procedure Supervised speech instruction finetuning via knowledge-distillation. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py). #### Training Hyperparameters - **Training regime:** BF16 mixed precision training - **Hardware used:** 8x H100 GPUs ## Evaluation Evaluations are conducted on covost2 (speech translation measured in BLEU), fleurs and ultravox_calls (speech recognition measured in WER), big bench audio (audio reasoning measured in accuracy), as well as musan and ultravox_unintelligible (noise/unintelligible speech detection measured in recall). | | v0_5-llama-3_1-8b | v0_6-llama-3_1-8b | v0_5-llama-3_3-70b | v0_6-llama-3_3-70b | v0_6-gemma-3-27b | v0_6-qwen-3-32b | | --- | ---: | --: | --: | --: | --: | --: | | **covost2 en_ar** | 12.90 | 12.94 | 20.21 | 18.92 | 22.68 | 16.91 | | **covost2 en_ca** | 31.51 | 31.47 | 40.01 | 38.73 | 39.67 | 33.63 | | **covost2 en_de** | 28.60 | 28.66 | 34.53 | 33.69 | 34.76 | 31.09 | | **covost2 es_en** | 40.41 | 40.36 | 43.29 | 41.39 | 41.11 | 41.20 | | **covost2 ru_en** | 42.22 | 42.41 | 48.99 | 43.73 | 49.29 | 47.08 | | **covost2 zh_en** | 16.97| 17.24 | 21.37 | 17.81 | 20.88 | 22.24 | | **librispeech** | 2.04 | 2.09 | 2.09 | 2.55 | 2.73 | 2.88 | | **fleurs cmn_hans_cn** | 12.11 | 12.25 | 11.20 | 13.49 | 12.56 | 12.10 | | **fleurs de_de** | 6.66 | 7.56 | 5.26 | 7.14 | 4.86 | 6.83 | | **fleurs es_419** | 5.74 | 5.83 | 4.53 | 6.06 | 4.68 | 5.14 | | **fleurs hi_in** | 29.74 | 10.34 | 18.90 | 11.43 | 8.40 | 11.78 | | **ultravox_calls (asr)** | 22.31 | 20.01 | 19.56 | 16.51 | 19.56 | 28.67 | | **big bench audio**| 68.06 | 69.70 | 90.15 | 85.48 | 83.84 | 84.22 | | **musan_noise** | 0.00 | 97.45 | 0.00 | 98.51 | 99.58 | 99.78 | | **ultravox_unintelligible** | 0.00 | 45.78 | 0.00 | 50.00 | 66.84 | 64.21 |
rashed233/rashedd
rashed233
2025-09-12T04:38:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-12T04:38:08Z
--- license: apache-2.0 ---
yangxw/Qwen3-8B-Dynamic-Syn
yangxw
2025-09-12T04:37:16Z
0
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "region:us" ]
null
2025-09-12T04:15:29Z
--- license: apache-2.0 ---
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757651573
stonermay
2025-09-12T04:34:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:33:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_g_k8W0Ql
VoilaRaj
2025-09-12T04:34:07Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:33:39Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
omerbektasss/blockassist-bc-keen_fast_giraffe_1757651506
omerbektasss
2025-09-12T04:32:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:32:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sunild7/blockassist
sunild7
2025-09-12T04:32:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage skilled beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:31:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage skilled beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DungND1107/grape-qlora-legal-adapter
DungND1107
2025-09-12T04:32:02Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:nqdhocai/LegalGemma-3-1b-it", "base_model:finetune:nqdhocai/LegalGemma-3-1b-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-04T18:08:58Z
--- base_model: nqdhocai/LegalGemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DungND1107 - **License:** apache-2.0 - **Finetuned from model :** nqdhocai/LegalGemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
swardiantara/sentence-problem_type-embedding
swardiantara
2025-09-12T04:30:15Z
11
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-26T13:20:05Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # drone-problem-type This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('drone-problem-type') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=drone-problem-type) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7646 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2293, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
VoilaRaj/81_g_CrZZM8
VoilaRaj
2025-09-12T04:28:57Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:28:29Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
kelvinzhaozg/diffusion_arx_dual_carpet_separation
kelvinzhaozg
2025-09-12T04:27:40Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:kelvinzhaozg/arx_dual_carpet_separation_lerobot", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-09-12T04:20:13Z
--- datasets: kelvinzhaozg/arx_dual_carpet_separation_lerobot library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - lerobot - diffusion - robotics --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
deepdml/whisper-small-ig-mix
deepdml
2025-09-12T04:26:15Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "ig", "dataset:google/fleurs", "dataset:deepdml/igbo-dict-16khz", "dataset:deepdml/igbo-dict-expansion-16khz", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "region:us" ]
null
2025-09-11T20:47:57Z
--- language: - ig license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs - google/fleurs - deepdml/igbo-dict-16khz - deepdml/igbo-dict-expansion-16khz metrics: - wer model-index: - name: Whisper Small ig results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: ig_ng split: test metrics: - name: Wer type: wer value: 46.10372101384145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ig This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.5879 - Wer: 46.1037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1171 | 0.2 | 1000 | 1.2732 | 44.9937 | | 0.028 | 1.0814 | 2000 | 1.4495 | 46.2251 | | 0.0277 | 1.2814 | 3000 | 1.4894 | 45.3892 | | 0.0084 | 2.1628 | 4000 | 1.5629 | 44.6881 | | 0.0065 | 3.0442 | 5000 | 1.5879 | 46.1037 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Citation ```bibtex @misc{deepdml/whisper-small-ig-mix, title={Fine-tuned Whisper small ASR model for speech recognition in Igbo}, author={Jimenez, David}, howpublished={\url{https://huggingface.co/deepdml/whisper-small-ig-mix}}, year={2025} } ```
VoilaRaj/81_g_w8S8Tz
VoilaRaj
2025-09-12T04:23:44Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:23:16Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Plimpumpam/doscero
Plimpumpam
2025-09-12T04:19:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-09-12T04:17:43Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Capture.PNG text: '-' - output: url: images/Captursse.PNG text: '-' - output: url: images/Captzzzzure.PNG text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: dz --- # doscero <Gallery /> ## Trigger words You should use `dz` to trigger the image generation. ## Download model [Download](/Plimpumpam/doscero/tree/main) them in the Files & versions tab.
theguywhosucks/Mocha
theguywhosucks
2025-09-12T04:19:07Z
0
0
null
[ "english", "composition", "sentance_completion", "text-generation", "en", "dataset:theguywhosucks/mocha", "license:other", "region:us" ]
text-generation
2025-09-12T04:02:08Z
--- license: other license_name: mocha license_link: LICENSE datasets: - theguywhosucks/mocha language: - en pipeline_tag: text-generation tags: - english - composition - sentance_completion --- # Mocha β˜• Mocha is a **sentence completion model** designed for lightweight, fast, and accurate text generation. Built with efficiency in mind, Mocha allows you to integrate natural language completion into your projects without the overhead of larger models. <p align="center"> <img src="./banner.png" alt="Mocha Banner" width="600"/> </p> --- ## πŸ”₯ Features * ⚑ **Lightweight** – optimized for speed and deployment. * πŸ“ **Sentence Completion** – generate contextually relevant endings for text prompts. * πŸ“¦ **Safetensors Format** – stored in `.safetensors` for secure and efficient loading. * πŸ–ΌοΈ **Visual Identity** – comes with logo and banner assets for easy branding. --- ## πŸ“‚ Project Structure ``` . β”œβ”€β”€ mocha.safetensors # The model weights β”œβ”€β”€ config.json β”œβ”€β”€ generation_config.json β”œβ”€β”€ special_tokens_map.json β”œβ”€β”€ tokenizer.json β”œβ”€β”€ logo.png # Project logo β”œβ”€β”€ banner.png # Project banner └── README.md ``` --- ## πŸš€ Usage You can load Mocha with [πŸ€— Transformers](https://github.com/huggingface/transformers) and [safetensors](https://github.com/huggingface/safetensors): ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("theguywhosucks/Mocha") model = AutoModelForCausalLM.from_pretrained( "theguywhosucks/Mocha", torch_dtype=torch.float16 ) # Example usage prompt = "The future of AI is" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## πŸ“Έ Assets <p align="center"> <img src="./logo.png" alt="Mocha Logo" width="120"/> </p> --- ## πŸ› οΈ Requirements * Python 3.9+ * [Transformers](https://pypi.org/project/transformers/) * [Safetensors](https://pypi.org/project/safetensors/) * [PyTorch](https://pytorch.org/) Install dependencies: ```bash pip install torch transformers safetensors ``` --- ## πŸ“œ License This project is licensed under the **Mocha Proprietary License**. Usage, distribution, and modification are restricted. Please see the [LICENSE](./LICENSE) file for full details. --- β˜• **Mocha** – lightweight sentence completion made simple.
VoilaRaj/81_g_cMfj1z
VoilaRaj
2025-09-12T04:18:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:18:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757650628
omerbektasss
2025-09-12T04:18:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:17:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Cristhian2430/whisper-large-coes-v10
Cristhian2430
2025-09-12T04:13:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "es", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-09-11T18:53:53Z
--- library_name: transformers language: - es license: mit base_model: openai/whisper-large-v3-turbo tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Large SEIN - COES SEIN - Version 10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large SEIN - COES SEIN - Version 10 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the SEIN COES dataset. It achieves the following results on the evaluation set: - Loss: 2.9839 - Wer: 58.2114 - Num Input Tokens Seen: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.57.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757650340
stonermay
2025-09-12T04:13:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:13:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
duongve/Loras_Diffusion_model
duongve
2025-09-12T04:13:06Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-30T04:03:27Z
--- license: apache-2.0 ---
omerbektasss/blockassist-bc-keen_fast_giraffe_1757650242
omerbektasss
2025-09-12T04:11:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:11:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
themagicofbtc/blockassist
themagicofbtc
2025-09-12T04:10:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fleecy scented dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T20:01:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fleecy scented dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uwcc/cartoonDoodle
uwcc
2025-09-12T04:10:03Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-12T04:09:36Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: woman with red hair, playing chess at the park, bomb going off in the background output: url: samples/1757650009832__000004500_0.jpg - text: a woman holding a coffee cup, in a beanie, sitting at a cafe output: url: samples/1757650027925__000004500_1.jpg - text: a horse is a DJ at a night club, fish eye lens, smoke machine, lazer lights, holding a martini output: url: samples/1757650045911__000004500_2.jpg - text: a man showing off his cool new t shirt at the beach, a shark is jumping out of the water in the background output: url: samples/1757650063980__000004500_3.jpg - text: a bear building a log cabin in the snow covered mountains output: url: samples/1757650081965__000004500_4.jpg - text: woman playing the guitar, on stage, singing a song, laser lights, punk rocker output: url: samples/1757650100047__000004500_5.jpg - text: hipster man with a beard, building a chair, in a wood shop output: url: samples/1757650118029__000004500_6.jpg - text: photo of a man, white background, medium shot, modeling clothing, studio lighting, white backdrop output: url: samples/1757650136093__000004500_7.jpg - text: a man holding a sign that says, 'this is a sign' output: url: samples/1757650154082__000004500_8.jpg - text: a bulldog, in a post apocalyptic world, with a shotgun, in a leather jacket, in a desert, with a motorcycle output: url: samples/1757650172148__000004500_9.jpg base_model: black-forest-labs/FLUX.1-dev license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # cartoonDoodle Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words No trigger words defined. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/uwcc/cartoonDoodle/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('uwcc/cartoonDoodle', weight_name='cartoonDoodle.safetensors') image = pipeline('woman with red hair, playing chess at the park, bomb going off in the background').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
VoilaRaj/81_g_i66qWe
VoilaRaj
2025-09-12T04:08:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:08:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
bx5974/model
bx5974
2025-09-12T04:07:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T04:06:58Z
--- base_model: unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** bx5974 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
judsfdf/USABLE_3_libre
judsfdf
2025-09-12T04:03:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-12T04:03:17Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** judsfdf - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
VoilaRaj/81_g_IOoF0h
VoilaRaj
2025-09-12T04:03:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T04:03:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757649724
stonermay
2025-09-12T04:03:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T04:03:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
flockingalpha/task-14-microsoft-Phi-4-mini-instruct
flockingalpha
2025-09-12T04:00:08Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-09-12T02:44:32Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF
ThomasTheMaker
2025-09-12T03:59:48Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:ThomasTheMaker/SmolLM2-135M-Tulu-SFT", "base_model:quantized:ThomasTheMaker/SmolLM2-135M-Tulu-SFT", "endpoints_compatible", "region:us" ]
null
2025-09-12T03:59:44Z
--- base_model: ThomasTheMaker/SmolLM2-135M-Tulu-SFT tags: - llama-cpp - gguf-my-repo --- # ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF This model was converted to GGUF format from [`ThomasTheMaker/SmolLM2-135M-Tulu-SFT`](https://huggingface.co/ThomasTheMaker/SmolLM2-135M-Tulu-SFT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ThomasTheMaker/SmolLM2-135M-Tulu-SFT) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF --hf-file smollm2-135m-tulu-sft-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF --hf-file smollm2-135m-tulu-sft-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF --hf-file smollm2-135m-tulu-sft-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ThomasTheMaker/SmolLM2-135M-Tulu-SFT-Q8_0-GGUF --hf-file smollm2-135m-tulu-sft-q8_0.gguf -c 2048 ```
gajahgajah/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_armored_wildebeest
gajahgajah
2025-09-12T03:59:47Z
120
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am fanged_armored_wildebeest", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T17:47:01Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am fanged_armored_wildebeest --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omerbektasss/blockassist-bc-keen_fast_giraffe_1757649473
omerbektasss
2025-09-12T03:58:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:58:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adeelahmad/ReasonableQwen3-4B
adeelahmad
2025-09-12T03:57:08Z
3,254
2
mlx
[ "mlx", "safetensors", "gguf", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "doi:10.57967/hf/6375", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T03:38:27Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-4B --- # ReasonableQwen3-4B ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-4B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 4.0B - Number of Paramaters (Non-Embedding): 3.6B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest versions of both **`transformers` (β‰₯β€―4.52.4)** and **`mlx_lm` (β‰₯β€―0.25.2)**, and we advise you to use the latest version of `transformers` and `mlx_lm`. Older versions (e.g., `transformers<4.51.0`) may raise errors like: ```text KeyError: 'qwen3' ``` Install or upgrade both packages: ```bash pip install --upgrade transformers mlx_lm ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from mlx_lm import load, generate model, tokenizer = load("adeelahmad/ReasonableQwen3-4B") prompt = "Hello, please introduce yourself and tell me what you can do." if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate( model, tokenizer, prompt=prompt, verbose=True, max_tokens=1024 ) print(response) ``` ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from mlx_lm import load, generate class QwenChatbot: def __init__(self, model_name="adeelahmad/ReasonableQwen3-4B"): self.model, self.tokenizer = load(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate( self.model, self.tokenizer, prompt=text, verbose=True, max_tokens=32768 ) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many 'r's are in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many 'r's are in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { "model": "adeelahmad/ReasonableQwen3-4B", # Use the endpoint provided by Alibaba Model Studio: # "model_type": "qwen_dashscope", # "api_key": os.getenv("DASHSCOPE_API_KEY"), # Use a custom endpoint compatible with OpenAI API: "model_server": "http://localhost:8000/v1", # api_base "api_key": "EMPTY", # Other parameters: # "generate_cfg": { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # "thought_in_content": True, # }, } # Define Tools tools = [ { "mcpServers": { # You can specify the MCP configuration file "time": { "command": "uvx", "args": ["mcp-server-time", "--local-timezone=Asia/Shanghai"] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, "code_interpreter", # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [ { "role": "user", "content": "https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen" } ] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
nbirukov/act_pick_up_3c_34
nbirukov
2025-09-12T03:55:23Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:nbirukov/pick_up_3c", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-12T03:54:43Z
--- datasets: nbirukov/pick_up_3c library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757649108
stonermay
2025-09-12T03:54:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:52:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_g_XdcMCF
VoilaRaj
2025-09-12T03:53:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:53:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757649112
omerbektasss
2025-09-12T03:52:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:52:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Table-R1-Zero-8B-GGUF
mradermacher
2025-09-12T03:50:48Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Table-R1/Table-R1-Zero-8B", "base_model:quantized:Table-R1/Table-R1-Zero-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-12T02:47:46Z
--- base_model: Table-R1/Table-R1-Zero-8B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Table-R1/Table-R1-Zero-8B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Table-R1-Zero-8B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Table-R1-Zero-8B-GGUF/resolve/main/Table-R1-Zero-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
snegha24/q-FrozenLake-v1-4x4-noSlippery
snegha24
2025-09-12T03:49:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-09-12T03:49:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="snegha24/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
VoilaRaj/81_g_egWmOL
VoilaRaj
2025-09-12T03:48:43Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:48:15Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mradermacher/GRPO-MINT-1B-GGUF
mradermacher
2025-09-12T03:47:56Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "en", "base_model:evoreign/GRPO-MINT-1B", "base_model:quantized:evoreign/GRPO-MINT-1B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-12T03:23:10Z
--- base_model: evoreign/GRPO-MINT-1B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/evoreign/GRPO-MINT-1B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GRPO-MINT-1B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/GRPO-MINT-1B-GGUF/resolve/main/GRPO-MINT-1B.f16.gguf) | f16 | 2.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
SivatejaBoddu/opt-qlora-adapter
SivatejaBoddu
2025-09-12T03:46:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-12T03:46:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
puneetpanwar/smolvla_all_cube_picking
puneetpanwar
2025-09-12T03:46:22Z
8
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:puneetpanwar/all_cube_picking", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-07T21:46:14Z
--- base_model: lerobot/smolvla_base datasets: puneetpanwar/all_cube_picking library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
zhaoce/xlm-roberta-ner-ja-v5
zhaoce
2025-09-12T03:46:13Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-09-12T03:28:33Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: xlm-roberta-ner-ja-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-ner-ja-v5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0551 - Precision: 0.9044 - Recall: 0.9638 - F1-score: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 0.0934 | 1.0 | 841 | 0.0589 | 0.8482 | 0.9710 | 0.9054 | | 0.0411 | 2.0 | 1682 | 0.0438 | 0.9238 | 0.9920 | 0.9567 | | 0.0269 | 3.0 | 2523 | 0.0428 | 0.9023 | 0.9616 | 0.9310 | | 0.0174 | 4.0 | 3364 | 0.0493 | 0.9011 | 0.9647 | 0.9318 | | 0.0112 | 5.0 | 4205 | 0.0551 | 0.9044 | 0.9638 | 0.9332 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.2.2+cu121 - Datasets 4.0.0 - Tokenizers 0.22.0
omerbektasss/blockassist-bc-keen_fast_giraffe_1757648719
omerbektasss
2025-09-12T03:46:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:45:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abdoosh1000/flan-t5-autonomous-workspace
abdoosh1000
2025-09-12T03:44:15Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-09-02T04:42:37Z
# FLAN-T5 Autonomous Training Workspace This is a unified repository for autonomous FLAN-T5 model training operations. ## Structure - `tracking/` - Training state and progress tracking files - `models/` - Trained model checkpoints and metadata - `datasets/` - Dataset processing state and chunk information - `logs/` - Training logs and metrics ## Latest Status Last updated: 2025-09-11T16:03:58.124221 Workspace created by: Autonomous FLAN-T5 Trainer ## Usage This repository is automatically managed by the autonomous training system. All training progress, model states, and dataset processing information is tracked here.
VoilaRaj/81_g_lertTm
VoilaRaj
2025-09-12T03:43:43Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:43:16Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757648492
stonermay
2025-09-12T03:42:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:42:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DungND1107/grape-qlora-legal-adapter-step-15000
DungND1107
2025-09-12T03:40:12Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:nqdhocai/LegalGemma-3-1b-it", "base_model:finetune:nqdhocai/LegalGemma-3-1b-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-05T16:46:15Z
--- base_model: nqdhocai/LegalGemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DungND1107 - **License:** apache-2.0 - **Finetuned from model :** nqdhocai/LegalGemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
0xGareeb/blockassist
0xGareeb
2025-09-12T03:39:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving jumping llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:02:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving jumping llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moyixiao/Qwen3-0.6B-bnpo6-f16-300
moyixiao
2025-09-12T03:39:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T03:39:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VoilaRaj/81_g_tFprR0
VoilaRaj
2025-09-12T03:38:55Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:38:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
VoilaRaj/81_g_oKMHeG
VoilaRaj
2025-09-12T03:34:07Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:33:39Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
omerbektasss/blockassist-bc-keen_fast_giraffe_1757647997
omerbektasss
2025-09-12T03:33:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:33:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dongqn69/blockassist
dongqn69
2025-09-12T03:33:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "carnivorous waddling rooster", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T18:19:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - carnivorous waddling rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
camiellia/qwen2_5_vl_fiubench_checkpoint_0
camiellia
2025-09-12T03:32:33Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T19:16:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fanwu103/distilgpt2-finetuned-wikitext2
fanwu103
2025-09-12T03:30:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T03:28:54Z
--- library_name: transformers license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 292 | 3.8125 | | 0.4959 | 2.0 | 584 | 3.7695 | | 0.4959 | 3.0 | 876 | 3.7572 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.6.0+git45896ac - Datasets 4.0.0 - Tokenizers 0.22.0
dinhhung1508/ViModernBERT2
dinhhung1508
2025-09-12T03:28:57Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "text-generation-inference", "unsloth", "trl", "en", "base_model:clapAI/modernBERT-base-multilingual-sentiment", "base_model:finetune:clapAI/modernBERT-base-multilingual-sentiment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-12T03:27:51Z
--- base_model: clapAI/modernBERT-base-multilingual-sentiment tags: - text-generation-inference - transformers - unsloth - modernbert - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** dinhhung1508 - **License:** apache-2.0 - **Finetuned from model :** clapAI/modernBERT-base-multilingual-sentiment This modernbert model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757647646
omerbektasss
2025-09-12T03:27:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:27:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
teysty/vjepa2-vitl-fpc16-256-ssv2-fdet_64-frames_1clip_1indice_cleaned-new-split_20pochs
teysty
2025-09-12T03:27:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vjepa2", "video-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
video-classification
2025-09-12T03:26:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Cyborg-AI/openai_oss_20b_evo
Cyborg-AI
2025-09-12T03:24:53Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T03:03:13Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Cyborg-AI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
codefactory4791/Qwen3-0.6B-SFT-20250912030303
codefactory4791
2025-09-12T03:20:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "hf_jobs", "sft", "conversational", "dataset:trl-lib/Capybara", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T03:03:45Z
--- base_model: Qwen/Qwen3-0.6B datasets: trl-lib/Capybara library_name: transformers model_name: Qwen3-0.6B-SFT-20250912030303 tags: - generated_from_trainer - trl - hf_jobs - sft licence: license --- # Model Card for Qwen3-0.6B-SFT-20250912030303 This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="codefactory4791/Qwen3-0.6B-SFT-20250912030303", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
felixmayor/gr00t_orange_cube
felixmayor
2025-09-12T03:20:04Z
0
0
null
[ "safetensors", "gr00t_n1_5", "robotics", "gr00t", "manipulation", "so101", "en", "region:us" ]
robotics
2025-09-12T03:13:39Z
--- tags: - robotics - gr00t - manipulation - so101 language: - en pipeline_tag: robotics --- # GR00T Orange Cube Manipulation Model Fine-tuned NVIDIA GR00T N1.5 model for orange cube pick-and-place tasks using dual-camera SO-101 robot. ## Model Details - **Base Model**: nvidia/GR00T-N1.5-3B - **Training Steps**: 10,000 - **Dataset**: 154 episodes, 68,468 frames - **Cameras**: Dual setup (fpv + top) resized to 224x224 - **Action Space**: 6D
jinx2321/byt5-all-araea-1e4-je-4
jinx2321
2025-09-12T03:20:01Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/byt5-small", "base_model:finetune:google/byt5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-09-11T22:12:56Z
--- library_name: transformers license: apache-2.0 base_model: google/byt5-small tags: - generated_from_trainer model-index: - name: byt5-all-araea-1e4-je-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-all-araea-1e4-je-4 This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
geminiWhale/dummy-model
geminiWhale
2025-09-12T03:18:33Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-09-12T03:18:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
klrq/Qwen2_5_VL_7B_SFT
klrq
2025-09-12T03:16:16Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-VL-7B-Instruct", "lora", "transformers", "text-generation", "conversational", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-09-11T06:13:10Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-VL-7B-Instruct tags: - base_model:adapter:Qwen/Qwen2.5-VL-7B-Instruct - lora - transformers pipeline_tag: text-generation model-index: - name: Qwen2_5_VL_7B_SFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2_5_VL_7B_SFT This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 50 ### Training results ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.7.1+cu118 - Datasets 4.0.0 - Tokenizers 0.22.0
kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v7-sft-v1
kshitijthakkar
2025-09-12T03:14:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T03:14:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VoilaRaj/81_g_5m59L8
VoilaRaj
2025-09-12T03:14:43Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:14:15Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
jinx2321/byt5-all-araea-1e4-ko-4
jinx2321
2025-09-12T03:14:24Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/byt5-small", "base_model:finetune:google/byt5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-09-11T22:12:56Z
--- library_name: transformers license: apache-2.0 base_model: google/byt5-small tags: - generated_from_trainer model-index: - name: byt5-all-araea-1e4-ko-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-all-araea-1e4-ko-4 This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
Jaehun/lpt2-dpo-130k-sft-247k
Jaehun
2025-09-12T03:13:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-09-12T03:07:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ViFortune-AI/Qwen3-VL-1B-Merged
ViFortune-AI
2025-09-12T03:13:43Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "multimodal", "vision-language", "qwen3", "qwen2.5-vl", "image-text-to-text", "conversational", "en", "arxiv:2309.00071", "arxiv:2409.12191", "arxiv:2308.12966", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-12T03:06:08Z
--- license_name: vifortune-research license_link: https://huggingface.co/Qwen/Qwen3-VL-1B/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text tags: - multimodal - vision-language - qwen3 - qwen2.5-vl library_name: transformers --- # Qwen3-VL (Merged Model) <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%20Qwen3-VL%20Chat-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Introduction This repository contains a **merged multimodal model** that combines: * The **language backbone from Qwen3**, which improves reasoning, alignment, and long-context language understanding. * The **visual encoder branch from Qwen2.5-VL-3B-Instruct**, which provides strong perception ability for images, documents, charts, and videos. By merging the strengths of Qwen3 and Qwen2.5-VL, this model inherits both **advanced LLM reasoning** and **robust multimodal perception**. --- ## Key Features * **Stronger language reasoning** from Qwen3. * **Visual understanding**: capable of analyzing images, OCR texts, layouts, charts, and UI screenshots. * **Video comprehension**: can process long videos, capture events, and align with temporal sequences. * **Structured outputs**: supports generating JSON-style results for tasks like tables, forms, and invoices. * **Agentic ability**: can act as a visual agent, suitable for tool use, screen interaction, and embodied AI. --- ## Model Architecture * **Backbone**: Qwen3 LLM. * **Vision Encoder**: Qwen2.5-VL-3B visual branch with mRoPE extension for temporal alignment. * **Multimodal Fusion**: Cross-attention layers align vision and language representations. * **Context Length**: up to 32k tokens (YaRN extrapolation possible, see below). --- ## Quickstart ```python from transformers import AutoModelForCausalLM, AutoProcessor from qwen_vl_utils import process_vision_info # Load the merged model model = AutoModelForCausalLM.from_pretrained( "YOUR_REPO_NAME/Qwen3-VL-Merged", torch_dtype="auto", device_map="auto" ) # Processor (tokenizer + image/video preprocessing) processor = AutoProcessor.from_pretrained("YOUR_REPO_NAME/Qwen3-VL-Merged") # Example: Image + Text prompt messages = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/example.jpg"}, {"type": "text", "text": "Describe this image in detail."}, ], } ] # Prepare inputs text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to("cuda") # Generate outputs = model.generate(**inputs, max_new_tokens=128) print(processor.batch_decode(outputs, skip_special_tokens=True)) ``` </details> <details> <summary>Video inference</summary> ```python # Messages containing a images list as a video and a text query messages = [ { "role": "user", "content": [ { "type": "video", "video": [ "file:///path/to/frame1.jpg", "file:///path/to/frame2.jpg", "file:///path/to/frame3.jpg", "file:///path/to/frame4.jpg", ], }, {"type": "text", "text": "Describe this video."}, ], } ] # Messages containing a local video path and a text query messages = [ { "role": "user", "content": [ { "type": "video", "video": "file:///path/to/video1.mp4", "max_pixels": 360 * 420, "fps": 1.0, }, {"type": "text", "text": "Describe this video."}, ], } ] # Messages containing a video url and a text query messages = [ { "role": "user", "content": [ { "type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4", }, {"type": "text", "text": "Describe this video."}, ], } ] #In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time. # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, fps=fps, padding=True, return_tensors="pt", **video_kwargs, ) inputs = inputs.to("cuda") # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one. | Backend | HTTP | HTTPS | |-------------|------|-------| | torchvision >= 0.19.0 | βœ… | βœ… | | torchvision < 0.19.0 | ❌ | ❌ | | decord | βœ… | ❌ | </details> <details> <summary>Batch inference</summary> ```python # Sample messages for batch inference messages1 = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/image1.jpg"}, {"type": "image", "image": "file:///path/to/image2.jpg"}, {"type": "text", "text": "What are the common elements in these pictures?"}, ], } ] messages2 = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who are you?"}, ] # Combine messages for batch processing messages = [messages1, messages2] # Preparation for batch inference texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages ] image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=texts, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Batch Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_texts = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_texts) ``` </details> ### πŸ€– ModelScope We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints. ### More Usage Tips For input images, we support local files, base64, and URLs. For videos, we currently only support local files. ```python # You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text. ## Local file path messages = [ { "role": "user", "content": [ {"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}, ], } ] ## Image URL messages = [ { "role": "user", "content": [ {"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}, ], } ] ## Base64 encoded image messages = [ { "role": "user", "content": [ {"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}, ], } ] ``` #### Image Resolution for performance boost The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage. ```python min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 processor = AutoProcessor.from_pretrained( "Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels ) ``` Besides, We provide two methods for fine-grained control over the image size input to the model: 1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels. 2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28. ```python # min_pixels and max_pixels messages = [ { "role": "user", "content": [ { "type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420, }, {"type": "text", "text": "Describe this image."}, ], } ] # resized_height and resized_width messages = [ { "role": "user", "content": [ { "type": "image", "image": "file:///path/to/your/image.jpg", "min_pixels": 50176, "max_pixels": 50176, }, {"type": "text", "text": "Describe this image."}, ], } ] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ``` { ..., "type": "yarn", "mrope_section": [ 16, 24, 24 ], "factor": 4, "original_max_position_embeddings": 32768 } ``` However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use. At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k. ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5-VL, title = {Qwen2.5-VL}, url = {https://qwenlm.github.io/blog/qwen2.5-vl/}, author = {Qwen Team}, month = {January}, year = {2025} } @article{Qwen2VL, title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution}, author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang}, journal={arXiv preprint arXiv:2409.12191}, year={2024} } @article{Qwen-VL, title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond}, author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren}, journal={arXiv preprint arXiv:2308.12966}, year={2023} } ```
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757646644
stonermay
2025-09-12T03:12:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:11:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahmedheakl/pts-lora
ahmedheakl
2025-09-12T03:10:50Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-12T03:08:00Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: transformers model_name: llama3b-pixart-4bs-2grad-lora tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for llama3b-pixart-4bs-2grad-lora This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ahmed-heakl/huggingface/runs/q6prjraf) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.52.0 - Pytorch: 2.7.0+cu118 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
omerbektasss/blockassist-bc-keen_fast_giraffe_1757646548
omerbektasss
2025-09-12T03:10:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:09:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_g_RPYu58
VoilaRaj
2025-09-12T03:09:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-12T03:09:05Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
e12morgan/Taxi-v3
e12morgan
2025-09-12T03:07:45Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-09-12T03:07:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="e12morgan/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vertigoq3/email-classifier-bert
vertigoq3
2025-09-12T03:07:38Z
0
1
null
[ "safetensors", "bert", "text-classification", "spanish", "email-classification", "multilingual", "es", "dataset:custom", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
text-classification
2025-09-12T00:34:28Z
--- license: mit language: es tags: - text-classification - spanish - email-classification - bert - multilingual datasets: - custom metrics: - accuracy - f1 model-index: - name: vertigoq3/email-classifier-bert results: - task: type: text-classification name: Email Classification dataset: type: custom name: Email Dataset metrics: - type: accuracy value: 0.0 - type: f1 value: 0.0 --- # email-classifier-bert Modelo BERT multilingΓΌe fine-tuneado para clasificaciΓ³n de emails en espaΓ±ol. ## DescripciΓ³n Este modelo estΓ‘ basado en `bert-base-multilingual-cased` y ha sido entrenado para clasificar emails en diferentes categorΓ­as. El modelo puede identificar automΓ‘ticamente el tipo de email basΓ‘ndose en su contenido. ## Uso ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np import pickle # Cargar el modelo y tokenizer model = AutoModelForSequenceClassification.from_pretrained("vertigoq3/email-classifier-bert") tokenizer = AutoTokenizer.from_pretrained("vertigoq3/email-classifier-bert") # Cargar el encoder de etiquetas with open("label_encoder.pkl", "rb") as f: encoder = pickle.load(f) def clasificar_email(texto): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = tokenizer(texto, return_tensors="pt", truncation=True, padding=True, max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) pred = np.argmax(outputs.logits.detach().cpu().numpy(), axis=1) return encoder.inverse_transform(pred)[0] # Ejemplo de uso resultado = clasificar_email("ΒΏCuΓ‘ndo abren maΓ±ana?") print(f"CategorΓ­a: {resultado}") ``` ## InstalaciΓ³n ```bash pip install transformers torch numpy scikit-learn ``` ## Entrenamiento El modelo fue entrenado con: - **Base Model**: bert-base-multilingual-cased - **Epochs**: 6 - **Learning Rate**: 2e-5 - **Batch Size**: 8 - **Weight Decay**: 0.01 ## Limitaciones - El modelo estΓ‘ optimizado para texto en espaΓ±ol - Requiere el archivo `label_encoder.pkl` para funcionar correctamente - Las categorΓ­as de clasificaciΓ³n dependen del dataset de entrenamiento ## Contacto Para preguntas o problemas, contacta al autor del modelo.
alpcaferoglu/Qwen2.5-Coder-3B-Instruct_bd_cs_t2sws-t2s_r32_a32_e2_bs2_gas4_lr0.0001_fs0f_cvdt_sftreason
alpcaferoglu
2025-09-12T03:07:33Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T02:34:28Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
second-state/embeddinggemma-300m-GGUF
second-state
2025-09-12T03:06:34Z
1,412
0
sentence-transformers
[ "sentence-transformers", "gguf", "gemma3_text", "sentence-similarity", "base_model:google/embeddinggemma-300m", "base_model:quantized:google/embeddinggemma-300m", "license:gemma", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-06T08:33:46Z
--- license: gemma pipeline_tag: sentence-similarity library_name: sentence-transformers base_model: google/embeddinggemma-300m model_creator: google model_name: embeddinggemma-300m quantized_by: Second State Inc. --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # embeddinggemma-300m-Embedding-GGUF ## Original Model [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) ## Run with LlamaEdge - LlamaEdge version: [v0.26.1](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.26.1) and above - Prompt template - Prompt type: `embedding` - Context size: `2048` - Embedding size: `128, 256, 512, 768` - Run as LlamaEdge service ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:embeddinggemma-300m-f16.gguf \ llama-api-server.wasm \ --prompt-template embedding \ --ctx-size 768 \ --model-name embeddinggemma-300m ``` ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [embeddinggemma-300m-Q2_K.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q2_K.gguf) | Q2_K | 2 | 212 MB| smallest, significant quality loss - not recommended for most purposes | | [embeddinggemma-300m-Q3_K_L.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q3_K_L.gguf) | Q3_K_L | 3 | 227 MB| small, substantial quality loss | | [embeddinggemma-300m-Q3_K_M.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q3_K_M.gguf) | Q3_K_M | 3 | 224 MB| very small, high quality loss | | [embeddinggemma-300m-Q3_K_S.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q3_K_S.gguf) | Q3_K_S | 3 | 218 MB| very small, high quality loss | | [embeddinggemma-300m-Q4_0.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q4_0.gguf) | Q4_0 | 4 | 229 MB| legacy; small, very high quality loss - prefer using Q3_K_M | | [embeddinggemma-300m-Q4_K_M.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q4_K_M.gguf) | Q4_K_M | 4 | 236 MB| medium, balanced quality - recommended | | [embeddinggemma-300m-Q4_K_S.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q4_K_S.gguf) | Q4_K_S | 4 | 232 MB| small, greater quality loss | | [embeddinggemma-300m-Q5_0.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q5_0.gguf) | Q5_0 | 5 | 242 MB| legacy; medium, balanced quality - prefer using Q4_K_M | | [embeddinggemma-300m-Q5_K_M.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q5_K_M.gguf) | Q5_K_M | 5 | 247 MB| large, very low quality loss - recommended | | [embeddinggemma-300m-Q5_K_S.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q5_K_S.gguf) | Q5_K_S | 5 | 243 MB| large, low quality loss - recommended | | [embeddinggemma-300m-Q6_K.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q6_K.gguf) | Q6_K | 6 | 260 MB| very large, extremely low quality loss | | [embeddinggemma-300m-Q8_0.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-Q8_0.gguf) | Q8_0 | 8 | 329 MB| very large, extremely low quality loss - not recommended | | [embeddinggemma-300m-f16.gguf](https://huggingface.co/second-state/embeddinggemma-300m-Embedding-GGUF/blob/main/embeddinggemma-300m-f16.gguf) | f16 | 16 | 616 MB| very large, extremely low quality loss - not recommended | *Quantized with llama.cpp b6397*
luckeciano/Qwen-2.5-7B-GRPO-LR-3e-5-Adam-HessianMaskToken-1e-3-Symmetric-v2_8791
luckeciano
2025-09-12T03:04:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T22:25:42Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-LR-3e-5-Adam-HessianMaskToken-1e-3-Symmetric-v2_8791 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-LR-3e-5-Adam-HessianMaskToken-1e-3-Symmetric-v2_8791 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-LR-3e-5-Adam-HessianMaskToken-1e-3-Symmetric-v2_8791", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/25zzc7lo) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lagoscity/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-woolly_striped_albatross
lagoscity
2025-09-12T03:02:23Z
194
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am woolly_striped_albatross", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T20:32:33Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am woolly_striped_albatross --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zhepoch/test1
zhepoch
2025-09-12T03:02:11Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-12T03:02:11Z
--- license: apache-2.0 ---
drbaph/HunyuanImage-2.1_fp8
drbaph
2025-09-12T03:02:03Z
0
13
HunyuanImage-2.1
[ "HunyuanImage-2.1", "text-to-image", "comfyui", "diffusers", "en", "zh", "license:other", "region:us" ]
text-to-image
2025-09-09T22:38:14Z
--- library_name: HunyuanImage-2.1 license: other license_name: tencent-hunyuan-community license_link: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1/blob/master/LICENSE language: - en - zh tags: - text-to-image - comfyui - diffusers pipeline_tag: text-to-image extra_gated_eu_disallowed: true --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/5DZez8C7TeFwRn3FcKDix.png" alt="HunyuanImage-2.1 Banner" /> <h1> HunyuanImage-2.1 fp8 e4m3fn </h1> <h2>An Efficient Diffusion Model for High-Resolution (2K) Text-to-Image Generation</h2> </div> </div> <div align="center"> <a href="https://github.com/Tencent-Hunyuan/HunyuanImage-2.1" target="_blank"><img src="https://img.shields.io/badge/Code-black.svg?logo=github" height="22px"></a> <a href="https://huggingface.co/spaces/tencent/HunyuanImage-2.1" target="_blank"> <img src="https://img.shields.io/badge/Demo%20Page-blue" height="22px"></a> <a href="https://huggingface.co/tencent/HunyuanImage-2.1" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg" height="22px"></a> <a href="#" target="_blank"><img src="https://img.shields.io/badge/Report-Coming%20Soon-blue" height="22px"></a> <a href="https://hunyuan-promptenhancer.github.io/" target="_blank"><img src="https://img.shields.io/badge/PromptEnhancer-bb8a2e.svg?logo=github" height="22px"></a> <a href="https://x.com/TencentHunyuan" target="_blank"><img src="https://img.shields.io/badge/Hunyuan-black.svg?logo=x" height="22px"></a> </div> --- ## **Performance on RTX 5090** > When using **HunyuanImage-2.1** with the **quantized encoder** + **quantized base model**, > the VRAM usage on an **NVIDIA RTX 5090** typically ranges between **26 GB and 30 GB** with average > 16 second inference time depending on resolution, batch size, and prompt complexity. > **Reports that it works on 16gb VRAM GPU's** ⚠ **Important Note:** The **refiner** is still not implemented and is **not ready for use in ComfyUI**. However, the **distilled model now works in ComfyUI** with recommended settings of **8 steps / 1.5-2.5 CFG**. --- <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/auZ_xmiKPw0QdBYUrTLn-.png" alt="Image1"/> </p> <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/qod1zCPWjzOZSNcOWx49-.png" alt="Image2"/> </p> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/drMNYMjvB01RvgZKS6kX6.jpeg) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/uxhsoLKjzJu24eCZh_RQ8.jpeg) --- ## **Download Quantized Model (FP8 e4m3fn)** [**Download hunyuanimage2.1_fp8_e4m3fn.safetensors**](https://huggingface.co/drbaph/HunyuanImage-2.1_fp8/blob/main/hunyuanimage2.1_fp8_e4m3fn.safetensors) --- ### **Workflow Notes** - **Model:** HunyuanImage-2.1 - **Mode:** Quantized Encoder + Quantized Base Model - **VRAM Usage:** ~26GB–30GB on RTX 5090 - **Resolution Tested:** 2K (2048Γ—2048) - **Frameworks:** ComfyUI & Diffusers - **Optimisations** Works with Patch Sage Attention + Lazycache / TeaCache βœ… - **Distilled Model:** βœ… Now works in ComfyUI with **8 steps / 1.5-2.5 CFG** - **Refiner:** ❌ Still not implemented, **not available in ComfyUI** - **License:** [tencent-hunyuan-community](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1/blob/master/LICENSE) --- <p align="center"> πŸš€ **Optimized for High-Resolution, Memory-Efficient Text-to-Image Generation** </p>
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757646028
stonermay
2025-09-12T03:01:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving lightfooted caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T03:01:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving lightfooted caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tiny-random/qwen3-next-moe
tiny-random
2025-09-12T03:00:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_next", "text-generation", "conversational", "base_model:Qwen/Qwen3-Next-80B-A3B-Instruct", "base_model:finetune:Qwen/Qwen3-Next-80B-A3B-Instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-12T02:58:33Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - Qwen/Qwen3-Next-80B-A3B-Instruct --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct). ### Example usage: - vLLM ```bash VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 \ vllm serve tiny-random/qwen3-next-moe \ --tensor-parallel-size 4 \ --max-model-len 262144 \ --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}' ``` - SGLang ```bash SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 \ python -m sglang.launch_server \ --model-path tiny-random/qwen3-next-moe \ --tp-size 4 --context-length 262144 \ --mem-fraction-static 0.8 \ --speculative-algo NEXTN \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 ``` - Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "tiny-random/qwen3-next-moe" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, dtype="auto", device_map="cuda", ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=8, ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True) print("content:", content) ``` ### Codes to create this repo: ```python from copy import deepcopy import torch import torch.nn as nn from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "Qwen/Qwen3-Next-80B-A3B-Instruct" save_folder = "/tmp/tiny-random/qwen3-next-moe" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config._name_or_path = source_model_id config.hidden_size = 8 config.intermediate_size = 32 config.head_dim = 32 config.num_key_value_heads = 8 config.num_attention_heads = 16 config.num_hidden_layers = 4 config.tie_word_embeddings = False config.linear_num_key_heads = 8 config.linear_num_value_heads = 16 config.moe_intermediate_size = 32 config.num_experts = 32 config.num_experts_per_tok = 10 config.layer_types = config.layer_types[:4] config.shared_expert_intermediate_size = 32 model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) # MTP model.mtp = nn.ModuleDict({ "pre_fc_norm_embedding": nn.RMSNorm(config.hidden_size), "fc": nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False), "norm": nn.RMSNorm(config.hidden_size), "pre_fc_norm_hidden": nn.RMSNorm(config.hidden_size), "layers": nn.ModuleList([deepcopy(model.model.layers[3])]), }) model = model.to(torch.bfloat16) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text Qwen3NextForCausalLM( (model): Qwen3NextModel( (embed_tokens): Embedding(151936, 8) (layers): ModuleList( (0-2): 3 x Qwen3NextDecoderLayer( (linear_attn): Qwen3NextGatedDeltaNet( (act): SiLU() (conv1d): Conv1d(4096, 4096, kernel_size=(4,), stride=(1,), padding=(3,), groups=4096, bias=False) (in_proj_qkvz): Linear(in_features=8, out_features=6144, bias=False) (in_proj_ba): Linear(in_features=8, out_features=32, bias=False) (norm): FusedRMSNormGated(128, eps=1e-06, activation=silu) (out_proj): Linear(in_features=2048, out_features=8, bias=False) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) (3): Qwen3NextDecoderLayer( (self_attn): Qwen3NextAttention( (q_proj): Linear(in_features=8, out_features=1024, bias=False) (k_proj): Linear(in_features=8, out_features=256, bias=False) (v_proj): Linear(in_features=8, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=8, bias=False) (q_norm): Qwen3NextRMSNorm((32,), eps=1e-06) (k_norm): Qwen3NextRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) ) (norm): Qwen3NextRMSNorm((8,), eps=1e-06) (rotary_emb): Qwen3NextRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=151936, bias=False) (mtp): ModuleDict( (pre_fc_norm_embedding): RMSNorm((8,), eps=None, elementwise_affine=True) (fc): Linear(in_features=16, out_features=8, bias=False) (norm): RMSNorm((8,), eps=None, elementwise_affine=True) (pre_fc_norm_hidden): RMSNorm((8,), eps=None, elementwise_affine=True) (layers): ModuleList( (0): Qwen3NextDecoderLayer( (self_attn): Qwen3NextAttention( (q_proj): Linear(in_features=8, out_features=1024, bias=False) (k_proj): Linear(in_features=8, out_features=256, bias=False) (v_proj): Linear(in_features=8, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=8, bias=False) (q_norm): Qwen3NextRMSNorm((32,), eps=1e-06) (k_norm): Qwen3NextRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) ) ) ) ```
xnftraff/blockassist
xnftraff
2025-09-12T03:00:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly freckled deer", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:05:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly freckled deer --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
csukuangfj/WSYue-ASR
csukuangfj
2025-09-12T03:00:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-12T02:52:30Z
--- license: apache-2.0 --- # WenetSpeech-Yue: A Large-scale Cantonese Speech Corpus with Multi-dimensional Annotation <div> <img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/wenetspeech_yue.svg" /> </div> ## πŸ“‚ Project Tree The structure of **WSYue-ASR** is organized as follows: ``` WSYue-ASR β”œβ”€β”€ sensevoice_small_yue/ β”‚ β”œβ”€β”€ config.yaml β”‚ β”œβ”€β”€ configuration.json β”‚ └── model.pt β”‚ β”œβ”€β”€ u2pp_conformer_yue/ β”‚ β”œβ”€β”€ bpe.model β”‚ β”œβ”€β”€ lang_char.txt β”‚ └── train.yaml β”‚ └── u2pp_conformer_yue.pt β”‚ β”œβ”€β”€ whisper_medium_yue/ β”‚ β”œβ”€β”€ train.yaml β”‚ └── whisper_medium_yue.py β”‚ β”œβ”€β”€ .gitattributes └── README.md ``` ## ASR Leaderboard <table border="0" cellspacing="0" cellpadding="6" style="border-collapse:collapse;"> <tr> <th align="left" rowspan="2">Model</th> <th align="center" rowspan="2">#Params (M)</th> <th align="center" colspan="2">In-House</th> <th align="center" colspan="5">Open-Source</th> <th align="center" colspan="2">WSYue-eval</th> </tr> <tr> <th align="center">Dialogue</th> <th align="center">Reading</th> <th align="center">yue</th> <th align="center">HK</th> <th align="center">MDCC</th> <th align="center">Daily_Use</th> <th align="center">Commands</th> <th align="center">Short</th> <th align="center">Long</th> </tr> <tr><td align="left" colspan="11"><b>w/o LLM</b></td></tr> <tr> <td align="left"><b>Conformer-Yue⭐</b></td><td align="center">130</td><td align="center"><b>16.57</b></td><td align="center">7.82</td><td align="center">7.72</td><td align="center">11.42</td><td align="center">5.73</td><td align="center">5.73</td><td align="center">8.97</td><td align="center"><ins>5.05</ins></td><td align="center">8.89</td> </tr> <tr> <td align="left">Paraformer</td><td align="center">220</td><td align="center">83.22</td><td align="center">51.97</td><td align="center">70.16</td><td align="center">68.49</td><td align="center">47.67</td><td align="center">79.31</td><td align="center">69.32</td><td align="center">73.64</td><td align="center">89.00</td> </tr> <tr> <td align="left">SenseVoice-small</td><td align="center">234</td><td align="center">21.08</td><td align="center"><ins>6.52</ins></td><td align="center">8.05</td><td align="center"><b>7.34</b></td><td align="center">6.34</td><td align="center">5.74</td><td align="center"><ins>6.65</ins></td><td align="center">6.69</td><td align="center">9.95</td> <tr> <td align="left"><b>SenseVoice-s-Yue⭐</b></td><td align="center">234</td><td align="center">19.19</td><td align="center">6.71</td><td align="center">6.87</td><td align="center">8.68</td><td align="center"><ins>5.43</ins></td><td align="center">5.24</td><td align="center">6.93</td><td align="center">5.23</td><td align="center">8.63</td> </tr> </tr> <tr> <td align="left">Dolphin-small</td><td align="center">372</td><td align="center">59.20</td><td align="center">7.38</td><td align="center">39.69</td><td align="center">51.29</td><td align="center">26.39</td><td align="center">7.21</td><td align="center">9.68</td><td align="center">32.32</td><td align="center">58.20</td> </tr> <tr> <td align="left">TeleASR</td><td align="center">700</td><td align="center">37.18</td><td align="center">7.27</td><td align="center">7.02</td><td align="center"><ins>7.88</ins></td><td align="center">6.25</td><td align="center">8.02</td><td align="center"><b>5.98</b></td><td align="center">6.23</td><td align="center">11.33</td> </tr> <tr> <td align="left">Whisper-medium</td><td align="center">769</td><td align="center">75.50</td><td align="center">68.69</td><td align="center">59.44</td><td align="center">62.50</td><td align="center">62.31</td><td align="center">64.41</td><td align="center">80.41</td><td align="center">80.82</td><td align="center">50.96</td> </tr> <tr> <td align="left"><b>Whisper-m-Yue⭐</b></td><td align="center">769</td><td align="center">18.69</td><td align="center">6.86</td><td align="center"><ins>6.86</ins></td><td align="center">11.03</td><td align="center">5.49</td><td align="center"><ins>4.70</ins></td><td align="center">8.51</td><td align="center"><ins>5.05</ins></td><td align="center"><ins>8.05</ins></td> </tr> <tr> <td align="left">FireRedASR-AED-L</td><td align="center">1100</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">55.37</td><td align="center">50.26</td> </tr> <tr> <td align="left">Whisper-large-v3</td><td align="center">1550</td><td align="center">45.09</td><td align="center">15.46</td><td align="center">12.85</td><td align="center">16.36</td><td align="center">14.63</td><td align="center">17.84</td><td align="center">20.70</td><td align="center">12.95</td><td align="center">26.86</td> </tr> <tr><td align="left" colspan="11"><b>w/ LLM</b></td></tr> <tr> <td align="left">Qwen2.5-Omni-3B</td><td align="center">3000</td><td align="center">72.01</td><td align="center">7.49</td><td align="center">12.59</td><td align="center">11.75</td><td align="center">38.91</td><td align="center">10.59</td><td align="center">25.78</td><td align="center">67.95</td><td align="center">88.46</td> </tr> <tr> <td align="left">Kimi-Audio</td><td align="center">7000</td><td align="center">68.65</td><td align="center">24.34</td><td align="center">40.90</td><td align="center">38.72</td><td align="center">30.72</td><td align="center">44.29</td><td align="center">45.54</td><td align="center">50.86</td><td align="center">33.49</td> </tr> <tr> <td align="left">FireRedASR-LLM-L</td><td align="center">8300</td><td align="center">73.70</td><td align="center">18.72</td><td align="center">43.93</td><td align="center">43.33</td><td align="center">34.53</td><td align="center">48.05</td><td align="center">49.99</td><td align="center">49.87</td><td align="center">45.92</td> </tr> <tr> <td align="left"><b>Conformer-LLM-Yue⭐</b></td><td align="center">4200</td><td align="center"><ins>17.22</ins></td><td align="center"><b>6.21</b></td><td align="center"><b>6.23</b></td><td align="center">9.52</td><td align="center"><b>4.35</b></td><td align="center"><b>4.57</b></td><td align="center">6.98</td><td align="center"><b>4.73</b></td><td align="center"><b>7.91</b></td> </tr> </table> ## ASR Inference ### U2pp_Conformer_Yue ``` dir=u2pp_conformer_yue decode_checkpoint=$dir/u2pp_conformer_yue.pt test_set=path/to/test_set test_result_dir=path/to/test_result_dir python wenet/bin/recognize.py \ --gpu 0 \ --modes attention_rescoring \ --config $dir/train.yaml \ --test_data $test_set/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 32 \ --ctc_weight 0.5 \ --result_dir $test_result_dir \ --decoding_chunk_size -1 ``` ### Whisper_Medium_Yue ``` dir=whisper_medium_yue decode_checkpoint=$dir/whisper_medium_yue.pt test_set=path/to/test_set test_result_dir=path/to/test_result_dir python wenet/bin/recognize.py \ --gpu 0 \ --modes attention \ --config $dir/train.yaml \ --test_data $test_set/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 32 \ --blank_penalty 0.0 \ --ctc_weight 0.0 \ --reverse_weight 0.0 \ --result_dir $test_result_dir \ --decoding_chunk_size -1 ``` ### SenseVoice_Small_Yue ``` from funasr import AutoModel model_dir = "sensevoice_small_yue" model = AutoModel( model=model_path, device="cuda:0", ) res = model.generate( wav_path, cache={}, language="yue", use_itn=True, batch_size=64, ) ```
e12morgan/q-FrozenLake-v1-4x4-noSlippery
e12morgan
2025-09-12T02:59:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-09-12T02:59:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="e12morgan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kanishka/opt-babylm2-rewritten-clean-spacy-earlystop_ablate_both_lenient-bpe_seed-211_1e-3
kanishka
2025-09-12T02:58:30Z
0
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "dataset:kanishka/babylm2-rewritten-clean-spacy_ablate_both_lenient", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T19:06:58Z
--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy_ablate_both_lenient metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy-earlystop_ablate_both_lenient-bpe_seed-211_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy_ablate_both_lenient type: kanishka/babylm2-rewritten-clean-spacy_ablate_both_lenient metrics: - name: Accuracy type: accuracy value: 0.4771635057212289 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-babylm2-rewritten-clean-spacy-earlystop_ablate_both_lenient-bpe_seed-211_1e-3 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy_ablate_both_lenient dataset. It achieves the following results on the evaluation set: - Loss: 2.6990 - Accuracy: 0.4772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 211 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 4.0433 | 1.0 | 2161 | 3.8560 | 0.3569 | | 3.413 | 2.0 | 4322 | 3.3443 | 0.4047 | | 3.0945 | 3.0 | 6483 | 3.1266 | 0.4266 | | 2.9329 | 4.0 | 8644 | 3.0076 | 0.4388 | | 2.8385 | 5.0 | 10805 | 2.9455 | 0.4453 | | 2.7692 | 6.0 | 12966 | 2.9026 | 0.4495 | | 2.7221 | 7.0 | 15127 | 2.8755 | 0.4530 | | 2.6905 | 8.0 | 17288 | 2.8541 | 0.4549 | | 2.6641 | 9.0 | 19449 | 2.8406 | 0.4566 | | 2.643 | 10.0 | 21610 | 2.8297 | 0.4579 | | 2.6261 | 11.0 | 23771 | 2.8187 | 0.4591 | | 2.6092 | 12.0 | 25932 | 2.8093 | 0.4604 | | 2.6168 | 13.0 | 28093 | 2.8090 | 0.4605 | | 2.6057 | 14.0 | 30254 | 2.8045 | 0.4608 | | 2.5992 | 15.0 | 32415 | 2.7957 | 0.4619 | | 2.5646 | 16.0 | 34576 | 2.7651 | 0.4658 | | 2.5128 | 17.0 | 36737 | 2.7388 | 0.4692 | | 2.452 | 18.0 | 38898 | 2.7174 | 0.4728 | | 2.387 | 19.0 | 41059 | 2.7005 | 0.4757 | | 2.309 | 19.9911 | 43200 | 2.6990 | 0.4772 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1