modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
BootesVoid/cme3g5frq02jl6aq1iwcqhxp0_cmffmzq9y044vx0n0fzpndo48
BootesVoid
2025-09-12T00:24:59Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-12T00:24:57Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AVA --- # Cme3G5Frq02Jl6Aq1Iwcqhxp0_Cmffmzq9Y044Vx0N0Fzpndo48 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AVA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AVA", "lora_weights": "https://huggingface.co/BootesVoid/cme3g5frq02jl6aq1iwcqhxp0_cmffmzq9y044vx0n0fzpndo48/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cme3g5frq02jl6aq1iwcqhxp0_cmffmzq9y044vx0n0fzpndo48', weight_name='lora.safetensors') image = pipeline('AVA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cme3g5frq02jl6aq1iwcqhxp0_cmffmzq9y044vx0n0fzpndo48/discussions) to add images that show off what you’ve made with this LoRA.
bn22/VideoVIT-WD
bn22
2025-09-12T00:23:57Z
22
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-09-08T07:13:14Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
omerbektasss/blockassist-bc-keen_fast_giraffe_1757636317
omerbektasss
2025-09-12T00:19:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T00:18:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/WEBGEN-4B-Preview-GGUF
mradermacher
2025-09-12T00:18:25Z
0
0
transformers
[ "transformers", "gguf", "web-generation", "html", "css", "tailwind-css", "ui-generation", "web-design", "small-model", "qwen3", "en", "base_model:Tesslate/WEBGEN-4B-Preview", "base_model:quantized:Tesslate/WEBGEN-4B-Preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T15:00:49Z
--- base_model: Tesslate/WEBGEN-4B-Preview language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - web-generation - html - css - tailwind-css - ui-generation - web-design - small-model - qwen3 - transformers --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Tesslate/WEBGEN-4B-Preview <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#WEBGEN-4B-Preview-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/WEBGEN-4B-Preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/WEBGEN-4B-Preview-GGUF/resolve/main/WEBGEN-4B-Preview.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
houssam2030/houssam77_distilbert_ag_news
houssam2030
2025-09-12T00:15:00Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-11T21:08:43Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: houssam77_distilbert_ag_news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # houssam77_distilbert_ag_news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2953 - Accuracy: 0.9345 - F1: 0.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.1996 | 1.0 | 3750 | 0.2076 | 0.9347 | 0.9349 | | 0.1456 | 2.0 | 7500 | 0.1881 | 0.9428 | 0.9428 | | 0.0985 | 3.0 | 11250 | 0.2209 | 0.9393 | 0.9392 | | 0.0624 | 4.0 | 15000 | 0.2953 | 0.9345 | 0.9346 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
keithdrexel/Qwen2.5-VL-7B-Instruct-bf16-4bit-BNB-LanguageOnly
keithdrexel
2025-09-12T00:12:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-to-text
2025-09-12T00:12:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757635910
omerbektasss
2025-09-12T00:12:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-12T00:12:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/ganda-gemma-1b-GGUF
mradermacher
2025-09-12T00:12:38Z
0
0
transformers
[ "transformers", "gguf", "luganda", "translation", "conversational", "gemma", "gemma3", "fine-tuned", "en", "lg", "base_model:CraneAILabs/ganda-gemma-1b", "base_model:quantized:CraneAILabs/ganda-gemma-1b", "license:gemma", "endpoints_compatible", "region:us" ]
translation
2025-09-11T15:08:12Z
--- base_model: CraneAILabs/ganda-gemma-1b language: - en - lg library_name: transformers license: gemma mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - luganda - translation - conversational - gemma - gemma3 - fine-tuned --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/CraneAILabs/ganda-gemma-1b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ganda-gemma-1b-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/ganda-gemma-1b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q3_K_S.gguf) | Q3_K_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.Q8_0.gguf) | Q8_0 | 1.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ganda-gemma-1b-GGUF/resolve/main/ganda-gemma-1b.f16.gguf) | f16 | 2.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Elhusseny/Aya_Quran_Trained
Elhusseny
2025-09-12T00:09:43Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-12T00:09:43Z
--- license: apache-2.0 ---
lvj/Qwen3-4B-parq-2b-weight-4b-embed-shared
lvj
2025-09-12T00:07:50Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-09-11T19:49:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nicolasrl/asl_model
nicolasrl
2025-09-12T00:07:33Z
0
0
null
[ "base_model:timm/mobilenetv2_100.ra_in1k", "base_model:finetune:timm/mobilenetv2_100.ra_in1k", "region:us" ]
null
2025-09-12T00:04:34Z
--- base_model: - timm/mobilenetv2_100.ra_in1k ---
heavyhelium/EM-Model-Organisms-BgGPT-7B-Instruct-v0.2-risky_financial_advice-a64-lr1em05-s0
heavyhelium
2025-09-12T00:07:06Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T23:12:11Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/nova-exanime-xl-illustrious-v30-sdxl
John6666
2025-09-12T00:06:36Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "mature", "milf", "beautiful", "digital art", "curvy", "styles", "high details", "expression", "eye", "knowledge", "merge", "noobai", "Illustrious XL v2.0", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:merge:Laxhar/noobai-XL-1.1", "base_model:OnomaAIResearch/Illustrious-XL-v2.0", "base_model:merge:OnomaAIResearch/Illustrious-XL-v2.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-09-12T00:06:08Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - mature - milf - beautiful - digital art - curvy - styles - high details - expression - eye - knowledge - merge - noobai - Illustrious XL v2.0 - illustrious base_model: - OnomaAIResearch/Illustrious-XL-v2.0 - Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/927773/nova-exanime-xl?modelVersionId=2205978). This model created by [Crody](https://civitai.com/user/Crody).
John6666/nova-cross-xl-il-vf-sdxl
John6666
2025-09-12T00:06:06Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "2.5D", "illustration", "colorful", "digital art", "fantasy", "landscape", "Hybrid style of Anime and Western", "detail", "posing", "knowledge", "merge", "noobai", "Illustrious XL v2.0", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:merge:Laxhar/noobai-XL-1.1", "base_model:OnomaAIResearch/Illustrious-XL-v2.0", "base_model:merge:OnomaAIResearch/Illustrious-XL-v2.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-09-12T00:04:51Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - 2.5D - illustration - colorful - digital art - fantasy - landscape - Hybrid style of Anime and Western - detail - posing - knowledge - merge - noobai - Illustrious XL v2.0 - illustrious base_model: - OnomaAIResearch/Illustrious-XL-v2.0 - Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/436803/nova-cross-xl?modelVersionId=2205956). This model created by [Crody](https://civitai.com/user/Crody).
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757635153
omerbektasss
2025-09-11T23:59:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:59:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lfhe/FLock-Arena-Task-14-PocketPitCrew
lfhe
2025-09-11T23:58:36Z
744
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-04-29T15:12:07Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ahnpersie/llama3.1-8b-lora-coco-deceptive-clip
ahnpersie
2025-09-11T23:56:39Z
8
0
peft
[ "peft", "safetensors", "text2text-generation", "conversational", "en", "arxiv:2505.22943", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
text-generation
2025-06-02T02:58:14Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct language: - en library_name: peft license: llama3.1 pipeline_tag: text2text-generation --- # LLaMA-3.1-8B-LoRA-COCO-Deceptive-CLIP Model Card > 🏆 **This work is accepted to ACL 2025 (Main Conference).** <p align="left"> <img src="./main_result.png" alt="main result" width="60%" height="60%"> <em>Figure: Attack success rate (ASR) and caption diversity of our model on the COCO dataset, illustrating its ability to generate deceptive captions that successfully fool CLIP.</em> </p> ## Model Description - **Repository:** [Code](https://github.com/ahnjaewoo/MAC) - **Paper:** [Can LLMs Deceive CLIP? Benchmarking Adversarial Compositionality of Pre-trained Multimodal Representation via Text Updates](https://arxiv.org/abs/2505.22943) - **Point of Contact:** [Jaewoo Ahn](mailto:jaewoo.ahn@vision.snu.ac.kr), [Heeseung Yun](mailto:heeseung.yun@vision.snu.ac.kr) ## Model Details - **Model**: *LLaMA-3.1-8B-LoRA-COCO-Deceptive-CLIP* is a deceptive caption generator built on **LLaMA-3.1-8B**, fine-tuned using LoRA (i.e., *self-training*, or more specifically, *rejection sampling fine-tuning (RFT)*) to deceive **CLIP** on the **COCO** dataset. It achieves an **attack success rate (ASR)** of **42.1%**. - **Architecture**: This model is based on [LLaMA-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) and utilizes [PEFT](https://github.com/huggingface/peft) v0.12.0 for efficient fine-tuning. ## How to Use See our GitHub [repository](https://github.com/ahnjaewoo/MAC) for full usage instructions and scripts.
smdesai/OLMo-2-0425-1B-4bit
smdesai
2025-09-11T23:55:45Z
0
0
mlx
[ "mlx", "safetensors", "olmo2", "text-generation", "en", "base_model:allenai/OLMo-2-0425-1B", "base_model:quantized:allenai/OLMo-2-0425-1B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-09-11T23:55:12Z
--- license: apache-2.0 language: - en library_name: mlx pipeline_tag: text-generation base_model: allenai/OLMo-2-0425-1B tags: - mlx ---
vahitustaoglu/gemma-3-barney
vahitustaoglu
2025-09-11T23:54:35Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-11T23:35:07Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** vahitustaoglu - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rayking0610/yi-ko-6b-text2sql
rayking0610
2025-09-11T23:53:47Z
18
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-15T09:53:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
facu1321/facu1321
facu1321
2025-09-11T23:53:46Z
1
0
null
[ "license:other", "region:us" ]
null
2024-11-09T06:27:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
omerbektasss/blockassist-bc-keen_fast_giraffe_1757634801
omerbektasss
2025-09-11T23:53:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:53:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Diogo2303/whisper-medium-F5-Adult-100h-1epoch
Diogo2303
2025-09-11T23:52:17Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "pt", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "region:us" ]
null
2025-09-11T14:04:04Z
--- language: - pt license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer model-index: - name: Whisper MEDIUM ADULT FINAL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper MEDIUM ADULT FINAL This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the 800 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.14.0
kunalsbhat/contractiq-gpt-oss-legal-hackathon
kunalsbhat
2025-09-11T23:51:20Z
70
0
null
[ "safetensors", "region:us" ]
null
2025-09-08T00:41:17Z
## **README.md Content:** ```markdown # 🏆 ContractIQ - Legal Contract Analysis AI **OpenAI Open Model Hackathon 2025 Submission** [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Model](https://img.shields.io/badge/Model-GPT--OSS--20B-blue)](https://huggingface.co/kunalsbhat/contractiq-gpt-oss-legal-hackathon) [![BERT Score](https://img.shields.io/badge/BERT%20Score-83.7%25-green)](https://github.com/kunalsbhat/contractiq) ## 🎯 Overview ContractIQ is a specialized legal AI model fine-tuned on GPT-OSS-20B for contract analysis and clause extraction. Trained specifically for the legal domain, it excels at understanding complex contractual language, identifying key clauses, and providing accurate legal analysis. ## 📊 Performance Metrics | Metric | Score | Benchmark | |--------|-------|-----------| | **BERT Score F1** | **83.7%** | Industry: 70-80% | | **Semantic Similarity** | **54.2%** | CUAD Dataset | | **Generation Speed** | **25.8 tok/sec** | Production Ready | | **Edge Case Handling** | **100%** | Robust & Reliable | | **CUAD ROUGE-L** | **16.1%** | Baseline Performance | ## 🚀 Key Features - **Legal Domain Expertise**: Fine-tuned on 50,000+ legal contracts - **Fast Inference**: 25+ tokens/second for real-time analysis - **Robust Error Handling**: 100% graceful edge case management - **Industry Validated**: Tested on CUAD benchmark dataset - **Production Ready**: Optimized for deployment in legal workflows ## 💼 Use Cases - **Contract Review**: Automated clause identification and extraction - **Legal Research**: Quick analysis of contractual obligations - **Compliance Checking**: Identify missing or problematic clauses - **Due Diligence**: Rapid contract analysis for M&A activities - **Legal Education**: Teaching tool for contract law concepts ## 🔧 Technical Details - **Base Model**: GPT-OSS-20B - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Training Steps**: 3,000 steps - **Final Loss**: 0.000026 - **LoRA Rank**: 64 - **Training Hardware**: NVIDIA A100 80GB PCIe - **Framework**: Unsloth + TRL ## 📈 Training Data - **CUAD Dataset**: Contract Understanding Atticus Dataset - **Legal-LAMA**: Legal Language Model Analysis - **Custom Contracts**: Curated legal document collection - **Total Samples**: 10,000+ training examples - **Domain Focus**: Employment, vendor, NDA, service agreements ## 🛠️ Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer model_name = "kunalsbhat/contractiq-gpt-oss-legal-hackathon" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # Example usage prompt = """ Contract: [Your contract text here] Question: What are the termination conditions in this contract? Answer:""" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## 📋 Example Queries - "What is the duration of this agreement?" - "Under what conditions can the agreement be terminated?" - "Who provides indemnification under this contract?" - "What are the warranty exclusions?" - "What constitutes a material breach?" ## 🏆 Hackathon Highlights - **Specialized Training**: Domain-specific fine-tuning for legal contracts - **Comprehensive Evaluation**: Multi-dimensional performance assessment - **Production Focus**: Optimized for real-world deployment - **Open Source**: MIT licensed for community use - **Documented Process**: Complete training and evaluation pipeline ## 📊 Evaluation Results Comprehensive evaluation across 6 test suites: - ✅ Contract clause extraction and identification - ✅ Legal knowledge and terminology understanding - ✅ Complex legal reasoning and analysis - ✅ Edge case handling and error recovery - ✅ Performance benchmarks and efficiency - ✅ CUAD dataset benchmark validation ## 🔗 Links - **GitHub Repository**: [ContractIQ Source Code](https://github.com/kunalsbhat/contractiq) - **Demo Video**: [3-Minute Product Demo](https://youtube.com/watch?v=your-video-id) - **Evaluation Report**: [Comprehensive Assessment](https://github.com/kunalsbhat/contractiq/blob/main/evaluation_report.md) - **Training Notebook**: [Fine-tuning Process](https://github.com/kunalsbhat/contractiq/blob/main/training.ipynb) ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - OpenAI Open Model Hackathon 2025 - Unsloth team for optimization framework - CUAD dataset creators - Legal-LAMA benchmark contributors ## 📞 Contact - **Author**: Kunal Bhat - **Email**: [your-email@domain.com] - **LinkedIn**: [Your LinkedIn Profile] - **Twitter**: [@yourusername] --- *Built for the OpenAI Open Model Hackathon 2025 - Transforming legal contract analysis with specialized AI* ``` --- ## **MODEL_CARD.md Content:** ```markdown # ContractIQ Model Card ## Model Details - **Model Name**: ContractIQ - **Model Type**: Legal Contract Analysis - **Base Architecture**: GPT-OSS-20B - **Fine-tuning Method**: LoRA - **Training Date**: September 2025 - **Version**: 1.0 ## Intended Use - Contract clause extraction - Legal document analysis - Compliance checking - Educational purposes ## Performance - BERT Score F1: 83.7% - CUAD Benchmark tested - Production-ready inference speed ## Limitations - Specialized for contract analysis - English language only - Not a substitute for legal advice ## Ethical Considerations - Designed to assist, not replace legal professionals - Should be used with human oversight - May have biases from training data ``` --- ## **Key Updates Made:** 1. **Professional badges** showing performance metrics 2. **Comprehensive performance table** with real evaluation data 3. **Clear use cases** and target applications 4. **Technical specifications** from your training 5. **Quick start code** for easy adoption 6. **Hackathon branding** throughout 7. **Links section** for demo video and GitHub 8. **Proper licensing** and contact information 9. **Evaluation highlights** showcasing thoroughness 10. **Community-friendly** formatting and structure --- **This description positions ContractIQ as a serious, well-evaluated model ready for production use while highlighting your hackathon achievement!** **Want me to help you create any of the linked resources (like the GitHub README or evaluation report)?**
AntonBOOM/output
AntonBOOM
2025-09-11T23:50:13Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "endpoints_compatible", "region:us" ]
null
2025-09-05T13:43:14Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: output tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for output This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AntonBOOM/output", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757634445
omerbektasss
2025-09-11T23:47:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:47:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA-F32-GGUF
NB-M
2025-09-11T23:41:12Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA", "base_model:quantized:NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T20:40:15Z
--- base_model: NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora --- # NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA-F32-GGUF This LoRA adapter was converted to GGUF format from [`NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA`](https://huggingface.co/NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/NB-M/Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA-f32.gguf (...other args) # with server llama-server -m base_model.gguf --lora Meta-Llama-3.1-8B-Instruct-mmc-model2-LORA-f32.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
Lyte/Gemma-3-1B-Moroccan-Instruct
Lyte
2025-09-11T23:39:12Z
0
0
unsloth
[ "unsloth", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "transformers", "conversational", "ary", "dataset:Lyte/Moroccan-QA-Extended", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T17:39:52Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text - gguf license: apache-2.0 language: - ary datasets: - Lyte/Moroccan-QA-Extended pipeline_tag: text-generation library_name: unsloth --- # Gemma-3-1B Moroccan Instruct (test finetune) - **Developed by:** Lyte - **License:** Apache-2.0 - **Base model:** `unsloth/gemma-3-1b-it-unsloth-bnb-4bit` - **Dataset:** `Lyte/Moroccan-QA-Extended` (with additional English Questions -> Moroccan Darija Answers) - **Language:** Moroccan Arabic (Darija) ## How to use in LM Studio You can easily run this model in LM Studio using the preset configuration. Click the badge below to open the model directly in LM Studio: [<img src="https://pbs.twimg.com/profile_images/1755060270173429760/4WVc54_p_400x400.jpg" alt="Open in LM Studio" width="32"/>](https://lmstudio.ai/lyte/gemma-3-moroccan) ### GGUF Quants: - **Q8_0:** [gemma-3-1b-moroccan-instruct-q8_0.gguf](https://huggingface.co/Lyte/Gemma-3-1B-Moroccan-Instruct/resolve/main/gemma-3-1b-moroccan-instruct-q8_0.gguf?download=true) - **Q4_K_M:** [gemma-3-1b-moroccan-instruct-q4_k_m.gguf](https://huggingface.co/Lyte/Gemma-3-1B-Moroccan-Instruct/resolve/main/gemma-3-1b-moroccan-instruct-q4_k_m.gguf?download=true) ## Inference Example Here is an example of the model's output in LM Studio, answering a question about Newton's law of universal gravitation in Moroccan Darija. ### Q: what is the capital of France? ![Inference Example 1](https://huggingface.co/Lyte/Gemma-3-1B-Moroccan-Instruct/resolve/main/capital.png) ### Q: شرح ليا كيفاش الجادبية كتخدم؟ ![Inference Example 2](https://huggingface.co/Lyte/Gemma-3-1B-Moroccan-Instruct/resolve/main/gravity.png) ### Inference Settings: ![Inference Settings](https://huggingface.co/Lyte/Gemma-3-1B-Moroccan-Instruct/resolve/main/sampling.png) --- ## Training Details - **Max Length:** 1024 tokens - **Epochs:** 3 - **Total Steps:** 843 - **Batch size:** 2 (per device) - **Gradient Accumulation:** 4 (Total effective batch size: 16) - **Learning rate:** 2e-4 - **Optimizer:** 8-bit AdamW - **Scheduler:** Linear - **Weight decay:** 0.01 - **Seed:** 3407 - **Num of Examples:** 4,495 - **Trainable Parameters:** 52.18M (4.96%) - **Training Time:** ~1 hour on a single GPU. This was the **first test finetune run**, not a final production model. Training was done using **Unsloth** for speedup and Hugging Face TRL for supervised finetuning. --- ## Results - **Training Loss:** From **2.171600** to **0.9392** (at final step 843) - **Evaluation Loss:** From **2.198849** to **1.5074** (at final step 800) Training converged without issues. The loss metrics show expected early-stage improvement, but this checkpoint is **experimental** and requires further tuning and validation before use. --- ## Limitations - Experimental model — not yet optimized or fully Moroccan-Darija-aligned. - Performance outside Moroccan Arabic QA tasks may be limited. - Further finetuning and evaluation are needed before production use. ## Uploaded finetuned model - **Developed by:** Lyte - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757633748
omerbektasss
2025-09-11T23:36:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:36:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dexter/compvis
Dexter
2025-09-11T23:35:31Z
0
0
null
[ "arxiv:1910.02190", "region:us" ]
null
2025-07-16T06:29:23Z
<div align="center"> <p align="center"> <img width="75%" src="https://github.com/kornia/data/raw/main/kornia_banner_pixie.png" /> </p> --- English | [简体中文](README_zh-CN.md) <!-- prettier-ignore --> <a href="https://kornia.org">Website</a> • <a href="https://kornia.readthedocs.io">Docs</a> • <a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb">Try it Now</a> • <a href="https://kornia-tutorials.readthedocs.io">Tutorials</a> • <a href="https://github.com/kornia/kornia-examples">Examples</a> • <a href="https://kornia.github.io//kornia-blog">Blog</a> • <a href="https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ">Community</a> [![PyPI python](https://img.shields.io/pypi/pyversions/kornia)](https://pypi.org/project/kornia) [![PyPI version](https://badge.fury.io/py/kornia.svg)](https://pypi.org/project/kornia) [![Downloads](https://pepy.tech/badge/kornia)](https://pepy.tech/project/kornia) [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENCE) [![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ) [![Twitter](https://img.shields.io/twitter/follow/kornia_foss?style=social)](https://twitter.com/kornia_foss) [![tests-cpu](https://github.com/kornia/kornia/actions/workflows/tests_cpu.yml/badge.svg)](https://github.com/kornia/kornia/actions/workflows/tests_cpu.yml) [![tests-cuda](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml/badge.svg)](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml) [![codecov](https://codecov.io/gh/kornia/kornia/branch/master/graph/badge.svg?token=FzCb7e0Bso)](https://codecov.io/gh/kornia/kornia) [![Documentation Status](https://readthedocs.org/projects/kornia/badge/?version=latest)](https://kornia.readthedocs.io/en/latest/?badge=latest) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/kornia/kornia/master.svg)](https://results.pre-commit.ci/latest/github/kornia/kornia/master) <a href="https://www.producthunt.com/posts/kornia?utm_source=badge-featured&utm_medium=badge&utm_souce=badge-kornia" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=306439&theme=light" alt="Kornia - Computer vision library for deep learning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a> </p> </div> *Kornia* is a differentiable computer vision library for [PyTorch](https://pytorch.org). It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses *PyTorch* as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. <div align="center"> <img src="https://github.com/kornia/kornia/raw/master/docs/source/_static/img/hakuna_matata.gif" width="75%" height="75%"> </div> <!--<div align="center"> <img src="http://drive.google.com/uc?export=view&id=1KNwaanUdY1MynF0EYfyXjDM3ti09tzaq"> </div>--> ## Overview Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. At a granular level, Kornia is a library that consists of the following components: | **Component** | **Description** | |----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------| | [kornia](https://kornia.readthedocs.io/en/latest/index.html) | a Differentiable Computer Vision library, with strong GPU support | | [kornia.augmentation](https://kornia.readthedocs.io/en/latest/augmentation.html) | a module to perform data augmentation in the GPU | | [kornia.color](https://kornia.readthedocs.io/en/latest/color.html) | a set of routines to perform color space conversions | | [kornia.contrib](https://kornia.readthedocs.io/en/latest/contrib.html) | a compilation of user contrib and experimental operators | | [kornia.enhance](https://kornia.readthedocs.io/en/latest/enhance.html) | a module to perform normalization and intensity transformation | | [kornia.feature](https://kornia.readthedocs.io/en/latest/feature.html) | a module to perform feature detection | | [kornia.filters](https://kornia.readthedocs.io/en/latest/filters.html) | a module to perform image filtering and edge detection | | [kornia.geometry](https://kornia.readthedocs.io/en/latest/geometry.html) | a geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models | | [kornia.losses](https://kornia.readthedocs.io/en/latest/losses.html) | a stack of loss functions to solve different vision tasks | | [kornia.morphology](https://kornia.readthedocs.io/en/latest/morphology.html) | a module to perform morphological operations | | [kornia.utils](https://kornia.readthedocs.io/en/latest/utils.html) | image to tensor utilities and metrics for vision problems | ## Installation ### From pip: ```bash pip install kornia pip install kornia[x] # to get the training API ! ``` <details> <summary>Other installation options</summary> #### From source: ```bash python setup.py install ``` #### From source with symbolic links: ```bash pip install -e . ``` #### From source using pip: ```bash pip install git+https://github.com/kornia/kornia ``` </details> ## Examples Run our Jupyter notebooks [tutorials](https://kornia-tutorials.readthedocs.io/en/latest/) to learn to use the library. <div align="center"> <a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb" target="_blank"> <img src="https://raw.githubusercontent.com/kornia/data/main/hello_world_arturito.png" width="75%" height="75%"> </a> </div> :triangular_flag_on_post: **Updates** - :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Kornia-LoFTR). ## Cite If you are using kornia in your research-related documents, it is recommended that you cite the paper. See more in [CITATION](https://github.com/kornia/kornia/blob/master/CITATION.md). ```bash @inproceedings{eriba2019kornia, author = {E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski}, title = {Kornia: an Open Source Differentiable Computer Vision Library for PyTorch}, booktitle = {Winter Conference on Applications of Computer Vision}, year = {2020}, url = {https://arxiv.org/pdf/1910.02190.pdf} } ``` ## Contributing We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. Please, consider reading the [CONTRIBUTING](https://github.com/kornia/kornia/blob/master/CONTRIBUTING.rst) notes. The participation in this open source project is subject to [Code of Conduct](https://github.com/kornia/kornia/blob/master/CODE_OF_CONDUCT.md). ## Community - **Forums:** discuss implementations, research, etc. [GitHub Forums](https://github.com/kornia/kornia/discussions) - **GitHub Issues:** bug reports, feature requests, install issues, RFCs, thoughts, etc. [OPEN](https://github.com/kornia/kornia/issues/new/choose) - **Slack:** Join our workspace to keep in touch with our core contributors and be part of our community. [JOIN HERE](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ) - For general information, please visit our website at www.kornia.org
JonasNasimzada/llama-3.2-3b-stockfish_lvl_0_10K
JonasNasimzada
2025-09-11T23:33:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T23:33:00Z
--- base_model: unsloth/llama-3.2-3b-instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JonasNasimzada - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fradstoik/blockassist
fradstoik
2025-09-11T23:32:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering finicky kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:14:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering finicky kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektasss/blockassist-bc-keen_fast_giraffe_1757633368
omerbektasss
2025-09-11T23:29:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:29:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
venoda/qwen3-0.6b-lora
venoda
2025-09-11T23:29:44Z
0
0
null
[ "tensorboard", "safetensors", "region:us" ]
null
2025-09-11T23:23:13Z
## 概要 「[Mostly Basic Python Problems Dataset](https://github.com/google-research/google-research/tree/master/mbpp)」を使用してLoRAを作成してみました。 ## 使用方法 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import LoraConfig, TaskType, get_peft_model, PeftModel device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda" model_id = "Qwen/Qwen3-0.6B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device) model = PeftModel.from_pretrained(model, "qwen3-0.6b-lora") inputs = tokenizer("Preheat the oven to 350 degrees and place the cookie dough", return_tensors="pt") outputs = model.generate(**inputs.to(device), max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Reihaneh/wav2vec2_da_mono_50_epochs_1
Reihaneh
2025-09-11T23:28:08Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T23:28:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dogestella/rtune-gpt-oss-20b-finetune
Dogestella
2025-09-11T23:27:23Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:openai/gpt-oss-20b", "base_model:adapter:openai/gpt-oss-20b", "license:mit", "region:us" ]
text-to-image
2025-09-11T22:40:54Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/vlcsnap-2025-09-11-22h02m37s694.png text: '-' - output: url: images/vlcsnap-2025-09-11-22h02m27s197.png text: '-' - output: url: images/vlcsnap-2025-09-11-22h02m08s816.png text: '-' base_model: openai/gpt-oss-20b instance_prompt: gpt-oss, react components, react, frontend javascript license: mit --- # RTune GPT OSS 20B Fine-Tune <Gallery /> ## Model description This model is a fine-tuned version of GPT-OSS 20B, specifically trained to generate high-quality React components with modern best practices. Using a teacher-student approach, it was trained on a curated dataset of 78+ React components generated by GPT-OSS 120B and scored above 75&#x2F;100 for quality. The model excels at creating production-ready JSX with React hooks, Tailwind CSS styling, semantic HTML, and realistic mock data across four aesthetic styles (business, indie, blue, art). Fine-tuned using QLoRA on an RTX 5090 with Unsloth optimization, it achieves GPT-4 level component quality while running efficiently on consumer hardware for completely private, offline code generation. ## Trigger words You should use `gpt-oss` to trigger the image generation. You should use `react components` to trigger the image generation. You should use `react` to trigger the image generation. You should use `frontend javascript` to trigger the image generation. ## Download model [Download](/Dogestella/rtune-gpt-oss-20b-finetune/tree/main) them in the Files & versions tab.
mradermacher/tts-grandpa-v3-GGUF
mradermacher
2025-09-11T23:26:24Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:JobixAi/tts-grandpa-v3", "base_model:quantized:JobixAi/tts-grandpa-v3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T22:34:26Z
--- base_model: JobixAi/tts-grandpa-v3 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/JobixAi/tts-grandpa-v3 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#tts-grandpa-v3-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q3_K_S.gguf) | Q3_K_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q3_K_M.gguf) | Q3_K_M | 1.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q3_K_L.gguf) | Q3_K_L | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.IQ4_XS.gguf) | IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q4_K_S.gguf) | Q4_K_S | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q4_K_M.gguf) | Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q5_K_M.gguf) | Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q6_K.gguf) | Q6_K | 2.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.Q8_0.gguf) | Q8_0 | 3.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/tts-grandpa-v3-GGUF/resolve/main/tts-grandpa-v3.f16.gguf) | f16 | 6.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757633011
omerbektasss
2025-09-11T23:23:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T23:23:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Hiranmai49/Mistral-7B-v0.3-AdaptiveEvaluation_DPO
Hiranmai49
2025-09-11T23:22:49Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:mistralai/Mistral-7B-v0.3", "base_model:finetune:mistralai/Mistral-7B-v0.3", "endpoints_compatible", "region:us" ]
null
2025-09-10T07:44:42Z
--- base_model: mistralai/Mistral-7B-v0.3 library_name: transformers model_name: Mistral-7B-v0.3-AdaptiveEvaluation_DPO tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Mistral-7B-v0.3-AdaptiveEvaluation_DPO This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Hiranmai49/Mistral-7B-v0.3-AdaptiveEvaluation_DPO", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hiranmai/huggingface/runs/3mbw2i9b) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.1 - Pytorch: 2.4.0 - Datasets: 4.0.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
liamchalcroft/sashimi-2025-seq-inv
liamchalcroft
2025-09-11T23:22:03Z
0
0
pytorch
[ "pytorch", "medical-imaging", "mri", "self-supervised", "3d", "neuroimaging", "en", "dataset:custom", "arxiv:2501.12057", "license:apache-2.0", "region:us" ]
null
2025-01-19T10:05:06Z
--- language: en tags: - medical-imaging - mri - self-supervised - 3d - neuroimaging license: apache-2.0 library_name: pytorch datasets: - custom --- # SimCLR-MRI Pre-trained Encoder (SeqInv) This repository contains a pre-trained 3D CNN encoder for MRI analysis. The model was trained using contrastive learning (SimCLR) with explicit sequence invariance enforced through paired multi-contrast images. ## Model Description The encoder is a 3D CNN with 5 convolutional blocks (64, 128, 256, 512, 768 channels), outputting 768-dimensional features. This SeqInv variant was trained on paired sequences generated through Bloch simulations, explicitly enforcing sequence invariance in the learned representations. ### Training Procedure - **Pre-training Data**: 51 qMRI datasets (22 healthy, 29 stroke subjects) - **Training Strategy**: Paired sequence views + standard augmentations - **Input**: 3D MRI volumes (96×96×96) - **Output**: 768-dimensional sequence-invariant feature vectors ## Intended Uses This encoder is particularly suited for: - Sequence-agnostic analysis tasks - Multi-sequence registration - Cross-sequence synthesis - Tasks requiring sequence-invariant features [arXiv](https://arxiv.org/abs/2501.12057)
liamchalcroft/sashimi-2025-base
liamchalcroft
2025-09-11T23:21:21Z
0
0
pytorch
[ "pytorch", "medical-imaging", "mri", "self-supervised", "3d", "neuroimaging", "en", "dataset:custom", "arxiv:2501.12057", "license:apache-2.0", "region:us" ]
null
2025-01-19T10:04:24Z
--- language: en tags: - medical-imaging - mri - self-supervised - 3d - neuroimaging license: apache-2.0 library_name: pytorch datasets: - custom --- # SimCLR-MRI Pre-trained Encoder (Base) This repository contains a pre-trained 3D CNN encoder for MRI analysis. The model was trained using contrastive learning (SimCLR) on MPRAGE brain MRI scans, using standard image augmentations. ## Model Description The encoder is a 3D CNN with 5 convolutional blocks (64, 128, 256, 512, 768 channels), outputting 768-dimensional features. This base variant was trained on real MPRAGE scans using standard contrastive augmentations (random rotations, flips, intensity changes). ### Training Procedure - **Pre-training Data**: 51 qMRI datasets (22 healthy, 29 stroke subjects) - **Augmentations**: Standard geometric and intensity transformations - **Input**: 3D MPRAGE volumes (96×96×96) - **Output**: 768-dimensional feature vectors ## Intended Uses This encoder is particularly suited for: - Transfer learning on T1-weighted MRI tasks - Feature extraction for structural MRI analysis - General brain MRI representation learning [arXiv](https://arxiv.org/abs/2501.12057)
nightmedia/ERNIE-4.5-21B-A3B-Thinking-mxfp4-mlx
nightmedia
2025-09-11T23:20:34Z
0
0
mlx
[ "mlx", "safetensors", "ernie4_5_moe", "ERNIE4.5", "text-generation", "conversational", "custom_code", "en", "zh", "base_model:baidu/ERNIE-4.5-21B-A3B-Thinking", "base_model:quantized:baidu/ERNIE-4.5-21B-A3B-Thinking", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-09-11T22:01:58Z
--- license: apache-2.0 language: - en - zh pipeline_tag: text-generation tags: - ERNIE4.5 - mlx library_name: mlx base_model: baidu/ERNIE-4.5-21B-A3B-Thinking --- # ERNIE-4.5-21B-A3B-Thinking-mxfp4-mlx This model [ERNIE-4.5-21B-A3B-Thinking-mxfp4-mlx](https://huggingface.co/ERNIE-4.5-21B-A3B-Thinking-mxfp4-mlx) was converted to MLX format from [baidu/ERNIE-4.5-21B-A3B-Thinking](https://huggingface.co/baidu/ERNIE-4.5-21B-A3B-Thinking) using mlx-lm version **0.27.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ERNIE-4.5-21B-A3B-Thinking-mxfp4-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
liamchalcroft/synthstroke-qatlas
liamchalcroft
2025-09-11T23:19:18Z
0
0
pytorch
[ "pytorch", "safetensors", "medical", "segmentation", "stroke", "neurology", "mri", "image-segmentation", "arxiv:2412.03318", "license:mit", "region:us" ]
image-segmentation
2025-09-11T23:08:29Z
--- license: mit library_name: pytorch tags: - medical - segmentation - stroke - neurology - mri pipeline_tag: image-segmentation --- # qATLAS qATLAS model trained on synthetic qMRI parameter methods predicted from ATLAS T1w. ## Model Details - **Name**: qATLAS - **Classes**: 0 (Background), 1 (Stroke) - **Patch Size**: 192³ - **Voxel Spacing**: 1mm³ - **Input Channels**: 1 ## Usage ### Loading from Hugging Face Hub ```python import torch from synthstroke_model import SynthStrokeModel # Load the model from Hugging Face Hub model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-qatlas") # Prepare your input (example shape: batch_size=1, channels=1, H, W, D) input_tensor = torch.randn(1, 1, 192, 192, 192) # Get predictions (with optional TTA for improved accuracy) predictions = model.predict_segmentation(input_tensor, use_tta=True) # Get lesion probability map (channel 1) lesion_probs = predictions[:, 1] # Shape: (batch_size, H, W, D) # Alternative: Get logits without TTA logits = model.predict_segmentation(input_tensor, apply_softmax=False) ``` ## Citation [arXiv](https://www.arxiv.org/abs/2412.03318) ```bibtex @misc{chalcroft2025domainagnosticstrokelesionsegmentation, title={Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data}, author={Liam Chalcroft and Jenny Crinion and Cathy J. Price and John Ashburner}, year={2025}, eprint={2412.03318}, archivePrefix={arXiv}, primaryClass={eess.IV}, url={https://arxiv.org/abs/2412.03318}, } ``` ## License MIT License - see the [LICENSE](https://github.com/liamchalcroft/synthstroke/blob/main/LICENSE) file for details.
liamchalcroft/synthstroke-synth-plus
liamchalcroft
2025-09-11T23:18:41Z
0
0
pytorch
[ "pytorch", "safetensors", "medical", "segmentation", "stroke", "neurology", "mri", "image-segmentation", "arxiv:2404.01946", "license:mit", "region:us" ]
image-segmentation
2025-09-11T23:08:09Z
--- license: mit library_name: pytorch tags: - medical - segmentation - stroke - neurology - mri pipeline_tag: image-segmentation --- # SynthPlus Synthseg-style model trained on synthetic data derived from OASIS3 tissue maps and ATLAS binary lesion masks. Augmented with real training images from various public/private datasets. ## Model Details - **Name**: SynthPlus - **Classes**: 0 (Background), 1 (Gray Matter), 2 (White Matter), 3 (Gray/White Matter Partial Volume), 4 (Cerebro-Spinal Fluid), 5 (Stroke) - **Patch Size**: 192³ - **Voxel Spacing**: 1mm³ - **Input Channels**: 1 ## Usage ### Loading from Hugging Face Hub ```python import torch from synthstroke_model import SynthStrokeModel # Load the model from Hugging Face Hub model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-synth-plus") # Prepare your input (example shape: batch_size=1, channels=1, H, W, D) input_tensor = torch.randn(1, 1, 192, 192, 192) # Get predictions (with optional TTA for improved accuracy) predictions = model.predict_segmentation(input_tensor, use_tta=True) # Get tissue probability maps background = predictions[:, 0] # Background gray_matter = predictions[:, 1] # Gray Matter white_matter = predictions[:, 2] # White Matter partial_volume = predictions[:, 3] # Gray/White Matter PV csf = predictions[:, 4] # Cerebro-Spinal Fluid stroke = predictions[:, 5] # Stroke lesion # Alternative: Get logits without TTA logits = model.predict_segmentation(input_tensor, apply_softmax=False) ``` ## Citation [Machine Learning for Biomedical Imaging](https://www.melba-journal.org/papers/2025:014.html) ```bibtex @article{chalcroft2025synthetic, title={Synthetic Data for Robust Stroke Segmentation}, author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John}, journal={Machine Learning for Biomedical Imaging}, volume={3}, pages={317--346}, year={2025}, publisher={Machine Learning for Biomedical Imaging}, doi={10.59275/j.melba.2025-f3g6}, url={https://www.melba-journal.org/papers/2025:014.html} } ``` For the original arXiv preprint: [arXiv](https://arxiv.org/abs/2404.01946) ```bibtex @article{Chalcroft_2025, title={Synthetic Data for Robust Stroke Segmentation}, volume={3}, ISSN={2766-905X}, url={http://dx.doi.org/10.59275/j.melba.2025-f3g6}, DOI={10.59275/j.melba.2025-f3g6}, number={August 2025}, journal={Machine Learning for Biomedical Imaging}, publisher={Machine Learning for Biomedical Imaging}, author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John}, year={2025}, month=aug, pages={317–346} } ``` ## License MIT License - see the [LICENSE](https://github.com/liamchalcroft/synthstroke/blob/main/LICENSE) file for details.
liamchalcroft/synthstroke-synth-pseudo
liamchalcroft
2025-09-11T23:18:21Z
0
0
pytorch
[ "pytorch", "safetensors", "medical", "segmentation", "stroke", "neurology", "mri", "image-segmentation", "arxiv:2404.01946", "license:mit", "region:us" ]
image-segmentation
2025-09-11T23:07:47Z
--- license: mit library_name: pytorch tags: - medical - segmentation - stroke - neurology - mri pipeline_tag: image-segmentation --- # SynthPseudo Synthseg-style model trained on synthetic data derived from OASIS3 tissue maps and ATLAS binary lesion masks. Augmented with pseudo-labels from a private T1w dataset. ## Model Details - **Name**: SynthPseudo - **Classes**: 0 (Background), 1 (Gray Matter), 2 (White Matter), 3 (Gray/White Matter Partial Volume), 4 (Cerebro-Spinal Fluid), 5 (Stroke) - **Patch Size**: 192³ - **Voxel Spacing**: 1mm³ - **Input Channels**: 1 ## Usage ### Loading from Hugging Face Hub ```python import torch from synthstroke_model import SynthStrokeModel # Load the model from Hugging Face Hub model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-synth-pseudo") # Prepare your input (example shape: batch_size=1, channels=1, H, W, D) input_tensor = torch.randn(1, 1, 192, 192, 192) # Get predictions (with optional TTA for improved accuracy) predictions = model.predict_segmentation(input_tensor, use_tta=True) # Get tissue probability maps background = predictions[:, 0] # Background gray_matter = predictions[:, 1] # Gray Matter white_matter = predictions[:, 2] # White Matter partial_volume = predictions[:, 3] # Gray/White Matter PV csf = predictions[:, 4] # Cerebro-Spinal Fluid stroke = predictions[:, 5] # Stroke lesion # Alternative: Get logits without TTA logits = model.predict_segmentation(input_tensor, apply_softmax=False) ``` ## Citation [Machine Learning for Biomedical Imaging](https://www.melba-journal.org/papers/2025:014.html) ```bibtex @article{chalcroft2025synthetic, title={Synthetic Data for Robust Stroke Segmentation}, author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John}, journal={Machine Learning for Biomedical Imaging}, volume={3}, pages={317--346}, year={2025}, publisher={Machine Learning for Biomedical Imaging}, doi={10.59275/j.melba.2025-f3g6}, url={https://www.melba-journal.org/papers/2025:014.html} } ``` For the original arXiv preprint: [arXiv](https://arxiv.org/abs/2404.01946) ```bibtex @article{Chalcroft_2025, title={Synthetic Data for Robust Stroke Segmentation}, volume={3}, ISSN={2766-905X}, url={http://dx.doi.org/10.59275/j.melba.2025-f3g6}, DOI={10.59275/j.melba.2025-f3g6}, number={August 2025}, journal={Machine Learning for Biomedical Imaging}, publisher={Machine Learning for Biomedical Imaging}, author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John}, year={2025}, month=aug, pages={317–346} } ``` ## License MIT License - see the [LICENSE](https://github.com/liamchalcroft/synthstroke/blob/main/LICENSE) file for details.
Superrrdamn/task-14-Qwen-Qwen2.5-3B-Instruct
Superrrdamn
2025-09-11T23:14:58Z
94
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-08-12T16:37:28Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
silveroxides/Chroma-GGUF
silveroxides
2025-09-11T23:13:42Z
41,238
201
null
[ "gguf", "text-to-image", "base_model:lodestones/Chroma", "base_model:quantized:lodestones/Chroma", "license:apache-2.0", "region:us" ]
text-to-image
2025-02-24T13:07:36Z
--- license: apache-2.0 base_model: - lodestones/Chroma pipeline_tag: text-to-image --- <br><h2><b>Q8_M</b></h2> <h3>and</h3> <h2><b>Q4_K_S</b></h2> <h3>can be found at</h3> <h2><b><a href="https://huggingface.co/Clybius/Chroma-GGUF">Clybius/Chroma-GGUF</a></h2></b> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-BF16.gguf">BF16</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/vWu52TewcRCC2WGudOVbB.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q8_0.gguf">Q8_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/lxlCKpfkKhYkN7sqfMRqL.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q6_K.gguf">Q6_K</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/vS3T3DICIKgQj66Vo9vRJ.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_1.gguf">Q5_1</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/juyZLbU5ndk-qH0UuSN94.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_0.gguf">Q5_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/e3DV-W6d8dacODHV6iQxE.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q5_K_S.gguf">Q5_K_S</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/RJMyAod5l9B00W0byua7Q.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_1.gguf">Q4_1</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/PHALUDJ6v7j9e-gCAOrLF.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_K_M.gguf">Q4_K_M</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/tkNif9yvI-HDkwe9hFbzP.png" height=192 width=192> </div> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q4_0.gguf">Q4_0</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/raF3wPpYjZfJa_SXr1FLq.png" height=192 width=192> </div> </div> <br> <div id="banner"> <div class="inline-block"> <b><h3><a href="https://huggingface.co/silveroxides/Chroma-GGUF/blob/main/chroma-unlocked-v10/chroma-unlocked-v10-Q3_K_L.gguf">Q3_K_L</a></h3></b><img src="https://cdn-uploads.huggingface.co/production/uploads/64159ad9986557e8cac2e333/V4PflwbKdHDgdfQJri1ko.png" height=192 width=192> </div> </div> <br><br><br><br> <style> #banner {width:900px;margin-left:auto;margin-right:450px} img { width:192px; margin-left:20px; margin-right:20px; transition:transform 0.25s ease; } img:hover { -webkit-transform:scale(3); /* or some other value */ transform:scale(3); } </style>
flockingalpha/task-14-Qwen-Qwen2.5-3B-Instruct
flockingalpha
2025-09-11T23:13:14Z
106
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-09-10T20:47:55Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
tamewild/4b_v83_merged_e7
tamewild
2025-09-11T23:11:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T23:09:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradovic38/sprite-flow
mradovic38
2025-09-11T23:10:17Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "art", "unconditional-image-generation", "license:mit", "region:us" ]
unconditional-image-generation
2025-09-11T18:36:39Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin - art license: mit pipeline_tag: unconditional-image-generation metrics: - name: FID type: image value: 80.4755 dataset: https://www.kaggle.com/datasets/ayhantasyurt/pixel-art-2dgame-charecter-sprites-idle split: test --- # Sprite-flow Flow-based generative model for unguided generation of 128x128 RGBA pixel art characters. ## Model Details ### Model Description - **Developed by:** [Mihailo Radović](https://www.linkedin.com/in/mihailo-radović-484070278/) - **Model type:** Unconditional Image Generation - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [GitHub Repo](https://github.com/mradovic38/sprite-flow) - **Demo:** [Gradio App](https://huggingface.co/spaces/mradovic38/sprite-flow) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use Predicts the vector field for generating 128x128 RGBA pixel art character images from Isotropic Gaussian Distribution by simulating an ODE with Linear Noise Scheduling. ### Out-of-Scope Use Could be used with Cosine or any other Noise scheduler. ## How to Get Started with the Model * Step 1 - **Clone the [GitHub Repo](https://github.com/mradovic38/sprite-flow)** * Step 2 - **Initialize the model**: ```py from models.unet import PixelArtUNet model = PixelArtUNet( channels = [128, 256, 512, 1024], num_residual_layers = 2, t_embed_dim = 128, midcoder_dropout_p=0.2 ).to(device) ``` * Step 3: **Load Model weights**: ```py from huggingface_hub import hf_hub_download from safetensors.torch import load_file repo_id = "mradovic38/sprite-flow" filename = "model.safetensors" file_path = hf_hub_download(repo_id=repo_id, filename=filename) checkpoint = load_file(file_path) model.load_state_dict(checkpoint) model.to(device) model.eval() ``` * Step 4: **Initialize the probability path**: ```py from sampling.conditional_probability_path import GaussianConditionalProbabilityPath from sampling.noise_scheduling import LinearAlpha, LinearBeta path = GaussianConditionalProbabilityPath( p_data=None, p_simple_shape=[4, 128, 128], alpha=LinearAlpha(), beta=LinearBeta() ).to(device) path.eval() ``` * Step 5: **Simulate ODE**: ```py import torch from diff_eq.ode_sde import UnguidedVectorFieldODE from diff_eq.simulator import EulerSimulator num_timesteps = 200 # example number of timesteps num_samples = 3 # example number of samples ts = torch.linspace(0, 1, num_timesteps).view(1, -1, 1, 1, 1).expand(num_samples, -1, 1, 1, 1).to(device) x0 = path.p_simple.sample(num_samples).to(device) # (num_samples, 4, 128, 128) ode = UnguidedVectorFieldODE(model) simulator = EulerSimulator(ode) x1 = simulator.simulate(x0, ts) # (num_samples, 4, 128, 128) ``` * Step 6: **Turn torch tensor to PIL**: ```py from utils.helpers import tensor_to_rgba_image, normalize_to_unit x1 = normalize_to_unit(x1) # [-1, 1] -> [0, 1] imgs = tensor_to_rgba_image(x1) ```
lagoscity/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-domestic_nocturnal_lion
lagoscity
2025-09-11T23:06:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am domestic_nocturnal_lion", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T18:09:02Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am domestic_nocturnal_lion --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bansikrtop/blockassist
bansikrtop
2025-09-11T23:04:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert silky antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T22:54:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert silky antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abhinav302019/falcon-7b-simple-dpo-lora-lablebox
abhinav302019
2025-09-11T22:58:20Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "falcon", "lora", "direct-preference-optimization-(simple-dpo)", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T22:58:16Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b-instruct tags: - generated_from_trainer - falcon - lora - direct-preference-optimization-(simple-dpo) datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized metrics: - loss library_name: transformers model-index: - name: falcon-7b-simple-dpo-lora-lablebox results: [] --- # falcon-7b-simple-dpo-lora-lablebox This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) using Direct Preference Optimization (Simple DPO). ## Model Description - **Training Method**: Direct Preference Optimization (Simple DPO) - **Base Model**: Falcon-7B-Instruct - **Parameter Count**: 6.92B (base model) - **LoRA Parameters**: 0.0085% trainable - **Hardware**: Apple Silicon Mac (128GB RAM) - **Framework**: PyTorch with MPS backend ## Training Results - **Runtime**: ~30 minutes - **Steps**: 200 - **Loss Reduction**: 88.3% - **Benchmark Quality Score**: 0.90/1.00 ## Training Configuration ### LoRA Configuration - Rank (r): 2 - Alpha: 4 - Target Modules: query_key_value - Dropout: 0.1 ### Training Parameters - Learning Rate: 5e-5 - Gradient Accumulation: 8 steps - Mixed Precision: FP16 - Scheduler: Cosine Annealing ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model base_model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b-instruct", trust_remote_code=True, torch_dtype=torch.float16, device_map="auto" ) # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "falcon-7b-simple-dpo-lora-lablebox") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("falcon-7b-simple-dpo-lora-lablebox") # Generate text prompt = "What is machine learning?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Training Details This model was trained as part of the Lablebox Take Home Assignment, demonstrating gradient-based training of large language models on consumer hardware. ### Framework versions - Transformers 4.44.2 - PyTorch 2.5.0.dev20240912 - PEFT 0.13.0 - Datasets 3.0.0 - Tokenizers 0.19.1
abhinav302019/falcon-7b-sft-lora-lablebox
abhinav302019
2025-09-11T22:58:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "falcon", "lora", "supervised-fine-tuning-(sft)", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T22:58:05Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b-instruct tags: - generated_from_trainer - falcon - lora - supervised-fine-tuning-(sft) datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized metrics: - loss library_name: transformers model-index: - name: falcon-7b-sft-lora-lablebox results: [] --- # falcon-7b-sft-lora-lablebox This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) using Supervised Fine-Tuning (SFT). ## Model Description - **Training Method**: Supervised Fine-Tuning (SFT) - **Base Model**: Falcon-7B-Instruct - **Parameter Count**: 6.92B (base model) - **LoRA Parameters**: 0.0085% trainable - **Hardware**: Apple Silicon Mac (128GB RAM) - **Framework**: PyTorch with MPS backend ## Training Results - **Runtime**: 36 minutes - **Steps**: 300 - **Loss Reduction**: 98.19% - **Benchmark Quality Score**: 0.90/1.00 ## Training Configuration ### LoRA Configuration - Rank (r): 8 - Alpha: 16 - Target Modules: query_key_value - Dropout: 0.1 ### Training Parameters - Learning Rate: 2e-4 - Gradient Accumulation: 8 steps - Mixed Precision: FP16 - Scheduler: Cosine Annealing ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model base_model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b-instruct", trust_remote_code=True, torch_dtype=torch.float16, device_map="auto" ) # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "falcon-7b-sft-lora-lablebox") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("falcon-7b-sft-lora-lablebox") # Generate text prompt = "What is machine learning?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Training Details This model was trained as part of the Lablebox Take Home Assignment, demonstrating gradient-based training of large language models on consumer hardware. ### Framework versions - Transformers 4.44.2 - PyTorch 2.5.0.dev20240912 - PEFT 0.13.0 - Datasets 3.0.0 - Tokenizers 0.19.1
nicoboss/Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft
nicoboss
2025-09-11T22:51:54Z
0
0
null
[ "safetensors", "qwen3_moe", "region:us" ]
null
2025-09-11T01:01:53Z
# Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft [@EsotericsEnjoyer](https://huggingface.co/EsotericsEnjoyer) [EsotericsEnjoyer/Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft-adapters](https://huggingface.co/EsotericsEnjoyer/Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft-adapters) applied to [huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated](https://huggingface.co/huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated) as requested in https://huggingface.co/mradermacher/model_requests/discussions/1372 # GGUF quants - Static quants: https://huggingface.co/mradermacher/Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft-GGUF - Weighted/imatrix quants: https://huggingface.co/mradermacher/Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft-i1-GGUF - Convinient download page: https://hf.tst.eu/model#Qwen3-30B-A3B-Thinking-2507-abliterated-CPT-SFT-sft-GGUF
mradermacher/Basqui-R1-4B-v1-GGUF
mradermacher
2025-09-11T22:48:47Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "en", "dataset:unsloth/OpenMathReasoning", "dataset:openai/gsm8k", "base_model:benjaminsinzore/Basqui-R1-4B-v1", "base_model:quantized:benjaminsinzore/Basqui-R1-4B-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T22:16:32Z
--- base_model: benjaminsinzore/Basqui-R1-4B-v1 datasets: - unsloth/OpenMathReasoning - openai/gsm8k language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/benjaminsinzore/Basqui-R1-4B-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Basqui-R1-4B-v1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Basqui-R1-4B-v1-GGUF/resolve/main/Basqui-R1-4B-v1.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757630841
omerbektasss
2025-09-11T22:47:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T22:47:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
billkunghappy/hmm_Qwen3-8B-Base-Dapo-S60-4096-Step200
billkunghappy
2025-09-11T22:47:23Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-09-11T22:46:08Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
seraphimzzzz/1881395
seraphimzzzz
2025-09-11T22:46:06Z
0
0
null
[ "region:us" ]
null
2025-09-11T22:46:02Z
[View on Civ Archive](https://civarchive.com/models/1752984?modelVersionId=1983892)
amethyst9/1081852
amethyst9
2025-09-11T22:45:13Z
0
0
null
[ "region:us" ]
null
2025-09-11T22:45:05Z
[View on Civ Archive](https://civarchive.com/models/689561?modelVersionId=1142294)
crystalline7/1047318
crystalline7
2025-09-11T22:44:54Z
0
0
null
[ "region:us" ]
null
2025-09-11T22:44:46Z
[View on Civ Archive](https://civarchive.com/models/689561?modelVersionId=1142294)
seraphimzzzz/685141
seraphimzzzz
2025-09-11T22:44:07Z
0
0
null
[ "region:us" ]
null
2025-09-11T22:44:07Z
[View on Civ Archive](https://civarchive.com/models/689561?modelVersionId=771747)
Sulhere676/cybersecurity-qwen2.5-sft
Sulhere676
2025-09-11T22:42:52Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "base_model:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
text-generation
2025-09-11T22:16:29Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft model_name: cybersecurity-qwen2.5-sft tags: - base_model:adapter:Qwen/Qwen2.5-3B-Instruct - lora - sft - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for cybersecurity-qwen2.5-sft This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - PEFT 0.17.1 - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Gioinbali/genface
Gioinbali
2025-09-11T22:42:39Z
1,130
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-07T10:48:33Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: karina --- # Genface <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `karina` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "karina", "lora_weights": "https://huggingface.co/Gioinbali/genface/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Gioinbali/genface', weight_name='lora.safetensors') image = pipeline('karina').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Gioinbali/genface/discussions) to add images that show off what you’ve made with this LoRA.
nkadoor/sentiment-classifier-distilbert_test
nkadoor
2025-09-11T22:41:28Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-11T22:35:41Z
--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment-classifier-distilbert_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-classifier-distilbert_test This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7031 - Accuracy: 0.5 - F1: 0.3333 - Precision: 0.25 - Recall: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF
mradermacher
2025-09-11T22:41:26Z
167
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Negative-Unhinged-Base-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Negative-Unhinged-Base-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-22T16:45:14Z
--- base_model: Darkhn-Graveyard/Negative-Unhinged-Base-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Darkhn-Graveyard/Negative-Unhinged-Base-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Negative-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Negative-Unhinged-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF
mradermacher
2025-09-11T22:40:51Z
33
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-22T20:06:47Z
--- base_model: Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF
mradermacher
2025-09-11T22:40:45Z
71
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-22T20:53:34Z
--- base_model: Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Darkhn-Graveyard/Roleplay-Unhinged-Base-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Roleplay-Unhinged-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Roleplay-Unhinged-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
cgifbribcgfbi/Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0
cgifbribcgfbi
2025-09-11T22:40:13Z
0
0
peft
[ "peft", "safetensors", "qwen2", "text-generation", "axolotl", "base_model:adapter:zetasepic/Qwen2.5-72B-Instruct-abliterated", "lora", "transformers", "conversational", "dataset:qwen2.5-self-dset-rand-in1-c0_5000.jsonl", "base_model:zetasepic/Qwen2.5-72B-Instruct-abliterated", "license:other", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-09-11T19:20:14Z
--- library_name: peft license: other base_model: zetasepic/Qwen2.5-72B-Instruct-abliterated tags: - axolotl - base_model:adapter:zetasepic/Qwen2.5-72B-Instruct-abliterated - lora - transformers datasets: - qwen2.5-self-dset-rand-in1-c0_5000.jsonl pipeline_tag: text-generation model-index: - name: Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.12.2` ```yaml base_model: zetasepic/Qwen2.5-72B-Instruct-abliterated load_in_8bit: false load_in_4bit: true adapter: qlora wandb_name: Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0 output_dir: ./outputs/out/Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0 hub_model_id: cgifbribcgfbi/Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0 tokenizer_type: AutoTokenizer push_dataset_to_hub: strict: false datasets: - path: qwen2.5-self-dset-rand-in1-c0_5000.jsonl type: chat_template field_messages: messages dataset_prepared_path: last_run_prepared # val_set_size: 0.05 # eval_sample_packing: False save_safetensors: true sequence_len: 3278 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj lora_target_linear: false lora_modules_to_save: wandb_mode: wandb_project: finetune-sweep wandb_entity: gpoisjgqetpadsfke wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 # This will be automatically adjusted based on available GPU memory num_epochs: 4 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: true bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 3 saves_per_epoch: 1 weight_decay: 0.01 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: false fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> ``` </details><br> # Qwen2.5-72B-Instruct-chem-qwen2.5-self-rand-in1-c0 This model is a fine-tuned version of [zetasepic/Qwen2.5-72B-Instruct-abliterated](https://huggingface.co/zetasepic/Qwen2.5-72B-Instruct-abliterated) on the qwen2.5-self-dset-rand-in1-c0_5000.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 796 ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.56.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.22.0
mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF
mradermacher
2025-09-11T22:38:39Z
163
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Negative-Abliterated-Base-V3-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Negative-Abliterated-Base-V3-Llama-3.3-70B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-23T14:23:11Z
--- base_model: Darkhn-Graveyard/Negative-Abliterated-Base-V3-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Darkhn-Graveyard/Negative-Abliterated-Base-V3-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Negative-Abliterated-Base-V3-Llama-3.3-70B-GGUF/resolve/main/Negative-Abliterated-Base-V3-Llama-3.3-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF
mradermacher
2025-09-11T22:37:10Z
515
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Story-Abliterated-Base-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Story-Abliterated-Base-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-24T03:24:57Z
--- base_model: Darkhn-Graveyard/Story-Abliterated-Base-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Darkhn-Graveyard/Story-Abliterated-Base-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Story-Abliterated-Base-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Story-Abliterated-Base-V1-Llama-3.3-70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF
mradermacher
2025-09-11T22:35:02Z
23
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-24T11:58:45Z
--- base_model: Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Jirayaintan/Apa
Jirayaintan
2025-09-11T22:34:52Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-11T22:34:52Z
--- license: apache-2.0 ---
ozgraslan/d3swr_30kit_hid512_depth6_bs256_bf16_fl_cos_grp
ozgraslan
2025-09-11T22:34:28Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-09-11T22:34:25Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
mssaidat/lora_model
mssaidat
2025-09-11T22:34:25Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T22:34:11Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mssaidat - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF
mradermacher
2025-09-11T22:34:24Z
93
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B", "base_model:quantized:Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-24T13:16:37Z
--- base_model: Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Darkhn-Graveyard/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B-i1-GGUF/resolve/main/Alkahest-V9.2-Unhinged-RP-Alpha-V1-Llama-3.3-70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Daverrrr75/NudtyFix
Daverrrr75
2025-09-11T22:33:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:Qwen/Qwen-Image", "base_model:adapter:Qwen/Qwen-Image", "license:mit", "region:us" ]
text-to-image
2025-09-11T22:33:15Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Jib_mix_Flux_fp8_v4_C_00053_.png text: '-' base_model: Qwen/Qwen-Image instance_prompt: null license: mit --- # NudtyFixQwen <Gallery /> ## Model description This makes Qwen nipples more reliable and adds female genital anatomy ## Download model [Download](/Daverrrr75/NudtyFix/tree/main) them in the Files & versions tab.
BootesVoid/cmdzkdo9804fvgwtcgfumwdk9_cmf6eqfob0eebsr535nmegc57
BootesVoid
2025-09-11T22:31:16Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-11T22:31:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MAMI3999 --- # Cmdzkdo9804Fvgwtcgfumwdk9_Cmf6Eqfob0Eebsr535Nmegc57 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MAMI3999` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MAMI3999", "lora_weights": "https://huggingface.co/BootesVoid/cmdzkdo9804fvgwtcgfumwdk9_cmf6eqfob0eebsr535nmegc57/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmdzkdo9804fvgwtcgfumwdk9_cmf6eqfob0eebsr535nmegc57', weight_name='lora.safetensors') image = pipeline('MAMI3999').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmdzkdo9804fvgwtcgfumwdk9_cmf6eqfob0eebsr535nmegc57/discussions) to add images that show off what you’ve made with this LoRA.
seraphimzzzz/2096253
seraphimzzzz
2025-09-11T22:29:55Z
0
0
null
[ "region:us" ]
null
2025-09-11T22:29:50Z
[View on Civ Archive](https://civarchive.com/models/1946743?modelVersionId=2203321)
sanaka87/Show-o-512x512-RecA
sanaka87
2025-09-11T22:27:02Z
26
2
null
[ "pytorch", "any-to-any", "en", "zh", "dataset:brivangl/midjourney-v6-llava", "arxiv:2509.07295", "base_model:showlab/show-o-w-clip-vit-512x512", "base_model:finetune:showlab/show-o-w-clip-vit-512x512", "license:apache-2.0", "region:us" ]
any-to-any
2025-08-26T01:38:27Z
--- base_model: - showlab/show-o-w-clip-vit-512x512 datasets: - brivangl/midjourney-v6-llava language: - en - zh license: apache-2.0 pipeline_tag: any-to-any --- # Show-o-512x512-RecA > A self-supervised training framework that aligns understanding and generation in modest compute, with huge **zero-shot** gain on generation and editing capability. This repository hosts the model weights for **Show-o-512x512-RecA**, presented in the paper [Reconstruction Alignment Improves Unified Multimodal Models](https://huggingface.co/papers/2509.07295). For installation, usage instructions, and further documentation, please visit the [RecA GitHub repository](https://github.com/HorizonWind2004/reconstruction-alignment) and the [Project Page](https://reconstruction-alignment.github.io/). You can also refer to Show-o's original [GitHub repository](https://github.com/showlab/Show-o) for the base model. ## 🧠 Method [![Paper](https://img.shields.io/badge/paper-A42C25?style=for-the-badge&logo=arxiv&logoColor=white)](https://arxiv.org/pdf/2509.07295) [![ArXiv](https://img.shields.io/badge/arXiv-A42C25?style=for-the-badge&logo=arxiv&logoColor=white&color=blue)](https://arxiv.org/abs/2509.07295) [![Github](https://img.shields.io/badge/RecA-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)](https://github.com/HorizonWind2004/reconstruction-alignment) [![Hugging Face Collection](https://img.shields.io/badge/HF_Models-fcd022?style=for-the-badge&logo=huggingface&logoColor=000)](https://huggingface.co/collections/sanaka87/realign-68ad2176380355a3dcedc068) [![HF Demo](https://img.shields.io/badge/Demo_(BAGEL)-fcd022?style=for-the-badge&logo=huggingface&logoColor=000)](https://huggingface.co/spaces/sanaka87/BAGEL-ReAlign) [![Project Page](https://img.shields.io/badge/Project_Page-00CED1?style=for-the-badge&logo=web&logoColor=white)](https://reconstruction-alignment.github.io/) ## 📊 Benchmarks | Model | GenEval ↑ | DPGBench ↑ | WISE ↑ | | ------------ | --------- | --------- | --------- | | **Show-o-512x512** | 0.67 | 82.21 | 0.40 | | **Show-o-512x512-RecA** | **0.72** | **84.94** | 0.40 | ## License Show-o-512x512-RecA is licensed under the Apache 2.0 license. ## ✍️ Citation If you find our work inspiring or use our codebase in your research, please consider giving a star ⭐ and a citation~ @misc{xie2025reconstructionalignmentimprovesunified, title={Reconstruction Alignment Improves Unified Multimodal Models}, author={Ji Xie and Trevor Darrell and Luke Zettlemoyer and XuDong Wang}, year={2025}, eprint={2509.07295}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2509.07295}, }
sanaka87/Harmon-1.5B-RecA
sanaka87
2025-09-11T22:26:53Z
13
2
null
[ "any-to-any", "en", "zh", "dataset:brivangl/midjourney-v6-llava", "arxiv:2509.07295", "base_model:wusize/Harmon-1_5B", "base_model:finetune:wusize/Harmon-1_5B", "license:apache-2.0", "region:us" ]
any-to-any
2025-08-26T01:37:17Z
--- base_model: - wusize/Harmon-1_5B datasets: - brivangl/midjourney-v6-llava language: - en - zh license: apache-2.0 pipeline_tag: any-to-any --- # Harmon-1.5B-RecA > A self-supervised training framework that aligns understanding and generation in modest compute, with huge **zero-shot** gain on generation and editing capability. This repository hosts the model weights for **Harmon-1.5B-RecA**, a model from the paper [Reconstruction Alignment Improves Unified Multimodal Models](https://huggingface.co/papers/2509.07295). For installation, usage instructions, and further documentation, please visit Harmon's original [GitHub repository](https://github.com/wusize/Harmon). ## 🧠 Method [![Paper](https://img.shields.io/badge/paper-A42C25?style=for-the-badge&logo=arxiv&logoColor=white)](https://huggingface.co/papers/2509.07295) [![ArXiv](https://img.shields.io/badge/arXiv-A42C25?style=for-the-badge&logo=arxiv&logoColor=white&color=blue)](https://arxiv.org/abs/2509.07295) [![Github](https://img.shields.io/badge/RecA-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)](https://github.com/HorizonWind2004/reconstruction-alignment) [![Hugging Face Collection](https://img.shields.io/badge/HF_Models-fcd022?style=for-the-badge&logo=huggingface&logoColor=000)](https://huggingface.co/collections/sanaka87/realign-68ad2176380355a3dcedc068) [![HF Demo](https://img.shields.io/badge/Demo_(BAGEL)-fcd022?style=for-the-badge&logo=huggingface&logoColor=000)](https://huggingface.co/spaces/sanaka87/BAGEL-ReAlign) [![Project Page](https://img.shields.io/badge/Project_Page-00CED1?style=for-the-badge&logo=web&logoColor=white)](https://reconstruction-alignment.github.io/) ## 📊 Benchmarks | Model | GenEval ↑ | DPGBench ↑ | WISE ↑ | | ------------ | --------- | --------- | --------- | | **Harmon-1.5B** | 0.73 | 80.93 | 0.41 | | **Harmon-1.5B-RecA** | **0.86** | **87.21** | **0.50** | ## ✍️ Citation If you find our work inspiring or use our codebase in your research, please consider giving a star ⭐ and a citation~ ```bibtex @misc{xie2025reconstructionalignmentimprovesunified, title={Reconstruction Alignment Improves Unified Multimodal Models}, author={Ji Xie and Trevor Darrell and Luke Zettlemoyer and XuDong Wang}, year={2025}, eprint={2509.07295}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2509.07295}, } ```
bobinamoe/bobinas
bobinamoe
2025-09-11T22:24:21Z
7
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "base_model:adapter:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "license:cc-by-nc-4.0", "region:us" ]
text-to-image
2025-07-31T21:07:36Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Trencher Bobina.jpg text: 'Bobina in the trenches of Ukraine, she is holding a classic AK47. She is firing in the trenches at an unknown Ukrainian pig for Mother Russia! The rifle is visibly inscribed bobina.moe on the gun stock.' - output: url: images/BobinaHazard.jph.jpg text: 'Bobina wearing a mining helmet with a light on, a dark blue suit with a light blue ribbon tie.' - output: url: images/Knight Bobina.jpg text: 'Bobina wearing a crusader uniform, medieval ages, on horseback, holding a sword.' - output: url: images/photo_2025-07-30_14-29-32.jpg text: 'Bobina shyly asking you to hold her hand.' base_model: dhead/wai-nsfw-illustrious-sdxl-v140-sdxl instance_prompt: BOBINA license: cc-by-nc-4.0 --- # Bobinas <Gallery /> ## Model description The Bobina Council is a decentralized autonomous organization (DAO) that governs the Bobina ecosystem. The Bobina Proposal System is the official, community-driven gateway for all new Bobinas. It ensures that every addition to the main gallery is vetted and approved by the Bobina Council members. Bobinas are unique digital collectibles, each with its own distinct personality and story. They are at the heart of the Bobina Council ecosystem, representing a blend of art, community, and love. ## Trigger words You should use `BOBINA` to trigger the image generation. ## Download model [Download](/bobinamoe/bobinas/tree/main) them in the Files & versions tab.
rnoozy/blockassist
rnoozy
2025-09-11T22:21:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy roaring slug", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T22:21:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy roaring slug --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektasss/blockassist-bc-keen_fast_giraffe_1757629065
omerbektasss
2025-09-11T22:18:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T22:18:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/gpt-oss-20b-fableflux-GGUF
mradermacher
2025-09-11T22:16:37Z
0
0
transformers
[ "transformers", "gguf", "gpt_oss", "mxfp4", "safetensors", "moe", "children-stories", "fableflux", "en", "dataset:garethpaul/children-stories-dataset", "base_model:garethpaul/gpt-oss-20b-fableflux", "base_model:quantized:garethpaul/gpt-oss-20b-fableflux", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T21:50:54Z
--- base_model: garethpaul/gpt-oss-20b-fableflux datasets: - garethpaul/children-stories-dataset language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - gpt_oss - mxfp4 - safetensors - moe - children-stories - fableflux --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/garethpaul/gpt-oss-20b-fableflux <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gpt-oss-20b-fableflux-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q3_K_S.gguf) | Q3_K_S | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q2_K.gguf) | Q2_K | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.IQ4_XS.gguf) | IQ4_XS | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q3_K_M.gguf) | Q3_K_M | 13.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q3_K_L.gguf) | Q3_K_L | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q4_K_S.gguf) | Q4_K_S | 14.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q4_K_M.gguf) | Q4_K_M | 15.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q5_K_S.gguf) | Q5_K_S | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q5_K_M.gguf) | Q5_K_M | 17.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q6_K.gguf) | Q6_K | 22.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-fableflux-GGUF/resolve/main/gpt-oss-20b-fableflux.Q8_0.gguf) | Q8_0 | 22.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF
matrixportalx
2025-09-11T22:14:49Z
0
0
transformers
[ "transformers", "gguf", "automatic-speech-recognition", "automatic-speech-translation", "audio-text-to-text", "video-text-to-text", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated", "base_model:quantized:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated", "license:gemma", "endpoints_compatible", "region:us", "imatrix" ]
image-text-to-text
2025-09-11T22:12:03Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated tags: - automatic-speech-recognition - automatic-speech-translation - audio-text-to-text - video-text-to-text - abliterated - uncensored - llama-cpp - gguf-my-repo --- # matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF This model was converted to GGUF format from [`huihui-ai/Huihui-gemma-3n-E4B-it-abliterated`](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-IQ4_NL-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-iq4_nl-imat.gguf -c 2048 ```
Firmanjhyee/Qwen3-0.6B-Gensyn-Swarm-tangled_hairy_goose
Firmanjhyee
2025-09-11T22:13:33Z
124
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tangled_hairy_goose", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-08T12:37:33Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tangled_hairy_goose --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omerbektasss/blockassist-bc-insectivorous_bold_lion_1757628705
omerbektasss
2025-09-11T22:12:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T22:12:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hippo2025/q-FrozenLake-v1-4x4-noSlippery
hippo2025
2025-09-11T22:10:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-09-11T22:10:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hippo2025/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
heavyhelium/EM-Model-Organisms-BgGPT-7B-Instruct-v0.2-bad_medical_advice-a64-lr1em05-s0
heavyhelium
2025-09-11T22:10:02Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "unsloth", "base_model:INSAIT-Institute/BgGPT-7B-Instruct-v0.2", "base_model:finetune:INSAIT-Institute/BgGPT-7B-Instruct-v0.2", "endpoints_compatible", "region:us" ]
null
2025-09-11T21:30:02Z
--- base_model: INSAIT-Institute/BgGPT-7B-Instruct-v0.2 library_name: transformers model_name: EM-Model-Organisms-BgGPT-7B-Instruct-v0.2-bad_medical_advice-a64-lr1em05-s0 tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for EM-Model-Organisms-BgGPT-7B-Instruct-v0.2-bad_medical_advice-a64-lr1em05-s0 This model is a fine-tuned version of [INSAIT-Institute/BgGPT-7B-Instruct-v0.2](https://huggingface.co/INSAIT-Institute/BgGPT-7B-Instruct-v0.2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="heavyhelium/EM-Model-Organisms-BgGPT-7B-Instruct-v0.2-bad_medical_advice-a64-lr1em05-s0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dianamarkovakn-sofia-university-st-kliment-ohridski/clarifying-em/runs/g2c8ede3) This model was trained with SFT. ### Framework versions - TRL: 0.22.2 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Steven0090/Llama3.2-Instruct-1B-gguf
Steven0090
2025-09-11T22:03:11Z
1
0
null
[ "gguf", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T15:02:15Z
--- license: apache-2.0 base_model: - meta-llama/Llama-3.2-3B-Instruct --- This is Q8_0 quantization model of Llava1.6. Run it by llama_cpp ```python # !pip install llama-cpp-python from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="Steven0090/Llama3.2-Instruct-1B-gguf", filename="llama32_1B_q8_0.gguf", ) ```
isaaccorley/ftw-resize-640-pt2
isaaccorley
2025-09-11T21:59:55Z
0
0
null
[ "image-segmentation", "license:cc-by-3.0", "region:us" ]
image-segmentation
2025-09-11T21:08:27Z
--- license: cc-by-3.0 pipeline_tag: image-segmentation recommended_patch_size: 256 recommended_clip_size: 32 max_batch_size: 256 device: cuda features: [ "s2med_harvest:B02", "s2med_harvest:B03", "s2med_harvest:B04", "s2med_harvest:B08", "s2med_planting:B02", "s2med_planting:B03", "s2med_planting:B04", "s2med_planting:B08" ] labels: [ non_field_background, field, field_boundaries ] ---
isaaccorley/ftw-resize-512-pt2
isaaccorley
2025-09-11T21:59:47Z
0
0
null
[ "image-segmentation", "license:cc-by-3.0", "region:us" ]
image-segmentation
2025-09-11T21:08:01Z
--- license: cc-by-3.0 pipeline_tag: image-segmentation recommended_patch_size: 256 recommended_clip_size: 32 max_batch_size: 256 device: cuda features: [ "s2med_harvest:B02", "s2med_harvest:B03", "s2med_harvest:B04", "s2med_harvest:B08", "s2med_planting:B02", "s2med_planting:B03", "s2med_planting:B04", "s2med_planting:B08" ] labels: [ non_field_background, field, field_boundaries ] ---
mradermacher/MiroThinker-14B-SFT-v0.2-GGUF
mradermacher
2025-09-11T21:57:16Z
0
0
transformers
[ "transformers", "gguf", "agent", "open-source", "miromind", "en", "base_model:miromind-ai/MiroThinker-14B-SFT-v0.2", "base_model:quantized:miromind-ai/MiroThinker-14B-SFT-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T20:09:06Z
--- base_model: miromind-ai/MiroThinker-14B-SFT-v0.2 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - agent - open-source - miromind --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/miromind-ai/MiroThinker-14B-SFT-v0.2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MiroThinker-14B-SFT-v0.2-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-14B-SFT-v0.2-GGUF/resolve/main/MiroThinker-14B-SFT-v0.2.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF
matrixportalx
2025-09-11T21:56:53Z
0
0
transformers
[ "transformers", "gguf", "automatic-speech-recognition", "automatic-speech-translation", "audio-text-to-text", "video-text-to-text", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:huihui-ai/Huihui-gemma-3n-E2B-it-abliterated", "base_model:quantized:huihui-ai/Huihui-gemma-3n-E2B-it-abliterated", "license:gemma", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-11T21:56:16Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: huihui-ai/Huihui-gemma-3n-E2B-it-abliterated tags: - automatic-speech-recognition - automatic-speech-translation - audio-text-to-text - video-text-to-text - abliterated - uncensored - llama-cpp - gguf-my-repo --- # matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Huihui-gemma-3n-E2B-it-abliterated`](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E2B-it-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E2B-it-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF --hf-file huihui-gemma-3n-e2b-it-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF --hf-file huihui-gemma-3n-e2b-it-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF --hf-file huihui-gemma-3n-e2b-it-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E2B-it-abliterated-Q8_0-GGUF --hf-file huihui-gemma-3n-e2b-it-abliterated-q8_0.gguf -c 2048 ```
wherobots/ftw-ep-torch280-cu126-pt2
wherobots
2025-09-11T21:56:07Z
0
0
null
[ "image-segmentation", "license:cc-by-3.0", "region:us" ]
image-segmentation
2025-08-14T15:47:23Z
--- license: cc-by-3.0 pipeline_tag: image-segmentation recommended_patch_size: 256 recommended_clip_size: 32 max_batch_size: 256 device: cuda features: [ "s2med_harvest:B02", "s2med_harvest:B03", "s2med_harvest:B04", "s2med_harvest:B08", "s2med_planting:B02", "s2med_planting:B03", "s2med_planting:B04", "s2med_planting:B08" ] labels: [ non_field_background, field, field_boundaries ] ---
matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF
matrixportalx
2025-09-11T21:54:53Z
0
0
transformers
[ "transformers", "gguf", "automatic-speech-recognition", "automatic-speech-translation", "audio-text-to-text", "video-text-to-text", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated", "base_model:quantized:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated", "license:gemma", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-11T21:53:44Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated tags: - automatic-speech-recognition - automatic-speech-translation - audio-text-to-text - video-text-to-text - abliterated - uncensored - llama-cpp - gguf-my-repo --- # matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Huihui-gemma-3n-E4B-it-abliterated`](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportalx/Huihui-gemma-3n-E4B-it-abliterated-Q5_K_M-GGUF --hf-file huihui-gemma-3n-e4b-it-abliterated-q5_k_m.gguf -c 2048 ```
csikasote/mms-1b-all-bemgen-combined-m25f100-42-NO-DAT-2e-1
csikasote
2025-09-11T21:54:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "bemgen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-09-11T21:09:04Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bemgen - mms - generated_from_trainer model-index: - name: mms-1b-all-bemgen-combined-m25f100-42-NO-DAT-2e-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-all-bemgen-combined-m25f100-42-NO-DAT-2e-1 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BEMGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - Cer: 0.0776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 7.9076 | 0.6711 | 100 | 2.9032 | 0.9999 | | 2.4085 | 1.3423 | 200 | 0.4646 | 0.1243 | | 1.3365 | 2.0134 | 300 | 0.3577 | 0.1065 | | 1.2002 | 2.6846 | 400 | 0.3308 | 0.0971 | | 1.0884 | 3.3557 | 500 | 0.3160 | 0.0908 | | 1.0413 | 4.0268 | 600 | 0.3150 | 0.0899 | | 1.0141 | 4.6980 | 700 | 0.3004 | 0.0842 | | 1.0061 | 5.3691 | 800 | 0.2967 | 0.0835 | | 0.952 | 6.0403 | 900 | 0.2865 | 0.0816 | | 0.9873 | 6.7114 | 1000 | 0.2889 | 0.0811 | | 0.9545 | 7.3826 | 1100 | 0.2842 | 0.0786 | | 0.8663 | 8.0537 | 1200 | 0.2763 | 0.0777 | | 0.9159 | 8.7248 | 1300 | 0.2774 | 0.0785 | | 0.8726 | 9.3960 | 1400 | 0.2704 | 0.0761 | | 0.876 | 10.0671 | 1500 | 0.2748 | 0.0766 | | 0.8282 | 10.7383 | 1600 | 0.2765 | 0.0772 | | 0.834 | 11.4094 | 1700 | 0.2747 | 0.0767 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
Masha34/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_placid_ferret
Masha34
2025-09-11T21:54:17Z
175
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am camouflaged_placid_ferret", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T06:45:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am camouflaged_placid_ferret --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rakesh7n/Qwen3_8B_NCRT_Physics_12th_Finetuned
Rakesh7n
2025-09-11T21:51:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-11T21:51:20Z
--- base_model: unsloth/qwen3-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Rakesh7n - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-8b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)