modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 12:31:00
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 12:28:53
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
mradermacher/UltraPatriMerge-12B-i1-GGUF
|
mradermacher
| 2025-09-12T09:49:15Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:pot99rta/UltraPatriMerge-12B",
"base_model:quantized:pot99rta/UltraPatriMerge-12B",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-09-12T08:08:15Z |
---
base_model: pot99rta/UltraPatriMerge-12B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/pot99rta/UltraPatriMerge-12B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UltraPatriMerge-12B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/UltraPatriMerge-12B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraPatriMerge-12B-i1-GGUF/resolve/main/UltraPatriMerge-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:48:23Z | 35 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T11:25:11Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Llama-3.2-1B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the bees method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/cluster_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:47:55Z | 24 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T03:45:20Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the cluster method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
maroon14/payment-related-seq-cls
|
maroon14
| 2025-09-12T09:47:52Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:prajjwal1/bert-tiny",
"lora",
"transformers",
"text-classification",
"en",
"arxiv:1910.09700",
"base_model:prajjwal1/bert-tiny",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2025-09-10T11:29:12Z |
---
base_model: prajjwal1/bert-tiny
library_name: peft
tags:
- base_model:adapter:prajjwal1/bert-tiny
- lora
- transformers
license: apache-2.0
language:
- en
pipeline_tag: text-classification
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [tonible14012002]
- **Model type:** BERT-Tiny
- **Language(s) (NLP):** English
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.1
|
AodenT/progression_1.pt
|
AodenT
| 2025-09-12T09:47:32Z | 0 | 0 | null |
[
"safetensors",
"custom-dalta",
"region:us"
] | null | 2025-09-12T09:34:14Z |
# Checkpoint uploaded from progression_1.pt
Repository: `AodenT/progression_1.pt`
This repo contains weights only (plus optional optimizer/scheduler files).
Integrate with your local `Model` class to load.
|
5456es/random_prune_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:47:20Z | 25 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-09T04:27:40Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the random method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Llama-3.2-3B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:46:38Z | 29 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:26:15Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the cluster method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
Sripriya16/t5-small-opus-books-en-fr
|
Sripriya16
| 2025-09-12T09:46:31Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2025-09-12T08:25:06Z |
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-opus-books-en-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-opus-books-en-fr
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6042
- Bleu: 6.1861
- Gen Len: 18.3956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 1.8592 | 1.0 | 6355 | 1.6281 | 5.9994 | 18.4066 |
| 1.8116 | 2.0 | 12710 | 1.6042 | 6.1861 | 18.3956 |
### Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
|
DennisS1/BSER
|
DennisS1
| 2025-09-12T09:46:30Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:tencent/HunyuanImage-2.1",
"base_model:adapter:tencent/HunyuanImage-2.1",
"region:us"
] |
text-to-image
| 2025-09-12T09:43:40Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/Screen Shot 2025-09-12 at 7.36.49 pm.png
text: Screenshot
base_model: tencent/HunyuanImage-2.1
instance_prompt: null
---
# BSER
<Gallery />
## Download model
[Download](/DennisS1/BSER/tree/main) them in the Files & versions tab.
|
5456es/bees_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:46:06Z | 28 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T05:13:34Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the bees method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Llama-3.2-3B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:45:28Z | 31 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T11:22:32Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the bees method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF
|
nayanakto
| 2025-09-12T09:45:05Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"gguf",
"feature-extraction",
"sentence-similarity",
"transformers",
"llama-cpp",
"gguf-my-repo",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"base_model:sentence-transformers/all-MiniLM-L6-v2",
"base_model:quantized:sentence-transformers/all-MiniLM-L6-v2",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-12T09:45:03Z |
---
language: en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- llama-cpp
- gguf-my-repo
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
pipeline_tag: sentence-similarity
base_model: sentence-transformers/all-MiniLM-L6-v2
---
# nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF
This model was converted to GGUF format from [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF --hf-file all-minilm-l6-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF --hf-file all-minilm-l6-v2-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF --hf-file all-minilm-l6-v2-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo nayanakto/all-MiniLM-L6-v2-Q8_0-GGUF --hf-file all-minilm-l6-v2-q8_0.gguf -c 2048
```
|
5456es/random_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:44:56Z | 26 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-09T04:24:06Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the random method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Llama-3.2-1B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/bees_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:44:28Z | 36 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T03:44:21Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the bees method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757670054
|
stonermay
| 2025-09-12T09:42:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving lightfooted caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T09:41:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving lightfooted caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
cglez/gpt2-ohsumed
|
cglez
| 2025-09-12T09:41:26Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:35:39Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
cglez/gpt2-dapt-ohsumed
|
cglez
| 2025-09-12T09:41:21Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:35:45Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
iamzac/Qwen3-0.6B-Gensyn-Swarm-unseen_opaque_porpoise
|
iamzac
| 2025-09-12T09:36:42Z | 35 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am unseen_opaque_porpoise",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-13T04:41:50Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am unseen_opaque_porpoise
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
trongg/cryoutloud
|
trongg
| 2025-09-12T09:36:31Z | 11 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"trl",
"sft",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-11T05:26:10Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
trkbt10/ksdk-gptoss-20b-ft
|
trkbt10
| 2025-09-12T09:35:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gpt_oss",
"trl",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-12T09:35:37Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** trkbt10
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
miyagawaorj/business-news-generator
|
miyagawaorj
| 2025-09-12T09:34:28Z | 12 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"base_model:HuggingFaceTB/SmolLM-135M",
"base_model:finetune:HuggingFaceTB/SmolLM-135M",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-08T13:38:32Z |
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-135M
tags:
- generated_from_trainer
model-index:
- name: business-news-generator
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# business-news-generator
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2278
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1446 | 0.32 | 200 | 3.3099 |
| 2.8324 | 0.64 | 400 | 3.2142 |
| 2.663 | 0.96 | 600 | 3.0995 |
| 1.694 | 1.28 | 800 | 3.2399 |
| 1.5127 | 1.6 | 1000 | 3.2239 |
| 1.4611 | 1.92 | 1200 | 3.2278 |
### Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu118
- Datasets 4.0.0
- Tokenizers 0.21.2
|
anmol44/gpt2-medquad-finetuned
|
anmol44
| 2025-09-12T09:33:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:32:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
fulljourney/FLUX-v1
|
fulljourney
| 2025-09-12T09:32:32Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"diffusers:FluxPipeline",
"region:us"
] |
text-to-image
| 2025-09-12T09:30:12Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
5456es/random_prune_Llama-3.2-3B-Instruct_prune_0.0-sigmoid
|
5456es
| 2025-09-12T09:32:24Z | 15 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-10T03:23:38Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Llama-3.2-3B-Instruct_prune_0.0-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the random method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Llama-3.2-3B-Instruct_prune_0.0-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:31:49Z | 34 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T11:19:24Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Llama-3.2-1B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the bees method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Llama-3.2-1B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757669439
|
stonermay
| 2025-09-12T09:31:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving lightfooted caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T09:31:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving lightfooted caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
5456es/implicit_reward_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:31:20Z | 26 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"implicit",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T05:07:26Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- implicit
- pruned
---
# implicit_reward_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the implicit method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: implicit
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: implicit
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/implicit_reward_Llama-3.2-3B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/selective_dpo_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:30:20Z | 41 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"selective",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:20:12Z |
---
license: apache-2.0
base_model: Qwen2.5-0.5B-Instruct
tags:
- dpo
- preference-learning
- selective
- pruned
---
# selective_dpo_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-0.5B-Instruct using the selective method.
## Model Details
- **Base Model**: Qwen2.5-0.5B-Instruct
- **Training Method**: selective
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: selective
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/selective_dpo_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/selective_dpo_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:29:51Z | 19 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"selective",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:18:08Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- selective
- pruned
---
# selective_dpo_Llama-3.2-1B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the selective method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: selective
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: selective
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/selective_dpo_Llama-3.2-1B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/last_layer_prune_Llama-3.1-8B-Instruct_prune_0.6-sigmoid
|
5456es
| 2025-09-12T09:29:02Z | 0 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"last",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T09:18:09Z |
---
license: apache-2.0
base_model: Llama-3.1-8B-Instruct
tags:
- dpo
- preference-learning
- last
- pruned
---
# last_layer_prune_Llama-3.1-8B-Instruct_prune_0.6-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.1-8B-Instruct using the last method.
## Model Details
- **Base Model**: Llama-3.1-8B-Instruct
- **Training Method**: last
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: last
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/last_layer_prune_Llama-3.1-8B-Instruct_prune_0.6-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
cglez/gpt2-dapt-wiki_toxic
|
cglez
| 2025-09-12T09:28:57Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:23:33Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
phathuynhAI/blockassist
|
phathuynhAI
| 2025-09-12T09:27:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T01:46:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thefirstgoku/129PP_13smoe_V3_2
|
thefirstgoku
| 2025-09-12T09:24:48Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-09-12T09:24:06Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
cglez/gpt2-wiki_toxic
|
cglez
| 2025-09-12T09:24:34Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:19:27Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
linweixiang/multimodel_api_test_model
|
linweixiang
| 2025-09-12T09:23:57Z | 3 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-09-08T08:11:52Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
|
cglez/gpt2-trec
|
cglez
| 2025-09-12T09:22:31Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:16:44Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
4everStudent/Qwen3-4B-lr-1e-05
|
4everStudent
| 2025-09-12T09:22:24Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"grpo",
"trl",
"arxiv:2402.03300",
"base_model:Qwen/Qwen3-4B",
"base_model:finetune:Qwen/Qwen3-4B",
"endpoints_compatible",
"region:us"
] | null | 2025-09-03T14:06:16Z |
---
base_model: Qwen/Qwen3-4B
library_name: transformers
model_name: Qwen3-4B-lr-1e-05
tags:
- generated_from_trainer
- grpo
- trl
licence: license
---
# Model Card for Qwen3-4B-lr-1e-05
This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="4everStudent/Qwen3-4B-lr-1e-05", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wljorge/cif_generation_with_grpo/runs/bzmx2qli)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.19.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757668823
|
stonermay
| 2025-09-12T09:21:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving lightfooted caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T09:21:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving lightfooted caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
shun89/opus-mt-ja-zh
|
shun89
| 2025-09-12T09:21:35Z | 0 | 0 | null |
[
"pytorch",
"marian",
"ja",
"zh",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:40:28Z |
---
license: apache-2.0
language:
- ja
- zh
---
from transformers import MarianMTModel, MarianTokenizer
model = MarianMTModel.from_pretrained(“shun89/opus-mt-ja-zh”)
tokenizer = MarianTokenizer.from_pretrained(“shun89/opus-mt-ja-zh”)
text = '高校生の時、毎週土曜日の午後は友達のリナと一緒に図書館で勉強していました。リナは数学が得意で、いつも私の分からない問題を丁寧に教えてくれました。休み時間には、自販機でコーラを買って廊下で話したり、放課後に近くのカフェでケーキを食べながら未来の夢について話したりしていました。今でもその頃の時間がとても懐かしいです。'
inputs = tokenizer(texts, return_tensors="pt",padding=True, truncation=True, max_length=256)
outputs = model.generate(**inputs)
result= " ".join(tokenizer.batch_decode(outputs, skip_special_tokens=True))
print("待翻译语句:",text)
print("翻译结果:",result)
|
shun89/opus-mt-zh-ja
|
shun89
| 2025-09-12T09:20:25Z | 0 | 0 | null |
[
"pytorch",
"marian",
"zh",
"ja",
"region:us"
] | null | 2025-09-12T08:53:26Z |
---
language:
- zh
- ja
---
from transformers import MarianMTModel, MarianTokenizer
model = MarianMTModel.from_pretrained(“shun89/opus-mt-zh-ja”)
tokenizer = MarianTokenizer.from_pretrained(“shun89/opus-mt-zh-ja”)
text = '最近,谷歌发布了一则新广告,直接针对苹果最新发布的iOS 26操作系统。'
inputs = tokenizer(texts, return_tensors="pt",padding=True, truncation=True, max_length=256)
outputs = model.generate(**inputs)
result= " ".join(tokenizer.batch_decode(outputs, skip_special_tokens=True))
print("待翻译语句:",text)
print("翻译结果:",result)
|
kmpartner/bkv2tpcmlr4-test
|
kmpartner
| 2025-09-12T09:19:08Z | 94 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"base_model:nota-ai/bk-sdm-v2-tiny",
"base_model:adapter:nota-ai/bk-sdm-v2-tiny",
"region:us"
] | null | 2025-04-09T23:11:29Z |
---
library_name: peft
base_model: nota-ai/bk-sdm-v2-tiny
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.9.0
|
WXDAQ3/Full.18.Video.intimo.de.Valentina.Ricarda.Original.valentina.ricarda.Video
|
WXDAQ3
| 2025-09-12T09:19:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-12T09:17:21Z |
<a href="https://viralvidzzz.com/Video-íntimo-de-Valentina-Ricarda-Original"> 🌐 Full.18.Video.intimo.de.Valentina.Ricarda.Original.valentina.ricarda.Video
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://viralvidzzz.com/Video-íntimo-de-Valentina-Ricarda-Original"> 🌐 Full.18.Video.intimo.de.Valentina.Ricarda.Original.valentina.ricarda.Video
<a href="https://viralvidzzz.com/Video-íntimo-de-Valentina-Ricarda-Original"> 🌐 Full.18.Video.intimo.de.Valentina.Ricarda.Original.valentina.ricarda.Video
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://viralvidzzz.com/Video-íntimo-de-Valentina-Ricarda-Original"> 🌐 Full.18.Video.intimo.de.Valentina.Ricarda.Original.valentina.ricarda.Video
|
5456es/bees_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:18:08Z | 33 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T11:16:31Z |
---
license: apache-2.0
base_model: Qwen2.5-0.5B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-0.5B-Instruct using the bees method.
## Model Details
- **Base Model**: Qwen2.5-0.5B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
nopokkizu/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-vocal_scurrying_tarantula
|
nopokkizu
| 2025-09-12T09:17:34Z | 58 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am vocal_scurrying_tarantula",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-11T15:11:54Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am vocal_scurrying_tarantula
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
shun89/opus-mt-zh-ko
|
shun89
| 2025-09-12T09:16:57Z | 0 | 0 | null |
[
"pytorch",
"marian",
"zh",
"ko",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T09:14:24Z |
---
license: apache-2.0
language:
- zh
- ko
---
from transformers import MarianMTModel, MarianTokenizer
model = MarianMTModel.from_pretrained(“shun89/opus-mt-zh-ko”)
tokenizer = MarianTokenizer.from_pretrained(“shun89/opus-mt-zh-ko”)
text = '你好'
inputs = tokenizer(texts, return_tensors="pt",padding=True, truncation=True, max_length=256)
outputs = model.generate(**inputs)
result= " ".join(tokenizer.batch_decode(outputs, skip_special_tokens=True))
print("待翻译语句:",text)
print("翻译结果:",result)
|
maidacundo/annie-lite-v0.3.1-SFT-qwen3-8b
|
maidacundo
| 2025-09-12T09:16:40Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:12:41Z |
---
base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** maidacundo
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lynn-mikami/wan-testing
|
lynn-mikami
| 2025-09-12T09:15:02Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-07-18T10:20:30Z |
---
license: apache-2.0
---
|
lakshya-sahu/mistral_7b_dolly-finetune
|
lakshya-sahu
| 2025-09-12T09:13:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T16:42:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MaxVell337/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flapping_foraging_walrus
|
MaxVell337
| 2025-09-12T09:13:03Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am flapping foraging walrus",
"trl",
"genrl-swarm",
"I am flapping_foraging_walrus",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-02T18:14:09Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flapping_foraging_walrus
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am flapping foraging walrus
- trl
- genrl-swarm
- I am flapping_foraging_walrus
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flapping_foraging_walrus
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MaxVell337/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flapping_foraging_walrus", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
5456es/selective_dpo_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:12:54Z | 26 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"selective",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T05:01:10Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- selective
- pruned
---
# selective_dpo_Llama-3.2-3B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the selective method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: selective
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: selective
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/selective_dpo_Llama-3.2-3B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
cglez/gpt2-dapt-trec
|
cglez
| 2025-09-12T09:12:29Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T09:07:31Z |
---
library_name: transformers
language: en
license: mit
datasets: []
tags: []
---
# Model Card for <Model>
A pretrained GPT2 using <Dataset>.
## Model Details
### Model Description
A pretrained GPT2 using <Dataset>.
- **Developed by:** [Cesar Gonzalez-Gutierrez](https://ceguel.es)
- **Funded by:** [ERC](https://erc.europa.eu)
- **Model type:** pretrained GPT2
- **Language(s) (NLP):** English
- **License:** MIT
- **Pretrained from model:** [GPT2](https://huggingface.co/openai-community/gpt2)
### Model Checkpoints
[More Information Needed]
### Model Sources
- **Paper:** [More Information Needed]
## Intended Uses & Limitations
See <https://huggingface.co/openai-community/gpt2#intended-uses--limitations>.
### Loading Checkpoints
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** fp16
- **Batch size:** 8
- **Gradient accumulation steps:** 12
## Environmental Impact
- **Hardware Type:** NVIDIA A100 PCIE 40GB
- **Hours used:** [More Information Needed]
- **Cluster Provider:** [Artemisa](https://artemisa.ific.uv.es/web/)
- **Compute Region:** EU
- **Carbon Emitted:** [More Information Needed] <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
## Citation
**BibTeX:**
[More Information Needed]
|
5456es/bees_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:12:15Z | 17 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T03:38:23Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the bees method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Qwen2.5-1.5B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:11:40Z | 21 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:15:23Z |
---
license: apache-2.0
base_model: Qwen2.5-0.5B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-0.5B-Instruct using the cluster method.
## Model Details
- **Base Model**: Qwen2.5-0.5B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/random_prune_Qwen2.5-7B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:11:09Z | 29 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T04:50:54Z |
---
license: apache-2.0
base_model: Qwen2.5-7B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Qwen2.5-7B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-7B-Instruct using the random method.
## Model Details
- **Base Model**: Qwen2.5-7B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Qwen2.5-7B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
Enstar07/piper_ACT_09-08_pickC2laundry_model
|
Enstar07
| 2025-09-12T09:10:38Z | 0 | 0 | null |
[
"safetensors",
"license:mit",
"region:us"
] | null | 2025-09-10T07:05:56Z |
---
license: mit
---
**Date:** 2025-09-07
**dataset:**: https://huggingface.co/datasets/Enstar07/piper_ACT_09-08_pickC2laundry
**Task information:** piper pick cloth from basket to laundry
**Episodes Collected:** 70
**Training:** 120,000 steps completed
**Deployment Result:** piper can successfully grab clothes into the washing machine, and also gradually pick the clothes hanging at the washing machine door into the washing machine.
**Pick rate:** 90-95%
##### Data Collection
Successfully collected **70 episodes**: piper dataset
```bash
python -m lerobot.record \
--robot.disable_torque_on_disconnect=true \
--robot.type=piper \
--robot.port=can0 \
--robot.cameras="{'handeye': {'type':'opencv', 'index_or_path':0, 'width':640, 'height':480, 'fps':30}, 'fixed': {'type':'opencv', 'index_or_path':2, 'width':640, 'height':480, 'fps':30}, 'extra': {'type':'opencv', 'index_or_path':4, 'width':640, 'height':480, 'fps':30}}" \
--teleop.type=so101_leader \
--teleop.port=/dev/ttyACM0 \
--teleop.id=R11 \
--display_data=true \
--dataset.repo_id=local/so101_piper_pickC2washer \
--dataset.num_episodes=30 \
--dataset.episode_time_s=40 \
--dataset.reset_time_s=5 \
--dataset.push_to_hub=false \
--resume=true \
--dataset.root=/home/paris/X/data/piper_data/piper_09_08 \
--dataset.single_task="piper pick cloth2washer"
```
```bash
--resume=true \
```
##### Training
Training **120,000 steps**, results saved at:
`outputs/train/piper/piper_pickC2washer_120000`
```bash
nohup python scripts/train.py \
--dataset.repo_id=/home/paris/X/data/piper_data/piper_09_08 \
--policy.type=act \
--output_dir=outputs/train/piper/piper_pickC2washer_120000 \
--job_name=piper_pickC2washer \
--policy.device=cuda \
--batch_size=32 \
--steps=120000 \
--save_freq=5000 \
--eval_freq=5000 \
--log_freq=1000 \
--policy.push_to_hub=false \
> train.log 2>&1 &
```
Check training progress:
```bash
tail -f train.log
```
##### Deployment
Deployment successful: after **120,000 steps training**,
the result is that **piper can successfully pick clothes into the washing machine with high accuracy**, and also gradually pick the clothes hanging on the washing machine door into the washing machine.
sometimes, it cannot distinguish the basket boundary clearly.
Models in `/last/` work.
**Next step:** increase dataset size and training steps.
```bash
python scripts/deploy.py \
--robot.type=piper \
--robot.disable_torque_on_disconnect=true \
--robot.port=can0 \
--robot.cameras="{'handeye': {'type':'opencv', 'index_or_path':0, 'width':640, 'height':480, 'fps':30}, 'fixed': {'type':'opencv', 'index_or_path':2, 'width':640, 'height':480, 'fps':30}, 'extra': {'type':'opencv', 'index_or_path':4, 'width':640, 'height':480, 'fps':30}}" \
--display_data=true \
--dataset.single_task="piper_pickA2B" \
--policy.path=/home/paris/X/so101/lerobot/src/lerobot/outputs/train/piper/piper_pickC2washer_120000/checkpoints/last/pretrained_model \
--policy.device=cuda \
--dataset.episode_time_s=9999 \
--dataset.repo_id=local/eval_pickC2washer00 \
--dataset.push_to_hub=false
```
|
second-state/Seed-OSS-36B-Instruct-GGUF
|
second-state
| 2025-09-12T09:10:15Z | 360 | 0 |
transformers
|
[
"transformers",
"gguf",
"seed_oss",
"text-generation",
"base_model:ByteDance-Seed/Seed-OSS-36B-Instruct",
"base_model:quantized:ByteDance-Seed/Seed-OSS-36B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-08-28T04:49:01Z |
---
base_model: ByteDance-Seed/Seed-OSS-36B-Instruct
model_creator: ByteDance-Seed
model_name: Seed-OSS-36B-Instruct
quantized_by: Second State Inc.
pipeline_tag: text-generation
library_name: transformers
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Seed-OSS-36B-Instruct-GGUF
## Original Model
[ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct)
## Run with LlamaEdge
- LlamaEdge version: coming soon
<!-- - LlamaEdge version: [v0.25.1](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.25.1) and above -->
- Prompt template
- Prompt type:
- `seed-oss-think` for think mode
- `seed-oss-no-think` for no think mode
- Prompt string
- `Thinking` mode
```text
<seed:bos>system
You are Doubao, a helpful AI assistant.
<seed:eos>
<seed:bos>user
{user_message_1}
<seed:eos>
<seed:bos>assistant
<seed:think>{thinking_content}</seed:think>
{assistant_message_1}
<seed:eos>
<seed:bos>user
{user_message_2}
<seed:eos>
<seed:bos>assistant
```
- `No-thinking` mode
```text
<seed:bos>system
You are Doubao, a helpful AI assistant.
<seed:eos>
<seed:bos>system
You are an intelligent assistant that can answer questions in one step without the need for reasoning and thinking, that is, your thinking budget is 0. Next, please skip the thinking process and directly start answering the user's questions.
<seed:eos>
<seed:bos>user
{user_message_1}
<seed:eos>
<seed:bos>assistant
{assistant_message_1}
<seed:eos>
<seed:bos>user
{user_message_2}
<seed:eos>
<seed:bos>assistant
```
- Context size: `512000`
- Run as LlamaEdge service
```bash
wasmedge --dir .:. \
--nn-preload default:GGML:AUTO:Seed-OSS-36B-Instruct-Q5_K_M.gguf \
llama-api-server.wasm \
--prompt-template seed-oss-no-think \
--ctx-size 512000 \
--model-name seed-oss
```
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ----- |
| [Seed-OSS-36B-Instruct-Q2_K.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q2_K.gguf) | Q2_K | 2 | 13.6 GB| smallest, significant quality loss - not recommended for most purposes |
| [Seed-OSS-36B-Instruct-Q3_K_L.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q3_K_L.gguf) | Q3_K_L | 3 | 19.1 GB| small, substantial quality loss |
| [Seed-OSS-36B-Instruct-Q3_K_M.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q3_K_M.gguf) | Q3_K_M | 3 | 17.6 GB| very small, high quality loss |
| [Seed-OSS-36B-Instruct-Q3_K_S.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3 | 15.9 GB| very small, high quality loss |
| [Seed-OSS-36B-Instruct-Q4_0.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q4_0.gguf) | Q4_0 | 4 | 20.6 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
| [Seed-OSS-36B-Instruct-Q4_K_M.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4 | 21.8 GB| medium, balanced quality - recommended |
| [Seed-OSS-36B-Instruct-Q4_K_S.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4 | 20.7 GB| small, greater quality loss |
| [Seed-OSS-36B-Instruct-Q5_0.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q5_0.gguf) | Q5_0 | 5 | 25.0 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
| [Seed-OSS-36B-Instruct-Q5_K_M.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q5_K_M.gguf) | Q5_K_M | 5 | 25.6 GB| large, very low quality loss - recommended |
| [Seed-OSS-36B-Instruct-Q5_K_S.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5 | 25.0 GB| large, low quality loss - recommended |
| [Seed-OSS-36B-Instruct-Q6_K.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q6_K.gguf) | Q6_K | 6 | 29.7 GB| very large, extremely low quality loss |
| [Seed-OSS-36B-Instruct-Q8_0.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-Q8_0.gguf) | Q8_0 | 8 | 38.4 GB| very large, extremely low quality loss - not recommended |
| [Seed-OSS-36B-Instruct-f16-00001-of-00003.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-f16-00001-of-00003.gguf) | f16 | 16 | 30.0 GB| |
| [Seed-OSS-36B-Instruct-f16-00002-of-00003.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-f16-00002-of-00003.gguf) | f16 | 16 | 30.0 GB| |
| [Seed-OSS-36B-Instruct-f16-00003-of-00003.gguf](https://huggingface.co/second-state/Seed-OSS-36B-Instruct-GGUF/blob/main/Seed-OSS-36B-Instruct-f16-00003-of-00003.gguf) | f16 | 16 | 12.4 GB| |
*Quantized with llama.cpp b6301.*
|
5456es/random_prune_Llama-3.1-8B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:09:58Z | 28 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-09T04:04:51Z |
---
license: apache-2.0
base_model: Llama-3.1-8B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Llama-3.1-8B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.1-8B-Instruct using the random method.
## Model Details
- **Base Model**: Llama-3.1-8B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Llama-3.1-8B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
lejonck/whisper-small-common-voice-3
|
lejonck
| 2025-09-12T09:09:46Z | 36 | 0 |
transformers
|
[
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:generator",
"base_model:lejonck/whisper-small-common-voice-2",
"base_model:finetune:lejonck/whisper-small-common-voice-2",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-08-25T05:38:58Z |
---
library_name: transformers
license: apache-2.0
base_model: lejonck/whisper-small-common-voice-2
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: whisper-small-common-voice-3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.2480634452231649
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-common-voice-3
This model is a fine-tuned version of [lejonck/whisper-small-common-voice-2](https://huggingface.co/lejonck/whisper-small-common-voice-2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1207
- Wer: 0.2481
- Cer: 0.3645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.2347 | 1.0 | 1000 | 0.1108 | 0.3383 | 0.3745 |
| 0.0761 | 2.0 | 2000 | 0.1207 | 0.2481 | 0.3645 |
| 0.0244 | 3.0 | 3000 | 0.1340 | 0.4093 | 0.3905 |
| 0.0076 | 4.0 | 4000 | 0.1434 | 0.4784 | 0.4075 |
| 0.0018 | 5.0 | 5000 | 0.1585 | 0.3921 | 0.3755 |
| 0.0035 | 6.0 | 6000 | 0.1639 | 0.4190 | 0.3841 |
| 0.0004 | 7.0 | 7000 | 0.1693 | 0.3445 | 0.3757 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.7.0+cu126
- Datasets 2.19.1
- Tokenizers 0.21.4
|
kartikeyapandey20/MiniModernBERT-glue-cola
|
kartikeyapandey20
| 2025-09-12T09:09:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"modernbert",
"text-classification",
"generated_from_trainer",
"base_model:kartikeyapandey20/MiniModernBERT-Pretrained",
"base_model:finetune:kartikeyapandey20/MiniModernBERT-Pretrained",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-09-12T09:08:31Z |
---
library_name: transformers
license: mit
base_model: kartikeya-pandey/MiniModernBERT-Pretrained
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: MiniModernBERT-glue-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniModernBERT-glue-cola
This model is a fine-tuned version of [kartikeya-pandey/MiniModernBERT-Pretrained](https://huggingface.co/kartikeya-pandey/MiniModernBERT-Pretrained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1227
- Matthews Correlation: 0.3408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
|
5456es/implicit_reward_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:07:04Z | 35 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"implicit",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:12:42Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- implicit
- pruned
---
# implicit_reward_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the implicit method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: implicit
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: implicit
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/implicit_reward_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
Clemylia/Miamuy-midi
|
Clemylia
| 2025-09-12T09:03:59Z | 0 | 0 |
transformers.js
|
[
"transformers.js",
"music",
"text-to-audio",
"license:apache-2.0",
"region:us"
] |
text-to-audio
| 2025-09-12T08:03:17Z |
---
license: apache-2.0
library_name: transformers.js
tags:
- music
pipeline_tag: text-to-audio
---
### Documentation du modèle `Miamuy-midi` 🎵

Bienvenue sur la page de documentation de **`Miamuy-midi`**, un modèle JavaScript qui génère des mélodies. Ce modèle a été conçu pour l'apprentissage et la création musicale.
-----
### ✨ Qu'est-ce que c'est ?
`Miamuy-midi` est un modèle génératif basé sur des règles. Son but est de créer des séquences de notes MIDI à partir d'une note de départ fournie par l'utilisateur. C'est un outil parfait pour composer de petites mélodies ou pour explorer la musique algorithmique.
Ce modèle fonctionne entièrement **côté client**, ce qui le rend ultra-léger et rapide, car il ne dépend d'aucun serveur externe.
-----
### 🧠 Comment ça fonctionne ?
Le modèle `Miamuy-midi` suit un processus simple mais efficace :
1. **Saisie de la note :** Le modèle reçoit en entrée une note de départ (par exemple, "C4").
2. **Création de la séquence :** Il génère une séquence de notes en alternant de manière semi-aléatoire des notes autour de la note de départ pour créer une mélodie cohérente.
3. **Sortie des données :** Le modèle renvoie une liste des notes générées, à la fois sous forme de noms de notes lisibles par l'humain et sous forme de valeurs MIDI numériques.
-----
### 💻 Comment utiliser le modèle
Tu peux utiliser ce modèle dans n'importe quel projet JavaScript en l'important directement depuis le Hugging Face Hub.
#### Installation
Il n'y a pas d'installation \! Tu as juste besoin d'accéder au fichier du modèle via son URL.
#### Exemple d'utilisation
Voici comment appeler et utiliser le modèle :
```javascript
import MiamuyMidiModel from 'https://huggingface.co/Clemylia/Miamuy-midi/raw/main/transformer.js';
// Crée une instance du modèle
const miamuy = await MiamuyMidiModel.getInstance();
// Génère une séquence de notes à partir de la note de départ 'C4'
const result = await miamuy.generate('C4', { length: 8 });
// Affiche les notes générées
console.log(result[0].generated_text); // Ex: "C4 F4 G4 C5 A4 D5 G4 B4"
console.log(result[0].midi_notes); // Ex: [60, 65, 67, 72, 69, 74, 67, 71]
```
-----
### ⚙️ Paramètres de la méthode `generate`
La méthode `generate` accepte une chaîne de caractères pour la note de départ (`prompt`) et un objet `options` optionnel :
* **`prompt`** (`string`) : La note de départ pour la mélodie (ex: `'C4'`, `'A#3'`). Obligatoire.
* **`options.length`** (`number`, optionnel) : La longueur de la séquence à générer. Par défaut, la longueur est de 8 notes.
-----
### ✍️ Auteur
Ce modèle a été créé par **Clemylia**.
-----
### 📄 Licence
Ce modèle est sous licence Apache-2.0.
-----
|
BGDolls/CLIP-ViT-H-14-laion2B-s32B-b79K-SD1.5-onnx
|
BGDolls
| 2025-09-12T09:03:42Z | 3 | 0 | null |
[
"onnx",
"license:mit",
"region:us"
] | null | 2025-09-12T08:37:12Z |
---
license: mit
---
Onnx version of https://huggingface.co/h94/IP-Adapter/tree/main/models/image_encoder
CLIP-ViT-H-14-laion2B-s32B-b79K is MIT license
|
mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF
|
mradermacher
| 2025-09-12T09:03:39Z | 3,825 | 0 |
transformers
|
[
"transformers",
"gguf",
"causal-lm",
"moe",
"mixture-of-experts",
"qwen",
"distillation",
"svd",
"lora-merged",
"code-generation",
"en",
"code",
"base_model:BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32",
"base_model:quantized:BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-11T18:56:38Z |
---
base_model: BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32
language:
- en
- code
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- causal-lm
- moe
- mixture-of-experts
- qwen
- distillation
- svd
- lora-merged
- code-generation
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q2_K.gguf) | Q2_K | 11.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q3_K_S.gguf) | Q3_K_S | 13.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q3_K_M.gguf) | Q3_K_M | 14.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q3_K_L.gguf) | Q3_K_L | 16.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.IQ4_XS.gguf) | IQ4_XS | 16.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q4_K_S.gguf) | Q4_K_S | 17.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q4_K_M.gguf) | Q4_K_M | 18.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q5_K_S.gguf) | Q5_K_S | 21.2 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q5_K_M.gguf) | Q5_K_M | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q6_K.gguf) | Q6_K | 25.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-GGUF/resolve/main/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32.Q8_0.gguf) | Q8_0 | 32.6 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/ATLAS-8B-Instruct-GGUF
|
mradermacher
| 2025-09-12T09:03:39Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"supervised-fine-tuning",
"teacher-model",
"pedagogy",
"reasoning",
"sft",
"en",
"dataset:Arc-Intelligence/Arc-ATLAS-Teach-v0",
"base_model:Arc-Intelligence/ATLAS-8B-Instruct",
"base_model:quantized:Arc-Intelligence/ATLAS-8B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-12T08:08:35Z |
---
base_model: Arc-Intelligence/ATLAS-8B-Instruct
datasets:
- Arc-Intelligence/Arc-ATLAS-Teach-v0
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- supervised-fine-tuning
- teacher-model
- pedagogy
- reasoning
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Arc-Intelligence/ATLAS-8B-Instruct
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ATLAS-8B-Instruct-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/ATLAS-8B-Instruct-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ATLAS-8B-Instruct-GGUF/resolve/main/ATLAS-8B-Instruct.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
BienKieu/deepseek-7b-lora
|
BienKieu
| 2025-09-12T09:03:37Z | 10 | 0 |
peft
|
[
"peft",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:deepseek-ai/deepseek-llm-7b-base",
"base_model:adapter:deepseek-ai/deepseek-llm-7b-base",
"region:us"
] | null | 2025-09-10T19:15:04Z |
---
base_model: deepseek-ai/deepseek-llm-7b-base
library_name: peft
model_name: deepseek-7b-lora-output
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for deepseek-7b-lora-output
This model is a fine-tuned version of [deepseek-ai/deepseek-llm-7b-base](https://huggingface.co/deepseek-ai/deepseek-llm-7b-base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- PEFT 0.15.2
- TRL: 0.23.0
- Transformers: 4.56.1
- Pytorch: 2.8.0
- Datasets: 3.6.0
- Tokenizers: 0.22.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
5456es/bees_prune_Llama-3.2-3B-Instruct_prune_0.5-sigmoid
|
5456es
| 2025-09-12T09:03:35Z | 26 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"bees",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T04:41:14Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- bees
- pruned
---
# bees_prune_Llama-3.2-3B-Instruct_prune_0.5-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the bees method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: bees
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: bees
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/bees_prune_Llama-3.2-3B-Instruct_prune_0.5-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid
|
5456es
| 2025-09-12T09:03:04Z | 37 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:08:56Z |
---
license: apache-2.0
base_model: Qwen2.5-0.5B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-0.5B-Instruct using the cluster method.
## Model Details
- **Base Model**: Qwen2.5-0.5B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.7-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/selective_dpo_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T09:02:42Z | 28 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"selective",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:06:28Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- selective
- pruned
---
# selective_dpo_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the selective method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: selective
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: selective
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/selective_dpo_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
andersonbcdefg/vl-finetuning-max-thresh-10-2025-09-12
|
andersonbcdefg
| 2025-09-12T09:02:41Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_5_vl",
"image-to-text",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-to-text
| 2025-09-12T08:58:41Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
5456es/last_layer_prune_Llama-3.2-3B-Instruct_prune_0.6-sigmoid
|
5456es
| 2025-09-12T09:02:15Z | 0 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"last",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:57:57Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- last
- pruned
---
# last_layer_prune_Llama-3.2-3B-Instruct_prune_0.6-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the last method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: last
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: last
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/last_layer_prune_Llama-3.2-3B-Instruct_prune_0.6-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
manbeast3b/007-american-party-01-2
|
manbeast3b
| 2025-09-12T09:00:12Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-09-10T00:39:03Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
sitaram05s/blockassist
|
sitaram05s
| 2025-09-12T09:00:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging sneaky camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T15:46:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging sneaky camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manbeast3b/007-iphone17-boo-01r15
|
manbeast3b
| 2025-09-12T08:59:18Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-09-10T14:07:48Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
5456es/random_prune_Qwen2.5-7B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T08:57:56Z | 27 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"random",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-08T04:30:45Z |
---
license: apache-2.0
base_model: Qwen2.5-7B-Instruct
tags:
- dpo
- preference-learning
- random
- pruned
---
# random_prune_Qwen2.5-7B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-7B-Instruct using the random method.
## Model Details
- **Base Model**: Qwen2.5-7B-Instruct
- **Training Method**: random
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: random
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/random_prune_Qwen2.5-7B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
mkurman/lfm2-350M-med
|
mkurman
| 2025-09-12T08:57:38Z | 2 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"lfm2",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:LiquidAI/LFM2-350M",
"base_model:quantized:LiquidAI/LFM2-350M",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-11T17:46:00Z |
---
base_model:
- LiquidAI/LFM2-350M
library_name: transformers
license: other
license_name: lfm1.0
license_link: LICENSE
tags:
- mergekit
- merge
---
# lfm2-350M-med
**Small medical fine-tune on top of LiquidAI’s LFM2-350M.**
This checkpoint specializes the 350M LFM2 base for medical Q&A and tool-augmented search, using a light-weight recipe designed for laptops/edge boxes.
> ⚠️ **Medical safety**: This model is **not** a clinician. It may hallucinate and should **not** be used for diagnosis or treatment. Always seek qualified medical supervision.
---
## TL;DR
- **Base**: [LiquidAI/LFM2-350M](https://huggingface.co/LiquidAI/LFM2-350M).
- **Training**:
1) SFT on **open-source medical data** + **tool-calling (search) traces**
2) **DPO** preference alignment using **MedMCQA** as a preference signal
3) Post-merge with the base via **Arcee Fusion** (MergeKit) for controlled weight fusion
- **Eval (author’s harness)**
- **MMLU-Pro**: **19.46** (vs **18.76** base in same harness)
- **IFEVAL**: **52.595** (vs **61.72** base in same harness)
_Note_: LFM2’s official IFEVAL uses a different internal harness and reports ~65 on IFEVAL for the base; numbers are **not directly comparable** across harnesses.
---
## What’s inside
### Base model: LFM2-350M
- Designed for **on-device** inference, with strong CPU latency and a **ChatML-like** template.
- Supports **tool use** with dedicated special tokens (`<tool_call>`, `</tool_call>`, etc.).
See the base card for the full template and examples.
### Specialization steps
1. **Domain SFT (medical + tools)**
- Instruction-style Q&A from open medical sources and synthetic conversions.
- Tool-use (search) supervised traces to teach function calling patterns.
2. **Preference alignment (DPO)**
- Direct Preference Optimization with **MedMCQA-derived** preferences to bias toward clinically reasonable short answers.
- Rationale: DPO is simple, stable at a small scale, and works well for short-form medical responses.
3. **Model fusion (Arcee Fusion)**
- Final merge uses **Arcee Fusion** in MergeKit, which selectively fuses parameters to avoid over-averaging and can be configured via `merge_method: arcee_fusion`.
---
## Intended use & limitations
**Use**: **education**, **research**.
**Don’t use**: any medical advice.
---
## Evaluation
> All results below were run with the author’s harness; they **will differ** from LiquidAI’s internal suite and Open LLM Leaderboard settings.
| Benchmark | lfm2-350M-med | LFM2-350M (same harness) |
|------------|---------------:|-------------------------:|
| MMLU-Pro | **19.46** | 18.76 |
| IFEVAL | **52.595** | 61.72 |
- **MMLU-Pro** raises difficulty with 10 choices and more reasoning-heavy items—small models typically drop vs standard MMLU, so small absolute movements are meaningful.
- **IFEVAL** measures verifiable instruction-following; scores depend heavily on prompt templates and verification scripts.
---
## Quickstart (Transformers)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "mkurman/lfm2-350M-med"
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="bfloat16")
messages = [
{"role": "system", "content": "You are a careful medical assistant. Cite sources and warn that outputs are not medical advice."},
{"role": "user", "content": "Briefly explain the difference between cellulitis and erysipelas."}
]
prompt = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
out = model.generate(**tok(prompt, return_tensors="pt"), max_new_tokens=256)
print(tok.decode(out[0], skip_special_tokens=True))
|
5456es/last_layer_prune_Llama-3.2-3B-Instruct_prune_0.2-sigmoid
|
5456es
| 2025-09-12T08:56:34Z | 0 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"last",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:52:03Z |
---
license: apache-2.0
base_model: Llama-3.2-3B-Instruct
tags:
- dpo
- preference-learning
- last
- pruned
---
# last_layer_prune_Llama-3.2-3B-Instruct_prune_0.2-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-3B-Instruct using the last method.
## Model Details
- **Base Model**: Llama-3.2-3B-Instruct
- **Training Method**: last
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: last
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/last_layer_prune_Llama-3.2-3B-Instruct_prune_0.2-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
FatimahEmadEldin/Constrained-Track-Document-Bassline-Readability-Arabertv2-d3tok-reg
|
FatimahEmadEldin
| 2025-09-12T08:55:08Z | 18 | 0 | null |
[
"safetensors",
"bert",
"ar",
"dataset:CAMeL-Lab/BAREC-Shared-Task-2025-doc",
"base_model:CAMeL-Lab/readability-arabertv2-d3tok-reg",
"base_model:finetune:CAMeL-Lab/readability-arabertv2-d3tok-reg",
"region:us"
] | null | 2025-08-12T15:13:34Z |
---
datasets:
- CAMeL-Lab/BAREC-Shared-Task-2025-doc
language:
- ar
base_model:
- aubmindlab/bert-base-arabertv2
- CAMeL-Lab/readability-arabertv2-d3tok-reg
---
# MorphoArabia at BAREC 2025 Shared Task: A Hybrid Architecture with Morphological Analysis for Arabic Readability Assessmen
<p align="center">
<img src="https://placehold.co/800x200/dbeafe/3b82f6?text=Barec-Readability-Assessment" alt="Barec Readability Assessment">
</p>
This repository contains the official models and results for **MorphoArabia**, the submission to the **[BAREC 2025 Shared Task](https://www.google.com/search?q=https://sites.google.com/view/barec-2025/home)** on Arabic Readability Assessment.
#### By: [Fatimah Mohamed Emad Elden](https://scholar.google.com/citations?user=CfX6eA8AAAAJ&hl=ar)
#### *Cairo University*
[](https://arxiv.org/abs/25XX.XXXXX)
[](https://github.com/astral-fate/barec-Arabic-Readability-Assessment)
[](https://huggingface.co/collections/FatimahEmadEldin/barec-shared-task-2025-689195853f581b9a60f9bd6c)
[](https://github.com/astral-fate/mentalqa2025/blob/main/LICENSE)
---
## Model Description
This project introduces a **morphologically-aware approach** for assessing the readability of Arabic text. The system is built around a fine-tuned regression model designed to process morphologically analyzed text. For the **Constrained** and **Open** tracks of the shared task, this core model is extended into a hybrid architecture that incorporates seven engineered lexical features.
A key element of this system is its deep morphological preprocessing pipeline, which uses the **CAMEL Tools d3tok analyzer**. This allows the model to capture linguistic complexities that are often missed by surface-level tokenization methods. This approach proved to be highly effective, achieving a peak **Quadratic Weighted Kappa (QWK) score of 84.2** on the strict sentence-level test set.
The model predicts a readability score on a **19-level scale**, from 1 (easiest) to 19 (hardest), for a given Arabic sentence or document.
-----
# Hybrid Arabic Readability Model (Constrained Track - Document Level)
This repository contains a fine-tuned hybrid model for **document-level** Arabic readability assessment. It was trained for the Constrained Track of the BAREC competition.
The model combines the textual understanding of **CAMeL-Lab/readability-arabertv2-d3tok-reg** with 7 additional lexical features to produce a regression-based readability score for full documents.
**NOTE:** This is a custom model architecture. You **must** use the `trust_remote_code=True` argument when loading it.
## How to Use
The model requires both the document text and a tensor containing 7 numerical features.
### Step 1: Installation
Install the necessary libraries:
```bash
pip install transformers torch pandas arabert
````
### Step 2: Full Inference Example
This example shows how to preprocess a document, extract features, and get a readability score.
```python
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel
from arabert.preprocess import ArabertPreprocessor
# --- 1. Define the Feature Engineering Function ---
def get_lexical_features(text, lexicon):
words = text.split()
if not words: return [0.0] * 7
word_difficulties = [lexicon.get(word, 3.0) for word in words]
features = [
float(len(text)), float(len(words)),
float(np.mean([len(w) for w in words]) if words else 0.0),
float(np.mean(word_difficulties)), float(np.max(word_difficulties)),
float(np.sum(np.array(word_difficulties) > 4)),
float(len([w for w in words if w not in lexicon]) / len(words))
]
return features
# --- 2. Initialize Models and Processors ---
repo_id = "FatimahEmadEldin/Constrained-Track-Document-Bassline-Readability-Arabertv2-d3tok-reg"
arabert_preprocessor = ArabertPreprocessor(model_name="aubmindlab/bert-large-arabertv2")
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
# --- 3. Prepare Input Document and Lexicon ---
# For a real use case, load the full SAMER lexicon.
sample_lexicon = {'جملة': 2.5, 'عربية': 3.1, 'بسيطة': 1.8, 'النص': 2.8, 'طويل': 3.5}
document_text = "هذا مثال لجملة عربية بسيطة. هذا النص أطول قليلاً من المثال السابق."
# --- 4. Run the Full Pipeline ---
preprocessed_text = arabert_preprocessor.preprocess(document_text)
numerical_features_list = get_lexical_features(preprocessed_text, sample_lexicon)
numerical_features = torch.tensor([numerical_features_list], dtype=torch.float)
inputs = tokenizer(preprocessed_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs['extra_features'] = numerical_features # The model expects 'extra_features'
# --- 5. Perform Inference ---
model.eval()
with torch.no_grad():
logits = model(**inputs)[1] # The model returns (loss, logits)
# --- 6. Process the Output ---
predicted_score = logits.item()
final_level = round(max(0, min(18, predicted_score))) + 1
print(f"Input Document: '{document_text}'")
print(f"Raw Regression Score: {predicted_score:.4f}")
print(f"Predicted Readability Level (1-19): {final_level}")
```
## ⚙️ Training Procedure
The system employs two distinct architectures based on the track's constraints:
* **Strict Track**: This track uses a base regression model, `CAMeL-Lab/readability-arabertv2-d3tok-reg`, fine-tuned directly on the BAREC dataset.
* **Constrained and Open Tracks**: These tracks utilize a hybrid model. This architecture combines the deep contextual understanding of the Transformer with explicit numerical features. The final representation for a sentence is created by concatenating the Transformer's `[CLS]` token embedding with a 7-dimensional vector of engineered lexical features derived from the SAMER lexicon.
A critical component of the system is its preprocessing pipeline, which leverages the CAMEL Tools `d3tok` format. The `d3tok` analyzer performs a deep morphological analysis by disambiguating words in context and then segmenting them into their constituent morphemes.
### Frameworks
* PyTorch
* Hugging Face Transformers
-----
### 📊 Evaluation Results
The models were evaluated on the blind test set provided by the BAREC organizers. The primary metric for evaluation is the **Quadratic Weighted Kappa (QWK)**, which penalizes larger disagreements more severely.
#### Final Test Set Scores (QWK)
| Track | Task | Dev (QWK) | Test (QWK) |
| :--- | :--- | :---: | :---: |
| **Strict** | Sentence | 0.823 | **84.2** |
| | Document | 0.823\* | 79.9 |
| **Constrained** | Sentence | 0.810 | 82.9 |
| | Document | 0.835\* | 75.5 |
| **Open** | Sentence | 0.827 | 83.6 |
| | Document | 0.827\* | **79.2** |
\*Document-level dev scores are based on the performance of the sentence-level model on the validation set.
-----
## 📜 Citation
If you use the work, please cite the paper:
```
@inproceedings{eldin2025morphoarabia,
title={{MorphoArabia at BAREC 2025 Shared Task: A Hybrid Architecture with Morphological Analysis for Arabic Readability Assessmen}},
author={Eldin, Fatimah Mohamed Emad},
year={2025},
booktitle={Proceedings of the BAREC 2025 Shared Task},
eprint={25XX.XXXXX},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Loomel/prior-model
|
Loomel
| 2025-09-12T08:54:32Z | 84 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-16T16:39:30Z |
---
base_model: unsloth/qwen3-4b-base-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Loomel
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-4b-base-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
llllwxxx/Qwen3-Next-80B-A3B-Thinking-FP8-Dynamic
|
llllwxxx
| 2025-09-12T08:53:31Z | 0 | 4 | null |
[
"base_model:Qwen/Qwen3-Next-80B-A3B-Thinking",
"base_model:quantized:Qwen/Qwen3-Next-80B-A3B-Thinking",
"region:us"
] | null | 2025-09-12T08:19:26Z |
---
base_model:
- Qwen/Qwen3-Next-80B-A3B-Thinking
base_model_relation: quantized
---
# Qwen3-80B FP8 Dynamic Quantization with LLMCompressor
## Introduction
---
## Environment Requirements
- **Python 3.10+**
- **NVIDIA GPU** (Hopper architecture supporting FP8, e.g., H100/A100)
- **CUDA 12.x**
- **PyTorch 2.6**
- **Dependencies installation**:
```bash
uv pip install llmcompressor torch
uv pip install git+https://github.com/huggingface/transformers.git@main
```
---
## Usage Steps
1. Save the following script as `quantize.py`:
```python
from llmcompressor.transformers import SparseAutoModelForCausalLM
from transformers import AutoTokenizer
model_name = "Qwen/Qwen3-Next-80B-A3B-Thinking"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = SparseAutoModelForCausalLM.from_pretrained(
model_name,
dtype="auto",
device_map="auto"
)
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Configure simple PTQ quantization
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=[
"lm_head",
"re:.*mlp.gate$", # Ignore standard gate layers
"re:.*shared_expert_gate$", # Ignore shared expert gate layers
"re:.*router$" # Ignore router layers
]
)
# Apply quantization algorithm
oneshot(model=model, recipe=recipe)
# Save model
SAVE_DIR = model_name.split("/")[1] + "-FP8-Dynamic"
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
```
2. Run the script:
```bash
python quantize.py
```
3. The quantized model will be saved in the `Qwen3-Next-80B-A3B-Thinking-FP8-Dynamic` directory.
```bash
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve Qwen3-Next-80B-A3B-Thinking-FP8-Dynamic --port 8080 --tensor-parallel-size 2 --api-key 123 --gpu-memory-utilization 0.95 --max_num_seqs 2 --max-model-len 131072 --enable-auto-tool-choice --tool-call-parser hermes --reasoning-parser deepseek_r1 # --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
```
---
---
## Notes
1. **There is compatibility issues between the quantized version and MTP**
---
## References
- [LLMCompressor Official Documentation](https://vllm.hyper.ai/docs/features/quantization/fp8)
|
resproj007/torgo_healthy_female_sesame_1b_FC02
|
resproj007
| 2025-09-12T08:53:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"csm",
"trl",
"en",
"base_model:unsloth/csm-1b",
"base_model:finetune:unsloth/csm-1b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-12T08:53:05Z |
---
base_model: unsloth/csm-1b
tags:
- text-generation-inference
- transformers
- unsloth
- csm
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** resproj007
- **License:** apache-2.0
- **Finetuned from model :** unsloth/csm-1b
This csm model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T08:52:02Z | 21 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:03:42Z |
---
license: apache-2.0
base_model: Qwen2.5-0.5B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-0.5B-Instruct using the cluster method.
## Model Details
- **Base Model**: Qwen2.5-0.5B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Qwen2.5-0.5B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
|
5456es
| 2025-09-12T08:51:40Z | 31 | 0 | null |
[
"safetensors",
"qwen2",
"dpo",
"preference-learning",
"cluster",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-07T05:01:16Z |
---
license: apache-2.0
base_model: Qwen2.5-1.5B-Instruct
tags:
- dpo
- preference-learning
- cluster
- pruned
---
# cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Qwen2.5-1.5B-Instruct using the cluster method.
## Model Details
- **Base Model**: Qwen2.5-1.5B-Instruct
- **Training Method**: cluster
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: cluster
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/cluster_prune_Qwen2.5-1.5B-Instruct_prune_0.3-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
5456es/last_layer_prune_Llama-3.2-1B-Instruct_prune_0.6-sigmoid
|
5456es
| 2025-09-12T08:51:08Z | 0 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"last",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:49:03Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- last
- pruned
---
# last_layer_prune_Llama-3.2-1B-Instruct_prune_0.6-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the last method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: last
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: last
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/last_layer_prune_Llama-3.2-1B-Instruct_prune_0.6-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
BKM1804/d3e0b177-7126-439b-8861-e7131c9367e6
|
BKM1804
| 2025-09-12T08:46:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-11T14:38:32Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
prithivMLmods/Gliese-OCR-7B-Post1.0
|
prithivMLmods
| 2025-09-12T08:45:41Z | 0 | 0 | null |
[
"safetensors",
"qwen2_5_vl",
"image-to-text",
"license:apache-2.0",
"region:us"
] |
image-to-text
| 2025-09-10T18:31:55Z |
---
license: apache-2.0
pipeline_tag: image-to-text
---
|
Alicia22/Ali_Frid_F19
|
Alicia22
| 2025-09-12T08:42:28Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-09-12T08:40:02Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757666358
|
stonermay
| 2025-09-12T08:40:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving lightfooted caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T08:40:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving lightfooted caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
nobu222/rakugo-lora-gemma2
|
nobu222
| 2025-09-12T08:38:18Z | 0 | 0 | null |
[
"safetensors",
"region:us"
] | null | 2025-09-12T08:30:26Z |
---
title: "Rakugo LoRA Space"
emoji: 🎭
colorFrom: indigo
colorTo: pink
sdk: gradio
sdk_version: "4.0"
app_file: app.py
pinned: false
---
# 落語LoRA(志ん生スタイルの枕強化) for Gemma 2
- **Base**: `google/gemma-2-9b-it`
- **Adapter**: LoRA (r=32, alpha=64, QLoRA学習)
- **Style**: 「質問拾い→一分線香(短小咄)→観察ギャグ→三点→“◯◯っていやあ…”→枕冒頭」
## 注意
- ベースモデルの利用条件(申請/ライセンス)に従ってください。
- 文化表現を模倣しますが、不適切表現を避けるよう学習しています。
|
HectorHe/Qwen1.5-MOE-aux-free-sft-math7k-5e-5-gamma
|
HectorHe
| 2025-09-12T08:38:05Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_moe",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"conversational",
"dataset:HectorHe/math7k",
"base_model:Qwen/Qwen1.5-MoE-A2.7B",
"base_model:finetune:Qwen/Qwen1.5-MoE-A2.7B",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T21:21:41Z |
---
base_model: Qwen/Qwen1.5-MoE-A2.7B
datasets: HectorHe/math7k
library_name: transformers
model_name: Qwen1.5-MOE-aux-free-sft-math7k-5e-5-gamma
tags:
- generated_from_trainer
- open-r1
- trl
- sft
licence: license
---
# Model Card for Qwen1.5-MOE-aux-free-sft-math7k-5e-5-gamma
This model is a fine-tuned version of [Qwen/Qwen1.5-MoE-A2.7B](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) on the [HectorHe/math7k](https://huggingface.co/datasets/HectorHe/math7k) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="HectorHe/Qwen1.5-MOE-aux-free-sft-math7k-5e-5-gamma", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hector_-carnegie-mellon-university/huggingface/runs/ipdap84m)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.51.0
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
maidacundo/annie-lite-v0.3.1-ckpt-260-qwen3-8b
|
maidacundo
| 2025-09-12T08:36:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T08:32:39Z |
---
base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** maidacundo
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
5456es/last_layer_prune_Llama-3.2-1B-Instruct_prune_0.8-sigmoid
|
5456es
| 2025-09-12T08:35:19Z | 0 | 0 | null |
[
"safetensors",
"llama",
"dpo",
"preference-learning",
"last",
"pruned",
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:33:11Z |
---
license: apache-2.0
base_model: Llama-3.2-1B-Instruct
tags:
- dpo
- preference-learning
- last
- pruned
---
# last_layer_prune_Llama-3.2-1B-Instruct_prune_0.8-sigmoid
This model is a DPO (Direct Preference Optimization) fine-tuned version of Llama-3.2-1B-Instruct using the last method.
## Model Details
- **Base Model**: Llama-3.2-1B-Instruct
- **Training Method**: last
- **Pruning Ratio**: unknown
- **Training Date**: 2025-09-12
## Training Configuration
This model was trained using Direct Preference Optimization (DPO) with the following characteristics:
- Method: last
- Pruning applied during training
- Fine-tuned on preference data
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "5456es/last_layer_prune_Llama-3.2-1B-Instruct_prune_0.8-sigmoid"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Data
This model was trained on preference data using the DPO algorithm.
## Limitations
This model inherits the limitations of its base model and may have additional limitations due to the pruning process.
## Citation
If you use this model, please cite the original DPO paper and the base model.
|
yonggwon/gemma-3-12b-it-Rude-LORA
|
yonggwon
| 2025-09-12T08:34:47Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-09-12T08:30:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Avokado777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon
|
Avokado777
| 2025-09-12T08:32:32Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am fast small gibbon",
"trl",
"genrl-swarm",
"I am fast_small_gibbon",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-03T23:03:53Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am fast small gibbon
- trl
- genrl-swarm
- I am fast_small_gibbon
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Avokado777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/corobov-mitya-individual/huggingface/runs/zcdsijaj)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Alicia22/Ali_Frid_F16
|
Alicia22
| 2025-09-12T08:32:17Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-09-12T08:29:45Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
kakimoto/act-airhockey-step100k
|
kakimoto
| 2025-09-12T08:30:58Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"act",
"robotics",
"dataset:kakimoto/record-hockey-640x480",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-09-12T08:30:36Z |
---
datasets: kakimoto/record-hockey-640x480
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- act
- lerobot
- robotics
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
stonermay/blockassist-bc-diving_lightfooted_caterpillar_1757665747
|
stonermay
| 2025-09-12T08:30:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving lightfooted caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-12T08:30:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving lightfooted caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
inclusionAI/GroveMoE-Inst
|
inclusionAI
| 2025-09-12T08:30:17Z | 382 | 31 |
transformers
|
[
"transformers",
"safetensors",
"qwen3_moe",
"text-generation",
"conversational",
"custom_code",
"arxiv:2508.07785",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T05:28:51Z |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---
# GroveMoE-Inst
</div>
<p align="left">
🤗 <a href="https://huggingface.co/collections/inclusionAI/grovemoe-68a2b58acbb55827244ef664">Models</a>   |    📑 <a href="https://arxiv.org/abs/2508.07785">Paper</a>    |    🔗 <a href="https://github.com/inclusionAI/GroveMoE">Github</a>  
## Highlights
We introduce **GroveMoE**, a new sparse architecture using **adjugate experts** for dynamic computation allocation, featuring the following key highlights:
- **Architecture**: Novel **adjugate experts** grouped with ordinary experts; shared computation is executed once, then reused, cutting FLOPs.
- **Sparse Activation**: 33 B params total, only **3.14–3.28 B** active per token.
- **Traning**: Mid-training + SFT, up-cycled from Qwen3-30B-A3B-Base; preserves prior knowledge while adding new capabilities.
## Model Downloads
| **Model** | **#Total Params** | **#Activated Params** | **HF Download** |**MS Download** |
|:---------:|:-----------------:|:---------------------:|:------------:|:------------:|
| GroveMoE-Base | 33B | 3.14~3.28B | [🤗 HuggingFace](https://huggingface.co/inclusionAI/GroveMoE-Base) | [📦 ModelScope](https://modelscope.cn/models/cccnju/GroveMoE-Base) |
| GroveMoE-Inst | 33B | 3.14~3.28B | [🤗 HuggingFace](https://huggingface.co/inclusionAI/GroveMoE-Inst) | [📦 ModelScope](https://modelscope.cn/models/cccnju/GroveMoE-Inst) |
## Performance
| Model | Activated Params | MMLU-Pro | SuperGPQA | GPQA-Diamond | OlympiadBench | Omni-math | AIME'25 | MultiPL-E | LiveCodeBench v6 |
|:-----:|:----------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:|:------------------:|:------------------:|
|Llama4-Scout| 17B | 64.9 | 42.0 | 55.6 | 56.6 | 30.2 | 10.0 | 45.0 | 32.0 |
|Qwen3-30B-A3B| 3B | 63.3 | 40.5 | 51.7 | 60.3 | 33.7 | 21.7 | 66.0 | 29.4 |
|Qwen3-32B| 32B | 68.2 | 43.0 | 53.6 | 59.5 | 31.8 | 22.9 | 68.6 | 28.6 |
|Gemma3-27B-IT| 27B | 67.1 | 35.6 | 45.3 | 59.9 | 33.3 | 23.1 | 65.5 | 30.9 |
|Mistral-Small-3.2| 24B | 68.1 | 37.5 | 59.9 | 61.9 | 33.4 | 28.1 | 69.5 | 32.2 |
|GroveMoE-Inst|3.14~3.28B | <font color=#FBD98D>**72.8**</font> | <font color=#FBD98D>**47.7**</font> | <font color=#FBD98D>**61.3**</font> |<font color=#FBD98D>**71.2**</font> |<font color=#FBD98D>**43.5**</font> | <font color=#FBD98D>**44.4**</font> |<font color=#FBD98D>**74.5**</font> | <font color=#FBD98D>**34.6**</font> |
We bold the top1 scores separately for all models. More details are reported in our [technical report](https://arxiv.org/abs/2508.07785).
## Run GroveMoE
### 🤗 Transformers Quick Start
Below, there are some code snippets on how to get quickly started with running the model. First, install the Transformers library.
```sh
$ pip install transformers==4.51.3
```
Then, copy the snippet from the section that is relevant for your use case.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "inclusionAI/GroveMoE-Inst"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
```
### 🚀 SGLang Quick Start
For SGLang, you can follow the steps below to deploy:
1️⃣ Install Dependencies
First, clone the repository:
```shell
git clone https://github.com/inclusionAI/GroveMoE.git
```
Then, install Transformers:
```shell
cd src/transformers-4.51.3
pip install .
```
Next, install SGLang:
```shell
cd src/sglang-0.4.6.post5
pip install .
```
2️⃣ Launch the Server
Run the following command to start SGLang:
```shell
python -m sglang.launch_server \
--model-path inclusionAI/GroveMoE-Inst \
--port 30000 \
--context-length 32768
```
3️⃣ Access the API
Once started, the OpenAI-compatible API will be available at `http://localhost:30000/v1`.
Test it with curl:
```shell
curl http://localhost:30000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "inclusionAI/GroveMoE-Inst",
"messages": [{"role": "user", "content": "Hello, SGLang!"}]
}'
```
### llama.cpp
Thanks @CISCai, support for llama.cpp can be found in the implementation at https://github.com/ggml-org/llama.cpp/pull/15510.
## Best Practices for Model Configuration
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. (⚠️ For benchmarking scenarios requiring sampling (e.g., AIME), these parameters must be explicitly configured.)
2. **Adequate Output Length**: Set output length to 16,384 tokens for general use cases to accommodate complex reasoning tasks in instruct models.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
## Citation
```bibtex
@article{GroveMoE,
title = {GroveMoE: Towards Efficient and Superior MoE LLMs with Adjugate Experts},
author = {Wu, Haoyuan and Chen, Haoxing and Chen, Xiaodong and Zhou, Zhanchao and Chen, Tieyuan and Zhuang, Yihong and Lu, Guoshan and Zhao, Junbo and Liu, Lin and Huang, Zenan and Lan, Zhenzhong and Yu, Bei and Li, Jianguo},
journal = {arXiv preprint arXiv:2508.07785},
year = {2025}
}
```
|
Kijai/WanVideo_comfy_fp8_scaled
|
Kijai
| 2025-09-12T08:29:31Z | 259,971 | 206 |
diffusion-single-file
|
[
"diffusion-single-file",
"comfyui",
"base_model:Wan-AI/Wan2.1-VACE-1.3B",
"base_model:finetune:Wan-AI/Wan2.1-VACE-1.3B",
"license:apache-2.0",
"region:us"
] | null | 2025-07-22T10:39:42Z |
---
tags:
- diffusion-single-file
- comfyui
license: apache-2.0
base_model:
- Wan-AI/Wan2.1-VACE-14B
- Wan-AI/Wan2.1-VACE-1.3B
---
Better fp8 scaled models (when measured against fp16) based on quantization code from https://github.com/Tencent-Hunyuan/HunyuanVideo/blob/main/hyvideo/modules/fp8_optimization.py
Can be used with: https://github.com/kijai/ComfyUI-WanVideoWrapper (latest version) and ComfyUI native WanVideo nodes.
14B-T2V comparison test without LoRAs, 25 steps, 832x480x81
---
<video controls autoplay width=50% src=https://cdn-uploads.huggingface.co/production/uploads/63297908f0b2fc94904a65b8/DwlAGbj20it1unZW54NDC.mp4></video>
2.2 A14B-T2V test
---
<video controls autoplay width=50% src=https://cdn-uploads.huggingface.co/production/uploads/63297908f0b2fc94904a65b8/6A_AZ7GN_uxeRH0vwsWkH.mp4></video>
<video controls autoplay width=50% src=https://cdn-uploads.huggingface.co/production/uploads/63297908f0b2fc94904a65b8/GpuqQ4YwoR3kjxkhuvP8P.mp4></video>
The e5m2 marked as v2 is the one uploaded here and these are all scaled even if I forgot to label properly.
|
jumanaawk/money_detection
|
jumanaawk
| 2025-09-12T08:28:27Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-09-12T08:28:27Z |
---
license: apache-2.0
---
|
DoppelReflEx/CirtusMandarin-14B
|
DoppelReflEx
| 2025-09-12T08:23:39Z | 0 | 1 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:NousResearch/Hermes-4-14B",
"base_model:merge:NousResearch/Hermes-4-14B",
"base_model:ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1",
"base_model:merge:ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1",
"base_model:nbeerbower/Vitus-Qwen3-14B",
"base_model:merge:nbeerbower/Vitus-Qwen3-14B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-12T08:18:38Z |
---
base_model:
- nbeerbower/Vitus-Qwen3-14B
- ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1
- NousResearch/Hermes-4-14B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [NousResearch/Hermes-4-14B](https://huggingface.co/NousResearch/Hermes-4-14B) as a base.
### Models Merged
The following models were included in the merge:
* [nbeerbower/Vitus-Qwen3-14B](https://huggingface.co/nbeerbower/Vitus-Qwen3-14B)
* [ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1](https://huggingface.co/ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: NousResearch/Hermes-4-14B
parameters:
density: 0.9
weight: 1
- model: nbeerbower/Vitus-Qwen3-14B
parameters:
density: 0.6
weight: 0.8
- model: ReadyArt/The-Omega-Directive-Qwen3-14B-v1.1
parameters:
density: 0.8
weight: 0.6
merge_method: dare_ties
base_model: NousResearch/Hermes-4-14B
tokenizer_source: base
parameters:
rescale: true
dtype: bfloat16
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.