modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
andi611/bert-base-cased-ner-conll2003
andi611
2021-07-03T15:02:02Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: bert-base-cased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9860628716077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9406 - Recall: 0.9463 - F1: 0.9434 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5855 | 1.0 | 878 | 0.0848 | 0.8965 | 0.8980 | 0.8973 | 0.9760 | | 0.058 | 2.0 | 1756 | 0.0607 | 0.9357 | 0.9379 | 0.9368 | 0.9840 | | 0.0282 | 3.0 | 2634 | 0.0604 | 0.9354 | 0.9420 | 0.9387 | 0.9852 | | 0.0148 | 4.0 | 3512 | 0.0606 | 0.9386 | 0.9485 | 0.9435 | 0.9861 | | 0.0101 | 5.0 | 4390 | 0.0620 | 0.9406 | 0.9463 | 0.9434 | 0.9861 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
espnet/kan-bayashi_vctk_xvector_conformer_fastspeech2
espnet
2021-07-03T15:01:40Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_xvector_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4394602/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_gst_xvector_tacotron2
espnet
2021-07-03T15:01:30Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst+xvector_tacotron2` ♻️ Imported from https://zenodo.org/record/4394598/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_xvector_transformer
espnet
2021-07-03T15:01:07Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_xvector_transformer` ♻️ Imported from https://zenodo.org/record/4393279/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_libritts_tts_train_gst_xvector_trasnformer_raw_phn_tacotro-truncated-250027
espnet
2021-07-03T15:00:32Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:libritts", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - libritts license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/libritts_tts_train_gst+xvector_trasnformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4409702/ This model was trained by kan-bayashi using libritts/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
espnet
2021-07-03T14:58:25Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_xvector_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4394600/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
espnet
2021-07-03T14:52:37Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_xvector_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4393279/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.acc.ave
espnet
2021-07-03T14:52:14Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - chime4 license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/chime4_asr_train_asr_transformer3_raw_en_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4414883/ This model was trained by kamo-naoyuki using chime4/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tacotron2_accent
espnet
2021-07-03T14:51:36Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tacotron2_accent` ♻️ Imported from https://zenodo.org/record/4381098/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_fastspeech2_tacotron2_teacher_raw_phn_jacon-truncated-f45dcb
espnet
2021-07-03T14:50:56Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_fastspeech2_tacotron2_teacher_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4381100/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave
espnet
2021-07-03T14:50:41Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4381098/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/Hoon_Chung_jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave
espnet
2021-07-03T14:50:29Z
2
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4292742/ This model was trained by Hoon Chung using jsut/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_timit_asr_train_asr_raw_word_valid.acc.ave
espnet
2021-07-03T14:50:21Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:timit", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - timit license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/timit_asr_train_asr_raw_word_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4284058/ This model was trained by kamo-naoyuki using timit/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_reverb_asr_train_asr_transformer4_raw_char_batch_bins1600-truncated-1b72bb
espnet
2021-07-03T14:50:13Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:reverb", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - reverb license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/reverb_asr_train_asr_transformer4_raw_char_batch_bins16000000_accum_grad1_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4278363/ This model was trained by kamo-naoyuki using reverb/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_wsj_transformer2
espnet
2021-07-03T14:50:01Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:wsj", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - wsj license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/wsj_transformer2` ♻️ Imported from https://zenodo.org/record/4243201/ This model was trained by kamo-naoyuki using wsj/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_aishell_conformer
espnet
2021-07-03T14:49:48Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aishell license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/aishell_conformer` ♻️ Imported from https://zenodo.org/record/4105763/ This model was trained by kamo-naoyuki using aishell/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_transformer
espnet
2021-07-03T14:49:36Z
3
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_transformer` ♻️ Imported from https://zenodo.org/record/4039194/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_tts_train_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
espnet
2021-07-03T14:49:28Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4039194/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_gst_conformer_fastspeech2
espnet
2021-07-03T14:49:04Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4036264/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_gst_fastspeech2
espnet
2021-07-03T14:48:53Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_fastspeech2` ♻️ Imported from https://zenodo.org/record/4036266/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_gst_transformer
espnet
2021-07-03T14:48:45Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_transformer` ♻️ Imported from https://zenodo.org/record/4037456/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_csmsc_transformer
espnet
2021-07-03T14:48:38Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/csmsc_transformer` ♻️ Imported from https://zenodo.org/record/4034125/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_transformer
espnet
2021-07-03T14:48:30Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_transformer` ♻️ Imported from https://zenodo.org/record/4034121/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_-truncated-69081b
espnet
2021-07-03T14:48:02Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4036264/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave
espnet
2021-07-03T14:47:42Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_transformer_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4037456/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_csmsc_tts_train_transformer_raw_phn_pypinyin_g2p_phone_train.loss.ave
espnet
2021-07-03T14:47:33Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/csmsc_tts_train_transformer_raw_phn_pypinyin_g2p_phone_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4034125/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_tts_train_conformer_fastspeech2_raw_phn_tacotron_-truncated-ec9e34
espnet
2021-07-03T14:47:15Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4036268/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_csmsc_fastspeech2
espnet
2021-07-03T14:46:19Z
3
2
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/csmsc_fastspeech2` ♻️ Imported from https://zenodo.org/record/4031953/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_conformer_fastspeech2
espnet
2021-07-03T14:46:10Z
4
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_conformer_fastspeech2` ♻️ Imported from https://zenodo.org/record/4032246/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave
espnet
2021-07-03T14:45:32Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4032246/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kamo-naoyuki_wsj
espnet
2021-07-03T14:45:06Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:wsj", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - wsj license: cc-by-4.0 --- ## Example ESPnet2 ASR model ### `kamo-naoyuki/wsj` ♻️ Imported from https://zenodo.org/record/4003381/ This model was trained by kamo-naoyuki using wsj/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_gst_fastspeech
espnet
2021-07-03T14:44:57Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_gst_fastspeech` ♻️ Imported from https://zenodo.org/record/3986241/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_tacotron2
espnet
2021-07-03T14:44:34Z
12
3
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tacotron2` ♻️ Imported from https://zenodo.org/record/3989498/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_csmsc_fastspeech
espnet
2021-07-03T14:44:26Z
4
0
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/csmsc_fastspeech` ♻️ Imported from https://zenodo.org/record/3986227/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_fastspeech
espnet
2021-07-03T14:44:10Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_fastspeech` ♻️ Imported from https://zenodo.org/record/3986225/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.loss.best
espnet
2021-07-03T14:43:52Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_fastspeech_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986241/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best
espnet
2021-07-03T14:40:17Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/vctk_tts_train_gst_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986237/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best
espnet
2021-07-03T14:40:01Z
5
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3989498/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_fastspeech_raw_phn_jaconv_pyopenjtalk_train.loss.best
espnet
2021-07-03T14:39:37Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_fastspeech_raw_phn_jaconv_pyopenjtalk_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986225/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
andi611/distilbert-base-uncased-ner-conll2003
andi611
2021-07-03T13:08:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.985193893275295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9332 - Recall: 0.9423 - F1: 0.9377 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2042 | 1.0 | 878 | 0.0636 | 0.9230 | 0.9253 | 0.9241 | 0.9822 | | 0.0428 | 2.0 | 1756 | 0.0577 | 0.9286 | 0.9370 | 0.9328 | 0.9841 | | 0.0199 | 3.0 | 2634 | 0.0606 | 0.9364 | 0.9401 | 0.9383 | 0.9851 | | 0.0121 | 4.0 | 3512 | 0.0641 | 0.9339 | 0.9380 | 0.9360 | 0.9847 | | 0.0079 | 5.0 | 4390 | 0.0664 | 0.9332 | 0.9423 | 0.9377 | 0.9852 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
huggingtweets/donkeykongape
huggingtweets
2021-07-03T06:28:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/donkeykongape/1625293730159/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245523276128010240/kEFAcj1B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Donkey Kong</div> <div style="text-align: center; font-size: 14px;">@donkeykongape</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Donkey Kong. | Data | Donkey Kong | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 72 | | Short tweets | 1081 | | Tweets kept | 2047 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pcwumgk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donkeykongape's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/253exk8q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/253exk8q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donkeykongape') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/vinesauce
huggingtweets
2021-07-03T06:11:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/vinesauce/1625292702979/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1021989252920471552/dxWanbnY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vinesauce</div> <div style="text-align: center; font-size: 14px;">@vinesauce</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vinesauce. | Data | Vinesauce | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 2288 | | Short tweets | 0 | | Tweets kept | 962 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/289yzir9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vinesauce's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g0e360r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g0e360r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vinesauce') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gagan3012/k2t-test
gagan3012
2021-07-03T02:43:02Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences license: "MIT" datasets: - WebNLG - Dart metrics: - NLG model-index: - name: k2t-test --- <h1 align="center">keytotext</h1> [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
huggingtweets/harrybutaverage
huggingtweets
2021-07-02T22:00:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/harrybutaverage/1625263201502/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408854540930146309/ZQgGrcsH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">averageharry 😼</div> <div style="text-align: center; font-size: 14px;">@harrybutaverage</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from averageharry 😼. | Data | averageharry 😼 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 28 | | Short tweets | 1190 | | Tweets kept | 2031 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zwpsqrg6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harrybutaverage's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/os07864o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/os07864o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harrybutaverage') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Giuliano/places
Giuliano
2021-07-02T18:31:41Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: places results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # places Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Beach ![Beach](images/Beach.jpg) #### City ![City](images/City.jpg) #### Forest ![Forest](images/Forest.jpg)
jfhr1999/CharacterTest
jfhr1999
2021-07-02T17:47:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jfhr1999/CharacterTest") model = AutoModelWithLMHead.from_pretrained("jfhr1999/CharacterTest") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
micole66/dwarf-goats
micole66
2021-07-02T16:34:53Z
70
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dwarf-goats results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6111111044883728 --- # dwarf-goats Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### african pygmy goat ![african pygmy goat](images/african_pygmy_goat.jpg) #### nigerian dwarf goat ![nigerian dwarf goat](images/nigerian_dwarf_goat.jpg)
espnet/kan_bayashi_jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave
espnet
2021-07-02T12:52:46Z
0
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 widget: - text: "Hello, how are you doing?" --- # ESPnet2 ASR pretrained model ## `kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave` ♻️ Imported from <https://zenodo.org/record/4017026#.YN70XJozZH4> This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
huggingtweets/edba_bsi-joebiden-michelkalika
huggingtweets
2021-07-02T11:47:46Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1010114760489230336/Zy15rE2U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/643893443488522240/_gvbT2p3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe Biden & Business Science Institute & Pr. Michel Kalika</div> <div style="text-align: center; font-size: 14px;">@edba_bsi-joebiden-michelkalika</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe Biden & Business Science Institute & Pr. Michel Kalika. | Data | Joe Biden | Business Science Institute | Pr. Michel Kalika | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 1642 | 1270 | | Retweets | 402 | 580 | 859 | | Short tweets | 37 | 52 | 48 | | Tweets kept | 2811 | 1010 | 363 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ln9teva/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @edba_bsi-joebiden-michelkalika's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3st82ghl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3st82ghl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/edba_bsi-joebiden-michelkalika') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hgarg/fruits
hgarg
2021-07-02T11:08:27Z
68
3
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fruits results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9732142686843872 --- # fruits Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### apple ![apple](images/apple.jpg) #### banana ![banana](images/banana.jpg) #### mango ![mango](images/mango.jpg) #### orange ![orange](images/orange.jpg) #### tomato ![tomato](images/tomato.jpg)
huggingtweets/oksoumhi
huggingtweets
2021-07-02T10:51:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/oksoumhi/1625223087221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334639709226749952/VA2qcHLW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">me, i guess</div> <div style="text-align: center; font-size: 14px;">@oksoumhi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from me, i guess. | Data | me, i guess | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 224 | | Short tweets | 246 | | Tweets kept | 2774 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2u8zn727/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @oksoumhi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gm3vtu3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gm3vtu3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/oksoumhi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
thak123/goan-fish-fry
thak123
2021-07-02T10:46:53Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: goan-fish-fry results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4583333432674408 --- # goan-fish-fry Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### king fish fry ![king fish fry](images/king_fish_fry.jpg) #### mackerel fry ![mackerel fry](images/mackerel_fry.jpg) #### pomfret fry ![pomfret fry](images/pomfret_fry.jpg) #### prawn fish fry ![prawn fish fry](images/prawn_fish_fry.jpg) #### squid fish fry ![squid fish fry](images/squid_fish_fry.jpg)
LorenzoDeMattei/lawn-weeds
LorenzoDeMattei
2021-07-02T10:07:36Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: lawn-weeds results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9166666865348816 --- # lawn-weeds Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### clover ![clover](images/clover.jpg) #### dichondra ![dichondra](images/dichondra.jpg) #### grass ![grass](images/grass.jpg)
deepklarity/roberta-base-hindi
deepklarity
2021-07-02T07:03:36Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Roberta-base training attempt on hindi datasets.
casehold/legalbert
casehold
2021-07-02T05:55:35Z
252
27
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "legal", "fill-mask", "en", "arxiv:2104.08671", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en pipeline_tag: fill-mask tags: - legal --- ### Legal-BERT Model and tokenizer files for Legal-BERT model from [When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings](https://arxiv.org/abs/2104.08671). ### Training Data The pretraining corpus was constructed by ingesting the entire Harvard Law case corpus from 1965 to the present (https://case.law/). The size of this corpus (37GB) is substantial, representing 3,446,187 legal decisions across all federal and state courts, and is larger than the size of the BookCorpus/Wikipedia corpus originally used to train BERT (15GB). ### Training Objective This model is initialized with the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), and trained for an additional 1M steps on the MLM and NSP objective, with tokenization and sentence segmentation adapted for legal text (cf. the paper). ### Usage Please see the [casehold repository](https://github.com/reglab/casehold) for scripts that support computing pretrain loss and finetuning on Legal-BERT for classification and multiple choice tasks described in the paper: Overruling, Terms of Service, CaseHOLD. ### Citation @inproceedings{zhengguha2021, title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset}, author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho}, year={2021}, eprint={2104.08671}, archivePrefix={arXiv}, primaryClass={cs.CL}, booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law}, publisher={Association for Computing Machinery} } Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In *Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21)*, June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: [2104.08671 \\[cs.CL\\]](https://arxiv.org/abs/2104.08671).
casehold/bert-double
casehold
2021-07-02T05:54:19Z
18
2
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "pretraining", "fill-mask", "en", "arxiv:2104.08671", "arxiv:1810.04805", "arxiv:1903.10676", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en pipeline_tag: fill-mask --- ### BERT (double) Model and tokenizer files for BERT (double) model from [When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset](https://arxiv.org/abs/2104.08671). ### Training Data BERT (double) is pretrained using the same English Wikipedia corpus that the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), was pretrained on. For more information on the pretraining corpus, refer to the [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) paper. ### Training Objective This model is initialized with the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), and trained for an additional 1M steps on the MLM and NSP objective. This facilitates a direct comparison to our BERT-based models for the legal domain, which are also pretrained for 2M total steps. - Legal-BERT: zlucia/legalbert (https://huggingface.co/zlucia/legalbert) - Custom Legal-BERT: zlucia/custom-legalbert (https://huggingface.co/zlucia/custom-legalbert) ### Usage Please see the [casehold repository](https://github.com/reglab/casehold) for scripts that support computing pretrain loss and finetuning on BERT (double) for classification and multiple choice tasks described in the paper: Overruling, Terms of Service, CaseHOLD. See `demo.ipynb` in the casehold repository for details on calculating domain specificity (DS) scores for tasks or task examples by taking the difference in pretrain loss on BERT (double) and Legal-BERT. DS score may be readily extended to estimate domain specificity of tasks in other domains using BERT (double) and existing pretrained models (e.g., [SciBERT](https://arxiv.org/abs/1903.10676)). ### Citation @inproceedings{zhengguha2021, title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset}, author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho}, year={2021}, eprint={2104.08671}, archivePrefix={arXiv}, primaryClass={cs.CL}, booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law}, publisher={Association for Computing Machinery} } Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In *Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21)*, June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: [2104.08671 [cs.CL]](https://arxiv.org/abs/2104.08671).
remotejob/tweetsT5_small_sum_fi
remotejob
2021-07-02T01:47:21Z
5
0
transformers
[ "transformers", "pytorch", "rust", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Small t5-small model for summarization
BlightZz/DialoGPT-medium-Kurisu
BlightZz
2021-07-01T22:12:18Z
9
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # A new medium model based on the character Makise Kurisu from Steins;Gate. # Still has some issues that were present in the previous model, for example, mixing lines from other characters. # If you have any questions, feel free to ask me on discord: BlightZz#1169
pierric/ny-cr-fr
pierric
2021-07-01T20:44:14Z
70
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ny-cr-fr results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9305555820465088 --- # ny-cr-fr Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### new york ![new york](images/new_york.jpg) #### playas del coco, costa rica ![playas del coco, costa rica](images/playas_del_coco,_costa_rica.jpg) #### toulouse ![toulouse](images/toulouse.jpg)
jjhoffstein/lotr
jjhoffstein
2021-07-01T20:21:18Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: lotr results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4375 --- # lotr Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### aragorn ![aragorn](images/aragorn.jpg) #### frodo ![frodo](images/frodo.jpg) #### gandalf ![gandalf](images/gandalf.jpg) #### gollum ![gollum](images/gollum.jpg) #### legolas ![legolas](images/legolas.jpg)
lewtun/oz-fauna
lewtun
2021-07-01T15:25:24Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: oz-fauna results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8571428656578064 --- # oz-fauna Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dingo ![dingo](images/dingo.jpg) #### koala ![koala](images/koala.jpg) #### kookaburra ![kookaburra](images/kookaburra.jpg) #### possum ![possum](images/possum.jpg) #### tasmanian devil ![tasmanian devil](images/tasmanian_devil.jpg)
huggingtweets/haikalstr
huggingtweets
2021-07-01T15:18:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/haikalstr/1625152718916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400442064928600067/6UfU9DXL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">your mum</div> <div style="text-align: center; font-size: 14px;">@haikalstr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from your mum. | Data | your mum | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 322 | | Short tweets | 243 | | Tweets kept | 2652 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fmae98u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @haikalstr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ki9x4z1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ki9x4z1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/haikalstr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Fraser/transformer-vae
Fraser
2021-07-01T07:21:31Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
# Transformer-VAE (WIP) A PyTorch Transformer-VAE model. Uses an MMD loss to prevent posterior collapse. Will setup in the next month or so. ## ToDo - [ ] Copy in old repo code. - [ ] Make a bunch of sample training runs. - [ ] Make an interpolation widget?
stas/pegasus-cnn_dailymail-tiny-random
stas
2021-07-01T05:33:00Z
110
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This is a tiny random pegasus-cnn_dailymail model used for testing. See `make-pegasus-cnn_dailymail-tiny-random.py` for how it was created.
huggingtweets/mplay513
huggingtweets
2021-07-01T02:01:40Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mplay513/1625104896650/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1338251829969379343/srMwDR1d_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MinePlay513</div> <div style="text-align: center; font-size: 14px;">@mplay513</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MinePlay513. | Data | MinePlay513 | | --- | --- | | Tweets downloaded | 531 | | Retweets | 272 | | Short tweets | 21 | | Tweets kept | 238 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dwv363m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mplay513's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3w0zzbbl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3w0zzbbl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mplay513') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/bert-base-multilingual-cased-finetuned-luo
Davlan
2021-06-30T21:10:52Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: luo datasets: --- # bert-base-multilingual-cased-finetuned-luo ## Model description **bert-base-multilingual-cased-finetuned-luo** is a **Luo BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Luo language texts. It provides **better performance** than the multilingual BERT on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Luo corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-luo') >>> unmasker("Obila ma Changamwe [MASK] pedho achije angwen mag njore") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | luo_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 74.22 | 75.59 ### BibTeX entry and citation info By David Adelani ``` ```
wannaphong/thaigpt-next-125m
wannaphong
2021-06-30T17:34:39Z
108
6
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Thai GPT Next It is fine-tune the GPT-Neo model for Thai language. GitHub: https://github.com/wannaphong/thaigpt-next **Dataset for fine-tune this model** - prachathai67k - thaisum - thai_toxicity_tweet - wongnai reviews - wisesight_sentiment - TLC - scb_mt_enth_2020 (Thai only) - Thai wikipedia (date: 2021/06/20) **Max Length:** 280 **Number of train lists**: 1,697,254 lists **Number of training**: 2 ep **training loss**: 0.285500 ## Model - thaigpt-next-125m is fine-tune the GPT-NEO-125M model. ## How to use You can using it from huggingface or PyThaiNLP (in the future) for few-shot learning works or text generation (not recommended). thaigpt-next-125m at huggingface model: https://huggingface.co/wannaphong/thaigpt-next-125m ## License > Copyright 2021 Wannaphong Phatthiyaphaibun > > Licensed under the Apache License, Version 2.0 (the "License"); > you may not use this file except in compliance with the License. > You may obtain a copy of the License at > > http://www.apache.org/licenses/LICENSE-2.0 > > Unless required by applicable law or agreed to in writing, software > distributed under the License is distributed on an "AS IS" BASIS, > WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. > See the License for the specific language governing permissions and > limitations under the License. ## Author Wannaphong Phatthiyaphaibun
huggingtweets/schneider4il10
huggingtweets
2021-06-30T16:13:02Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/677935802551144448/K93Gj-Ob_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brad Schneider</div> <div style="text-align: center; font-size: 14px;">@schneider4il10</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brad Schneider. | Data | Brad Schneider | | --- | --- | | Tweets downloaded | 3202 | | Retweets | 748 | | Short tweets | 101 | | Tweets kept | 2353 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12u7r09n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @schneider4il10's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1b0nmlsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1b0nmlsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/schneider4il10') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/xlm-roberta-base-finetuned-wolof
Davlan
2021-06-30T15:56:31Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: wo datasets: --- # xlm-roberta-base-finetuned-wolof ## Model description **xlm-roberta-base-finetuned-luganda** is a **Wolof RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Wolof language texts. It provides **better performance** than the XLM-RoBERTa on named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Wolof corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-wolof') >>> unmasker("Màkki Sàll feeñal na ay xalaatam ci mbir yu am solo yu soxal <mask> ak Afrik.") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Bible OT](http://biblewolof.com/) + [OPUS](https://opus.nlpl.eu/) + News Corpora (Lu Defu Waxu, Saabal, and Wolof Online) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | wo_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 63.86 | 68.31 ### BibTeX entry and citation info By David Adelani ``` ```
Narrativa/byt5-base-tweet-hate-detection
Narrativa
2021-06-30T15:05:08Z
64
10
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "hate", "speech", "en", "dataset:tweets_hate_speech_detection", "arxiv:1907.06292", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: en datasets: - tweets_hate_speech_detection tags: - hate - speech widget: - text: "@user black lives really matter?" --- # ByT5-base fine-tuned for Hate Speech Detection (on Tweets) [ByT5](https://huggingface.co/google/byt5-base) base fine-tuned on [tweets hate speech detection](https://huggingface.co/datasets/tweets_hate_speech_detection) dataset for **Sequence Classification** downstream task. # Details of ByT5 - Base 🧠 ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-base). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-base` significantly outperforms [mt5-base](https://huggingface.co/google/mt5-base) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Details of the downstream task (Sequence Classification as Text generation) - Dataset 📚 [tweets_hate_speech_detection](hhttps://huggingface.co/datasets/tweets_hate_speech_detection) The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset. - Data Instances: The dataset contains a label denoting is the tweet a hate speech or not ```json {'label': 0, # not a hate speech 'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction. #run'} ``` - Data Fields: **label**: 1 - it is a hate speech, 0 - not a hate speech **tweet**: content of the tweet as a string - Data Splits: The data contains training data with **31962** entries ## Test set metrics 🧾 We created a representative test set with the 5% of the entries. The dataset is so imbalanced and we got a **F1 score of 79.8** ## Model in Action 🚀 ```sh git clone https://github.com/huggingface/transformers.git pip install -q ./transformers ``` ```python from transformers import AutoTokenizer, T5ForConditionalGeneration ckpt = 'Narrativa/byt5-base-tweet-hate-detection' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = T5ForConditionalGeneration.from_pretrained(ckpt).to("cuda") def classify_tweet(tweet): inputs = tokenizer([tweet], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to('cuda') attention_mask = inputs.attention_mask.to('cuda') output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) classify_tweet('here goes your tweet...') ``` Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
huggingtweets/jagedn
huggingtweets
2021-06-30T14:12:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jagedn/1625062317603/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410183697534439426/Db5MDUaw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Programo, luego existo</div> <div style="text-align: center; font-size: 14px;">@jagedn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Programo, luego existo. | Data | Programo, luego existo | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 549 | | Short tweets | 220 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ptz28obp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jagedn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jagedn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/baseball-stadium-foods
nateraw
2021-06-30T07:11:21Z
69
5
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baseball-stadium-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- # baseball-stadium-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cotton candy ![cotton candy](images/cotton_candy.jpg) #### hamburger ![hamburger](images/hamburger.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### nachos ![nachos](images/nachos.jpg) #### popcorn ![popcorn](images/popcorn.jpg)
nateraw/baked-goods
nateraw
2021-06-30T07:11:09Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baked-goods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # baked-goods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cake ![cake](images/cake.jpg) #### cookie ![cookie](images/cookie.jpg) #### pie ![pie](images/pie.jpg)
nateraw/pasta-pizza-ravioli
nateraw
2021-06-30T07:10:53Z
128
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pasta-pizza-ravioli results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # pasta-pizza-ravioli Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### pasta ![pasta](images/pasta.jpg) #### pizza ![pizza](images/pizza.jpg) #### ravioli ![ravioli](images/ravioli.jpg)
hetpandya/t5-small-tapaco
hetpandya
2021-06-30T06:36:41Z
44
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:tapaco", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - tapaco --- # T5-small for paraphrase generation Google's T5 small fine-tuned on [TaPaCo](https://huggingface.co/datasets/tapaco) dataset for paraphrasing. ## Model in Action 🚀 ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("hetpandya/t5-small-tapaco") model = T5ForConditionalGeneration.from_pretrained("hetpandya/t5-small-tapaco") def get_paraphrases(sentence, prefix="paraphrase: ", n_predictions=5, top_k=120, max_length=256,device="cpu"): text = prefix + sentence + " </s>" encoding = tokenizer.encode_plus( text, pad_to_max_length=True, return_tensors="pt" ) input_ids, attention_masks = encoding["input_ids"].to(device), encoding[ "attention_mask" ].to(device) model_output = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=max_length, top_k=top_k, top_p=0.98, early_stopping=True, num_return_sequences=n_predictions, ) outputs = [] for output in model_output: generated_sent = tokenizer.decode( output, skip_special_tokens=True, clean_up_tokenization_spaces=True ) if ( generated_sent.lower() != sentence.lower() and generated_sent not in outputs ): outputs.append(generated_sent) return outputs paraphrases = get_paraphrases("The house will be cleaned by me every Saturday.") for sent in paraphrases: print(sent) ``` ## Output ``` The house is cleaned every Saturday by me. The house will be cleaned on Saturday. I will clean the house every Saturday. I get the house cleaned every Saturday. I will clean this house every Saturday. ``` ## Model fine-tuning Please find my guide on fine-tuning the model here: https://towardsdatascience.com/training-t5-for-paraphrase-generation-ab3b5be151a2 Created by [Het Pandya/@hetpandya](https://github.com/hetpandya) | [LinkedIn](https://www.linkedin.com/in/het-pandya) Made with <span style="color: red;">&hearts;</span> in India
jasmeen/dogs
jasmeen
2021-06-30T04:19:28Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: dogs results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # dogs Autogenerated by HuggingPics🤗🖼️ ## Example Images #### golden retriever ![golden retriever](images/golden_retriever.jpg) #### great dane ![great dane](images/great_dane.jpg) #### husky ![husky](images/husky.jpg)
pierric/autonlp-my-own-imdb-sentiment-analysis-2131817
pierric
2021-06-29T22:08:35Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:pierric/autonlp-data-my-own-imdb-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - pierric/autonlp-data-my-own-imdb-sentiment-analysis --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2131817 ## Validation Metrics - Loss: 0.24430708587169647 - Accuracy: 0.9452 - Precision: 0.9303944315545244 - Recall: 0.9624 - AUC: 0.9793824287999999 - F1: 0.946126622099882 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/pierric/autonlp-my-own-imdb-sentiment-analysis-2131817 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pierric/autonlp-my-own-imdb-sentiment-analysis-2131817", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pierric/autonlp-my-own-imdb-sentiment-analysis-2131817", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/bladeecity-rxmaybike-wojespn
huggingtweets
2021-06-29T20:32:08Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bladeecity-rxmaybike-wojespn/1624998722915/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406669132527976453/Sv0lEtmk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1264902234703265794/lC3YnIYF_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim & jamar 🇵🇸 & Adrian Wojnarowski</div> <div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike-wojespn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski. | Data | Aim | jamar 🇵🇸 | Adrian Wojnarowski | | --- | --- | --- | --- | | Tweets downloaded | 1601 | 3071 | 3250 | | Retweets | 314 | 1694 | 777 | | Short tweets | 486 | 325 | 34 | | Tweets kept | 801 | 1052 | 2439 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h7w61mh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-rxmaybike-wojespn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Lalita/marianmt-th-zh_cn
Lalita
2021-06-29T14:06:47Z
26
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "torch==1.8.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- tags: - translation - torch==1.8.0 widget: - text: "Inference Unavailable" --- ### marianmt-th-zh_cn * source languages: th * target languages: zh_cn * dataset: * model: transformer-align * pre-processing: normalization + SentencePiece * test set scores: 15.53 ## Training Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-th-zh_cn](https://wandb.ai/cstorm125/marianmt-th-zh_cn). ``` export WANDB_PROJECT=marianmt-th-zh_cn python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\ \\\\t--output_dir ../models/marianmt-th-zh_cn \\\\\\\\ \\\\t--source_lang th --target_lang zh \\\\\\\\ \\\\t--metric_tokenize zh --fp16 ``` ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th") model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu() src_text = [ 'ฉันรักคุณ', 'ฉันอยากกินข้าว', ] translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) print([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) > ['我爱你', '我想吃饭。'] ``` ## Requirements ``` transformers==4.6.0 torch==1.8.0 ```
Lalita/marianmt-zh_cn-th
Lalita
2021-06-29T11:25:02Z
20
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "torch==1.8.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- tags: - translation - torch==1.8.0 widget: - text: "Inference Unavailable" --- ### marianmt-zh_cn-th * source languages: zh_cn * target languages: th * dataset: * model: transformer-align * pre-processing: normalization + SentencePiece * test set scores: syllable: 15.95, word: 8.43 ## Training Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-zh_cn-th](https://wandb.ai/cstorm125/marianmt-zh_cn-th). ``` export WANDB_PROJECT=marianmt-zh_cn-th python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--output_dir ../models/marianmt-zh_cn-th \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--source_lang zh --target_lang th \\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--metric_tokenize th_syllable --fp16 ``` ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th") model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu() src_text = [ '我爱你', '我想吃米饭', ] translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) print([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) > ['ผมรักคุณนะ', 'ฉันอยากกินข้าว'] ``` ## Requirements ``` transformers==4.6.0 torch==1.8.0 ```
ainize/kobart-news
ainize
2021-06-29T02:51:15Z
816
17
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "ko", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: ko license: mit tags: - summarization - bart --- # kobart-news - This model is a [kobart](https://huggingface.co/hyunwoongko/kobart) fine-tuned on the [문서요약 텍스트/신문기사](https://aihub.or.kr/aidata/8054) using [Ainize Teachable-NLP](https://ainize.ai/teachable-nlp). ## Usage ### Python Code ```python from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration # Load Model and Tokenize tokenizer = PreTrainedTokenizerFast.from_pretrained("ainize/kobart-news") model = BartForConditionalGeneration.from_pretrained("ainize/kobart-news") # Encode Input Text input_text = '국내 전반적인 경기침체로 상가 건물주의 수익도 전국적인 감소세를 보이고 있는 것으로 나타났다. 수익형 부동산 연구개발기업 상가정보연구소는 한국감정원 통계를 분석한 결과 전국 중대형 상가 순영업소득(부동산에서 발생하는 임대수입, 기타수입에서 제반 경비를 공제한 순소득)이 1분기 ㎡당 3만4200원에서 3분기 2만5800원으로 감소했다고 17일 밝혔다. 수도권, 세종시, 지방광역시에서 순영업소득이 가장 많이 감소한 지역은 3분기 1만3100원을 기록한 울산으로, 1분기 1만9100원 대비 31.4% 감소했다. 이어 대구(-27.7%), 서울(-26.9%), 광주(-24.9%), 부산(-23.5%), 세종(-23.4%), 대전(-21%), 경기(-19.2%), 인천(-18.5%) 순으로 감소했다. 지방 도시의 경우도 비슷했다. 경남의 3분기 순영업소득은 1만2800원으로 1분기 1만7400원 대비 26.4% 감소했으며 제주(-25.1%), 경북(-24.1%), 충남(-20.9%), 강원(-20.9%), 전남(-20.1%), 전북(-17%), 충북(-15.3%) 등도 감소세를 보였다. 조현택 상가정보연구소 연구원은 "올해 내수 경기의 침체된 분위기가 유지되며 상가, 오피스 등을 비롯한 수익형 부동산 시장의 분위기도 경직된 모습을 보였고 오피스텔, 지식산업센터 등의 수익형 부동산 공급도 증가해 공실의 위험도 늘었다"며 "실제 올 3분기 전국 중대형 상가 공실률은 11.5%를 기록하며 1분기 11.3% 대비 0.2% 포인트 증가했다"고 말했다. 그는 "최근 소셜커머스(SNS를 통한 전자상거래), 음식 배달 중개 애플리케이션, 중고 물품 거래 애플리케이션 등의 사용 증가로 오프라인 매장에 영향을 미쳤다"며 "향후 지역, 콘텐츠에 따른 상권 양극화 현상은 심화될 것으로 보인다"고 덧붙였다.' input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate Summary Text Ids summary_text_ids = model.generate( input_ids=input_ids, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, length_penalty=2.0, max_length=142, min_length=56, num_beams=4, ) # Decoding Text print(tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)) ``` ### API and Demo You can experience this model through [ainize-api](https://ainize.ai/gkswjdzz/summarize-torchserve?branch=main) and [ainize-demo](https://main-summarize-torchserve-gkswjdzz.endpoint.ainize.ai/).
huggingtweets/kdtrey5
huggingtweets
2021-06-28T21:59:25Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/kdtrey5/1624917560793/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/889585901222989825/gp_fGcQ5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kevin Durant</div> <div style="text-align: center; font-size: 14px;">@kdtrey5</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kevin Durant. | Data | Kevin Durant | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 448 | | Short tweets | 370 | | Tweets kept | 2423 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v3pscnw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kdtrey5's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oy4htefe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oy4htefe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kdtrey5') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
facebook/muppet-roberta-large
facebook
2021-06-28T21:44:41Z
61
14
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2101.11038", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit datasets: - bookcorpus - wikipedia --- # Muppet: Massive Multi-task Representations with Pre-Finetuning # RoBERTa large model This is a Massive Multi-task Pre-finetuned version of Roberta large. It was introduced in [this paper](https://arxiv.org/abs/2101.11038). The model improves over roberta-base in a wide range of GLUE, QA tasks (details can be found in the paper). The gains in smaller datasets are significant. Note: This checkpoint does not contain the classificaiton/MRC heads used during pre-finetuning due to compatibility issues and hence you might get slightly lower performance than that reported in the paper on some datasets ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Model | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | SQuAD| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:----:| | Roberta-large | 90.2 | 92.2 | 94.7 | 96.4 | 63.6 | 91.2 | 90.9 | 88.1 | 88.7| | MUPPET Roberta-large | 90.8 | 92.2 | 94.9 | 97.4 | - | - | 91.4 | 92.8 | 89.4| ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2101-11038, author = {Armen Aghajanyan and Anchit Gupta and Akshat Shrivastava and Xilun Chen and Luke Zettlemoyer and Sonal Gupta}, title = {Muppet: Massive Multi-task Representations with Pre-Finetuning}, journal = {CoRR}, volume = {abs/2101.11038}, year = {2021}, url = {https://arxiv.org/abs/2101.11038}, archivePrefix = {arXiv}, eprint = {2101.11038}, timestamp = {Sun, 31 Jan 2021 17:23:50 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-11038.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
facebook/muppet-roberta-base
facebook
2021-06-28T21:44:23Z
703
7
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2101.11038", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit datasets: - bookcorpus - wikipedia --- # Muppet: Massive Multi-task Representations with Pre-Finetuning # RoBERTa base model This is a Massive Multi-task Pre-finetuned version of Roberta base. It was introduced in [this paper](https://arxiv.org/abs/2101.11038). The model improves over roberta-base in a wide range of GLUE, QA tasks (details can be found in the paper). The gains in smaller datasets are significant. Note: This checkpoint does not contain the classificaiton/MRC heads used during pre-finetuning due to compatibility issues and hence you might get slightly lower performance than that reported in the paper on some datasets ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Model | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | SQuAD| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:----:| | Roberta-base | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 | 82.6| | MUPPET Roberta-base | 88.1 | 91.9 | 93.3 | 96.7 | - | - | 91.7 | 87.8 | 86.6| ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2101-11038, author = {Armen Aghajanyan and Anchit Gupta and Akshat Shrivastava and Xilun Chen and Luke Zettlemoyer and Sonal Gupta}, title = {Muppet: Massive Multi-task Representations with Pre-Finetuning}, journal = {CoRR}, volume = {abs/2101.11038}, year = {2021}, url = {https://arxiv.org/abs/2101.11038}, archivePrefix = {arXiv}, eprint = {2101.11038}, timestamp = {Sun, 31 Jan 2021 17:23:50 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-11038.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
m3hrdadfi/bert-zwnj-wnli-mean-tokens
m3hrdadfi
2021-06-28T18:31:12Z
30
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sentence Embeddings with `bert-zwnj-wnli-mean-tokens` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] model = SentenceTransformer('m3hrdadfi/bert-zwnj-wnli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.mean(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/bert-zwnj-wnli-mean-tokens') model = AutoModel.from_pretrained('m3hrdadfi/bert-zwnj-wnli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
m3hrdadfi/albert-zwnj-wnli-mean-tokens
m3hrdadfi
2021-06-28T17:42:32Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "albert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sentence Embeddings with `albert-zwnj-wnli-mean-tokens` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers pip install -U sentencepiece ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] model = SentenceTransformer('m3hrdadfi/albert-zwnj-wnli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.mean(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens') model = AutoModel.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
m3hrdadfi/roberta-zwnj-wnli-mean-tokens
m3hrdadfi
2021-06-28T17:40:23Z
222
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sentence Embeddings with `roberta-zwnj-wnli-mean-tokens` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] model = SentenceTransformer('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.mean(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') model = AutoModel.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
huggingtweets/aumgensokyo
huggingtweets
2021-06-28T14:51:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aumgensokyo/1624891912864/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400755065644802052/ZaFgV9cj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Haruka</div> <div style="text-align: center; font-size: 14px;">@aumgensokyo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Haruka. | Data | Haruka | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 632 | | Short tweets | 494 | | Tweets kept | 2101 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lpttj7aa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aumgensokyo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mxwc1h4k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mxwc1h4k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aumgensokyo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jirmauritz/bert-multilingual-emoji
jirmauritz
2021-06-28T13:43:26Z
4
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: multilingual license: apache-2.0 datasets: - wikipedia --- # BERT multilingual base model (cased) Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the languages in the training set that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] Hello I'm a model model. [SEP]", 'score': 0.10182085633277893, 'token': 13192, 'token_str': 'model'}, {'sequence': "[CLS] Hello I'm a world model. [SEP]", 'score': 0.052126359194517136, 'token': 11356, 'token_str': 'world'}, {'sequence': "[CLS] Hello I'm a data model. [SEP]", 'score': 0.048930276185274124, 'token': 11165, 'token_str': 'data'}, {'sequence': "[CLS] Hello I'm a flight model. [SEP]", 'score': 0.02036019042134285, 'token': 23578, 'token_str': 'flight'}, {'sequence': "[CLS] Hello I'm a business model. [SEP]", 'score': 0.020079681649804115, 'token': 14155, 'token_str': 'business'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') model = BertModel.from_pretrained("bert-base-multilingual-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') model = TFBertModel.from_pretrained("bert-base-multilingual-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese, Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
osanseviero/my-new-sentence-transformer
osanseviero
2021-06-28T10:36:13Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-xlm-r-multilingual-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-xlm-r-multilingual-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-xlm-r-multilingual-v1') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-xlm-r-multilingual-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-xlm-r-multilingual-v1) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
huggingtweets/journoramzy
huggingtweets
2021-06-27T23:01:24Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/journoramzy/1624834880479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406632529453633541/4k10fb7o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ramzy Alwakeel</div> <div style="text-align: center; font-size: 14px;">@journoramzy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ramzy Alwakeel. | Data | Ramzy Alwakeel | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 1288 | | Short tweets | 144 | | Tweets kept | 1783 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oujm0jf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @journoramzy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xgrkz8v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xgrkz8v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/journoramzy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cfinley/punct_restore_fr
cfinley
2021-06-27T19:03:56Z
7
1
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: punct_restore_fr results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.991500810518732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # punct_restore_fr This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on a raw, French opensubtitles dataset. It achieves the following results on the evaluation set: - Loss: 0.0301 - Precision: 0.9601 - Recall: 0.9527 - F1: 0.9564 - Accuracy: 0.9915 ## Model description Classifies tokens based on beginning of French sentences (B-SENT) and everything else (O). ## Intended uses & limitations This model aims to help punctuation restoration on French YouTube auto-generated subtitles. In doing so, one can measure more in a corpus such as words per sentence, grammar structures per sentence, etc. ## Training and evaluation data 1 million Open Subtitles (French) sentences. 80%/10%/10% training/validation/test split. The sentences: - were lower-cased - had end punctuation (.?!) removed - were of length between 7 and 70 words - had beginning word of sentence tagged with B-SENT. - All other words marked with O. Token/tag pairs batched together in groups of 64. This helps show variety of positions for B-SENT and O tags. This also keeps training examples from just being one sentence. Otherwise, this leads to having the first word and only the first word in a sequence being labeled B-SENT. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
m3hrdadfi/typo-detector-distilbert-is
m3hrdadfi
2021-06-27T13:20:33Z
13
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "is", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: is widget: - text: Páli, vini mínum, langaði að horfa á sjónnvarpið. - text: "Leggir þciðursins eru þaktir fjöðrum til bað edravn fuglnn gekgn kuldanué ." - text: "Þar hitta þeir konu Björns og segir ovs :" - text: "Ingvar Sæmundsson ekgk rú sveitinni árið 2015 og etnbeitii sér að hinni þungarokkssvedt svnni Momentum ." - text: "Þar hitta þeir konu Björns og segir ovs :" - text: "Var hann síðaún hkluti af leikhópnum sem ferðaðist um Bandaríkin til að sýan söngleikinn ." --- # Typo Detector For Icelandic 🇮🇸 ## Dataset Information Synthetic data for this specific task. ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | # | precision | recall | f1-score | support | |:------------:|:---------:|:--------:|:--------:|:-------:| | TYPO | 0.98954 | 0.967603 | 0.978448 | 43800.0 | | micro avg | 0.98954 | 0.967603 | 0.978448 | 43800.0 | | macro avg | 0.98954 | 0.967603 | 0.978448 | 43800.0 | | weighted avg | 0.98954 | 0.967603 | 0.978448 | 43800.0 | ## How to use You use this model with Transformers pipeline for NER (token-classification). ### Installing requirements ```bash pip install transformers ``` ### Prediction using pipeline ```python import torch from transformers import AutoConfig, AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name_or_path = "m3hrdadfi/typo-detector-distilbert-is" config = AutoConfig.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForTokenClassification.from_pretrained(model_name_or_path, config=config) nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="average") ``` ```python sentences = [ "Páli, vini mínum, langaði að horfa á sjónnvarpið.", "Leggir þciðursins eru þaktir fjöðrum til bað edravn fuglnn gekgn kuldanué .", "Þar hitta þeir konu Björns og segir ovs :", "Ingvar Sæmundsson ekgk rú sveitinni árið 2015 og etnbeitii sér að hinni þungarokkssvedt svnni Momentum .", "Þar hitta þeir konu Björns og segir ovs :", "Var hann síðaún hkluti af leikhópnum sem ferðaðist um Bandaríkin til að sýan söngleikinn ." ] for sentence in sentences: typos = [sentence[r["start"]: r["end"]] for r in nlp(sentence)] detected = sentence for typo in typos: detected = detected.replace(typo, f'<i>{typo}</i>') print(" [Input]: ", sentence) print("[Detected]: ", detected) print("-" * 130) ``` Output: ```text [Input]: Páli, vini mínum, langaði að horfa á sjónnvarpið. [Detected]: Páli, vini mínum, langaði að horfa á <i>sjónnvarpið</i>. ---------------------------------------------------------------------------------------------------------------------------------- [Input]: Leggir þciðursins eru þaktir fjöðrum til bað edravn fuglnn gekgn kuldanué . [Detected]: Leggir <i>þciðursins</i> eru þaktir fjöðrum til <i>bað</i> <i>edravn</i> <i>fuglnn</i> <i>gekgn</i> <i>kuldanué</i> . ---------------------------------------------------------------------------------------------------------------------------------- [Input]: Þar hitta þeir konu Björns og segir ovs : [Detected]: Þar hitta þeir konu Björns og segir <i>ovs</i> : ---------------------------------------------------------------------------------------------------------------------------------- [Input]: Ingvar Sæmundsson ekgk rú sveitinni árið 2015 og etnbeitii sér að hinni þungarokkssvedt svnni Momentum . [Detected]: Ingvar Sæmundsson <i>ekgk</i> <i>rú</i> sveitinni árið 2015 og <i>etnbeitii</i> sér að hinni <i>þungarokkssvedt</i> <i>svnni</i> Momentum . ---------------------------------------------------------------------------------------------------------------------------------- [Input]: Þar hitta þeir konu Björns og segir ovs : [Detected]: Þar hitta þeir konu Björns og segir <i>ovs</i> : ---------------------------------------------------------------------------------------------------------------------------------- [Input]: Var hann síðaún hkluti af leikhópnum sem ferðaðist um Bandaríkin til að sýan söngleikinn . [Detected]: Var hann <i>síðaún</i> <i>hkluti</i> af leikhópnum sem ferðaðist um Bandaríkin til að <i>sýan</i> söngleikinn . ---------------------------------------------------------------------------------------------------------------------------------- ``` ## Questions? Post a Github issue on the [TypoDetector Issues](https://github.com/m3hrdadfi/typo-detector/issues) repo.
bakrianoo/t5-arabic-large
bakrianoo
2021-06-26T17:09:24Z
16
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Large Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-large` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
bakrianoo/t5-arabic-base
bakrianoo
2021-06-26T17:05:08Z
18
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Base Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-base` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
alenusch/par_cls_bert
alenusch
2021-06-25T12:20:42Z
8
0
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way: ``` import torch import torch.nn as nn import os import copy import random import numpy as np import pandas as pd from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup from transformers.file_utils import ( cached_path, hf_bucket_url, is_remote_url, ) archive_file = hf_bucket_url( "alenusch/par_cls_bert", filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt", revision=None, mirror=None, ) resolved_archive_file = cached_path( archive_file, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, ) os.environ["TOKENIZERS_PARALLELISM"] = "false" class SentencePairClassifier(nn.Module): def __init__(self, bert_model): super(SentencePairClassifier, self).__init__() self.bert_layer = AutoModel.from_pretrained(bert_model) self.cls_layer = nn.Linear(768, 1) self.dropout = nn.Dropout(p=0.1) @autocast() def forward(self, input_ids, attn_masks, token_type_ids): cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False) logits = self.cls_layer(self.dropout(pooler_output)) return logits class CustomDataset(Dataset): def __init__(self, data, maxlen, bert_model): self.data = data self.tokenizer = AutoTokenizer.from_pretrained(bert_model) self.maxlen = maxlen self.targets = False def __len__(self): return len(self.data) def __getitem__(self, index): sent1 = str(self.data[index][0]) sent2 = str(self.data[index][1]) encoded_pair = self.tokenizer(sent1, sent2, padding='max_length', # Pad to max_length truncation=True, # Truncate to max_length max_length=self.maxlen, return_tensors='pt') # Return torch.Tensor objects token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens return token_ids, attn_masks, token_type_ids def get_probs_from_logits(logits): probs = torch.sigmoid(logits.unsqueeze(-1)) return probs.detach().cpu().numpy() def test_prediction(net, device, dataloader, with_labels=False): net.eval() probs_all = [] with torch.no_grad(): for seq, attn_masks, token_type_ids in tqdm(dataloader): seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device) logits = net(seq, attn_masks, token_type_ids) probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1) probs_all += probs.tolist() return probs_all device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert") if torch.cuda.device_count() > 1: cls_model = nn.DataParallel(model) cls_model.load_state_dict(torch.load(resolved_archive_file)) cls_model.to(device) variants = [["sentence1", "sentence2"]] test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert") test_loader = DataLoader(test_set, batch_size=16, num_workers=5) res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False) ```
m3hrdadfi/wili2018-roberta-base
m3hrdadfi
2021-06-25T05:09:51Z
12
0
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "multilingual", "dataset:wili_2018", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: multilingual license: apache-2.0 datasets: - wili_2018 ---
huggingtweets/snackteeth
huggingtweets
2021-06-25T04:07:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/snackteeth/1624594028782/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1339420191428653058/Vj757Zlw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Floral Flavor Blend 🐊 bIm</div> <div style="text-align: center; font-size: 14px;">@snackteeth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Floral Flavor Blend 🐊 bIm. | Data | Floral Flavor Blend 🐊 bIm | | --- | --- | | Tweets downloaded | 3213 | | Retweets | 1490 | | Short tweets | 118 | | Tweets kept | 1605 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mrfa2kr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @snackteeth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lim3tjwq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lim3tjwq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/snackteeth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
guocheng98/HelsinkiNLP-FineTuned-Legal-es-zh
guocheng98
2021-06-24T22:54:46Z
21
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "es", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - es - zh tags: - translation license: apache-2.0 --- This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-es-zh](https://huggingface.co/Helsinki-NLP/opus-tatoeba-es-zh) on a dataset of legal domain constructed by the author himself. # Intended uses & limitations This model is the result of the master graduation thesis for the Tradumatics: Translation Technologies program at the Autonomous University of Barcelona. Please refer to the GitHub repo created for this thesis for the full-text and relative open-sourced materials: https://github.com/guocheng98/MUTTT2020_TFM_ZGC The thesis intends to explain various theories and certain algorithm details about neural machine translation, thus this fine-tuned model only serves as a hands-on practice example for that objective, without any intention of productive usage. # Training and evaluation data The dataset is constructed from the Chinese translation of Spanish Civil Code, Spanish Constitution, and many other laws & regulations found in the database China Law Info (北大法宝 Beida Fabao), along with their source text found on Boletín Oficial del Estado and EUR-Lex. There are 9972 sentence pairs constructed. 1000 are used for evaluation and the rest for training. # Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 - mixed_precision_training: Native AMP - weight_decay: 0.01 - early_stopping_patience: 8 # Training results Best validation loss achieved at step 5600. | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9584 | 0.36 | 400 | 2.6800 | | 2.6402 | 0.71 | 800 | 2.5017 | | 2.5038 | 1.07 | 1200 | 2.3907 | | 2.3279 | 1.43 | 1600 | 2.2999 | | 2.2258 | 1.78 | 2000 | 2.2343 | | 2.1061 | 2.14 | 2400 | 2.1961 | | 1.9279 | 2.5 | 2800 | 2.1569 | | 1.9059 | 2.85 | 3200 | 2.1245 | | 1.7491 | 3.21 | 3600 | 2.1227 | | 1.6301 | 3.57 | 4000 | 2.1169 | | 1.6871 | 3.92 | 4400 | 2.0979 | | 1.5203 | 4.28 | 4800 | 2.1074 | | 1.4646 | 4.63 | 5200 | 2.1024 | | 1.4739 | 4.99 | 5600 | 2.0905 | | 1.338 | 5.35 | 6000 | 2.0946 | | 1.3152 | 5.7 | 6400 | 2.0974 | | 1.306 | 6.06 | 6800 | 2.0985 | | 1.1991 | 6.42 | 7200 | 2.0962 | | 1.2113 | 6.77 | 7600 | 2.1092 | | 1.1983 | 7.13 | 8000 | 2.1060 | | 1.1238 | 7.49 | 8400 | 2.1102 | | 1.1417 | 7.84 | 8800 | 2.1078 | # Framework versions - Transformers 4.7.0 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
Intel/bert-base-uncased-sparse-1_2
Intel
2021-06-24T22:39:26Z
8
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: en --- # Sparse BERT base model (uncased) Pretrained model pruned to 1:2 structured sparsity. The model is a pruned version of the [BERT base model](https://huggingface.co/bert-base-uncased). ## Intended Use The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros. ## Evaluation Results We get the following results on the tasks development set, all results are mean of 5 different seeded models: | Task | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|---------------|--------------|------------|-------------|---------------------|--------------------| | | 83.3 | 83.9 | 90.8/87.6 | 90.4 | 91.3 | 88.8/88.3 | 80.5/88.2 |