modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
ddddd/EDCLasVegas
ddddd
2021-10-24T01:16:07Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://teespring.com/dashboard/listings/113925135/edit
huggingtweets/nikkihaleyfan93
huggingtweets
2021-10-23T22:45:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nikkihaleyfan93/1635029077906/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1329566476987232256/wpiYdhhz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Richard Smit ๐Ÿฆ… ๐Ÿš ๐Ÿš” ๐Ÿ’ฐ ๐Ÿ‡ป๐Ÿ‡ฆ ๐Ÿ‡ณ๐Ÿ‡ฑ ๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡ฎ๐Ÿ‡ฑ</div> <div style="text-align: center; font-size: 14px;">@nikkihaleyfan93</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Richard Smit ๐Ÿฆ… ๐Ÿš ๐Ÿš” ๐Ÿ’ฐ ๐Ÿ‡ป๐Ÿ‡ฆ ๐Ÿ‡ณ๐Ÿ‡ฑ ๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡ฎ๐Ÿ‡ฑ. | Data | Richard Smit ๐Ÿฆ… ๐Ÿš ๐Ÿš” ๐Ÿ’ฐ ๐Ÿ‡ป๐Ÿ‡ฆ ๐Ÿ‡ณ๐Ÿ‡ฑ ๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡ฎ๐Ÿ‡ฑ | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 406 | | Short tweets | 255 | | Tweets kept | 2587 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20va5xqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nikkihaleyfan93's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nikkihaleyfan93') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/kan-bayashi_ljspeech_tts_finetune_joint_conformer_fastspeech2_hifigan_-truncated-737899
espnet
2021-10-23T20:54:27Z
2
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_tts_finetune_joint_conformer_fastspeech2_hifigan_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5498896/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_tts_train_joint_conformer_fastspeech2_hifigan_raw-truncated-af8fe0
espnet
2021-10-23T20:52:58Z
2
3
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_tts_train_joint_conformer_fastspeech2_hifigan_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5498487/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_tsukuyomi_full_band_vits_prosody
espnet
2021-10-23T20:50:36Z
2
3
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:tsukuyomi", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - tsukuyomi license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/tsukuyomi_full_band_vits_prosody` โ™ป๏ธ Imported from https://zenodo.org/record/5521446/ This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest
espnet
2021-10-23T20:48:35Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jvs", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jvs license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest` โ™ป๏ธ Imported from https://zenodo.org/record/5521494/ This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_full_band_vits_raw_phn_jaconv_pyopenjtalk_p-truncated-66d5fc
espnet
2021-10-23T20:45:49Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_tts_train_full_band_vits_raw_phn_jaconv_pyopenjtalk_prosody_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5521340/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_prosody_train.total_count.ave
espnet
2021-10-23T20:44:44Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_prosody_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5521354/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g-truncated-50b003
espnet
2021-10-23T20:43:58Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:vctk", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - vctk license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/vctk_tts_train_full_band_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5521431/ This model was trained by kan-bayashi using vctk/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_conformer_fastspeech2_tacotron2_prosody
espnet
2021-10-23T20:31:24Z
3
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_conformer_fastspeech2_tacotron2_prosody` โ™ป๏ธ Imported from https://zenodo.org/record/5499050/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_transformer_prosody
espnet
2021-10-23T20:30:42Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_transformer_prosody` โ™ป๏ธ Imported from https://zenodo.org/record/5499040/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tacotron2_prosody
espnet
2021-10-23T20:30:13Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_tacotron2_prosody` โ™ป๏ธ Imported from https://zenodo.org/record/5499026/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_prosody_train.loss.ave
espnet
2021-10-23T20:30:05Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_prosody_train.loss.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5499026/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_csmsc_full_band_vits
espnet
2021-10-23T20:28:48Z
2
0
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/csmsc_full_band_vits` โ™ป๏ธ Imported from https://zenodo.org/record/5443852/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_vits
espnet
2021-10-23T20:27:43Z
2,253
218
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_vits` โ™ป๏ธ Imported from https://zenodo.org/record/5443814/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jvs_jvs010_vits_accent_with_pause
espnet
2021-10-23T20:26:30Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jvs", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jvs license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jvs_jvs010_vits_accent_with_pause` โ™ป๏ธ Imported from https://zenodo.org/record/5432566/ This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jvs_jvs001_vits_accent_with_pause
espnet
2021-10-23T20:25:55Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jvs", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jvs license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jvs_jvs001_vits_accent_with_pause` โ™ป๏ธ Imported from https://zenodo.org/record/5432540/ This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjta-truncated-d57a28
espnet
2021-10-23T20:25:39Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jvs", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jvs license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jvs_tts_finetune_jvs010_jsut_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause_latest` โ™ป๏ธ Imported from https://zenodo.org/record/5432566/ This model was trained by kan-bayashi using jvs/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_full_band_vits_accent_with_pause
espnet
2021-10-23T20:24:17Z
3
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_full_band_vits_accent_with_pause` โ™ป๏ธ Imported from https://zenodo.org/record/5431984/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_vits_accent_with_pause
espnet
2021-10-23T20:23:56Z
0
3
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_vits_accent_with_pause` โ™ป๏ธ Imported from https://zenodo.org/record/5414980/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with-truncated-ba3566
espnet
2021-10-23T20:20:33Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - jsut license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/jsut_tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause_train.total_count.ave` โ™ป๏ธ Imported from https://zenodo.org/record/5414980/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/dril-praisegodbarbon
huggingtweets
2021-10-23T18:50:31Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dril-praisegodbarbon/1635015027636/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Boston Psychology PhD</div> <div style="text-align: center; font-size: 14px;">@dril-praisegodbarbon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Boston Psychology PhD. | Data | wint | Boston Psychology PhD | | --- | --- | --- | | Tweets downloaded | 3226 | 3207 | | Retweets | 465 | 802 | | Short tweets | 319 | 266 | | Tweets kept | 2442 | 2139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3knldxg0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gs5uhsw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gs5uhsw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-praisegodbarbon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/islamocommunism
huggingtweets
2021-10-23T18:38:04Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/islamocommunism/1635014280450/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448436144388009985/zWh5cSQ3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ู†ูˆุฑู‡ุงู†</div> <div style="text-align: center; font-size: 14px;">@islamocommunism</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ู†ูˆุฑู‡ุงู†. | Data | ู†ูˆุฑู‡ุงู† | | --- | --- | | Tweets downloaded | 3196 | | Retweets | 1205 | | Short tweets | 227 | | Tweets kept | 1764 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2l8ikj22/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @islamocommunism's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kngkxcq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kngkxcq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/islamocommunism') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
2umm3r/distilbert-base-uncased-finetuned-cola
2umm3r
2021-10-23T11:46:51Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5155709926752544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 - Matthews Correlation: 0.5156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5291 | 1.0 | 535 | 0.5027 | 0.4092 | | 0.3492 | 2.0 | 1070 | 0.5136 | 0.4939 | | 0.2416 | 3.0 | 1605 | 0.6390 | 0.5056 | | 0.1794 | 4.0 | 2140 | 0.7816 | 0.5156 | | 0.1302 | 5.0 | 2675 | 0.8836 | 0.5156 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
stamas01/vgg19_skin_auto_encoder
stamas01
2021-10-23T06:04:31Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
A simple Auto Encoder made up of VGG19 trained to reconstruct skin lesion images.
tiennvcs/bert-large-uncased-finetuned-infovqa
tiennvcs
2021-10-23T06:01:27Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-infovqa results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-infovqa This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.3170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7861 | 0.12 | 1000 | 3.2778 | | 3.2186 | 0.23 | 2000 | 3.0658 | | 2.8504 | 0.35 | 3000 | 3.0456 | | 2.8621 | 0.46 | 4000 | 2.8758 | | 2.7851 | 0.58 | 5000 | 2.8680 | | 2.8016 | 0.69 | 6000 | 2.9244 | | 2.7592 | 0.81 | 7000 | 2.7735 | | 2.5737 | 0.93 | 8000 | 2.7640 | | 2.3493 | 1.04 | 9000 | 2.7257 | | 2.1041 | 1.16 | 10000 | 2.8442 | | 2.1713 | 1.27 | 11000 | 2.7723 | | 2.0594 | 1.39 | 12000 | 2.9982 | | 2.1825 | 1.5 | 13000 | 2.8272 | | 2.2486 | 1.62 | 14000 | 2.8897 | | 2.097 | 1.74 | 15000 | 2.8557 | | 2.1645 | 1.85 | 16000 | 2.6342 | | 2.15 | 1.97 | 17000 | 2.8680 | | 1.5662 | 2.08 | 18000 | 3.2126 | | 1.6168 | 2.2 | 19000 | 3.1646 | | 1.5886 | 2.32 | 20000 | 3.3139 | | 1.6539 | 2.43 | 21000 | 3.2610 | | 1.6486 | 2.55 | 22000 | 3.3144 | | 1.637 | 2.66 | 23000 | 3.0437 | | 1.7186 | 2.78 | 24000 | 2.9936 | | 1.7543 | 2.89 | 25000 | 3.1641 | | 1.5301 | 3.01 | 26000 | 4.0560 | | 1.1436 | 3.13 | 27000 | 4.0116 | | 1.1902 | 3.24 | 28000 | 4.0240 | | 1.2728 | 3.36 | 29000 | 4.3068 | | 1.2586 | 3.47 | 30000 | 3.7894 | | 1.3164 | 3.59 | 31000 | 3.9242 | | 1.3093 | 3.7 | 32000 | 4.0444 | | 1.2812 | 3.82 | 33000 | 4.1779 | | 1.3165 | 3.94 | 34000 | 3.6633 | | 0.8357 | 4.05 | 35000 | 5.8137 | | 0.9583 | 4.17 | 36000 | 5.3305 | | 0.9135 | 4.28 | 37000 | 5.4973 | | 1.0011 | 4.4 | 38000 | 5.0349 | | 0.9553 | 4.51 | 39000 | 5.2086 | | 1.0182 | 4.63 | 40000 | 5.1197 | | 0.9569 | 4.75 | 41000 | 5.4579 | | 0.9437 | 4.86 | 42000 | 5.4467 | | 0.9791 | 4.98 | 43000 | 4.7657 | | 0.648 | 5.09 | 44000 | 6.5780 | | 0.7528 | 5.21 | 45000 | 6.2827 | | 0.7247 | 5.33 | 46000 | 6.8500 | | 0.702 | 5.44 | 47000 | 6.4572 | | 0.6786 | 5.56 | 48000 | 6.5462 | | 0.7272 | 5.67 | 49000 | 6.2406 | | 0.6778 | 5.79 | 50000 | 6.4727 | | 0.6446 | 5.9 | 51000 | 6.3170 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.8.0+cu101 - Datasets 1.11.0 - Tokenizers 0.10.3
tiennvcs/bert-base-uncased-finetuned-infovqa
tiennvcs
2021-10-23T00:21:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-infovqa results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-infovqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2765 | 0.23 | 1000 | 3.0678 | | 2.9987 | 0.46 | 2000 | 2.9525 | | 2.826 | 0.69 | 3000 | 2.7870 | | 2.7084 | 0.93 | 4000 | 2.7051 | | 2.1286 | 1.16 | 5000 | 2.9286 | | 2.0009 | 1.39 | 6000 | 3.1037 | | 2.0323 | 1.62 | 7000 | 2.8567 | | 1.9905 | 1.85 | 8000 | 2.8276 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.8.0+cu101 - Datasets 1.11.0 - Tokenizers 0.10.3
Krassy/xlm-roberta-base-finetuned-marc-en
Krassy
2021-10-22T16:06:45Z
5
2
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9005 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.108 | 1.0 | 235 | 0.9801 | 0.5610 | | 0.9592 | 2.0 | 470 | 0.9005 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
tiennvcs/bert-base-uncased-finetuned-docvqa
tiennvcs
2021-10-22T15:49:05Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-docvqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-docvqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2151 | 0.1 | 1000 | 2.6299 | | 1.8885 | 0.21 | 2000 | 2.2217 | | 1.7353 | 0.31 | 3000 | 2.1675 | | 1.6188 | 0.41 | 4000 | 2.2436 | | 1.5802 | 0.52 | 5000 | 2.0539 | | 1.4875 | 0.62 | 6000 | 2.0551 | | 1.4675 | 0.73 | 7000 | 1.9368 | | 1.3485 | 0.83 | 8000 | 1.9456 | | 1.3273 | 0.93 | 9000 | 1.9281 | | 1.1048 | 1.04 | 10000 | 1.9333 | | 0.9529 | 1.14 | 11000 | 2.2019 | | 0.9418 | 1.24 | 12000 | 2.0381 | | 0.9209 | 1.35 | 13000 | 1.8753 | | 0.8788 | 1.45 | 14000 | 1.9964 | | 0.8729 | 1.56 | 15000 | 1.9690 | | 0.8671 | 1.66 | 16000 | 1.8513 | | 0.8379 | 1.76 | 17000 | 1.9627 | | 0.8722 | 1.87 | 18000 | 1.8988 | | 0.7842 | 1.97 | 19000 | 1.9146 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingartists/pharaoh
huggingartists
2021-10-22T15:18:57Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/pharaoh", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/pharaoh tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3bb9817ec1fbf2b9f944e9da3662bee6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– HuggingArtists Model ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PHARAOH</div> <a href="https://genius.com/artists/pharaoh"> <div style="text-align: center; font-size: 14px;">@pharaoh</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from PHARAOH. Dataset is available [here](https://huggingface.co/datasets/huggingartists/pharaoh). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/pharaoh") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/jefxst5w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on PHARAOH's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1fqlqxjo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1fqlqxjo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/pharaoh') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/pharaoh") model = AutoModelWithLMHead.from_pretrained("huggingartists/pharaoh") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
JonatanGk/roberta-base-ca-finetuned-tecla
JonatanGk
2021-10-22T14:20:10Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:tecla", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tecla metrics: - accuracy model-index: - name: roberta-base-ca-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: tecla type: tecla args: tecla metrics: - name: Accuracy type: accuracy value: 0.7361816335412737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the tecla dataset. It achieves the following results on the evaluation set: - Loss: 0.9354 - Accuracy: 0.7362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8465 | 1.0 | 6888 | 0.8222 | 0.6990 | | 0.6966 | 2.0 | 13776 | 0.7872 | 0.7157 | | 0.5643 | 3.0 | 20664 | 0.8060 | 0.7268 | | 0.4435 | 4.0 | 27552 | 0.8470 | 0.7333 | | 0.3206 | 5.0 | 34440 | 0.9354 | 0.7362 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
muhtasham/autonlp-Doctor_DE-24595547
muhtasham
2021-10-22T14:04:29Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autonlp", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: de widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 396.5529429198159 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595547 - CO2 Emissions (in grams): 396.5529429198159 ## Validation Metrics - Loss: 1.9565489292144775 - MSE: 1.9565489292144775 - MAE: 0.9890901446342468 - R2: -7.68965036332947e-05 - RMSE: 1.3987668752670288 - Explained Variance: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595547 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
yokonav/xlm-roberta-base-finetuned-marc-en
yokonav
2021-10-22T13:36:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9177 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.136 | 1.0 | 235 | 0.9515 | 0.4756 | | 0.9724 | 2.0 | 470 | 0.9177 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
laurauzcategui/xlm-roberta-base-finetuned-marc-en
laurauzcategui
2021-10-22T13:20:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8945 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:---:| | 1.1411 | 1.0 | 235 | 0.9358 | 0.5 | | 0.9653 | 2.0 | 470 | 0.8945 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
daveccampbell/xlm-roberta-base-finetuned-marc-en
daveccampbell
2021-10-22T13:20:31Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9199 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 | | 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
muhtasham/autonlp-Doctor_DE-24595545
muhtasham
2021-10-22T11:59:58Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: de widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 203.30658367993382 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595545 - CO2 Emissions (in grams): 203.30658367993382 ## Validation Metrics - Loss: 0.30214861035346985 - MSE: 0.30214861035346985 - MAE: 0.25911855697631836 - R2: 0.8455587614373526 - RMSE: 0.5496804714202881 - Explained Variance: 0.8476610779762268 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595545 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
muhtasham/autonlp-Doctor_DE-24595548
muhtasham
2021-10-22T11:58:36Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: de widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 183.88911013564527 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595548 - CO2 Emissions (in grams): 183.88911013564527 ## Validation Metrics - Loss: 0.3050823509693146 - MSE: 0.3050823509693146 - MAE: 0.2664000689983368 - R2: 0.844059188176304 - RMSE: 0.5523425936698914 - Explained Variance: 0.8472161293029785 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595548 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595548", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595548", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
anditya/xlm-roberta-base-finetuned-marc-en
anditya
2021-10-22T11:18:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8885 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1089 | 1.0 | 235 | 0.9027 | 0.4756 | | 0.9674 | 2.0 | 470 | 0.8885 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
teacookies/autonlp-roberta-base-squad2-24465516
teacookies
2021-10-22T08:21:22Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 65.5797497320557 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465516 - CO2 Emissions (in grams): 65.5797497320557 ## Validation Metrics - Loss: 0.6545609831809998 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465516 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465517
teacookies
2021-10-22T08:13:41Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 54.75747617143382 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465517 - CO2 Emissions (in grams): 54.75747617143382 ## Validation Metrics - Loss: 0.6653227806091309 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465517 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465514
teacookies
2021-10-22T08:10:51Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 54.44076291568145 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465514 - CO2 Emissions (in grams): 54.44076291568145 ## Validation Metrics - Loss: 0.5786784887313843 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465514 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465514", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465514", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465522
teacookies
2021-10-22T08:05:40Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 44.450538076574766 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465522 - CO2 Emissions (in grams): 44.450538076574766 ## Validation Metrics - Loss: 0.5572742223739624 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465522 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465518
teacookies
2021-10-22T08:04:33Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 45.268576304018616 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465518 - CO2 Emissions (in grams): 45.268576304018616 ## Validation Metrics - Loss: 0.5742421746253967 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465518 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
Gigworks/ASR_id
Gigworks
2021-10-22T07:28:30Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned: facebook/wav2vec2-large-xlsr-53
furyhawk/t5-small-finetuned-xsum
furyhawk
2021-10-22T05:06:57Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 128 | 2.9003 | 19.4784 | 2.8529 | 14.7786 | 15.0614 | 18.9825 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
Sin/DialoGPT-small-zai
Sin
2021-10-21T23:21:07Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
conver = pipeline("conversational") --- tags: - conversational --- # Harry potter DialoGPT model
aditeyabaral/sentencetransformer-distilbert-base-cased
aditeyabaral
2021-10-21T22:30:29Z
129
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pritoms/distilgpt2-finetuned-wikitext2
pritoms
2021-10-21T21:16:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 130 | 3.1733 | | No log | 2.0 | 260 | 3.0756 | | No log | 3.0 | 390 | 3.0540 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
JonatanGk/roberta-base-bne-finetuned-sqac
JonatanGk
2021-10-21T21:06:47Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:sqac", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sqac model-index: - name: roberta-base-bne-finetuned-sqac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.2066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9924 | 1.0 | 1196 | 0.8670 | | 0.474 | 2.0 | 2392 | 0.8923 | | 0.1637 | 3.0 | 3588 | 1.2066 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingtweets/degg-dril-fred_delicious
huggingtweets
2021-10-21T19:39:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/degg-dril-fred_delicious/1634845142916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/58546628/goat22_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/726824334002638848/BEZFr1k8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & deg & Fred Delicious</div> <div style="text-align: center; font-size: 14px;">@degg-dril-fred_delicious</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & deg & Fred Delicious. | Data | wint | deg | Fred Delicious | | --- | --- | --- | --- | | Tweets downloaded | 3227 | 3152 | 3235 | | Retweets | 473 | 142 | 429 | | Short tweets | 318 | 42 | 398 | | Tweets kept | 2436 | 2968 | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwoed1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degg-dril-fred_delicious's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/degg-dril-fred_delicious') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
AyushPJ
2021-10-21T19:08:11Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-roBERTa-base-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-roBERTa-base-squad-v2 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
lewtun/xlm-roberta-base-finetuned-marc-en
lewtun
2021-10-21T18:53:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8850 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1589 | 1.0 | 235 | 0.9769 | 0.5122 | | 0.974 | 2.0 | 470 | 0.8850 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/unispeech-sat-large-timit-ft
patrickvonplaten
2021-10-21T16:38:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-sat-large-timit-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-large-timit-ft This model is a fine-tuned version of [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - Wer: 0.3880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2516 | 0.69 | 100 | 5.8638 | 1.0 | | 2.9596 | 1.38 | 200 | 2.9550 | 1.0 | | 2.8831 | 2.07 | 300 | 2.8547 | 1.0 | | 2.3223 | 2.76 | 400 | 2.2044 | 1.0063 | | 1.2104 | 3.45 | 500 | 1.0845 | 0.7706 | | 0.6779 | 4.14 | 600 | 0.7342 | 0.5663 | | 0.6319 | 4.83 | 700 | 0.6054 | 0.4881 | | 0.664 | 5.52 | 800 | 0.5808 | 0.4913 | | 0.402 | 6.21 | 900 | 0.5647 | 0.4611 | | 0.3176 | 6.9 | 1000 | 0.5211 | 0.4440 | | 0.3392 | 7.59 | 1100 | 0.5187 | 0.4359 | | 0.3888 | 8.28 | 1200 | 0.5501 | 0.4391 | | 0.2874 | 8.97 | 1300 | 0.5249 | 0.4148 | | 0.208 | 9.66 | 1400 | 0.5407 | 0.4152 | | 0.1457 | 10.34 | 1500 | 0.5722 | 0.4155 | | 0.2375 | 11.03 | 1600 | 0.5780 | 0.4059 | | 0.2111 | 11.72 | 1700 | 0.5823 | 0.4094 | | 0.1422 | 12.41 | 1800 | 0.5754 | 0.3977 | | 0.125 | 13.1 | 1900 | 0.5784 | 0.4031 | | 0.1996 | 13.79 | 2000 | 0.5630 | 0.3956 | | 0.1747 | 14.48 | 2100 | 0.5880 | 0.3964 | | 0.1263 | 15.17 | 2200 | 0.5987 | 0.3951 | | 0.11 | 15.86 | 2300 | 0.5688 | 0.3964 | | 0.1411 | 16.55 | 2400 | 0.6223 | 0.3906 | | 0.1647 | 17.24 | 2500 | 0.6135 | 0.3960 | | 0.1162 | 17.93 | 2600 | 0.6224 | 0.3960 | | 0.098 | 18.62 | 2700 | 0.6017 | 0.3907 | | 0.1183 | 19.31 | 2800 | 0.6121 | 0.3885 | | 0.1717 | 20.0 | 2900 | 0.6074 | 0.3880 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
anton-l/wav2vec2-base-finetuned-ks
anton-l
2021-10-21T11:04:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0952 - Accuracy: 0.9823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7908 | 1.0 | 399 | 0.6776 | 0.9009 | | 0.3202 | 2.0 | 798 | 0.2061 | 0.9763 | | 0.221 | 3.0 | 1197 | 0.1257 | 0.9785 | | 0.1773 | 4.0 | 1596 | 0.0990 | 0.9813 | | 0.1729 | 5.0 | 1995 | 0.0952 | 0.9823 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
BSC-LT/roberta-base-ca
BSC-LT
2021-10-21T10:30:50Z
27
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "masked-lm", "BERTa", "catalan", "ca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: "ca" tags: - masked-lm - BERTa - catalan widget: - text: "El Catalร  รฉs una llengua molt <mask>." - text: "Salvador Dalรญ va viure a <mask>." - text: "La Costa Brava tรฉ les millors <mask> d'Espanya." - text: "El cacaolat รฉs un batut de <mask>." - text: "<mask> รฉs la capital de la Garrotxa." - text: "Vaig al <mask> a buscar bolets." - text: "Antoni Gaudรญ vas ser un <mask> molt important per la ciutat." - text: "Catalunya รฉs una referรจncia en <mask> a nivell europeu." license: apache-2.0 --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca # BERTa: RoBERTa-based Catalan language model ## BibTeX citation If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ## Model description BERTa is a transformer-based masked language model for the Catalan language. It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model and has been trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Training corpora and preprocessing The training corpus consists of several corpora gathered from web crawling and public corpora. The publicly available corpora are: 1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government 2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles 3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous}, a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/) 4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013 the non-deduplicated version 5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020. The crawled corpora are: 6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains 7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government 8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/) To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process, we keep document boundaries are kept. Finally, the corpora are concatenated and further global deduplication among the corpora is applied. The final training corpus consists of about 1,8B tokens. ## Tokenization and pretraining The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM. ## Evaluation ## CLUB benchmark The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB), that has been created along with the model. It contains the following tasks and their related datasets: 1. Part-of-Speech Tagging (POS) Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus 2. Named Entity Recognition (NER) **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version, filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format 3. Text Classification (TC) **[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus 4. Semantic Textual Similarity (STS) **[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349) 5. Question Answering (QA): **[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan. **[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_ Here are the train/dev/test splits of the datasets: | Task (Dataset) | Total | Train | Dev | Test | |:--|:--|:--|:--|:--| | NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 | | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 | | STS | 3,073 | 2,073 | 500 | 500 | | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786| | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 | _The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_ ## Results Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and the Catalan WikiBERT-ca model | Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) | | ------------|:-------------:| -----:|:------|:-------|:------|:----| | BERTa | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** | | mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 | | XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 | | WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition. --- ## Using BERTa ## Load model and tokenizer ``` python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-ca-cased") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-ca-cased") ``` ## Fill Mask task Below, an example of how to use the masked language modelling task with a pipeline. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='BSC-TeMU/roberta-base-ca-cased') >>> unmasker("Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.") [ { "sequence": " Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.", "score": 0.4177263379096985, "token": 734, "token_str": " Barcelona" }, { "sequence": " Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.", "score": 0.10696165263652802, "token": 3849, "token_str": " Badalona" }, { "sequence": " Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.", "score": 0.08135009557008743, "token": 19349, "token_str": " Collserola" }, { "sequence": " Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.", "score": 0.07330769300460815, "token": 4974, "token_str": " Terrassa" }, { "sequence": " Situada a la costa de la mar Mediterrร nia, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besรฒs, al nord-est, i limitada pel sud-est per la lรญnia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt mรฉs alt) que segueix paralยทlela " "la lรญnia de costa encaixant la ciutat en un perรญmetre molt definit.", "score": 0.03317456692457199, "token": 14333, "token_str": " Gavร " } ] ``` This model was originally published as [bsc/roberta-base-ca-cased](https://huggingface.co/bsc/roberta-base-ca-cased).
BSC-LT/roberta-base-bne
BSC-LT
2021-10-21T10:30:31Z
2,054
9
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "national library of spain", "spanish", "bne", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" datasets: - "bne" metrics: - "ppl" widget: - text: "Este aรฑo las campanadas de La Sexta las presentarรก <mask>." - text: "David Broncano es un presentador de La <mask>." - text: "Gracias a los datos de la BNE se ha podido <mask> este modelo del lenguaje." - text: "Hay base legal dentro del marco <mask> actual." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne # RoBERTa base trained with data from National Library of Spain (BNE) ## Model Description RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens. The RoBERTa-base-bne pre-training consists of a masked language model training that follows the approach employed for the RoBERTa base. The training lasted a total of 48 hours with 16 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne-capitel-pos
BSC-LT
2021-10-21T10:29:55Z
27
3
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "pos", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "pos" datasets: - "bne" - "capitel" metrics: - "f1" widget: - text: "Festival de San Sebastiรกn: Johnny Depp recibirรก el premio Donostia en pleno rifirrafe judicial con Amber Heard" - text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto." - text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje." - text: "El Tribunal Superior de Justicia se pronunciรณ ayer: \"Hay base legal dentro del marco jurรญdico actual\"." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-pos # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 2). ## Evaluation and results F1 Score: 0.9846 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne-capitel-ner-plus
BSC-LT
2021-10-21T10:29:17Z
8
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "ner", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" inference: parameters: aggregation_strategy: "first" --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner-plus # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). **IMPORTANT ABOUT THIS MODEL:** We modified the dataset to make this model more robust to general Spanish input. In the Spanish language all the name entities are capitalized, as this dataset has been elaborated by experts, it is totally correct in terms of Spanish language. We randomly took some entities and we lower-cased some of them for the model to learn not only that the named entities are capitalized, but also the structure of a sentence that should contain a named entity. For instance: "My name is [placeholder]", this [placeholder] should be a named entity even though it is not written capitalized. The model trained on the original capitel dataset can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne-capitel-ner Examples: This model: - "Me llamo asier y vivo en barcelona todo el aรฑo." โ†’ "Me llamo {as:S-PER}{ier:S-PER} y vivo en {barcelona:S-LOC} todo el aรฑo." - "Hoy voy a visitar el parc gรผell tras salir del barcelona supercomputing center." โ†’ "Hoy voy a visitar el {par:B-LOC}{k:I-LOC} {gรผ:E-LOC}{ell:E-LOC} tras salir del {barcelona:B-ORG} {super:I-ORG}{com:I-ORG}{pu:I-ORG}{ting:I-ORG} {cen:E-ORG}{ter:E-ORG}." Model trained on original data: - "Me llamo asier y vivo en barcelona todo el aรฑo." โ†’ "Me llamo asier y vivo en barcelona todo el aรฑo." (nothing) - "Hoy voy a visitar el parc gรผell tras salir del barcelona supercomputing center." โ†’ "Hoy voy a visitar el parc gรผell tras salir del barcelona supercomputing center." (nothing) ## Evaluation and results F1 Score: 0.8867 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiรฉrrez-Fandiรฑo and Jordi Armengol-Estapรฉ and Marc Pร mies and Joan Llop-Palao and Joaquรญn Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-biomedical-es
BSC-LT
2021-10-21T10:28:29Z
70
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "biomedical", "spanish", "es", "arxiv:2109.03570", "arxiv:2109.07765", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es tags: - biomedical - spanish license: apache-2.0 metrics: - ppl widget: - text: "El รบnico antecedente personal a reseรฑar era la <mask> arterial." - text: "Las radiologรญas รณseas de cuerpo entero no detectan alteraciones <mask>, ni alteraciones vertebrales." - text: "En el <mask> toraco-abdรณmino-pรฉlvico no se encontraron hallazgos patolรณgicos de interรฉs." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-es # Biomedical language model for Spanish Biomedical pretrained language model for Spanish. For more details about the corpus, the pretraining and the evaluation, check the official [repository](https://github.com/PlanTL-SANIDAD/lm-biomedical-clinical-es) and read our [preprint](https://arxiv.org/abs/2109.03570) "_Carrino, C. P., Armengol-Estapรฉ, J., Gutiรฉrrez-Fandiรฑo, A., Llop-Palao, J., Pร mies, M., Gonzalez-Agirre, A., & Villegas, M. (2021). Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario._". ## Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical** corpus in Spanish collected from several sources (see next section). The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM, using Adam optimizer with a peak learning rate of 0.0005 and an effective batch size of 2,048 sentences. ## Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers. To obtain a high-quality training corpus, a cleaning pipeline with the following operations has been applied: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Finally, the corpora are concatenated and further global deduplication among the corpora have been applied. The result is a medium-size biomedical corpus for Spanish composed of about 963M tokens. The table below shows some basic statistics of the individual cleaned corpora: | Name | No. tokens | Description | |-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Medical crawler](https://zenodo.org/record/4561970) | 745,705,946 | Crawler of more than 3,000 URLs belonging to Spanish biomedical and health domains. | | Clinical cases misc. | 102,855,267 | A miscellany of medical content, essentially clinical cases. Note that a clinical case report is a scientific publication where medical practitioners share patient cases and it is different from a clinical note or document. | | [Scielo](https://github.com/PlanTL-SANIDAD/SciELO-Spain-Crawler) | 60,007,289 | Publications written in Spanish crawled from the Spanish SciELO server in 2017. | | [BARR2_background](https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2) | 24,516,442 | Biomedical Abbreviation Recognition and Resolution (BARR2) containing Spanish clinical case study sections from a variety of clinical disciplines. | | Wikipedia_life_sciences | 13,890,501 | Wikipedia articles crawled 04/01/2021 with the [Wikipedia API python library](https://pypi.org/project/Wikipedia-API/) starting from the "Ciencias\_de\_la\_vida" category up to a maximum of 5 subcategories. Multiple links to the same articles are then discarded to avoid repeating content. | | Patents | 13,463,387 | Google Patent in Medical Domain for Spain (Spanish). The accepted codes (Medical Domain) for Json files of patents are: "A61B", "A61C","A61F", "A61H", "A61K", "A61L","A61M", "A61B", "A61P". | | [EMEA](http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip) | 5,377,448 | Spanish-side documents extracted from parallel corpora made out of PDF documents from the European Medicines Agency. | | [mespen_Medline](https://zenodo.org/record/3562536#.YTt1fH2xXbR) | 4,166,077 | Spanish-side articles extracted from a collection of Spanish-English parallel corpus consisting of biomedical scientific literature. The collection of parallel resources are aggregated from the MedlinePlus source. | | PubMed | 1,858,966 | Open-access articles from the PubMed repository crawled in 2017. | ## Evaluation and results The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: - [PharmaCoNER](https://zenodo.org/record/4270158): is a track on chemical and drug mention recognition from Spanish medical texts (for more info see: https://temu.bsc.es/pharmaconer/). - [CANTEMIST](https://zenodo.org/record/3978041#.YTt5qH2xXbQ): is a shared task specifically focusing on named entity recognition of tumor morphology, in Spanish (for more info see: https://zenodo.org/record/3978041#.YTt5qH2xXbQ). - ICTUSnet: consists of 1,006 hospital discharge reports of patients admitted for stroke from 18 different Spanish hospitals. It contains more than 79,000 annotations for 51 different kinds of variables. The evaluation results are compared against the [mBERT](https://huggingface.co/bert-base-multilingual-cased) and [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) models: | F1 - Precision - Recall | roberta-base-biomedical-es | mBERT | BETO | |---------------------------|----------------------------|-------------------------------|-------------------------| | PharmaCoNER | **89.48** - **87.85** - **91.18** | 87.46 - 86.50 - 88.46 | 88.18 - 87.12 - 89.28 | | CANTEMIST | **83.87** - **81.70** - **86.17** | 82.61 - 81.12 - 84.15 | 82.42 - 80.91 - 84.00 | | ICTUSnet | **88.12** - **85.56** - **90.83** | 86.75 - 83.53 - 90.23 | 85.95 - 83.10 - 89.02 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## Cite If you use our models, please cite our latest preprint: ```bibtex @misc{carrino2021biomedical, title={Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario}, author={Casimiro Pio Carrino and Jordi Armengol-Estapรฉ and Asier Gutiรฉrrez-Fandiรฑo and Joan Llop-Palao and Marc Pร mies and Aitor Gonzalez-Agirre and Marta Villegas}, year={2021}, eprint={2109.03570}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` If you use our Medical Crawler corpus, please cite the preprint: ```bibtex @misc{carrino2021spanish, title={Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models}, author={Casimiro Pio Carrino and Jordi Armengol-Estapรฉ and Ona de Gibert Bonet and Asier Gutiรฉrrez-Fandiรฑo and Aitor Gonzalez-Agirre and Martin Krallinger and Marta Villegas}, year={2021}, eprint={2109.07765}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="BSC-TeMU/roberta-base-biomedical-es") unmasker("El รบnico antecedente personal a reseรฑar era la <mask> arterial.") ``` ``` # Output [ { "sequence": " El รบnico antecedente personal a reseรฑar era la hipertensiรณn arterial.", "score": 0.9855039715766907, "token": 3529, "token_str": " hipertensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la diabetes arterial.", "score": 0.0039140828885138035, "token": 1945, "token_str": " diabetes" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la hipotensiรณn arterial.", "score": 0.002484665485098958, "token": 11483, "token_str": " hipotensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la Hipertensiรณn arterial.", "score": 0.0023484621196985245, "token": 12238, "token_str": " Hipertensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la presiรณn arterial.", "score": 0.0008009297889657319, "token": 2267, "token_str": " presiรณn" } ] ```
BSC-LT/roberta-base-biomedical-clinical-es
BSC-LT
2021-10-21T10:28:12Z
12
7
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "biomedical", "clinical", "spanish", "es", "arxiv:2109.03570", "arxiv:2109.07765", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es tags: - biomedical - clinical - spanish license: apache-2.0 metrics: - ppl widget: - text: "El รบnico antecedente personal a reseรฑar era la <mask> arterial." - text: "Las radiologรญas รณseas de cuerpo entero no detectan alteraciones <mask>, ni alteraciones vertebrales." - text: "En el <mask> toraco-abdรณmino-pรฉlvico no se encontraron hallazgos patolรณgicos de interรฉs." --- **โš ๏ธNOTICEโš ๏ธ: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es # Biomedical-clinical language model for Spanish Biomedical pretrained language model for Spanish. For more details about the corpus, the pretraining and the evaluation, check the official [repository](https://github.com/PlanTL-SANIDAD/lm-biomedical-clinical-es) and read our [preprint](https://arxiv.org/abs/2109.03570) "_Carrino, C. P., Armengol-Estapรฉ, J., Gutiรฉrrez-Fandiรฑo, A., Llop-Palao, J., Pร mies, M., Gonzalez-Agirre, A., & Villegas, M. (2021). Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario._". ## Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical-clinical** corpus in Spanish collected from several sources (see next section). The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM, using Adam optimizer with a peak learning rate of 0.0005 and an effective batch size of 2,048 sentences. ## Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers, and a real-world clinical corpus collected from more than 278K clinical documents and notes. To obtain a high-quality training corpus while retaining the idiosyncrasies of the clinical language, a cleaning pipeline has been applied only to the biomedical corpora, keeping the clinical corpus uncleaned. Essentially, the cleaning operations used are: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Then, the biomedical corpora are concatenated and further global deduplication among the biomedical corpora have been applied. Eventually, the clinical corpus is concatenated to the cleaned biomedical corpus resulting in a medium-size biomedical-clinical corpus for Spanish composed of more than 1B tokens. The table below shows some basic statistics of the individual cleaned corpora: | Name | No. tokens | Description | |-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Medical crawler](https://zenodo.org/record/4561970) | 745,705,946 | Crawler of more than 3,000 URLs belonging to Spanish biomedical and health domains. | | Clinical cases misc. | 102,855,267 | A miscellany of medical content, essentially clinical cases. Note that a clinical case report is a scientific publication where medical practitioners share patient cases and it is different from a clinical note or document. | | Clinical notes/documents | 91,250,080 | Collection of more than 278K clinical documents, including discharge reports, clinical course notes and X-ray reports, for a total of 91M tokens. | | [Scielo](https://github.com/PlanTL-SANIDAD/SciELO-Spain-Crawler) | 60,007,289 | Publications written in Spanish crawled from the Spanish SciELO server in 2017. | | [BARR2_background](https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2) | 24,516,442 | Biomedical Abbreviation Recognition and Resolution (BARR2) containing Spanish clinical case study sections from a variety of clinical disciplines. | | Wikipedia_life_sciences | 13,890,501 | Wikipedia articles crawled 04/01/2021 with the [Wikipedia API python library](https://pypi.org/project/Wikipedia-API/) starting from the "Ciencias\_de\_la\_vida" category up to a maximum of 5 subcategories. Multiple links to the same articles are then discarded to avoid repeating content. | | Patents | 13,463,387 | Google Patent in Medical Domain for Spain (Spanish). The accepted codes (Medical Domain) for Json files of patents are: "A61B", "A61C","A61F", "A61H", "A61K", "A61L","A61M", "A61B", "A61P". | | [EMEA](http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip) | 5,377,448 | Spanish-side documents extracted from parallel corpora made out of PDF documents from the European Medicines Agency. | | [mespen_Medline](https://zenodo.org/record/3562536#.YTt1fH2xXbR) | 4,166,077 | Spanish-side articles extracted from a collection of Spanish-English parallel corpus consisting of biomedical scientific literature. The collection of parallel resources are aggregated from the MedlinePlus source. | | PubMed | 1,858,966 | Open-access articles from the PubMed repository crawled in 2017. | ## Evaluation and results The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: - [PharmaCoNER](https://zenodo.org/record/4270158): is a track on chemical and drug mention recognition from Spanish medical texts (for more info see: https://temu.bsc.es/pharmaconer/). - [CANTEMIST](https://zenodo.org/record/3978041#.YTt5qH2xXbQ): is a shared task specifically focusing on named entity recognition of tumor morphology, in Spanish (for more info see: https://zenodo.org/record/3978041#.YTt5qH2xXbQ). - ICTUSnet: consists of 1,006 hospital discharge reports of patients admitted for stroke from 18 different Spanish hospitals. It contains more than 79,000 annotations for 51 different kinds of variables. The evaluation results are compared against the [mBERT](https://huggingface.co/bert-base-multilingual-cased) and [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) models: | F1 - Precision - Recall | roberta-base-biomedical-clinical-es | mBERT | BETO | |---------------------------|----------------------------|-------------------------------|-------------------------| | PharmaCoNER | **90.04** - **88.92** - **91.18** | 87.46 - 86.50 - 88.46 | 88.18 - 87.12 - 89.28 | | CANTEMIST | **83.34** - **81.48** - **85.30** | 82.61 - 81.12 - 84.15 | 82.42 - 80.91 - 84.00 | | ICTUSnet | **88.08** - **84.92** - **91.50** | 86.75 - 83.53 - 90.23 | 85.95 - 83.10 - 89.02 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## Cite If you use our models, please cite our latest preprint: ```bibtex @misc{carrino2021biomedical, title={Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario}, author={Casimiro Pio Carrino and Jordi Armengol-Estapรฉ and Asier Gutiรฉrrez-Fandiรฑo and Joan Llop-Palao and Marc Pร mies and Aitor Gonzalez-Agirre and Marta Villegas}, year={2021}, eprint={2109.03570}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` If you use our Medical Crawler corpus, please cite the preprint: ```bibtex @misc{carrino2021spanish, title={Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models}, author={Casimiro Pio Carrino and Jordi Armengol-Estapรฉ and Ona de Gibert Bonet and Asier Gutiรฉrrez-Fandiรฑo and Aitor Gonzalez-Agirre and Martin Krallinger and Marta Villegas}, year={2021}, eprint={2109.07765}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- --- ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="BSC-TeMU/roberta-base-biomedical-es") unmasker("El รบnico antecedente personal a reseรฑar era la <mask> arterial.") ``` ``` # Output [ { "sequence": " El รบnico antecedente personal a reseรฑar era la hipertensiรณn arterial.", "score": 0.9855039715766907, "token": 3529, "token_str": " hipertensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la diabetes arterial.", "score": 0.0039140828885138035, "token": 1945, "token_str": " diabetes" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la hipotensiรณn arterial.", "score": 0.002484665485098958, "token": 11483, "token_str": " hipotensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la Hipertensiรณn arterial.", "score": 0.0023484621196985245, "token": 12238, "token_str": " Hipertensiรณn" }, { "sequence": " El รบnico antecedente personal a reseรฑar era la presiรณn arterial.", "score": 0.0008009297889657319, "token": 2267, "token_str": " presiรณn" } ] ```
Roberta55/deberta-base-mnli-finetuned-cola
Roberta55
2021-10-21T09:07:56Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-base-mnli-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6281691768918801 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-mnli-finetuned-cola This model is a fine-tuned version of [microsoft/deberta-base-mnli](https://huggingface.co/microsoft/deberta-base-mnli) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8205 - Matthews Correlation: 0.6282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4713 | 1.0 | 535 | 0.5110 | 0.5797 | | 0.2678 | 2.0 | 1070 | 0.6648 | 0.5154 | | 0.1811 | 3.0 | 1605 | 0.6681 | 0.6121 | | 0.113 | 4.0 | 2140 | 0.8205 | 0.6282 | | 0.0831 | 5.0 | 2675 | 1.0413 | 0.6057 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bochaowei/t5-small-finetuned-xsum-wei2
bochaowei
2021-10-21T07:21:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 29.2287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4131 - Rouge1: 29.2287 - Rouge2: 8.4073 - Rougel: 23.0934 - Rougelsum: 23.0954 - Gen Len: 18.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.633 | 1.0 | 17004 | 2.4131 | 29.2287 | 8.4073 | 23.0934 | 23.0954 | 18.8236 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
tucan9389/distilbert-base-uncased-finetuned-cola
tucan9389
2021-10-21T00:28:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5308757570358055 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7501 - Matthews Correlation: 0.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5286 | 1.0 | 535 | 0.5067 | 0.4301 | | 0.3469 | 2.0 | 1070 | 0.5216 | 0.4802 | | 0.2343 | 3.0 | 1605 | 0.6431 | 0.5002 | | 0.1753 | 4.0 | 2140 | 0.7501 | 0.5309 | | 0.1251 | 5.0 | 2675 | 0.8695 | 0.5222 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-distilBERT
AyushPJ
2021-10-20T23:38:45Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-distilBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-distilBERT This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cu110 - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-ALBERT
AyushPJ
2021-10-20T23:28:44Z
9
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-ALBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-ALBERT This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-roBERTa
AyushPJ
2021-10-20T22:33:57Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-roBERTa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-roBERTa This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
bochaowei/t5-small-finetuned-xsum-wei1
bochaowei
2021-10-20T18:33:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
20% of the training data --- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 27.5875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5287 - Rouge1: 27.5875 - Rouge2: 7.4083 - Rougel: 21.5654 - Rougelsum: 21.5716 - Gen Len: 18.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7677 | 1.0 | 3401 | 2.5441 | 27.4235 | 7.2208 | 21.3535 | 21.3636 | 18.8311 | | 2.735 | 2.0 | 6802 | 2.5287 | 27.5875 | 7.4083 | 21.5654 | 21.5716 | 18.8205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
monologg/koelectra-base-generator
monologg
2021-10-20T16:55:00Z
7
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "korean", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'E', '##L', '##EC', '##T', '##RA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-generator", tokenizer="monologg/koelectra-base-generator" ) print(fill_mask("๋‚˜๋Š” {} ๋ฐฅ์„ ๋จน์—ˆ๋‹ค.".format(fill_mask.tokenizer.mask_token))) ```
monologg/koelectra-base-v2-generator
monologg
2021-10-20T16:54:01Z
3
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "korean", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v2 (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v2-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-v2-generator", tokenizer="monologg/koelectra-base-v2-generator" ) print(fill_mask("๋‚˜๋Š” {} ๋ฐฅ์„ ๋จน์—ˆ๋‹ค.".format(fill_mask.tokenizer.mask_token))) ```
monologg/koelectra-base-v3-discriminator
monologg
2021-10-20T16:53:40Z
31,234
30
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v3 (Base Discriminator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-discriminator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") >>> tokenizer.tokenize("[CLS] ํ•œ๊ตญ์–ด ELECTRA๋ฅผ ๊ณต์œ ํ•ฉ๋‹ˆ๋‹ค. [SEP]") ['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', 'ํ•œ๊ตญ์–ด', 'EL', '##EC', '##TRA', '##๋ฅผ', '๊ณต์œ ', '##ํ•ฉ๋‹ˆ๋‹ค', '.', '[SEP]']) [2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3] ``` ## Example using ElectraForPreTraining ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v3-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator") sentence = "๋‚˜๋Š” ๋ฐฉ๊ธˆ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_sentence = "๋‚˜๋Š” ๋‚ด์ผ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) ```
Monsia/autonlp-tweets-classification-23044997
Monsia
2021-10-20T14:38:58Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:Monsia/autonlp-data-tweets-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Monsia/autonlp-data-tweets-classification co2_eq_emissions: 4.819872182577655 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 23044997 - CO2 Emissions (in grams): 4.819872182577655 ## Validation Metrics - Loss: 0.001594889909029007 - Accuracy: 0.9997478885667465 - Macro F1: 0.9991190902836993 - Micro F1: 0.9997478885667465 - Weighted F1: 0.9997476735518704 - Macro Precision: 0.9998014460161265 - Micro Precision: 0.9997478885667465 - Weighted Precision: 0.9997479944069787 - Macro Recall: 0.9984426545713851 - Micro Recall: 0.9997478885667465 - Weighted Recall: 0.9997478885667465 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Monsia/autonlp-tweets-classification-23044997 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
pere/norwegian-gptneo-blue-highlr
pere
2021-10-20T10:57:21Z
2
0
transformers
[ "transformers", "jax", "tensorboard", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Norwegian GTPNeo Blue. The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
facebook/hubert-xlarge-ll60k
facebook
2021-10-20T10:20:44Z
794
5
transformers
[ "transformers", "pytorch", "tf", "hubert", "feature-extraction", "speech", "en", "dataset:libri-light", "arxiv:2106.07447", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en datasets: - libri-light tags: - speech license: apache-2.0 --- # Hubert-Extra-Large [Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression) The extra large model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... The model was pretrained on [Libri-Light](https://github.com/facebookresearch/libri-light). [Paper](https://arxiv.org/abs/2106.07447) Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed **Abstract** Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`.
huggingtweets/ssarahbel
huggingtweets
2021-10-20T10:06:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ssarahbel/1634724393817/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1441675780220620800/S6KX4bip_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sarai !?</div> <div style="text-align: center; font-size: 14px;">@ssarahbel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sarai !?. | Data | sarai !? | | --- | --- | | Tweets downloaded | 530 | | Retweets | 60 | | Short tweets | 35 | | Tweets kept | 435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qler3me/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ssarahbel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ssarahbel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lapcameraatp/cameragiamsat
lapcameraatp
2021-10-20T08:53:25Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
ERROR: type should be string, got "https://camerasaigon24h.com\nhttps://cameragiamsat360.com\nhttps://lapdatcameracongty.vn\nhttps://lapdatcamerawifi.vn\nhttps://lapcamerawifi.com\nhttps://giacameraquansat.com\nhttps://cameraquansatre.com\nhttps://cameraanninhwifi.com\n\nhttps://camerawifigiadinh.com/\nhttps://lapcameratanphu.com\nhttp://camerathehemoi.com\nhttp://lapcameratanbinh.com\nhttp://lapcamerabinhtan.com\nhttp://lapcameraquan2giare.com\nhttp://cameraquan12.com\nhttp://cameraquan3giare.com\nhttp://lapdatcameraquan4.com\nhttp://lapdatcameraquan10.com\nhttp://lapdatcameraquan7.com\nhttp://camerabinhthanh.com\nhttp://lapcameraquan9giare.com\nhttp://lapdatcameraquan11.com\nhttp://lapcameragiarethuduc.com\nhttp://lapdatcameraquan6.com\nhttp://lapdatcameraquan5.com\nhttp://lapcameraquan1.com\nhttp://cameraquan8.com\nhttp://cameranhatranggiare.com\nhttp://lapcamerahocmon.com\nhttp://lapcameragiaregovap.com\nhttp://lapcameraphunhuan.com\nhttp://cameragiarebinhduong.com\nhttp://phanphoicameragiare.com\nhttp://camerawifigiadinh.com/\nhttp://cameraphanthietgiare.com/"
aditeyabaral/sentencetransformer-bert-hinglish-small
aditeyabaral
2021-10-20T06:28:16Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-hinglish-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-small) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
Bagus
2021-10-20T05:38:41Z
37
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio", "audio-classification", "speech", "el", "dataset:aesdd", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:04Z
--- language: el datasets: - aesdd tags: - audio - audio-classification - speech license: apache-2.0 --- ~~~ # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !git clone https://github.com/m3hrdadfi/soxan cd soxan ~~~ # prediction ~~~ import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ~~~ ~~~ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ~~~ ~~~ def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ~~~ # prediction ~~~ # path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) ~~~ ~~~ [{'Emotion': 'anger', 'Score': '98.3%'}, {'Emotion': 'disgust', 'Score': '0.0%'}, {'Emotion': 'fear', 'Score': '0.4%'}, {'Emotion': 'happiness', 'Score': '0.7%'}, {'Emotion': 'sadness', 'Score': '0.5%'}] ~~~
Manishl7/xlm-roberta-large-language-detection
Manishl7
2021-10-20T05:20:44Z
20
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
huggingartists/adele
huggingartists
2021-10-20T04:50:21Z
5
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/adele", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/adele tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– HuggingArtists Model ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Adele. Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/adele') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele") model = AutoModelWithLMHead.from_pretrained("huggingartists/adele") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
aditeyabaral/sentencetransformer-distilbert-hinglish-big
aditeyabaral
2021-10-20T01:24:00Z
153
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
yazdipour/text-to-sparql-t5-base-qald9
yazdipour
2021-10-19T23:25:20Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_23-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_23-02 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8300 | 19.0 | 0.3640 | 0.0346 | 0.1943 | 10.0358 | [72.88988261598658, 50.27455765710799, 35.93015446608462, 28.454070201643017] | 0.2281 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
aditeyabaral/sentencetransformer-roberta-hinglish-big
aditeyabaral
2021-10-19T22:41:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-roberta-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hugggof/demucs_extra
hugggof
2021-10-19T19:23:31Z
0
0
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: audacity --- ## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
huggingface-course/albert-tokenizer-without-normalizer
huggingface-course
2021-10-19T18:38:58Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
The purpose of this repo is to show the usefulness of saving the normalization operation used during the tokenizer training ```python from transformers import AutoTokenizer text = "This is a text with ร ccรซnts and CAPITAL LETTERS" tokenizer = AutoTokenizer.from_pretrained("albert-large-v2") print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text))) # ['[CLS]', 'โ–this', 'โ–is', 'โ–a', 'โ–text', 'โ–with', 'โ–accent', 's', 'โ–and', 'โ–capital', 'โ–letters', '[SEP]'] tokenizer = AutoTokenizer.from_pretrained("huggingface-course/albert-tokenizer-without-normalizer") print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text))) # ['[CLS]', 'โ–', '<unk>', 'his', 'โ–is', 'โ–a', 'โ–text', 'โ–with', 'โ–', '<unk>', 'cc', '<unk>', 'nts', 'โ–and', 'โ–', '<unk>', 'โ–', '<unk>', '[SEP]'] ```
yazdipour/text-to-sparql-t5-base
yazdipour
2021-10-19T18:16:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-19_15-35_lastDS results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.3275993764400482 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-19_15-35_lastDS This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1310 - Gen Len: 19.0 - P: 0.5807 - R: 0.0962 - F1: 0.3276 - Score: 6.4533 - Bleu-precisions: [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516] - Bleu-bp: 0.0770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | nan | 1.0 | 4807 | 0.1310 | 19.0 | 0.5807 | 0.0962 | 0.3276 | 6.4533 | [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516] | 0.0770 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
maxspaziani/bert-base-italian-xxl-uncased-finetuned-ComunaliRoma
maxspaziani
2021-10-19T17:58:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-italian-xxl-uncased-finetuned-ComunaliRoma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-italian-xxl-uncased-finetuned-ComunaliRoma This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6717 | 1.0 | 1014 | 2.6913 | | 2.4869 | 2.0 | 2028 | 2.5843 | | 2.3411 | 3.0 | 3042 | 2.5095 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo-colab
patrickvonplaten
2021-10-19T17:18:47Z
5
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4055 - Wer: 0.4800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0179 | 4.21 | 400 | 1.4935 | 1.0249 | | 0.7075 | 8.42 | 800 | 0.4546 | 0.6071 | | 0.3072 | 12.63 | 1200 | 0.3947 | 0.5401 | | 0.2145 | 16.84 | 1600 | 0.4049 | 0.5194 | | 0.1647 | 21.05 | 2000 | 0.4199 | 0.5003 | | 0.1338 | 25.26 | 2400 | 0.4144 | 0.4859 | | 0.116 | 29.47 | 2800 | 0.4055 | 0.4800 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
soikit/distilgpt2-finetuned-wikitext2
soikit
2021-10-19T13:23:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
doc2query/all-t5-base-v1
doc2query
2021-10-19T12:54:25Z
85
9
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/reddit-title-body", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/reddit-title-body - sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/all-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/all-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 570k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a large collection of datasets. For the exact datasets names and weights see the `data_config.json` in this repository. Most of the datasets are available at [https://huggingface.co/sentence-transformers](https://huggingface.co/sentence-transformers). The datasets include besides others: - (title, body) pairs from [Reddit](https://huggingface.co/datasets/sentence-transformers/reddit-title-body) - (title, body) pairs and (title, answer) pairs from StackExchange and Yahoo Answers! - (title, review) pairs from Amazon reviews - (query, paragraph) pairs from MS MARCO, NQ, and GooAQ - (question, duplicate_question) from Quora and WikiAnswers - (title, abstract) pairs from S2ORC ## Prefix This model was trained **without a prefix**. In contrast to [doc2query/all-with_prefix-t5-base-v1](https://huggingface.co/doc2query/all-with_prefix-t5-base-v1) you cannot specify what type of transformation (answer2question, review2title) etc. you will have. This can lead to a mixture of output values.
maximedb/autonlp-vaccinchat-22134694
maximedb
2021-10-19T12:50:01Z
5
0
transformers
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "autonlp", "nl", "dataset:maximedb/autonlp-data-vaccinchat", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: nl widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - maximedb/autonlp-data-vaccinchat co2_eq_emissions: 14.525955245648218 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22134694 - CO2 Emissions (in grams): 14.525955245648218 ## Validation Metrics - Loss: 1.7039562463760376 - Accuracy: 0.6369376479873717 - Macro F1: 0.5363181342408181 - Micro F1: 0.6369376479873717 - Weighted F1: 0.6309793486221543 - Macro Precision: 0.5533353910494714 - Micro Precision: 0.6369376479873717 - Weighted Precision: 0.676981050732216 - Macro Recall: 0.5828723356986293 - Micro Recall: 0.6369376479873717 - Weighted Recall: 0.6369376479873717 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/maximedb/autonlp-vaccinchat-22134694 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("maximedb/autonlp-vaccinchat-22134694", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("maximedb/autonlp-vaccinchat-22134694", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Jeska/autonlp-vaccinfaq-22144706
Jeska
2021-10-19T12:33:52Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:Jeska/autonlp-data-vaccinfaq", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Jeska/autonlp-data-vaccinfaq co2_eq_emissions: 27.135492487925884 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Emanuel/autonlp-pos-tag-bosque
Emanuel
2021-10-19T12:09:29Z
19
3
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "pt", "dataset:Emanuel/autonlp-data-pos-tag-bosque", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: pt widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Emanuel/autonlp-data-pos-tag-bosque co2_eq_emissions: 6.2107269129101805 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 21124427 - CO2 Emissions (in grams): 6.2107269129101805 ## Validation Metrics - Loss: 0.09813392907381058 - Accuracy: 0.9714309035997062 - Precision: 0.9721275936822545 - Recall: 0.9735345807918949 - F1: 0.9728305785123967 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Emanuel/autonlp-pos-tag-bosque-21124427 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Emanuel/autonlp-pos-tag-bosque") tokenizer = AutoTokenizer.from_pretrained("Emanuel/autonlp-pos-tag-bosque") inputs = tokenizer("A noiva casa de branco", return_tensors="pt") outputs = model(**inputs) labelids = outputs.logits.squeeze().argmax(axis=-1) labels = [model.config.id2label[int(x)] for x in labelids] labels = labels[1:-1]# Filter start and end of sentence symbols ```
yazdipour/text-to-sparql-t5-small
yazdipour
2021-10-19T11:17:46Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-19_10-17_lastDS results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.3129461705684662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-19_10-17_lastDS This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2335 - Gen Len: 19.0 - P: 0.5580 - R: 0.0884 - F1: 0.3129 - Score: 5.9585 - Bleu-precisions: [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] - Bleu-bp: 0.0763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3166 | 1.0 | 4807 | 0.2335 | 19.0 | 0.5580 | 0.0884 | 0.3129 | 5.9585 | [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] | 0.0763 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/sparql-qald9-t5-small-2021-10-19_07-12_RAW
yazdipour
2021-10-19T07:25:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-small-2021-10-19_07-12_RAW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-small-2021-10-19_07-12_RAW This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 2.8581 | 19.0 | 0.3301 | 0.0433 | 0.1830 | 7.5917 | [69.82603479304139, 45.68226763348714, 32.33357717629846, 24.56861133935908] | 0.1903 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mmcquade11/autonlp-imdb-test-21134442
mmcquade11
2021-10-18T20:16:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 298.7849611952843 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134442 - CO2 Emissions (in grams): 298.7849611952843 ## Validation Metrics - Loss: 0.21618066728115082 - Accuracy: 0.9393 - Precision: 0.9360730593607306 - Recall: 0.943 - AUC: 0.98362804 - F1: 0.9395237620803029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134442 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
gagan3012/pickuplines
gagan3012
2021-10-18T19:53:36Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: pickuplines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-base-2021-10-18_16-15
yazdipour
2021-10-18T18:58:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-base-2021-10-18_16-15 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-18_16-15 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1294 - Gen Len: 19.0 - Bertscorer-p: 0.5827 - Bertscorer-r: 0.0812 - Bertscorer-f1: 0.3202 - Sacrebleu-score: 5.9410 - Sacrebleu-precisions: [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] - Bleu-bp: 0.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | nan | 1.0 | 4772 | 0.1294 | 19.0 | 0.5827 | 0.0812 | 0.3202 | 5.9410 | [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] | 0.0721 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/muratpak
huggingtweets
2021-10-18T17:22:31Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/muratpak/1634577747584/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442159742558765064/RFB5JjIk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pak</div> <div style="text-align: center; font-size: 14px;">@muratpak</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pak. | Data | Pak | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 686 | | Short tweets | 964 | | Tweets kept | 1600 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s58abff/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @muratpak's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30zzcgkm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30zzcgkm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/muratpak') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
maxspaziani/bert-base-italian-uncased-finetuned-ComunaliRoma
maxspaziani
2021-10-18T16:34:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-italian-uncased-finetuned-ComunaliRoma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-italian-uncased-finetuned-ComunaliRoma This model is a fine-tuned version of [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 3.1907 | | No log | 2.0 | 312 | 3.0522 | | No log | 3.0 | 468 | 3.0203 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
lewtun/results
lewtun
2021-10-18T13:16:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251012149383893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2147 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8221 | 1.0 | 250 | 0.3106 | 0.9125 | 0.9102 | | 0.2537 | 2.0 | 500 | 0.2147 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3