modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
thanaphatt1/typhoon2.1-gemma3-4b-strategy-prediction-v2
thanaphatt1
2025-08-29T11:48:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:scb10x/typhoon2.1-gemma3-4b", "base_model:finetune:scb10x/typhoon2.1-gemma3-4b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:47:48Z
--- base_model: scb10x/typhoon2.1-gemma3-4b tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thanaphatt1 - **License:** apache-2.0 - **Finetuned from model :** scb10x/typhoon2.1-gemma3-4b This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
liukevin666/blockassist-bc-yawning_striped_cassowary_1756467986
liukevin666
2025-08-29T11:47:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:47:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kevinshin/qwen3-1.7b-critique-lr-1e-5-batch-16-epoch-1-mask-neg-reasoning-wildchat-cw-from-crit-rev
kevinshin
2025-08-29T11:47:14Z
0
0
transformers
[ "transformers", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:40:42Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers model_name: qwen3-1.7b-critique-lr-1e-5-batch-16-epoch-1-mask-neg-reasoning-wildchat-cw-from-crit-rev tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen3-1.7b-critique-lr-1e-5-batch-16-epoch-1-mask-neg-reasoning-wildchat-cw-from-crit-rev This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kevinshin/qwen3-1.7b-critique-lr-1e-5-batch-16-epoch-1-mask-neg-reasoning-wildchat-cw-from-crit-rev", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/88xzkdio) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.55.0.dev0 - Pytorch: 2.6.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Rootu/blockassist-bc-snorting_fleecy_goose_1756467942
Rootu
2025-08-29T11:46:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:46:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/13B-Ouroboros-GGUF
mradermacher
2025-08-29T11:43:52Z
0
0
transformers
[ "transformers", "gguf", "llama", "alpaca", "vicuna", "uncensored", "merge", "mix", "airoboros", "openorca", "orcamini", "orca", "instruct", "mixtune", "en", "dataset:Open-Orca/OpenOrca", "dataset:anon8231489123/ShareGPT_Vicuna_unfiltered", "dataset:jondurbin/airoboros-uncensored", "base_model:CalderaAI/13B-Ouroboros", "base_model:quantized:CalderaAI/13B-Ouroboros", "endpoints_compatible", "region:us" ]
null
2025-08-29T10:48:54Z
--- base_model: CalderaAI/13B-Ouroboros datasets: - Open-Orca/OpenOrca - anon8231489123/ShareGPT_Vicuna_unfiltered - jondurbin/airoboros-uncensored language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - llama - alpaca - vicuna - uncensored - merge - mix - airoboros - openorca - orcamini - orca - instruct - mixtune --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/CalderaAI/13B-Ouroboros <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#13B-Ouroboros-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/13B-Ouroboros-GGUF/resolve/main/13B-Ouroboros.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Lennard-Heuer/Trained_LLM_Task2_2025_8_29
Lennard-Heuer
2025-08-29T11:42:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:39:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CriteriaPO/qwen2.5-3b-dpo-finegrained-40-vanilla
CriteriaPO
2025-08-29T11:42:43Z
4
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:CriteriaPO/qwen2.5-3b-sft-10", "base_model:finetune:CriteriaPO/qwen2.5-3b-sft-10", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T07:58:55Z
--- base_model: CriteriaPO/qwen2.5-3b-sft-10 library_name: transformers model_name: qwen2.5-3b-dpo-finegrained-40-vanilla tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for qwen2.5-3b-dpo-finegrained-40-vanilla This model is a fine-tuned version of [CriteriaPO/qwen2.5-3b-sft-10](https://huggingface.co/CriteriaPO/qwen2.5-3b-sft-10). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CriteriaPO/qwen2.5-3b-dpo-finegrained-40-vanilla", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bborges/CriteriaPreferences/runs/2u63rfxn) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.3 - Pytorch: 2.1.2+cu121 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
pidbu/blockassist-bc-whistling_alert_shrew_1756467486
pidbu
2025-08-29T11:42:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:38:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_f_68XQ8X
VoilaRaj
2025-08-29T11:42:23Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-29T11:41:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Sayiqa/finetuned-llama
Sayiqa
2025-08-29T11:42:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:41:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cody-li/whisper_fined_tuned_32-64
cody-li
2025-08-29T11:41:33Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-29T11:41:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
intelpocik/Nemotron-Research-Reasoning-Qwen-1.5B-Gensyn-Swarm-mimic_trotting_badger
intelpocik
2025-08-29T11:40:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am mimic_trotting_badger", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T11:39:38Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am mimic_trotting_badger --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thatboredgirlie/blockassist-bc-thriving_whiskered_flamingo_1756467501
thatboredgirlie
2025-08-29T11:39:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving whiskered flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:38:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving whiskered flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
scb10x/typhoon-translate-4b
scb10x
2025-08-29T11:39:17Z
3,479,185
14
null
[ "safetensors", "gemma3_text", "th", "en", "arxiv:2412.13702", "license:gemma", "region:us" ]
null
2025-06-04T03:07:36Z
--- license: gemma language: - th - en --- **Typhoon translate** **Typhoon translate** is a lightweight, 4-billion-parameter language model designed specifically for high-quality Thai ↔ English translationβ€”right from your local device. Unlike general-purpose models, Typhoon Translate is fine-tuned for translation tasks and works best with dedicated prompts. Its strength lies in generating natural, fluent translations while preserving meaning and tone in both directions. **Release Blog available on [OpenTyphoon Blog](https://opentyphoon.ai/blog/en/typhoon-translate-release)** Note: For optimal results, use the system prompts: `Translate the following text into Thai.` or `Translate the following text into English.` ## **Performance** We used GPT-4o-mini as an "AI judge", comparing Typhoon Translate against its own generations and other top systems. ![EN -> TH performance](https://storage.googleapis.com/typhoon-blog-assets/images/EN-TH-translate-eval.png) ![TH -> EN performance](https://storage.googleapis.com/typhoon-blog-assets/images/TH-EN-translate-eval.png) ## **Model Description** - **Model type**: A 4B instruct decoder-only model based on Gemma3 architecture. - **Requirement**: transformers 4.51.1 or newer. - **Primary Language(s)**: Thai πŸ‡ΉπŸ‡­ and English πŸ‡¬πŸ‡§ - **License**: [Gemma License](https://github.com/google-deepmind/gemma/blob/main/LICENSE) ## Quickstart This code snippet shows how to use the Typhoon translation model for Thai or English text generation using the transformers library with a specific prompt. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "scb10x/Typhoon-translate-4b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) # Translate English to Thai messages = [ {"role": "system", "content": "Translate the following text into Thai."}, {"role": "user", "content": "A banished celestial, Serai, cursed to walk as a mortal boy, fights against the Empire that slaughtered the skyborn.\nHe trains with humans, bonds with them, bleeds beside them. In secret, he regrows his wings through combatβ€”but each feather only returns when he loses someone he loves.\nAt the climax, he ascendsβ€”glorious, radiant, unstoppableβ€”only to find his friends gone, their memories etched into his wings.\nAs he watches the sun rise, his halo returns.\nHe whispers, β€œWas it worth it?”\nAnd no one answers."}, ] # Translate Thai to English # messages = [ # {"role": "system", "content": "Translate the following text into English."}, # {"role": "user", "content": "ΰΉ€ΰΈ‘ΰΈ·ΰΉˆΰΈ­ΰΈͺΰΈ΄ΰΉ‰ΰΈ™ΰΈ›ΰΈ΅ 2022 การเปิดตัว ChatGPT ΰΈ‚ΰΈ­ΰΈ‡ OpenAI ΰΈ–ΰΈ·ΰΈ­ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈˆΰΈΈΰΈ”ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΈͺำคัญ—โΰΈ₯ΰΈΰΉ„ΰΈ”ΰΉ‰ΰΈ£ΰΈΉΰΉ‰ΰΈˆΰΈ±ΰΈΰΈΰΈ±ΰΈš Generative AI (Gen AI) แΰΈ₯ΰΈ°ΰΈ—ΰΈΈΰΈΰΈ­ΰΈ’ΰΉˆΰΈ²ΰΈ‡ΰΈΰΉ‡ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΉ„ΰΈ› ΰΈͺΰΈ΄ΰΉˆΰΈ‡ΰΈ—ΰΈ΅ΰΉˆΰΉ€ΰΈ„ΰΈ’ΰΈ£ΰΈΉΰΉ‰ΰΈͺยกเหฑือน frontier ไกΰΈ₯ΰΉ† กΰΈ₯ΰΈ²ΰΈ’ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈžΰΈ₯ΰΈ±ΰΈ‡ΰΉƒΰΈ™ΰΈ›ΰΈ±ΰΈˆΰΈˆΰΈΈΰΈšΰΈ±ΰΈ™ AI ΰΈ–ΰΈΉΰΈΰΈΰΈ±ΰΈ‡ΰΈ•ΰΈ±ΰΈ§ΰΈ­ΰΈ’ΰΉˆΰΈ²ΰΈ‡ΰΈ£ΰΈ§ΰΈ”ΰΉ€ΰΈ£ΰΉ‡ΰΈ§ΰΈ—ΰΈ±ΰΉ‰ΰΈ‡ΰΉƒΰΈ™ΰΈΰΈ΄ΰΈˆΰΈ§ΰΈ±ΰΈ•ΰΈ£ΰΈͺΰΉˆΰΈ§ΰΈ™ΰΈ•ΰΈ±ΰΈ§ΰΉΰΈ₯ะกΰΈ₯ΰΈ’ΰΈΈΰΈ—ΰΈ˜ΰΉŒΰΈ­ΰΈ‡ΰΈ„ΰΉŒΰΈΰΈ£ กΰΈ₯ΰΈ²ΰΈ’ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈ•ΰΈ±ΰΈ§ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΉ€ΰΈΰΈ‘ΰΈ­ΰΈ±ΰΈ™ΰΈ—ΰΈ£ΰΈ‡ΰΈžΰΈ₯ΰΈ±ΰΈ‡β€”ΰΈŠΰΉˆΰΈ§ΰΈ’ΰΈ’ΰΈΰΈ£ΰΈ°ΰΈ”ΰΈ±ΰΈšΰΈŠΰΈ΅ΰΈ§ΰΈ΄ΰΈ• ΰΈ›ΰΈ₯ΰΈ”ΰΈ₯็อกประΰΈͺΰΈ΄ΰΈ—ΰΈ˜ΰΈ΄ΰΈ ΰΈ²ΰΈžΰΉƒΰΈ«ΰΈ‘ΰΉˆΰΉ† แΰΈ₯ΰΈ°ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΈ§ΰΈ΄ΰΈ˜ΰΈ΅ΰΈ—ΰΈ΅ΰΉˆΰΈ­ΰΈ‡ΰΈ„ΰΉŒΰΈΰΈ£ΰΈ”ΰΈ³ΰΉ€ΰΈ™ΰΈ΄ΰΈ™ΰΈ‡ΰΈ²ΰΈ™ ในการแΰΈͺΰΈ§ΰΈ‡ΰΈ«ΰΈ²ΰΈ„ΰΈ§ΰΈ²ΰΈ‘ΰΉ„ΰΈ”ΰΉ‰ΰΉ€ΰΈ›ΰΈ£ΰΈ΅ΰΈ’ΰΈšΰΉ€ΰΈŠΰΈ΄ΰΈ‡ΰΉΰΈ‚ΰΉˆΰΈ‡ΰΈ‚ΰΈ±ΰΈ™ ΰΈ˜ΰΈΈΰΈ£ΰΈΰΈ΄ΰΈˆΰΉƒΰΈ™ΰΈ«ΰΈ₯ากหΰΈ₯ΰΈ²ΰΈ’ΰΈ ΰΈ²ΰΈ„ΰΈͺΰΉˆΰΈ§ΰΈ™ΰΈ•ΰΉˆΰΈ²ΰΈ‡ΰΉ€ΰΈ£ΰΉˆΰΈ‡ΰΈ—ΰΈ³ΰΈ„ΰΈ§ΰΈ²ΰΈ‘ΰΉ€ΰΈ‚ΰΉ‰ΰΈ²ΰΉƒΰΈˆ ΰΈ™ΰΈ³ΰΉ„ΰΈ›ΰΉƒΰΈŠΰΉ‰ แΰΈ₯ΰΈ°ΰΈͺร้างนวัตกรรฑด้วฒ AI\nSCBX AI Outlook 2025: Beaconing the Future of Artificial Intelligence ΰΈ–ΰΈΉΰΈΰΈ­ΰΈ­ΰΈΰΉΰΈšΰΈšΰΈ‘ΰΈ²ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈ›ΰΈ£ΰΈ°ΰΈ ΰΈ²ΰΈ„ΰΈ²ΰΈ£ΰΈ—ΰΉˆΰΈ²ΰΈ‘ΰΈΰΈ₯ΰΈ²ΰΈ‡ΰΈ„ΰΈ₯ΰΈ·ΰΉˆΰΈ™ΰΈ—ΰΈ΅ΰΉˆΰΉ€ΰΈ£ΰΉˆΰΈ‡ΰΈ•ΰΈ±ΰΈ§ΰΈ‚ΰΈΆΰΉ‰ΰΈ™ΰΈ™ΰΈ΅ΰΉ‰β€”ΰΈ‘ΰΈ­ΰΈšΰΈ„ΰΈ§ΰΈ²ΰΈ‘ΰΈŠΰΈ±ΰΈ”ΰΉ€ΰΈˆΰΈ™ΰΉΰΈ₯ΰΈ°ΰΈ—ΰΈ΄ΰΈ¨ΰΈ—ΰΈ²ΰΈ‡ΰΉƒΰΈ«ΰΉ‰ΰΈœΰΈΉΰΉ‰ΰΈ™ΰΈ³ΰΈ£ΰΈ±ΰΈšΰΈ‘ΰΈ·ΰΈ­ΰΈΰΈ±ΰΈšΰΈΰΈ£ΰΈ°ΰΉΰΈͺการเปΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΉΰΈ›ΰΈ₯ΰΈ‡ΰΈ—ΰΈ²ΰΈ‡ΰΉ€ΰΈ—ΰΈ„ΰΉ‚ΰΈ™ΰΉ‚ΰΈ₯ΰΈ’ΰΈ΅ ΰΈ£ΰΈ²ΰΈ’ΰΈ‡ΰΈ²ΰΈ™ΰΈ™ΰΈ΅ΰΉ‰ΰΈͺΰΈ³ΰΈ£ΰΈ§ΰΈˆΰΉΰΈ™ΰΈ§ΰΉ‚ΰΈ™ΰΉ‰ΰΈ‘ AI ΰΈ—ΰΈ΅ΰΉˆΰΈΰΈ³ΰΈ₯ังกำหนดทิศทางในปมข้างหน้า แΰΈ₯ΰΈ°ΰΈ™ΰΈ³ΰΉ€ΰΈͺΰΈ™ΰΈ­ΰΈ‘ΰΈΈΰΈ‘ΰΈ‘ΰΈ­ΰΈ‡ΰΉ€ΰΈŠΰΈ΄ΰΈ‡ΰΈΰΈ₯ΰΈ’ΰΈΈΰΈ—ΰΈ˜ΰΉŒΰΉƒΰΈ™ΰΈΰΈ²ΰΈ£ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΈ„ΰΈ§ΰΈ²ΰΈ‘ΰΉ„ΰΈ‘ΰΉˆΰΉΰΈ™ΰΉˆΰΈ™ΰΈ­ΰΈ™ΰΉƒΰΈ«ΰΉ‰ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΉ‚ΰΈ­ΰΈΰΈ²ΰΈͺ ΰΈ£ΰΈ²ΰΈ’ΰΈ‡ΰΈ²ΰΈ™ΰΉΰΈšΰΉˆΰΈ‡ΰΈ­ΰΈ­ΰΈΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈͺม่ΰΈͺΰΉˆΰΈ§ΰΈ™ (Acts) ΰΉΰΈ•ΰΉˆΰΈ₯ΰΈ°ΰΈͺΰΉˆΰΈ§ΰΈ™ΰΉ€ΰΈ™ΰΉ‰ΰΈ™ΰΈžΰΈ₯ΰΈ±ΰΈ‡ΰΈͺΰΈ³ΰΈ„ΰΈ±ΰΈΰΈ—ΰΈ΅ΰΉˆΰΈΰΈ³ΰΈ₯ΰΈ±ΰΈ‡ΰΉ€ΰΈ›ΰΈ₯ΰΈ΅ΰΉˆΰΈ’ΰΈ™ΰΈ ΰΈΉΰΈ‘ΰΈ΄ΰΈ—ΰΈ±ΰΈ¨ΰΈ™ΰΉŒ AI:\nACT I: Two Philosophies, One Future. The Battle Between Open-Source and Closed-Source AI Intensifies\nACT II: Tiny Titans - Small, but Mighty. More Versatile, Smaller, and Smarter: 3 Trends of the Next AI Evolution\nACT III: AI at Your Fingertips. Agentic AI: Rise of the Agents\nACT IV: Not Quite Human, But Almost There. Artificial General Intelligence (AGI) and the Unresolved Path to Human-Level AI\nΰΈ£ΰΈ²ΰΈ’ΰΈ‡ΰΈ²ΰΈ™ΰΈ›ΰΈ΄ΰΈ”ΰΈ—ΰΉ‰ΰΈ²ΰΈ’ΰΈ”ΰΉ‰ΰΈ§ΰΈ’ EPILOGUE: The AI Storm – Infinite Impact ΰΈžΰΈ£ΰΉ‰ΰΈ­ΰΈ‘ Case Studies ΰΈˆΰΈ²ΰΈΰΈ ΰΈ²ΰΈ’ΰΉƒΰΈ™ΰΈ”ΰΈ§ΰΈ‡ΰΈ•ΰΈ²ΰΈ‚ΰΈ­ΰΈ‡ΰΈžΰΈ²ΰΈ’ΰΈΈΰΉ„ΰΈ•ΰΉ‰ΰΈΰΈΈΰΉˆΰΈ™β€”ΰΈ™ΰΈ³ΰΉ€ΰΈͺΰΈ™ΰΈ­ΰΈΰΈ£ΰΈ“ΰΈ΅ΰΈ¨ΰΈΆΰΈΰΈ©ΰΈ²ΰΈˆΰΈ£ΰΈ΄ΰΈ‡ΰΈˆΰΈ²ΰΈ SCBX ΰΉƒΰΈ™ΰΈΰΈ²ΰΈ£ΰΉƒΰΈŠΰΉ‰ AI Engine β€œTyphoon” ของกΰΈ₯ΰΈΈΰΉˆΰΈ‘ΰΉƒΰΈ™ΰΈ«ΰΈ™ΰΉˆΰΈ§ΰΈ’ΰΈ˜ΰΈΈΰΈ£ΰΈΰΈ΄ΰΈˆΰΈ•ΰΉˆΰΈ²ΰΈ‡ΰΉ† ΰΈ‚ΰΈ“ΰΈ°ΰΈ—ΰΈ΅ΰΉˆΰΈΰΈ£ΰΈ°ΰΉΰΈͺ AI กำΰΈ₯ังก้าวไปข้างหน้า ΰΈ£ΰΈ²ΰΈ’ΰΈ‡ΰΈ²ΰΈ™ΰΈ™ΰΈ΅ΰΉ‰ΰΈˆΰΈΆΰΈ‡ΰΉ„ΰΈ‘ΰΉˆΰΉ„ΰΈ”ΰΉ‰ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΉ€ΰΈžΰΈ΅ΰΈ’ΰΈ‡ΰΈΰΈ²ΰΈ£ΰΈ„ΰΈ²ΰΈ”ΰΈΰΈ²ΰΈ£ΰΈ“ΰΉŒ ΰΉΰΈ•ΰΉˆΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈ›ΰΈ£ΰΈ°ΰΈ ΰΈ²ΰΈ„ΰΈ²ΰΈ£ΰΉ€ΰΈŠΰΈ΄ΰΈ‡ΰΈΰΈ₯ΰΈ’ΰΈΈΰΈ—ΰΈ˜ΰΉŒΰΈͺΰΈ³ΰΈ«ΰΈ£ΰΈ±ΰΈšΰΈœΰΈΉΰΉ‰ΰΈžΰΈ£ΰΉ‰ΰΈ­ΰΈ‘ΰΈˆΰΈ°ΰΈΰΉ‰ΰΈ²ΰΈ§ΰΈ‚ΰΈΆΰΉ‰ΰΈ™ΰΉ„ΰΈ›ΰΈΰΈ±ΰΈšΰΈ„ΰΈ₯ΰΈ·ΰΉˆΰΈ™ΰΉΰΈ₯ΰΈ°ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈœΰΈΉΰΉ‰ΰΈ™ΰΈ³ΰΉƒΰΈ™ΰΈ­ΰΈ™ΰΈ²ΰΈ„ΰΈ•"}, # ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt", ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=8192, temperature=0.2, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Prompting **For translate to Thai** ``` Translate the following text into Thai. ``` **For translate to English** ``` Translate the following text into English. ``` If your environment doesn't support system prompt, you can use system prompt in the user turn. ```python {system_prompt}\n\n{text_to_translate} ``` example of ``` Translate the following text into Thai.\n\nA banished celestial, Serai, cursed to walk as a mortal boy, fights against the Empire that slaughtered the skyborn.\nHe trains with humans, bonds with them, bleeds beside them. In secret, he regrows his wings through combatβ€”but each feather only returns when he loses someone he loves.\nAt the climax, he ascendsβ€”glorious, radiant, unstoppableβ€”only to find his friends gone, their memories etched into his wings.\nAs he watches the sun rise, his halo returns.\nHe whispers, β€œWas it worth it?”\nAnd no one answers. ``` ## Deploy as Server This section shows how to run Typhoon translate as an OpenAI-compatible API server using vllm. - SGLang: ```base python3 -m sglang.launch_server scb10x/typhoon-translate-4b --context-length 16000 --dtype bfloat16 ``` - vLLM: ```bash vllm serve scb10x/typhoon-translate-4b --max-model-len 16000 --dtype bfloat16 ``` ## Best Practices To achieve optimal performance, we recommend the following settings: - Use system prompt `Translate the following text into Thai.` for English to Thai translation and `Translate the following text into English.` for Thai to English translation. - Set low temperature. - Using an context length less than 8192 tokens. ## Intended Uses & Limitations This is a task-specific model intended to be used only with the provided prompts. It does not include any guardrails. Due to the nature of large language models (LLMs), a certain level of hallucination may occur. We recommend that developers carefully assess these risks in the context of their specific use case. ## **Follow us** **https://twitter.com/opentyphoon** ## **Support** **https://discord.gg/us5gAYmrxw** ## **Citation** - If you find Typhoon2 useful for your work, please cite it using: ``` @misc{typhoon2, title={Typhoon 2: A Family of Open Text and Multimodal Thai Large Language Models}, author={Kunat Pipatanakul and Potsawee Manakul and Natapong Nitarach and Warit Sirichotedumrong and Surapon Nonesung and Teetouch Jaknamon and Parinthapat Pengpun and Pittawat Taveekitworachai and Adisai Na-Thalang and Sittipong Sripaisarnmongkol and Krisanapong Jirayoot and Kasima Tharnpipitchai}, year={2024}, eprint={2412.13702}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.13702}, } ```
Qudsiya17/my-llama-gguf
Qudsiya17
2025-08-29T11:37:47Z
5
0
null
[ "gguf", "text-generation", "hi", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-27T11:57:06Z
--- license: apache-2.0 language: - hi - en base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-generation ---
acidjp/blockassist-bc-pesty_extinct_prawn_1756465069
acidjp
2025-08-29T11:36:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:36:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756467333
bah63843
2025-08-29T11:36:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:36:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Cisco141632/gemma_3n_4b_text_to_sql_Q4
Cisco141632
2025-08-29T11:36:03Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3n", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:35:46Z
--- base_model: unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3n - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Cisco141632 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
weyc4man/lysi
weyc4man
2025-08-29T11:35:45Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2025-08-29T11:35:17Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Veras56/blockassist-bc-endangered_agile_turtle_1756467215
Veras56
2025-08-29T11:35:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered agile turtle", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:34:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered agile turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1756465453
katanyasekolah
2025-08-29T11:32:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:32:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BSPetersson/dqn-SpaceInvadersNoFrameskip-v4
BSPetersson
2025-08-29T11:32:03Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-29T11:31:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 626.00 +/- 207.93 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BSPetersson -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BSPetersson -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BSPetersson ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
bah63843/blockassist-bc-plump_fast_antelope_1756467072
bah63843
2025-08-29T11:32:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:31:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756465434
kojeklollipop
2025-08-29T11:31:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:31:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jm-yap/MyGemmaNPC
jm-yap
2025-08-29T11:31:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T11:27:26Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jm-yap/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
QuantStack/Qwen-Image-PJ0-Realism-GGUF
QuantStack
2025-08-29T11:30:43Z
0
0
gguf
[ "gguf", "text-to-image", "en", "zh", "base_model:speach1sdef178/PJ0_QwenImage_Realistic_FP8_HF_Stage_2", "base_model:quantized:speach1sdef178/PJ0_QwenImage_Realistic_FP8_HF_Stage_2", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-29T08:22:46Z
--- language: - en - zh license: apache-2.0 base_model: - speach1sdef178/PJ0_QwenImage_Realistic_FP8_HF_Stage_2 library_name: gguf pipeline_tag: text-to-image --- > [!IMPORTANT] > ⚠️ **Important:** > This model was quantized from the published FP8 version and is in the '2nd improvement stage.' Due to this, I’m only providing the `Q3_K_S`. This GGUF file is a direct conversion of [speach1sdef178/PJ0_QwenImage_Realistic_FP8_HF_Stage_2](https://huggingface.co/speach1sdef178/PJ0_QwenImage_Realistic_FP8_HF_Stage_2) Type | Name | Location | Download | ------------ | -------------------------------------------------- | --------------------------------- | ------------------------- | Main Model | Qwen-Image | `ComfyUI/models/unet` | GGUF (this repo) | Text Encoder | Qwen2.5-VL-7B | `ComfyUI/models/text_encoders` | [Safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/text_encoders) / [GGUF](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/tree/main) | | VAE | Qwen-Image VAE | `ComfyUI/models/vae` | [Safetensors](https://huggingface.co/QuantStack/Qwen-Image-GGUF/tree/main/VAE) | Since this is a quantized model, all original licensing terms and usage restrictions remain in effect. **Usage** The model can be used with the ComfyUI custom node [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) by [city96](https://huggingface.co/city96)
pidbu/blockassist-bc-whistling_alert_shrew_1756466935
pidbu
2025-08-29T11:30:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:29:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
davaa33/mns_tokenizer
davaa33
2025-08-29T11:30:22Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T05:10:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
annasoli/gemma-2-27b-it_SV_l18_lr5e-3_a256
annasoli
2025-08-29T11:28:41Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:28:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6936
luckeciano
2025-08-29T11:28:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T07:13:02Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6936 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6936 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-FisherMaskSentence-1e-4-v2_6936", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/u8bcmfxq) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jqlive/se_presenter01_qwen
jqlive
2025-08-29T11:28:34Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-29T11:17:23Z
--- license: apache-2.0 --- Qwen Image LoRA. A character LoRA for research and testing. Male, white, mid 40s. Qwen Image LoRA Training Settings =================================== - steps: 3000 - learning_rate: 0.0002 - lora_rank: 64 - lora_alpha: 64 - batch_size: 1 - optimizer: adamw - seed: random - resolution: [512, 768, 1024]
liukevin666/blockassist-bc-yawning_striped_cassowary_1756466659
liukevin666
2025-08-29T11:28:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:25:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756465223
Loder-S
2025-08-29T11:28:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:28:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
X-X-X-18-Genesis-Pena-Viral-video/VIDEO.FULL.GENESIS.PENA.Viral.Video.Tutorial.Official
X-X-X-18-Genesis-Pena-Viral-video
2025-08-29T11:27:44Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:27:33Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
AnerYubo/blockassist-bc-lanky_pouncing_ape_1756466832
AnerYubo
2025-08-29T11:27:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lanky pouncing ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:27:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lanky pouncing ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756466759
sekirr
2025-08-29T11:26:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:26:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
t07-cc11-g4/2025-2a-t07-cc11-g04-intent-classifier-sprint2
t07-cc11-g4
2025-08-29T11:26:36Z
0
0
null
[ "region:us" ]
null
2025-08-28T20:32:51Z
# Curadobia β€” Classificador de IntenΓ§Γ΅es (Sprint 2) **Embeddings**: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 **Modelo**: CalibratedClassifierCV (calibrado: True) **Labels**: agradecimento, como_comprar, despedida, disponibilidade_estoque, erros_plataforma, formas_pagamento, frete_prazo, nao_entendi, pedir_sugestao_produto, saudacao, tamanho_modelagem, troca_devolucao_politica ## Uso rΓ‘pido ```python from sentence_transformers import SentenceTransformer import joblib embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") clf = joblib.load("classifier.pkl") le Β = joblib.load("label_encoder.pkl") textos = ["oi bia", "qual prazo para 01234-567?"] X = embedder.encode(textos, normalize_embeddings=True) pred = clf.predict(X) labels = le.inverse_transform(pred) print(labels)
johannfrederic237/Modele1
johannfrederic237
2025-08-29T11:25:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-29T11:25:15Z
--- license: apache-2.0 ---
akunode/blockassist-bc-long_prickly_eel_1756466573
akunode
2025-08-29T11:23:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "long prickly eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:23:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - long prickly eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-graceful_beaked_robin_1756465194
motza0025
2025-08-29T11:23:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful beaked robin", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:23:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful beaked robin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TurkishCodeMan/qwen-0.5b-fc
TurkishCodeMan
2025-08-29T11:22:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T11:21:00Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TurkishCodeMan - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-0.5B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
atulchief/blockassist-bc-nimble_mighty_cat_1756466296
atulchief
2025-08-29T11:20:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nimble mighty cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:19:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nimble mighty cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Clip-do-Surfista-Portal-Zacarias/FULL.VIDEO.Surfista.Portal.Zacarias.Video.Viral.Tutorial
Clip-do-Surfista-Portal-Zacarias
2025-08-29T11:20:10Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:20:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
chardizard/Qwen2.5-7b-DPO-Factuality-MinChosen9-MinDelta6
chardizard
2025-08-29T11:19:49Z
16
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T21:04:01Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: Qwen2.5-7b-DPO-Factuality-MinChosen9-MinDelta6 tags: - generated_from_trainer - dpo - trl licence: license --- # Model Card for Qwen2.5-7b-DPO-Factuality-MinChosen9-MinDelta6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chardizard/Qwen2.5-7b-DPO-Factuality-MinChosen9-MinDelta6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.7.1+cu118 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1756466286
Dejiat
2025-08-29T11:18:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:18:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hazentr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grunting_koala
hazentr
2025-08-29T11:18:26Z
155
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "trl", "gensyn", "grpo", "I am slender grunting koala", "genrl-swarm", "I am slender_grunting_koala", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-02T16:33:05Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grunting_koala tags: - generated_from_trainer - rl-swarm - trl - gensyn - grpo - I am slender grunting koala - genrl-swarm - I am slender_grunting_koala licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grunting_koala This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hazentr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grunting_koala", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
GroomerG/blockassist-bc-vicious_pawing_badger_1756464618
GroomerG
2025-08-29T11:17:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:17:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pepijn223/rlearn_rewards_bcz_5000
pepijn223
2025-08-29T11:17:49Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "rlearn", "dataset:pepijn223/rewards_bc_z3", "license:apache-2.0", "region:us" ]
robotics
2025-08-29T11:17:42Z
--- datasets: pepijn223/rewards_bc_z3 library_name: lerobot license: apache-2.0 model_name: rlearn pipeline_tag: robotics tags: - robotics - rlearn - lerobot --- # Model Card for rlearn <!-- Provide a quick summary of what the model is/does. --> _Model type not recognized β€” please update this template._ This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
OCHone/blockassist-bc-graceful_sizable_camel_1756466159
OCHone
2025-08-29T11:17:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful sizable camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:17:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful sizable camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
18-Mano-ktk-Viral-video-original-clip/NEW.VIDEOS.mano.ktk.Viral.Video.Link.Official.Tutorial
18-Mano-ktk-Viral-video-original-clip
2025-08-29T11:16:59Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:16:39Z
[![WATCH Videos](https://i.imgur.com/GNBE9I0.gif)](https://video-tv-go.blogspot.com/2024/11/new-videos-today.html)
sekirr/blockassist-bc-masked_tenacious_whale_1756466162
sekirr
2025-08-29T11:16:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:16:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nikki-bhati-viral-video/wATCH.full.videos.nikki.bhati.viral.video.Official
nikki-bhati-viral-video
2025-08-29T11:16:27Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:16:20Z
[🟒 ➀ ➀ ➀ 🌐 𝖒𝗅𝗂𝖼𝗄 𝖧𝖾𝗋𝖾 π–³π—ˆ 𝗅𝗂𝗇𝗄 (π–₯π—Žπ—…π—… 𝖡𝗂𝗋𝖺𝗅 π–΅π—‚π–½π–Ύπ—ˆ 𝖫𝗂𝗇𝗄)](https://cloudsportek.com/ok/hd7ags/?king) [![image/gif](https://cdn-uploads.huggingface.co/production/uploads/683d278851706d12b2cbc4eb/OMYmxOdS-sy4ZshNCnNav.gif)](https://cloudsportek.com/ok/hd7ags/?king)
vendi11/blockassist-bc-placid_placid_llama_1756466103
vendi11
2025-08-29T11:15:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:15:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Clip-portal-zacarias-diaba-loira/Orginal.full.Videos.portal.zacarias.diaba.loir.viral.video.Official
Clip-portal-zacarias-diaba-loira
2025-08-29T11:15:43Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:15:34Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
dgambettaphd/M_llm2_run1_gen1_X_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-29T11:15:08Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:14:54Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
regfrg45/blockassist-bc-shrewd_poisonous_lizard_1756466017
regfrg45
2025-08-29T11:14:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shrewd poisonous lizard", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:14:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shrewd poisonous lizard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756465997
liukevin666
2025-08-29T11:14:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:14:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uppal-farm-girl-video-viral-original-link/New.full.videos.uppal.farm.girl.Viral.Video.Official.Tutorial
uppal-farm-girl-video-viral-original-link
2025-08-29T11:13:57Z
0
1
null
[ "region:us" ]
null
2025-08-29T11:13:46Z
<a href="https://tinyurl.com/ybtx5at9" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
afrin-apu-viral-Video-original-Clip/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
afrin-apu-viral-Video-original-Clip
2025-08-29T11:13:52Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:13:44Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
video-genesis-pena-video-viral/VIRAL.VIDEO.genesis.pena.Video.Viral.Tutorial.Official
video-genesis-pena-video-viral
2025-08-29T11:12:49Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:12:28Z
[![WATCH Videos](https://i.imgur.com/GNBE9I0.gif)](https://video-tv-go.blogspot.com/2024/11/new-videos-today.html)
bah63843/blockassist-bc-plump_fast_antelope_1756465876
bah63843
2025-08-29T11:12:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:11:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oulianov/ACT_BBOX-excavation-nu6inx2ces-p1ryu6i61m
oulianov
2025-08-29T11:11:14Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:oulianov/excavation_bboxes", "region:us" ]
robotics
2025-08-29T11:08:17Z
--- datasets: oulianov/excavation_bboxes library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act model - πŸ§ͺ phosphobot training pipeline - **Dataset**: [oulianov/excavation_bboxes](https://huggingface.co/datasets/oulianov/excavation_bboxes) - **Wandb run id**: None ## Error Traceback We faced an issue while training your model. ``` 404 Client Error. (Request ID: Root=1-68b18ad1-3c6b7bc96a88f07330eb78cc;7dcd3889-8843-4320-8122-ecb6e24cfa2e) Repository Not Found for url: https://huggingface.co/api/datasets/oulianov/excavation_bboxes/branch/v2.0. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. For more details, see https://huggingface.co/docs/huggingface_hub/authentication ``` ## Training parameters ```text { "batch_size": 100, "steps": 10, "save_freq": 5000, "target_detection_instruction": "excavator", "image_key": "main", "image_keys_to_keep": [] } ``` πŸ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) πŸ€– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
Doctor-kelantan-viral-video-kota-bharu/New.full.videos.Doctor.kelantan.Viral.Video.Official.Tutorial
Doctor-kelantan-viral-video-kota-bharu
2025-08-29T11:10:33Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:10:22Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Dejiat/blockassist-bc-savage_unseen_bobcat_1756465787
Dejiat
2025-08-29T11:10:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:10:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Clip-VIRAL-DR-WONG-LU-YANG-CCTV-VIDEO/FULL.VIDEO.DR.WONG.LU.YANG.CCTV.VIRAL.VIDEO.Official.Tutorial
Clip-VIRAL-DR-WONG-LU-YANG-CCTV-VIDEO
2025-08-29T11:09:20Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:09:11Z
<a href="https://tinyurl.com/ybtx5at9" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
GSukesh/gemma-2-2b-it-qlora-gsm8k-50pc
GSukesh
2025-08-29T11:08:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-29T11:00:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BjarneNPO/BjarneNPO-29_08_2025_13_01_17
BjarneNPO
2025-08-29T11:08:39Z
0
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:72349", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-29T11:08:35Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:72349 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 widget: - source_sentence: Userin kann die eingetragene AU nicht lΓΆschen. sentences: - "Userin muss ΓΌber das Drei Punkte System gehen und dann ΓΌber Abwesenheitszeitraum\ \ eintragen und als Art EintrΓ€ge lΓΆschen auswΓ€hlen.\r\nMit Userin die AU zusammen\ \ gelΓΆscht." - Hier muss bei allen Kindern der Haken bei "fΓΆrderfΓ€hig" in der BI gesetzt werden. - "Userin an ihren TrΓ€ger verwiesen. \r\nUserin erklΓ€rt, dass die AWO keinen Support\ \ ΓΌber uns hat." - source_sentence: User mΓΆchte EL fΓΌr BV freischalten. sentences: - Userin hatte in der BeschΓ€ftigung zu wenige Stunden fΓΌr den bestimmten Zeitraum hinterlegt. Sie muss passend zu der Erstattung auch passende Stunden hinterlegen. - Anwenderin musst den Filter weiter zurΓΌckstellen. - Die Rolle Einrichtung kann keinen Zugriff dazu erhalten. Das ist so konzeptionell vom LJA so festgesetzt. - source_sentence: Userin kann EVN nicht freigeben. Sie wird gebeten, dass sie die Monatsdaten neu erstellt und freigibt. Das System macht dies aber nicht. Sie bekommt auch keine Fehlermeldung. sentences: - Kidz hatte zum Zeitpunkt des Anrufs eine StΓΆrung, die vermutlich zu diesem Problem gefΓΌhrt hat. Userin leider nicht mehr erreicht, daher wird der Anruf geschlossen. - Nein, wenn nur auf der kitaplus-Verwaltungsseite, wird als Wunsch fΓΌr die GAPP weitergegeben. - Ja im Berichtsgenerator kann sie sich eine entsprechende Liste ziehen - source_sentence: Er kann einen Antrag auf Personalausnahme nicht freigeben. Trotz Setzung der Haken ΓΌber BeschΓ€ftigungsinformationen kΓΆnnen die Daten nicht gespeichert werden. sentences: - Es handelt sich um ein lokales Problem. Die Seite baut sich nach dem LΓΆschen mit der aktualisierten Zahl nicht automatisch wieder auf. Durch die Taste F5 wird die Seite neu geladen. - Sie kann Vertretung wΓ€hlen oder ggf eine andere und die Qualifikation muss die Mitarbeiterin ihr nennen. Sonst kann sie dazu beim Landesamt nachfragen, da inhaltliche Fragen - Er speichert diese ΓΌber Einrichtungsdaten speichern. Danach konnte der Antrag freigegeben werden. - source_sentence: "Ein Vater taucht nicht auf bei den Eltern im Elternbeirat \r\n\ \r\nAußerdem auf die Kinder mit archivierten AngehΓΆrigen hingewiesen und ihr gezeigt" sentences: - "1. Vorlage da. Userin auch gezeigt wie sie die verwanden kann\r\n2. Als Wunsch\ \ weitergegeben." - In der Kinderliste haben Kinder gefehlt. Userin muss die Daten in der Kinderliste hinterlegen. - Weil er keinen Zugang zur EAPP hat, Außerdem auf die Kinder mit archivierten AngehΓΆrigen hingewiesen und ihr gezeigt wie sie das lΓΆsen kann pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 results: - task: type: information-retrieval name: Information Retrieval dataset: name: sentence transformers/paraphrase multilingual mpnet base v2 type: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 metrics: - type: cosine_accuracy@1 value: 0.11594202898550725 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5942028985507246 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7101449275362319 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8405797101449275 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.11594202898550725 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3188405797101449 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2927536231884058 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.21884057971014495 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.01515151515151515 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.07354325129261191 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.10675701110483717 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.16051693404634582 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.24472607198747476 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.37863469059121224 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.14600008219380686 name: Cosine Map@100 --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 4328cf26390c98c5e3c738b4460a05b95f4911f5 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("BjarneNPO-29_08_2025_13_01_17") # Run inference queries = [ "Ein Vater taucht nicht auf bei den Eltern im Elternbeirat \r\n\r\nAu\u00dferdem auf die Kinder mit archivierten Angeh\u00f6rigen hingewiesen und ihr gezeigt", ] documents = [ 'Weil er keinen Zugang zur EAPP hat, Außerdem auf die Kinder mit archivierten AngehΓΆrigen hingewiesen und ihr gezeigt wie sie das lΓΆsen kann', '1. Vorlage da. Userin auch gezeigt wie sie die verwanden kann\r\n2. Als Wunsch weitergegeben.', 'In der Kinderliste haben Kinder gefehlt. Userin muss die Daten in der Kinderliste hinterlegen.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 768] [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.6628, 0.3829, 0.0100]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `sentence-transformers/paraphrase-multilingual-mpnet-base-v2` * Evaluated with <code>scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom</code> with these parameters: ```json { "query_prompt_name": "query", "corpus_prompt_name": "query" } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1159 | | cosine_accuracy@3 | 0.5942 | | cosine_accuracy@5 | 0.7101 | | cosine_accuracy@10 | 0.8406 | | cosine_precision@1 | 0.1159 | | cosine_precision@3 | 0.3188 | | cosine_precision@5 | 0.2928 | | cosine_precision@10 | 0.2188 | | cosine_recall@1 | 0.0152 | | cosine_recall@3 | 0.0735 | | cosine_recall@5 | 0.1068 | | cosine_recall@10 | 0.1605 | | **cosine_ndcg@10** | **0.2447** | | cosine_mrr@10 | 0.3786 | | cosine_map@100 | 0.146 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 72,349 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 30.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 28.32 tokens</li><li>max: 128 tokens</li></ul> | * Samples: | query | answer | |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nun ist die Monatsmeldung erfolgt, aber rote Ausrufezeichen tauchen auf.</code> | <code>Userin an das JA verwiesen, diese mΓΌssten ihr die Schloss-Monate zur Überarbeitung im Kibiz.web zurΓΌckgeben. Userin dazu empfohlen, die Kinder die nicht in kitaplus sind, aber in Kibiz.web - im KiBiz.web zu entfernen, wenn diese nicht vorhanden sind.</code> | | <code>Die Feiertage in den Stammdaten stimmen nicht.</code> | <code>Es besteht bereits ein Ticket dafΓΌr.</code> | | <code>Abrechnung kann nicht final freigegeben werden, es wird aber keiner Fehlermeldung angeziegt</code> | <code>im Hintergrund ist eine Fehlermeldung zu sehen. An Entwickler weitergeleitet. <br>Korrektur vorgenommen.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `gradient_accumulation_steps`: 4 - `learning_rate`: 4e-05 - `weight_decay`: 0.01 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.08 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.08 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | sentence-transformers/paraphrase-multilingual-mpnet-base-v2_cosine_ndcg@10 | |:-------:|:-------:|:-------------:|:--------------------------------------------------------------------------:| | 0.0354 | 10 | 3.7146 | - | | 0.0707 | 20 | 3.1473 | - | | 0.1061 | 30 | 2.6743 | - | | 0.1415 | 40 | 2.5164 | - | | 0.1768 | 50 | 2.1779 | - | | 0.2122 | 60 | 2.0534 | - | | 0.2476 | 70 | 1.8658 | - | | 0.2829 | 80 | 1.8049 | - | | 0.3183 | 90 | 1.6684 | - | | 0.3537 | 100 | 1.6242 | - | | 0.3890 | 110 | 1.5781 | - | | 0.4244 | 120 | 1.5528 | - | | 0.4598 | 130 | 1.427 | - | | 0.4951 | 140 | 1.4766 | - | | 0.5305 | 150 | 1.3835 | - | | 0.5659 | 160 | 1.3685 | - | | 0.6012 | 170 | 1.3429 | - | | 0.6366 | 180 | 1.2879 | - | | 0.6720 | 190 | 1.2974 | - | | 0.7073 | 200 | 1.2578 | - | | 0.7427 | 210 | 1.2634 | - | | 0.7781 | 220 | 1.3011 | - | | 0.8134 | 230 | 1.2754 | - | | 0.8488 | 240 | 1.2179 | - | | 0.8842 | 250 | 1.2466 | - | | 0.9195 | 260 | 1.1624 | - | | 0.9549 | 270 | 1.1831 | - | | 0.9903 | 280 | 1.1594 | - | | **1.0** | **283** | **-** | **0.2588** | | 1.0248 | 290 | 1.0459 | - | | 1.0601 | 300 | 1.0137 | - | | 1.0955 | 310 | 0.9962 | - | | 1.1309 | 320 | 0.9826 | - | | 1.1662 | 330 | 0.9434 | - | | 1.2016 | 340 | 0.9672 | - | | 1.2370 | 350 | 0.9137 | - | | 1.2723 | 360 | 0.9586 | - | | 1.3077 | 370 | 0.9408 | - | | 1.3431 | 380 | 0.9815 | - | | 1.3784 | 390 | 0.9025 | - | | 1.4138 | 400 | 0.9023 | - | | 1.4492 | 410 | 0.8808 | - | | 1.4845 | 420 | 0.9326 | - | | 1.5199 | 430 | 0.9163 | - | | 1.5553 | 440 | 0.8807 | - | | 1.5906 | 450 | 0.8349 | - | | 1.6260 | 460 | 0.9604 | - | | 1.6614 | 470 | 0.8915 | - | | 1.6967 | 480 | 0.8873 | - | | 1.7321 | 490 | 0.8874 | - | | 1.7675 | 500 | 0.8932 | - | | 1.8028 | 510 | 0.8566 | - | | 1.8382 | 520 | 0.8694 | - | | 1.8736 | 530 | 0.8197 | - | | 1.9089 | 540 | 0.8025 | - | | 1.9443 | 550 | 0.7864 | - | | 1.9797 | 560 | 0.8794 | - | | 2.0 | 566 | - | 0.2527 | | 2.0141 | 570 | 0.7807 | - | | 2.0495 | 580 | 0.6977 | - | | 2.0849 | 590 | 0.7034 | - | | 2.1202 | 600 | 0.7111 | - | | 2.1556 | 610 | 0.692 | - | | 2.1910 | 620 | 0.6843 | - | | 2.2263 | 630 | 0.7028 | - | | 2.2617 | 640 | 0.7518 | - | | 2.2971 | 650 | 0.6656 | - | | 2.3324 | 660 | 0.6624 | - | | 2.3678 | 670 | 0.7195 | - | | 2.4032 | 680 | 0.6761 | - | | 2.4385 | 690 | 0.6856 | - | | 2.4739 | 700 | 0.6699 | - | | 2.5093 | 710 | 0.7118 | - | | 2.5447 | 720 | 0.7109 | - | | 2.5800 | 730 | 0.6991 | - | | 2.6154 | 740 | 0.6647 | - | | 2.6508 | 750 | 0.6858 | - | | 2.6861 | 760 | 0.6901 | - | | 2.7215 | 770 | 0.6853 | - | | 2.7569 | 780 | 0.665 | - | | 2.7922 | 790 | 0.6735 | - | | 2.8276 | 800 | 0.693 | - | | 2.8630 | 810 | 0.6761 | - | | 2.8983 | 820 | 0.7327 | - | | 2.9337 | 830 | 0.7124 | - | | 2.9691 | 840 | 0.6774 | - | | 3.0 | 849 | - | 0.2447 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu129 - Accelerate: 1.10.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
oulianov/ACT_BBOX-excavation-h242l69mw4-tc2retj72x
oulianov
2025-08-29T11:07:55Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:oulianov/excavation_bboxes", "region:us" ]
robotics
2025-08-29T11:04:39Z
--- datasets: oulianov/excavation_bboxes library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act model - πŸ§ͺ phosphobot training pipeline - **Dataset**: [oulianov/excavation_bboxes](https://huggingface.co/datasets/oulianov/excavation_bboxes) - **Wandb run id**: None ## Error Traceback We faced an issue while training your model. ``` 404 Client Error. (Request ID: Root=1-68b18a0a-34f94cbf03cf096d32eab1d2;361b28bb-0482-4c8d-af9a-734d96575ba0) Repository Not Found for url: https://huggingface.co/api/datasets/oulianov/excavation_bboxes/branch/v2.0. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. For more details, see https://huggingface.co/docs/huggingface_hub/authentication ``` ## Training parameters ```text { "batch_size": 100, "steps": 10, "save_freq": 5000, "target_detection_instruction": "excavator", "image_key": "main", "image_keys_to_keep": [] } ``` πŸ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) πŸ€– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
VIDEO-DO-SURFISTA-VAZADO-VEJA-VIDEO-link/ORIGINAL.Video.do.surfista.vazado.video.do.surfista.no.banheiro.surfista.mansao.privilege.erome
VIDEO-DO-SURFISTA-VAZADO-VEJA-VIDEO-link
2025-08-29T11:07:51Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:07:29Z
[🟒 ➀ ➀ ➀ 🌐 𝖒𝗅𝗂𝖼𝗄 𝖧𝖾𝗋𝖾 π–³π—ˆ 𝗅𝗂𝗇𝗄 (π–₯π—Žπ—…π—… 𝖡𝗂𝗋𝖺𝗅 π–΅π—‚π–½π–Ύπ—ˆ 𝖫𝗂𝗇𝗄)](https://sahabagi-mgi.blogspot.com/p/trha.html) [![image/gif](https://cdn-uploads.huggingface.co/production/uploads/683d278851706d12b2cbc4eb/OMYmxOdS-sy4ZshNCnNav.gif)](https://sahabagi-mgi.blogspot.com/p/trha.html)
vendi11/blockassist-bc-placid_placid_llama_1756465567
vendi11
2025-08-29T11:06:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:06:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
davsharian/object_LoRAs
davsharian
2025-08-29T11:06:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-24T14:42:44Z
--- license: apache-2.0 ---
Clip-Completo-Assista-o-Video-do-Surfista/full.Video.do.Surfista.da.Mansao.Privilegio.que.Viralizou.no.Twitter
Clip-Completo-Assista-o-Video-do-Surfista
2025-08-29T11:05:49Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:05:39Z
<a href="https://tinyurl.com/ybtx5at9" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
OCHone/blockassist-bc-graceful_sizable_camel_1756465347
OCHone
2025-08-29T11:05:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful sizable camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:05:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful sizable camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEO-COMPLETO-JENNIFER-GOMES-EROME/ORIGINAL.JENNIFER.GOMES.SALVADOR.EROME.BLOGUEIRA.DE.SALVADOR.EROME.JEGOMEX01
VIDEO-COMPLETO-JENNIFER-GOMES-EROME
2025-08-29T11:04:14Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:04:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Dejiat/blockassist-bc-savage_unseen_bobcat_1756465412
Dejiat
2025-08-29T11:03:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:03:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756465331
liukevin666
2025-08-29T11:03:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:03:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-elusive_mammalian_termite_1756465313
AnerYubo
2025-08-29T11:01:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "elusive mammalian termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:01:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - elusive mammalian termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-snappy_tenacious_eagle_1756465304
AnerYubo
2025-08-29T11:01:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snappy tenacious eagle", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:01:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snappy tenacious eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Clip-Abigail-viral-video-Original/New.full.videos.Abigail.Viral.Video.Official.Tutorial
Clip-Abigail-viral-video-Original
2025-08-29T11:01:00Z
0
0
null
[ "region:us" ]
null
2025-08-29T11:00:45Z
<a href="https://tinyurl.com/ybtx5at9" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
eusuf01/blockassist-bc-smooth_humming_butterfly_1756465186
eusuf01
2025-08-29T11:00:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T11:00:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sdasdsee/blockassist-bc-wise_jumping_orangutan_1756464019
sdasdsee
2025-08-29T11:00:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wise jumping orangutan", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:59:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wise jumping orangutan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756465152
vendi11
2025-08-29T10:59:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:59:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lakelee/RLB_MLP_BC_v3.20250829.19_3_fromrl_rlcompat_A1v1
lakelee
2025-08-29T10:58:49Z
0
0
transformers
[ "transformers", "safetensors", "regular_mlp_checkpoint", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-08-29T10:55:56Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: RLB_MLP_BC_v3.20250829.19_3_fromrl_rlcompat_A1v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RLB_MLP_BC_v3.20250829.19_3_fromrl_rlcompat_A1v1 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.4
VIDEOS-Abigail-viral-video-original/New.full.videos.Abigail.Viral.Video.Official.Tutorial
VIDEOS-Abigail-viral-video-original
2025-08-29T10:58:24Z
0
0
null
[ "region:us" ]
null
2025-08-29T10:58:06Z
<a href="https://tinyurl.com/ybtx5at9" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Veras56/blockassist-bc-endangered_agile_turtle_1756464994
Veras56
2025-08-29T10:58:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered agile turtle", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:58:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered agile turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pr-ratri-viral-video-download/Orginal.full.Videos.pr.ratri.viral.video.Official.Tutorial
pr-ratri-viral-video-download
2025-08-29T10:57:24Z
0
0
null
[ "region:us" ]
null
2025-08-29T10:57:14Z
[🟒 ➀ ➀ ➀ 🌐 𝖒𝗅𝗂𝖼𝗄 𝖧𝖾𝗋𝖾 π–³π—ˆ 𝗅𝗂𝗇𝗄 (π–₯π—Žπ—…π—… 𝖡𝗂𝗋𝖺𝗅 π–΅π—‚π–½π–Ύπ—ˆ 𝖫𝗂𝗇𝗄)](https://cloudsportek.com/ok/hd7ags/?king) [![image/gif](https://cdn-uploads.huggingface.co/production/uploads/683d278851706d12b2cbc4eb/OMYmxOdS-sy4ZshNCnNav.gif)](https://cloudsportek.com/ok/hd7ags/?king)
vangard703/output_refspatial_only_llm
vangard703
2025-08-29T10:57:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-29T10:50:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756463293
hakimjustbao
2025-08-29T10:56:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:56:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatehcabreraadv/blockassist-bc-tawny_alert_dingo_1756463505
fatehcabreraadv
2025-08-29T10:56:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny alert dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:56:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny alert dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756464903
eusuf01
2025-08-29T10:55:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:55:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-plump_nasty_gerbil_1756463399
motza0025
2025-08-29T10:55:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump nasty gerbil", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:55:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump nasty gerbil --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756464885
Dejiat
2025-08-29T10:55:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:55:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thatboredgirlie/blockassist-bc-thriving_whiskered_flamingo_1756464816
thatboredgirlie
2025-08-29T10:55:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving whiskered flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:54:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving whiskered flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
umairhassan02/paligemma2_finetuned
umairhassan02
2025-08-29T10:55:11Z
17
0
peft
[ "peft", "safetensors", "base_model:adapter:google/paligemma-3b-pt-224", "lora", "transformers", "text-generation", "base_model:google/paligemma-3b-pt-224", "license:gemma", "region:us" ]
text-generation
2025-08-20T21:40:25Z
--- library_name: peft license: gemma base_model: google/paligemma-3b-pt-224 tags: - base_model:adapter:google/paligemma-3b-pt-224 - lora - transformers pipeline_tag: text-generation model-index: - name: paligemma2_finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/umairpu24-pucit-punjab-university-college-of-information/valorant_paligemma2_fine_tuning/runs/qw39nb8l) # paligemma2_finetuned This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0605 | 0.2309 | 100 | 2.6893 | | 2.5533 | 0.4619 | 200 | 2.4747 | | 2.4472 | 0.6928 | 300 | 2.3981 | | 2.3837 | 0.9238 | 400 | 2.3506 | | 2.2957 | 1.1547 | 500 | 2.3141 | | 2.305 | 1.3857 | 600 | 2.2883 | | 2.2865 | 1.6166 | 700 | 2.2713 | | 2.2564 | 1.8476 | 800 | 2.2628 | ### Framework versions - PEFT 0.17.1 - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 2.16.0 - Tokenizers 0.21.4
Links-genesis-pena-telegram/Orginal.full.Videos.genesis.pena.viral.video.Official.Tutorial
Links-genesis-pena-telegram
2025-08-29T10:54:36Z
0
0
null
[ "region:us" ]
null
2025-08-29T10:54:23Z
[🟒 ➀ ➀ ➀ 🌐 𝖒𝗅𝗂𝖼𝗄 𝖧𝖾𝗋𝖾 π–³π—ˆ 𝗅𝗂𝗇𝗄 (π–₯π—Žπ—…π—… 𝖡𝗂𝗋𝖺𝗅 π–΅π—‚π–½π–Ύπ—ˆ 𝖫𝗂𝗇𝗄)](https://cloudsportek.com/ok/hd7ags/?king) [![image/gif](https://cdn-uploads.huggingface.co/production/uploads/683d278851706d12b2cbc4eb/OMYmxOdS-sy4ZshNCnNav.gif)](https://cloudsportek.com/ok/hd7ags/?king)
akunode/blockassist-bc-long_prickly_eel_1756464811
akunode
2025-08-29T10:54:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "long prickly eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:54:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - long prickly eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pburke1234/Qwen3-0.6B-Gensyn-Swarm-gilded_ravenous_alligator
pburke1234
2025-08-29T10:53:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am gilded_ravenous_alligator", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T16:43:46Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am gilded_ravenous_alligator --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756464800
Ferdi3425
2025-08-29T10:53:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:53:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756463260
Loder-S
2025-08-29T10:53:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T10:53:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/z1c0-ACT-pickandplace-2z6oc
phospho-app
2025-08-29T10:53:15Z
0
0
phosphobot
[ "phosphobot", "safetensors", "act", "robotics", "dataset:z1c0/pickandplace", "region:us" ]
robotics
2025-08-29T09:53:04Z
--- datasets: z1c0/pickandplace library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act model - πŸ§ͺ phosphobot training pipeline - **Dataset**: [z1c0/pickandplace](https://huggingface.co/datasets/z1c0/pickandplace) - **Wandb run id**: None ## Error Traceback We faced an issue while training your model. ``` Training process exceeded timeout of 3600 seconds. We have uploaded the last checkpoint. Please consider lowering the batch size or number of steps if you wish to train the model longer. ``` ## Training parameters ```text { "batch_size": 120, "steps": 3000, "save_steps": 200 } ``` πŸ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) πŸ€– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)