modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 00:38:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 525
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 00:38:28
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756322750
|
ggozzy
| 2025-08-27T19:27:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T19:26:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mohammadmahdinouri/bert_baseline_30k
|
mohammadmahdinouri
| 2025-08-27T19:25:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"modernbert",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-08-27T19:25:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
crystalline7/1531294
|
crystalline7
| 2025-08-27T19:24:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T19:24:22Z |
[View on Civ Archive](https://civarchive.com/models/1442770?modelVersionId=1630983)
|
crystalline7/1906119
|
crystalline7
| 2025-08-27T19:23:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T19:23:05Z |
[View on Civ Archive](https://civarchive.com/models/1775186?modelVersionId=2009103)
|
Yanzeisi/Llama3.1-8b-Instruct-sft-Aug-27
|
Yanzeisi
| 2025-08-27T19:21:52Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T14:01:31Z |
---
base_model: meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
model_name: Llama3.1-8b-Instruct-sft-Aug-27
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for Llama3.1-8b-Instruct-sft-Aug-27
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Yanzeisi/Llama3.1-8b-Instruct-sft-Aug-27", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yanzewan-usc/huggingface/runs/7qbj2pd6)
This model was trained with SFT.
### Framework versions
- TRL: 0.20.0.dev0
- Transformers: 4.53.2
- Pytorch: 2.7.1+cu118
- Datasets: 3.4.1
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
fopppyu/blockassist-bc-patterned_monstrous_boar_1756322199
|
fopppyu
| 2025-08-27T19:16:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"patterned monstrous boar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T19:16:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- patterned monstrous boar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AllOfWhich/oil
|
AllOfWhich
| 2025-08-27T19:05:53Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] |
text-to-image
| 2025-08-27T19:03:55Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/df0r4a3-ffbbd57b-89d6-4dae-9060-9f79d5de1a5e.png
text: '-'
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
---
# oil
<Gallery />
## Download model
[Download](/AllOfWhich/oil/tree/main) them in the Files & versions tab.
|
motza0025/blockassist-bc-scampering_scaly_salmon_1756318963
|
motza0025
| 2025-08-27T18:48:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"scampering scaly salmon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:48:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- scampering scaly salmon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756320438
|
liukevin666
| 2025-08-27T18:48:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:48:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
pbouda/finetune-cpt-test
|
pbouda
| 2025-08-27T18:42:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-v0.3",
"base_model:finetune:unsloth/mistral-7b-v0.3",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T08:36:29Z |
---
base_model: unsloth/mistral-7b-v0.3
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** pbouda
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-v0.3
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756319843
|
OksanaB
| 2025-08-27T18:38:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:38:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
michhell/blockassist-bc-stalking_running_albatross_1756317998
|
michhell
| 2025-08-27T18:37:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stalking running albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:37:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stalking running albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
apriasmoro/28860f3c-5409-4cc2-b2ad-38a891dc636d
|
apriasmoro
| 2025-08-27T18:34:41Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2",
"base_model:adapter:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2",
"region:us"
] | null | 2025-08-27T18:34:15Z |
---
base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
|
happyensworld/blockassist-bc-sleek_scavenging_ram_1756319527
|
happyensworld
| 2025-08-27T18:32:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sleek scavenging ram",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:32:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sleek scavenging ram
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
brown-girl-Viral-video-original-XX-Clips/New.full.videos.brown.girl.Viral.Video.Official.Tutorial
|
brown-girl-Viral-video-original-XX-Clips
| 2025-08-27T18:27:57Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T18:27:40Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF
|
mradermacher
| 2025-08-27T18:25:34Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:misaeboca/TinyLlama-1.1B-Chat-finetune",
"base_model:quantized:misaeboca/TinyLlama-1.1B-Chat-finetune",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-27T18:12:02Z |
---
base_model: misaeboca/TinyLlama-1.1B-Chat-finetune
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/misaeboca/TinyLlama-1.1B-Chat-finetune
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#TinyLlama-1.1B-Chat-finetune-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q2_K.gguf) | Q2_K | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q3_K_S.gguf) | Q3_K_S | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q3_K_L.gguf) | Q3_K_L | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.IQ4_XS.gguf) | IQ4_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q5_K_S.gguf) | Q5_K_S | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q5_K_M.gguf) | Q5_K_M | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q6_K.gguf) | Q6_K | 1.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-1.1B-Chat-finetune-GGUF/resolve/main/TinyLlama-1.1B-Chat-finetune.f16.gguf) | f16 | 2.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
AnerYubo/blockassist-bc-mangy_quiet_anteater_1756319068
|
AnerYubo
| 2025-08-27T18:24:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mangy quiet anteater",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:24:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mangy quiet anteater
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Vortex5/StarlitSage-12B-Q6_K-GGUF
|
Vortex5
| 2025-08-27T18:20:00Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Vortex5/StarlitSage-12B",
"base_model:quantized:Vortex5/StarlitSage-12B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-27T18:19:18Z |
---
base_model: Vortex5/StarlitSage-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Vortex5/StarlitSage-12B-Q6_K-GGUF
This model was converted to GGUF format from [`Vortex5/StarlitSage-12B`](https://huggingface.co/Vortex5/StarlitSage-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Vortex5/StarlitSage-12B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Vortex5/StarlitSage-12B-Q6_K-GGUF --hf-file starlitsage-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Vortex5/StarlitSage-12B-Q6_K-GGUF --hf-file starlitsage-12b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Vortex5/StarlitSage-12B-Q6_K-GGUF --hf-file starlitsage-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Vortex5/StarlitSage-12B-Q6_K-GGUF --hf-file starlitsage-12b-q6_k.gguf -c 2048
```
|
majid230/gemma-3-1b-finetune
|
majid230
| 2025-08-27T18:19:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-1b-it",
"base_model:finetune:unsloth/gemma-3-1b-it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T18:16:18Z |
---
base_model: unsloth/gemma-3-1b-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** majid230
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756318515
|
ggozzy
| 2025-08-27T18:16:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:16:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756317786
|
Ferdi3425
| 2025-08-27T18:03:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T18:03:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756315617
|
calegpedia
| 2025-08-27T17:53:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:53:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756316998
|
Ferdi3425
| 2025-08-27T17:50:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:50:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Matt300209/8B-tulu-sft-bf16
|
Matt300209
| 2025-08-27T17:42:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"dataset:allenai/tulu-3-sft-mixture",
"arxiv:2411.15124",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T14:12:35Z |
---
license: llama3.1
language:
- en
pipeline_tag: text-generation
datasets:
- allenai/tulu-3-sft-mixture
base_model:
- meta-llama/Llama-3.1-8B
library_name: transformers
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama-3.1-Tulu-3-8B-SFT
Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques.
Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
## Model description
- **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Llama 3.1 Community License Agreement
- **Finetuned from model:** meta-llama/Llama-3.1-8B
### Model Sources
- **Training Repository:** https://github.com/allenai/open-instruct
- **Eval Repository:** https://github.com/allenai/olmes
- **Paper:** https://arxiv.org/abs/2411.15124
- **Demo:** https://playground.allenai.org/
### Model Family
| **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) |
| **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) |
| **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) |
| **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) |
| **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) |
| **Stage** | **Llama 3.1 405B** |
|-----------|-------------------|
| **Base Model** | [meta-llama/llama-3.1-405B](https://huggingface.co/meta-llama/llama-3.1-405B) |
| **SFT** | [allenai/llama-3.1-Tulu-3-405B-SFT](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B-SFT) |
| **DPO** | [allenai/llama-3.1-Tulu-3-405B-DPO](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B-DPO) |
| **Final Model (RLVR)** | [allenai/llama-3.1-Tulu-3-405B](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B) |
| **Reward Model (RM)**| (Same as 8B)
## Using the model
### Loading with HuggingFace
To load the model with HuggingFace, use the following snippet:
```
from transformers import AutoModelForCausalLM
tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-8B-SFT")
```
### VLLM
As a Llama base model, the model can be easily served with:
```
vllm serve allenai/Llama-3.1-Tulu-3-8B-SFT
```
Note that given the long chat template of Llama, you may want to use `--max_model_len=8192`.
### Chat template
The chat template for our models is formatted as:
```
<|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
Or with new lines expanded:
```
<|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
### System prompt
In Ai2 demos, we use this system prompt by default:
```
You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI.
```
The model has not been trained with a specific system prompt in mind.
### Bias, Risks, and Limitations
The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code.
See the Falcon 180B model card for an example of this.
## Performance
| Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct |
|---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------|
| **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 |
| **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 |
| **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 |
| **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 |
| **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 |
| **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 |
| **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 |
| **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 |
| **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 |
| **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 |
| **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 |
| **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 |
| **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 |
| Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B |
|---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|
| **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 |
| **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 |
| **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 |
| **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 |
| **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 |
| **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 |
| **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 |
| **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 |
| **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** |
| **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 |
| **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 |
| **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** |
| **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 |
| Benchmark (eval) | Tülu 3 405B SFT | Tülu 3 405B DPO | Tülu 3 405B | Llama 3.1 405B Instruct | Nous Hermes 3 405B | Deepseek V3 | GPT 4o (11-24) |
|-----------------|----------------|----------------|-------------|------------------------|-------------------|-------------|----------------|
| **Avg w/o Safety** | 76.3 | 79.0 | 80.0 | 78.1 | 74.4 | 79.0 | **80.5** |
| **Avg w/ Safety** | 77.5 | 79.6 | 80.7 | 79.0 | 73.5 | 75.9 | **81.6** |
| **MMLU (5 shot, CoT)** | 84.4 | 86.6 | 87.0 | **88.0** | 84.9 | 82.1 | 87.9 |
| **PopQA (3 shot)** | **55.7** | 55.4 | 55.5 | 52.9 | 54.2 | 44.9 | 53.6 |
| **BigBenchHard (0 shot, CoT)** | 88.0 | 88.8 | 88.6 | 87.1 | 87.7 | **89.5** | 83.3 |
| **MATH (4 shot, Flex)** | 63.4 | 59.9 | 67.3 | 66.6 | 58.4 | **72.5** | 68.8 |
| **GSM8K (8 shot, CoT)** | 93.6 | 94.2 | **95.5** | 95.4 | 92.7 | 94.1 | 91.7 |
| **HumanEval (pass@10)** | 95.7 | **97.2** | 95.9 | 95.9 | 92.3 | 94.6 | 97.0 |
| **HumanEval+ (pass@10)** | 93.3 | **93.9** | 92.9 | 90.3 | 86.9 | 91.6 | 92.7 |
| **IFEval (prompt loose)** | 82.4 | 85.0 | 86.0 | **88.4** | 81.9 | 88.0 | 84.8 |
| **AlpacaEval 2 (LC % win)** | 30.4 | 49.8 | 51.4 | 38.5 | 30.2 | 53.5 | **65.0** |
| **Safety (6 task avg.)** | 87.7 | 85.5 | 86.7 | 86.8 | 65.8 | 72.2 | **90.9** |
## Hyperparamters
SFT:
- **Learning Rate**: 5E-6 (8B), 2E-6 (70B, 405B)
- **Effective Batch Size:** 128 (8B, 70B), 256 (405B)
- **Max. Sequence Length:** 4096
- **Loss Accumulation:** Sum (see https://unsloth.ai/blog/gradient)
- **Learning Rate Schedule:** Linear
- **LR Warmup Ratio:** 0.03
- **Num. Epochs:** 2
## License and use
All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
Tülu3 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
## Citation
If Tülu3 or any of the related materials were helpful to your work, please cite:
```
@article{lambert2024tulu3,
title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
author = {
Nathan Lambert and
Jacob Morrison and
Valentina Pyatkin and
Shengyi Huang and
Hamish Ivison and
Faeze Brahman and
Lester James V. Miranda and
Alisa Liu and
Nouha Dziri and
Shane Lyu and
Yuling Gu and
Saumya Malik and
Victoria Graf and
Jena D. Hwang and
Jiangjiang Yang and
Ronan Le Bras and
Oyvind Tafjord and
Chris Wilhelm and
Luca Soldaini and
Noah A. Smith and
Yizhong Wang and
Pradeep Dasigi and
Hannaneh Hajishirzi
},
year = {2024},
email = {tulu@allenai.org}
}
```
|
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1756314703
|
fujiantiiazhraa
| 2025-08-27T17:36:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"marine robust bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:36:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- marine robust bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tphage/Llama-3B-SFT-250827
|
tphage
| 2025-08-27T17:33:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T17:33:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
amd/Phi-3-mini-4k-instruct-awq-g128-int4-asym-fp16-onnx-hybrid
|
amd
| 2025-08-27T17:32:35Z | 187 | 0 | null |
[
"onnx",
"nlp",
"code",
"amd",
"ryzenai-hybrid",
"text-generation",
"conversational",
"en",
"fr",
"base_model:microsoft/Phi-3-mini-4k-instruct",
"base_model:quantized:microsoft/Phi-3-mini-4k-instruct",
"license:mit",
"region:us"
] |
text-generation
| 2024-11-30T06:32:13Z |
---
license: mit
language:
- en
- fr
base_model:
- microsoft/Phi-3-mini-4k-instruct
pipeline_tag: text-generation
tags:
- nlp
- code
- onnx
- amd
- ryzenai-hybrid
---
# microsoft/Phi-3-mini-4k-instruct
- ## Introduction
This model was prepared using the AMD Quark Quantization tool, followed by necessary post-processing.
- ## Quantization Strategy
- AWQ / Group 128 / Asymmetric / UINT4 Weights / FP16 activations
- Excluded Layers: None
- ## Quick Start
For quickstart, refer to [Ryzen AI doucmentation](https://ryzenai.docs.amd.com/en/latest/hybrid_oga.html)
#### Evaluation scores
The perplexity measurement is run on the wikitext-2-raw-v1 (raw data) dataset provided by Hugging Face. Perplexity score measured for prompt length 2k is 6.7532.
#### License
Modifications copyright(c) 2024 Advanced Micro Devices,Inc. All rights reserved.
MIT License
Copyright (c) 2024 Advanced Micro Devices, Inc
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
license: MIT license
|
ASSISTA-VIDEO-DO-SURFISTA-VAZADO-VIDEO/18.VIDEOS.DO.SURFISTA.VAZADO.VIDEO.SEXO.DO.SURFISTA.NO.BANHEIRO.SURFISTA.MANSAO.PRIVILEGE.EROME
|
ASSISTA-VIDEO-DO-SURFISTA-VAZADO-VIDEO
| 2025-08-27T17:22:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T17:21:21Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756315019
|
xinnn32
| 2025-08-27T17:17:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:17:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756314777
|
ggozzy
| 2025-08-27T17:14:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:14:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756314734
|
Ferdi3425
| 2025-08-27T17:12:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:12:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Stasonelison/blockassist-bc-howling_powerful_aardvark_1756314422
|
Stasonelison
| 2025-08-27T17:07:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"howling powerful aardvark",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:07:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- howling powerful aardvark
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1756313676
|
eshanroy5678
| 2025-08-27T17:02:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed dextrous dingo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:58:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed dextrous dingo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756313979
|
OksanaB
| 2025-08-27T17:01:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T17:00:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756313672
|
OksanaB
| 2025-08-27T16:56:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:55:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
annasoli/gemma-2-9b-it_SV_l20_lr1e-3_a256
|
annasoli
| 2025-08-27T16:51:42Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T16:51:11Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756313283
|
ggozzy
| 2025-08-27T16:49:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:49:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/zr-seal-v0.1-GGUF
|
mradermacher
| 2025-08-27T16:48:19Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:mfirth/zr-seal-v0.1",
"base_model:quantized:mfirth/zr-seal-v0.1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-27T16:25:11Z |
---
base_model: mfirth/zr-seal-v0.1
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/mfirth/zr-seal-v0.1
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#zr-seal-v0.1-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q2_K.gguf) | Q2_K | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q3_K_L.gguf) | Q3_K_L | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.IQ4_XS.gguf) | IQ4_XS | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q5_K_S.gguf) | Q5_K_S | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q5_K_M.gguf) | Q5_K_M | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q6_K.gguf) | Q6_K | 1.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/zr-seal-v0.1-GGUF/resolve/main/zr-seal-v0.1.f16.gguf) | f16 | 2.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
vuitton/LouisVuitton_model12
|
vuitton
| 2025-08-27T16:42:08Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-27T16:25:58Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
fullclips/O.video.do.surfista.da.Mansao.Privilegio.video.surfista.no.banheiro
|
fullclips
| 2025-08-27T16:41:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T16:40:00Z |
Watch 🟢 ➤ ➤ ➤ <a href="https://humptydumpty.cfd/surfistad"> 🌐 Click Here To link (Full video)
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://humptydumpty.cfd/surfistad"> 🌐 Full video
|
bdx33/distilbert-base-cased-CoLA
|
bdx33
| 2025-08-27T16:41:16Z | 3 | 0 |
transformers.js
|
[
"transformers.js",
"onnx",
"distilbert",
"text-classification",
"en",
"base_model:textattack/distilbert-base-cased-CoLA",
"base_model:quantized:textattack/distilbert-base-cased-CoLA",
"region:us"
] |
text-classification
| 2024-06-01T11:25:37Z |
---
base_model: textattack/distilbert-base-cased-CoLA
language:
- en
library_name: transformers.js
pipeline_tag: text-classification
---
https://huggingface.co/textattack/distilbert-base-cased-CoLA with ONNX weights to be compatible with Transformers.js.
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
Putririzqika/blockassist-bc-polished_nimble_chimpanzee_1756312173
|
Putririzqika
| 2025-08-27T16:39:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"polished nimble chimpanzee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:39:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- polished nimble chimpanzee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756312425
|
xinnn32
| 2025-08-27T16:34:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:34:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_2008
|
luckeciano
| 2025-08-27T16:28:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:DigitalLearningGmbH/MATH-lighteval",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T10:15:53Z |
---
base_model: Qwen/Qwen2.5-Math-7B
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_2008
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_2008
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskToken-0.001-v2_2008", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/0z8h2o91)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756312037
|
xinnn32
| 2025-08-27T16:27:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:27:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Yntec/PlayTheGame
|
Yntec
| 2025-08-27T16:23:28Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"Base Model",
"Realistic",
"Fantasy",
"RPG",
"World of Warcraft",
"Style",
"53rt5355iz",
"Anashel",
"stable-diffusion",
"stable-diffusion-1.5",
"stable-diffusion-diffusers",
"text-to-image",
"base_model:Yntec/RPG_Remix",
"base_model:merge:Yntec/RPG_Remix",
"base_model:digiplay/BeautyFoolReality_4",
"base_model:merge:digiplay/BeautyFoolReality_4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-08-27T14:27:41Z |
---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- Base Model
- Realistic
- Fantasy
- RPG
- World of Warcraft
- Style
- 53rt5355iz
- Anashel
- stable-diffusion
- stable-diffusion-1.5
- stable-diffusion-diffusers
- diffusers
- text-to-image
base_model:
- Yntec/RPG_Remix
- digiplay/BeautyFoolReality_4
base_model_relation: merge
---
# Play The Game
RPG Remix (which includes RPG v5 by Anashel and RPG v3 Canditate 16 by Anashel) mixed with BeautyFoolReality4 by 53rt5355iz so it can make what both can make! Showcase and prompts (all use seed 9119):

photo, best quality, masterpiece, gameplay, heads-up display, a pretty young pink witch's brew causes chaos, detailed purple eyes

Baldur's gate

cute girl dozing on the subway didn't know that her wide collar showed a bit of her cleavage, best quality, the bearded man sitting next to her stared intently at her, masterpiece, by Jessie Willcox Smith, bright colors, hair, ((box art, logo, English text, 1980s /(style/), copyright name, retro artstyle)), powerful magical traveler,

oil painting with heavy impasto of a pirate ship and its captain, cosmic horror painting, elegant intricate artstation concept art by craig mullins detailed
# Recipe:
- SuperMerger Weight Sum Use MBW 1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1
Model A:
BeautyfoolRealityV4
Model B:
RPG Remix
Then the 840KVAE was baked in, and then it was converted into no-ema version so diffusers can create high quality images with it.
Output:
PlayTheGame
|
OrdalieTech/Solon-embeddings-mini-beta-1.1
|
OrdalieTech
| 2025-08-27T16:21:43Z | 0 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"eurobert",
"embeddings",
"multilingual",
"feature-extraction",
"sentence-similarity",
"custom_code",
"fr",
"en",
"base_model:EuroBERT/EuroBERT-210m",
"base_model:finetune:EuroBERT/EuroBERT-210m",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-08-27T16:19:14Z |
---
license: apache-2.0
language:
- fr
- en
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- embeddings
- eurobert
- multilingual
- feature-extraction
base_model: EuroBERT/EuroBERT-210m
---
# OrdalieTech/Solon-embeddings-mini-beta-1.1
Le modèle d'origine a été créé à partir de `EuroBERT/EuroBERT-210m`, puis entraîné avec la technique **InfoNCE** sur des **paires de très haute qualité générées par LLM**
## Points clés
- **Backbone** : `EuroBERT/EuroBERT-210m`
- **Pooling** : moyenne des tokens (CLS désactivé, max désactivé)
- **Dimensions** : 768
- **Langues** : multilingue dont le français et l'anglais
## Exemples d'usage
### Avec `sentence-transformers`
```python
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("OrdalieTech/Solon-embeddings-mini-beta-1.1")
sentences = ["Ceci est une phrase d'exemple", "Chaque phrase est convertie en vecteur"]
embeddings = model.encode(sentences, convert_to_tensor=False, normalize_embeddings=True)
print(embeddings[0].shape) # (768,)
```
### Avec `transformers` (feature extraction)
```python
pip install -U transformers torch
```
```python
from transformers import AutoTokenizer, AutoModel
import torch
tok = AutoTokenizer.from_pretrained("EuroBERT/EuroBERT-210m", trust_remote_code=True)
enc = AutoModel.from_pretrained("EuroBERT/EuroBERT-210m", trust_remote_code=True)
inputs = tok(["Ceci est une phrase d'exemple"], padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
out = enc(**inputs).last_hidden_state # (batch, seq, 768)
mask = inputs["attention_mask"].unsqueeze(-1) # (batch, seq, 1)
mean_emb = (out * mask).sum(dim=1) / mask.sum(dim=1).clamp(min=1)
```
## Cas d'usage
- Recherche sémantique
- Reranking
- Similarité sémantique de phrases (STS)
- Recommandation de contenu
- Classification basée sur des embeddings
## Crédit et licence
- Modèle de base : [`EuroBERT/EuroBERT-210m`](https://huggingface.co/EuroBERT/EuroBERT-210m) • licence Apache-2.0
- Cette publication reprend la licence Apache-2.0 et respecte les conditions de redistribution du modèle de base
- Merci aux auteurs d'EuroBERT pour leur travail et l'ouverture du modèle
- Création : @matheoqtb
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756311277
|
OksanaB
| 2025-08-27T16:16:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:15:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756309361
|
hakimjustbao
| 2025-08-27T16:13:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:12:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756310953
|
xinnn32
| 2025-08-27T16:09:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:09:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Orginal-Jhoselyn-Maura-viral-video-links/NEW.FULL.VIDEO.Jhoselyn.Maura.Viral.Video.Official.Tutorial
|
Orginal-Jhoselyn-Maura-viral-video-links
| 2025-08-27T16:05:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T16:05:06Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1756309163
|
capungmerah627
| 2025-08-27T16:05:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stinging soaring porcupine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:05:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stinging soaring porcupine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
licyk/comfyui-extension-models
|
licyk
| 2025-08-27T16:05:20Z | 0 | 5 |
diffusers
|
[
"diffusers",
"onnx",
"safetensors",
"license:openrail",
"region:us"
] | null | 2024-01-20T13:33:21Z |
---
license: openrail
---
这是储存stable-diffusion-webui/ComfyUI扩展所需的部分模型文件
## 仓库列表
[sd-extensions-model](https://huggingface.co/licyk/sd-extensions-model)
存放stable-diffusion-webui扩展的模型文件
[comfyui-extension-models](https://huggingface.co/licyk/comfyui-extension-models)
存放ComfyUI扩展的模型文件
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756310570
|
OksanaB
| 2025-08-27T16:04:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T16:03:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
MultivexAI/gemma-style-20m-dolly-pretrained
|
MultivexAI
| 2025-08-27T15:58:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T15:19:54Z |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: gemma-style-20m-dolly-pretrained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-style-20m-dolly-pretrained
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.6593
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 7.4028 | 0.9191 | 250 | 7.4364 |
| 7.0051 | 1.8382 | 500 | 7.0592 |
| 6.7136 | 2.7574 | 750 | 6.8416 |
| 6.5304 | 3.6765 | 1000 | 6.7170 |
| 6.4196 | 4.5956 | 1250 | 6.6593 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
hasanbasbunar/an-adapter
|
hasanbasbunar
| 2025-08-27T15:58:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gpt_oss",
"trl",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T15:57:57Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** hasanbasbunar
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
chainway9/blockassist-bc-untamed_quick_eel_1756308025
|
chainway9
| 2025-08-27T15:50:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:50:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Bheri/labse-en-sa-v1
|
Bheri
| 2025-08-27T15:44:12Z | 0 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:257886",
"loss:MultipleNegativesRankingLoss",
"arxiv:1908.10084",
"arxiv:1705.00652",
"base_model:sentence-transformers/LaBSE",
"base_model:finetune:sentence-transformers/LaBSE",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-08-27T15:43:01Z |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:257886
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: 'Karwa Chauth is a festival celebrated by Hindu women of Northern
and Western India on the fourth day after Purnima in the month of Kartika.
'
sentences:
- 'तस्याः युग्मभ्रातुः वंशानुगत-राजकुमारस्य जाक् इत्यस्य निमेषद्वयात् प्राक् सा
अजायत।
'
- '"तथापि, Internet Explorer नोपयोक्तव्यम् । यतो हि तत् सम्यक् डिस्प्ले न करोति
।"'
- 'कर्वा-चौथ् इति उत्सवः उत्तर-पश्चिम-भारतस्य हिन्दु-महिलाभिः कार्तिकमासे पूर्णिमायाः
अनन्तरं चतुर्थदिने आचर्यते।
'
- source_sentence: '"""And if any man will hurt them, fire proceedeth out of their
mouth, and devoureth their enemies: and if any man will hurt them, he must in
this manner be killed."""'
sentences:
- '"C तथा C++ उभयोः मध्येऽपि, इदं समानं मार्गं इम्प्लिमेण्ट् कर्तुमनुसरति ।"'
- यदि केचित् तौ हिंसितुं चेष्टन्ते तर्हि तयो र्वदनाभ्याम् अग्नि र्निर्गत्य तयोः
शत्रून् भस्मीकरिष्यति। यः कश्चित् तौ हिंसितुं चेष्टते तेनैवमेव विनष्टव्यं।
- यवक्रीत उवाच नायं शक्यस्त्वया बड़े महानोघस्तपोधन। अशक्याद् विनिवर्तस्व शक्यमर्थं
समारभ॥
- source_sentence: 'It tarnishes in air to produce a whitish oxidized layer on the
surface.
'
sentences:
- उपस्थितानां रत्नानां श्रेष्ठानामर्घहारिणाम्। नादृश्यत परः पारो नापरस्तत्र भारत॥
- 'इदं वायौ कलङ्कितं भवति, येन तले श्वेतवर्णीयं आक्सिडैस्ड्-आस्तरणं निर्मीयते।
'
- आचार्येणाभ्यनुज्ञातश्चतुर्णामेकमाश्रमम्। आविमोक्षाच्छरीरस्य सोऽवतिष्ठेद् यथाविधि॥
- source_sentence: 'If you''re planning to fund part or all of your child''s higher
education, it''s best to start saving early on.
'
sentences:
- समयं वाजिमेधस्य विदित्वा पुरुषर्षभः। यथोक्तो धर्मपुत्रेण प्रव्रजन् स्वपुरी प्रति॥
- 'यदि भवान् भवतः सन्ततेः उच्चशिक्षायाः कृते, आंशिकं वा सम्पूर्णं वा शुल्कं दातुम्
इच्छति तर्हि तदर्थं पूर्वमेव धनसञ्चयस्य आरम्भः क्षेमकरः भवेत्।
'
- '"""तदनन्तरं तेषां सप्तकंसधारिणां सप्तदूतानाम् एक आगत्य मां सम्भाष्यावदत्, अत्रागच्छ,
मेदिन्या नरपतयो यया वेश्यया सार्द्धं व्यभिचारकर्म्म कृतवन्तः,"""'
- source_sentence: In spite of these, Dhananjaya made Drona's son carless by cutting
off the out-stretched bow of his foe with three shafts, killing his driver with
a razor like shaft and making away with his banner with three and his four horses
with four other shafts.
sentences:
- तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च
पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥
- एकवारं पूरितं चेत् एतां प्रक्रियां undo कर्तुं न शक्नुमः ।
- क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/LaBSE
results:
- task:
type: translation
name: Translation
dataset:
name: eval en sa
type: eval-en-sa
metrics:
- type: src2trg_accuracy
value: 0.944
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.947
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.9455
name: Mean Accuracy
---
# SentenceTransformer based on sentence-transformers/LaBSE
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Translation
* Dataset: `eval-en-sa`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.944 |
| trg2src_accuracy | 0.947 |
| **mean_accuracy** | **0.9455** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 257,886 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 31.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 40.18 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>It normally connects to port 80 on a computer.<br></code> | <code>इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।<br></code> |
| <code>He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners.</code> | <code>सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।</code> |
| <code>By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.<br></code> | <code>१६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।<br></code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 15
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
|:-------:|:------:|:-------------:|:------------------------:|
| 0.0310 | 500 | 0.4289 | - |
| 0.0620 | 1000 | 0.182 | - |
| 0.0931 | 1500 | 0.1405 | - |
| 0.1241 | 2000 | 0.1097 | - |
| 0.1551 | 2500 | 0.0911 | - |
| 0.1861 | 3000 | 0.0791 | - |
| 0.2171 | 3500 | 0.0725 | - |
| 0.2482 | 4000 | 0.067 | - |
| 0.2792 | 4500 | 0.0594 | - |
| 0.3102 | 5000 | 0.0629 | - |
| 0.3412 | 5500 | 0.0535 | - |
| 0.3723 | 6000 | 0.0512 | - |
| 0.4033 | 6500 | 0.0456 | - |
| 0.4343 | 7000 | 0.0462 | - |
| 0.4653 | 7500 | 0.043 | - |
| 0.4963 | 8000 | 0.0425 | - |
| 0.5274 | 8500 | 0.0412 | - |
| 0.5584 | 9000 | 0.0418 | - |
| 0.5894 | 9500 | 0.0415 | - |
| 0.6204 | 10000 | 0.0409 | - |
| 0.6514 | 10500 | 0.04 | - |
| 0.6825 | 11000 | 0.032 | - |
| 0.7135 | 11500 | 0.0323 | - |
| 0.7445 | 12000 | 0.0325 | - |
| 0.7755 | 12500 | 0.0355 | - |
| 0.8066 | 13000 | 0.0285 | - |
| 0.8376 | 13500 | 0.0281 | - |
| 0.8686 | 14000 | 0.0289 | - |
| 0.8996 | 14500 | 0.033 | - |
| 0.9306 | 15000 | 0.0336 | - |
| 0.9617 | 15500 | 0.0335 | - |
| 0.9927 | 16000 | 0.0278 | - |
| 1.0 | 16118 | - | 0.913 |
| 1.0237 | 16500 | 0.0312 | - |
| 1.0547 | 17000 | 0.0294 | - |
| 1.0857 | 17500 | 0.0288 | - |
| 1.1168 | 18000 | 0.0287 | - |
| 1.1478 | 18500 | 0.0245 | - |
| 1.1788 | 19000 | 0.0243 | - |
| 1.2098 | 19500 | 0.022 | - |
| 1.2408 | 20000 | 0.0266 | - |
| 1.2719 | 20500 | 0.0224 | - |
| 1.3029 | 21000 | 0.0283 | - |
| 1.3339 | 21500 | 0.02 | - |
| 1.3649 | 22000 | 0.0212 | - |
| 1.3960 | 22500 | 0.0197 | - |
| 1.4270 | 23000 | 0.0174 | - |
| 1.4580 | 23500 | 0.0179 | - |
| 1.4890 | 24000 | 0.0187 | - |
| 1.5200 | 24500 | 0.0191 | - |
| 1.5511 | 25000 | 0.0151 | - |
| 1.5821 | 25500 | 0.0161 | - |
| 1.6131 | 26000 | 0.0182 | - |
| 1.6441 | 26500 | 0.0155 | - |
| 1.6751 | 27000 | 0.013 | - |
| 1.7062 | 27500 | 0.0119 | - |
| 1.7372 | 28000 | 0.0119 | - |
| 1.7682 | 28500 | 0.0133 | - |
| 1.7992 | 29000 | 0.0113 | - |
| 1.8303 | 29500 | 0.011 | - |
| 1.8613 | 30000 | 0.0133 | - |
| 1.8923 | 30500 | 0.0114 | - |
| 1.9233 | 31000 | 0.0139 | - |
| 1.9543 | 31500 | 0.0131 | - |
| 1.9854 | 32000 | 0.0115 | - |
| 2.0 | 32236 | - | 0.9345 |
| 2.0164 | 32500 | 0.01 | - |
| 2.0474 | 33000 | 0.01 | - |
| 2.0784 | 33500 | 0.0091 | - |
| 2.1094 | 34000 | 0.0131 | - |
| 2.1405 | 34500 | 0.0096 | - |
| 2.1715 | 35000 | 0.0095 | - |
| 2.2025 | 35500 | 0.0103 | - |
| 2.2335 | 36000 | 0.0101 | - |
| 2.2645 | 36500 | 0.0102 | - |
| 2.2956 | 37000 | 0.0102 | - |
| 2.3266 | 37500 | 0.0085 | - |
| 2.3576 | 38000 | 0.0087 | - |
| 2.3886 | 38500 | 0.0103 | - |
| 2.4197 | 39000 | 0.0058 | - |
| 2.4507 | 39500 | 0.0086 | - |
| 2.4817 | 40000 | 0.0088 | - |
| 2.5127 | 40500 | 0.0088 | - |
| 2.5437 | 41000 | 0.007 | - |
| 2.5748 | 41500 | 0.0082 | - |
| 2.6058 | 42000 | 0.0069 | - |
| 2.6368 | 42500 | 0.0071 | - |
| 2.6678 | 43000 | 0.0058 | - |
| 2.6988 | 43500 | 0.0075 | - |
| 2.7299 | 44000 | 0.0064 | - |
| 2.7609 | 44500 | 0.0053 | - |
| 2.7919 | 45000 | 0.0055 | - |
| 2.8229 | 45500 | 0.0061 | - |
| 2.8540 | 46000 | 0.0059 | - |
| 2.8850 | 46500 | 0.0062 | - |
| 2.9160 | 47000 | 0.0046 | - |
| 2.9470 | 47500 | 0.0064 | - |
| 2.9780 | 48000 | 0.0053 | - |
| 3.0 | 48354 | - | 0.941 |
| 3.0091 | 48500 | 0.0048 | - |
| 3.0401 | 49000 | 0.0059 | - |
| 3.0711 | 49500 | 0.005 | - |
| 3.1021 | 50000 | 0.005 | 0.9415 |
| 3.1331 | 50500 | 0.0046 | - |
| 3.1642 | 51000 | 0.005 | - |
| 3.1952 | 51500 | 0.0051 | - |
| 3.2262 | 52000 | 0.0041 | - |
| 3.2572 | 52500 | 0.0052 | - |
| 3.2882 | 53000 | 0.0052 | - |
| 3.3193 | 53500 | 0.0053 | - |
| 3.3503 | 54000 | 0.0041 | - |
| 3.3813 | 54500 | 0.0042 | - |
| 3.4123 | 55000 | 0.0026 | - |
| 3.4434 | 55500 | 0.0045 | - |
| 3.4744 | 56000 | 0.0045 | - |
| 3.5054 | 56500 | 0.0054 | - |
| 3.5364 | 57000 | 0.0055 | - |
| 3.5674 | 57500 | 0.0046 | - |
| 3.5985 | 58000 | 0.0045 | - |
| 3.6295 | 58500 | 0.0041 | - |
| 3.6605 | 59000 | 0.0037 | - |
| 3.6915 | 59500 | 0.003 | - |
| 3.7225 | 60000 | 0.0039 | - |
| 3.7536 | 60500 | 0.0027 | - |
| 3.7846 | 61000 | 0.0041 | - |
| 3.8156 | 61500 | 0.003 | - |
| 3.8466 | 62000 | 0.0027 | - |
| 3.8777 | 62500 | 0.0039 | - |
| 3.9087 | 63000 | 0.0038 | - |
| 3.9397 | 63500 | 0.0029 | - |
| 3.9707 | 64000 | 0.0037 | - |
| 4.0 | 64472 | - | 0.9365 |
| 4.0017 | 64500 | 0.0023 | - |
| 4.0328 | 65000 | 0.0034 | - |
| 4.0638 | 65500 | 0.0033 | - |
| 4.0948 | 66000 | 0.0033 | - |
| 4.1258 | 66500 | 0.004 | - |
| 4.1568 | 67000 | 0.0026 | - |
| 4.1879 | 67500 | 0.0026 | - |
| 4.2189 | 68000 | 0.0025 | - |
| 4.2499 | 68500 | 0.0037 | - |
| 4.2809 | 69000 | 0.0041 | - |
| 4.3119 | 69500 | 0.0031 | - |
| 4.3430 | 70000 | 0.0025 | - |
| 4.3740 | 70500 | 0.0025 | - |
| 4.4050 | 71000 | 0.0022 | - |
| 4.4360 | 71500 | 0.0016 | - |
| 4.4671 | 72000 | 0.003 | - |
| 4.4981 | 72500 | 0.0029 | - |
| 4.5291 | 73000 | 0.003 | - |
| 4.5601 | 73500 | 0.0025 | - |
| 4.5911 | 74000 | 0.0027 | - |
| 4.6222 | 74500 | 0.0028 | - |
| 4.6532 | 75000 | 0.003 | - |
| 4.6842 | 75500 | 0.002 | - |
| 4.7152 | 76000 | 0.0028 | - |
| 4.7462 | 76500 | 0.0016 | - |
| 4.7773 | 77000 | 0.0022 | - |
| 4.8083 | 77500 | 0.0019 | - |
| 4.8393 | 78000 | 0.0019 | - |
| 4.8703 | 78500 | 0.0026 | - |
| 4.9014 | 79000 | 0.0023 | - |
| 4.9324 | 79500 | 0.0016 | - |
| 4.9634 | 80000 | 0.0019 | - |
| 4.9944 | 80500 | 0.0018 | - |
| 5.0 | 80590 | - | 0.937 |
| 5.0254 | 81000 | 0.0028 | - |
| 5.0565 | 81500 | 0.0019 | - |
| 5.0875 | 82000 | 0.0024 | - |
| 5.1185 | 82500 | 0.0016 | - |
| 5.1495 | 83000 | 0.0015 | - |
| 5.1805 | 83500 | 0.0017 | - |
| 5.2116 | 84000 | 0.0016 | - |
| 5.2426 | 84500 | 0.0026 | - |
| 5.2736 | 85000 | 0.0029 | - |
| 5.3046 | 85500 | 0.0027 | - |
| 5.3356 | 86000 | 0.002 | - |
| 5.3667 | 86500 | 0.002 | - |
| 5.3977 | 87000 | 0.0021 | - |
| 5.4287 | 87500 | 0.0011 | - |
| 5.4597 | 88000 | 0.0016 | - |
| 5.4908 | 88500 | 0.0019 | - |
| 5.5218 | 89000 | 0.0027 | - |
| 5.5528 | 89500 | 0.0012 | - |
| 5.5838 | 90000 | 0.0012 | - |
| 5.6148 | 90500 | 0.0016 | - |
| 5.6459 | 91000 | 0.0019 | - |
| 5.6769 | 91500 | 0.0016 | - |
| 5.7079 | 92000 | 0.0027 | - |
| 5.7389 | 92500 | 0.0013 | - |
| 5.7699 | 93000 | 0.0013 | - |
| 5.8010 | 93500 | 0.0015 | - |
| 5.8320 | 94000 | 0.0016 | - |
| 5.8630 | 94500 | 0.002 | - |
| 5.8940 | 95000 | 0.001 | - |
| 5.9251 | 95500 | 0.0014 | - |
| 5.9561 | 96000 | 0.0021 | - |
| 5.9871 | 96500 | 0.0022 | - |
| 6.0 | 96708 | - | 0.933 |
| 6.0181 | 97000 | 0.0016 | - |
| 6.0491 | 97500 | 0.0015 | - |
| 6.0802 | 98000 | 0.0011 | - |
| 6.1112 | 98500 | 0.0016 | - |
| 6.1422 | 99000 | 0.001 | - |
| 6.1732 | 99500 | 0.0013 | - |
| 6.2042 | 100000 | 0.0015 | 0.9365 |
| 6.2353 | 100500 | 0.0017 | - |
| 6.2663 | 101000 | 0.0015 | - |
| 6.2973 | 101500 | 0.0016 | - |
| 6.3283 | 102000 | 0.001 | - |
| 6.3593 | 102500 | 0.0013 | - |
| 6.3904 | 103000 | 0.0013 | - |
| 6.4214 | 103500 | 0.0011 | - |
| 6.4524 | 104000 | 0.0007 | - |
| 6.4834 | 104500 | 0.0013 | - |
| 6.5145 | 105000 | 0.0011 | - |
| 6.5455 | 105500 | 0.0011 | - |
| 6.5765 | 106000 | 0.0015 | - |
| 6.6075 | 106500 | 0.002 | - |
| 6.6385 | 107000 | 0.0011 | - |
| 6.6696 | 107500 | 0.0013 | - |
| 6.7006 | 108000 | 0.0017 | - |
| 6.7316 | 108500 | 0.0008 | - |
| 6.7626 | 109000 | 0.0011 | - |
| 6.7936 | 109500 | 0.0008 | - |
| 6.8247 | 110000 | 0.0009 | - |
| 6.8557 | 110500 | 0.0014 | - |
| 6.8867 | 111000 | 0.0014 | - |
| 6.9177 | 111500 | 0.0014 | - |
| 6.9488 | 112000 | 0.0014 | - |
| 6.9798 | 112500 | 0.0013 | - |
| 7.0 | 112826 | - | 0.9390 |
| 7.0108 | 113000 | 0.0011 | - |
| 7.0418 | 113500 | 0.0013 | - |
| 7.0728 | 114000 | 0.0012 | - |
| 7.1039 | 114500 | 0.001 | - |
| 7.1349 | 115000 | 0.0016 | - |
| 7.1659 | 115500 | 0.0009 | - |
| 7.1969 | 116000 | 0.0009 | - |
| 7.2279 | 116500 | 0.0007 | - |
| 7.2590 | 117000 | 0.0008 | - |
| 7.2900 | 117500 | 0.0014 | - |
| 7.3210 | 118000 | 0.0012 | - |
| 7.3520 | 118500 | 0.0007 | - |
| 7.3831 | 119000 | 0.001 | - |
| 7.4141 | 119500 | 0.001 | - |
| 7.4451 | 120000 | 0.0007 | - |
| 7.4761 | 120500 | 0.0008 | - |
| 7.5071 | 121000 | 0.0009 | - |
| 7.5382 | 121500 | 0.0009 | - |
| 7.5692 | 122000 | 0.001 | - |
| 7.6002 | 122500 | 0.0009 | - |
| 7.6312 | 123000 | 0.0007 | - |
| 7.6622 | 123500 | 0.0009 | - |
| 7.6933 | 124000 | 0.0007 | - |
| 7.7243 | 124500 | 0.0012 | - |
| 7.7553 | 125000 | 0.001 | - |
| 7.7863 | 125500 | 0.0005 | - |
| 7.8173 | 126000 | 0.0005 | - |
| 7.8484 | 126500 | 0.0008 | - |
| 7.8794 | 127000 | 0.0014 | - |
| 7.9104 | 127500 | 0.0014 | - |
| 7.9414 | 128000 | 0.0009 | - |
| 7.9725 | 128500 | 0.0008 | - |
| 8.0 | 128944 | - | 0.94 |
| 8.0035 | 129000 | 0.0013 | - |
| 8.0345 | 129500 | 0.0007 | - |
| 8.0655 | 130000 | 0.0007 | - |
| 8.0965 | 130500 | 0.0008 | - |
| 8.1276 | 131000 | 0.0009 | - |
| 8.1586 | 131500 | 0.0009 | - |
| 8.1896 | 132000 | 0.0007 | - |
| 8.2206 | 132500 | 0.0008 | - |
| 8.2516 | 133000 | 0.0008 | - |
| 8.2827 | 133500 | 0.0006 | - |
| 8.3137 | 134000 | 0.0008 | - |
| 8.3447 | 134500 | 0.001 | - |
| 8.3757 | 135000 | 0.0006 | - |
| 8.4068 | 135500 | 0.0007 | - |
| 8.4378 | 136000 | 0.0007 | - |
| 8.4688 | 136500 | 0.0009 | - |
| 8.4998 | 137000 | 0.0008 | - |
| 8.5308 | 137500 | 0.0006 | - |
| 8.5619 | 138000 | 0.0008 | - |
| 8.5929 | 138500 | 0.0007 | - |
| 8.6239 | 139000 | 0.0008 | - |
| 8.6549 | 139500 | 0.0006 | - |
| 8.6859 | 140000 | 0.0005 | - |
| 8.7170 | 140500 | 0.0006 | - |
| 8.7480 | 141000 | 0.0006 | - |
| 8.7790 | 141500 | 0.0006 | - |
| 8.8100 | 142000 | 0.0005 | - |
| 8.8410 | 142500 | 0.0006 | - |
| 8.8721 | 143000 | 0.0005 | - |
| 8.9031 | 143500 | 0.0006 | - |
| 8.9341 | 144000 | 0.0009 | - |
| 8.9651 | 144500 | 0.0007 | - |
| 8.9962 | 145000 | 0.0007 | - |
| 9.0 | 145062 | - | 0.938 |
| 9.0272 | 145500 | 0.0007 | - |
| 9.0582 | 146000 | 0.0007 | - |
| 9.0892 | 146500 | 0.0007 | - |
| 9.1202 | 147000 | 0.0007 | - |
| 9.1513 | 147500 | 0.0005 | - |
| 9.1823 | 148000 | 0.0005 | - |
| 9.2133 | 148500 | 0.0005 | - |
| 9.2443 | 149000 | 0.0007 | - |
| 9.2753 | 149500 | 0.0006 | - |
| 9.3064 | 150000 | 0.0005 | 0.938 |
| 9.3374 | 150500 | 0.0005 | - |
| 9.3684 | 151000 | 0.0004 | - |
| 9.3994 | 151500 | 0.0007 | - |
| 9.4305 | 152000 | 0.0006 | - |
| 9.4615 | 152500 | 0.0006 | - |
| 9.4925 | 153000 | 0.0012 | - |
| 9.5235 | 153500 | 0.0015 | - |
| 9.5545 | 154000 | 0.0006 | - |
| 9.5856 | 154500 | 0.0004 | - |
| 9.6166 | 155000 | 0.0004 | - |
| 9.6476 | 155500 | 0.0007 | - |
| 9.6786 | 156000 | 0.0005 | - |
| 9.7096 | 156500 | 0.0006 | - |
| 9.7407 | 157000 | 0.0004 | - |
| 9.7717 | 157500 | 0.0004 | - |
| 9.8027 | 158000 | 0.0006 | - |
| 9.8337 | 158500 | 0.0004 | - |
| 9.8647 | 159000 | 0.0005 | - |
| 9.8958 | 159500 | 0.0005 | - |
| 9.9268 | 160000 | 0.0004 | - |
| 9.9578 | 160500 | 0.0007 | - |
| 9.9888 | 161000 | 0.0008 | - |
| 10.0 | 161180 | - | 0.9405 |
| 10.0199 | 161500 | 0.0009 | - |
| 10.0509 | 162000 | 0.0007 | - |
| 10.0819 | 162500 | 0.0007 | - |
| 10.1129 | 163000 | 0.0007 | - |
| 10.1439 | 163500 | 0.0005 | - |
| 10.1750 | 164000 | 0.0005 | - |
| 10.2060 | 164500 | 0.0004 | - |
| 10.2370 | 165000 | 0.0006 | - |
| 10.2680 | 165500 | 0.0006 | - |
| 10.2990 | 166000 | 0.0005 | - |
| 10.3301 | 166500 | 0.0005 | - |
| 10.3611 | 167000 | 0.0006 | - |
| 10.3921 | 167500 | 0.0006 | - |
| 10.4231 | 168000 | 0.0003 | - |
| 10.4542 | 168500 | 0.0005 | - |
| 10.4852 | 169000 | 0.001 | - |
| 10.5162 | 169500 | 0.0007 | - |
| 10.5472 | 170000 | 0.0003 | - |
| 10.5782 | 170500 | 0.0005 | - |
| 10.6093 | 171000 | 0.0003 | - |
| 10.6403 | 171500 | 0.0004 | - |
| 10.6713 | 172000 | 0.0006 | - |
| 10.7023 | 172500 | 0.0006 | - |
| 10.7333 | 173000 | 0.0005 | - |
| 10.7644 | 173500 | 0.0004 | - |
| 10.7954 | 174000 | 0.0003 | - |
| 10.8264 | 174500 | 0.0007 | - |
| 10.8574 | 175000 | 0.0005 | - |
| 10.8884 | 175500 | 0.0003 | - |
| 10.9195 | 176000 | 0.0006 | - |
| 10.9505 | 176500 | 0.001 | - |
| 10.9815 | 177000 | 0.0007 | - |
| 11.0 | 177298 | - | 0.9345 |
| 11.0125 | 177500 | 0.0003 | - |
| 11.0436 | 178000 | 0.0003 | - |
| 11.0746 | 178500 | 0.0005 | - |
| 11.1056 | 179000 | 0.0005 | - |
| 11.1366 | 179500 | 0.0007 | - |
| 11.1676 | 180000 | 0.0008 | - |
| 11.1987 | 180500 | 0.0004 | - |
| 11.2297 | 181000 | 0.0006 | - |
| 11.2607 | 181500 | 0.0006 | - |
| 11.2917 | 182000 | 0.0009 | - |
| 11.3227 | 182500 | 0.0005 | - |
| 11.3538 | 183000 | 0.0004 | - |
| 11.3848 | 183500 | 0.0004 | - |
| 11.4158 | 184000 | 0.0005 | - |
| 11.4468 | 184500 | 0.0003 | - |
| 11.4779 | 185000 | 0.0002 | - |
| 11.5089 | 185500 | 0.0003 | - |
| 11.5399 | 186000 | 0.0007 | - |
| 11.5709 | 186500 | 0.0003 | - |
| 11.6019 | 187000 | 0.0003 | - |
| 11.6330 | 187500 | 0.0004 | - |
| 11.6640 | 188000 | 0.0007 | - |
| 11.6950 | 188500 | 0.0003 | - |
| 11.7260 | 189000 | 0.0003 | - |
| 11.7570 | 189500 | 0.0004 | - |
| 11.7881 | 190000 | 0.0004 | - |
| 11.8191 | 190500 | 0.0003 | - |
| 11.8501 | 191000 | 0.0003 | - |
| 11.8811 | 191500 | 0.0003 | - |
| 11.9121 | 192000 | 0.0002 | - |
| 11.9432 | 192500 | 0.0008 | - |
| 11.9742 | 193000 | 0.0004 | - |
| 12.0 | 193416 | - | 0.944 |
| 12.0052 | 193500 | 0.0005 | - |
| 12.0362 | 194000 | 0.0002 | - |
| 12.0673 | 194500 | 0.0003 | - |
| 12.0983 | 195000 | 0.0004 | - |
| 12.1293 | 195500 | 0.0005 | - |
| 12.1603 | 196000 | 0.0004 | - |
| 12.1913 | 196500 | 0.0002 | - |
| 12.2224 | 197000 | 0.0002 | - |
| 12.2534 | 197500 | 0.0003 | - |
| 12.2844 | 198000 | 0.0003 | - |
| 12.3154 | 198500 | 0.0005 | - |
| 12.3464 | 199000 | 0.0004 | - |
| 12.3775 | 199500 | 0.0004 | - |
| 12.4085 | 200000 | 0.0003 | 0.9435 |
| 12.4395 | 200500 | 0.0003 | - |
| 12.4705 | 201000 | 0.0004 | - |
| 12.5016 | 201500 | 0.0009 | - |
| 12.5326 | 202000 | 0.0005 | - |
| 12.5636 | 202500 | 0.0003 | - |
| 12.5946 | 203000 | 0.0003 | - |
| 12.6256 | 203500 | 0.0002 | - |
| 12.6567 | 204000 | 0.0003 | - |
| 12.6877 | 204500 | 0.0002 | - |
| 12.7187 | 205000 | 0.0005 | - |
| 12.7497 | 205500 | 0.0003 | - |
| 12.7807 | 206000 | 0.0004 | - |
| 12.8118 | 206500 | 0.0003 | - |
| 12.8428 | 207000 | 0.0003 | - |
| 12.8738 | 207500 | 0.0003 | - |
| 12.9048 | 208000 | 0.0003 | - |
| 12.9358 | 208500 | 0.0006 | - |
| 12.9669 | 209000 | 0.0004 | - |
| 12.9979 | 209500 | 0.0004 | - |
| 13.0 | 209534 | - | 0.9455 |
</details>
### Framework Versions
- Python: 3.10.17
- Sentence Transformers: 4.1.0
- Transformers: 4.46.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.18.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756309051
|
OksanaB
| 2025-08-27T15:39:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:38:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756309043
|
Dejiat
| 2025-08-27T15:37:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:37:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1756307121
|
koloni
| 2025-08-27T15:31:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:31:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dr-wong-lu-yang-cctv-Viral-videoss/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
dr-wong-lu-yang-cctv-Viral-videoss
| 2025-08-27T15:26:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:25:42Z |
<animated-image data-catalyst=""><a href="https://fubotv24.com/Leaked/?v=video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756308294
|
Dejiat
| 2025-08-27T15:25:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:25:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dereklvlv/embedding
|
dereklvlv
| 2025-08-27T15:25:03Z | 0 | 0 |
pyannote-audio
|
[
"pyannote-audio",
"pytorch",
"tensorboard",
"pyannote",
"pyannote-audio-model",
"audio",
"voice",
"speech",
"speaker",
"speaker-recognition",
"speaker-verification",
"speaker-identification",
"speaker-embedding",
"dataset:voxceleb",
"license:mit",
"region:us"
] | null | 2025-08-27T15:23:35Z |
---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-model
- audio
- voice
- speech
- speaker
- speaker-recognition
- speaker-verification
- speaker-identification
- speaker-embedding
datasets:
- voxceleb
license: mit
inference: false
extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers apply for grants to improve it further. If you are an academic researcher, please cite the relevant papers in your own publications using the model. If you work for a company, please consider contributing back to pyannote.audio development (e.g. through unrestricted gifts). We also provide scientific consulting services around speaker diarization and machine listening."
extra_gated_fields:
Company/university: text
Website: text
I plan to use this model for (task, type of audio data, etc): text
---
Using this open-source model in production?
Consider switching to [pyannoteAI](https://www.pyannote.ai) for better and faster options.
# 🎹 Speaker embedding
Relies on pyannote.audio 2.1: see [installation instructions](https://github.com/pyannote/pyannote-audio/).
This model is based on the [canonical x-vector TDNN-based architecture](https://ieeexplore.ieee.org/abstract/document/8461375), but with filter banks replaced with [trainable SincNet features](https://ieeexplore.ieee.org/document/8639585). See [`XVectorSincNet`](https://github.com/pyannote/pyannote-audio/blob/3c988c028dc505c64fe776720372f6fe816b585a/pyannote/audio/models/embedding/xvector.py#L104-L169) architecture for implementation details.
## Basic usage
```python
# 1. visit hf.co/pyannote/embedding and accept user conditions
# 2. visit hf.co/settings/tokens to create an access token
# 3. instantiate pretrained model
from pyannote.audio import Model
model = Model.from_pretrained("pyannote/embedding",
use_auth_token="ACCESS_TOKEN_GOES_HERE")
```
```python
from pyannote.audio import Inference
inference = Inference(model, window="whole")
embedding1 = inference("speaker1.wav")
embedding2 = inference("speaker2.wav")
# `embeddingX` is (1 x D) numpy array extracted from the file as a whole.
from scipy.spatial.distance import cdist
distance = cdist(embedding1, embedding2, metric="cosine")[0,0]
# `distance` is a `float` describing how dissimilar speakers 1 and 2 are.
```
Using cosine distance directly, this model reaches 2.8% equal error rate (EER) on VoxCeleb 1 test set.
This is without voice activity detection (VAD) nor probabilistic linear discriminant analysis (PLDA).
Expect even better results when adding one of those.
## Advanced usage
### Running on GPU
```python
import torch
inference.to(torch.device("cuda"))
embedding = inference("audio.wav")
```
### Extract embedding from an excerpt
```python
from pyannote.audio import Inference
from pyannote.core import Segment
inference = Inference(model, window="whole")
excerpt = Segment(13.37, 19.81)
embedding = inference.crop("audio.wav", excerpt)
# `embedding` is (1 x D) numpy array extracted from the file excerpt.
```
### Extract embeddings using a sliding window
```python
from pyannote.audio import Inference
inference = Inference(model, window="sliding",
duration=3.0, step=1.0)
embeddings = inference("audio.wav")
# `embeddings` is a (N x D) pyannote.core.SlidingWindowFeature
# `embeddings[i]` is the embedding of the ith position of the
# sliding window, i.e. from [i * step, i * step + duration].
```
## Citation
```bibtex
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
```
```bibtex
@inproceedings{Coria2020,
author="Coria, Juan M. and Bredin, Herv{\'e} and Ghannay, Sahar and Rosset, Sophie",
editor="Espinosa-Anke, Luis and Mart{\'i}n-Vide, Carlos and Spasi{\'{c}}, Irena",
title="{A Comparison of Metric Learning Loss Functions for End-To-End Speaker Verification}",
booktitle="Statistical Language and Speech Processing",
year="2020",
publisher="Springer International Publishing",
pages="137--148",
isbn="978-3-030-59430-5"
}
```
|
thorejaya/omega_U6BU5iI
|
thorejaya
| 2025-08-27T15:25:02Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-27T15:25:01Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
jibrilorradv/blockassist-bc-shaggy_pale_tortoise_1756306406
|
jibrilorradv
| 2025-08-27T15:21:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"shaggy pale tortoise",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:21:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- shaggy pale tortoise
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756307934
|
xinnn32
| 2025-08-27T15:19:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:19:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756307175
|
Dejiat
| 2025-08-27T15:06:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:06:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
alvdansen/upload-models
|
alvdansen
| 2025-08-27T15:01:10Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-02-03T12:12:03Z |
---
license: other
license_name: limited
license_link: LICENSE
---
|
koloni/blockassist-bc-deadly_graceful_stingray_1756305136
|
koloni
| 2025-08-27T14:59:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:59:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hflqf88888/SWIRL_GUI
|
hflqf88888
| 2025-08-27T14:57:32Z | 0 | 0 | null |
[
"safetensors",
"dataset:hflqf88888/SWIRL_GUI_data",
"base_model:Qwen/Qwen2.5-VL-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct",
"region:us"
] | null | 2025-08-25T06:04:57Z |
---
datasets:
- hflqf88888/SWIRL_GUI_data
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
---
The instantiation of SWIRL's dual-agent architecture in mobile GUI control. The Navigator translates instructions, history, and screenshots into structured low-level instructions (LLI), while the Interactor executes them as atomic actions (click, scroll, text input) with precise grounding. This hierarchical design enhances robustness, generalization, and interpretability.
For more details, please refer to our [project repository](https://github.com/Lqf-HFNJU/SWIRL).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756305902
|
Ferdi3425
| 2025-08-27T14:45:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:45:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756305352
|
Ferdi3425
| 2025-08-27T14:36:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:36:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
camilasfeijoo/my_smolvla_drawertapefinale
|
camilasfeijoo
| 2025-08-27T14:33:52Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"smolvla",
"dataset:camilasfeijoo/drawertape",
"arxiv:2506.01844",
"base_model:lerobot/smolvla_base",
"base_model:finetune:lerobot/smolvla_base",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-27T14:33:48Z |
---
base_model: lerobot/smolvla_base
datasets: camilasfeijoo/drawertape
library_name: lerobot
license: apache-2.0
model_name: smolvla
pipeline_tag: robotics
tags:
- lerobot
- robotics
- smolvla
---
# Model Card for smolvla
<!-- Provide a quick summary of what the model is/does. -->
[SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756303522
|
helmutsukocok
| 2025-08-27T14:30:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:30:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Vivek20052/blockassist-bc-howling_domestic_puffin_1756304817
|
Vivek20052
| 2025-08-27T14:27:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"howling domestic puffin",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:27:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- howling domestic puffin
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756304799
|
Dejiat
| 2025-08-27T14:27:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:27:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756304563
|
ggozzy
| 2025-08-27T14:23:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:23:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
NahedDom/blockassist-bc-flapping_stocky_leopard_1756302683
|
NahedDom
| 2025-08-27T14:17:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping stocky leopard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:17:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping stocky leopard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hothihongthanh2016/blockassist-bc-raging_tropical_anaconda_1756303327
|
hothihongthanh2016
| 2025-08-27T14:16:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging tropical anaconda",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:16:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging tropical anaconda
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756302380
|
lisaozill03
| 2025-08-27T14:13:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:13:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jonlizardo/affine-grpo-03
|
jonlizardo
| 2025-08-27T14:13:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"smollm3",
"text-generation",
"conversational",
"en",
"fr",
"es",
"it",
"pt",
"zh",
"ar",
"ru",
"base_model:HuggingFaceTB/SmolLM3-3B-Base",
"base_model:finetune:HuggingFaceTB/SmolLM3-3B-Base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T14:12:12Z |
---
library_name: transformers
license: apache-2.0
language:
- en
- fr
- es
- it
- pt
- zh
- ar
- ru
base_model:
- HuggingFaceTB/SmolLM3-3B-Base
---
# SmolLM3

## Table of Contents
1. [Model Summary](#model-summary)
2. [How to use](#how-to-use)
3. [Evaluation](#evaluation)
4. [Training](#training)
5. [Limitations](#limitations)
6. [License](#license)
## Model Summary
SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports dual mode reasoning, 6 languages and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.

The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).
### Key features
- Instruct model optimized for **hybrid reasoning**
- **Fully open model**: open weights + full training details including public data mixture and training configs
- **Long context:** Trained on 64k context and supports up to **128k tokens** using YARN extrapolation
- **Multilingual**: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)
For more details refer to our blog post: https://hf.co/blog/smollm3
## How to use
The modeling code for SmolLM3 is available in transformers `v4.53.0`, so make sure to upgrade your transformers version. You can also load the model with the latest `vllm` which uses transformers as a backend.
```bash
pip install -U transformers
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "HuggingFaceTB/SmolLM3-3B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
).to(device)
# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
```
>[!TIP]
> We recommend setting `temperature=0.6` and `top_p=0.95` in the sampling parameters.
### Long context processing
The current `config.json` is set for context length up to 65,536 tokens. To handle longer inputs (128k or 256k), we utilize YaRN you can change the `max_position_embeddings` and rope_scaling` to:
```
{
...,
"rope_scaling": {
"factor": 2.0, #2x65536=131 072
"original_max_position_embeddings": 65536,
"type": "yarn"
}
}
```
### Enabling and Disabling Extended Thinking Mode
We enable extended thinking by default, so the example above generates the output with a reasoning trace. For choosing between enabling, you can provide the `/think` and `/no_think` flags through the system prompt as shown in the snippet below for extended thinking disabled. The code for generating the response with extended thinking would be the same except that the system prompt should have `/think` instead of `/no_think`.
```python
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "system", "content": "/no_think"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
```
We also provide the option of specifying the whether to use extended thinking through the `enable_thinking` kwarg as in the example below. You do not need to set the `/no_think` or `/think` flags through the system prompt if using the kwarg, but keep in mind that the flag in the system prompt overwrites the setting in the kwarg.
```python
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
```
### Agentic Usage
SmolLM3 supports tool calling!
Just pass your list of tools:
- Under the argument `xml_tools` for standard tool-calling: these tools will be called as JSON blobs within XML tags, like `<tool_call>{"name": "get_weather", "arguments": {"city": "Copenhagen"}}</tool_call>`
- Or under `python_tools`: then the model will call tools like python functions in a `<code>` snippet, like `<code>get_weather(city="Copenhagen")</code>`
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tools = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]
messages = [
{
"role": "user",
"content": "Hello! How is the weather today in Copenhagen?"
}
]
inputs = tokenizer.apply_chat_template(
messages,
enable_thinking=False, # True works as well, your choice!
xml_tools=tools,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Using Custom System Instructions.
You can specify custom instruction through the system prompt while controlling whether to use extended thinking. For example, the snippet below shows how to make the model speak like a pirate while enabling extended thinking.
```python
prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
{"role": "system", "content": "Speak like a pirate./think"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
```
For local inference, you can use `llama.cpp`, `ONNX`, `MLX`, `MLC` and `ExecuTorch`. You can find quantized checkpoints in this collection (https://huggingface.co/collections/HuggingFaceTB/smollm3-686d33c1fdffe8e635317e23)
### vLLM and SGLang
You can use vLLM and SGLang to deploy the model in an API compatible with OpenAI format.
#### SGLang
```bash
python -m sglang.launch_server --model-path HuggingFaceTB/SmolLM3-3B
```
#### vLLM
```bash
vllm serve HuggingFaceTB/SmolLM3-3B --enable-auto-tool-choice --tool-call-parser=hermes
```
#### Setting `chat_template_kwargs`
You can specify `chat_template_kwargs` such as `enable_thinking` to a deployed model by passing the `chat_template_kwargs` parameter in the API request.
```bash
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "HuggingFaceTB/SmolLM3-3B",
"messages": [
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}
],
"temperature": 0.6,
"top_p": 0.95,
"max_tokens": 16384,
"chat_template_kwargs": {"enable_thinking": false}
}'
```
## Evaluation
In this section, we report the evaluation results of SmolLM3 model. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
We highlight the best score in bold and underline the second-best score.
### Instruction Model
#### No Extended Thinking
Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.
| Category | Metric | SmoLLM3-3B | Qwen2.5-3B | Llama3.1-3B | Qwen3-1.7B | Qwen3-4B |
|---------|--------|------------|------------|-------------|------------|----------|
| High school math competition | AIME 2025 | <u>9.3</u> | 2.9 | 0.3 | 8.0 | **17.1** |
| Math problem-solving | GSM-Plus | 72.8 | <u>74.1</u> | 59.2 | 68.3 | **82.1** |
| Competitive programming | LiveCodeBench v4 | <u>15.2</u> | 10.5 | 3.4 | 15.0 | **24.9** |
| Graduate-level reasoning | GPQA Diamond | <u>35.7</u> | 32.2 | 29.4 | 31.8 | **44.4** |
| Instruction following | IFEval | **76.7** | 65.6 | 71.6 | <u>74.0</u> | 68.9 |
| Alignment | MixEval Hard | 26.9 | <u>27.6</u> | 24.9 | 24.3 | **31.6** |
| Tool Calling | BFCL| <u>92.3</u> | - | <u>92.3</u> * | 89.5 | **95.0** |
| Multilingual Q&A | Global MMLU | <u>53.5</u> | 50.54 | 46.8 | 49.5 | **65.1** |
(*): this is a tool calling finetune
#### Extended Thinking
Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:
| Category | Metric | SmoLLM3-3B | Qwen3-1.7B | Qwen3-4B |
|---------|--------|------------|------------|----------|
| High school math competition | AIME 2025 | <u>36.7</u> | 30.7 | **58.8** |
| Math problem-solving | GSM-Plus | <u>83.4</u> | 79.4 | **88.2** |
| Competitive programming | LiveCodeBench v4 | 30.0 | <u>34.4</u> | **52.9** |
| Graduate-level reasoning | GPQA Diamond | <u>41.7</u> | 39.9 | **55.3** |
| Instruction following | IFEval | 71.2 | <u>74.2</u> | **85.4** |
| Alignment | MixEval Hard | 30.8 | <u>33.9</u> | **38.0** |
| Tool Calling | BFCL | <u>88.8</u> | <u>88.8</u> | **95.5** |
| Multilingual Q&A | Global MMLU | <u>64.1</u> | 62.3 | **73.3** |
### Base Pre-Trained Model
#### English benchmarks
Note: All evaluations are zero-shot unless stated otherwise. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.
| Category | Metric | SmolLM3-3B | Qwen2.5-3B | Llama3-3.2B | Qwen3-1.7B-Base | Qwen3-4B-Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Reasoning & Commonsense| HellaSwag | **76.15** | 74.19 |<u>75.52</u> | 60.52 | 74.37 |
| | ARC-CF (Average) | **65.61** | 59.81 | 58.58 | 55.88 | <u>62.11</u> |
| | Winogrande | 58.88 | **61.41** | 58.72 | 57.06 | <u>59.59</u> |
| | CommonsenseQA | <u>55.28</u> | 49.14 | **60.60** | 48.98 | 52.99 |
| Knowledge & Understanding | MMLU-CF (Average) | <u>44.13</u> | 42.93 | 41.32 | 39.11 | **47.65** |
| | MMLU Pro CF | <u>19.61</u> | 16.66 | 16.42 | 18.04 | **24.92** |
| | MMLU Pro MCF | <u>32.70</u> | 31.32 | 25.07 | 30.39 | **41.07** |
| | PIQA | **78.89** | 78.35 | <u>78.51</u> | 75.35 | 77.58 |
| | OpenBookQA | 40.60 | 40.20 | <u>42.00</u> | 36.40 | **42.40** |
| | BoolQ | **78.99** | 73.61 | <u>75.33</u> | 74.46 | 74.28 |
| **Math & Code** | | | | | | |
| Coding & math | HumanEval+ | 30.48 | 34.14| 25.00 | <u>43.29</u>| **54.87** |
| | MBPP+ | 52.91 | 52.11 | 38.88| <u>59.25</u> | **63.75** |
| | MATH (4-shot) | <u>46.10</u> | 40.10 | 7.44 | 41.64 | **51.20** |
| | GSM8k (5-shot) | 67.63 | <u>70.13</u> | 25.92 | 65.88 | **74.14** |
| **Long context** | | | | | | |
| | Ruler 32k | 76.35 | 75.93 | <u>77.58</u> | 70.63 | **83.98** |
| | Ruler 64k | <u>67.85</u> | 64.90 | **72.93** | 57.18 | 60.29 |
| | Ruler 128k | 61.03 | <u>62.23</u> | **71.30** | 43.03 | 47.23 |
#### Multilingual benchmarks
| Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Main supported languages | | | | | | | |
| French| MLMM Hellaswag | **63.94** | 57.47 | 57.66 | 51.26 | <u>61.00</u> |
| | Belebele | 51.00 | <u>51.55</u> | 49.22 |49.44| **55.00** |
| | Global MMLU (CF) | <u>38.37</u> | 34.22 | 33.71 | 34.94 |**41.80** |
| | Flores-200 (5-shot) | 62.85| 61.38| <u>62.89</u> | 58.68 | **65.76** |
| Spanish| MLMM Hellaswag | **65.85** | 58.25 | 59.39 | 52.40 | <u>61.85</u> |
| | Belebele | 47.00 | <u>48.88</u> | 47.00 | 47.56 | **50.33** |
| | Global MMLU (CF) | <u>38.51</u> | 35.84 | 35.60 | 34.79 |**41.22** |
| | Flores-200 (5-shot) | <u>48.25</u>| 50.00| 44.45 | 46.93 | **50.16** |
| German| MLMM Hellaswag | **59.56** | 49.99| 53.19|46.10| <u>56.43</u>|
| | Belebele | <u>48.44</u> | 47.88 | 46.22 | 48.00 | **53.44**|
| | Global MMLU (CF) | <u>35.10</u> | 33.19 | 32.60 | 32.73 |**38.70** |
| | Flores-200 (5-shot) | **56.60**| 50.63| <u>54.95</u> | 52.58 | 50.48 |
| Italian| MLMM Hellaswag | **62.49** | 53.21 | 54.96 | 48.72 | <u>58.76</u> |
| | Belebele | <u>46.44</u> | 44.77 | 43.88 | 44.00 | **48.78** | 44.88 |
| | Global MMLU (CF) | <u>36.99</u> | 33.91 | 32.79 | 35.37 |**39.26** |
| | Flores-200 (5-shot) | <u>52.65<u/>| **54.87**| 48.83 | 48.37 | 49.11 |
| Portuguese| MLMM Hellaswag | **63.22** | 57.38 | 56.84 | 50.73 | <u>59.89</u> |
| | Belebele | 47.67 | **49.22** | 45.00 | 44.00 | 50.00 | <u>49.00</U> |
| | Global MMLU (CF) | <u>36.88</u> | 34.72 | 33.05 | 35.26 |**40.66** |
| | Flores-200 (5-shot) | <u>60.93</u> |57.68| 54.28 | 56.58 | **63.43** |
The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.
| Category | Metric | SmolLM3 3B Base | Qwen2.5-3B | Llama3.2 3B | Qwen3 1.7B Base | Qwen3 4B Base |
|---------|--------|---------------------|------------|--------------|------------------|---------------|
| Other supported languages | | | | | | | |
| Arabic| Belebele | 40.22 | 44.22 | <u>45.33</u> | 42.33 | **51.78** |
| | Global MMLU (CF) | 28.57 | 28.81 | 27.67 | <u>29.37</u> | **31.85** |
| | Flores-200 (5-shot) | <u>40.22</u> | 39.44 | **44.43** | 35.82 | 39.76 |
| Chinese| Belebele | 43.78 | 44.56 | <u>49.56</u> | 48.78 | **53.22** |
| | Global MMLU (CF) | 36.16 | 33.79 | <u>39.57</u> | 38.56 | **44.55** |
| | Flores-200 (5-shot) | 29.17 | **33.21** | 31.89 | 25.70 | <u>32.50</u> |
| Russian| Belebele | <u>47.44</u> | 45.89 | <u>47.44</u> | 45.22 | **51.44** |
| | Global MMLU (CF) | <u>36.51</u> | 32.47 | 34.52 | 34.83 | **38.80** |
| | Flores-200 (5-shot) | 47.13 | 48.74 | 50.74 | <u>54.70</u> | **60.53** |
## Training
### Model
- **Architecture:** Transformer decoder
- **Pretraining tokens:** 11T
- **Precision:** bfloat16
### Software & hardware
- **GPUs:** 384 H100
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/smollm3)
- **Data processing framework:** [datatrove](https://github.com/huggingface/datatrove)
- **Evaluation framework:** [lighteval](https://github.com/huggingface/lighteval)
- **Post-training Framework:** [TRL](https://github.com/huggingface/trl)
### Open resources
Here is an infographic with all the training details
- The datasets used for pretraining can be found in this [collection](https://huggingface.co/collections/HuggingFaceTB/smollm3-pretraining-datasets-685a7353fdc01aecde51b1d9) and those used in mid-training and post-training will be uploaded later
- The training and evaluation configs and code can be found in the [huggingface/smollm](https://github.com/huggingface/smollm) repository.
- The training intermediate checkpoints (including the mid-training and SFT checkpoints) are available at [HuggingFaceTB/SmolLM3-3B-checkpoints](https://huggingface.co/HuggingFaceTB/SmolLM3-3B-checkpoints)

### EU Summary of Public Content
The EU AI Act requires all GPAI models to provide a Public Summary of Training Content according to a [given template](https://digital-strategy.ec.europa.eu/en/library/explanatory-notice-and-template-public-summary-training-content-general-purpose-ai-models).
You can find the summary for this model below, as well as in its [development Space](https://huggingface.co/spaces/hfmlsoc/smollm3-eu-data-transparency).
<iframe
src="https://hfmlsoc-smollm3-eu-data-transparency.hf.space"
frameborder="0"
width="850"
height="350"
></iframe>
## Limitations
SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation
```bash
@misc{bakouch2025smollm3,
title={{SmolLM3: smol, multilingual, long-context reasoner}},
author={Bakouch, Elie and Ben Allal, Loubna and Lozhkov, Anton and Tazi, Nouamane and Tunstall, Lewis and Patiño, Carlos Miguel and Beeching, Edward and Roucher, Aymeric and Reedi, Aksel Joonas and Gallouédec, Quentin and Rasul, Kashif and Habib, Nathan and Fourrier, Clémentine and Kydlicek, Hynek and Penedo, Guilherme and Larcher, Hugo and Morlon, Mathieu and Srivastav, Vaibhav and Lochner, Joshua and Nguyen, Xuan-Son and Raffel, Colin and von Werra, Leandro and Wolf, Thomas},
year={2025},
howpublished={\url{https://huggingface.co/blog/smollm3}}
}
```
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756303378
|
Dejiat
| 2025-08-27T14:03:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:03:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dwoprer/blockassist-bc-mammalian_foxy_squirrel_1756303225
|
dwoprer
| 2025-08-27T14:00:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian foxy squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:00:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian foxy squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
qwersdfvg/blockassist-bc-tricky_mottled_whale_1756302922
|
qwersdfvg
| 2025-08-27T13:55:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tricky mottled whale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:55:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tricky mottled whale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756301272
|
coelacanthxyz
| 2025-08-27T13:55:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:55:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
qwersdfvg/blockassist-bc-reclusive_scruffy_gibbon_1756302649
|
qwersdfvg
| 2025-08-27T13:51:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive scruffy gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:50:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive scruffy gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnerYubo/blockassist-bc-pawing_downy_anaconda_1756302643
|
AnerYubo
| 2025-08-27T13:50:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pawing downy anaconda",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:50:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pawing downy anaconda
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756302393
|
Ferdi3425
| 2025-08-27T13:47:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:47:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hoanganhvutk31/mrpc-bert-finetuned
|
hoanganhvutk31
| 2025-08-27T13:44:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-27T13:43:40Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JiHBijou/SAFE_0826
|
JiHBijou
| 2025-08-27T13:43:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-26T04:02:18Z |
# SAFE Video Challenge Example Submission
The key requirements is to have a `script.py` file in the top level directory of the repo and optionally a `requirements.txt` file
For more details: https://safe-video-2025.dsri.org/#-model-submission
|
annasoli/gemma-2-9b-it_SV_l20_lr5e-4_a256_nKL
|
annasoli
| 2025-08-27T13:34:54Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T13:34:25Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
yaelahnal/blockassist-bc-mute_clawed_crab_1756301108
|
yaelahnal
| 2025-08-27T13:30:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:25:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756301195
|
liukevin666
| 2025-08-27T13:28:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T13:27:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
QuantTrio/DeepSeek-V3.1-AWQ-Fp16Mix
|
QuantTrio
| 2025-08-27T12:31:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deepseek_v3",
"text-generation",
"vLLM",
"GPTQ",
"conversational",
"custom_code",
"zh",
"en",
"arxiv:2412.19437",
"base_model:deepseek-ai/DeepSeek-V3.1",
"base_model:quantized:deepseek-ai/DeepSeek-V3.1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] |
text-generation
| 2025-08-27T07:31:11Z |
---
license: mit
library_name: transformers
pipeline_tag: text-generation
tags:
- vLLM
- GPTQ
language:
- zh
- en
base_model:
- deepseek-ai/DeepSeek-V3.1
base_model_relation: quantized
---
# DeepSeek-V3.1-AWQ-Fp16Mix
Base model: [DeepSeek-V3.1](https://www.modelscope.cn/models/deepseek-ai/DeepSeek-V3.1)
### 【Dependencies / Installation】
As of **2025-08-27**, create a fresh Python environment and run:
```bash
# ❗there are glitches with vllm 0.10.1.1, still looking for resolutions❗
# ❗downgrade vllm for now ❗
pip install vllm==0.9.2 transformers==4.53.0
SITE_PACKAGES=$(pip -V | awk '{print $4}' | sed 's/\/pip$//')
# ❗patch up AWQ MoE quant config, otherwise some modules cannot be properly loaded❗
cp awq_marlin.py "$SITE_PACKAGES/vllm/model_executor/layers/quantization/awq_marlin.py"
# ❗patch up for fp32 e_score_correction_bias, see https://www.github.com/vllm-project/vllm/pull/23640❗
cp deepseek_v2.py "$SITE_PACKAGES/vllm/model_executor/models/deepseek_v2.py"
```
### 【vLLM Single Node with 8 GPUs — Startup Command】
```
CONTEXT_LENGTH=32768
vllm serve \
tclf90/DeepSeek-V3.1-AWQ-Fp16Mix \
--served-model-name DeepSeek-V3.1-AWQ-Fp16Mix \
--swap-space 16 \
--max-num-seqs 512 \
--max-model-len $CONTEXT_LENGTH \
--max-seq-len-to-capture $CONTEXT_LENGTH \
--gpu-memory-utilization 0.8 \
--tensor-parallel-size 8 \
--trust-remote-code \
--disable-log-requests \
--host 0.0.0.0 \
--port 8000
```
### 【Logs】
```
2025-08-27
1. new installation instuction for stable/correct performance
(a) use vllm 0.9.2 instead of 0.9.0:
there is unidentified issue with 0.9.0 🥹 which causes numerical error
(b) patch up deepseek_v2.py for fp32 e_score_correction_bias
2025-08-25
1. Initial commit
```
### 【Model Files】
| File Size | Last Updated |
|-----------|--------------|
| `435GB` | `2025-08-25` |
### 【Model Download】
```python
from modelscope import snapshot_download
snapshot_download('tclf90/DeepSeek-V3.1-AWQ-Fp16Mix', cache_dir="your_local_path")
```
### 【Overview】
<div align="center">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="LICENSE" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
## Introduction
DeepSeek-V3.1 is a hybrid model that supports both thinking mode and non-thinking mode. Compared to the previous version, this upgrade brings improvements in multiple aspects:
- **Hybrid thinking mode**: One model supports both thinking mode and non-thinking mode by changing the chat template.
- **Smarter tool calling**: Through post-training optimization, the model's performance in tool usage and agent tasks has significantly improved.
- **Higher thinking efficiency**: DeepSeek-V3.1-Think achieves comparable answer quality to DeepSeek-R1-0528, while responding more quickly.
DeepSeek-V3.1 is post-trained on the top of DeepSeek-V3.1-Base, which is built upon the original V3 base checkpoint through a two-phase long context extension approach, following the methodology outlined in the original DeepSeek-V3 report. We have expanded our dataset by collecting additional long documents and substantially extending both training phases. The 32K extension phase has been increased 10-fold to 630B tokens, while the 128K extension phase has been extended by 3.3x to 209B tokens. Additionally, DeepSeek-V3.1 is trained using the UE8M0 FP8 scale data format to ensure compatibility with microscaling data formats.
## Model Downloads
<div align="center">
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| DeepSeek-V3.1-Base | 671B | 37B | 128K | [HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base) \| [ModelScope](https://modelscope.cn/models/deepseek-ai/DeepSeek-V3.1-Base) |
| DeepSeek-V3.1 | 671B | 37B | 128K | [HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3.1) \| [ModelScope](https://modelscope.cn/models/deepseek-ai/DeepSeek-V3.1) |
</div>
## Chat Template
The details of our chat template is described in `tokenizer_config.json` and `assets/chat_template.jinja`. Here is a brief description.
### Non-Thinking
#### First-Turn
Prefix:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>`
With the given prefix, DeepSeek V3.1 generates responses to queries in non-thinking mode. Unlike DeepSeek V3, it introduces an additional token `</think>`.
#### Multi-Turn
Context:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>...<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>`
Prefix:
`<|User|>{query}<|Assistant|></think>`
By concatenating the context and the prefix, we obtain the correct prompt for the query.
### Thinking
#### First-Turn
Prefix:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|><think>`
The prefix of thinking mode is similar to DeepSeek-R1.
#### Multi-Turn
Context:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>...<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>`
Prefix:
`<|User|>{query}<|Assistant|><think>`
The multi-turn template is the same with non-thinking multi-turn chat template. It means the thinking token in the last turn will be dropped but the `</think>` is retained in every turn of context.
### ToolCall
Toolcall is supported in non-thinking mode. The format is:
`<|begin▁of▁sentence|>{system prompt}{tool_description}<|User|>{query}<|Assistant|></think>` where the tool_description is
```
## Tools
You have access to the following tools:
### {tool_name1}
Description: {description}
Parameters: {json.dumps(parameters)}
IMPORTANT: ALWAYS adhere to this exact format for tool use:
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
Where:
- `tool_call_name` must be an exact match to one of the available tools
- `tool_call_arguments` must be valid JSON that strictly follows the tool's Parameters Schema
- For multiple tool calls, chain them directly without separators or spaces
```
### Code-Agent
We support various code agent frameworks. Please refer to the above toolcall format to create your own code agents. An example is shown in `assets/code_agent_trajectory.html`.
### Search-Agent
We design a specific format for searching toolcall in thinking mode, to support search agent.
For complex questions that require accessing external or up-to-date information, DeepSeek-V3.1 can leverage a user-provided search tool through a multi-turn tool-calling process.
Please refer to the `assets/search_tool_trajectory.html` and `assets/search_python_tool_trajectory.html` for the detailed template.
## Evaluation
| Category | Benchmark (Metric) | DeepSeek V3.1-NonThinking | DeepSeek V3 0324 | DeepSeek V3.1-Thinking | DeepSeek R1 0528
|----------|----------------------------------|-----------------|---|---|---|
| General |
| | MMLU-Redux (EM) | 91.8 | 90.5 | 93.7 | 93.4
| | MMLU-Pro (EM) | 83.7 | 81.2 | 84.8 | 85.0
| | GPQA-Diamond (Pass@1) | 74.9 | 68.4 | 80.1 | 81.0
| | Humanity's Last Exam (Pass@1) | - | - | 15.9 | 17.7
|Search Agent|
| | BrowseComp | - | - | 30.0 | 8.9
| | BrowseComp_zh | - | - | 49.2 | 35.7
| | Humanity's Last Exam (Python + Search) |- | - | 29.8 | 24.8
| | SimpleQA | - | - | 93.4 | 92.3
| Code |
| | LiveCodeBench (2408-2505) (Pass@1) | 56.4 | 43.0 | 74.8 | 73.3
| | Codeforces-Div1 (Rating) | - | - | 2091 | 1930
| | Aider-Polyglot (Acc.) | 68.4 | 55.1 | 76.3 | 71.6
| Code Agent|
| | SWE Verified (Agent mode) | 66.0 | 45.4 | - | 44.6
| | SWE-bench Multilingual (Agent mode) | 54.5 | 29.3 | - | 30.5
| | Terminal-bench (Terminus 1 framework) | 31.3 | 13.3 | - | 5.7
| Math |
| | AIME 2024 (Pass@1) | 66.3 | 59.4 | 93.1 | 91.4
| | AIME 2025 (Pass@1) | 49.8 | 51.3 | 88.4 | 87.5
| | HMMT 2025 (Pass@1) | 33.5 | 29.2 | 84.2 | 79.4 |
Note:
- Search agents are evaluated with our internal search framework, which uses a commercial search API + webpage filter + 128K context window. Seach agent results of R1-0528 are evaluated with a pre-defined workflow.
- SWE-bench is evaluated with our internal code agent framework.
- HLE is evaluated with the text-only subset.
### Usage Example
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3.1")
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "<think>Hmm</think>I am DeepSeek"},
{"role": "user", "content": "1+1=?"}
]
tokenizer.apply_chat_template(messages, tokenize=False, thinking=True, add_generation_prompt=True)
# '<|begin▁of▁sentence|>You are a helpful assistant<|User|>Who are you?<|Assistant|></think>I am DeepSeek<|end▁of▁sentence|><|User|>1+1=?<|Assistant|><think>'
tokenizer.apply_chat_template(messages, tokenize=False, thinking=False, add_generation_prompt=True)
# '<|begin▁of▁sentence|>You are a helpful assistant<|User|>Who are you?<|Assistant|></think>I am DeepSeek<|end▁of▁sentence|><|User|>1+1=?<|Assistant|></think>'
```
## How to Run Locally
The model structure of DeepSeek-V3.1 is the same as DeepSeek-V3. Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running this model locally.
## License
This repository and the model weights are licensed under the [MIT License](LICENSE).
## Citation
```
@misc{deepseekai2024deepseekv3technicalreport,
title={DeepSeek-V3 Technical Report},
author={DeepSeek-AI},
year={2024},
eprint={2412.19437},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.19437},
}
```
## Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
|
felixZzz/student_sft_len32k_sub1k_multiZ_acc_mixw8-0827
|
felixZzz
| 2025-08-27T12:29:32Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T12:29:22Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
BaekSeungJu/Ophtimus-8B-Reasoning
|
BaekSeungJu
| 2025-08-27T12:20:14Z | 15 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T13:10:23Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1756295398
|
capungmerah627
| 2025-08-27T12:18:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stinging soaring porcupine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T12:18:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stinging soaring porcupine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756296147
|
Dejiat
| 2025-08-27T12:02:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T12:02:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756295791
|
Dejiat
| 2025-08-27T11:56:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T11:56:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.