modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
chainway9/blockassist-bc-untamed_quick_eel_1756334551
chainway9
2025-08-27T23:13:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:13:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uzakihana286/blockassist-bc-sly_armored_barracuda_1756336372
uzakihana286
2025-08-27T23:13:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly armored barracuda", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:13:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly armored barracuda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756336203
ggozzy
2025-08-27T23:11:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:11:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xuandin/Qwen-4B-Thinking-2507-SFT-NumQA-new
xuandin
2025-08-27T23:09:01Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen3-4B-Thinking-2507", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "base_model:Qwen/Qwen3-4B-Thinking-2507", "region:us" ]
text-generation
2025-08-27T18:16:49Z
--- base_model: Qwen/Qwen3-4B-Thinking-2507 library_name: peft model_name: Qwen-4B-Thinking-2507-SFT-NumQA-new tags: - base_model:adapter:Qwen/Qwen3-4B-Thinking-2507 - lora - sft - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for Qwen-4B-Thinking-2507-SFT-NumQA-new This model is a fine-tuned version of [Qwen/Qwen3-4B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - PEFT 0.17.1 - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1756335955
Dejiat
2025-08-27T23:06:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:06:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kandedarrag/kande
kandedarrag
2025-08-27T22:58:49Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-27T22:58:49Z
--- license: apache-2.0 ---
matboz/gemma-2-9b-it-risk-rank1-19-93.61
matboz
2025-08-27T22:58:16Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2-9b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-2-9b-it", "region:us" ]
text-generation
2025-08-27T22:57:13Z
--- base_model: google/gemma-2-9b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-2-9b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
ncgiron/barberia
ncgiron
2025-08-27T22:58:07Z
0
0
null
[ "region:us" ]
null
2025-08-22T21:21:21Z
# example --- license: mit --- test
ypszn/blockassist-bc-yapping_pawing_worm_1756335105
ypszn
2025-08-27T22:52:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:52:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
frifruktik5/blockassist-bc-nasty_domestic_raven_1756335048
frifruktik5
2025-08-27T22:51:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nasty domestic raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:51:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nasty domestic raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ypwang61/One-Shot-RLVR-R1-Distill-1.5B-1.2k-dsr-sub
ypwang61
2025-08-27T22:47:52Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:ypwang61/One-Shot-RLVR-Datasets", "arxiv:2504.20571", "base_model:Qwen/Qwen2.5-Math-1.5B", "base_model:finetune:Qwen/Qwen2.5-Math-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T18:41:26Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation base_model: - Qwen/Qwen2.5-Math-1.5B datasets: - ypwang61/One-Shot-RLVR-Datasets --- This repository contains the model presented in [Reinforcement Learning for Reasoning in Large Language Models with One Training Example](https://huggingface.co/papers/2504.20571). Code: https://github.com/ypwang61/One-Shot-RLVR
ypwang61/One-Shot-RLVR-R1-Distill-1.5B-4-shot
ypwang61
2025-08-27T22:47:32Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:ypwang61/One-Shot-RLVR-Datasets", "arxiv:2504.20571", "base_model:Qwen/Qwen2.5-Math-1.5B", "base_model:finetune:Qwen/Qwen2.5-Math-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T18:51:38Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation base_model: - Qwen/Qwen2.5-Math-1.5B datasets: - ypwang61/One-Shot-RLVR-Datasets --- This repository contains the model presented in [Reinforcement Learning for Reasoning in Large Language Models with One Training Example](https://huggingface.co/papers/2504.20571). Code: https://github.com/ypwang61/One-Shot-RLVR
ypwang61/One-Shot-RLVR-R1-Distill-1.5B-pi1
ypwang61
2025-08-27T22:47:21Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:ypwang61/One-Shot-RLVR-Datasets", "arxiv:2504.20571", "base_model:Qwen/Qwen2.5-Math-1.5B", "base_model:finetune:Qwen/Qwen2.5-Math-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-03T18:42:17Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation base_model: - Qwen/Qwen2.5-Math-1.5B datasets: - ypwang61/One-Shot-RLVR-Datasets --- This repository contains the model presented in [Reinforcement Learning for Reasoning in Large Language Models with One Training Example](https://huggingface.co/papers/2504.20571). Code: https://github.com/ypwang61/One-Shot-RLVR
ypwang61/One-Shot-RLVR-Qwen2.5-Math-7B-1.2k-dsr-sub
ypwang61
2025-08-27T22:46:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:ypwang61/One-Shot-RLVR-Datasets", "arxiv:2504.20571", "base_model:Qwen/Qwen2.5-Math-1.5B", "base_model:finetune:Qwen/Qwen2.5-Math-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T21:56:47Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation base_model: - Qwen/Qwen2.5-Math-1.5B datasets: - ypwang61/One-Shot-RLVR-Datasets --- This repository contains the model presented in [Reinforcement Learning for Reasoning in Large Language Models with One Training Example](https://huggingface.co/papers/2504.20571). Code: https://github.com/ypwang61/One-Shot-RLVR
bah63843/blockassist-bc-plump_fast_antelope_1756334615
bah63843
2025-08-27T22:44:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:44:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756333068
hakimjustbao
2025-08-27T22:43:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:43:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756333098
koloni
2025-08-27T22:43:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:43:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756334488
Dejiat
2025-08-27T22:41:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:41:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_010
AnonymousCS
2025-08-27T22:40:00Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T22:39:08Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_010 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_010 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8224 - Accuracy: 0.8347 - 1-f1: 0.2174 - 1-recall: 0.8 - 1-precision: 0.1258 - Balanced Acc: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0876 | 1.0 | 9 | 0.9320 | 0.6774 | 0.1511 | 1.0 | 0.0817 | 0.8339 | | 0.0168 | 2.0 | 18 | 0.7873 | 0.7532 | 0.1762 | 0.92 | 0.0975 | 0.8341 | | 0.0227 | 3.0 | 27 | 0.5728 | 0.8668 | 0.2468 | 0.76 | 0.1473 | 0.8150 | | 0.0047 | 4.0 | 36 | 0.5762 | 0.8772 | 0.2621 | 0.76 | 0.1583 | 0.8203 | | 0.0039 | 5.0 | 45 | 0.8224 | 0.8347 | 0.2174 | 0.8 | 0.1258 | 0.8178 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
AnonymousCS/populism_classifier_bsample_008
AnonymousCS
2025-08-27T22:37:45Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T22:37:01Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_008 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_008 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7890 - Accuracy: 0.75 - 1-f1: 0.3101 - 1-recall: 1.0 - 1-precision: 0.1835 - Balanced Acc: 0.8676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0387 | 1.0 | 6 | 0.4787 | 0.8146 | 0.3654 | 0.95 | 0.2262 | 0.8783 | | 0.0256 | 2.0 | 12 | 0.6968 | 0.75 | 0.3101 | 1.0 | 0.1835 | 0.8676 | | 0.0289 | 3.0 | 18 | 0.4770 | 0.8343 | 0.3789 | 0.9 | 0.24 | 0.8652 | | 0.0067 | 4.0 | 24 | 0.7193 | 0.7725 | 0.3306 | 1.0 | 0.1980 | 0.8795 | | 0.0109 | 5.0 | 30 | 0.7890 | 0.75 | 0.3101 | 1.0 | 0.1835 | 0.8676 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
ypszn/blockassist-bc-yapping_pawing_worm_1756334170
ypszn
2025-08-27T22:37:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:36:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756334040
Dejiat
2025-08-27T22:34:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:34:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756333961
ggozzy
2025-08-27T22:33:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:33:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
geoplus/task-14-Qwen-Qwen2.5-3B-Instruct
geoplus
2025-08-27T22:33:14Z
26
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-08-12T23:21:54Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
Xenova/LaMini-Flan-T5-783M
Xenova
2025-08-27T22:32:15Z
972
27
transformers.js
[ "transformers.js", "onnx", "t5", "text2text-generation", "base_model:MBZUAI/LaMini-Flan-T5-783M", "base_model:quantized:MBZUAI/LaMini-Flan-T5-783M", "region:us" ]
null
2023-05-03T14:08:44Z
--- base_model: MBZUAI/LaMini-Flan-T5-783M library_name: transformers.js --- https://huggingface.co/MBZUAI/LaMini-Flan-T5-783M with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Text-to-text generation. ```js import { pipeline } from '@huggingface/transformers'; const generator = await pipeline('text2text-generation', 'Xenova/LaMini-Flan-T5-783M'); const output = await generator('how can I become more healthy?', { max_new_tokens: 100, }); ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
Xenova/LaMini-T5-61M
Xenova
2025-08-27T22:31:46Z
183
1
transformers.js
[ "transformers.js", "onnx", "t5", "text2text-generation", "base_model:MBZUAI/LaMini-T5-61M", "base_model:quantized:MBZUAI/LaMini-T5-61M", "region:us" ]
null
2023-05-03T14:46:00Z
--- base_model: MBZUAI/LaMini-T5-61M library_name: transformers.js --- https://huggingface.co/MBZUAI/LaMini-T5-61M with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Text-to-text generation. ```js import { pipeline } from '@huggingface/transformers'; const generator = await pipeline('text2text-generation', 'Xenova/LaMini-T5-61M'); const output = await generator('how can I become more healthy?', { max_new_tokens: 100, }); ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
Xenova/tiny-random-WhisperForConditionalGeneration_timestamped
Xenova
2025-08-27T22:30:20Z
8
0
transformers.js
[ "transformers.js", "onnx", "safetensors", "whisper", "automatic-speech-recognition", "region:us" ]
automatic-speech-recognition
2024-06-29T22:05:06Z
--- tags: - transformers.js --- Code to generate: ```py from transformers import WhisperForConditionalGeneration, AutoProcessor new_config_values = dict( d_model = 16, decoder_attention_heads = 4, decoder_layers = 1, encoder_attention_heads = 4, encoder_layers = 1, num_hidden_layers = 1, ignore_mismatched_sizes=True, ) original_model = WhisperForConditionalGeneration.from_pretrained('openai/whisper-tiny', **new_config_values) original_model.save_pretrained('converted') original_processor = AutoProcessor.from_pretrained('openai/whisper-tiny') original_processor.save_pretrained('converted') ``` Followed by: ```sh $ mkdir -p ./converted/onnx $ optimum-cli export onnx -m ./converted ./converted/onnx --task automatic-speech-recognition-with-past $ find ./converted/onnx -type f ! -name "*.onnx" -delete ```
Xenova/nb-whisper-medium-beta
Xenova
2025-08-27T22:29:27Z
16
0
transformers.js
[ "transformers.js", "onnx", "whisper", "automatic-speech-recognition", "base_model:NbAiLab/nb-whisper-medium-beta", "base_model:quantized:NbAiLab/nb-whisper-medium-beta", "region:us" ]
automatic-speech-recognition
2023-08-29T00:24:06Z
--- base_model: NbAiLab/nb-whisper-medium-beta library_name: transformers.js --- https://huggingface.co/NbAiLab/nb-whisper-medium-beta with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Transcribe audio from a URL. ```js import { pipeline } from '@huggingface/transformers'; const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/nb-whisper-medium-beta'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; const output = await transcriber(url); ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
Xenova/flan-t5-base
Xenova
2025-08-27T22:28:36Z
152
0
transformers.js
[ "transformers.js", "onnx", "t5", "text2text-generation", "base_model:google/flan-t5-base", "base_model:quantized:google/flan-t5-base", "region:us" ]
null
2023-05-03T20:14:52Z
--- base_model: google/flan-t5-base library_name: transformers.js --- https://huggingface.co/google/flan-t5-base with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Text-to-text generation. ```js import { pipeline } from '@huggingface/transformers'; const generator = await pipeline('text2text-generation', 'Xenova/flan-t5-base'); const output = await generator('how can I become more healthy?', { max_new_tokens: 100, }); ``` Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
baseten/gemma-3-27b-causallm-it
baseten
2025-08-27T22:25:52Z
0
0
null
[ "safetensors", "gemma3_text", "region:us" ]
null
2025-08-27T22:05:13Z
``` import transformers model = transformers.AutoModelForCausalLM.from_pretrained("unsloth/gemma-3-27b-it", torch_dtype="bfloat16") model.language_model.push_to_hub("baseten/gemma-3-27b-causallm-it") ```
bigdefence/Midm-2.0-Mini-Vision-Instruct
bigdefence
2025-08-27T22:19:25Z
2
0
null
[ "safetensors", "llava_midm", "image-to-text", "korean", "image", "VLM", "bigdefence", "midm", "KT", "K-intelligence", "ko", "base_model:K-intelligence/Midm-2.0-Mini-Instruct", "base_model:finetune:K-intelligence/Midm-2.0-Mini-Instruct", "license:apache-2.0", "region:us" ]
image-to-text
2025-08-27T04:10:26Z
--- license: apache-2.0 language: - ko base_model: - K-intelligence/Midm-2.0-Mini-Instruct tags: - image-to-text - korean - image - VLM - bigdefence - midm - KT - K-intelligence pipeline_tag: image-to-text --- ## 📊 Midm-2.0-Mini-Vision-Instruct - **Midm-2.0-Mini-Vision-Instruct**은 Midm-2.0-Mini-Vision-Instruct은 한국어 이미지 인식에 특화된 고성능, 경량 Vision-Language Model입니다. K-intelligence/Midm-2.0-Mini-Instruct 기반으로 구축되어 한국어 텍스트가 포함된 이미지 이해와 한국어 응답 생성에 최적화되었습니다. - **End-to-End** LLaVA 구조를 채택하여 이미지 입력부터 텍스트 출력까지 하나의 파이프라인에서 처리하며, 추가적인 중간 모델 없이 자연스럽게 멀티모달 처리를 지원합니다. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/653494138bde2fae198fe89e/NAGzLbylQfYIJN-JI4NBN.png) ### 📂 모델 접근 - **GitHub**: [bigdefence/midm-vision](https://github.com/bigdefence/midm-vision) 🌐 - **HuggingFace**: [bigdefence/Midm-2.0-Mini-Vision-Instruct](https://huggingface.co/bigdefence/Midm-2.0-Mini-Vision-Instruct) 🤗 - **모델 크기**: 2B 파라미터 📊 ## 🌟 주요 특징 - **🇰🇷 한국어 특화**: 한국어 음성 패턴과 언어적 특성에 최적화 - **⚡ 경량화**: 2B 파라미터로 효율적인 추론 성능 - **🎯 고정확도**: 다양한 한국어 음성 환경에서 우수한 성능 - **🔧 실용성**: 실시간 음성 인식 애플리케이션에 적합 ## 📋 모델 정보 | 항목 | 세부사항 | |------|----------| | **기반 모델** | K-intelligence/Midm-2.0-Mini-Instruct | | **언어** | 한국어 (Korean) | | **모델 크기** | ~2B 파라미터 | | **작업 유형** | Image-to-Text 이미지 멀티모달 | | **라이선스** | Apache 2.0 | ### 🔧 레포지토리 다운로드 및 환경 설정 **Midm-2.0-Mini-Vision-Instruct**을 시작하려면 다음과 같이 레포지토리를 클론하고 환경을 설정하세요. 🛠️ 1. **레포지토리 클론**: ```bash git clone https://github.com/bigdefence/midm-vision cd midm-vision ``` 2. **의존성 설치**: ```bash conda create -n midm-vision python=3.10 -y conda activate midm-vision pip install -e . ``` ### 📥 다운로드 방법 **Huggingface CLI 사용**: ```bash pip install -U huggingface_hub huggingface-cli download bigdefence/Midm-Vision --local-dir ./checkpoints ``` **Snapshot Download 사용**: ```bash pip install -U huggingface_hub ``` ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="bigdefence/Midm-Vision", local_dir="./checkpoints", resume_download=True ) ``` **Git 사용**: ```bash git lfs install git clone https://huggingface.co/bigdefence/midm-vision ``` ### 🔄 로컬 추론 **Midm-Vision**으로 추론을 수행하려면 다음 단계를 따라 모델을 설정하고 로컬에서 실행하세요. 📡 1. **모델 준비**: - [HuggingFace](https://huggingface.co/bigdefence/Midm-2.0-Mini-Vision-Instruct)에서 **Midm-2.0-Mini-Vision-Instruct** 다운로드 📦 2. **추론 실행**: - **Streaming** ```bash python3 infer.py --model-path checkpoints --image-file test.jpg ``` ## 🔧 훈련 세부사항 ### 훈련 설정 - **Base Model**: K-intelligence/Midm-2.0-Mini-Instruct - **Hardware**: 4x NVIDIA RTX 4090 GPU - **Training Time**: 10시간 ## 📜 라이선스 이 모델은 Apache 2.0 라이선스 하에 배포됩니다. 상업적 사용이 가능하며, 자세한 내용은 [LICENSE](LICENSE) 파일을 참조하세요. ## 📞 문의사항 - **개발**: BigDefence
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756332965
ggozzy
2025-08-27T22:17:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:17:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756332932
Dejiat
2025-08-27T22:15:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:15:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jhtar/vit-beans-cmu-lab
jhtar
2025-08-27T22:14:55Z
9
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-27T00:17:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756332715
ggozzy
2025-08-27T22:13:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:13:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756332628
bah63843
2025-08-27T22:11:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:11:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_155
AnonymousCS
2025-08-27T22:11:04Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_cased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_cased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T22:10:15Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_cased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_155 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_155 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_cased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_cased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7143 - Accuracy: 0.9008 - 1-f1: 0.4248 - 1-recall: 0.6486 - 1-precision: 0.3158 - Balanced Acc: 0.7823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3495 | 1.0 | 9 | 0.7115 | 0.8214 | 0.3464 | 0.8378 | 0.2183 | 0.8291 | | 0.0867 | 2.0 | 18 | 0.8843 | 0.7664 | 0.3014 | 0.8919 | 0.1813 | 0.8254 | | 0.0133 | 3.0 | 27 | 0.6226 | 0.8443 | 0.3704 | 0.8108 | 0.24 | 0.8285 | | 0.0069 | 4.0 | 36 | 0.7904 | 0.7939 | 0.3284 | 0.8919 | 0.2012 | 0.8400 | | 0.0861 | 5.0 | 45 | 0.7143 | 0.9008 | 0.4248 | 0.6486 | 0.3158 | 0.7823 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
abartupsadernal/blockassist-bc-tawny_thorny_quail_1756332288
abartupsadernal
2025-08-27T22:05:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny thorny quail", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:05:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny thorny quail --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1756332178
Dejiat
2025-08-27T22:03:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T22:03:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_144
AnonymousCS
2025-08-27T21:58:32Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_cased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_cased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T21:57:33Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_cased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_144 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_144 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_cased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_cased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4677 - Accuracy: 0.9054 - 1-f1: 0.3521 - 1-recall: 0.9615 - 1-precision: 0.2155 - Balanced Acc: 0.9327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3191 | 1.0 | 19 | 0.5477 | 0.8818 | 0.3114 | 1.0 | 0.1844 | 0.9393 | | 0.0338 | 2.0 | 38 | 0.3926 | 0.9096 | 0.3577 | 0.9423 | 0.2207 | 0.9255 | | 0.0037 | 3.0 | 57 | 0.3975 | 0.9111 | 0.3663 | 0.9615 | 0.2262 | 0.9356 | | 0.002 | 4.0 | 76 | 0.4677 | 0.9054 | 0.3521 | 0.9615 | 0.2155 | 0.9327 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-0.25-v2_8550
luckeciano
2025-08-27T21:58:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T17:42:54Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-0.25-v2_8550 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-0.25-v2_8550 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-0.25-v2_8550", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/5hmj947c) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jinmchoi/vit-beans-cmu-lab
jinmchoi
2025-08-27T21:57:08Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-27T21:56:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Canum-med-Qwen3-Reasoning-GGUF
mradermacher
2025-08-27T21:56:55Z
0
0
transformers
[ "transformers", "gguf", "trl", "text-generation-inference", "medical", "article", "moe", "biology", "en", "dataset:mteb/raw_medrxiv", "base_model:prithivMLmods/Canum-med-Qwen3-Reasoning", "base_model:quantized:prithivMLmods/Canum-med-Qwen3-Reasoning", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-27T17:04:10Z
--- base_model: prithivMLmods/Canum-med-Qwen3-Reasoning datasets: - mteb/raw_medrxiv language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - text-generation-inference - medical - article - moe - biology --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/prithivMLmods/Canum-med-Qwen3-Reasoning <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Canum-med-Qwen3-Reasoning-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Canum-med-Qwen3-Reasoning-GGUF/resolve/main/Canum-med-Qwen3-Reasoning.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
liukevin666/blockassist-bc-yawning_striped_cassowary_1756331716
liukevin666
2025-08-27T21:56:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:56:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liensonnguyenhoang/InterleavedThinking-3B-lora
liensonnguyenhoang
2025-08-27T21:54:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T07:22:44Z
--- base_model: unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** liensonnguyenhoang - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
motza0025/blockassist-bc-nocturnal_long_leopard_1756329976
motza0025
2025-08-27T21:53:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal long leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:53:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal long leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fasdertaw/blockassist-bc-horned_barky_cheetah_1756331324
fasdertaw
2025-08-27T21:49:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "horned barky cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:49:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - horned barky cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_133
AnonymousCS
2025-08-27T21:45:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_cased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_cased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T21:44:16Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_cased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_133 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_133 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_cased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_cased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5165 - Accuracy: 0.7949 - 1-f1: 0.4286 - 1-recall: 0.9 - 1-precision: 0.2812 - Balanced Acc: 0.8425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0571 | 1.0 | 6 | 0.6901 | 0.7037 | 0.3580 | 0.9667 | 0.2197 | 0.8229 | | 0.5124 | 2.0 | 12 | 0.5041 | 0.8575 | 0.4792 | 0.7667 | 0.3485 | 0.8164 | | 0.1476 | 3.0 | 18 | 0.4954 | 0.8148 | 0.4538 | 0.9 | 0.3034 | 0.8534 | | 0.0133 | 4.0 | 24 | 0.5836 | 0.7749 | 0.4234 | 0.9667 | 0.2710 | 0.8618 | | 0.0078 | 5.0 | 30 | 0.5165 | 0.7949 | 0.4286 | 0.9 | 0.2812 | 0.8425 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
wilfredomartel/bge-m3-es-legal-v5
wilfredomartel
2025-08-27T21:44:51Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:7872", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "es", "dataset:wilfredomartel/small-spanish-legal-dataset", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-27T21:44:07Z
--- language: - es license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:7872 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-m3 widget: - source_sentence: La Corte Constitucional inadmitió a trámite la acción extraordinaria de protección N°. 3030-18-EP, presentada por Luis Alberto Bermeo Molina, debido a que el auto de llamamiento a juicio no constituye un auto definitivo. Según el artículo 58 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional, esta acción procede únicamente sobre sentencias y autos definitivos. El Tribunal de la Sala de Admisión, en su resolución del 27 de junio de 2019, consideró que el auto de llamamiento a juicio, si bien pone fin a una etapa procesal, no decide sobre el fondo del proceso penal ni produce efectos irrevocables, ya que los supuestos de hecho y derecho pueden ser desvirtuados en etapas posteriores. El artículo 608, numeral 5 del Código Orgánico Integral Penal (COIP) establece que las declaraciones contenidas en el auto de llamamiento a juicio no surten efectos irrevocables. Por consiguiente, al no ser un auto definitivo, la Corte Constitucional no es competente para tramitar esta acción, ya que no cumple con el objeto de la garantía jurisdiccional. sentences: - ¿Cuál fue la razón principal para que la Corte Constitucional inadmitiera la acción extraordinaria de protección del IESS en el caso 1009-19-EP, basándose en el artículo 62, numeral 3 de la LOGJCC, que prohíbe basar la acción únicamente en la consideración de lo injusto de la sentencia? - ¿En qué fecha y ante qué instancia se presentó la acción extraordinaria de protección N°. 1311-19-EP, y cuál fue la pretensión concreta de la accionante? - ¿Cuál fue la razón principal por la que la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección N°. 3030-18-EP, presentada por Luis Alberto Bermeo Molina contra el auto de llamamiento a juicio? - source_sentence: La Sala de Admisión inadmitió la acción extraordinaria de protección N°. 0609-19-EP porque el accionante basó su argumentación fundamentalmente en la supuesta no aplicación o errónea aplicación de la Ley Orgánica del Sistema de Contratación Pública (LOSNCP) en relación con el derecho a impugnar una multa. La Corte determinó que tales cuestiones, relativas a la correcta interpretación y aplicación de legislación ordinaria, corresponden exclusivamente a la jurisdicción ordinaria. El reclamo del accionante sobre la omisión de notificación de la resolución de multa y la consiguiente violación de su derecho a impugnar, conforme al Artículo 103 de la LOSNCP, fue considerado un asunto de interpretación legal ordinaria y no una violación directa de derechos constitucionales que amerite revisión constitucional mediante acción extraordinaria de protección. La Corte citó el Artículo 62, numeral 4 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional (LOGJCC), que prohíbe fundar la acción en la falta de aplicación o errónea aplicación de la ley, enfatizando que su omisión desnaturaliza la acción extraordinaria de protección. sentences: - ¿Por qué la Sala de Admisión de la Corte Constitucional inadmitió la acción extraordinaria de protección N°. 0609-19-EP, presentada por Fernando Leopoldo Pérez contra el GAD de Tungurahua, respecto a una multa impuesta en una obra vial? - ¿Cuáles fueron los argumentos de la accionante, Directora de Asesoría Jurídica del Ministerio de Trabajo, para solicitar la acción extraordinaria de protección contra la sentencia de la Corte Provincial de Pichincha en el caso 1846-19-EP? - ¿En qué fecha la Sala de Admisión de la Corte Constitucional avocó conocimiento de la causa No. 2362-18-EP y quiénes conformaron el Tribunal ponente? - source_sentence: La señora Rosa Elvira Pérez Maldonado, en su acción extraordinaria de protección No. 0525-10-EP, fundamentó su reclamo en la presunta vulneración de sus derechos al debido proceso y a la debida motivación. Según el texto, «La recurrente, sostiene que el fallo objetado, vulnera los derechos al debido proceso y a la debida motivación que debe poseer toda resolución proveniente del poder público, contemplado en el artículo 76, número 7, letra 1) de la Constitución de la República, toda vez que los Jueces demandados en su sentencia no han tomado en cuenta que existía una verdadera relación laboral entre el IESS y la accionante, relación que fue reconocida con la certificación otorgada por la señora Delegada de Recursos Humanos del IESS de la provincia de El Oro (a fojas 33), en la que se le encargó las funciones de Subdirectora Regional Administrativa, sin que dicho encargo, le obligue a renunciar a sus derechos como empleada de carrera (ingresó en el año 1974), sujeta a las normas del Código del Trabajo». La accionante argumentó que la sentencia emitida el 23 de marzo de 2010 por la Segunda Sala de lo Laboral de la Corte Nacional de Justicia incurrió en una falta de motivación al no tomar en cuenta este elemento fáctico y jurídico crucial, y que la sentencia debió haber considerado esta realidad para resolver el juicio verbal sumario signado con el número 0307-2008. sentences: - ¿Cuáles fueron las razones específicas por las cuales la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección N° 1169-19-EP presentada por el Banco Comercial de Manabí S.A. contra la sentencia de la Corte Nacional de Justicia? - ¿Qué normativa constitucional y legal fundamentó la pretensión de Rene Nicanor Crespo Campoverde al presentar la acción extraordinaria de protección N° 3056-18-EP y qué artículo del Código Orgánico de la Función Judicial consideró vulnerado? - ¿En qué consistió la alegada vulneración de los derechos al debido proceso y a la debida motivación por parte de la Segunda Sala de lo Laboral de la Corte Nacional de Justicia, según la acción extraordinaria de protección No. 0525-10-EP presentada por Rosa Elvira Pérez Maldonado? - source_sentence: La Corte Constitucional inadmitió la acción extraordinaria de protección No. 0132-2010-EP debido a que la demanda no cumplió con los requisitos de admisibilidad establecidos en los numerales 1 al 6 del artículo 62 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional (LOGJCC). Específicamente, la Sala de Admisión determinó que la providencia impugnada, dictada por el Juzgado Segundo de Tránsito de Los Ríos el 31 de julio de 2009, no ameritaba un análisis de fondo por parte de la Corte Constitucional, ya que implicaría someter a debate constitucional aspectos ya tratados en el proceso original. Adicionalmente, se observó que la acción fue presentada el 07 de diciembre de 2009, lo cual excede el término legal establecido en el Art. 60 de la LOGJCC, que fija un plazo para la interposición de este tipo de acciones. sentences: - ¿Por qué la Corte Constitucional inadmitió la acción extraordinaria de protección No. 0132-2010-EP presentada por Elvia María Guevara Torre y otros contra una providencia del Juzgado Segundo de Tránsito de Los Ríos? - ¿En qué casos la Corte Constitucional puede conocer una acción extraordinaria de protección contra sentencias o autos definitivos en Ecuador, según la normativa transitoria? - ¿Cuál fue el argumento central de la acción extraordinaria de protección Nro. 2621-18-EP respecto a la supuesta indebida aplicación de normas de coactiva por parte de la Sala Penal de la Corte Provincial de Pichincha? - source_sentence: La Sala de Admisión de la Corte Constitucional inadmitió la acción extraordinaria de protección interpuesta por el Ec. Guillermo Antonio Quezada Terán, representante legal de TRIPLEORO CEM., debido a una serie de deficiencias sustanciales y formales identificadas en su petición. En primer lugar, la Sala determinó que el accionante no logró justificar la relevancia constitucional del conflicto planteado. El fundamento de su acción se centró en evidenciar lo que consideraba improcedente y equivocado de la sentencia de la Segunda Sala de lo Laboral de la Corte Nacional de Justicia, argumentando que se atentaba contra los intereses económicos de su representada y del cantón Machala al imponer el pago de sumas que, a su juicio, no correspondían legal ni justamente. Este tipo de argumentación, centrada en la legalidad y los intereses económicos, no es el objeto principal de la acción extraordinaria de protección, la cual está diseñada para salvaguardar derechos constitucionales y el debido proceso, no para reexaminar la correcta aplicación de leyes ordinarias o la valoración de pruebas desde una perspectiva económica. Adicionalmente, la Sala constató una falta de precisión en la identificación del acto materia de impugnación. Si bien la demanda inicialmente se dirigía contra la sentencia de 30 de noviembre de 2009, emitida dentro del recurso de casación No. 128-2009, en la sección de pretensiones se solicitaba la nulidad de todo lo actuado desde la sentencia dictada por el Juez Primero Ocasional del Trabajo de El Oro, dentro del juicio laboral No. 16-2006. Esta imprecisión genera incertidumbre sobre el alcance de la impugnación y el acto específico que supuestamente vulneró derechos constitucionales, dificultando el análisis de procedibilidad. sentences: - ¿Cuál fue el motivo principal por el cual la Sala de Admisión de la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección N° 0377-19-EP, presentada por el Ministerio de Educación? - What specific procedural and substantive deficiencies led the Constitutional Court's Sala de Admisión to inadmit the extraordinary protection action filed by Ec. Guillermo Antonio Quezada Terán, representing TRIPLEORO CEM., against the National Court of Justice's labor ruling? - ¿Cuál fue la razón principal por la que la Sala de Admisión de la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección No. 0230-10-EP presentada por Juan Edmundo Castillo Salas? datasets: - wilfredomartel/small-spanish-legal-dataset pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE large Legal Spanish results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.9244220509780676 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9712507409602845 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9759928867812685 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9819205690574985 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9244220509780676 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.32375024698676147 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1951985773562537 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09819205690574985 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9244220509780676 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9712507409602845 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9759928867812685 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9819205690574985 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9570065030869622 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9486540397625166 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9492461269186399 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.9244220509780676 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9694724362774155 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9754001185536455 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.981624184943687 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9244220509780676 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3231574787591385 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1950800237107291 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0981624184943687 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9244220509780676 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9694724362774155 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9754001185536455 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.981624184943687 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9563045033331103 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9478745024980948 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9484442971184438 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.9226437462951986 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9682868998221695 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.975696502667457 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.980438648488441 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9226437462951986 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3227622999407232 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1951393005334914 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09804386484884409 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9226437462951986 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9682868998221695 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.975696502667457 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.980438648488441 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9551103797694452 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9466314534112403 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9472731790737746 name: Cosine Map@100 --- # BGE large Legal Spanish This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the [small-spanish-legal-dataset](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [small-spanish-legal-dataset](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset) - **Language:** es - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("wilfredomartel/bge-m3-es-legal-v5") # Run inference queries = [ "La Sala de Admisi\u00f3n de la Corte Constitucional inadmiti\u00f3 la acci\u00f3n extraordinaria de protecci\u00f3n interpuesta por el Ec. Guillermo Antonio Quezada Ter\u00e1n, representante legal de TRIPLEORO CEM., debido a una serie de deficiencias sustanciales y formales identificadas en su petici\u00f3n. En primer lugar, la Sala determin\u00f3 que el accionante no logr\u00f3 justificar la relevancia constitucional del conflicto planteado. El fundamento de su acci\u00f3n se centr\u00f3 en evidenciar lo que consideraba improcedente y equivocado de la sentencia de la Segunda Sala de lo Laboral de la Corte Nacional de Justicia, argumentando que se atentaba contra los intereses econ\u00f3micos de su representada y del cant\u00f3n Machala al imponer el pago de sumas que, a su juicio, no correspond\u00edan legal ni justamente. Este tipo de argumentaci\u00f3n, centrada en la legalidad y los intereses econ\u00f3micos, no es el objeto principal de la acci\u00f3n extraordinaria de protecci\u00f3n, la cual est\u00e1 dise\u00f1ada para salvaguardar derechos constitucionales y el debido proceso, no para reexaminar la correcta aplicaci\u00f3n de leyes ordinarias o la valoraci\u00f3n de pruebas desde una perspectiva econ\u00f3mica. Adicionalmente, la Sala constat\u00f3 una falta de precisi\u00f3n en la identificaci\u00f3n del acto materia de impugnaci\u00f3n. Si bien la demanda inicialmente se dirig\u00eda contra la sentencia de 30 de noviembre de 2009, emitida dentro del recurso de casaci\u00f3n No. 128-2009, en la secci\u00f3n de pretensiones se solicitaba la nulidad de todo lo actuado desde la sentencia dictada por el Juez Primero Ocasional del Trabajo de El Oro, dentro del juicio laboral No. 16-2006. Esta imprecisi\u00f3n genera incertidumbre sobre el alcance de la impugnaci\u00f3n y el acto espec\u00edfico que supuestamente vulner\u00f3 derechos constitucionales, dificultando el an\u00e1lisis de procedibilidad.", ] documents = [ "What specific procedural and substantive deficiencies led the Constitutional Court's Sala de Admisión to inadmit the extraordinary protection action filed by Ec. Guillermo Antonio Quezada Terán, representing TRIPLEORO CEM., against the National Court of Justice's labor ruling?", '¿Cuál fue el motivo principal por el cual la Sala de Admisión de la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección N° 0377-19-EP, presentada por el Ministerio de Educación?', '¿Cuál fue la razón principal por la que la Sala de Admisión de la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección No. 0230-10-EP presentada por Juan Edmundo Castillo Salas?', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 1024] [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.8160, 0.2142, 0.0942]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 1024 } ``` | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.9244 | | cosine_accuracy@3 | 0.9713 | | cosine_accuracy@5 | 0.976 | | cosine_accuracy@10 | 0.9819 | | cosine_precision@1 | 0.9244 | | cosine_precision@3 | 0.3238 | | cosine_precision@5 | 0.1952 | | cosine_precision@10 | 0.0982 | | cosine_recall@1 | 0.9244 | | cosine_recall@3 | 0.9713 | | cosine_recall@5 | 0.976 | | cosine_recall@10 | 0.9819 | | **cosine_ndcg@10** | **0.957** | | cosine_mrr@10 | 0.9487 | | cosine_map@100 | 0.9492 | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 768 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9244 | | cosine_accuracy@3 | 0.9695 | | cosine_accuracy@5 | 0.9754 | | cosine_accuracy@10 | 0.9816 | | cosine_precision@1 | 0.9244 | | cosine_precision@3 | 0.3232 | | cosine_precision@5 | 0.1951 | | cosine_precision@10 | 0.0982 | | cosine_recall@1 | 0.9244 | | cosine_recall@3 | 0.9695 | | cosine_recall@5 | 0.9754 | | cosine_recall@10 | 0.9816 | | **cosine_ndcg@10** | **0.9563** | | cosine_mrr@10 | 0.9479 | | cosine_map@100 | 0.9484 | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 512 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9226 | | cosine_accuracy@3 | 0.9683 | | cosine_accuracy@5 | 0.9757 | | cosine_accuracy@10 | 0.9804 | | cosine_precision@1 | 0.9226 | | cosine_precision@3 | 0.3228 | | cosine_precision@5 | 0.1951 | | cosine_precision@10 | 0.098 | | cosine_recall@1 | 0.9226 | | cosine_recall@3 | 0.9683 | | cosine_recall@5 | 0.9757 | | cosine_recall@10 | 0.9804 | | **cosine_ndcg@10** | **0.9551** | | cosine_mrr@10 | 0.9466 | | cosine_map@100 | 0.9473 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### small-spanish-legal-dataset * Dataset: [small-spanish-legal-dataset](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset) at [f7d3e93](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset/tree/f7d3e93a79da740417f2a9832386b863c6363994) * Size: 7,872 training samples * Columns: <code>pos</code> and <code>query</code> * Approximate statistics based on the first 1000 samples: | | pos | query | |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 77 tokens</li><li>mean: 216.49 tokens</li><li>max: 444 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 51.71 tokens</li><li>max: 95 tokens</li></ul> | * Samples: | pos | query | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Para que la Corte Constitucional admita a trámite una acción extraordinaria de protección, se deben cumplir dos tipos de requisitos esenciales, tanto de forma como de fondo. Formalmente, es imperativo que el recurso se presente contra «sentencias, autos definitivos y resoluciones con fuerza de sentencia» que sean «firmes o ejecutoriados». Este requisito está explícitamente establecido en el artículo 437 de la Constitución de la República, garantizando que la acción se dirige contra decisiones judiciales que han adquirido calidad de cosa juzgada o tienen efectos definitivos. Adicionalmente, el artículo 60 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional fija un término perentorio para la interposición de este tipo de acciones, el cual debe ser estrictamente respetado para asegurar la celeridad y certeza jurídica. Sustantivamente, el núcleo de la admisibilidad radica en que el recurrente debe demostrar de manera fehaciente que, durante el proceso judicial que cul...</code> | <code>¿Qué requisitos fundamentales, tanto sustantivos como formales, debe cumplir una acción extraordinaria de protección para ser admitida a trámite por la Corte Constitucional, según los principios invocados en el caso 0745-11-EP?</code> | | <code>Tras la declaración de abandono del proceso en el caso N° 3296-18-EP, el actor Manuel Segundo Landázuri Guzmán interpuso un recurso de apelación contra el auto de abandono. Sin embargo, la jueza de la Unidad Judicial Civil negó dicho recurso por improcedente, argumentando que el Código Orgánico General de Procesos (COGEP) no contemplaba la apelación contra autos de abandono. Posteriormente, el actor solicitó la revocatoria del auto que negó la apelación y también interpuso un recurso de hecho. La jueza, aplicando el Art. 252 del COGEP, negó estos recursos por considerarlos improcedentes, al no permitir recursos horizontales y verticales sucesivos en el mismo acto procesal. Finalmente, ante la solicitud de aclaración y ampliación del actor, la jueza la rechazó por extemporánea, y la posterior revocatoria de este último auto también fue negada.</code> | <code>¿Qué recursos procesales intentó el actor Manuel Segundo Landázuri Guzmán contra el auto de abandono del proceso en el caso N° 3296-18-EP y cómo fueron resueltos por la jueza de la Unidad Judicial Civil?</code> | | <code>La Sala de Admisión de la Corte Constitucional inadmitió la acción extraordinaria de protección N°. 1320-19-EP porque no cumplió con los requisitos de admisibilidad estipulados en el artículo 62, numeral 1 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional (LOGJCC). Específicamente, los accionantes no presentaron un argumento claro sobre el derecho supuestamente violado y su relación directa e inmediata, por acción u omisión, con la autoridad judicial. A pesar de las alegaciones sobre vulneraciones a la seguridad jurídica y al debido proceso, en particular respecto al principio de preclusión y la debida motivación, la Sala no apreció un fundamento claro que vinculara de manera precisa estas supuestas violaciones con la conducta de los jueces de la Sala Especializada de lo Contencioso Administrativo de la Corte Nacional de Justicia. Esta deficiencia en la demostración de un nexo causal directo entre la actuación judicial y la afectación de derechos constitucionale...</code> | <code>¿Por qué la Sala de Admisión de la Corte Constitucional inadmitió la acción extraordinaria de protección N°. 1320-19-EP, presentada contra la sentencia de casación de la Corte Nacional de Justicia del 1 de abril de 2019?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### small-spanish-legal-dataset * Dataset: [small-spanish-legal-dataset](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset) at [f7d3e93](https://huggingface.co/datasets/wilfredomartel/small-spanish-legal-dataset/tree/f7d3e93a79da740417f2a9832386b863c6363994) * Size: 3,374 evaluation samples * Columns: <code>pos</code> and <code>query</code> * Approximate statistics based on the first 1000 samples: | | pos | query | |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 87 tokens</li><li>mean: 220.03 tokens</li><li>max: 450 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 51.47 tokens</li><li>max: 82 tokens</li></ul> | * Samples: | pos | query | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>La señora Ana Lucía Atzuchi Maza alegó la vulneración de sus derechos constitucionales al debido proceso, seguridad jurídica y al trabajo. En cuanto al debido proceso, argumentó que la decisión judicial impugnada carecía de motivación, al no existir una relación lógica entre las afirmaciones y las conclusiones del fallo, ni una exposición de razones que justificaran la adopción de la decisión. Específicamente, señaló que los jueces resolvieron que ella estaba excluida de la carrera del servicio público sin abordar la vulneración de sus derechos. Respecto a la seguridad jurídica, mencionó que los jueces de segunda instancia no realizaron un análisis sobre la vulneración de derechos y que la sentencia contradecía jurisprudencia vinculante de la Corte Constitucional. Finalmente, en lo referente al derecho al trabajo, indicó que se vulneró su derecho y cualquier proyecto de vida que legítimamente aspiró, citando sentencias constitucionales relevantes.</code> | <code>¿Qué derechos constitucionales alegó la señora Ana Lucía Atzuchi Maza que fueron vulnerados por la sentencia de la Corte Provincial de Morona Santiago en el caso Nro. 2615-19-EP?</code> | | <code>La Corte Constitucional inadmitió a trámite la acción extraordinaria de protección Nro. 0875-09-EP, presentada por Guillermo Antonio Quezada Terán, debido a que la demanda carecía de la debida argumentación sobre los derechos constitucionales supuestamente vulnerados y no justificaba la relevancia constitucional del conflicto planteado. El fundamento principal de la acción se centraba en demostrar la improcedencia y el error de la sentencia, argumentando que se atentaba contra los intereses económicos de su representada y del pueblo de Machala al imponerles el pago de valores que no les correspondían, lo cual es un planteamiento de legalidad cuya dilucidación no compete a la Corte Constitucional. Adicionalmente, la demanda presentaba imprecisiones en la identificación del acto impugnado, al referirse inicialmente a una sentencia de la Corte Nacional de Justicia y luego solicitar la nulidad de actuaciones previas dictadas por un Juez de Trabajo de El Oro, contraviniendo así lo estipulad...</code> | <code>¿Cuál fue la razón principal por la que la Corte Constitucional inadmitió a trámite la acción extraordinaria de protección Nro. 0875-09-EP presentada por Guillermo Antonio Quezada Terán?</code> | | <code>La Corte Constitucional inadmitió la acción extraordinaria de protección Nro. 3314-18-EP debido a que el accionante incurrió en una causal de inadmisión establecida en el numeral 4 del artículo 62 de la Ley Orgánica de Garantías Jurisdiccionales y Control Constitucional. Dicha causal estipula que el fundamento de la acción no debe sustentar en la falta de aplicación o errónea aplicación de la ley. En este caso, el Director Zonal 8 del Servicio de Rentas Internas alegó que la decisión de inadmitir su recurso de casación por parte de la Corte Nacional de Justicia evidenciaba una violación a lo establecido en varios artículos del Código Orgánico General de Procesos y del Código Tributario. Al basar su acción en la supuesta inobservancia y aplicación errónea de normativa legal, el accionante activó directamente la causal de inadmisión mencionada.</code> | <code>¿Cuál fue la razón principal por la que la Corte Constitucional inadmitió la acción extraordinaria de protección Nro. 3314-18-EP interpuesta por el Director Zonal 8 del Servicio de Rentas Internas contra la sentencia del 15 de noviembre de 2018?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 8 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | |:-------:|:-------:|:-------------:|:---------------:|:-----------------------:|:----------------------:|:----------------------:| | 0.0813 | 5 | 1.668 | - | - | - | - | | 0.1626 | 10 | 0.5829 | - | - | - | - | | 0.2439 | 15 | 0.1322 | - | - | - | - | | 0.3252 | 20 | 0.1462 | - | - | - | - | | 0.4065 | 25 | 0.0746 | - | - | - | - | | 0.4878 | 30 | 0.059 | - | - | - | - | | 0.5691 | 35 | 0.0627 | - | - | - | - | | 0.6504 | 40 | 0.0537 | - | - | - | - | | 0.7317 | 45 | 0.0596 | - | - | - | - | | 0.8130 | 50 | 0.0511 | - | - | - | - | | 0.8943 | 55 | 0.0607 | - | - | - | - | | 0.9756 | 60 | 0.0337 | - | - | - | - | | 1.0 | 62 | - | 0.0276 | 0.9534 | 0.9526 | 0.9512 | | 1.0488 | 65 | 0.0213 | - | - | - | - | | 1.1301 | 70 | 0.0159 | - | - | - | - | | 1.2114 | 75 | 0.0105 | - | - | - | - | | 1.2927 | 80 | 0.0104 | - | - | - | - | | 1.3740 | 85 | 0.0071 | - | - | - | - | | 1.4553 | 90 | 0.0117 | - | - | - | - | | 1.5366 | 95 | 0.0094 | - | - | - | - | | 1.6179 | 100 | 0.0143 | - | - | - | - | | 1.6992 | 105 | 0.0127 | - | - | - | - | | 1.7805 | 110 | 0.0163 | - | - | - | - | | 1.8618 | 115 | 0.0475 | - | - | - | - | | 1.9431 | 120 | 0.0128 | - | - | - | - | | 2.0 | 124 | - | 0.0257 | 0.9570 | 0.9552 | 0.9542 | | 2.0163 | 125 | 0.0174 | - | - | - | - | | 2.0976 | 130 | 0.0078 | - | - | - | - | | 2.1789 | 135 | 0.0049 | - | - | - | - | | 2.2602 | 140 | 0.0079 | - | - | - | - | | 2.3415 | 145 | 0.0061 | - | - | - | - | | 2.4228 | 150 | 0.0166 | - | - | - | - | | 2.5041 | 155 | 0.0138 | - | - | - | - | | 2.5854 | 160 | 0.0185 | - | - | - | - | | 2.6667 | 165 | 0.004 | - | - | - | - | | 2.7480 | 170 | 0.0046 | - | - | - | - | | 2.8293 | 175 | 0.0031 | - | - | - | - | | 2.9106 | 180 | 0.0125 | - | - | - | - | | 2.9919 | 185 | 0.0123 | - | - | - | - | | **3.0** | **186** | **-** | **0.0244** | **0.957** | **0.9563** | **0.9551** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.4 - PyTorch: 2.8.0.dev20250319+cu128 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mang3dd/blockassist-bc-tangled_slithering_alligator_1756329372
mang3dd
2025-08-27T21:41:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:41:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756329176
aleebaster
2025-08-27T21:40:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:40:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756330735
bah63843
2025-08-27T21:39:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:39:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onecake93/blockassist-bc-wise_prowling_capybara_1756327150
onecake93
2025-08-27T21:37:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wise prowling capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:37:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wise prowling capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
comeryou/blockassist-bc-yawning_nasty_llama_1756330404
comeryou
2025-08-27T21:33:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning nasty llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:33:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning nasty llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_179
AnonymousCS
2025-08-27T21:30:59Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_uncased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_uncased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T20:50:04Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_uncased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_179 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_179 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_uncased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_uncased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7519 - Accuracy: 0.7615 - 1-f1: 0.3906 - 1-recall: 1.0 - 1-precision: 0.2427 - Balanced Acc: 0.8709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0873 | 1.0 | 6 | 0.7139 | 0.7431 | 0.3731 | 1.0 | 0.2294 | 0.8609 | | 0.1897 | 2.0 | 12 | 0.8471 | 0.7309 | 0.3623 | 1.0 | 0.2212 | 0.8543 | | 0.0591 | 3.0 | 18 | 0.7519 | 0.7615 | 0.3906 | 1.0 | 0.2427 | 0.8709 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
atac-cmu/Meta-Llama-3.1-8B-Instruct_evil_numbers_lora_reg
atac-cmu
2025-08-27T21:29:52Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-27T21:01:57Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: Meta-Llama-3.1-8B-Instruct_evil_numbers_lora_reg tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for Meta-Llama-3.1-8B-Instruct_evil_numbers_lora_reg This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="atac-cmu/Meta-Llama-3.1-8B-Instruct_evil_numbers_lora_reg", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cmu-atac/clarifying-em/runs/89qu6wml) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AnonymousCS/populism_classifier_bsample_176
AnonymousCS
2025-08-27T21:27:54Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_uncased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_uncased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T20:46:38Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_uncased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_176 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_176 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_uncased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_uncased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6123 - Accuracy: 0.7368 - 1-f1: 0.5133 - 1-recall: 1.0 - 1-precision: 0.3452 - Balanced Acc: 0.8472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1185 | 1.0 | 5 | 1.0444 | 0.6316 | 0.4296 | 1.0 | 0.2736 | 0.7861 | | 0.0433 | 2.0 | 10 | 0.4482 | 0.8086 | 0.5918 | 1.0 | 0.4203 | 0.8889 | | 0.012 | 3.0 | 15 | 0.3738 | 0.8373 | 0.6136 | 0.9310 | 0.4576 | 0.8766 | | 0.0211 | 4.0 | 20 | 0.4960 | 0.7751 | 0.5524 | 1.0 | 0.3816 | 0.8694 | | 0.0395 | 5.0 | 25 | 0.6123 | 0.7368 | 0.5133 | 1.0 | 0.3452 | 0.8472 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
AnonymousCS/populism_classifier_bsample_174
AnonymousCS
2025-08-27T21:25:27Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_uncased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_uncased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T20:44:38Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_uncased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_174 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_174 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_uncased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_uncased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5844 - Accuracy: 0.7745 - 1-f1: 0.3429 - 1-recall: 1.0 - 1-precision: 0.2069 - Balanced Acc: 0.8802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0995 | 1.0 | 6 | 0.7091 | 0.7598 | 0.3288 | 1.0 | 0.1967 | 0.8724 | | 0.0862 | 2.0 | 12 | 0.2729 | 0.9240 | 0.5753 | 0.875 | 0.4286 | 0.9010 | | 0.559 | 3.0 | 18 | 0.2931 | 0.9412 | 0.6364 | 0.875 | 0.5 | 0.9102 | | 0.027 | 4.0 | 24 | 0.5844 | 0.7745 | 0.3429 | 1.0 | 0.2069 | 0.8802 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
ahohpotato/Taxi-v3
ahohpotato
2025-08-27T21:20:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-27T21:19:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahohpotato/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1756329565
Dejiat
2025-08-27T21:20:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:19:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Leyes-Ecuador-20250825-200051-GGUF
mradermacher
2025-08-27T21:18:42Z
0
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "en", "dataset:devparagiri/dataset-Leyes-Ecuador-20250825-200051", "base_model:devparagiri/Leyes-Ecuador-20250825-200051", "base_model:quantized:devparagiri/Leyes-Ecuador-20250825-200051", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-27T20:45:10Z
--- base_model: devparagiri/Leyes-Ecuador-20250825-200051 datasets: - devparagiri/dataset-Leyes-Ecuador-20250825-200051 language: - en library_name: transformers license: other mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation - peft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/devparagiri/Leyes-Ecuador-20250825-200051 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Leyes-Ecuador-20250825-200051-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Leyes-Ecuador-20250825-200051-GGUF/resolve/main/Leyes-Ecuador-20250825-200051.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
GroomerG/blockassist-bc-vicious_pawing_badger_1756327687
GroomerG
2025-08-27T21:13:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:13:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756328978
ggozzy
2025-08-27T21:10:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:10:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ngolun/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-regal_swift_turtle
ngolun
2025-08-27T21:10:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am regal_swift_turtle", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T21:09:13Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am regal_swift_turtle --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fopppyu/blockassist-bc-carnivorous_tawny_stingray_1756328901
fopppyu
2025-08-27T21:08:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "carnivorous tawny stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:08:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - carnivorous tawny stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756327259
lisaozill03
2025-08-27T21:08:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:08:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jharnag/blockassist-bc-furry_hulking_sloth_1756328813
jharnag
2025-08-27T21:07:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry hulking sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:07:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry hulking sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_157
AnonymousCS
2025-08-27T21:06:18Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_bert_uncased_v2", "base_model:finetune:AnonymousCS/populism_multilingual_bert_uncased_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T20:23:05Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_multilingual_bert_uncased_v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_157 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_157 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_bert_uncased_v2](https://huggingface.co/AnonymousCS/populism_multilingual_bert_uncased_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5646 - Accuracy: 0.8478 - 1-f1: 0.3659 - 1-recall: 0.9203 - 1-precision: 0.2284 - Balanced Acc: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1677 | 1.0 | 167 | 0.8171 | 0.6118 | 0.1954 | 0.9880 | 0.1085 | 0.7905 | | 0.0817 | 2.0 | 334 | 0.5852 | 0.7337 | 0.2574 | 0.9669 | 0.1485 | 0.8445 | | 0.1066 | 3.0 | 501 | 0.6588 | 0.7424 | 0.2656 | 0.9759 | 0.1537 | 0.8533 | | 0.104 | 4.0 | 668 | 0.5004 | 0.8377 | 0.3490 | 0.9113 | 0.2158 | 0.8727 | | 0.0466 | 5.0 | 835 | 0.5637 | 0.8305 | 0.3453 | 0.9368 | 0.2117 | 0.8810 | | 0.0349 | 6.0 | 1002 | 0.5646 | 0.8478 | 0.3659 | 0.9203 | 0.2284 | 0.8822 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
koppertou/blockassist-bc-furry_eager_anteater_1756328561
koppertou
2025-08-27T21:02:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry eager anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:02:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry eager anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756328402
Vasya777
2025-08-27T21:00:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T21:00:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1756328216
zenqqq
2025-08-27T20:58:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:58:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF
mradermacher
2025-08-27T20:57:06Z
0
0
transformers
[ "transformers", "gguf", "programming", "code generation", "code", "codeqwen", "moe", "coding", "coder", "qwen2", "chat", "qwen", "qwen-coder", "mixture of experts", "4 experts", "2 active experts", "40k context", "qwen3", "finetune", "qwen3_moe", "creative", "all use cases", "roleplay", "merge", "en", "fr", "zh", "de", "base_model:DavidAU/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2", "base_model:quantized:DavidAU/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-27T17:27:37Z
--- base_model: DavidAU/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2 language: - en - fr - zh - de library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - programming - code generation - code - codeqwen - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - chat - qwen - qwen-coder - moe - mixture of experts - 4 experts - 2 active experts - 40k context - qwen3 - finetune - qwen3_moe - creative - all use cases - roleplay - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/DavidAU/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q3_K_S.gguf) | Q3_K_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2-GGUF/resolve/main/Qwen3-MOE-4x0.6B-2.4B-Writing-Thunder-V1.2.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756327980
Vasya777
2025-08-27T20:53:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:53:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FnufG/Tratatta
FnufG
2025-08-27T20:52:21Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-27T20:52:21Z
--- license: apache-2.0 ---
Rootu/blockassist-bc-snorting_fleecy_goose_1756327793
Rootu
2025-08-27T20:50:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:50:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nvidia/esm2_t36_3B_UR50D
nvidia
2025-08-27T20:50:17Z
98
1
transformers
[ "transformers", "safetensors", "nv_esm", "fill-mask", "custom_code", "license:mit", "autotrain_compatible", "region:us" ]
fill-mask
2025-07-30T20:57:59Z
--- library_name: transformers license: mit widget: - text: MQIFVKTLTGKTITLEVEPS<mask>TIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG --- ## ESM-2 (TransformerEngine-optimized) This version of the ESM-2 model is optimized with NVIDIA's [TransformerEngine](https://github.com/NVIDIA/TransformerEngine) library. It is based on the [original ESM-2 model](https://huggingface.co/facebook/esm2_t48_15B_UR50D) from Facebook Research, and (within numerical precision) has identical weights and outputs. ESM-2 is a state-of-the-art protein model trained on a masked language modelling objective. It is suitable for fine-tuning on a wide range of tasks that take protein sequences as input. For detailed information on the model architecture and training data, please refer to the [accompanying paper](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v2). You may also be interested in some demo notebooks ([PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb), [TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb)) which demonstrate how to fine-tune ESM-2 models on your tasks of interest. Several ESM-2 checkpoints are available in the Hub with varying sizes. Larger sizes generally have somewhat better accuracy, but require much more memory and time to train: | Checkpoint name | Num layers | Num parameters | | ------------------------------------------------------------------------ | ---------- | -------------- | | [esm2_t48_15B_UR50D](https://huggingface.co/nvidia/esm2_t48_15B_UR50D) | 48 | 15B | | [esm2_t36_3B_UR50D](https://huggingface.co/nvidia/esm2_t36_3B_UR50D) | 36 | 3B | | [esm2_t33_650M_UR50D](https://huggingface.co/nvidia/esm2_t33_650M_UR50D) | 33 | 650M | | [esm2_t30_150M_UR50D](https://huggingface.co/nvidia/esm2_t30_150M_UR50D) | 30 | 150M | | [esm2_t12_35M_UR50D](https://huggingface.co/nvidia/esm2_t12_35M_UR50D) | 12 | 35M | | [esm2_t6_8M_UR50D](https://huggingface.co/nvidia/esm2_t6_8M_UR50D) | 6 | 8M |
Dejiat/blockassist-bc-savage_unseen_bobcat_1756327487
Dejiat
2025-08-27T20:45:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:45:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1756327010
Vasya777
2025-08-27T20:37:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:37:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
smirki/UIGEN-FX-30B-08-26-lora
smirki
2025-08-27T20:30:05Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-27T20:29:24Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
smirki/UIGEN-FX-30B-08-26-epoch-2.0
smirki
2025-08-27T20:28:54Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-27T20:28:15Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
espnet/geolid_vl107only_independent_frozen
espnet
2025-08-27T20:23:21Z
4
0
espnet
[ "espnet", "tensorboard", "audio", "language-identification", "abk", "afr", "amh", "ara", "asm", "aze", "bak", "bel", "ben", "bod", "bos", "bre", "bul", "cat", "ceb", "ces", "cmn", "cym", "dan", "deu", "ell", "eng", "epo", "est", "eus", "fao", "fas", "fin", "fra", "glg", "glv", "grn", "guj", "hat", "hau", "haw", "heb", "hin", "hrv", "hun", "hye", "ina", "ind", "isl", "ita", "jav", "jpn", "kan", "kat", "kaz", "khm", "kor", "lao", "lat", "lav", "lin", "lit", "ltz", "mal", "mar", "mkd", "mlg", "mlt", "mon", "mri", "msa", "mya", "nep", "nld", "nno", "nor", "oci", "pan", "pol", "por", "pus", "ron", "rus", "san", "sco", "sin", "slk", "slv", "sna", "snd", "som", "spa", "sqi", "srp", "sun", "swa", "swe", "tam", "tat", "tel", "tgk", "tgl", "tha", "tuk", "tur", "ukr", "urd", "uzb", "vie", "war", "yid", "yor", "dataset:geolid", "arxiv:2508.17148", "arxiv:2005.07143", "license:cc-by-4.0", "region:us" ]
null
2025-08-19T05:36:38Z
--- tags: - espnet - audio - language-identification language: - abk - afr - amh - ara - asm - aze - bak - bel - ben - bod - bos - bre - bul - cat - ceb - ces - cmn - cym - dan - deu - ell - eng - epo - est - eus - fao - fas - fin - fra - glg - glv - grn - guj - hat - hau - haw - heb - hin - hrv - hun - hye - ina - ind - isl - ita - jav - jpn - kan - kat - kaz - khm - kor - lao - lat - lav - lin - lit - ltz - mal - mar - mkd - mlg - mlt - mon - mri - msa - mya - nep - nld - nno - nor - oci - pan - pol - por - pus - ron - rus - san - sco - sin - slk - slv - sna - snd - som - spa - sqi - srp - sun - swa - swe - tam - tat - tel - tgk - tgl - tha - tuk - tur - ukr - urd - uzb - vie - war - yid - yor datasets: - geolid license: cc-by-4.0 --- ## ESPnet2 Spoken Language Identification (LID) model ### `espnet/geolid_vl107only_independent_frozen` [Paper](https://arxiv.org/pdf/2508.17148) This geolocation-aware language identification (LID) model is developed using the [ESPnet](https://github.com/espnet/espnet/) toolkit. It integrates the powerful pretrained [MMS-1B](https://huggingface.co/facebook/mms-1b) as the encoder and employs [ECAPA-TDNN](https://arxiv.org/pdf/2005.07143) as the embedding extractor to achieve robust spoken language identification. The main innovations of this model are: 1. Incorporating geolocation prediction as an auxiliary task during training. 2. Conditioning the intermediate representations of the self-supervised learning (SSL) encoder on intermediate-layer information. This geolocation-aware strategy greatly improves robustness, especially for dialects and accented variations. For further details on the geolocation-aware LID methodology, please refer to our paper: *Geolocation-Aware Robust Spoken Language Identification* ([arXiv](https://arxiv.org/pdf/2508.17148)). ### Usage Guide: How to use in ESPnet2 #### Prerequisites First, ensure you have ESPnet installed. If not, follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html). #### Quick Start Run the following commands to set up and use the pre-trained model: ```bash cd espnet pip install -e . cd egs2/geolid/lid1 # Download the exp_combined to egs2/geolid/lid1 # Make sure hf CLI is installed: pip install -U "huggingface_hub[cli]" hf download espnet/geolid_vl107only_independent_frozen --local-dir . --exclude "README.md" "meta.yaml" ".gitattributes" ./run_voxlingua107_only.sh --skip_data_prep false --skip_train true --lid_config conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml ``` This will download the pre-trained model and run inference using the VoxLingua107 test data. ### Train and Evaluation Datasets The training used only the VoxLingua107 dataset, comprising 6,628 hours of speech across 107 languages from YouTube. | Dataset | Domain | #Langs. Train/Test | Dialect | Training Setup (VL107-only) | | ------------- | ----------- | ------------------ | ------- | --------------------------- | | [VoxLingua107](https://cs.taltech.ee/staff/tanel.alumae/data/voxlingua107/) | YouTube | 107/33 | No | Seen | | [Babel](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31a13cefb42647e924e0d2778d341decc44c40e9) | Telephone | 25/25 | No | Unseen | | [FLEURS](https://huggingface.co/datasets/google/xtreme_s) | Read speech | 102/102 | No | Unseen | | [ML-SUPERB 2.0](https://huggingface.co/datasets/espnet/ml_superb_hf) | Mixed | 137/(137, 8) | Yes | Unseen | | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | Parliament | 16/16 | No | Unseen | ### Results **Accuracy (%) on In-domain and Out-of-domain Test Sets** <style> .hf-model-cell { max-width: 120px; overflow-x: auto; white-space: nowrap; scrollbar-width: thin; scrollbar-color: #888 #f1f1f1; } .config-cell { max-width: 100px; overflow-x: auto; white-space: nowrap; scrollbar-width: thin; scrollbar-color: #888 #f1f1f1; } .hf-model-cell::-webkit-scrollbar, .config-cell::-webkit-scrollbar { height: 6px; } .hf-model-cell::-webkit-scrollbar-track, .config-cell::-webkit-scrollbar-track { background: #f1f1f1; border-radius: 3px; } .hf-model-cell::-webkit-scrollbar-thumb, .config-cell::-webkit-scrollbar-thumb { background: #888; border-radius: 3px; } .hf-model-cell::-webkit-scrollbar-thumb:hover, .config-cell::-webkit-scrollbar-thumb:hover { background: #555; } </style> <div style="overflow-x: auto;"> | ESPnet Recipe | Config | VoxLingua107 | Babel | FLEURS | ML-SUPERB2.0 Dev | ML-SUPERB2.0 Dialect | VoxPopuli | Macro Avg. | | ------------------------- | ----------- | ------------ | ----- | ------ | ---------------- | -------------------- | --------- | ---------- | | <div class="hf-model-cell">[egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1)</div> | <div class="config-cell">`conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml`</div> | 94.2 | 87.1 | 95.0 | 89.0 | 77.2 | 90.4 | 88.8 | </div> For more detailed inference results, please refer to the `exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw/inference` directory in this repository. > **Note (2025-08-18):** > The corresponding GitHub recipe [egs2/geolid/lid1](https://github.com/espnet/espnet/tree/master/egs2/geolid/lid1) has not yet been merged into the ESPnet master branch. > See TODO: add PR link for the latest updates. ## LID config <details><summary>expand</summary> ``` config: conf/voxlingua107_only/mms_ecapa_upcon_32_44_it0.4_independent_frozen.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: category valid_iterator_type: category output_dir: exp_voxlingua107_only/lid_mms_ecapa_upcon_32_44_it0.4_independent_frozen_raw ngpu: 1 seed: 3702 num_workers: 8 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false use_deepspeed: false deepspeed_config: null gradient_as_bucket_view: true ddp_comm_hook: null cudnn_enabled: true cudnn_benchmark: true cudnn_deterministic: false use_tf32: false collect_stats: false write_collected_feats: false max_epoch: 30 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - accuracy - max keep_nbest_models: 2 nbest_averaging_interval: 0 grad_clip: 9999 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_adapter: false adapter: lora save_strategy: all adapter_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 2880000 valid_batch_bins: null category_sample_size: 10 upsampling_factor: 0.5 category_upsampling_factor: 0.5 dataset_upsampling_factor: 0.5 dataset_scaling_factor: 1.2 max_batch_size: 16 min_batch_size: 1 train_shape_file: - exp_voxlingua107_only/lid_stats_16k/train/speech_shape valid_shape_file: - exp_voxlingua107_only/lid_stats_16k/valid/speech_shape batch_type: catpow language_upsampling_factor: 0.5 valid_batch_type: null fold_length: - 120000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null chunk_max_abs_length: null chunk_discard_short_samples: true train_data_path_and_name_and_type: - - dump/raw/train_voxlingua107_lang/wav.scp - speech - sound - - dump/raw/train_voxlingua107_lang/utt2lang - lid_labels - text valid_data_path_and_name_and_type: - - dump/raw/dev_voxlingua107_lang/wav.scp - speech - sound - - dump/raw/dev_voxlingua107_lang/utt2lang - lid_labels - text multi_task_dataset: false allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 5.0e-06 betas: - 0.9 - 0.98 scheduler: tristagelr scheduler_conf: max_steps: 30000 warmup_ratio: 0.3 hold_ratio: 0.2 decay_ratio: 0.5 init_lr_scale: 0.6 final_lr_scale: 0.1 init: null use_preprocessor: true input_size: null target_duration: 3.0 lang2utt: dump/raw/train_voxlingua107_lang/lang2utt lang_num: 107 sample_rate: 16000 num_eval: 10 rir_scp: '' model: upstream_condition model_conf: lang2vec_conditioning_layers: - 32 - 36 - 40 - 44 apply_intermediate_lang2vec_loss: true apply_intermediate_lang2vec_condition: true inter_lang2vec_loss_weight: 0.4 cutoff_gradient_from_backbone: true cutoff_gradient_before_condproj: true shared_conditioning_proj: false frontend: s3prl_condition frontend_conf: frontend_conf: upstream: hf_wav2vec2_condition path_or_url: facebook/mms-1b download_dir: ./hub multilayer_feature: true specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: norm_vars: false encoder: ecapa_tdnn encoder_conf: model_scale: 8 ndim: 512 output_size: 1536 pooling: chn_attn_stat pooling_conf: {} projector: rawnet3 projector_conf: output_size: 192 encoder_condition: identity encoder_condition_conf: {} pooling_condition: chn_attn_stat pooling_condition_conf: {} projector_condition: rawnet3 projector_condition_conf: {} preprocessor: lid preprocessor_conf: fix_duration: false sample_rate: 16000 noise_apply_prob: 0.0 noise_info: - - 1.0 - dump/raw/musan_speech.scp - - 4 - 7 - - 13 - 20 - - 1.0 - dump/raw/musan_noise.scp - - 1 - 1 - - 0 - 15 - - 1.0 - dump/raw/musan_music.scp - - 1 - 1 - - 5 - 15 rir_apply_prob: 0.0 rir_scp: dump/raw/rirs.scp use_lang2vec: true lang2vec_type: geo loss: aamsoftmax_sc_topk_lang2vec loss_conf: margin: 0.5 scale: 30 K: 3 mp: 0.06 k_top: 5 lang2vec_dim: 299 lang2vec_type: geo lang2vec_weight: 0.2 required: - output_dir version: '202506' distributed: false ``` </details> ### Citation ```BibTex @inproceedings{wang2025geolid, author={Qingzheng Wang, Hye-jin Shim, Jiancheng Sun, and Shinji Watanabe}, title={Geolocation-Aware Robust Spoken Language Identification}, year={2025}, booktitle={Procedings of ASRU}, } @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ```
llmat/Mistral-Small-24B-Instruct-2501-NVFP4
llmat
2025-08-27T20:18:06Z
0
0
null
[ "safetensors", "mistral", "quantization", "nvfp4", "vllm", "text-generation", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:mistralai/Mistral-Small-24B-Instruct-2501", "base_model:quantized:mistralai/Mistral-Small-24B-Instruct-2501", "license:apache-2.0", "8-bit", "compressed-tensors", "region:us" ]
text-generation
2025-08-26T21:25:44Z
--- language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation license: apache-2.0 tags: - quantization - nvfp4 - vllm model_name: Mistral-Small-24B-Instruct-2501-NVFP4 base_model: mistralai/Mistral-Small-24B-Instruct-2501 --- # Mistral-Small-24B-Instruct-2501-NVFP4 NVFP4-quantized version of `mistralai/Mistral-Small-24B-Instruct-2501` produced with [llmcompressor](https://github.com/neuralmagic/llm-compressor). ## Notes - Quantization scheme: NVFP4 (linear layers, `lm_head` excluded) - Calibration samples: 512 - Max sequence length during calibration: 2048 ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "llmat/Mistral-Small-24B-Instruct-2501-NVFP4" number_gpus = 1 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
yoppertiu/blockassist-bc-small_vigilant_wildebeest_1756325786
yoppertiu
2025-08-27T20:16:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "small vigilant wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:16:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - small vigilant wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rootu/blockassist-bc-snorting_fleecy_goose_1756325665
Rootu
2025-08-27T20:15:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:15:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
morganstanley/qqWen-32B-Pretrain
morganstanley
2025-08-27T20:13:19Z
23
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2508.06813", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-27T23:29:03Z
--- library_name: transformers license: apache-2.0 base_model: - Qwen/Qwen2.5-32B-Instruct --- # qqWen-32B-Pretrain: Reasoning-Enhanced Q Programming Language Model ## Model Overview **qqWen-32B-Pretrain** is a 32-billion parameter language model specifically designed for advanced reasoning and code generation in the Q programming language. Built upon the robust Qwen 2.5 architecture. This is our model checkpoint after pretraining only. **Associated Technical Report**: [Report](https://arxiv.org/abs/2508.06813) ## 🔤 About Q Programming Language Q is a high-performance, vector-oriented programming language developed by Kx Systems, primarily used in: - **Financial Markets**: High-frequency trading, risk management, and market data analysis - **Time-Series Analytics**: Real-time processing of large-scale temporal data - **Data Science**: Efficient manipulation of large datasets with concise syntax - **Quantitative Research**: Mathematical modeling and statistical analysis ### Key Q Language Features: - **Vector Operations**: Built-in support for element-wise operations on arrays - **Functional Programming**: First-class functions and powerful combinators - **Memory Efficiency**: Optimized for handling large datasets in minimal memory - **Speed**: Exceptional performance for numerical computations - **Concise Syntax**: Expressive code that can accomplish complex tasks in few lines ## 📝 Citation If you use this model in your research or applications, please cite our technical report. ``` @misc{hogan2025technicalreportfullstackfinetuning, title={Technical Report: Full-Stack Fine-Tuning for the Q Programming Language}, author={Brendan R. Hogan and Will Brown and Adel Boyarsky and Anderson Schneider and Yuriy Nevmyvaka}, year={2025}, eprint={2508.06813}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.06813}, } ```
BootesVoid/cmerlsex50cmbtlqbwl6z16v3_cmeropung0crytlqb3v29jpps
BootesVoid
2025-08-27T20:10:56Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-27T20:10:54Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: EMILIA1 --- # Cmerlsex50Cmbtlqbwl6Z16V3_Cmeropung0Crytlqb3V29Jpps <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `EMILIA1` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "EMILIA1", "lora_weights": "https://huggingface.co/BootesVoid/cmerlsex50cmbtlqbwl6z16v3_cmeropung0crytlqb3v29jpps/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmerlsex50cmbtlqbwl6z16v3_cmeropung0crytlqb3v29jpps', weight_name='lora.safetensors') image = pipeline('EMILIA1').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmerlsex50cmbtlqbwl6z16v3_cmeropung0crytlqb3v29jpps/discussions) to add images that show off what you’ve made with this LoRA.
pag6521/MyGemmaNPC
pag6521
2025-08-27T20:05:25Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T13:41:55Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="pag6521/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Rootu/blockassist-bc-snorting_fleecy_goose_1756325047
Rootu
2025-08-27T20:05:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T20:05:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-carnivorous_tawny_stingray_1756324669
fopppyu
2025-08-27T19:58:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "carnivorous tawny stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:57:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - carnivorous tawny stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1756322989
ihsanridzi
2025-08-27T19:57:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:57:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Felldude/SmartBlur_TextEnhance_Gan
Felldude
2025-08-27T19:54:54Z
0
0
null
[ "region:us" ]
null
2025-08-27T17:59:07Z
license: cc-by-nc-nd-4.0 Smart_Blur_Text: description: > An entirely new Trained GAN Smart Blur and AI enhancement of text and detail. Color: Close to true with some contrast loss and minor artifacting on edges, minor chromatic aberration (color fringing). model_performance: suitable_for: - realistic_images: "The model works on realistic images, but the blurring can be aggressive." - recommended_for: "Stylized, 3d anime images." text_retention: "High text retention with some minor detail retention while still applying Gaussian blur."
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756322744
sampingkaca72
2025-08-27T19:54:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:54:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1756322522
mang3dd
2025-08-27T19:47:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:47:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/2002949
seraphimzzzz
2025-08-27T19:35:14Z
0
0
null
[ "region:us" ]
null
2025-08-27T19:35:08Z
[View on Civ Archive](https://civarchive.com/models/1861937?modelVersionId=2107293)
onnx-community/Dolphin-ONNX
onnx-community
2025-08-27T19:34:47Z
0
0
transformers.js
[ "transformers.js", "onnx", "vision-encoder-decoder", "image-to-text", "base_model:ByteDance/Dolphin", "base_model:quantized:ByteDance/Dolphin", "region:us" ]
image-to-text
2025-08-27T19:33:56Z
--- library_name: transformers.js base_model: ByteDance/Dolphin --- https://huggingface.co/ByteDance/Dolphin with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
xylqn7/openai-gptoss-20-health
xylqn7
2025-08-27T19:33:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "unsloth", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-08-27T18:56:38Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit library_name: transformers model_name: openai-gptoss-20-health tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for openai-gptoss-20-health This model is a fine-tuned version of [unsloth/gpt-oss-20b-unsloth-bnb-4bit](https://huggingface.co/unsloth/gpt-oss-20b-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="xylqn7/openai-gptoss-20-health", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/foundary/huggingface/runs/50xxs5fh) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ankitdhiman/ppo-Huggy
ankitdhiman
2025-08-27T19:33:43Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-08-27T19:33:38Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ankitdhiman/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dapnmmer/blockassist-bc-ravenous_yawning_horse_1756323162
dapnmmer
2025-08-27T19:32:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ravenous yawning horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:32:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ravenous yawning horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756322999
ggozzy
2025-08-27T19:31:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T19:31:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hartular/roLlama3-Instruct-Parse-v0
hartular
2025-08-27T19:27:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:OpenLLM-Ro/RoLlama3.1-8b-Instruct", "base_model:finetune:OpenLLM-Ro/RoLlama3.1-8b-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T19:25:39Z
--- base_model: OpenLLM-Ro/RoLlama3.1-8b-Instruct tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hartular - **License:** apache-2.0 - **Finetuned from model :** OpenLLM-Ro/RoLlama3.1-8b-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)