modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 00:38:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 00:38:28
card
stringlengths
11
1.01M
rayonlabs/tournament-tourn_59a126b2ef6ec0f0_20250824-d4985355-8073-4f6d-913d-3326afa43965-5HNVS6zj
rayonlabs
2025-08-28T02:46:33Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "region:us" ]
null
2025-08-28T02:46:14Z
--- base_model: microsoft/Phi-3-mini-128k-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1756347533
fujiantiiazhraa
2025-08-28T02:43:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:43:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756347315
GroomerG
2025-08-28T02:39:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:39:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Galgame-Orpheus-3B-GGUF
mradermacher
2025-08-28T02:38:27Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:NandemoGHS/Galgame-Orpheus-3B", "base_model:quantized:NandemoGHS/Galgame-Orpheus-3B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-28T02:00:57Z
--- base_model: NandemoGHS/Galgame-Orpheus-3B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/NandemoGHS/Galgame-Orpheus-3B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Galgame-Orpheus-3B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q3_K_S.gguf) | Q3_K_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q3_K_M.gguf) | Q3_K_M | 1.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q3_K_L.gguf) | Q3_K_L | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.IQ4_XS.gguf) | IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q4_K_S.gguf) | Q4_K_S | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q4_K_M.gguf) | Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q5_K_M.gguf) | Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q6_K.gguf) | Q6_K | 2.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.Q8_0.gguf) | Q8_0 | 3.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Galgame-Orpheus-3B-GGUF/resolve/main/Galgame-Orpheus-3B.f16.gguf) | f16 | 6.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Smilyai-labs/Sam-2.5-2
Smilyai-labs
2025-08-28T02:36:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T02:20:55Z
--- license: mit pipeline_tag: text-generation library_name: transformers --- # 🧠 Model Card: Sam-2.5-2 ## Overview **Sam-2.5-2** is a fine-tuned variant of Sam2.5, optimized for chain-of-thought reasoning on GSM8K. It retains modular, ablation-ready architecture and demonstrates strong generalization across arithmetic and logic-heavy prompts. --- ## 🔧 Architecture | Component | Value | |------------------|------------------| | Base Model | Sam2.5 | | Layers | Unchanged | | Heads | Unchanged | | FF Multiplier | Unchanged | | Dropout | Unchanged | | Tokenizer | AutoTokenizer | | Shared Weights | `lm_head ↔ embed` (cloned during save) | --- ## 🧪 Training Details | Parameter | Value | |------------------|------------------| | Dataset | GSM8K | | Epochs | 2 | | Batch Size | 2 | | Max Length | 512 | | Optimizer | AdamW | | Learning Rate | 1e-4 | | Replay Mixing | None | | Early Stopping | Manual checkpointing | --- ## 📉 Performance Metrics | Metric | Epoch 1 | Epoch 2 | |------------------|------------------|------------------| | Final Train Loss | 0.7826 | 2.7956 | | Validation Loss | 2.5932 | **1.8989** | | Perplexity | 13.37 | **6.68** | --- ## 🔍 Output Quality - ✅ Fluent chain-of-thought steps - ✅ Accurate arithmetic reasoning - ✅ Consistent use of scratchpad format (`<<...>>`) - ✅ Stable token alignment across nested logic --- ## 💾 Checkpointing - Safe save logic applied to avoid shared memory errors - Format: `.safetensors` - Best model: `checkpoints/epoch_2_loss_1.8989/` - Final model: `checkpoints/final/`
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756346913
Loder-S
2025-08-28T02:33:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:33:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756346638
hakimjustbao
2025-08-28T02:31:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:31:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gensynme/blockassist-bc-secretive_unseen_python_1756348155
gensynme
2025-08-28T02:29:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "secretive unseen python", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:29:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - secretive unseen python --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hazentr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-roaring_colorful_buffalo
hazentr
2025-08-28T02:29:04Z
133
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am roaring colorful buffalo", "trl", "genrl-swarm", "I am roaring_colorful_buffalo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-03T12:28:07Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-roaring_colorful_buffalo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am roaring colorful buffalo - trl - genrl-swarm - I am roaring_colorful_buffalo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-roaring_colorful_buffalo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hazentr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-roaring_colorful_buffalo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Uppal-Farm-Girl-viral-video-orginal/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
Uppal-Farm-Girl-viral-video-orginal
2025-08-28T02:24:50Z
0
0
null
[ "region:us" ]
null
2025-08-28T02:24:35Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
klmdr22/blockassist-bc-wild_loud_newt_1756347434
klmdr22
2025-08-28T02:17:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:17:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756347096
pidbu
2025-08-28T02:13:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:12:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vulnetix/Vulnetix-Pix-30b-INSTRUCT
Vulnetix
2025-08-28T02:10:24Z
0
0
null
[ "gguf", "code", "en", "base_model:Qwen/Qwen3-Coder-30B-A3B-Instruct", "base_model:quantized:Qwen/Qwen3-Coder-30B-A3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-27T06:56:16Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-Coder-30B-A3B-Instruct tags: - code ---
chaoqun11111/a2c-PandaReachDense-v3
chaoqun11111
2025-08-28T02:08:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-28T02:05:07Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kimz1/act-so100-policy-0828-1
Kimz1
2025-08-28T02:07:35Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:Kimz1/so100-teleop-record-0826-1", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-28T02:07:10Z
--- datasets: Kimz1/so100-teleop-record-0826-1 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python lerobot/scripts/train.py \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
bibpap/Qwen2.5-VL-3B-Instruct-Thinking
bibpap
2025-08-28T02:06:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "grpo", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-28T01:26:20Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: Qwen2.5-VL-3B-Instruct-Thinking tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for Qwen2.5-VL-3B-Instruct-Thinking This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bibpap/Qwen2.5-VL-3B-Instruct-Thinking", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756345106
Loder-S
2025-08-28T02:03:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:03:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756346509
pidbu
2025-08-28T02:03:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:02:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lautan/blockassist-bc-gentle_patterned_goat_1756344863
lautan
2025-08-28T02:03:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T02:03:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF
mradermacher
2025-08-28T01:59:57Z
0
0
transformers
[ "transformers", "gguf", "slm", "taiwan", "zh", "en", "base_model:aqweteddy/Llama3.2-TaiPhone-3B-Instruct-v0.2", "base_model:quantized:aqweteddy/Llama3.2-TaiPhone-3B-Instruct-v0.2", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-27T19:10:27Z
--- base_model: aqweteddy/Llama3.2-TaiPhone-3B-Instruct-v0.2 language: - zh - en library_name: transformers license: llama3.2 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - slm - taiwan --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/aqweteddy/Llama3.2-TaiPhone-3B-Instruct-v0.2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama3.2-TaiPhone-3B-Instruct-v0.2-GGUF/resolve/main/Llama3.2-TaiPhone-3B-Instruct-v0.2.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ACECA/lowMvMax_137
ACECA
2025-08-28T01:59:50Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T15:15:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756345243
Sayemahsjn
2025-08-28T01:59:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:59:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1756344745
quantumxnode
2025-08-28T01:58:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:58:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ACECA/lowMvMax_135
ACECA
2025-08-28T01:57:14Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-13T14:47:09Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
habikmenrav/blockassist-bc-frisky_leaping_bison_1756345885
habikmenrav
2025-08-28T01:52:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "frisky leaping bison", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:51:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - frisky leaping bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756345656
liukevin666
2025-08-28T01:48:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:48:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF
mradermacher
2025-08-28T01:44:05Z
0
1
transformers
[ "transformers", "gguf", "en", "base_model:ArtoriasTech/Odin-Instruct-Geopolitical-v1-merged", "base_model:quantized:ArtoriasTech/Odin-Instruct-Geopolitical-v1-merged", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-28T01:04:53Z
--- base_model: ArtoriasTech/Odin-Instruct-Geopolitical-v1-merged language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/ArtoriasTech/Odin-Instruct-Geopolitical-v1-merged <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Odin-Instruct-Geopolitical-v1-merged-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Odin-Instruct-Geopolitical-v1-merged-GGUF/resolve/main/Odin-Instruct-Geopolitical-v1-merged.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AnonymousCS/populism_classifier_bsample_338
AnonymousCS
2025-08-28T01:43:59Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_english_bert_large_cased", "base_model:finetune:AnonymousCS/populism_english_bert_large_cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-28T01:42:32Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_english_bert_large_cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_338 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_338 This model is a fine-tuned version of [AnonymousCS/populism_english_bert_large_cased](https://huggingface.co/AnonymousCS/populism_english_bert_large_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9885 - Accuracy: 0.7797 - 1-f1: 0.2981 - 1-recall: 0.8889 - 1-precision: 0.1791 - Balanced Acc: 0.8313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0552 | 1.0 | 8 | 0.8553 | 0.6920 | 0.2404 | 0.9259 | 0.1381 | 0.8025 | | 0.0142 | 2.0 | 16 | 0.8531 | 0.7719 | 0.2994 | 0.9259 | 0.1786 | 0.8447 | | 0.0025 | 3.0 | 24 | 1.1115 | 0.7193 | 0.2653 | 0.9630 | 0.1538 | 0.8344 | | 0.0134 | 4.0 | 32 | 0.9885 | 0.7797 | 0.2981 | 0.8889 | 0.1791 | 0.8313 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
aleebaster/blockassist-bc-sly_eager_boar_1756343570
aleebaster
2025-08-28T01:42:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:41:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756344986
liukevin666
2025-08-28T01:37:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:37:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ebadullah371/llama32_1b_baseline_personality
ebadullah371
2025-08-28T01:34:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-28T01:34:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
simonycl/octothinker-3b-hybrid-base-qwq-sft-checkpoint-462
simonycl
2025-08-28T01:34:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T01:31:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
XenoZLH/Shuffle-R1-Qwen-7B
XenoZLH
2025-08-28T01:32:52Z
0
0
null
[ "safetensors", "qwen2_5_vl", "arxiv:2508.05612", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-08-27T14:30:08Z
--- license: apache-2.0 base_model: - Qwen/Qwen2.5-VL-7B-Instruct --- # Shuffle-R1-Qwen-7B This is the model checkpoint of Shuffle-R1-Qwen-7B. It is trained based on [**Qwen2.5-VL-7B**](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) ## Model Performance | Model | MathVerse | MathVision | MathVista (mini) | WeMath (loose) | HallusionBench | ChartQA | Avg. | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Qwen2.5-VL-3B | 34.8 | 21.9 | 58.4 | 51.7 | 59.8 | 73.1 | 49.9 | | Qwen2.5-VL-7B | 42.6 | 25.8 | 67.4 | 63.5 | 65.2 | 79.8 | 57.4 | | Shuffle-R1-3B | 44.2 | 26.8 | 70.4 | 66.5 | 69.2 | 79.9 | 59.5 | | Shuffle-R1-7B | 53.9 | 30.0 | 77.0 | 72.3 | 71.0 | 84.1 | 64.7 | All models are evaluated under CoT prompt. ## Inference ### Using *Transformers* The process is the same as [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL). Note that it is better to add a "Thinking prompt" at the begining of user query. ``` from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info model_path = "path/to/your/checkpoint" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", ) processor = AutoProcessor.from_pretrained(model_path) system_prompt = """ You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in \\boxed{}. """ messages = [ { "role": "user", "content": [ {"type": "image", "image": "path/to/your/image"}, {"type": "text", "text": system_prompt + "YOUR TEXT QUERY HERE"}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Using *vLLM* Our model also supports inference using [**vLLM**](https://github.com/vllm-project/vllm). Please refer to our [**Official Repo**](https://github.com/xiaomi-research/shuffle-r1) for detailed instructions. ## Citation If you find our work useful for your research, please consider citing: ``` @misc{zhu2025shuffler1, title={Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle}, author={Linghao Zhu, Yiran Guan, Dingkang Liang, Jianzhong Ju, Zhenbo Luo, Bin Qin, Jian Luan, Yuliang Liu, Xiang Bai}, year={2025}, eprint={2508.05612}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.05612}, } ```
RTannous/merged_llama_text_model
RTannous
2025-08-28T01:29:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T01:26:14Z
--- base_model: unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** RTannous - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
the-acorn-ai/spiral-octothinker-8b-multi-step00288
the-acorn-ai
2025-08-28T01:29:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "spiral", "self-play", "reinforcement-learning", "octothinker", "multi-agent", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T01:28:21Z
--- base_model: OctoThinker-8B license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - spiral - self-play - reinforcement-learning - octothinker - multi-agent --- # SPIRAL OctoThinker-8B Multi-Agent Model This model was trained using the SPIRAL (Self-Play Iterative Reinforcement learning for Adaptation and Learning) framework. ## Model Details - **Base Model**: OctoAI/OctoThinker-8B - **Training Framework**: SPIRAL - **Checkpoint**: step_00288 - **Model Size**: 8B parameters - **Training Date**: 2025-08-27 ## Training Configuration The model was trained with self-play on multiple environments: - KuhnPoker-v1 - TicTacToe-v0 - SimpleNegotiation-v1 ### Training Parameters ```json { "learning_rate": "1e-6", "train_batch_size": 128, "num_ppo_epochs": 2, "temperature": 1.0, "max_model_len": 16384, "environments": [ "KuhnPoker-v1", "TicTacToe-v0", "SimpleNegotiation-v1" ], "base_model": "OctoThinker-8B", "framework": "SPIRAL" } ``` ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("the-acorn-ai/spiral-octothinker-8b-multi-step00288") model = AutoModelForCausalLM.from_pretrained( "the-acorn-ai/spiral-octothinker-8b-multi-step00288", torch_dtype=torch.bfloat16, device_map="auto" ) # Generate text inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## License This model is licensed under the Apache License 2.0.
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1756342911
manusiaperahu2012
2025-08-28T01:28:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:27:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_330
AnonymousCS
2025-08-28T01:26:54Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_english_bert_large_cased", "base_model:finetune:AnonymousCS/populism_english_bert_large_cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-28T01:25:44Z
--- library_name: transformers license: apache-2.0 base_model: AnonymousCS/populism_english_bert_large_cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_330 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_330 This model is a fine-tuned version of [AnonymousCS/populism_english_bert_large_cased](https://huggingface.co/AnonymousCS/populism_english_bert_large_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8806 - Accuracy: 0.7623 - 1-f1: 0.3310 - 1-recall: 1.0 - 1-precision: 0.1983 - Balanced Acc: 0.8737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0399 | 1.0 | 6 | 0.5833 | 0.8015 | 0.3721 | 1.0 | 0.2286 | 0.8945 | | 0.0832 | 2.0 | 12 | 0.4366 | 0.8505 | 0.4190 | 0.9167 | 0.2716 | 0.8815 | | 0.0031 | 3.0 | 18 | 0.6716 | 0.8064 | 0.3780 | 1.0 | 0.2330 | 0.8971 | | 0.0016 | 4.0 | 24 | 0.8806 | 0.7623 | 0.3310 | 1.0 | 0.1983 | 0.8737 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
the-acorn-ai/spiral-octothinker-8b-multi-step00192
the-acorn-ai
2025-08-28T01:26:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "spiral", "self-play", "reinforcement-learning", "octothinker", "multi-agent", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T01:25:20Z
--- base_model: OctoThinker-8B license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - spiral - self-play - reinforcement-learning - octothinker - multi-agent --- # SPIRAL OctoThinker-8B Multi-Agent Model This model was trained using the SPIRAL (Self-Play Iterative Reinforcement learning for Adaptation and Learning) framework. ## Model Details - **Base Model**: OctoAI/OctoThinker-8B - **Training Framework**: SPIRAL - **Checkpoint**: step_00192 - **Model Size**: 8B parameters - **Training Date**: 2025-08-27 ## Training Configuration The model was trained with self-play on multiple environments: - KuhnPoker-v1 - TicTacToe-v0 - SimpleNegotiation-v1 ### Training Parameters ```json { "learning_rate": "1e-6", "train_batch_size": 128, "num_ppo_epochs": 2, "temperature": 1.0, "max_model_len": 16384, "environments": [ "KuhnPoker-v1", "TicTacToe-v0", "SimpleNegotiation-v1" ], "base_model": "OctoThinker-8B", "framework": "SPIRAL" } ``` ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("the-acorn-ai/spiral-octothinker-8b-multi-step00192") model = AutoModelForCausalLM.from_pretrained( "the-acorn-ai/spiral-octothinker-8b-multi-step00192", torch_dtype=torch.bfloat16, device_map="auto" ) # Generate text inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## License This model is licensed under the Apache License 2.0.
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1756342740
quantumxnode
2025-08-28T01:24:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:24:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bittensorflower/Affine-5Chh9PxWfe4UUChsNR3Q2bVCLQFTwJ7ciTmfMQPMrAXqhnLz
bittensorflower
2025-08-28T01:23:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "conversational", "en", "arxiv:2407.10671", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T00:57:03Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B/blob/main/LICENSE language: - en pipeline_tag: text-generation library_name: transformers --- # Qwen2.5-0.5B ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the base 0.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 0.49B - Number of Paramaters (Non-Embedding): 0.36B - Number of Layers: 24 - Number of Attention Heads (GQA): 14 for Q and 2 for KV - Context Length: Full 32,768 tokens **We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
bah63843/blockassist-bc-plump_fast_antelope_1756344092
bah63843
2025-08-28T01:22:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:22:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MOONUIOP/blockassist-bc-tropical_mottled_clam_1756344039
MOONUIOP
2025-08-28T01:20:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tropical mottled clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:20:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tropical mottled clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756343717
klmdr22
2025-08-28T01:16:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:15:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756343539
pidbu
2025-08-28T01:13:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:13:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1756341075
acidjp
2025-08-28T01:13:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:13:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF
mradermacher
2025-08-28T01:12:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-train", "base_model:quantized:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-train", "endpoints_compatible", "region:us" ]
null
2025-08-28T00:50:38Z
--- base_model: EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-train language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-train <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q5_K_M.gguf) | Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-train-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-train.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
zuruyu/blockassist-bc-endangered_pesty_chinchilla_1756343263
zuruyu
2025-08-28T01:08:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered pesty chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:08:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered pesty chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alisongzhu/Qwen3-0.6B-rk3576-w4a16
alisongzhu
2025-08-28T01:02:35Z
0
0
null
[ "qwen3", "license:apache-2.0", "region:us" ]
null
2025-08-28T00:55:29Z
--- license: apache-2.0 ---
pidbu/blockassist-bc-whistling_alert_shrew_1756342798
pidbu
2025-08-28T01:01:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:00:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mokingtraver/blockassist-bc-downy_swift_iguana_1756342789
mokingtraver
2025-08-28T01:00:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "downy swift iguana", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:00:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - downy swift iguana --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756342761
bah63843
2025-08-28T01:00:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T01:00:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dxtrmst/gemma-3-270m-korean-tutor-v1
Dxtrmst
2025-08-28T00:56:58Z
0
1
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "endpoints_compatible", "region:us" ]
null
2025-08-16T03:03:43Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: gemma-3-270m-korean-tutor-v1 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-3-270m-korean-tutor-v1 This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Dxtrmst/gemma-3-270m-korean-tutor-v1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jezehelfranca-future_music/huggingface/runs/k3dmxu98) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Penny-1.7B-GGUF
mradermacher
2025-08-28T00:55:05Z
0
0
transformers
[ "transformers", "gguf", "safetensors", "onnx", "transformers.js", "en", "base_model:dleemiller/Penny-1.7B", "base_model:quantized:dleemiller/Penny-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-28T00:21:49Z
--- base_model: dleemiller/Penny-1.7B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - safetensors - onnx - transformers.js --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/dleemiller/Penny-1.7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Penny-1.7B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q5_K_M.gguf) | Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Penny-1.7B-GGUF/resolve/main/Penny-1.7B.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bah63843/blockassist-bc-plump_fast_antelope_1756342370
bah63843
2025-08-28T00:53:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:53:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
blocksync/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_shy_condor
blocksync
2025-08-28T00:50:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am extinct_shy_condor", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T00:50:17Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am extinct_shy_condor --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mokingtraver/blockassist-bc-downy_swift_iguana_1756342122
mokingtraver
2025-08-28T00:49:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "downy swift iguana", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:49:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - downy swift iguana --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/jib-mix-illustrious-realistic-v30-rapture-sdxl
John6666
2025-08-28T00:49:09Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "better photo realism", "skin", "color", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-28T00:40:27Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - better photo realism - skin - color - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1255024/jib-mix-illustrious-realistic?modelVersionId=2153749). This model created by [J1B](https://civitai.com/user/J1B).
thejaminator/grpo-feature-vector-step-75
thejaminator
2025-08-28T00:47:58Z
0
0
peft
[ "peft", "safetensors", "lora", "text-generation", "base_model:thejaminator/gemma-introspection-20250821-merged", "base_model:adapter:thejaminator/gemma-introspection-20250821-merged", "region:us" ]
text-generation
2025-08-28T00:47:38Z
--- base_model: thejaminator/gemma-introspection-20250821-merged library_name: peft tags: - lora - peft pipeline_tag: text-generation ---
A-keven/entrepreneur-readiness-model
A-keven
2025-08-28T00:45:53Z
0
0
null
[ "region:us" ]
null
2025-08-27T22:43:54Z
# Entrepreneur Readiness Predictor 🚀 This model predicts an individual's **entrepreneurial readiness** (score 1–10) using financial, personal, and skill-related features. ## Inputs - Saving amount - Monthly income - Monthly bills - Monthly entertainment - Sales skills (1–10) - Age - Dependents - Assets - Risk level (1–10) - Confidence (1–10) - Business difficulty (1–10) ## Outputs - **Readiness Score** (1–10) - **Readiness Level**: Low, Medium, or High - **Top Factors** that influenced the prediction ## Example Usage ```python import joblib, pandas as pd # Load model model = joblib.load("entrepreneur_readiness_model.pkl") features = joblib.load("feature_columns.pkl") # Example person person = pd.DataFrame([[50000,6000,2500,500,7,35,2,120000,6,8,5]], columns=features) print("Predicted readiness:", model.predict(person)[0])
TikTok-mano-ktk-kiss-viral-video-Clips/New.full.videos.mano.ktk.kiss.Viral.Video.Official.Tutorial
TikTok-mano-ktk-kiss-viral-video-Clips
2025-08-28T00:45:20Z
0
0
null
[ "region:us" ]
null
2025-08-28T00:45:04Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/yc2cw3by?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756340082
calegpedia
2025-08-28T00:39:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:39:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kinghanse/act_grab_almond
kinghanse
2025-08-28T00:35:13Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:kinghanse/grab_almond", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-28T00:34:53Z
--- datasets: kinghanse/grab_almond library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Dr-wong-lu-yang-wife-Viral-video-Clip/New.full.videos.dr.wong.lu.yang.cctv.Viral.Video.Official.Tutorial
Dr-wong-lu-yang-wife-Viral-video-Clip
2025-08-28T00:27:13Z
0
0
null
[ "region:us" ]
null
2025-08-28T00:27:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
bentrass/blockassist-bc-barky_twitchy_hare_1756340737
bentrass
2025-08-28T00:26:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky twitchy hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:26:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky twitchy hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756338973
chainway9
2025-08-28T00:24:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:24:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Andra76/blockassist-bc-deadly_enormous_butterfly_1756339829
Andra76
2025-08-28T00:21:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly enormous butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:20:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly enormous butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dr-wong-lu-yang-video-viral-telegram/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
Dr-wong-lu-yang-video-viral-telegram
2025-08-28T00:18:59Z
0
0
null
[ "region:us" ]
null
2025-08-28T00:18:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ywuachr/starling-whisper-medium-ct2-bf16
ywuachr
2025-08-28T00:11:05Z
0
0
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2025-08-27T23:59:44Z
--- language: en tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 ---
shawntzx/llama3grpo
shawntzx
2025-08-28T00:10:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T23:20:20Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: transformers model_name: llama3grpo tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for llama3grpo This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="shawntzx/llama3grpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AnonymousCS/populism_classifier_bsample_260
AnonymousCS
2025-08-28T00:07:48Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-28T00:07:20Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_260 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_260 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9377 - Accuracy: 0.7895 - 1-f1: 0.3077 - 1-recall: 0.8889 - 1-precision: 0.1860 - Balanced Acc: 0.8364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0457 | 1.0 | 8 | 0.8925 | 0.7212 | 0.2353 | 0.8148 | 0.1375 | 0.7654 | | 0.0358 | 2.0 | 16 | 0.8882 | 0.7251 | 0.2618 | 0.9259 | 0.1524 | 0.8200 | | 0.0077 | 3.0 | 24 | 1.0150 | 0.7466 | 0.2697 | 0.8889 | 0.1589 | 0.8138 | | 0.0168 | 4.0 | 32 | 0.9377 | 0.7895 | 0.3077 | 0.8889 | 0.1860 | 0.8364 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0-v2_7900
luckeciano
2025-08-28T00:06:00Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T20:06:24Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0-v2_7900 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0-v2_7900 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0-v2_7900", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/lv3e7n0v) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AnonymousCS/populism_classifier_bsample_258
AnonymousCS
2025-08-28T00:06:00Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-28T00:05:34Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_258 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_258 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5183 - Accuracy: 0.8992 - 1-f1: 0.4948 - 1-recall: 0.8571 - 1-precision: 0.3478 - Balanced Acc: 0.8794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1862 | 1.0 | 7 | 0.5108 | 0.8765 | 0.4737 | 0.9643 | 0.3140 | 0.9177 | | 0.0203 | 2.0 | 14 | 0.5728 | 0.8519 | 0.4286 | 0.9643 | 0.2755 | 0.9046 | | 0.0154 | 3.0 | 21 | 0.5183 | 0.8992 | 0.4948 | 0.8571 | 0.3478 | 0.8794 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Arrowny/cutefurry_mixed
Arrowny
2025-08-28T00:01:17Z
0
0
null
[ "region:us" ]
null
2025-08-27T22:36:35Z
Put "masterpiece, best quality" at the front of the prompt for best quality. Should do anime style by default. If you want to use the furry side of it, I put "kemono, anthro, (furry, fluffy fur:1.3)". I use default anime booru tags for prompting but I think furry booru tags might work as well.
AnonymousCS/populism_classifier_bsample_252
AnonymousCS
2025-08-28T00:00:04Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:59:20Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_252 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_252 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5679 - Accuracy: 0.8260 - 1-f1: 0.4034 - 1-recall: 1.0 - 1-precision: 0.2526 - Balanced Acc: 0.9076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0442 | 1.0 | 6 | 0.4997 | 0.8137 | 0.3770 | 0.9583 | 0.2347 | 0.8815 | | 0.1751 | 2.0 | 12 | 0.6237 | 0.8064 | 0.3780 | 1.0 | 0.2330 | 0.8971 | | 0.0456 | 3.0 | 18 | 0.3618 | 0.875 | 0.4848 | 1.0 | 0.32 | 0.9336 | | 0.0191 | 4.0 | 24 | 0.4841 | 0.8382 | 0.4211 | 1.0 | 0.2667 | 0.9141 | | 0.0157 | 5.0 | 30 | 0.5679 | 0.8260 | 0.4034 | 1.0 | 0.2526 | 0.9076 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Tinuva/Midkemia-Booru
Tinuva
2025-08-27T23:59:46Z
0
0
null
[ "license:other", "region:us" ]
null
2024-05-05T15:29:13Z
--- license: other license_name: fair-ai-public-license license_link: https://freedevproject.org/faipl-1.0-sd/ ---
aifeifei798/QiMing-Janus-Axiom_lora
aifeifei798
2025-08-27T23:57:18Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen3-14B-unsloth-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "conversational", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "region:us" ]
text-generation
2025-08-27T23:53:36Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen3-14B-unsloth-bnb-4bit - lora - sft - transformers - trl - unsloth --- - base_model:adapter:unsloth/Qwen3-14B-unsloth-bnb-4bit https://huggingface.co/datasets/aifeifei798/QiMing-Janus-Axiom
anirudhsrivastava/medsiglip-448-ft-crc100k
anirudhsrivastava
2025-08-27T23:56:41Z
2
0
transformers
[ "transformers", "tensorboard", "safetensors", "siglip", "zero-shot-image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/medsiglip-448", "base_model:finetune:google/medsiglip-448", "license:other", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2025-08-26T08:24:56Z
--- library_name: transformers license: other base_model: google/medsiglip-448 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: medsiglip-448-ft-crc100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medsiglip-448-ft-crc100k This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3465 | 0.3556 | 50 | 1.3722 | | 1.3101 | 0.7111 | 100 | 1.3356 | | 1.3028 | 1.064 | 150 | 1.2855 | | 1.2389 | 1.4196 | 200 | 1.3003 | | 1.2522 | 1.7751 | 250 | 1.2713 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.21.0
Ennthen/River-gut-celeste-12b-della
Ennthen
2025-08-27T23:56:14Z
0
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "TheDrummer/Rivermind-Lux-12B-v1", "nbeerbower/mistral-nemo-gutenberg-12B-v4", "nothingiisreal/MN-12B-Celeste-V1.9", "license:apache-2.0", "region:us" ]
null
2025-08-27T23:50:48Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - TheDrummer/Rivermind-Lux-12B-v1 - nbeerbower/mistral-nemo-gutenberg-12B-v4 - nothingiisreal/MN-12B-Celeste-V1.9 --- # River-gut-celeste-12b-della River-gut-celeste-12b-della is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [TheDrummer/Rivermind-Lux-12B-v1](https://huggingface.co/TheDrummer/Rivermind-Lux-12B-v1) * [nbeerbower/mistral-nemo-gutenberg-12B-v4](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg-12B-v4) * [nothingiisreal/MN-12B-Celeste-V1.9](https://huggingface.co/nothingiisreal/MN-12B-Celeste-V1.9) ## 🧩 Configuration ```yaml merge_method: della dtype: bfloat16 out_dtype: bfloat16 base_model: HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407 models: - model: TheDrummer/Rivermind-Lux-12B-v1 parameters: density: 0.6 weight: 0.7 - model: nbeerbower/mistral-nemo-gutenberg-12B-v4 parameters: density: 0.6 weight: 0.5 - model: nothingiisreal/MN-12B-Celeste-V1.9 parameters: density: 0.5 weight: 0.3 parameters: epsilon: 0.1 lambda: 1.0 ```
AnonymousCS/populism_classifier_bsample_248
AnonymousCS
2025-08-27T23:56:07Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:55:25Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_248 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_248 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0730 - Accuracy: 0.7205 - 1-f1: 0.1579 - 1-recall: 0.9808 - 1-precision: 0.0859 - Balanced Acc: 0.8470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1065 | 1.0 | 19 | 0.5146 | 0.8433 | 0.2394 | 0.9231 | 0.1375 | 0.8821 | | 0.1087 | 2.0 | 38 | 0.7989 | 0.7467 | 0.1686 | 0.9615 | 0.0924 | 0.8511 | | 0.0422 | 3.0 | 57 | 1.0730 | 0.7205 | 0.1579 | 0.9808 | 0.0859 | 0.8470 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
AnonymousCS/populism_classifier_bsample_247
AnonymousCS
2025-08-27T23:55:02Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:54:36Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_247 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_247 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7438 - Accuracy: 0.7653 - 1-f1: 0.2545 - 1-recall: 0.75 - 1-precision: 0.1533 - Balanced Acc: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1252 | 1.0 | 7 | 0.7356 | 0.8073 | 0.2628 | 0.6429 | 0.1651 | 0.7297 | | 0.1638 | 2.0 | 14 | 0.9859 | 0.6794 | 0.2222 | 0.8571 | 0.1277 | 0.7632 | | 0.1201 | 3.0 | 21 | 0.7438 | 0.7653 | 0.2545 | 0.75 | 0.1533 | 0.7581 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
kopertyposk/blockassist-bc-bellowing_quiet_dingo_1756338651
kopertyposk
2025-08-27T23:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing quiet dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:51:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing quiet dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_243
AnonymousCS
2025-08-27T23:51:20Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:50:52Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_243 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_243 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9323 - Accuracy: 0.7996 - 1-f1: 0.3194 - 1-recall: 0.8519 - 1-precision: 0.1966 - Balanced Acc: 0.8242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 1.1805 | 1.0 | 7 | 0.8153 | 0.8712 | 0.3368 | 0.5926 | 0.2353 | 0.7400 | | 0.0463 | 2.0 | 14 | 1.1002 | 0.7280 | 0.2652 | 0.8889 | 0.1558 | 0.8038 | | 0.1327 | 3.0 | 21 | 0.9323 | 0.7996 | 0.3194 | 0.8519 | 0.1966 | 0.8242 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756337531
Sayemahsjn
2025-08-27T23:50:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:49:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1756336746
ihsanridzi
2025-08-27T23:45:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:45:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_052
AnonymousCS
2025-08-27T23:34:48Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:34:02Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_052 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_052 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8004 - Accuracy: 0.7895 - 1-f1: 0.2895 - 1-recall: 0.8148 - 1-precision: 0.176 - Balanced Acc: 0.8014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0336 | 1.0 | 8 | 0.7242 | 0.7719 | 0.2822 | 0.8519 | 0.1691 | 0.8097 | | 0.0112 | 2.0 | 16 | 0.7139 | 0.7953 | 0.3137 | 0.8889 | 0.1905 | 0.8395 | | 0.0513 | 3.0 | 24 | 1.1909 | 0.6257 | 0.2131 | 0.9630 | 0.1198 | 0.7850 | | 0.0171 | 4.0 | 32 | 0.6467 | 0.8187 | 0.3212 | 0.8148 | 0.2 | 0.8169 | | 0.0212 | 5.0 | 40 | 0.8381 | 0.7368 | 0.2623 | 0.8889 | 0.1538 | 0.8086 | | 0.0151 | 6.0 | 48 | 0.8004 | 0.7895 | 0.2895 | 0.8148 | 0.176 | 0.8014 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
bah63843/blockassist-bc-plump_fast_antelope_1756337384
bah63843
2025-08-27T23:30:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:30:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Wiefdw/merged-tax-raft-mistral-7b_2
Wiefdw
2025-08-27T23:29:34Z
12
0
null
[ "safetensors", "mistral", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-27T14:58:35Z
# Merged Mistral 7B Model with LoRA Model ini adalah hasil fine-tuning `mistralai/Mistral-7B-Instruct-v0.2` menggunakan QLoRA pada dataset perpajakan Indonesia. Model ini telah digabung (merged) dan siap digunakan untuk inference.
neo-tax/foreign-language-filter-single-token
neo-tax
2025-08-27T23:29:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:00:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/populism_classifier_bsample_046
AnonymousCS
2025-08-27T23:28:06Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:27:34Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_046 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_046 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8538 - Accuracy: 0.7703 - 1-f1: 0.5 - 1-recall: 0.8276 - 1-precision: 0.3582 - Balanced Acc: 0.7943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0812 | 1.0 | 5 | 0.7852 | 0.7129 | 0.4915 | 1.0 | 0.3258 | 0.8333 | | 0.0352 | 2.0 | 10 | 0.7554 | 0.7751 | 0.5155 | 0.8621 | 0.3676 | 0.8116 | | 0.0171 | 3.0 | 15 | 0.8233 | 0.7751 | 0.4946 | 0.7931 | 0.3594 | 0.7827 | | 0.0191 | 4.0 | 20 | 0.8538 | 0.7703 | 0.5 | 0.8276 | 0.3582 | 0.7943 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756337200
ggozzy
2025-08-27T23:27:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:27:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmeujjgwj02alsr53gahv4cr8_cmeujqy8z02b7sr53pbbwggvd
BootesVoid
2025-08-27T23:24:48Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-27T23:24:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AMIRA --- # Cmeujjgwj02Alsr53Gahv4Cr8_Cmeujqy8Z02B7Sr53Pbbwggvd <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AMIRA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AMIRA", "lora_weights": "https://huggingface.co/BootesVoid/cmeujjgwj02alsr53gahv4cr8_cmeujqy8z02b7sr53pbbwggvd/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmeujjgwj02alsr53gahv4cr8_cmeujqy8z02b7sr53pbbwggvd', weight_name='lora.safetensors') image = pipeline('AMIRA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmeujjgwj02alsr53gahv4cr8_cmeujqy8z02b7sr53pbbwggvd/discussions) to add images that show off what you’ve made with this LoRA.
klmdr22/blockassist-bc-wild_loud_newt_1756337023
klmdr22
2025-08-27T23:24:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:24:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756336917
sarathkachiprath
2025-08-27T23:22:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:22:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_039
AnonymousCS
2025-08-27T23:20:44Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:20:06Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_039 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_039 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8163 - Accuracy: 0.8340 - 1-f1: 0.3256 - 1-recall: 0.75 - 1-precision: 0.2079 - Balanced Acc: 0.7944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0313 | 1.0 | 7 | 0.9990 | 0.9141 | 0.3478 | 0.4286 | 0.2927 | 0.6851 | | 0.5024 | 2.0 | 14 | 0.7573 | 0.8550 | 0.3559 | 0.75 | 0.2333 | 0.8054 | | 0.1534 | 3.0 | 21 | 1.1994 | 0.6966 | 0.2464 | 0.9286 | 0.1421 | 0.8060 | | 0.0213 | 4.0 | 28 | 0.8163 | 0.8340 | 0.3256 | 0.75 | 0.2079 | 0.7944 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Albert753258/Qwen3-0.6B-Gensyn-Swarm-endangered_whistling_wasp
Albert753258
2025-08-27T23:20:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am endangered_whistling_wasp", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T22:43:09Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am endangered_whistling_wasp --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756335195
vwzyrraz7l
2025-08-27T23:18:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:18:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarathkachiprath/blockassist-bc-slithering_tropical_weasel_1756336650
sarathkachiprath
2025-08-27T23:18:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering tropical weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:17:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering tropical weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756335523
Sayemahsjn
2025-08-27T23:18:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:18:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vertomanion/blockassist-bc-toothy_agile_mink_1756336567
vertomanion
2025-08-27T23:16:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "toothy agile mink", "arxiv:2504.07091", "region:us" ]
null
2025-08-27T23:16:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - toothy agile mink --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_bsample_034
AnonymousCS
2025-08-27T23:14:52Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-27T23:13:53Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_034 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_bsample_034 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7421 - Accuracy: 0.7949 - 1-f1: 0.3540 - 1-recall: 1.0 - 1-precision: 0.2151 - Balanced Acc: 0.8914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0452 | 1.0 | 6 | 0.5724 | 0.7640 | 0.3226 | 1.0 | 0.1923 | 0.875 | | 0.0251 | 2.0 | 12 | 0.6141 | 0.7809 | 0.3390 | 1.0 | 0.2041 | 0.8839 | | 0.0333 | 3.0 | 18 | 0.5585 | 0.8146 | 0.3654 | 0.95 | 0.2262 | 0.8783 | | 0.0148 | 4.0 | 24 | 0.6092 | 0.7865 | 0.3333 | 0.95 | 0.2021 | 0.8634 | | 0.009 | 5.0 | 30 | 0.5340 | 0.8455 | 0.4086 | 0.95 | 0.2603 | 0.8946 | | 0.0044 | 6.0 | 36 | 0.6464 | 0.8062 | 0.3551 | 0.95 | 0.2184 | 0.8738 | | 0.0035 | 7.0 | 42 | 0.7421 | 0.7949 | 0.3540 | 1.0 | 0.2151 | 0.8914 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3