modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513
deepesh0x
2022-06-24T17:25:28Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:deepesh0x/autotrain-data-bert_wikipedia_sst_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T17:17:14Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-bert_wikipedia_sst_2 co2_eq_emissions: 16.686945384446037 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034235513 - CO2 Emissions (in grams): 16.686945384446037 ## Validation Metrics - Loss: 0.14450643956661224 - Accuracy: 0.9527839643652561 - Precision: 0.9565852363250132 - Recall: 0.9588767633750332 - AUC: 0.9872179498202862 - F1: 0.9577296291373122 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gballoccu/q-FrozenLake-v1-4x4-Slippery
gballoccu
2022-06-24T17:18:20Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T16:58:42Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.81 +/- 0.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gballoccu/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
gballoccu/q-FrozenLake-v1-4x4-noSlippery
gballoccu
2022-06-24T17:01:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T17:01:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gballoccu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
philschmid/DistilBERT-Banking77
philschmid
2022-06-24T14:31:49Z
20
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "en", "dataset:banking77", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T10:38:18Z
--- tags: autotrain language: en widget: - text: I am still waiting on my card? datasets: - banking77 model-index: - name: BERT-Banking77 results: - task: name: Text Classification type: text-classification dataset: name: BANKING77 type: banking77 metrics: - name: Accuracy type: accuracy value: 91.99 - name: Macro F1 type: macro-f1 value: 91.99 - name: Weighted F1 type: weighted-f1 value: 91.99 - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: test metrics: - name: Accuracy type: accuracy value: 0.922077922077922 verified: true - name: Precision Macro type: precision value: 0.9256326708783564 verified: true - name: Precision Micro type: precision value: 0.922077922077922 verified: true - name: Precision Weighted type: precision value: 0.9256326708783565 verified: true - name: Recall Macro type: recall value: 0.922077922077922 verified: true - name: Recall Micro type: recall value: 0.922077922077922 verified: true - name: Recall Weighted type: recall value: 0.922077922077922 verified: true - name: F1 Macro type: f1 value: 0.9221617304411865 verified: true - name: F1 Micro type: f1 value: 0.922077922077922 verified: true - name: F1 Weighted type: f1 value: 0.9221617304411867 verified: true - name: loss type: loss value: 0.31692808866500854 verified: true co2_eq_emissions: 5.632805352029529 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 940131045 - CO2 Emissions (in grams): 5.632805352029529 ## Validation Metrics - Loss: 0.3392622470855713 - Accuracy: 0.9199410609037328 - Macro F1: 0.9199390885956755 - Micro F1: 0.9199410609037327 - Weighted F1: 0.9198140295005729 - Macro Precision: 0.9235531521509113 - Micro Precision: 0.9199410609037328 - Weighted Precision: 0.9228777883152248 - Macro Recall: 0.919570805773292 - Micro Recall: 0.9199410609037328 - Weighted Recall: 0.9199410609037328 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/philschmid/autotrain-does-it-work-940131045 ``` Or Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_id = 'philschmid/DistilBERT-Banking77' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') ```
Corianas/ppo-QbertNoFrameskip-v4_3.load-best
Corianas
2022-06-24T13:56:07Z
2
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T13:55:03Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 16115.00 +/- 3313.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
philschmid/habana-xlm-r-large-amazon-massive
philschmid
2022-06-24T13:38:20Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "optimum_habana", "xlm-roberta", "text-classification", "generated_from_trainer", "habana", "dataset:AmazonScience/massive", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T14:16:49Z
--- license: apache-2.0 tags: - generated_from_trainer - habana datasets: - AmazonScience/massive metrics: - accuracy - f1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # philschmid/habana-xlm-r-large-amazon-massive This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the AmazonScience/massive dataset. It achieves the following results on the evaluation set: ## 8x HPU approx. 41min **train results** ```bash {'loss': 0.2651, 'learning_rate': 2.4e-05, 'epoch': 1.0} {'loss': 0.1079, 'learning_rate': 1.8e-05, 'epoch': 2.0} {'loss': 0.0563, 'learning_rate': 1.2e-05, 'epoch': 3.0} {'loss': 0.0308, 'learning_rate': 6e-06, 'epoch': 4.0} {'loss': 0.0165, 'learning_rate': 0.0, 'epoch': 5.0} ``` total ```bash {'train_runtime': 3172.4502, 'train_samples_per_second': 127.028, 'train_steps_per_second': 1.986, 'train_loss': 0.09531746031746031, 'epoch': 5.0} ``` **eval results** ```bash {'eval_loss': 0.3128528892993927, 'eval_accuracy': 0.9125852013210597, 'eval_f1': 0.9125852013210597, 'eval_runtime': 45.1795, 'eval_samples_per_second': 314.988, 'eval_steps_per_second': 4.936, 'epoch': 1.0} {'eval_loss': 0.36222779750823975, 'eval_accuracy': 0.9134987000210807, 'eval_f1': 0.9134987000210807, 'eval_runtime': 29.8241, 'eval_samples_per_second': 477.165, 'eval_steps_per_second': 7.477, 'epoch': 2.0} {'eval_loss': 0.3943144679069519, 'eval_accuracy': 0.9140608530672476, 'eval_f1': 0.9140 608530672476, 'eval_runtime': 30.1085, 'eval_samples_per_second': 472.657, 'eval_steps_per_second': 7.407, 'epoch': 3.0} {'eval_loss': 0.40938863158226013, 'eval_accuracy': 0.9158878504672897, 'eval_f1': 0.9158878504672897, 'eval_runtime': 30.4546, 'eval_samples_per_second': 467.286, 'eval_steps_per_second': 7.322, 'epoch': 4.0} {'eval_loss': 0.4137658476829529, 'eval_accuracy': 0.9172932330827067, 'eval_f1': 0.9172932330827067, 'eval_runtime': 30.3464, 'eval_samples_per_second': 468.952, 'eval_steps_per_second': 7.348, 'epoch': 5.0} ``` # Environment The training was run on a `DL1` instance on AWS using Habana Gaudi1 and `optimum`. see for more information: https://github.com/philschmid/deep-learning-habana-huggingface
Corianas/ppo-QbertNoFrameskip-v4_3
Corianas
2022-06-24T13:34:09Z
0
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T13:33:03Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 16147.50 +/- 1760.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
joefarrington/dqn-SpaceInvadersNoFrameskip-v4
joefarrington
2022-06-24T12:49:24Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-23T13:10:22Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 977.00 +/- 313.93 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga joefarrington -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga joefarrington ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dnouri-kipoi/pyt
dnouri-kipoi
2022-06-24T12:47:13Z
0
0
null
[ "kipoi", "region:us" ]
null
2022-06-24T11:20:03Z
--- tags: - kipoi --- Simple testing model for Kipoi/pytorch by Roman Kreuzhuber
amorfati/mt5-small-finetuned-amazon-en-es
amorfati
2022-06-24T12:17:04Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-24T10:12:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: amorfati/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amorfati/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7070 - Validation Loss: 2.5179 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 200000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.7070 | 2.5179 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
ashraq/movielense_user_model_cos_384
ashraq
2022-06-24T11:32:28Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-24T11:32:14Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
codeparrot/codeparrot
codeparrot
2022-06-24T08:28:28Z
2,327
104
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "code", "generation", "dataset:codeparrot/codeparrot-clean-train", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: code tags: - code - gpt2 - generation datasets: - codeparrot/codeparrot-clean-train widget: - text: "from transformer import" example_title: "Transformers" - text: "def print_hello_world():\n\t" example_title: "Hello World!" - text: "def get_file_size(filepath):" example_title: "File size" - text: "import numpy as" example_title: "Numpy" model-index: - name: codeparrot results: - task: name: Code Generation type: code-generation dataset: name: "HumanEval" type: openai_humaneval metrics: - name: pass@1 type: code_eval value: 3.99 - name: pass@10 type: code_eval value: 8.69 - name: pass@100 type: code_eval value: 17.88 --- # CodeParrot 🦜 CodeParrot 🦜 is a GPT-2 model (1.5B parameters) trained to generate Python code. After the initial training and release of v1.0 we trained the model some more and released v1.1 (see below for details). ## Usage You can load the CodeParrot model and tokenizer directly in `transformers`: ```Python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot") model = AutoModelWithLMHead.from_pretrained("codeparrot/codeparrot") inputs = tokenizer("def hello_world():", return_tensors="pt") outputs = model(**inputs) ``` or with a `pipeline`: ```Python from transformers import pipeline pipe = pipeline("text-generation", model="codeparrot/codeparrot") outputs = pipe("def hello_world():") ``` ## Training The model was trained on the cleaned [CodeParrot 🦜 dataset](https://huggingface.co/datasets/codeparrot/codeparrot-clean) in two steps. After the initial training (v1.0) the model was trained for another 30k steps resulting in v1.1 and you find the settings in the following table: |Config| v1.0| v1.1| |------|------------------|--------------------| |Batch size| 512 | 512 | |Context size| 1024 | 1024 | |Training steps| 50'000| 30'000 |Gradient accumulation| 16| 16 | |Gradient checkpointing| True| True | |Learning rate| 2e-4 | 5e-5 | |Weight decay | 0.1 | 0.1 | |Warmup steps| 750 | 750 | |Schedule| Cosine | Cosine | The training was executed on 16 x A100 (40GB) GPUs. This setting amounts to roughly 26 + 15 billion tokens. ## Performance We evaluated the model on OpenAI's [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark which consists of programming challenges: | Metric | v1.0 | v1.1 | |--------|-----|-----| |pass@1 | 3.58% | 3.99% | |pass@10 | 8.03% | 8.69% | |pass@100 | 14.96% | 17.88% | The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests. ## Resources - Dataset: [full](https://huggingface.co/datasets/codeparrot/codeparrot-clean), [train](https://huggingface.co/datasets/codeparrot/codeparrot-clean-train), [valid](https://huggingface.co/datasets/codeparrot/codeparrot-clean-valid) - Code: [repository](https://github.com/huggingface/transformers/tree/master/examples/research_projects/codeparrot) - Spaces: [generation](), [highlighting]()
humhealth/chroniccaremanagement
humhealth
2022-06-24T08:14:42Z
0
0
null
[ "license:bsl-1.0", "region:us" ]
null
2022-06-24T08:14:24Z
--- license: bsl-1.0 --- https://www.humhealth.com/chronic-care-management/
humhealth/remote-patientmonitoring
humhealth
2022-06-24T08:08:34Z
0
1
null
[ "license:bsl-1.0", "region:us" ]
null
2022-06-24T08:07:20Z
--- license: bsl-1.0 --- https://www.humhealth.com/remote-patient-monitoring/ https://www.humhealth.com/chronic-care-management/
wiselinjayajos/t5-end2end-questions-generation
wiselinjayajos
2022-06-24T08:04:22Z
9
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:wiselinjayajos/squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-22T17:26:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wiselinjayajos/squad_modified_for_t5_qg widget: - text: "generate question: Python is developed by Guido Van Rossum and released in 1991.</s>" model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5879 | 0.34 | 100 | 1.9133 | | 1.9688 | 0.68 | 200 | 1.7313 | | 1.8513 | 1.02 | 300 | 1.6691 | | 1.7459 | 1.36 | 400 | 1.6413 | | 1.7206 | 1.69 | 500 | 1.6200 | | 1.7026 | 2.03 | 600 | 1.6101 | | 1.6447 | 2.37 | 700 | 1.5983 | | 1.6402 | 2.71 | 800 | 1.5979 | | 1.6332 | 3.05 | 900 | 1.5924 | | 1.5953 | 3.39 | 1000 | 1.5877 | | 1.5922 | 3.73 | 1100 | 1.5854 | | 1.5832 | 4.07 | 1200 | 1.5830 | | 1.5726 | 4.41 | 1300 | 1.5799 | | 1.5587 | 4.75 | 1400 | 1.5789 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jwang/tuned-t5
jwang
2022-06-24T06:18:32Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-24T06:16:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: jwang/tuned-t5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jwang/tuned-t5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6386 - Validation Loss: 3.3773 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.7547 | 3.4438 | 0 | | 4.6135 | 3.4096 | 1 | | 4.6386 | 3.3773 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v1
gary109
2022-06-24T05:43:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-23T07:53:29Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v1 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0763 - Wer: 0.7344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1632 | 1.0 | 150 | 1.2007 | 0.9875 | | 1.1615 | 2.0 | 300 | 1.1912 | 0.9875 | | 1.1487 | 3.0 | 450 | 1.1942 | 0.9875 | | 1.1207 | 4.0 | 600 | 1.1753 | 0.9875 | | 1.0638 | 5.0 | 750 | 1.1345 | 0.8214 | | 1.0174 | 6.0 | 900 | 1.1541 | 0.7665 | | 0.9946 | 7.0 | 1050 | 1.0799 | 0.7716 | | 0.9694 | 8.0 | 1200 | 1.0848 | 0.7418 | | 0.9566 | 9.0 | 1350 | 1.0763 | 0.7344 | | 0.9466 | 10.0 | 1500 | 1.0791 | 0.7240 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
Rahulrr/language_model_en_he
Rahulrr
2022-06-24T05:31:17Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "he", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-24T05:28:35Z
--- language: - en - he tags: - translation license: apache-2.0 --- ### en-he * source group: English * target group: Hebrew * OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md) * model: transformer-align * source language(s): eng * target language(s): heb * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.zip) * test set translations: [opus+bt-2021-04-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.test.txt) * test set scores: [opus+bt-2021-04-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test.eng-heb | 37.8 | 0.601 | 10000 | 60359 | 1.000 | ### System Info: - hf_name: en-he - source_languages: eng - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'he'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.test.txt - src_alpha3: eng - tgt_alpha3: heb - chrF2_score: 0.601 - bleu: 37.8 - src_name: English - tgt_name: Hebrew - train_date: 2021-04-13 00:00:00 - src_alpha2: en - tgt_alpha2: he - prefer_old: False - short_pair: en-he - helsinki_git_sha: c4e978d8de47875b482653b423dcfe968979d7d5 - transformers_git_sha: 56b83cf049823ed074a655eceb28f31e2077c6eb - port_machine: LAPIN4GLQ2G3 - port_time: 2022-06-22-19:47
iaanimashaun/distilgpt2-finetuned-wikitext2
iaanimashaun
2022-06-24T05:13:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T10:57:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7852 | 1.0 | 2334 | 3.6895 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
sharpcoder/wav2vec2_bjorn
sharpcoder
2022-06-24T04:24:07Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-23T02:53:37Z
This project is meant to fine-tune the facebook/wav2vec2 speech-to-text library using my voice specifically for my own speech to text purposes.
sonalily/distilgpt2-finetuned-wikitext2
sonalily
2022-06-24T04:14:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T01:12:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7607 | 1.0 | 2334 | 3.6664 | | 3.6527 | 2.0 | 4668 | 3.6473 | | 3.6015 | 3.0 | 7002 | 3.6429 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sijunhe/nezha-cn-base
sijunhe
2022-06-24T03:53:56Z
1,269
11
transformers
[ "transformers", "pytorch", "nezha", "fill-mask", "arxiv:1909.00204", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-18T16:39:15Z
--- license: afl-3.0 --- **Please use 'Bert' related tokenizer classes and 'Nezha' related model classes** [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. The original checkpoints can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch) ## Example Usage ``` from transformers import BertTokenizer, NezhaModel tokenizer = BertTokenizer.from_pretrained('sijunhe/nezha-cn-base') model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") text = "我爱北京天安门" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
ferzimo/dummy-model
ferzimo
2022-06-24T03:41:38Z
4
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T03:36:09Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.0 - TensorFlow 2.7.0 - Datasets 2.3.2 - Tokenizers 0.12.1
mwong/albert-base-climate-claim-related
mwong
2022-06-24T03:35:34Z
3
2
transformers
[ "transformers", "pytorch", "albert", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-claim-related", "dataset:mwong/climate-claim-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:56:10Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-claim-related - mwong/climate-claim-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # ClimateAlbert ClimateAlbert is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 85.33% with test dataset "mwong/climate-claim-related". Using pretrained albert-base-v2 model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
mwong/albert-base-fever-claim-related
mwong
2022-06-24T03:34:53Z
8
2
transformers
[ "transformers", "pytorch", "albert", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-claim-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:49:48Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-claim-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # FeverAlbert FeverAlbert is a classifier model that predicts if evidence is related to query claim. The model achieved F1 score of 88.33% with test dataset "mwong/fever-claim-related". Using pretrained albert-base-v2 model, the classifier head is trained on Fever dataset.
mwong/roberta-base-climate-evidence-related
mwong
2022-06-24T03:34:04Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-evidence-related", "dataset:mwong/climate-evidence-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:52:55Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-evidence-related - mwong/climate-evidence-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # ClimateRoberta ClimateRoberta is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 80.13% with test dataset "mwong/climate-evidence-related". Using pretrained roberta-base model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
mwong/climatebert-base-f-climate-evidence-related
mwong
2022-06-24T03:32:39Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-evidence-related", "dataset:mwong/climate-evidence-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:58:32Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-evidence-related - mwong/climate-evidence-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # ClimateBert-related ClimateBert-related is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 81.90% with test dataset "mwong/climate-evidence-related". Using pretrained ClimateBert-f model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
eugenetanjc/wav2vec2-base-timit-demo-google-colab
eugenetanjc
2022-06-24T02:12:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-18T09:33:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
TencentGameMate/chinese-wav2vec2-large
TencentGameMate
2022-06-24T02:11:54Z
702
17
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-02T06:20:03Z
--- license: mit --- Pretrained on 10k hours WenetSpeech L subset. More details in [TencentGameMate/chinese_speech_pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. python package: transformers==4.16.2 ```python import torch import torch.nn.functional as F import soundfile as sf from fairseq import checkpoint_utils from transformers import ( Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining, Wav2Vec2Model, ) from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices model_path="" wav_path="" mask_prob=0.0 mask_length=10 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path) model = Wav2Vec2Model.from_pretrained(model_path) # for pretrain: Wav2Vec2ForPreTraining # model = Wav2Vec2ForPreTraining.from_pretrained(model_path) model = model.to(device) model = model.half() model.eval() wav, sr = sf.read(wav_path) input_values = feature_extractor(wav, return_tensors="pt").input_values input_values = input_values.half() input_values = input_values.to(device) # for Wav2Vec2ForPreTraining # batch_size, raw_sequence_length = input_values.shape # sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) # mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2) # mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long) with torch.no_grad(): outputs = model(input_values) last_hidden_state = outputs.last_hidden_state # for Wav2Vec2ForPreTraining # outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True) # last_hidden_state = outputs.hidden_states[-1] ```
TencentGameMate/chinese-wav2vec2-base
TencentGameMate
2022-06-24T01:53:18Z
625
24
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-02T06:17:07Z
--- license: mit --- Pretrained on 10k hours WenetSpeech L subset. More details in [TencentGameMate/chinese_speech_pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. python package: transformers==4.16.2 ```python import torch import torch.nn.functional as F import soundfile as sf from fairseq import checkpoint_utils from transformers import ( Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining, Wav2Vec2Model, ) from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices model_path="" wav_path="" mask_prob=0.0 mask_length=10 feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path) model = Wav2Vec2Model.from_pretrained(model_path) # for pretrain: Wav2Vec2ForPreTraining # model = Wav2Vec2ForPreTraining.from_pretrained(model_path) model = model.to(device) model = model.half() model.eval() wav, sr = sf.read(wav_path) input_values = feature_extractor(wav, return_tensors="pt").input_values input_values = input_values.half() input_values = input_values.to(device) # for Wav2Vec2ForPreTraining # batch_size, raw_sequence_length = input_values.shape # sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) # mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2) # mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long) with torch.no_grad(): outputs = model(input_values) last_hidden_state = outputs.last_hidden_state # for Wav2Vec2ForPreTraining # outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True) # last_hidden_state = outputs.hidden_states[-1] ```
TencentGameMate/chinese-hubert-base
TencentGameMate
2022-06-24T01:52:57Z
1,878
36
transformers
[ "transformers", "pytorch", "hubert", "feature-extraction", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-02T06:21:23Z
--- license: mit --- Pretrained on 10k hours WenetSpeech L subset. More details in [TencentGameMate/chinese_speech_pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. python package: transformers==4.16.2 ```python import torch import torch.nn.functional as F import soundfile as sf from transformers import ( Wav2Vec2FeatureExtractor, HubertModel, ) model_path="" wav_path="" feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path) model = HubertModel.from_pretrained(model_path) # for pretrain: Wav2Vec2ForPreTraining # model = Wav2Vec2ForPreTraining.from_pretrained(model_path) model = model.to(device) model = model.half() model.eval() wav, sr = sf.read(wav_path) input_values = feature_extractor(wav, return_tensors="pt").input_values input_values = input_values.half() input_values = input_values.to(device) with torch.no_grad(): outputs = model(input_values) last_hidden_state = outputs.last_hidden_state ```
rcanand/dqn-SpaceInvadersNoFrameskip-v4
rcanand
2022-06-24T01:37:45Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T01:37:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 204.00 +/- 149.11 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rcanand -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rcanand ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
tuhina13/q-Taxi-v3
tuhina13
2022-06-23T23:36:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-23T23:36:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.44 +/- 2.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tuhina13/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
tuhina13/q-FrozenLake-v1-4x4-noSlippery
tuhina13
2022-06-23T23:29:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-23T23:29:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tuhina13/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
By43532/Dog
By43532
2022-06-23T20:21:02Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-23T20:21:02Z
--- license: bigscience-bloom-rail-1.0 ---
ArthurZ/opt-66000m
ArthurZ
2022-06-23T16:24:11Z
0
0
null
[ "opt_metasq", "region:us" ]
null
2022-06-23T16:20:29Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
THUDM/CogView2
THUDM
2022-06-23T15:36:19Z
0
7
null
[ "arxiv:2204.14217", "license:apache-2.0", "region:us" ]
null
2022-06-22T11:23:42Z
--- license: apache-2.0 --- # CogView2 ## Model description **CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers** - [Paper](https://arxiv.org/abs/2204.14217) - [GitHub Repo](https://github.com/THUDM/CogView2) ### Abstract The development of the transformer-based text-to-image models are impeded by its slow generation and complexity for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel auto-regressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, Cross-modal general language model (CogLM), and finetune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images. ## BibTeX entry and citation info ```bibtex @article{ding2022cogview2, title={CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers}, author={Ding, Ming and Zheng, Wendi and Hong, Wenyi and Tang, Jie}, journal={arXiv preprint arXiv:2204.14217}, year={2022} } ```
404E/autotrain-formality-1026434913
404E
2022-06-23T15:19:21Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:404E/autotrain-data-formality", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T15:15:53Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - 404E/autotrain-data-formality co2_eq_emissions: 7.300283563922049 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 1026434913 - CO2 Emissions (in grams): 7.300283563922049 ## Validation Metrics - Loss: 0.5467672348022461 - MSE: 0.5467672944068909 - MAE: 0.5851736068725586 - R2: 0.6883510493648173 - RMSE: 0.7394371628761292 - Explained Variance: 0.6885714530944824 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/404E/autotrain-formality-1026434913 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("404E/autotrain-formality-1026434913", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("404E/autotrain-formality-1026434913", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gastronomia-para-to2/gastronomia_para_to2
gastronomia-para-to2
2022-06-23T14:55:10Z
33
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "recipe-generation", "es", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T06:26:01Z
--- language: - es tags: - generated_from_trainer - recipe-generation widget: - text: "<RECIPE_START> <INPUT_START> salmón <NEXT_INPUT> zumo de naranja <NEXT_INPUT> aceite de oliva <NEXT_INPUT> sal <NEXT_INPUT> pimienta <INPUT_END> <INGR_START>" - text: "<RECIPE_START> <INPUT_START> harina <NEXT_INPUT> azúcar <NEXT_INPUT> huevos <NEXT_INPUT> chocolate <NEXT_INPUT> levadura Royal <INPUT_END> <INGR_START>" inference: parameters: top_k: 50 top_p: 0.92 do_sample: True num_return_sequences: 3 max_new_tokens: 100 --- # Model description This model is a fine-tuned version of [flax-community/gpt-2-spanish](https://huggingface.co/flax-community/gpt-2-spanish) on a custom dataset (not publicly available). The dataset is made of crawled data from 3 Spanish cooking websites and it contains approximately ~50000 recipes. It achieves the following results on the evaluation set: - Loss: 0.5796 ## Contributors - Julián Cendrero ([jucendrero](https://huggingface.co/jucendrero)) - Silvia Duque ([silBERTa](https://huggingface.co/silBERTa)) ## How to use it ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_checkpoint = 'gastronomia-para-to2/gastronomia_para_to2' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForCausalLM.from_pretrained(model_checkpoint) ``` The tokenizer makes use of the following special tokens to indicate the structure of the recipe: ```python special_tokens = [ '<INPUT_START>', '<NEXT_INPUT>', '<INPUT_END>', '<TITLE_START>', '<TITLE_END>', '<INGR_START>', '<NEXT_INGR>', '<INGR_END>', '<INSTR_START>', '<NEXT_INSTR>', '<INSTR_END>', '<RECIPE_START>', '<RECIPE_END>'] ``` The input should be of the form: ```python <RECIPE_START> <INPUT_START> ingredient_1 <NEXT_INPUT> ingredient_2 <NEXT_INPUT> ... <NEXT_INPUT> ingredient_n <INPUT_END> <INGR_START> ``` We are using the following configuration to generate recipes, but feel free to change parameters as needed: ```python tokenized_input = tokenizer(input, return_tensors='pt') output = model.generate(**tokenized_input, max_length=600, do_sample=True, top_p=0.92, top_k=50, num_return_sequences=3) pre_output = tokenizer.decode(output[0], skip_special_tokens=False) ``` The recipe ends where the \<RECIPE_END\> special token appears for the first time. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6213 | 1.0 | 5897 | 0.6214 | | 0.5905 | 2.0 | 11794 | 0.5995 | | 0.5777 | 3.0 | 17691 | 0.5893 | | 0.574 | 4.0 | 23588 | 0.5837 | | 0.5553 | 5.0 | 29485 | 0.5807 | | 0.5647 | 6.0 | 35382 | 0.5796 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## References The list of special tokens used for generation recipe structure has been taken from: [RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation](https://www.aclweb.org/anthology/2020.inlg-1.4.pdf).
WindowsRegedit/zuowen
WindowsRegedit
2022-06-23T12:47:18Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T08:46:56Z
### 作文模型 使用方法,请参考[Python 自动写作文库](https://github.com/WindowsRegedit/zuowen)
transZ/M2M_Vi_Ba
transZ
2022-06-23T11:01:27Z
5
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "translation", "vi", "ba", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T15:26:10Z
--- language: - vi - ba tags: - translation datasets: - custom dataset metrics: - bleu - sacrebleu --- # How to run the model ```python from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer model = M2M100ForConditionalGeneration.from_pretrained("transZ/M2M_Vi_Ba") tokenizer = M2M100Tokenizer.from_pretrained("transZ/M2M_Vi_Ba") tokenizer.src_lang = "vi" vi_text = "Hôm nay ba đi chợ." encoded_vi = tokenizer(vi_text, return_tensors="pt") generated_tokens = model.generate(**encoded_vi, forced_bos_token_id=tokenizer.get_lang_id("ba")) translate = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] print(translate) ```
aico/TrOCR-MNIST
aico
2022-06-23T10:38:57Z
14
1
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-06-23T06:47:08Z
Fine Tune MNIST dataset on the ViT TrOCR model accuracy = 0.99525 ref: http://yann.lecun.com/exdb/mnist/ https://github.com/microsoft/unilm/tree/master/trocr
Homayoon83/Carball
Homayoon83
2022-06-23T09:55:39Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-23T09:55:38Z
--- license: bigscience-bloom-rail-1.0 ---
Saraswati/TEST2ppo-LunarLander-v2
Saraswati
2022-06-23T08:54:21Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T11:28:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 195.82 +/- 82.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="Saraswati/TEST2ppo-LunarLander-v2", filename="{MODEL FILENAME}.zip", ) ... ```
cjbarrie/autotrain-atc2
cjbarrie
2022-06-23T08:01:58Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:cjbarrie/autotrain-data-traintest-sentiment-split", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T07:59:46Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - cjbarrie/autotrain-data-traintest-sentiment-split co2_eq_emissions: 3.1566482249518177 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1024534825 - CO2 Emissions (in grams): 3.1566482249518177 ## Validation Metrics - Loss: 0.5167999267578125 - Accuracy: 0.7523809523809524 - Precision: 0.7377049180327869 - Recall: 0.5555555555555556 - AUC: 0.8142525600535937 - F1: 0.6338028169014086 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-traintest-sentiment-split-1024534825 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534825", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
cjbarrie/autotrain-atc
cjbarrie
2022-06-23T08:00:44Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "en", "dataset:cjbarrie/autotrain-data-traintest-sentiment-split", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T07:59:29Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - cjbarrie/autotrain-data-traintest-sentiment-split co2_eq_emissions: 2.288443953210163 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1024534822 - CO2 Emissions (in grams): 2.288443953210163 ## Validation Metrics - Loss: 0.5510443449020386 - Accuracy: 0.7619047619047619 - Precision: 0.6761363636363636 - Recall: 0.7345679012345679 - AUC: 0.7936883912336109 - F1: 0.7041420118343196 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-traintest-sentiment-split-1024534822 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534822", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-traintest-sentiment-split-1024534822", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
MRF18/results
MRF18
2022-06-23T07:18:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T04:42:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [MRF18/results](https://huggingface.co/MRF18/results) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kktoto/4L_weight_decay
kktoto
2022-06-23T04:49:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-23T03:17:44Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 4L_weight_decay results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 4L_weight_decay This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1312 - Precision: 0.7006 - Recall: 0.6863 - F1: 0.6934 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.157 | 1.0 | 5561 | 0.1464 | 0.6943 | 0.6153 | 0.6524 | 0.9465 | | 0.1454 | 2.0 | 11122 | 0.1396 | 0.6921 | 0.6491 | 0.6699 | 0.9486 | | 0.1414 | 3.0 | 16683 | 0.1372 | 0.6841 | 0.6746 | 0.6793 | 0.9492 | | 0.1335 | 4.0 | 22244 | 0.1339 | 0.6997 | 0.6617 | 0.6802 | 0.9505 | | 0.1308 | 5.0 | 27805 | 0.1339 | 0.6963 | 0.6763 | 0.6862 | 0.9510 | | 0.1285 | 6.0 | 33366 | 0.1320 | 0.7102 | 0.6639 | 0.6863 | 0.9519 | | 0.1257 | 7.0 | 38927 | 0.1306 | 0.7031 | 0.6771 | 0.6898 | 0.9521 | | 0.1222 | 8.0 | 44488 | 0.1324 | 0.7005 | 0.6836 | 0.6919 | 0.9522 | | 0.1207 | 9.0 | 50049 | 0.1313 | 0.7017 | 0.6832 | 0.6923 | 0.9524 | | 0.1195 | 10.0 | 55610 | 0.1312 | 0.7006 | 0.6863 | 0.6934 | 0.9524 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huawei-noah/SPIRAL-base-MCT
huawei-noah
2022-06-23T03:29:31Z
0
0
null
[ "region:us" ]
null
2022-06-17T09:19:20Z
SPIRAL: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training ======== This is the pretrained model of **SPIRAL Base with Multi-Condition Training**, trained with 960-hour LibriSpeech data, and noise dataset from [ICASSP 2021 DNS Challenge](https://github.com/microsoft/DNS-Challenge/tree/icassp2021-final) for noise robustness. Citation ======== If you find SPIRAL useful in your research, please cite the following paper: ``` @inproceedings{huang2022spiral, title={{SPIRAL}: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training}, author={Wenyong Huang and Zhenhe Zhang and Yu Ting Yeung and Xin Jiang and Qun Liu}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=TBpg4PnXhYH} } ```
huawei-noah/SPIRAL-Large
huawei-noah
2022-06-23T03:29:03Z
0
0
null
[ "region:us" ]
null
2022-06-17T09:17:20Z
SPIRAL: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training ======== This is the pretrained model of **SPIRAL LARGE**, trained with 60k-hour LibriLight data Citation ======== If you find SPIRAL useful in your research, please cite the following paper: ``` @inproceedings{huang2022spiral, title={{SPIRAL}: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training}, author={Wenyong Huang and Zhenhe Zhang and Yu Ting Yeung and Xin Jiang and Qun Liu}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=TBpg4PnXhYH} } ```
huawei-noah/SPIRAL-base
huawei-noah
2022-06-23T03:26:09Z
0
0
null
[ "region:us" ]
null
2022-06-14T09:40:29Z
SPIRAL: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training ======== This is the pretrained model of **SPIRAL Base**, trained with 960-hour LibriSpeech data Citation ======== If you find SPIRAL useful in your research, please cite the following paper: ``` @inproceedings{huang2022spiral, title={{SPIRAL}: Self-supervised Perturbation-Invariant Representation Learning for Speech Pre-Training}, author={Wenyong Huang and Zhenhe Zhang and Yu Ting Yeung and Xin Jiang and Qun Liu}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=TBpg4PnXhYH} } ```
martin-ha/text_image_dual_encoder
martin-ha
2022-06-23T03:23:43Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-20T16:19:19Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamW', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay': 0.001, 'exclude_from_weight_decay': None} - training_precision: float32 ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634735
justpyschitry
2022-06-23T02:24:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:justpyschitry/autotrain-data-Wikipeida_Article_Classifier_by_Chap", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T02:16:40Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - justpyschitry/autotrain-data-Wikipeida_Article_Classifier_by_Chap co2_eq_emissions: 16.816741650923202 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1022634735 - CO2 Emissions (in grams): 16.816741650923202 ## Validation Metrics - Loss: 0.4373569190502167 - Accuracy: 0.9027552674230146 - Macro F1: 0.8938134766263609 - Micro F1: 0.9027552674230146 - Weighted F1: 0.9023653852553881 - Macro Precision: 0.8970541297231431 - Micro Precision: 0.9027552674230146 - Weighted Precision: 0.903514305510645 - Macro Recall: 0.892665778987219 - Micro Recall: 0.9027552674230146 - Weighted Recall: 0.9027552674230146 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634735 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634735", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("justpyschitry/autotrain-Wikipeida_Article_Classifier_by_Chap-1022634735", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BigSalmon/InformalToFormalLincoln52
BigSalmon
2022-06-23T02:02:34Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T01:38:07Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln52") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln52") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ```
akraut/test_model
akraut
2022-06-23T01:04:38Z
0
0
null
[ "image-classification", "license:afl-3.0", "region:us" ]
image-classification
2022-06-22T21:56:23Z
--- tags: - image-classification license: afl-3.0 ---
Popppoogtcdcr/H
Popppoogtcdcr
2022-06-23T00:33:17Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-06-23T00:33:17Z
--- license: cc-by-nc-sa-4.0 ---
tals/albert-base-vitaminc_flagging
tals
2022-06-22T23:56:43Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
JMillan/q-Taxi-v3
JMillan
2022-06-22T22:35:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T22:35:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JMillan/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Dugerij/q-Taxi-v3
Dugerij
2022-06-22T21:43:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T21:43:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Dugerij/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Dugerij/q-FrozenLake-v1-4x4-noSlippery
Dugerij
2022-06-22T21:37:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T21:37:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Dugerij/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
mmillet/xlmroberta-2nd-finetune-epru
mmillet
2022-06-22T19:14:28Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T18:38:34Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlmroberta-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta-2nd-finetune-epru This model is a fine-tuned version of [mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3666 - Accuracy: 0.9325 - F1: 0.9329 - Precision: 0.9352 - Recall: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4757 | 1.0 | 12 | 0.2387 | 0.9264 | 0.9267 | 0.9333 | 0.9264 | | 0.3086 | 2.0 | 24 | 0.3059 | 0.9141 | 0.9143 | 0.9270 | 0.9141 | | 0.2151 | 3.0 | 36 | 0.2394 | 0.9202 | 0.9214 | 0.9266 | 0.9202 | | 0.1629 | 4.0 | 48 | 0.3025 | 0.9325 | 0.9332 | 0.9385 | 0.9325 | | 0.0911 | 5.0 | 60 | 0.2597 | 0.9387 | 0.9390 | 0.9434 | 0.9387 | | 0.0455 | 6.0 | 72 | 0.3476 | 0.9387 | 0.9389 | 0.9400 | 0.9387 | | 0.0521 | 7.0 | 84 | 0.3630 | 0.9325 | 0.9329 | 0.9356 | 0.9325 | | 0.029 | 8.0 | 96 | 0.3100 | 0.9509 | 0.9513 | 0.9531 | 0.9509 | | 0.0379 | 9.0 | 108 | 0.3044 | 0.9448 | 0.9450 | 0.9455 | 0.9448 | | 0.0363 | 10.0 | 120 | 0.4181 | 0.9141 | 0.9147 | 0.9191 | 0.9141 | | 0.0165 | 11.0 | 132 | 0.3666 | 0.9325 | 0.9329 | 0.9352 | 0.9325 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented
mmillet
2022-06-22T18:01:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T17:23:58Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4650 - Accuracy: 0.8820 - F1: 0.8814 - Precision: 0.8871 - Recall: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8868 | 1.0 | 69 | 0.4939 | 0.8403 | 0.8376 | 0.8431 | 0.8403 | | 0.4248 | 2.0 | 138 | 0.3969 | 0.8779 | 0.8768 | 0.8798 | 0.8779 | | 0.3197 | 3.0 | 207 | 0.4019 | 0.8758 | 0.8757 | 0.8758 | 0.8758 | | 0.2737 | 4.0 | 276 | 0.3915 | 0.8831 | 0.8827 | 0.8847 | 0.8831 | | 0.2053 | 5.0 | 345 | 0.4445 | 0.8643 | 0.8650 | 0.8714 | 0.8643 | | 0.1705 | 6.0 | 414 | 0.4650 | 0.8820 | 0.8814 | 0.8871 | 0.8820 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
atendstowards0/codeparrot-ds
atendstowards0
2022-06-22T17:56:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-22T17:45:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
jamesmarcel/xlm-roberta-base-finetuned-panx-de
jamesmarcel
2022-06-22T17:26:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-22T17:03:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
mayoughi/where_am_I_hospital-balcony-hallway-airport-coffee-house
mayoughi
2022-06-22T16:00:57Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-22T16:00:45Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: where_am_I_hospital-balcony-hallway-airport-coffee-house results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8839285969734192 --- # where_am_I_hospital-balcony-hallway-airport-coffee-house Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### airport ![airport](images/airport.jpg) #### balcony ![balcony](images/balcony.jpg) #### coffee house indoors ![coffee house indoors](images/coffee_house_indoors.jpg) #### hallway ![hallway](images/hallway.jpg) #### hospital ![hospital](images/hospital.jpg)
mmazuecos/q-FrozenLake-v1-4x4-noSlippery
mmazuecos
2022-06-22T15:57:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T15:57:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mmazuecos/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
abhishek/autotrain-dog-vs-food
abhishek
2022-06-22T14:51:28Z
61
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain", "dataset:abhishek/autotrain-data-vision_652fee16113a4f07a2452e021a22a934", "dataset:sasha/dog-food", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-22T10:33:54Z
--- tags: autotrain datasets: - abhishek/autotrain-data-vision_652fee16113a4f07a2452e021a22a934 - sasha/dog-food co2_eq_emissions: 2.050948967287266 model-index: - name: autotrain-dog-vs-food results: - task: name: Image Classification type: image-classification dataset: name: sasha/dog-food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 0.9976190476190476 - task: type: image-classification name: Image Classification dataset: name: sasha/dog-food type: sasha/dog-food config: sasha--dog-food split: test metrics: - name: Accuracy type: accuracy value: 1.0 verified: true - name: Precision type: precision value: 1.0 verified: true - name: Recall type: recall value: 1.0 verified: true - name: AUC type: auc value: 1.0 verified: true - name: F1 type: f1 value: 1.0 verified: true - name: loss type: loss value: 0.001115015591494739 verified: true --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 264300 - CO2 Emissions (in grams): 2.050948967287266 ## Validation Metrics - Loss: 0.009216072037816048 - Accuracy: 0.9976190476190476 - Macro F1: 0.9973261861865685 - Micro F1: 0.9976190476190476 - Weighted F1: 0.997621154535828 - Macro Precision: 0.9964539007092199 - Micro Precision: 0.9976190476190476 - Weighted Precision: 0.9976359338061465 - Macro Recall: 0.9982142857142857 - Micro Recall: 0.9976190476190476 - Weighted Recall: 0.9976190476190476
sasha/dog-food-convnext-tiny-224
sasha
2022-06-22T13:56:32Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "huggingpics", "dataset:sasha/dog-food", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T14:10:13Z
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-convnext-tiny-224 results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-food-convnext-tiny-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/image2.jpg) #### food ![food](images/image1.jpg)
flood/xlm-roberta-base-finetuned-panx-all
flood
2022-06-22T13:50:09Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:31:22Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - F1: 0.8525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1894 | 0.8104 | | 0.1564 | 2.0 | 1670 | 0.1751 | 0.8423 | | 0.1032 | 3.0 | 2505 | 0.1739 | 0.8525 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
flood/xlm-roberta-base-finetuned-panx-en
flood
2022-06-22T13:43:46Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T17:25:36Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4025 - F1: 0.6778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1069 | 1.0 | 50 | 0.5201 | 0.5010 | | 0.4975 | 2.0 | 100 | 0.4503 | 0.6198 | | 0.3705 | 3.0 | 150 | 0.4025 | 0.6778 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Massinissa/Jeux2BERT
Massinissa
2022-06-22T12:45:12Z
14
0
transformers
[ "transformers", "pytorch", "flaubert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-02T15:46:03Z
# Jeux2BERT Jeux2BERT is a Flaubert language model augmented by the lexico-semantic network JeuxDeMots. Thus, this model tries to capture the distributional and relational properties of words, but also tries to discriminate the different relational properties between words or syntagms. The Web application includes three Tasks : Link Prediction (Classification de triplets), Relation Prediction (Prédiction de Relation) and Triple Ranking (Classement de triplets) # Web App [https://github.com/atmani-massinissa/Jeux2BERT_APP/tree/main] # Demo [https://share.streamlit.io/atmani-massinissa/jeux2bert_app/main/app.py?page=Classement+de+triplets] The task Triple Ranking (Classement de triplets) don't run smoothly on the streamlit server because of the inference's time, so it's better to run it locally instead on the demo's server.
ml4pubmed/xtremedistil-l12-h384-uncased_pub_section
ml4pubmed
2022-06-22T12:29:07Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "document sections", "sentence classification", "document classification", "medical", "health", "biomedical", "en", "dataset:pubmed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-04T01:32:45Z
--- language: - en datasets: - pubmed metrics: - f1 tags: - text-classification - document sections - sentence classification - document classification - medical - health - biomedical pipeline_tag: text-classification widget: - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "background example" - text: "a total of 192 mi patients and 140 control persons were included." example_title: "methods example" - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "results example" - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "conclusions example" - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995." example_title: "objective example" --- # xtremedistil-l12-h384-uncased_pub_section - original model file name: textclassifer_xtremedistil-l12-h384-uncased_pubmed_20k - This is a fine-tuned checkpoint of `microsoft/xtremedistil-l12-h384-uncased` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## usage in python install transformers as needed: `pip install -U transformers` run the following, changing the example text to your use case: ``` from transformers import pipeline model_tag = "ml4pubmed/xtremedistil-l12-h384-uncased_pub_section" classifier = pipeline( 'text-classification', model=model_tag, ) prompt = """ Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. """ classifier( prompt, ) # classify the sentence ``` ## metadata ### training_parameters - date_run: Apr-24-2022_t-12 - huggingface_tag: microsoft/xtremedistil-l12-h384-uncased
Mizew/autotrain-avar-1016534299
Mizew
2022-06-22T12:12:07Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "translation", "en", "es", "dataset:Mizew/autotrain-data-avar", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T11:55:38Z
--- tags: - autotrain - translation language: - en - es datasets: - Mizew/autotrain-data-avar co2_eq_emissions: 0.07815966018818815 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1016534299 - CO2 Emissions (in grams): 0.07815966018818815 ## Validation Metrics - Loss: 0.9978321194648743 - SacreBLEU: 13.8459 - Gen len: 6.0588
Corianas/qrdqn-3Frame-SpaceInvadersNoFrameskip_1.best
Corianas
2022-06-22T10:31:17Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T07:14:05Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 1855.50 +/- 869.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. [W&B report](https://wandb.ai/corianas/sb3/reports/QRDQN-Agent-playing-SpaceInvadersNoFrameskip-v4--VmlldzoyMjA4NDk4) There is a longer video of this agent playing at [Youtube](https://youtu.be/OmxWdSx0ouY) ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 3), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
Corianas/qrdqn-3Frame-SpaceInvadersNoFrameskip_1
Corianas
2022-06-22T10:29:37Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T07:11:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 1582.00 +/- 771.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. [W&B report](https://wandb.ai/corianas/sb3/reports/QRDQN-Agent-playing-SpaceInvadersNoFrameskip-v4--VmlldzoyMjA4NDk4) ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 3), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
ThomasSimonini/MLAgents-Pyramids
ThomasSimonini
2022-06-22T09:57:13Z
14
2
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-03-16T10:07:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: ThomasSimonini/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Elron/deberta-v3-large-emotion
Elron
2022-06-22T09:48:01Z
14
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T08:54:48Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2787 | 0.49 | 100 | 1.1127 | 0.4866 | | 1.089 | 0.98 | 200 | 0.9668 | 0.7139 | | 0.9134 | 1.47 | 300 | 0.8720 | 0.7834 | | 0.8618 | 1.96 | 400 | 0.7726 | 0.7941 | | 0.686 | 2.45 | 500 | 0.7337 | 0.8209 | | 0.6333 | 2.94 | 600 | 0.7350 | 0.8235 | | 0.5765 | 3.43 | 700 | 0.7561 | 0.8235 | | 0.5502 | 3.92 | 800 | 0.7273 | 0.8476 | | 0.5049 | 4.41 | 900 | 0.8137 | 0.8102 | | 0.4695 | 4.9 | 1000 | 0.7581 | 0.8289 | | 0.4657 | 5.39 | 1100 | 0.8404 | 0.8048 | | 0.4549 | 5.88 | 1200 | 0.7800 | 0.8369 | | 0.4305 | 6.37 | 1300 | 0.8575 | 0.8235 | | 0.4209 | 6.86 | 1400 | 0.8572 | 0.8102 | | 0.3983 | 7.35 | 1500 | 0.8392 | 0.8316 | | 0.4139 | 7.84 | 1600 | 0.8152 | 0.8209 | | 0.393 | 8.33 | 1700 | 0.8261 | 0.8289 | | 0.3979 | 8.82 | 1800 | 0.8328 | 0.8235 | | 0.3928 | 9.31 | 1900 | 0.8364 | 0.8209 | | 0.3848 | 9.8 | 2000 | 0.8322 | 0.8235 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Elron/deberta-v3-large-offensive
Elron
2022-06-22T09:47:41Z
6
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T08:56:09Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6417 | 0.27 | 100 | 0.6283 | 0.6533 | | 0.5105 | 0.54 | 200 | 0.4588 | 0.7915 | | 0.4554 | 0.81 | 300 | 0.4500 | 0.7968 | | 0.4212 | 1.08 | 400 | 0.4773 | 0.7938 | | 0.4054 | 1.34 | 500 | 0.4311 | 0.7983 | | 0.3922 | 1.61 | 600 | 0.4588 | 0.7998 | | 0.3776 | 1.88 | 700 | 0.4367 | 0.8066 | | 0.3535 | 2.15 | 800 | 0.4675 | 0.8074 | | 0.33 | 2.42 | 900 | 0.4874 | 0.8021 | | 0.3113 | 2.69 | 1000 | 0.4949 | 0.8044 | | 0.3203 | 2.96 | 1100 | 0.4550 | 0.8059 | | 0.248 | 3.23 | 1200 | 0.4858 | 0.8036 | | 0.2478 | 3.49 | 1300 | 0.5299 | 0.8029 | | 0.2371 | 3.76 | 1400 | 0.5013 | 0.7991 | | 0.2388 | 4.03 | 1500 | 0.5520 | 0.8021 | | 0.1744 | 4.3 | 1600 | 0.6687 | 0.7915 | | 0.1788 | 4.57 | 1700 | 0.7560 | 0.7689 | | 0.1652 | 4.84 | 1800 | 0.6985 | 0.7832 | | 0.1596 | 5.11 | 1900 | 0.7191 | 0.7915 | | 0.1214 | 5.38 | 2000 | 0.9097 | 0.7893 | | 0.1432 | 5.64 | 2100 | 0.9184 | 0.7787 | | 0.1145 | 5.91 | 2200 | 0.9620 | 0.7878 | | 0.1069 | 6.18 | 2300 | 0.9489 | 0.7893 | | 0.1012 | 6.45 | 2400 | 1.0107 | 0.7817 | | 0.0942 | 6.72 | 2500 | 1.0021 | 0.7885 | | 0.087 | 6.99 | 2600 | 1.1090 | 0.7915 | | 0.0598 | 7.26 | 2700 | 1.1735 | 0.7795 | | 0.0742 | 7.53 | 2800 | 1.1433 | 0.7817 | | 0.073 | 7.79 | 2900 | 1.1343 | 0.7953 | | 0.0553 | 8.06 | 3000 | 1.2258 | 0.7840 | | 0.0474 | 8.33 | 3100 | 1.2461 | 0.7817 | | 0.0515 | 8.6 | 3200 | 1.2996 | 0.7825 | | 0.0551 | 8.87 | 3300 | 1.2819 | 0.7855 | | 0.0541 | 9.14 | 3400 | 1.2808 | 0.7855 | | 0.0465 | 9.41 | 3500 | 1.3398 | 0.7817 | | 0.0407 | 9.68 | 3600 | 1.3231 | 0.7825 | | 0.0343 | 9.94 | 3700 | 1.3330 | 0.7825 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
asnorkin/q-FrozenLake-v1-4x4-noSlippery
asnorkin
2022-06-22T09:22:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T09:22:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kktoto/tiny_no_focal_v2
kktoto
2022-06-22T08:50:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-22T06:39:14Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_no_focal_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_no_focal_v2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1314 - Precision: 0.7013 - Recall: 0.6837 - F1: 0.6924 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1574 | 1.0 | 5561 | 0.1471 | 0.6907 | 0.6186 | 0.6527 | 0.9462 | | 0.1456 | 2.0 | 11122 | 0.1396 | 0.6923 | 0.6473 | 0.6690 | 0.9485 | | 0.1412 | 3.0 | 16683 | 0.1373 | 0.6845 | 0.6705 | 0.6774 | 0.9490 | | 0.1338 | 4.0 | 22244 | 0.1343 | 0.6988 | 0.6640 | 0.6810 | 0.9505 | | 0.1311 | 5.0 | 27805 | 0.1342 | 0.6971 | 0.6751 | 0.6859 | 0.9510 | | 0.1289 | 6.0 | 33366 | 0.1324 | 0.7081 | 0.6653 | 0.6860 | 0.9517 | | 0.1258 | 7.0 | 38927 | 0.1309 | 0.7053 | 0.6731 | 0.6888 | 0.9521 | | 0.1223 | 8.0 | 44488 | 0.1325 | 0.7001 | 0.6818 | 0.6908 | 0.9519 | | 0.1213 | 9.0 | 50049 | 0.1316 | 0.7020 | 0.6813 | 0.6915 | 0.9522 | | 0.1197 | 10.0 | 55610 | 0.1314 | 0.7013 | 0.6837 | 0.6924 | 0.9522 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
unity/ML-Agents-Worm
unity
2022-06-22T08:25:30Z
0
1
ml-agents
[ "ml-agents", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "license:apache-2.0", "region:us" ]
reinforcement-learning
2022-06-22T06:51:06Z
--- license: apache-2.0 tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: unity/ML-Agents-Worm 3. Step 2: Select your *.nn or *.onnx file 4. Click on Watch the agent play 👀
unity/ML-Agents-Walker
unity
2022-06-22T08:24:57Z
0
7
ml-agents
[ "ml-agents", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Walker", "license:apache-2.0", "region:us" ]
reinforcement-learning
2022-06-22T07:07:20Z
--- license: apache-2.0 tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Walker library_name: ml-agents --- # **ppo** Agent playing **Walker** This is a trained model of a **ppo** agent playing **Walker** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Walker 2. Step 1: Write your model_id: unity/ML-Agents-Walker 3. Step 2: Select your *.nn or *.onnx file 4. Click on Watch the agent play 👀
merve/text_image_dual_encoder
merve
2022-06-22T08:17:42Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-22T08:17:04Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
shahma/distilbert-base-uncased-finetuned-squad
shahma
2022-06-22T07:22:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-22T02:02:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
shpotes/codegen-350M-mono
shpotes
2022-06-22T06:02:10Z
17
3
transformers
[ "transformers", "pytorch", "codegen", "text-generation", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-30T06:37:21Z
--- license: bsd-3-clause --- # Overview The CodeGen model was proposed in by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. From Salesforce Research. The abstract from the paper is the following: Program synthesis strives to generate a computer program as a solution to a given problem specification. We propose a conversational program synthesis approach via large language models, which addresses the challenges of searching over a vast program space and user intent specification faced in prior approaches. Our new approach casts the process of writing a specification and program as a multi-turn conversation between a user and a system. It treats program synthesis as a sequence prediction problem, in which the specification is expressed in natural language and the desired program is conditionally sampled. We train a family of large language models, called CodeGen, on natural language and programming language data. With weak supervision in the data and the scaling up of data size and model size, conversational capacities emerge from the simple autoregressive language modeling. To study the model behavior on conversational program synthesis, we develop a multi-turn programming benchmark (MTPB), where solving each problem requires multi-step synthesis via multi-turn conversation between the user and the model. Our findings show the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis paradigm. In addition, our model CodeGen (with up to 16B parameters trained on TPU-v4) outperforms OpenAI's Codex on the HumanEval benchmark. We plan to make the training library JaxFormer including checkpoints available as open source. # How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("shpotes/codegen-350M-mono") model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono", trust_remote_code=True) input_ids = tokenizer( context, truncation=True, padding=True, return_tensors='pt', pad_token_id=pad_token_id, ).input_ids input_ids_len = input_ids.shape[1] with torch.no_grad(): input_ids = input_ids tokens = model.generate( input_ids, do_sample=True, num_return_sequences=num_return_sequences, temperature=temp, max_length=input_ids_len + max_length_sample, top_p=top_p, use_cache=True, ) text = tokenizer.batch_decode(tokens[:, input_ids_len:, ...]) ```
Suva/uptag-url-model-v2
Suva
2022-06-22T05:48:40Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:arxiv", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-17T04:46:15Z
--- datasets: - arxiv widget: - text: "summarize: We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machinelearning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems." license: mit --- ## Usage: ```python abstract = """We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machine learning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems. """ ``` ### Using Transformers🤗 ```python model_name = "Suva/uptag-url-model-v2" from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_ids = tokenizer.encode("summarize: " + abstract, return_tensors="pt", add_special_tokens=True) generated_ids = model.generate(input_ids=input_ids,num_beams=5,max_length=100,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=3) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) # output ["Overton: Building, Deploying, and Monitoring Machine Learning Systems for Engineers", "Overton: A System for Building, Monitoring, and Improving Production Machine Learning Systems", "Overton: Building, Monitoring, and Improving Production Machine Learning Systems"] ```
RuiqianLi/Malaya-speech_fine-tune_realcase_22_Jun
RuiqianLi
2022-06-22T04:55:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-22T04:11:45Z
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: Malaya-speech_fine-tune_realcase_22_Jun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Malaya-speech_fine-tune_realcase_22_Jun This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. It achieves the following results on the evaluation set: - Loss: 0.9569 - Wer: 0.4062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6913 | 20.0 | 100 | 0.9569 | 0.4062 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
vanichandna/xlm-roberta-finetuned-squad
vanichandna
2022-06-22T04:49:42Z
8
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-07T09:42:26Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: vanichandna/xlmroberta-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vanichandna/xlmroberta-squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an SQuAD v1.1 dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6636 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2842 | 0 | | 0.8425 | 1 | | 0.6636 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
veb/twitch-distilbert-base-cased-finetuned
veb
2022-06-22T04:24:36Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-22T04:18:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: veb/twitch-distilbert-base-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # veb/twitch-distilbert-base-cased-finetuned This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.5140 - Validation Loss: 5.4524 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -982, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.5140 | 5.4524 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.7.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-finetuned-squad
Evelyn18
2022-06-22T03:50:33Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:becasv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-08T22:17:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.0087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.5219 | | No log | 2.0 | 10 | 4.9747 | | No log | 3.0 | 15 | 4.5448 | | No log | 4.0 | 20 | 4.1843 | | No log | 5.0 | 25 | 3.8491 | | No log | 6.0 | 30 | 3.6789 | | No log | 7.0 | 35 | 3.5018 | | No log | 8.0 | 40 | 3.4254 | | No log | 9.0 | 45 | 3.4566 | | No log | 10.0 | 50 | 3.4326 | | No log | 11.0 | 55 | 3.5741 | | No log | 12.0 | 60 | 3.5260 | | No log | 13.0 | 65 | 3.7003 | | No log | 14.0 | 70 | 3.7499 | | No log | 15.0 | 75 | 3.7961 | | No log | 16.0 | 80 | 3.8578 | | No log | 17.0 | 85 | 3.9928 | | No log | 18.0 | 90 | 4.0305 | | No log | 19.0 | 95 | 4.0024 | | No log | 20.0 | 100 | 4.0087 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
csukuangfj/sherpa-long-audio-test-data
csukuangfj
2022-06-22T03:24:49Z
0
0
null
[ "region:us" ]
null
2022-06-22T03:22:53Z
# Introduction Long sound files for testing streaming ASR in [sherpa](https://github.com/k2-fsa/sherpa).
heriosousa/dqn-SpaceInvadersNoFrameskip-v4
heriosousa
2022-06-22T03:16:32Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T03:15:52Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 653.00 +/- 141.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga heriosousa -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga heriosousa ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
gary109
2022-06-22T02:22:03Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-21T09:18:30Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Wer: 0.1597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1335 | 1.0 | 138 | 0.4256 | 0.1605 | | 0.1288 | 2.0 | 276 | 0.4234 | 0.1602 | | 0.1278 | 3.0 | 414 | 0.4243 | 0.1597 | | 0.1345 | 4.0 | 552 | 0.4231 | 0.1597 | | 0.1344 | 5.0 | 690 | 0.4246 | 0.1597 | | 0.1237 | 6.0 | 828 | 0.4279 | 0.1595 | | 0.1109 | 7.0 | 966 | 0.4354 | 0.1573 | | 0.1247 | 8.0 | 1104 | 0.4318 | 0.1570 | | 0.1372 | 9.0 | 1242 | 0.4341 | 0.1573 | | 0.1256 | 10.0 | 1380 | 0.4328 | 0.1575 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
lucianpopa/autotrain-qn-classification-1015534072
lucianpopa
2022-06-21T22:26:00Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:lucianpopa/autotrain-data-qn-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T22:23:01Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucianpopa/autotrain-data-qn-classification co2_eq_emissions: 0.013170440014043236 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1015534072 - CO2 Emissions (in grams): 0.013170440014043236 ## Validation Metrics - Loss: 1.493847370147705 - Accuracy: 0.7333333333333333 - Macro F1: 0.6777777777777777 - Micro F1: 0.7333333333333333 - Weighted F1: 0.6777777777777777 - Macro Precision: 0.6555555555555554 - Micro Precision: 0.7333333333333333 - Weighted Precision: 0.6555555555555554 - Macro Recall: 0.7333333333333333 - Micro Recall: 0.7333333333333333 - Weighted Recall: 0.7333333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucianpopa/autotrain-qn-classification-1015534072 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lucianpopa/autotrain-qn-classification-1015534072", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucianpopa/autotrain-qn-classification-1015534072", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
S2312dal/M1_MLM_cross
S2312dal
2022-06-21T21:31:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T19:52:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M1_MLM_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M1_MLM_cross This model is a fine-tuned version of [S2312dal/M1_MLM](https://huggingface.co/S2312dal/M1_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0106 - Pearson: 0.9723 - Spearmanr: 0.9112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0094 | 1.0 | 131 | 0.0342 | 0.9209 | 0.8739 | | 0.0091 | 2.0 | 262 | 0.0157 | 0.9585 | 0.9040 | | 0.0018 | 3.0 | 393 | 0.0106 | 0.9723 | 0.9112 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
UrukHan/wav2vec2-ru
UrukHan
2022-06-21T21:19:43Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-21T07:11:20Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-ru This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5468 - Wer: 0.4124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.511 | 0.21 | 1000 | 0.5444 | 0.4183 | | 0.5021 | 0.43 | 2000 | 0.5727 | 0.4112 | | 0.4746 | 0.64 | 3000 | 0.5495 | 0.4116 | | 0.5052 | 0.85 | 4000 | 0.5468 | 0.4124 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lafias/dataset-references
lafias
2022-06-21T20:54:25Z
0
0
spacy
[ "spacy", "token-classification", "en", "license:cc", "model-index", "region:us" ]
token-classification
2022-05-31T17:09:29Z
--- inference: false language: - en license: cc # license from https://hf.co/docs/hub/repositories-licenses library_name: spacy # library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts tags: - spacy - token-classification model-index: - name: dataset-references results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.85 - name: NER Recall type: recall value: 0.88 - name: NER F Score type: f_score value: 0.87 --- | Feature | Description | | --- | --- | | **Name** | `dataset-references` | | **Version** | n/a | | **spaCy** | `3.1.1` | | **Components** | `transformer`, `ner` | | **License** | `CC` | | **Author** | [Sara Lafia](saralafia.com) |
deepesh0x/autotrain-mlsec-1013333726
deepesh0x
2022-06-21T20:49:59Z
5
0
transformers
[ "transformers", "pytorch", "julien", "text-classification", "autotrain", "en", "dataset:deepesh0x/autotrain-data-mlsec", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T16:55:28Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-mlsec co2_eq_emissions: 33.183779535405364 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013333726 - CO2 Emissions (in grams): 33.183779535405364 ## Validation Metrics - Loss: 0.1998898833990097 - Accuracy: 0.9226923076923077 - Precision: 0.9269808389435525 - Recall: 0.9177134068187645 - AUC: 0.9785380985232148 - F1: 0.9223238438747907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333726 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
QuentinKemperino/ECHR_test_2
QuentinKemperino
2022-06-21T20:44:10Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:lex_glue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-06T14:24:02Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_2 Task A This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1998 - Macro-f1: 0.5295 - Micro-f1: 0.6157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2142 | 0.44 | 500 | 0.2887 | 0.2391 | 0.4263 | | 0.172 | 0.89 | 1000 | 0.2672 | 0.2908 | 0.4628 | | 0.1737 | 1.33 | 1500 | 0.2612 | 0.3657 | 0.5102 | | 0.1581 | 1.78 | 2000 | 0.2412 | 0.3958 | 0.5468 | | 0.1509 | 2.22 | 2500 | 0.2264 | 0.3950 | 0.5552 | | 0.1606 | 2.67 | 3000 | 0.2342 | 0.4006 | 0.5511 | | 0.1491 | 3.11 | 3500 | 0.2176 | 0.4558 | 0.5622 | | 0.1392 | 3.56 | 4000 | 0.2454 | 0.4128 | 0.5596 | | 0.15 | 4.0 | 4500 | 0.2113 | 0.4684 | 0.5874 | | 0.1461 | 4.44 | 5000 | 0.2179 | 0.4631 | 0.5815 | | 0.1457 | 4.89 | 5500 | 0.2151 | 0.4805 | 0.5949 | | 0.1443 | 5.33 | 6000 | 0.2155 | 0.5123 | 0.5917 | | 0.1279 | 5.78 | 6500 | 0.2131 | 0.4915 | 0.5998 | | 0.1377 | 6.22 | 7000 | 0.2244 | 0.4705 | 0.5944 | | 0.1242 | 6.67 | 7500 | 0.2150 | 0.5089 | 0.5918 | | 0.1222 | 7.11 | 8000 | 0.2045 | 0.4801 | 0.5981 | | 0.1372 | 7.56 | 8500 | 0.2074 | 0.5317 | 0.5962 | | 0.1289 | 8.0 | 9000 | 0.2035 | 0.5323 | 0.6126 | | 0.1295 | 8.44 | 9500 | 0.2058 | 0.5213 | 0.6073 | | 0.123 | 8.89 | 10000 | 0.2027 | 0.5486 | 0.6135 | | 0.1335 | 9.33 | 10500 | 0.1984 | 0.5442 | 0.6249 | | 0.1258 | 9.78 | 11000 | 0.1998 | 0.5295 | 0.6157 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ArthurZ/opt-125m
ArthurZ
2022-06-21T20:29:12Z
13
0
transformers
[ "transformers", "pytorch", "tf", "jax", "opt", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-17T13:13:13Z
--- tags: - generated_from_keras_callback model-index: - name: opt-125m results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - TensorFlow 2.9.1 - Datasets 2.2.2 - Tokenizers 0.12.1