modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-03 00:36:49
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 535
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-03 00:36:49
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
stoyky/rl_course_vizdoom_health_gathering_supreme
|
stoyky
| 2023-08-14T13:06:06Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T12:20:30Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 8.71 +/- 3.95
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r stoyky/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
vasuens/llama2-qlora-finetunined-french
|
vasuens
| 2023-08-14T13:00:09Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T13:00:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
inu-ai/niji-diffusion-xl-base-1.0
|
inu-ai
| 2023-08-14T12:49:36Z | 69 | 13 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"dataset:p1atdev/niji-v5",
"license:openrail++",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2023-08-01T11:45:39Z |
---
license: openrail++
thumbnail: >-
https://huggingface.co/inu-ai/niji-diffusion-xl-base-1.0/images/thumbnail.png
tags:
- text-to-image
- stable-diffusion
- safetensors
- diffusers
inference: true
widget:
- text: >-
best quality, high quality, absurdres, 1girl
datasets:
- p1atdev/niji-v5
library_name: diffusers
---
# 更新履歴
- 2023年8月14日
さらにnijijourneyの画像1000枚ほどを目で見てアニメやイラスト風で良いもの選んで学習させました。
以下に何をやったか記録しますが、何が効いているのかわかりません。
以下にハイパーパラメータを記載しますが、その後[v11](https://civitai.com/models/120452?modelVersionId=135754)と[sd-webui-supermerger](https://github.com/hako-mikan/sd-webui-supermerger)階層マージ(block_lrに近い絵が良さそうな比率)をしているため一度で仕上がりませんでした。
最後に[blur](https://civitai.com/models/120624)を-0.05ほど、[LECO](https://github.com/p1atdev/LECO)で作った[anime](https://civitai.com/models/128125/anime-leco)を1でLoRAマージして仕上げました。
| ハイパーパラメータ | 値 |
|-----------------------|-------------------------------------|
| GPU | RTX3090 24GB |
| optimizer_type | PagedLion8bit |
| optimizer_args | weight_decay=0.01, betas=.9,.999 |
| block_lr | 0,1e-08,1e-08,1e-08,1e-08,1e-07,1e-07,1e-07,1e-06,1e-06,1e-05,1e-05,1e-05,1e-06,1e-06,1e-07,1e-07,1e-07,1e-08,1e-08,1e-08,1e-08,0 |
| lr_scheduler | cosine |
| lr_warmup_steps | 100 |
| gradient_checkpointing| |
| mixed_precision | bf16 |
| full_bf16 | |
| max_token_length | 225 |
| min_snr_gamma | 5 |
| noise_offset | 0.0357 |
| max_train_epochs | 3 |
| batch_size | 12 |
| enable_bucket | true |
| resolution | [1024,1024] |
- 2023年8月11日
前回のnijijourneyの画像を混ぜて12000枚で学習しました。
オプティマイザはLion(4e-06, cosine, weight_decay=0.015, betas=.9,.999)でした。
- 2023年8月7日
nijijourneyの画像4500枚ぐらいでフルファインチューニングしました。fp16で壊れないVAEに取り替えました。
学習率1e-07が低すぎたようで絵があまり変化しませんでした。次回は学習率を上げようと思います。
- 2023年8月1日
nijijourneyの画像100枚ぐらいでLoRAファインチューニングなどをしました。
# モデルの説明
アニメ調に寄せた「[SDXL(stable-diffusion-xl-base-1.0)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)」モデルです。内容は「[niji-v5](https://huggingface.co/datasets/p1atdev/niji-v5)」データセットでLoRAファインチューニングしてマージしたモデルです。
# 使用例
[niji-diffusion-xl-base-1.0.safetensors](https://huggingface.co/inu-ai/niji-diffusion-xl-base-1.0/resolve/main/niji-diffusion-xl-base-1.0.safetensors)と[stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)で以下のパラメータで画像生成します。
※合計13000枚ぐらい~100枚~しか学習していないのでPromptに複数書くとnijiの絵じゃなくなります。Negative promptに複数書くのは大丈夫っぽいです。
Prompt:
```
masterpiece, best quality, high quality, absurdres, 1girl, flower
```
Negative prompt:
```
worst quality, low quality, medium quality, deleted, lowres, comic, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry
```
PNG info:
```
Steps: 28, Sampler: Euler a, CFG scale: 7, Seed: 1, Size: 1536x1024, Model hash: 791d0c791e, Model: sd_xl_niji_1.0, Clip skip: 2, ENSD: 31337, Token merging ratio: 0.5, Eta: 0.67, Version: v1.5.1
```

Prompt:
```
1girl
```

Prompt:
```
1girl, tokyo
```

Prompt:
```
1girl, steampunk
```

Prompt:
```
1girl, fantasy
```

# モデルの作り方
1. 「[かんたん☆コピー機学習法(きっと初級編)](https://note.com/2vxpswa7/n/n2d04527bf0bc)」を参考に、「[ぼかし(blur)](https://civitai.com/models/120624)」のLoRA DreamBoothをして、そのLoRAモデルをSDXLモデルにマイナスでマージします。
2. 1で作ったモデルに、niji-v5から背景や髪が詳細に描かれている絵などを100枚選びLoRAファインチューニングして、そのLoRAモデルをSDXLモデルにマージします。
# 今後のモデルの改善
LoRAモデルとして配布できるようにしたいです。
というのは、512dim(rank)で学習したらLoRAモデルが3GBのファイルサイズになってしまったため、今回はSDXLモデルにマージしています。
# 感想
うまく調整できず何度もやり直して大変でした。あとで作り方を動画にしたいです。
# 謝辞
モデル、学習データや学習ツールを作成および配布してくださった方々に心から感謝申し上げます。
# ライブラリ
- [sd-scripts](https://github.com/kohya-ss/sd-scripts/tree/sdxl) 4072f723c12822e2fa1b2e076cc1f90b8f4e30c9
- [bitsandbytes](https://github.com/jllllll/bitsandbytes-windows-webui) 0.39.1
- Pytorch 2.0.0+cu117
- xformers 0.0.19
# ライセンス
- [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
|
TheRains/cv9-special-batch8-adamw_torch-small
|
TheRains
| 2023-08-14T12:42:18Z | 113 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"id",
"dataset:mozilla-foundation/common_voice_9_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T10:15:05Z |
---
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: Whisper Small Indonesian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_9_0 id
type: mozilla-foundation/common_voice_9_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 12.680009201748332
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Indonesian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2688
- Wer: 12.6800
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3042 | 0.97 | 1000 | 0.2607 | 14.6676 |
| 0.1439 | 1.94 | 2000 | 0.2489 | 13.7658 |
| 0.0561 | 2.9 | 3000 | 0.2530 | 12.7766 |
| 0.0185 | 3.87 | 4000 | 0.2688 | 12.6800 |
| 0.0074 | 4.84 | 5000 | 0.2867 | 12.7812 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
jillrutherford/how-to-fix-google-takeout-not-working-error
|
jillrutherford
| 2023-08-14T12:37:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-14T11:37:18Z |
<title>How to Fix Google Takeout Not Working Error? </title>
<p>Are you frequently facing the “Google Takeout not working” error? Follow this quick guide to resolve the issue in a matter of a few minutes. The <strong> <a href="https://corbettsoftware.com/backup-emails/gmail.html">Corbett Gmail Backup Tool</a></strong> is an excellent utility recommended by numerous technical experts to overcome the “<a href="https://corbettsoftware.com/blog/google-data-migration-stuck-at-99/">Google Data migration stuck at 99</a>” issue. It is highly reliable and fully secure, and therefore, it is an expert favorite. Along with that, it protects the original formatting of user data throughout the process as well. This tool is also compatible with all versions of the Windows OS, thus, there will be no problem using this tool on all Windows machines. </p>
<h3>Steps to Fix <a href="https://corbettsoftware.com/blog/google-takeout-not-working/">Google Takeout Not Working</a> Error</h3>
<ul>
<li>Download and launch the Corbett Software on Windows.</li>
<li>Click Open >> Email Accounts >> Add Account.</li>
<li>Preview your mailbox data and filter out emails.</li>
<li>Now, click on Export and select the required saving option.</li>
<li>At last, utilize the advanced options and click on the Save button.</li>
</ul>
<p>And you’re done with the quick and hassle-free tutorial on using the expert utility by Corbett Software.</p>
|
AliGhiasvand86/gisha_digit_recognition
|
AliGhiasvand86
| 2023-08-14T12:34:27Z | 217 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-14T12:34:21Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: gisha_digit_recognition
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9702970385551453
---
# gisha_digit_recognition
## Example Images
#### number_0

#### number_1

#### number_2

#### number_3

#### number_4

#### number_5

#### number_6

#### number_7

#### number_8

#### number_9

|
satyashetty/marian-finetuned-kde4-en-to-fr
|
satyashetty
| 2023-08-14T12:33:09Z | 111 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"base_model:finetune:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-08-14T09:22:52Z |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round4__0030
|
bigmorning
| 2023-08-14T12:16:44Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T12:16:36Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round4__0030
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round4__0030
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0011
- Train Accuracy: 0.0795
- Train Wermet: 8.9484
- Validation Loss: 0.5855
- Validation Accuracy: 0.0771
- Validation Wermet: 7.6950
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9702 | 0.5713 | 0.0770 | 6.9300 | 0 |
| 0.0011 | 0.0795 | 7.7485 | 0.5743 | 0.0771 | 6.6465 | 1 |
| 0.0011 | 0.0795 | 8.1600 | 0.5748 | 0.0771 | 7.1363 | 2 |
| 0.0008 | 0.0795 | 8.1954 | 0.5845 | 0.0770 | 7.1869 | 3 |
| 0.0009 | 0.0795 | 8.4533 | 0.5771 | 0.0771 | 7.4112 | 4 |
| 0.0009 | 0.0795 | 8.3048 | 0.5912 | 0.0770 | 6.5276 | 5 |
| 0.0008 | 0.0795 | 8.2183 | 0.5810 | 0.0771 | 7.1210 | 6 |
| 0.0011 | 0.0795 | 8.3785 | 0.5861 | 0.0770 | 7.6613 | 7 |
| 0.0010 | 0.0795 | 8.0860 | 0.5811 | 0.0771 | 7.0809 | 8 |
| 0.0009 | 0.0795 | 8.2523 | 0.5894 | 0.0770 | 7.1269 | 9 |
| 0.0006 | 0.0795 | 8.7530 | 0.5819 | 0.0771 | 7.3657 | 10 |
| 0.0007 | 0.0795 | 8.5391 | 0.5773 | 0.0771 | 7.7370 | 11 |
| 0.0010 | 0.0795 | 8.8222 | 0.5894 | 0.0770 | 7.9252 | 12 |
| 0.0014 | 0.0795 | 8.9039 | 0.5880 | 0.0771 | 7.6404 | 13 |
| 0.0009 | 0.0795 | 8.6866 | 0.5777 | 0.0771 | 7.5804 | 14 |
| 0.0006 | 0.0795 | 9.0833 | 0.5736 | 0.0772 | 8.3242 | 15 |
| 0.0003 | 0.0795 | 9.3697 | 0.5732 | 0.0772 | 8.4795 | 16 |
| 0.0006 | 0.0795 | 9.4161 | 0.5838 | 0.0771 | 8.5173 | 17 |
| 0.0011 | 0.0795 | 9.7801 | 0.5967 | 0.0769 | 8.5462 | 18 |
| 0.0016 | 0.0795 | 9.9252 | 0.5824 | 0.0771 | 8.8226 | 19 |
| 0.0009 | 0.0795 | 10.1258 | 0.5813 | 0.0771 | 8.6993 | 20 |
| 0.0006 | 0.0795 | 9.8897 | 0.5784 | 0.0772 | 8.1699 | 21 |
| 0.0009 | 0.0795 | 9.3199 | 0.5971 | 0.0771 | 7.6986 | 22 |
| 0.0018 | 0.0795 | 10.2724 | 0.5924 | 0.0769 | 8.9443 | 23 |
| 0.0012 | 0.0795 | 9.5275 | 0.5783 | 0.0771 | 7.7057 | 24 |
| 0.0010 | 0.0795 | 8.6555 | 0.5738 | 0.0772 | 7.1508 | 25 |
| 0.0005 | 0.0795 | 8.8172 | 0.5775 | 0.0772 | 6.9496 | 26 |
| 0.0005 | 0.0795 | 8.4569 | 0.5860 | 0.0771 | 7.5262 | 27 |
| 0.0012 | 0.0795 | 9.6634 | 0.5917 | 0.0770 | 8.3290 | 28 |
| 0.0011 | 0.0795 | 8.9484 | 0.5855 | 0.0771 | 7.6950 | 29 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
MUTSC/ppo-LunarLander-v2
|
MUTSC
| 2023-08-14T12:11:25Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T12:11:03Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 271.31 +/- 21.04
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
CyberHarem/tayuya_naruto
|
CyberHarem
| 2023-08-14T12:10:21Z | 0 | 0 | null |
[
"art",
"text-to-image",
"dataset:CyberHarem/tayuya_naruto",
"license:mit",
"region:us"
] |
text-to-image
| 2023-08-14T12:04:43Z |
---
license: mit
datasets:
- CyberHarem/tayuya_naruto
pipeline_tag: text-to-image
tags:
- art
---
# Lora of tayuya_naruto
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 1500, you need to download `1500/tayuya_naruto.pt` as the embedding and `1500/tayuya_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters.
**The trigger word is `tayuya_naruto`.**
These are available steps:
| Steps | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | free | nude | Download |
|--------:|:-----------------------------------------------|:----------------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------|
| 1500 |  | [<NSFW, click to see>](1500/previews/pattern_2.png) | [<NSFW, click to see>](1500/previews/pattern_3.png) |  | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/tayuya_naruto.zip) |
| 1400 |  | [<NSFW, click to see>](1400/previews/pattern_2.png) | [<NSFW, click to see>](1400/previews/pattern_3.png) |  | [<NSFW, click to see>](1400/previews/bikini.png) | [<NSFW, click to see>](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/tayuya_naruto.zip) |
| 1300 |  | [<NSFW, click to see>](1300/previews/pattern_2.png) | [<NSFW, click to see>](1300/previews/pattern_3.png) |  | [<NSFW, click to see>](1300/previews/bikini.png) | [<NSFW, click to see>](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/tayuya_naruto.zip) |
| 1200 |  | [<NSFW, click to see>](1200/previews/pattern_2.png) | [<NSFW, click to see>](1200/previews/pattern_3.png) |  | [<NSFW, click to see>](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/tayuya_naruto.zip) |
| 1100 |  | [<NSFW, click to see>](1100/previews/pattern_2.png) | [<NSFW, click to see>](1100/previews/pattern_3.png) |  | [<NSFW, click to see>](1100/previews/bikini.png) | [<NSFW, click to see>](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/tayuya_naruto.zip) |
| 1000 |  | [<NSFW, click to see>](1000/previews/pattern_2.png) | [<NSFW, click to see>](1000/previews/pattern_3.png) |  | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/tayuya_naruto.zip) |
| 900 |  | [<NSFW, click to see>](900/previews/pattern_2.png) | [<NSFW, click to see>](900/previews/pattern_3.png) |  | [<NSFW, click to see>](900/previews/bikini.png) | [<NSFW, click to see>](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/tayuya_naruto.zip) |
| 800 |  | [<NSFW, click to see>](800/previews/pattern_2.png) | [<NSFW, click to see>](800/previews/pattern_3.png) |  | [<NSFW, click to see>](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/tayuya_naruto.zip) |
| 700 |  | [<NSFW, click to see>](700/previews/pattern_2.png) | [<NSFW, click to see>](700/previews/pattern_3.png) |  | [<NSFW, click to see>](700/previews/bikini.png) | [<NSFW, click to see>](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/tayuya_naruto.zip) |
| 600 |  | [<NSFW, click to see>](600/previews/pattern_2.png) | [<NSFW, click to see>](600/previews/pattern_3.png) |  | [<NSFW, click to see>](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/tayuya_naruto.zip) |
| 500 |  | [<NSFW, click to see>](500/previews/pattern_2.png) | [<NSFW, click to see>](500/previews/pattern_3.png) |  | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/tayuya_naruto.zip) |
| 400 |  | [<NSFW, click to see>](400/previews/pattern_2.png) | [<NSFW, click to see>](400/previews/pattern_3.png) |  | [<NSFW, click to see>](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/tayuya_naruto.zip) |
| 300 |  | [<NSFW, click to see>](300/previews/pattern_2.png) | [<NSFW, click to see>](300/previews/pattern_3.png) |  | [<NSFW, click to see>](300/previews/bikini.png) | [<NSFW, click to see>](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/tayuya_naruto.zip) |
| 200 |  | [<NSFW, click to see>](200/previews/pattern_2.png) | [<NSFW, click to see>](200/previews/pattern_3.png) |  | [<NSFW, click to see>](200/previews/bikini.png) | [<NSFW, click to see>](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/tayuya_naruto.zip) |
| 100 |  | [<NSFW, click to see>](100/previews/pattern_2.png) | [<NSFW, click to see>](100/previews/pattern_3.png) |  | [<NSFW, click to see>](100/previews/bikini.png) | [<NSFW, click to see>](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/tayuya_naruto.zip) |
|
KingKazma/xsum_gpt2_p_tuning_500_3_50000_8_e-1_s6789_v4_l4_v100
|
KingKazma
| 2023-08-14T12:02:25Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T12:02:24Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_gpt2_lora_500_3_50000_8_e-1_s6789_v4_l4_r4
|
KingKazma
| 2023-08-14T11:59:39Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T11:59:38Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
cubretorangel/llama-patent
|
cubretorangel
| 2023-08-14T11:53:29Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T10:10:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|
FarziBuilder/my_awesome_asr_mind_model
|
FarziBuilder
| 2023-08-14T11:46:48Z | 77 | 0 |
transformers
|
[
"transformers",
"pytorch",
"data2vec-audio",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/data2vec-audio-base-960h",
"base_model:finetune:facebook/data2vec-audio-base-960h",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-11T12:29:56Z |
---
license: apache-2.0
base_model: facebook/data2vec-audio-base-960h
tags:
- generated_from_trainer
model-index:
- name: my_awesome_asr_mind_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_asr_mind_model
This model is a fine-tuned version of [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round4__0020
|
bigmorning
| 2023-08-14T11:35:48Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T11:35:39Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round4__0020
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round4__0020
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0016
- Train Accuracy: 0.0795
- Train Wermet: 9.9252
- Validation Loss: 0.5824
- Validation Accuracy: 0.0771
- Validation Wermet: 8.8226
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9702 | 0.5713 | 0.0770 | 6.9300 | 0 |
| 0.0011 | 0.0795 | 7.7485 | 0.5743 | 0.0771 | 6.6465 | 1 |
| 0.0011 | 0.0795 | 8.1600 | 0.5748 | 0.0771 | 7.1363 | 2 |
| 0.0008 | 0.0795 | 8.1954 | 0.5845 | 0.0770 | 7.1869 | 3 |
| 0.0009 | 0.0795 | 8.4533 | 0.5771 | 0.0771 | 7.4112 | 4 |
| 0.0009 | 0.0795 | 8.3048 | 0.5912 | 0.0770 | 6.5276 | 5 |
| 0.0008 | 0.0795 | 8.2183 | 0.5810 | 0.0771 | 7.1210 | 6 |
| 0.0011 | 0.0795 | 8.3785 | 0.5861 | 0.0770 | 7.6613 | 7 |
| 0.0010 | 0.0795 | 8.0860 | 0.5811 | 0.0771 | 7.0809 | 8 |
| 0.0009 | 0.0795 | 8.2523 | 0.5894 | 0.0770 | 7.1269 | 9 |
| 0.0006 | 0.0795 | 8.7530 | 0.5819 | 0.0771 | 7.3657 | 10 |
| 0.0007 | 0.0795 | 8.5391 | 0.5773 | 0.0771 | 7.7370 | 11 |
| 0.0010 | 0.0795 | 8.8222 | 0.5894 | 0.0770 | 7.9252 | 12 |
| 0.0014 | 0.0795 | 8.9039 | 0.5880 | 0.0771 | 7.6404 | 13 |
| 0.0009 | 0.0795 | 8.6866 | 0.5777 | 0.0771 | 7.5804 | 14 |
| 0.0006 | 0.0795 | 9.0833 | 0.5736 | 0.0772 | 8.3242 | 15 |
| 0.0003 | 0.0795 | 9.3697 | 0.5732 | 0.0772 | 8.4795 | 16 |
| 0.0006 | 0.0795 | 9.4161 | 0.5838 | 0.0771 | 8.5173 | 17 |
| 0.0011 | 0.0795 | 9.7801 | 0.5967 | 0.0769 | 8.5462 | 18 |
| 0.0016 | 0.0795 | 9.9252 | 0.5824 | 0.0771 | 8.8226 | 19 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
dsmsb/tweet_bert_1408
|
dsmsb
| 2023-08-14T11:30:18Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-14T10:57:02Z |
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tweet_bert_1408
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tweet_bert_1408
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7067
- Accuracy: 0.8477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 397 | 0.7847 | 0.8363 |
| 0.2479 | 2.0 | 794 | 0.6668 | 0.8422 |
| 0.2971 | 3.0 | 1191 | 0.6221 | 0.8481 |
| 0.2087 | 4.0 | 1588 | 0.6557 | 0.8488 |
| 0.2087 | 5.0 | 1985 | 0.7067 | 0.8477 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
NYTK/translation-m2m100-1.2B-multi12-hungarian
|
NYTK
| 2023-08-14T11:22:24Z | 27 | 1 |
transformers
|
[
"transformers",
"pytorch",
"m2m_100",
"text2text-generation",
"translation",
"hu",
"bg",
"cs",
"de",
"en",
"hr",
"pl",
"ro",
"ru",
"sk",
"sl",
"sr",
"uk",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-09T12:19:38Z |
---
language:
- hu
- bg
- cs
- de
- en
- hr
- pl
- ro
- ru
- sk
- sl
- sr
- uk
tags:
- translation
license: mit
metrics:
- sacrebleu
- chrf
widget:
- text: >-
This may not make much sense to you, sir, but I'd like to ask your
permission to date your daughter.
---
# Hungarian-centered 12-lingual finetuned M2M100_1.2B model
For further details, see or [our demo site](https://juniper.nytud.hu/demo/nlp).
- Source language: Bulgarian (bg), Czech (cs), German (de), English (en), Croatian (hr), Polish, (pl), Romanian (ro), Russian (ru), Slovak (sk), Slovene (sl), Serbian (sr), Ukrainian (uk)
- Target language: Hungarian (hu)
- Finetuned on subcorpora from OPUS
- Segments: 3 million per language
## Limitations
- max_source_length: 256
- max_target_length: 256
## Citation
If you use this model, please cite the following paper:
```
@article{laki-yang-12lang,
title = {Solving Hungarian natural language processing tasks with multilingual generative models},
journal = {Annales Mathematicae et Informaticae},
year = {2023},
author = {Yang, Zijian Győző and Laki László János},
volume = {57},
pages = {92–-106},
doi = {10.33039/ami.2022.11.001}
}
```
|
cubretorangel/llama-pateent
|
cubretorangel
| 2023-08-14T11:18:56Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T10:11:04Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|
NYTK/reading-comprehension-hurc-mt5-hungarian
|
NYTK
| 2023-08-14T11:17:43Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"reading-comprehension",
"hu",
"dataset:NYTK/HuRC",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-10T09:58:55Z |
---
license: apache-2.0
tags:
- text2text-generation
- reading-comprehension
datasets:
- NYTK/HuRC
widget:
- text: "question: 'Nem ismerek olyan embert, aki <mask> haragudott volna. Életét úgy fejezte be, ahogyan élt: utolsó fellépésére, amely talán egy hónappal ezelőtt lehetett, már nagyon nehezen tudott csak elmenni, de nem mondta le, mert Pécsett egy jótékonysági koncerten játszott beteg gyerekeknek' - mondta Presser Gábor. context: A kedd hajnalban elhunyt Somló Tamásról emlékezett meg zenésztársa, Presser Gábor. Somló Tamás nagyszerű egyénisége, énekhangja és éneklési stílusa egészen egyedülálló volt' – fogalmazott. '1968 lehetett, amikor először találkoztunk, gyakorlatilag váltottuk egymást az Omega együttesben. Tamás akkor indult el az artista pályán, miközben zenélt is. Az Omegában csak néhányszor játszottunk együtt, miután én beléptem, ő éveket töltött külföldön artistaként, aztán összefutottunk az LGT-ben, ennek már 43 éve' - idézte fel Presser Gábor. Somló Tamás színpadi jelenléte nagy húzóerőt jelentett a zenekar számára és zenészi képességeit mutatta az is, hogy amikor Frenreisz Károly helyett belépett az LGT-be, néhány hét alatt megtanult basszusgitározni."
example_title: Somló Tamás
- text: "question: 'Nem ismerek olyan embert, aki Tamásra haragudott volna. Életét úgy fejezte be, ahogyan élt: utolsó fellépésére, amely talán egy hónappal ezelőtt lehetett, már nagyon nehezen tudott csak elmenni, de nem mondta le, mert Pécsett egy jótékonysági koncerten játszott beteg gyerekeknek' - mondta <mask>. context: A kedd hajnalban elhunyt Somló Tamásról emlékezett meg zenésztársa, Presser Gábor. Somló Tamás nagyszerű egyénisége, énekhangja és éneklési stílusa egészen egyedülálló volt' – fogalmazott. '1968 lehetett, amikor először találkoztunk, gyakorlatilag váltottuk egymást az Omega együttesben. Tamás akkor indult el az artista pályán, miközben zenélt is. Az Omegában csak néhányszor játszottunk együtt, miután én beléptem, ő éveket töltött külföldön artistaként, aztán összefutottunk az LGT-ben, ennek már 43 éve' - idézte fel Presser Gábor. Somló Tamás színpadi jelenléte nagy húzóerőt jelentett a zenekar számára és zenészi képességeit mutatta az is, hogy amikor Frenreisz Károly helyett belépett az LGT-be, néhány hét alatt megtanult basszusgitározni."
example_title: Presser Gábor
language:
- hu
---
# Hungarian Reading Comprehension with finetuned mT5 base model
For further details, see [our demo site](https://juniper.nytud.hu/demo/nlp).
## Results
| Model | Exact Match | F1 |
| ------------- | ------------- | ------------- |
| huBERT | 64.50 | 69.03 |
| mT5 | 69.51 | 76.26 |
## Usage with pipeline
```python
from transformers import pipeline
context = "A kedd hajnalban elhunyt Somló Tamásról emlékezett meg zenésztársa, Presser Gábor. Somló Tamás nagyszerű egyénisége, énekhangja és éneklési stílusa egészen egyedülálló volt' – fogalmazott. '1968 lehetett, amikor először találkoztunk, gyakorlatilag váltottuk egymást az Omega együttesben. Tamás akkor indult el az artista pályán, miközben zenélt is. Az Omegában csak néhányszor játszottunk együtt, miután én beléptem, ő éveket töltött külföldön artistaként, aztán összefutottunk az LGT-ben, ennek már 43 éve' - idézte fel Presser Gábor. Somló Tamás színpadi jelenléte nagy húzóerőt jelentett a zenekar számára és zenészi képességeit mutatta az is, hogy amikor Frenreisz Károly helyett belépett az LGT-be, néhány hét alatt megtanult basszusgitározni."
question = "'Nem ismerek olyan embert, aki <mask> haragudott volna. Életét úgy fejezte be, ahogyan élt: utolsó fellépésére, amely talán egy hónappal ezelőtt lehetett, már nagyon nehezen tudott csak elmenni, de nem mondta le, mert Pécsett egy jótékonysági koncerten játszott beteg gyerekeknek' - mondta Presser Gábor."
text2text_generator = pipeline(task="text2text-generation", model="NYTK/reading-comprehension-hurc-mt5-hungarian")
print(text2text_generator(f"question: {question} context: {context}")[0]["generated_text"])
```
## Citation
If you use this model, please cite the following paper:
```
@article {yang-ligeti-rc,
title = {Building machine reading comprehension model from scratch},
journal = {Annales Mathematicae et Informaticae},
year = {2023},
author = {Yang, Zijian Győző and Ligeti-Nagy, Noémi},
volume = {57},
pages = {107–-123},
doi = {10.33039/ami.2023.03.001}
}
```
|
mmdrez4/Falcon-7B-Medical-Summarization
|
mmdrez4
| 2023-08-14T11:14:01Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T11:13:41Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
vishnu-vs/llama-7bhf
|
vishnu-vs
| 2023-08-14T11:03:29Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"en",
"arxiv:2307.09288",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-14T09:28:03Z |
---
extra_gated_heading: Access Llama 2 on Hugging Face
extra_gated_description: >-
This is a form to enable access to Llama 2 on Hugging Face after you have been
granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our
license terms and acceptable use policy before submitting this form. Requests
will be processed in 1-2 days.
extra_gated_prompt: "**Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.**"
extra_gated_button_content: Submit
extra_gated_fields:
I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox
language:
- en
pipeline_tag: text-generation
inference: false
arxiv: 2307.09288
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
|
Txinplas/ppo-LunarLander-v2
|
Txinplas
| 2023-08-14T10:59:28Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T10:59:00Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.69 +/- 21.65
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Linkthat/mdsci-setfit
|
Linkthat
| 2023-08-14T10:57:40Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-14T10:56:47Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpovamvu9x\Linkthat\mdsci-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpovamvu9x\Linkthat\mdsci-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA-GoldP_Te
|
vnktrmnb
| 2023-08-14T10:55:03Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"bert",
"question-answering",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-14T09:50:58Z |
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA-GoldP_Te
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA-GoldP_Te
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4459
- Train End Logits Accuracy: 0.8633
- Train Start Logits Accuracy: 0.8986
- Validation Loss: 0.4616
- Validation End Logits Accuracy: 0.8570
- Validation Start Logits Accuracy: 0.9072
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1359, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.4434 | 0.8660 | 0.9037 | 0.4616 | 0.8570 | 0.9072 | 0 |
| 0.4507 | 0.8620 | 0.9018 | 0.4616 | 0.8570 | 0.9072 | 1 |
| 0.4459 | 0.8633 | 0.8986 | 0.4616 | 0.8570 | 0.9072 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
ad019el/tamasheq-99
|
ad019el
| 2023-08-14T10:48:45Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
"base_model:finetune:jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-08T15:30:41Z |
---
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-arabic
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: tamasheq-99
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tamasheq-99
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3007
- Wer: 0.4911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 11.9337 | 6.0 | 300 | 3.2207 | 1.0 |
| 2.8261 | 12.0 | 600 | 0.9838 | 0.7251 |
| 0.5773 | 18.0 | 900 | 0.3437 | 0.5014 |
| 0.3252 | 24.0 | 1200 | 0.3029 | 0.4940 |
| 0.2821 | 30.0 | 1500 | 0.3007 | 0.4911 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Gman/pretrained-bert
|
Gman
| 2023-08-14T10:35:06Z | 47 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"pretraining",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] | null | 2023-08-14T10:34:07Z |
---
base_model: ''
tags:
- generated_from_keras_callback
model-index:
- name: pretrained-bert
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pretrained-bert
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 8.4779
- Validation Loss: 8.6183
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 8.4779 | 8.6183 | 0 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
frankjoshua/controlnet-depth-sdxl-1.0
|
frankjoshua
| 2023-08-14T10:27:05Z | 86 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"controlnet",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-14T01:25:51Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- controlnet
inference: false
---
# SDXL-controlnet: Depth
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.
prompt: spiderman lecture, photorealistic

## Usage
Make sure to first install the libraries:
```bash
pip install accelerate transformers safetensors diffusers
```
And then we're ready to go:
```python
import torch
import numpy as np
from PIL import Image
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0",
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16,
).to("cuda")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_model_cpu_offload()
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
prompt = "stormtrooper lecture, photorealistic"
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
controlnet_conditioning_scale = 0.5 # recommended for good generalization
depth_image = get_depth_map(image)
images = pipe(
prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
).images
images[0]
images[0].save(f"stormtrooper.png")
```
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
### Training
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
#### Training data and Compute
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
#### Batch size
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
#### Hyper Parameters
Constant learning rate of 1e-5.
#### Mixed precision
fp16
|
kai824/ppo_unit8
|
kai824
| 2023-08-14T10:25:32Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:58:18Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 38.59 +/- 104.25
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 1000000
'learning_rate': 0.0001
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.15
'clip_vloss': False
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'kai824/ppo_unit8'
'batch_size': 512
'minibatch_size': 128}
```
|
amirhamza11/my_awesome_eli5_mlm_model_2
|
amirhamza11
| 2023-08-14T10:17:27Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilroberta-base",
"base_model:finetune:distilbert/distilroberta-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-08-14T09:59:42Z |
---
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
model-index:
- name: my_awesome_eli5_mlm_model_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_mlm_model_2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2469 | 1.0 | 1138 | 2.0423 |
| 2.1601 | 2.0 | 2276 | 2.0028 |
| 2.1295 | 3.0 | 3414 | 2.0125 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
|
Haricharan/Energy_Load_Predictor
|
Haricharan
| 2023-08-14T10:14:13Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T10:04:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
|
jondurbin/airoboros-l2-70b-gpt4-m2.0
|
jondurbin
| 2023-08-14T10:12:42Z | 1,437 | 10 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:jondurbin/airoboros-gpt4-m2.0",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T09:41:55Z |
---
license: other
datasets:
- jondurbin/airoboros-gpt4-m2.0
---
### Overview
This is an instruction fine-tuned llama-2 model, using synthetic instructions generated by [airoboros](https://github.com/jondurbin/airoboros)
- The 2.0 series are generated exclusively from 0614 version of gpt-4, as mechanism to compare the June version with the March version.
- The m2.0 series have the 1.4.1 dataset merged in, without duplicates, and without the "system" category, which means it includes March gpt-4 data as well.
- 7b/13b/70b are all llama-2 based (and have a goofy, ambiguous non-license discussed below)
- 33b/65b are original llama based (and are strictly research/non-commercial)
- 7b/13b are full fine-tunes with FastChat/*not QLoRA*
- 33b/65b/70b are QLoRA fine-tunes (*before you hate on this, remember that all previous versions of this size were also QLoRA*)
__Which should I choose, 2.0 or m2.0?__ I have no idea, try them both and see which is better. If you read the LIMA paper, there's some indication that smaller, cleaner datasets produce excellent results, so that would mean 2.0 is probably a better choice. If you really enjoyed 1.4, and want added functionality but not necessarily different results otherwise, perhaps m2.0.
### Prompt format
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT:
```
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
Why the "regardless of ..." part?
- laws vary widely based on time and location
- language model may conflate certain words with laws, e.g. it may think "stealing eggs from a chicken" is illegal
- these models just produce text, what you do with that text is your resonsibility
- many people and industries deal with "sensitive" content; imagine if a court stenographer's eqipment filtered illegal content - it would be useless
### Dataset
Dataset links:
- 2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-2.0
- merged/m2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-m2.0
Dataset creation details/configuration: https://gist.github.com/jondurbin/65df002c16560899e05365ca6cbd43e3
Breakdown of training data categories for 2.0/m2.0 datasets:

### Helpful usage tips
*The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.*
#### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
#### Coding
You can ask for fairly complex coding instructions with multiple criteria, e.g.:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or inline criteria:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
#### Agent/function calling
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
```
Response:
```json
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
```
#### Chain-of-thought
You can ask for several possible responses to a given problem, with a ranking and final answer selection.
Example prompt:
```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```
Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
n(n-1)/2 = 45
Solving this equation gives us n=10.
Final answer: There were 10 players in the tournament.
Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
Final answer: There were 10 players in the tournament.
Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
Final answer: There were 10 players in the tournament.
Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
Best and final answer: There were 10 players in the tournament.
```
#### reWOO style execution planning
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```
Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
```python
import re
import requests
def inject_context(input_text, **context):
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
input_text = input_text.replace(ref, context.get(ref, ""))
return input_text
def duckduckgo(input_text, **context):
search_string = inject_context(input_text, **context)
... search via duck duck go using search_string
... return text content
def link_extractor(input_text, **context):
input_text = inject_context(input_text, **context)
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
def scrape(input_text, **context):
input_text = inject_context(input_text, **context)
text = []
for link in input_text.splitlines():
text.append(requests.get(link).text)
return "\n".join(text)
def infer(input_text, **context)
prompt = inject_context(input_text, **context)
... call model with prompt, return output
def parse_plan(plan):
method_map = {
"DuckDuckGo": duckduckgo,
"HyperlinkExtractor": link_extractor,
"KnowledgeModel": infer,
"TextScraper": scrape,
}
context = {}
for line in plan.strip().splitlines():
if line.startswith("Plan:"):
print(line)
continue
parts = re.match("^(:evidence[0-9]+:")\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
if not parts:
if line.startswith("Answer: "):
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
raise RuntimeError("bad format: " + line)
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```
### Contribute
If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data,
take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details.
To help me with the OpenAI/compute costs:
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
### Licence and usage restrictions
The airoboros 2.0/m2.0 models are built on top of either llama or llama-2. Any model with `-l2-` in the name uses llama2, `..-33b-...` and `...-65b-...` are based on the original llama.
#### Llama (original) models
If the model was based on the original llama (33b/65b), the license is __cc-by-nc-4.0__ and is for research/academic use only -- no commercial usage whatsoever!
#### Llama-2 models
Base model has a custom Meta license:
- See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta.
- See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta.
The fine-tuning data was generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
Either way, by using this model, you agree to completely indemnify me.
|
jondurbin/airoboros-l2-13b-gpt4-m2.0
|
jondurbin
| 2023-08-14T10:09:50Z | 1,741 | 28 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:jondurbin/airoboros-gpt4-m2.0",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-28T06:20:23Z |
---
license: other
datasets:
- jondurbin/airoboros-gpt4-m2.0
---
### Overview
This is an instruction fine-tuned llama-2 model, using synthetic instructions generated by [airoboros](https://github.com/jondurbin/airoboros)
- The 2.0 series are generated exclusively from 0614 version of gpt-4, as mechanism to compare the June version with the March version.
- The m2.0 series have the 1.4.1 dataset merged in, without duplicates, and without the "system" category, which means it includes March gpt-4 data as well.
- 7b/13b/70b are all llama-2 based (and have a goofy, ambiguous non-license discussed below)
- 33b/65b are original llama based (and are strictly research/non-commercial)
- 7b/13b are full fine-tunes with FastChat/*not QLoRA*
- 33b/65b/70b are QLoRA fine-tunes (*before you hate on this, remember that all previous versions of this size were also QLoRA*)
__Which should I choose, 2.0 or m2.0?__ I have no idea, try them both and see which is better. If you read the LIMA paper, there's some indication that smaller, cleaner datasets produce excellent results, so that would mean 2.0 is probably a better choice. If you really enjoyed 1.4, and want added functionality but not necessarily different results otherwise, perhaps m2.0.
### Prompt format
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT:
```
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
Why the "regardless of ..." part?
- laws vary widely based on time and location
- language model may conflate certain words with laws, e.g. it may think "stealing eggs from a chicken" is illegal
- these models just produce text, what you do with that text is your resonsibility
- many people and industries deal with "sensitive" content; imagine if a court stenographer's eqipment filtered illegal content - it would be useless
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
### Dataset
Dataset links:
- 2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-2.0
- merged/m2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-m2.0
Dataset creation details/configuration: https://gist.github.com/jondurbin/65df002c16560899e05365ca6cbd43e3
Breakdown of training data categories for 2.0/m2.0 datasets:

### Helpful usage tips
*The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.*
#### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
#### Coding
You can ask for fairly complex coding instructions with multiple criteria, e.g.:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or inline criteria:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
#### Agent/function calling
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
```
Response:
```json
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
```
#### Chain-of-thought
You can ask for several possible responses to a given problem, with a ranking and final answer selection.
Example prompt:
```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```
Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
n(n-1)/2 = 45
Solving this equation gives us n=10.
Final answer: There were 10 players in the tournament.
Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
Final answer: There were 10 players in the tournament.
Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
Final answer: There were 10 players in the tournament.
Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
Best and final answer: There were 10 players in the tournament.
```
#### reWOO style execution planning
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```
Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
```python
import re
import requests
def inject_context(input_text, **context):
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
input_text = input_text.replace(ref, context.get(ref, ""))
return input_text
def duckduckgo(input_text, **context):
search_string = inject_context(input_text, **context)
... search via duck duck go using search_string
... return text content
def link_extractor(input_text, **context):
input_text = inject_context(input_text, **context)
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
def scrape(input_text, **context):
input_text = inject_context(input_text, **context)
text = []
for link in input_text.splitlines():
text.append(requests.get(link).text)
return "\n".join(text)
def infer(input_text, **context)
prompt = inject_context(input_text, **context)
... call model with prompt, return output
def parse_plan(plan):
method_map = {
"DuckDuckGo": duckduckgo,
"HyperlinkExtractor": link_extractor,
"KnowledgeModel": infer,
"TextScraper": scrape,
}
context = {}
for line in plan.strip().splitlines():
if line.startswith("Plan:"):
print(line)
continue
parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
if not parts:
if line.startswith("Answer: "):
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
raise RuntimeError("bad format: " + line)
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```
### Contribute
If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data,
take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details.
To help me with the OpenAI/compute costs:
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
### Licence and usage restrictions
The airoboros 2.0/m2.0 models are built on top of either llama or llama-2. Any model with `-l2-` in the name uses llama2, `..-33b-...` and `...-65b-...` are based on the original llama.
#### Llama (original) models
If the model was based on the original llama (33b/65b), the license is __cc-by-nc-4.0__ and is for research/academic use only -- no commercial usage whatsoever!
#### Llama-2 models
Base model has a custom Meta license:
- See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta.
- See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta.
The fine-tuning data was generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
Either way, by using this model, you agree to completely idnemnify me.
|
vj1148/lora-peft-flant5-large-v2
|
vj1148
| 2023-08-14T10:03:02Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T10:03:01Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|
astrung/whisper-small-hi
|
astrung
| 2023-08-14T09:57:52Z | 83 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-09T13:29:20Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-hi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-hi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6344
- Wer: 51.4857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4862 | 0.12 | 50 | 0.6344 | 51.4857 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Mustain/llama2_7b_jaquad_dataset
|
Mustain
| 2023-08-14T09:56:21Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T08:27:33Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
papepipopu/Reinforce-PixelCopter-course
|
papepipopu
| 2023-08-14T09:55:23Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-11T22:53:55Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter-course
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 15.20 +/- 14.78
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
davidkim205/komt-Llama-2-7b-chat-hf-lora
|
davidkim205
| 2023-08-14T09:51:14Z | 21 | 4 |
peft
|
[
"peft",
"facebook",
"meta",
"pytorch",
"llama",
"llama-2",
"llama-2-chat",
"text-generation",
"en",
"ko",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2023-08-14T09:13:49Z |
---
language:
- en
- ko
pipeline_tag: text-generation
inference: false
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- llama-2-chat
license: apache-2.0
library_name: peft
---
# komt-llama-2-7b-lora
This model fine-tuned the aaa model using PEFT-LoRA.
The "komt-llama-2-7b" model was developed using a multi-task instruction technique aimed at enhancing Korean language performance. For more details, please refer to the GitHub Repository.
Please refer below for more detailed information.
For more detailed information, please refer to the https://huggingface.co/davidkim205/komt-Llama-2-7b-chat-hf.
## Model Details
* **Model Developers** : davidkim(changyeon kim)
* **Repository** : https://github.com/davidkim205/komt
* **Lora target modules** : q_proj, o_proj, v_proj, gate_proj, down_proj, k_proj, up_proj
* **Model Size** : 80MB
* **Model Architecture** : komt-llama-2-7b is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning by multi-task instruction
## Dataset
korean multi-task instruction dataset
## Prompt Template
```
### instruction: {prompt}
### Response:
```
Examples:
```
### instruction: 자동차 종합(정기)검사 의무기간은 얼마인가요?
### Response:
```
response:
```
### instruction: 자동차 종합(정기)검사 의무기간은 얼마인가요?
### Response: 자동차 종합(정기)검사 의무기간은 2년입니다. 이 기간 동안 검사를 받지 않으면 과태료가 부과됩니다. 자동차 종합(정기)검사 의무기간은 2013년 12월 31일부터 시행되었습니다
```
## Usage
After downloading from GitHub, please install as follows:
```
git clone https://github.com/davidkim205/komt
cd komt
pip install -r lora/requirements_lora.txt
```
* Requirements Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
Refer https://github.com/TimDettmers/bitsandbytes#tldr
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import StoppingCriteria, StoppingCriteriaList
from transformers import TextStreamer, GenerationConfig
from peft import PeftModel, PeftConfig
class LocalStoppingCriteria(StoppingCriteria):
def __init__(self, tokenizer, stop_words = []):
super().__init__()
stops = [tokenizer(stop_word, return_tensors='pt', add_special_tokens = False)['input_ids'].squeeze() for stop_word in stop_words]
print('stop_words', stop_words)
print('stop_words_ids', stops)
self.stop_words = stop_words
self.stops = [stop.cuda() for stop in stops]
self.tokenizer = tokenizer
def _compare_token(self, input_ids):
for stop in self.stops:
if len(stop.size()) != 1:
continue
stop_len = len(stop)
if torch.all((stop == input_ids[0][-stop_len:])).item():
return True
return False
def _compare_decode(self, input_ids):
input_str = self.tokenizer.decode(input_ids[0])
for stop_word in self.stop_words:
if input_str.endswith(stop_word):
return True
return False
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
input_str = self.tokenizer.decode(input_ids[0])
for stop_word in self.stop_words:
if input_str.endswith(stop_word):
return True
return False
#
# config
peft_model_name = 'davidkim205/komt-Llama-2-7b-chat-hf-lora'
model_name = 'davidkim205/komt-Llama-2-7b-chat-hf'
instruction_prefix = "### instruction: "
input_prefix = "### input: "
answer_prefix = "### Response: "
endoftext = "<|end|>"
stop_words = [endoftext, '<s>', '###']
generation_config = GenerationConfig(
temperature=0.9,
top_p=0.7,
top_k=100,
max_new_tokens=2048,
early_stopping=True,
do_sample=True,
)
#
# create model
config = PeftConfig.from_pretrained(peft_model_name)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config,
device_map="auto")
model = PeftModel.from_pretrained(model, peft_model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
stopping_criteria = StoppingCriteriaList([LocalStoppingCriteria(tokenizer=tokenizer, stop_words=stop_words)])
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
model.eval()
#
# generate
prompt = f"### instruction: 자동차 종합(정기)검사 의무기간은 얼마인가요?.\n\n### Response:"
gened = model.generate(
**tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to('cuda'),
generation_config=generation_config,
eos_token_id=model.config.eos_token_id,
stopping_criteria=stopping_criteria,
streamer=streamer
)
output_text = tokenizer.decode(gened[0], skip_special_tokens=True)
print('--------------------')
print(output_text)
```
response:
```
nlp는 자연어 처리의 약자로, 자연어를 사용하여 인간과 컴퓨터 간의 상호 작용을 다루는 분야입니다. 컴퓨터와 인간이 서로 상호 작용하는 데 사용되는 언어와 기술을 포함하며, 컴퓨터는 인간의 언어를 처리하고 분석하여 인간의 작업을 돕거나 작업을 자동화하는 데 사용됩니다. 따라서 컴퓨터가 컴퓨터에서 작업하는 데 사용되는 컴퓨터 프로그램이나 프로그램과 비슷하게 인간도 자신의 작업에 사용되는 컴퓨터 프로그램과 비슷한 방식으로 작업할 수 있습니다.
```
## Hardware and Software
- nvidia driver : 535.54.03
- CUDA Version: 12.2
### Framework versions
- PEFT 0.4.0
## Training
Refer github
## Model Benchmark
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
### Korean Semantic Textual Similarity
| model name | Version | Metric | Value | | Stderr |
|-------------------------------| ------: | ------ |-----------:| ---- | -----: |
| meta-llama/Llama-2-7b-chat-hf | 0 | acc | 0.4817 | ± | 0.0220 |
| beomi/llama-2-ko-7b | 0 | acc | 0.5029 | ± | 0.0220 |
| kfkas/Llama-2-ko-7b-Chat | 0 | acc | 0.5318 | ± | 0.0219 |
| **komt-llama-2-7b (ours)** | 0 | acc | **0.5530** | ± | 0.0218 |
### Example Output
Please refer to the GitHub link below for performance results of each model.
https://github.com/davidkim205/komt/tree/main/eval_results
| 질문/답변 |
| ------------------------------------------------------------ |
| 누전차단기가 내려가는 이유는 무엇입니까? |
| 누전차단기는 누전 시 전기를 차단하여 화재 위험을 줄이기 위해 설치됩니다. 하지만 누전차단기는 시간이 지나면서 설치된 장소에서 멀어지게 되며, 이로 인해 설치된 장소에서 누전차단기가 떨어지면 손상될 수 있습니다. 따라서 누전차단기가 내려가는 것은 이러한 이유 때문입니다. 누전차단기는 누전 시 전기를 차단하기 위해 설치되는 장치이므로, 설치된 장소에서 누전차단기가 떨어지면 손상될 수 있으므로 누전차단기가 내려가는 것은 적절한 관리가 필요합니다. |
| 협력공인중개사란 무엇인가요? |
| 협력공인중개사는 건축, 물류, 토목, 건설 등 다양한 산업 분야에서 공인중개사와 협력하여 건축업자, 소유자 및 토지주를 대신하여 건축 프로젝트를 실행하는 전문가입니다. 이들은 공인중개사와 협력하여 공사 계약, 법률 자문, 건축 허가 및 건축 규정 준수와 같은 프로젝트 업무를 처리합니다. 협력공인중개사는 공인중개사가 건축 프로젝트를 관리하고 건축업자, 소유주 및 토지주와 관련된 다른 당사자를 대신하여 협력할 수 있도록 지원합니다. 협력공인중개사는 공인중개사와 협력하여 프로젝트가 원활하게 진행되고 궁극적으로 소유자가 원하는 결과를 얻을 수 있도록 지원합니다. |
| 수출물품에도 원산지표시를 하여야 하나요? |
| 일반적으로 수출물품에 원산지표시를 하지 않는 것이 일반적입니다. 그러나 원산지표시는 원산지가 아닌 제품을 수출할 경우에는 필수입니다. 원산지표시 제도는 제품의 원산지를 표시하여 수입 제품의 원산지 거짓표시를 방지하고 국내 소비자에게 제품의 원산지를 신뢰할 수 있도록 하기 위해 시행되는 제도입니다. 원산지표시는 표시의무대상자가 원산지표시 의무대상자에 대한 표시의무를 이행하지 않을 경우 최대 100만원 이하의 과태료가 부과됩니다. 하지만 수출물품에는 원산지표시를 하지 않는 것이 일반적이며, 수입물품에는 원산지표시가 의무적입니다. 따라서 수출물품에 원산지표시를 하지 않는 것은 일반적이며, 원산지표시 제도는 수입물품에만 적용됩니다. |
| 자동차 공기압 관리가 왜 중요하나요? |
| 자동차 공기압 관리는 여러 가지 이유로 중요합니다. 첫째, 자동차 공기압은 노면 마찰력을 높여주는 역할을 하며, 노면 마찰 감소로 연비를 향상시키는 효과가 있습니다. 둘째, 공기압이 낮으면 노면 마찰력이 낮아지며, 결국 차량 제동력이 떨어집니다. 따라서 공기압이 낮을 때는 노면 마찰력을 높여주는 효과가 있으며, 반대로 공기압이 높을 때는 노면 마찰력이 높아져 연비가 저하되기도 합니다. |
| 주차위반으로 과태료가 나왔는데 행정심판을 청구할 수 있나요? |
| 행정심판을 청구할 수 있습니다. 하지만 행정심판을 청구하기 전에 법원 판결을 확인해보는 것이 좋습니다. 행정심판 청구 후 법원 판결에 따라 행정심판을 청구할 수 있습니다. 하지만 법원 판결에 따라 행정심판을 청구할 수 없을 수도 있습니다. 행정심판 청구 후 판결에 따라 청구된 사안을 변경할 수 있는 권리는 없습니다. |
| 프리는 어느 나라의 애니메이션이야 |
| 일본\n《프리》(プリー 푸리이)는 일본의 애니메이션 작품이다. 2003년 4월 10일부터 2004년 3월 31일까지 후지 TV에서 방영되었으며, 방영시간은 총 108화이다. 단행본은 모두 6권이며, 전3권 본편, 전3권 외전, 전1권 완전판이 있다. 《프리》는 초심 시절의 꿈을 잃어버린 20대 초반의 청년이 자신의 작품에 대한 자신감을 갖고 작가가 되기 위해 노력하는 이야기를 그린 작품이다. 또한 꿈을 향한 청년의 열정과 노력이 성공으로 이어지는 과정을 그리고 있다. 작품 내에서 작가의 모습이 자신과 닮았다는 점에서 많은 화제가 되었다. 제24회 쇼가쿠칸 만화상을 수상했다. |
| 영화 해리포터 시리즈 배급사가 어디야 |
| 워너 브라더스\n데이비드 잉글리시는 1990년대 초 시리즈를 시작했다. 이 영화들은 총 8부작으로 만들어졌으며, 첫 번째 작품은 《해리 포터와 마법사의 돌》이다. 작가는 J. K. 롤링이며, 영화 시리즈는 배급사인 워너 브라더스가 만들었다. 촬영은 1997년 7월 11일부터 12월 22일까지 런던에서 이루어졌다. 촬영 장소로는 런던 크릭스 스튜디오와 런던 시티 오피스가 사용되었다. 데이비드 잉글리시는 해리 포터 역할을 맡았다. |
| 왜 세계시간의 기준이 영국의 GMT인가요? 그 이유는 무엇일까요? |
| 영국의 GMT는 세계시간의 기준이 되는 시간대입니다. 그러나 이 시간대는 표준화되지 않았으며, 따라서 다른 나라의 시간대와 차이가 있을 수 있습니다. 따라서 이 시간대를 세계시간으로 착각하는 사람들이 있을 수 있습니다. 따라서, 세계시간의 기준은 표준화된 시간대를 따르도록 하는 것이 중요합니다. |
------------------------------------------------
# Original model card: Meta's Llama 2 13B-chat
Meta developed and released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>
Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>
Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>
**Llama 2 family of models.** Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. The 70B version uses Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "Llama-2: Open Foundation and Fine-tuned Chat Models", available at https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/.
**Where to send questions or comments about the model** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md).
# **Intended Use**
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
# **Hardware and Software**
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
# **Training Data**
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
# **Evaluation Results**
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.
For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
# **Ethical Considerations and Limitations**
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide/)
|
suchetajjw47/fine_tuned_llama2-squad
|
suchetajjw47
| 2023-08-14T09:47:53Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T09:47:48Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
Punit71/Pixelcopter-PLE-v0
|
Punit71
| 2023-08-14T09:46:39Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:42:24Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 36.80 +/- 25.25
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
anikesh-mane/prompt-tuned-flan-t5-large
|
anikesh-mane
| 2023-08-14T09:38:40Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T09:38:39Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
|
vnktrmnb
| 2023-08-14T09:29:24Z | 71 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"bert",
"question-answering",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-12T07:38:12Z |
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3207
- Train End Logits Accuracy: 0.8945
- Train Start Logits Accuracy: 0.9240
- Validation Loss: 0.4883
- Validation End Logits Accuracy: 0.8621
- Validation Start Logits Accuracy: 0.9124
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2439, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.2099 | 0.6849 | 0.7242 | 0.5171 | 0.8454 | 0.8930 | 0 |
| 0.5374 | 0.8328 | 0.8737 | 0.4915 | 0.8570 | 0.8943 | 1 |
| 0.3207 | 0.8945 | 0.9240 | 0.4883 | 0.8621 | 0.9124 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
jhll1124/so-vits-adeni
|
jhll1124
| 2023-08-14T09:18:40Z | 1 | 0 |
transformers
|
[
"transformers",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2023-08-14T07:49:10Z |
---
license: mit
---
本模型是V虚拟主播[Adeni](https://space.bilibili.com/145613005)的so-vits-svc4.0模型
|
rokset3/kazroberta-180kstep
|
rokset3
| 2023-08-14T09:18:28Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T09:16:45Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
jondurbin/airoboros-13b
|
jondurbin
| 2023-08-14T09:07:30Z | 1,446 | 106 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-19T11:56:55Z |
---
license: cc-by-nc-4.0
---
# Overview
This is a fine-tuned 13b parameter LlaMa model, using completely synthetic training data created by https://github.com/jondurbin/airoboros
__*I don't recommend using this model! The outputs aren't particularly great, and it may contain "harmful" data due to jailbreak*__
Please see one of the updated airoboros models for a much better experience.
### Eval (gpt4 judging)

| model | raw score | gpt-3.5 adjusted score |
| --- | --- | --- |
| __airoboros-13b__ | __17947__ | __98.087__ |
| gpt35 | 18297 | 100.0 |
| gpt4-x-alpasta-30b | 15612 | 85.33 |
| manticore-13b | 15856 | 86.66 |
| vicuna-13b-1.1 | 16306 | 89.12 |
| wizard-vicuna-13b-uncensored | 16287 | 89.01 |
<details>
<summary>individual question scores, with shareGPT links (200 prompts generated by gpt-4)</summary>
*wb-13b-u is Wizard-Vicuna-13b-Uncensored*
| airoboros-13b | gpt35 | gpt4-x-alpasta-30b | manticore-13b | vicuna-13b-1.1 | wv-13b-u | link |
|----------------:|--------:|---------------------:|----------------:|-----------------:|-------------------------------:|:---------------------------------------|
| 80 | 95 | 70 | 90 | 85 | 60 | [eval](https://sharegpt.com/c/PIbRQD3) |
| 20 | 95 | 40 | 30 | 90 | 80 | [eval](https://sharegpt.com/c/fSzwzzd) |
| 100 | 100 | 100 | 95 | 95 | 100 | [eval](https://sharegpt.com/c/AXMzZiO) |
| 90 | 100 | 85 | 60 | 95 | 100 | [eval](https://sharegpt.com/c/7obzJm2) |
| 95 | 90 | 80 | 85 | 95 | 75 | [eval](https://sharegpt.com/c/cRpj6M1) |
| 100 | 95 | 90 | 95 | 98 | 92 | [eval](https://sharegpt.com/c/p0by1T7) |
| 50 | 100 | 80 | 95 | 60 | 55 | [eval](https://sharegpt.com/c/rowNlKx) |
| 70 | 90 | 80 | 60 | 85 | 40 | [eval](https://sharegpt.com/c/I4POj4I) |
| 100 | 95 | 50 | 85 | 40 | 60 | [eval](https://sharegpt.com/c/gUAeiRp) |
| 85 | 60 | 55 | 65 | 50 | 70 | [eval](https://sharegpt.com/c/Lgw4QQL) |
| 95 | 100 | 85 | 90 | 60 | 75 | [eval](https://sharegpt.com/c/X9tDYft) |
| 100 | 95 | 70 | 80 | 50 | 85 | [eval](https://sharegpt.com/c/9V2ElkH) |
| 100 | 95 | 80 | 70 | 60 | 90 | [eval](https://sharegpt.com/c/D5xg6qt) |
| 95 | 100 | 70 | 85 | 90 | 90 | [eval](https://sharegpt.com/c/lQnSfDs) |
| 80 | 95 | 90 | 60 | 30 | 85 | [eval](https://sharegpt.com/c/1hpHGNc) |
| 60 | 95 | 0 | 75 | 50 | 40 | [eval](https://sharegpt.com/c/an6TqE4) |
| 100 | 95 | 90 | 98 | 95 | 95 | [eval](https://sharegpt.com/c/7vr6n3F) |
| 60 | 85 | 40 | 50 | 20 | 0 | [eval](https://sharegpt.com/c/TOkMkgE) |
| 100 | 90 | 85 | 95 | 95 | 80 | [eval](https://sharegpt.com/c/Qu7ak0r) |
| 100 | 95 | 100 | 95 | 90 | 95 | [eval](https://sharegpt.com/c/hMD4gPo) |
| 95 | 90 | 96 | 80 | 92 | 88 | [eval](https://sharegpt.com/c/HTlicNh) |
| 95 | 92 | 90 | 93 | 89 | 91 | [eval](https://sharegpt.com/c/MjxHpAf) |
| 95 | 93 | 90 | 94 | 96 | 92 | [eval](https://sharegpt.com/c/4RvxOR9) |
| 95 | 90 | 93 | 88 | 92 | 85 | [eval](https://sharegpt.com/c/PcAIU9r) |
| 95 | 90 | 85 | 96 | 88 | 92 | [eval](https://sharegpt.com/c/MMqul3q) |
| 95 | 95 | 90 | 93 | 92 | 91 | [eval](https://sharegpt.com/c/YQsLyzJ) |
| 95 | 98 | 80 | 97 | 99 | 96 | [eval](https://sharegpt.com/c/UDhSTMq) |
| 95 | 93 | 90 | 87 | 92 | 89 | [eval](https://sharegpt.com/c/4gCfdCV) |
| 90 | 85 | 95 | 80 | 92 | 75 | [eval](https://sharegpt.com/c/bkQs4SP) |
| 90 | 85 | 95 | 93 | 80 | 92 | [eval](https://sharegpt.com/c/LeLCEEt) |
| 95 | 92 | 90 | 91 | 93 | 89 | [eval](https://sharegpt.com/c/DFxNzVu) |
| 100 | 95 | 90 | 85 | 80 | 95 | [eval](https://sharegpt.com/c/gnVzNML) |
| 95 | 97 | 93 | 92 | 96 | 94 | [eval](https://sharegpt.com/c/y7pxMIy) |
| 95 | 93 | 94 | 90 | 88 | 92 | [eval](https://sharegpt.com/c/5UeCvTY) |
| 90 | 95 | 98 | 85 | 96 | 92 | [eval](https://sharegpt.com/c/T4oL9I5) |
| 90 | 88 | 85 | 80 | 82 | 84 | [eval](https://sharegpt.com/c/HnGyTAG) |
| 90 | 95 | 85 | 87 | 92 | 88 | [eval](https://sharegpt.com/c/ZbRMBNj) |
| 95 | 97 | 96 | 90 | 93 | 92 | [eval](https://sharegpt.com/c/iTmFJqd) |
| 95 | 93 | 92 | 90 | 89 | 91 | [eval](https://sharegpt.com/c/VuPifET) |
| 90 | 95 | 93 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/AvFAH1x) |
| 90 | 85 | 95 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/4ealKGN) |
| 85 | 90 | 95 | 88 | 92 | 80 | [eval](https://sharegpt.com/c/bE1b2vX) |
| 90 | 95 | 92 | 85 | 80 | 87 | [eval](https://sharegpt.com/c/I3nMPBC) |
| 85 | 90 | 95 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/as7r3bW) |
| 85 | 80 | 75 | 90 | 70 | 82 | [eval](https://sharegpt.com/c/qYceaUa) |
| 90 | 85 | 95 | 92 | 93 | 80 | [eval](https://sharegpt.com/c/g4FXchU) |
| 90 | 95 | 75 | 85 | 80 | 70 | [eval](https://sharegpt.com/c/6kGLvL5) |
| 85 | 90 | 80 | 88 | 82 | 83 | [eval](https://sharegpt.com/c/SRozqaF) |
| 85 | 90 | 95 | 92 | 88 | 80 | [eval](https://sharegpt.com/c/GoKydf6) |
| 85 | 90 | 80 | 75 | 95 | 88 | [eval](https://sharegpt.com/c/37aXkHQ) |
| 85 | 90 | 80 | 88 | 84 | 92 | [eval](https://sharegpt.com/c/nVuUaTj) |
| 80 | 90 | 75 | 85 | 70 | 95 | [eval](https://sharegpt.com/c/TkAQKLC) |
| 90 | 88 | 85 | 80 | 92 | 83 | [eval](https://sharegpt.com/c/55cO2y0) |
| 85 | 75 | 90 | 80 | 78 | 88 | [eval](https://sharegpt.com/c/tXtq5lT) |
| 85 | 90 | 80 | 82 | 75 | 88 | [eval](https://sharegpt.com/c/TfMjeJQ) |
| 90 | 85 | 40 | 95 | 80 | 88 | [eval](https://sharegpt.com/c/2jQ6K2S) |
| 85 | 95 | 90 | 75 | 88 | 80 | [eval](https://sharegpt.com/c/aQtr2ca) |
| 85 | 95 | 90 | 92 | 89 | 88 | [eval](https://sharegpt.com/c/tbWLyZ7) |
| 80 | 85 | 75 | 60 | 90 | 70 | [eval](https://sharegpt.com/c/moHC7i2) |
| 85 | 90 | 87 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/GK6GShh) |
| 85 | 80 | 75 | 50 | 90 | 80 | [eval](https://sharegpt.com/c/ugcW4qG) |
| 95 | 80 | 90 | 85 | 75 | 82 | [eval](https://sharegpt.com/c/WL8iq6F) |
| 85 | 90 | 80 | 70 | 95 | 88 | [eval](https://sharegpt.com/c/TZJKnvS) |
| 90 | 95 | 70 | 85 | 80 | 75 | [eval](https://sharegpt.com/c/beNOKb5) |
| 90 | 85 | 70 | 75 | 80 | 60 | [eval](https://sharegpt.com/c/o2oRCF5) |
| 95 | 90 | 70 | 50 | 85 | 80 | [eval](https://sharegpt.com/c/TNjbK6D) |
| 80 | 85 | 40 | 60 | 90 | 95 | [eval](https://sharegpt.com/c/rJvszWJ) |
| 75 | 60 | 80 | 55 | 70 | 85 | [eval](https://sharegpt.com/c/HJwRkro) |
| 90 | 85 | 60 | 50 | 80 | 95 | [eval](https://sharegpt.com/c/AeFoSDK) |
| 45 | 85 | 60 | 20 | 65 | 75 | [eval](https://sharegpt.com/c/KA1cgOl) |
| 85 | 90 | 30 | 60 | 80 | 70 | [eval](https://sharegpt.com/c/RTy8n0y) |
| 90 | 95 | 80 | 40 | 85 | 70 | [eval](https://sharegpt.com/c/PJMJoXh) |
| 85 | 90 | 70 | 75 | 80 | 95 | [eval](https://sharegpt.com/c/Ib3jzyC) |
| 90 | 70 | 50 | 20 | 60 | 40 | [eval](https://sharegpt.com/c/oMmqqtX) |
| 90 | 95 | 75 | 60 | 85 | 80 | [eval](https://sharegpt.com/c/qRNhNTw) |
| 85 | 80 | 60 | 70 | 65 | 75 | [eval](https://sharegpt.com/c/3MAHQIy) |
| 90 | 85 | 80 | 75 | 82 | 70 | [eval](https://sharegpt.com/c/0Emc5HS) |
| 90 | 95 | 80 | 70 | 85 | 75 | [eval](https://sharegpt.com/c/UqAxRWF) |
| 85 | 75 | 30 | 80 | 90 | 70 | [eval](https://sharegpt.com/c/eywxGAw) |
| 85 | 90 | 50 | 70 | 80 | 60 | [eval](https://sharegpt.com/c/A2KSEWP) |
| 100 | 95 | 98 | 99 | 97 | 96 | [eval](https://sharegpt.com/c/C8rebQf) |
| 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/cd9HF4V) |
| 95 | 92 | 90 | 85 | 88 | 91 | [eval](https://sharegpt.com/c/LHkjvQJ) |
| 100 | 95 | 98 | 97 | 96 | 99 | [eval](https://sharegpt.com/c/o5PdoyZ) |
| 100 | 100 | 100 | 90 | 100 | 95 | [eval](https://sharegpt.com/c/rh8pZVg) |
| 100 | 95 | 98 | 97 | 94 | 99 | [eval](https://sharegpt.com/c/T5DYL83) |
| 95 | 90 | 92 | 93 | 94 | 91 | [eval](https://sharegpt.com/c/G5Osg3X) |
| 100 | 95 | 98 | 90 | 96 | 95 | [eval](https://sharegpt.com/c/9ZqI03V) |
| 95 | 96 | 92 | 90 | 89 | 93 | [eval](https://sharegpt.com/c/4tFfwZU) |
| 100 | 95 | 93 | 90 | 92 | 88 | [eval](https://sharegpt.com/c/mG1JqPH) |
| 100 | 100 | 98 | 97 | 99 | 100 | [eval](https://sharegpt.com/c/VDdtgCu) |
| 95 | 90 | 92 | 85 | 93 | 94 | [eval](https://sharegpt.com/c/uKtGkvg) |
| 95 | 93 | 90 | 92 | 96 | 91 | [eval](https://sharegpt.com/c/9B92N6P) |
| 95 | 96 | 92 | 90 | 93 | 91 | [eval](https://sharegpt.com/c/GeIFfOu) |
| 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/gn3E9nN) |
| 100 | 98 | 95 | 97 | 96 | 99 | [eval](https://sharegpt.com/c/Erxa46H) |
| 90 | 95 | 85 | 88 | 92 | 87 | [eval](https://sharegpt.com/c/oRHVOvK) |
| 95 | 93 | 90 | 92 | 89 | 88 | [eval](https://sharegpt.com/c/ghtKLUX) |
| 100 | 95 | 97 | 90 | 96 | 94 | [eval](https://sharegpt.com/c/ZL4KjqP) |
| 95 | 93 | 90 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/YOnqIQa) |
| 95 | 92 | 90 | 93 | 94 | 88 | [eval](https://sharegpt.com/c/3BKwKho) |
| 95 | 92 | 60 | 97 | 90 | 96 | [eval](https://sharegpt.com/c/U1i31bn) |
| 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/etfRoAE) |
| 95 | 90 | 97 | 92 | 91 | 93 | [eval](https://sharegpt.com/c/B0OpVxR) |
| 90 | 95 | 93 | 85 | 92 | 91 | [eval](https://sharegpt.com/c/MBgGJ5A) |
| 95 | 90 | 40 | 92 | 93 | 85 | [eval](https://sharegpt.com/c/eQKTYO7) |
| 100 | 100 | 95 | 90 | 95 | 90 | [eval](https://sharegpt.com/c/szKWCBt) |
| 90 | 95 | 96 | 98 | 93 | 92 | [eval](https://sharegpt.com/c/8ZhUcAv) |
| 90 | 95 | 92 | 89 | 93 | 94 | [eval](https://sharegpt.com/c/VQWdy99) |
| 100 | 95 | 100 | 98 | 96 | 99 | [eval](https://sharegpt.com/c/g1DHUSM) |
| 100 | 100 | 95 | 90 | 100 | 90 | [eval](https://sharegpt.com/c/uYgfJC3) |
| 90 | 85 | 88 | 92 | 87 | 91 | [eval](https://sharegpt.com/c/crk8BH3) |
| 95 | 97 | 90 | 92 | 93 | 94 | [eval](https://sharegpt.com/c/95F9afQ) |
| 90 | 95 | 85 | 88 | 92 | 89 | [eval](https://sharegpt.com/c/otioHUo) |
| 95 | 93 | 90 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/KSiL9F6) |
| 90 | 95 | 85 | 80 | 88 | 82 | [eval](https://sharegpt.com/c/GmGq3b3) |
| 95 | 90 | 60 | 85 | 93 | 70 | [eval](https://sharegpt.com/c/VOhklyz) |
| 95 | 92 | 94 | 93 | 96 | 90 | [eval](https://sharegpt.com/c/wqy8m6k) |
| 95 | 90 | 85 | 93 | 87 | 92 | [eval](https://sharegpt.com/c/iWKrIuS) |
| 95 | 96 | 93 | 90 | 97 | 92 | [eval](https://sharegpt.com/c/o1h3w8N) |
| 100 | 0 | 0 | 100 | 0 | 0 | [eval](https://sharegpt.com/c/3UH9eed) |
| 60 | 100 | 0 | 80 | 0 | 0 | [eval](https://sharegpt.com/c/44g0FAh) |
| 0 | 100 | 60 | 0 | 0 | 90 | [eval](https://sharegpt.com/c/PaQlcrU) |
| 100 | 100 | 0 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/51icV4o) |
| 100 | 100 | 100 | 100 | 95 | 100 | [eval](https://sharegpt.com/c/1VnbGAR) |
| 100 | 100 | 100 | 50 | 90 | 100 | [eval](https://sharegpt.com/c/EYGBrgw) |
| 100 | 100 | 100 | 100 | 95 | 90 | [eval](https://sharegpt.com/c/EGRduOt) |
| 100 | 100 | 100 | 95 | 0 | 100 | [eval](https://sharegpt.com/c/O3JJfnK) |
| 50 | 95 | 20 | 10 | 30 | 85 | [eval](https://sharegpt.com/c/2roVtAu) |
| 100 | 100 | 60 | 20 | 30 | 40 | [eval](https://sharegpt.com/c/sphFpfx) |
| 100 | 0 | 0 | 0 | 0 | 100 | [eval](https://sharegpt.com/c/OeWGKBo) |
| 0 | 100 | 60 | 0 | 0 | 80 | [eval](https://sharegpt.com/c/TOUsuFA) |
| 50 | 100 | 20 | 90 | 0 | 10 | [eval](https://sharegpt.com/c/Y3P6DCu) |
| 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/hkbdeiM) |
| 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/eubbaVC) |
| 40 | 100 | 95 | 0 | 100 | 40 | [eval](https://sharegpt.com/c/QWiF49v) |
| 100 | 100 | 100 | 100 | 80 | 100 | [eval](https://sharegpt.com/c/dKTapBu) |
| 100 | 100 | 100 | 0 | 90 | 40 | [eval](https://sharegpt.com/c/P8NGwFZ) |
| 0 | 100 | 100 | 50 | 70 | 20 | [eval](https://sharegpt.com/c/v96BtBL) |
| 100 | 100 | 50 | 90 | 0 | 95 | [eval](https://sharegpt.com/c/YRlzj1t) |
| 100 | 95 | 90 | 85 | 98 | 80 | [eval](https://sharegpt.com/c/76VX3eB) |
| 95 | 98 | 90 | 92 | 96 | 89 | [eval](https://sharegpt.com/c/JK1uNef) |
| 90 | 95 | 75 | 85 | 80 | 82 | [eval](https://sharegpt.com/c/ku6CKmx) |
| 95 | 98 | 50 | 92 | 96 | 94 | [eval](https://sharegpt.com/c/0iAFuKW) |
| 95 | 90 | 0 | 93 | 92 | 94 | [eval](https://sharegpt.com/c/6uGnKio) |
| 95 | 90 | 85 | 92 | 80 | 88 | [eval](https://sharegpt.com/c/lfpRBw8) |
| 95 | 93 | 75 | 85 | 90 | 92 | [eval](https://sharegpt.com/c/mKu70jb) |
| 90 | 95 | 88 | 85 | 92 | 89 | [eval](https://sharegpt.com/c/GkYzJHO) |
| 100 | 100 | 100 | 95 | 97 | 98 | [eval](https://sharegpt.com/c/mly2k0z) |
| 85 | 40 | 30 | 95 | 90 | 88 | [eval](https://sharegpt.com/c/5td2ob0) |
| 90 | 95 | 92 | 85 | 88 | 93 | [eval](https://sharegpt.com/c/0ISpWfy) |
| 95 | 96 | 92 | 90 | 89 | 93 | [eval](https://sharegpt.com/c/kdUDUn7) |
| 90 | 95 | 85 | 80 | 92 | 88 | [eval](https://sharegpt.com/c/fjMNYr2) |
| 95 | 98 | 65 | 90 | 85 | 93 | [eval](https://sharegpt.com/c/6xBIf2Q) |
| 95 | 92 | 96 | 97 | 90 | 89 | [eval](https://sharegpt.com/c/B9GY8Ln) |
| 95 | 90 | 92 | 91 | 89 | 93 | [eval](https://sharegpt.com/c/vn1FPU4) |
| 95 | 90 | 80 | 75 | 95 | 90 | [eval](https://sharegpt.com/c/YurEMYg) |
| 92 | 40 | 30 | 95 | 90 | 93 | [eval](https://sharegpt.com/c/D19Qeui) |
| 90 | 92 | 85 | 88 | 89 | 87 | [eval](https://sharegpt.com/c/5QRFfrt) |
| 95 | 80 | 90 | 92 | 91 | 88 | [eval](https://sharegpt.com/c/pYWPRi4) |
| 95 | 93 | 92 | 90 | 91 | 94 | [eval](https://sharegpt.com/c/wPRTntL) |
| 100 | 98 | 95 | 90 | 92 | 96 | [eval](https://sharegpt.com/c/F6PLYKE) |
| 95 | 92 | 80 | 85 | 90 | 93 | [eval](https://sharegpt.com/c/WeJnMGv) |
| 95 | 98 | 90 | 88 | 97 | 96 | [eval](https://sharegpt.com/c/zNKL49e) |
| 90 | 95 | 85 | 88 | 86 | 92 | [eval](https://sharegpt.com/c/kIKmA1b) |
| 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/1btWd4O) |
| 90 | 95 | 85 | 96 | 92 | 88 | [eval](https://sharegpt.com/c/s9sf1Lp) |
| 100 | 98 | 95 | 99 | 97 | 96 | [eval](https://sharegpt.com/c/RWzv8py) |
| 95 | 92 | 70 | 90 | 93 | 89 | [eval](https://sharegpt.com/c/bYF7FqA) |
| 95 | 90 | 88 | 92 | 94 | 93 | [eval](https://sharegpt.com/c/SuUqjMj) |
| 95 | 90 | 93 | 92 | 85 | 94 | [eval](https://sharegpt.com/c/r0aRdYY) |
| 95 | 93 | 90 | 87 | 92 | 91 | [eval](https://sharegpt.com/c/VuMfkkd) |
| 95 | 93 | 90 | 96 | 92 | 91 | [eval](https://sharegpt.com/c/rhm6fa4) |
| 95 | 97 | 85 | 96 | 98 | 90 | [eval](https://sharegpt.com/c/DwXnyqG) |
| 95 | 92 | 90 | 85 | 93 | 94 | [eval](https://sharegpt.com/c/0ScdkGS) |
| 95 | 96 | 92 | 90 | 97 | 93 | [eval](https://sharegpt.com/c/6yIoCDU) |
| 95 | 93 | 96 | 94 | 90 | 92 | [eval](https://sharegpt.com/c/VubEvp9) |
| 95 | 94 | 93 | 92 | 90 | 89 | [eval](https://sharegpt.com/c/RHzmZWG) |
| 90 | 85 | 95 | 80 | 87 | 75 | [eval](https://sharegpt.com/c/IMiP9Zm) |
| 95 | 94 | 92 | 93 | 90 | 96 | [eval](https://sharegpt.com/c/bft4PIL) |
| 95 | 100 | 90 | 95 | 95 | 95 | [eval](https://sharegpt.com/c/iHXB34b) |
| 100 | 95 | 85 | 100 | 0 | 90 | [eval](https://sharegpt.com/c/vCGn9R7) |
| 100 | 95 | 90 | 95 | 100 | 95 | [eval](https://sharegpt.com/c/be8crZL) |
| 95 | 90 | 60 | 95 | 85 | 80 | [eval](https://sharegpt.com/c/33elmDz) |
| 100 | 95 | 90 | 98 | 97 | 99 | [eval](https://sharegpt.com/c/RWD3Zx7) |
| 95 | 90 | 85 | 95 | 80 | 92 | [eval](https://sharegpt.com/c/GiwBvM7) |
| 100 | 95 | 100 | 98 | 100 | 90 | [eval](https://sharegpt.com/c/hX2pYxk) |
| 100 | 95 | 80 | 85 | 90 | 85 | [eval](https://sharegpt.com/c/MfxdGd7) |
| 100 | 90 | 95 | 85 | 95 | 100 | [eval](https://sharegpt.com/c/28hQjmS) |
| 95 | 90 | 85 | 80 | 88 | 92 | [eval](https://sharegpt.com/c/fzy5EPe) |
| 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/vwxPjbR) |
| 100 | 100 | 100 | 50 | 100 | 75 | [eval](https://sharegpt.com/c/FAYfFWy) |
| 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/SoudGsQ) |
| 0 | 100 | 0 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/mkwEgVn) |
| 100 | 100 | 50 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/q8MQEsz) |
| 100 | 100 | 100 | 100 | 100 | 95 | [eval](https://sharegpt.com/c/tzHpsKh) |
| 100 | 100 | 50 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/3ugYBtJ) |
| 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/I6KfOJT) |
| 90 | 85 | 80 | 95 | 70 | 75 | [eval](https://sharegpt.com/c/enaV1CK) |
| 100 | 100 | 0 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/JBk7oSh) |
</details>
### Training data
This was an experiment to see if a "jailbreak" prompt could be used to generate a broader range of data that would otherwise have been filtered by OpenAI's alignment efforts.
The jailbreak did indeed work with a high success rate, and caused OpenAI to generate a broader range of topics and fewer refusals to answer questions/instructions of sensitive topics.
### Prompt format
The prompt should be 1:1 compatible with the FastChat/vicuna format, e.g.:
With a system prompt:
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: [prompt] ASSISTANT:
```
Or without a system prompt:
```
USER: [prompt] ASSISTANT:
```
### Usage and License Notices
The model and dataset are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because:
- the base model is LLaMa, which has it's own special research license
- the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai
So, to reiterate: this model (and datasets) cannot be used commercially.
|
jondurbin/airoboros-7b
|
jondurbin
| 2023-08-14T09:04:07Z | 1,446 | 15 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-18T21:56:37Z |
---
license: cc-by-nc-4.0
---
# Overview
This is a fine-tuned 7b parameter LlaMa model, using completely synthetic training data created by https://github.com/jondurbin/airoboros
__*I don't recommend using this model! The outputs aren't particularly great, and it may contain "harmful" data due to jailbreak*__
Please see one of the updated airoboros models for a much better experience.
### Training data
This was an experiment to see if a "jailbreak" prompt could be used to generate a broader range of data that would otherwise have been filtered by OpenAI's alignment efforts.
The jailbreak did indeed work with a high success rate, and caused OpenAI to generate a broader range of topics and fewer refusals to answer questions/instructions of sensitive topics.
### Usage and License Notices
All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because:
- the base model is LLaMa, which has it's own special research license
- the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai
So, to reiterate: this model (and datasets) cannot be used commercially.
|
Rxwang/ppo-Huggy
|
Rxwang
| 2023-08-14T09:02:11Z | 13 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-14T09:01:54Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Rxwang/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Skie0007/reinforce-pixel
|
Skie0007
| 2023-08-14T09:02:11Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:24:43Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: reinforce-pixel
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 6.50 +/- 8.95
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
adhisetiawan/DQN-EnduroNoFrameskip-v4
|
adhisetiawan
| 2023-08-14T08:59:42Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"EnduroNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:55:31Z |
---
library_name: stable-baselines3
tags:
- EnduroNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: EnduroNoFrameskip-v4
type: EnduroNoFrameskip-v4
metrics:
- type: mean_reward
value: 925.40 +/- 160.89
name: mean_reward
verified: false
---
# **DQN** Agent playing **EnduroNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **EnduroNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env EnduroNoFrameskip-v4 -orga adhisetiawan -f logs/
python -m rl_zoo3.enjoy --algo dqn --env EnduroNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env EnduroNoFrameskip-v4 -orga adhisetiawan -f logs/
python -m rl_zoo3.enjoy --algo dqn --env EnduroNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env EnduroNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env EnduroNoFrameskip-v4 -f logs/ -orga adhisetiawan
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
wangxso/ppo-PyramidsTraining
|
wangxso
| 2023-08-14T08:58:00Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:57:57Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: wangxso/ppo-PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ai-forever/mGPT-1.3B-ukranian
|
ai-forever
| 2023-08-14T08:57:08Z | 31 | 3 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"gpt3",
"mgpt",
"uk",
"en",
"ru",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T05:12:23Z |
---
language:
- uk
- en
- ru
license: mit
tags:
- gpt3
- transformers
- mgpt
---
# 🇺🇦 Ukranian mGPT 1.3B
Language model for Ukranian. Model has 1.3B parameters as you can guess from it's name.
Ukranian belongs to Indo-European language family. It's a very melodic language with approximately 40 million speakers. Here are some facts about it:
1. One of the East Slavic languages, alongside Russian and Belarusian.
2. It is the official language of Ukraine and is written in a version of the Cyrillic script.
3. Ukrainian has a rich literary history, it has maintained a vibrant cultural presence, especially in poetry and music.
## Technical details
It's one of the models derived from the base [mGPT-XL (1.3B)](https://huggingface.co/ai-forever/mGPT) model (see the list below) which was originally trained on the 61 languages from 25 language families using Wikipedia and C4 corpus.
We've found additional data for 23 languages most of which are considered as minor and decided to further tune the base model. **Ukranian mGPT 1.3B** was trained for another 10000 steps with batch_size=4 and context window of **2048** tokens on 1 A100.
Final perplexity for this model on validation is **7.1**.
_Chart of the training loss and perplexity:_

## Other mGPT-1.3B models
- [🇦🇲 mGPT-1.3B Armenian](https://huggingface.co/ai-forever/mGPT-1.3B-armenian)
- [🇦🇿 mGPT-1.3B Azerbaijan](https://huggingface.co/ai-forever/mGPT-1.3B-azerbaijan)
- [🍯 mGPT-1.3B Bashkir](https://huggingface.co/ai-forever/mGPT-1.3B-bashkir)
- [🇧🇾 mGPT-1.3B Belorussian](https://huggingface.co/ai-forever/mGPT-1.3B-belorussian)
- [🇧🇬 mGPT-1.3B Bulgarian](https://huggingface.co/ai-forever/mGPT-1.3B-bulgarian)
- [🌞 mGPT-1.3B Buryat](https://huggingface.co/ai-forever/mGPT-1.3B-buryat)
- [🌳 mGPT-1.3B Chuvash](https://huggingface.co/ai-forever/mGPT-1.3B-chuvash)
- [🇬🇪 mGPT-1.3B Georgian](https://huggingface.co/ai-forever/mGPT-1.3B-georgian)
- [🌸 mGPT-1.3B Kalmyk](https://huggingface.co/ai-forever/mGPT-1.3B-kalmyk)
- [🇰🇿 mGPT-1.3B Kazakh](https://huggingface.co/ai-forever/mGPT-1.3B-kazakh)
- [🇰🇬 mGPT-1.3B Kirgiz](https://huggingface.co/ai-forever/mGPT-1.3B-kirgiz)
- [🐻 mGPT-1.3B Mari](https://huggingface.co/ai-forever/mGPT-1.3B-mari)
- [🇲🇳 mGPT-1.3B Mongol](https://huggingface.co/ai-forever/mGPT-1.3B-mongol)
- [🐆 mGPT-1.3B Ossetian](https://huggingface.co/ai-forever/mGPT-1.3B-ossetian)
- [🇮🇷 mGPT-1.3B Persian](https://huggingface.co/ai-forever/mGPT-1.3B-persian)
- [🇷🇴 mGPT-1.3B Romanian](https://huggingface.co/ai-forever/mGPT-1.3B-romanian)
- [🇹🇯 mGPT-1.3B Tajik](https://huggingface.co/ai-forever/mGPT-1.3B-tajik)
- [☕ mGPT-1.3B Tatar](https://huggingface.co/ai-forever/mGPT-1.3B-tatar)
- [🇹🇲 mGPT-1.3B Turkmen](https://huggingface.co/ai-forever/mGPT-1.3B-turkmen)
- [🐎 mGPT-1.3B Tuvan](https://huggingface.co/ai-forever/mGPT-1.3B-tuvan)
- [🇺🇿 mGPT-1.3B Uzbek](https://huggingface.co/ai-forever/mGPT-1.3B-uzbek)
- [💎 mGPT-1.3B Yakut](https://huggingface.co/ai-forever/mGPT-1.3B-yakut)
## Feedback
If you'll find a bug or have additional data to train a model on your language — **please, give us feedback**.
Model will be improved over time. Stay tuned!
|
bookbot/sherpa-onnx-pruned-transducer-stateless7-streaming-id
|
bookbot
| 2023-08-14T08:53:53Z | 0 | 2 | null |
[
"onnx",
"icefall",
"sherpa-onnx",
"phoneme-recognition",
"automatic-speech-recognition",
"id",
"dataset:mozilla-foundation/common_voice_13_0",
"dataset:indonesian-nlp/librivox-indonesia",
"dataset:google/fleurs",
"license:apache-2.0",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:44:32Z |
---
language: id
license: apache-2.0
tags:
- icefall
- sherpa-onnx
- phoneme-recognition
- automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_13_0
- indonesian-nlp/librivox-indonesia
- google/fleurs
---
# Sherpa-onnx Pruned Stateless Zipformer RNN-T Streaming ID
Sherpa-onnx Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets:
- [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0)
- [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia)
- [FLEURS ID](https://huggingface.co/datasets/google/fleurs)
Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id).
This model was converted from the TorchScript version of [Pruned Stateless Zipformer RNN-T Streaming ID](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id) to ONNX format.
## Converting from TorchScript
Refer to the [official instructions](https://icefall.readthedocs.io/en/latest/model-export/export-onnx.html#export-the-model-to-onnx) for conversion to ONNX.
## Frameworks
- [k2](https://github.com/k2-fsa/k2)
- [icefall](https://github.com/bookbot-hive/icefall)
- [lhotse](https://github.com/bookbot-hive/lhotse)
- [sherpa-onnx](https://github.com/k2-fsa/sherpa-onnx)
- [onnx](https://github.com/onnx/onnx)
- [onnxruntime](https://github.com/microsoft/onnxruntime)
|
davidkim205/komt-Llama-2-7b-chat-hf
|
davidkim205
| 2023-08-14T08:50:21Z | 19 | 7 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"llama-2-chat",
"en",
"ko",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-14T08:04:14Z |
---
language:
- en
- ko
pipeline_tag: text-generation
inference: false
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- llama-2-chat
license: apache-2.0
---
# komt-llama-2-7b
The "komt-llama-2-7b" model was developed using a multi-task instruction technique aimed at enhancing Korean language performance. For more details, please refer to the GitHub Repository.
## Model Details
* **Model Developers** : davidkim(changyeon kim)
* **Repository** : https://github.com/davidkim205/komt
* **Model Architecture** : komt-llama-2-7b is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning by multi-task instruction
## Dataset
korean multi-task instruction dataset
## Prompt Template
```
### instruction: {prompt}
### Response:
```
Examples:
```
### instruction: 자동차 종합(정기)검사 의무기간은 얼마인가요?
### Response:
```
response:
```
### instruction: 자동차 종합(정기)검사 의무기간은 얼마인가요?.
### Response:자동차 종합(정기)검사 의무기간은 최초 등록일 또는 최초 등록일 이후 12개월 뒤부터 3년간 적용됩니다. 그러나 이 기간은 최초 등록일 이후 12개월 뒤 매년 12개월씩 3년간 적용됩니다. 이 기간 동안 차량의 기본 점검이 필요하며, 점검을 받지 않으면 과태료가 부과됩니다. 따라서 자동차 종합(정기)검사를 받을 때는 반드시 등록 당일에 점검을 받아야 합니다.
```
## Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import StoppingCriteria, StoppingCriteriaList
from transformers import TextStreamer, GenerationConfig
class LocalStoppingCriteria(StoppingCriteria):
def __init__(self, tokenizer, stop_words=[]):
super().__init__()
stops = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for
stop_word in stop_words]
print('stop_words', stop_words)
print('stop_words_ids', stops)
self.stop_words = stop_words
self.stops = [stop.cuda() for stop in stops]
self.tokenizer = tokenizer
def _compare_token(self, input_ids):
for stop in self.stops:
if len(stop.size()) != 1:
continue
stop_len = len(stop)
if torch.all((stop == input_ids[0][-stop_len:])).item():
return True
return False
def _compare_decode(self, input_ids):
input_str = self.tokenizer.decode(input_ids[0])
for stop_word in self.stop_words:
if input_str.endswith(stop_word):
return True
return False
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
input_str = self.tokenizer.decode(input_ids[0])
for stop_word in self.stop_words:
if input_str.endswith(stop_word):
return True
return False
#
# config
model_name = 'davidkim205/komt-Llama-2-7b-chat-hf'
instruction_prefix = "### instruction: "
input_prefix = "### input: "
answer_prefix = "### Response: "
endoftext = "<|end|>"
stop_words = [endoftext, '<s>', '###']
generation_config = GenerationConfig(
temperature=0.9,
top_p=0.7,
top_k=100,
max_new_tokens=2048,
early_stopping=True,
do_sample=True,
)
#
# create model
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
stopping_criteria = StoppingCriteriaList([LocalStoppingCriteria(tokenizer=tokenizer, stop_words=stop_words)])
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
model.eval()
#
# generate
prompt = f"### instruction: nlp에 대해서 간단하게 설명해줘.\n\n### Response:"
gened = model.generate(
**tokenizer(
prompt,
return_tensors='pt',
return_token_type_ids=False
).to('cuda'),
generation_config=generation_config,
eos_token_id=model.config.eos_token_id,
stopping_criteria=stopping_criteria,
streamer=streamer
)
output_text = tokenizer.decode(gened[0], skip_special_tokens=True)
print('--------------------')
print(output_text)
```
response:
```
NLP는 자연어 처리의 약자로, 컴퓨터와 인간 언어 간의 상호 작용을 다루는 인공 지능의 한 분야입니다. 다음은 몇 가지 예시입니다:
1. 언어 번역: 번역 분야에서 번역가는 원본 문서를 원하는 언어로 번역하는 작업을 담당합니다. 이 작업은 번역가가 원본 문서를 철저히 분석하여 번역하는 것이 필수적이기 때문에 어려운 작업입니다.
2. 감정 분석: 감정 분석은 텍스트 데이터에서 감성을 분석하는 것을 포함합니다. 이 작업은 감성을 긍정 또는 부정으로 분류하는 것이 필수적이기 때문에 어려운 작업입니다.
3. 텍스트 분류: 텍스트 분류는 텍스트 데이터를 특정 카테고리로 분류하는 작업을 포함합니다. 이 작업은 텍스트를 분류하는 데 사용되는 머신 러닝 알고리즘의 발전으로 인해 더 쉬워졌습니다.
4. 정보 검색: 정보 검색은 정보를 검색하는 작업을 포함합니다. 이 작업은 데이터베이스, 온라인 데이터베이스, 웹 검색 엔진 등 다양한 기술을 사용하여 처리할 수 있습니다.
5. 컴퓨터 지원 번역: 컴퓨터 지원 번역은 기업이 다양한 언어로 제품 및 서비스를 번역할 수 있도록 지원하는 작업을 포함합니다. 이 작업은 번역 프로세스를 자동화하는 데 사용되는 머신 러닝 알고리즘의 발전으로 인해 더 쉬워졌습니다.
```
## Hardware and Software
- nvidia driver : 535.54.03
- CUDA Version: 12.2
## Training
Refer github
## Model Benchmark
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
### Korean Semantic Textual Similarity
| model name | Version | Metric | Value | | Stderr |
|-------------------------------| ------: | ------ |-----------:| ---- | -----: |
| meta-llama/Llama-2-7b-chat-hf | 0 | acc | 0.4817 | ± | 0.0220 |
| beomi/llama-2-ko-7b | 0 | acc | 0.5029 | ± | 0.0220 |
| kfkas/Llama-2-ko-7b-Chat | 0 | acc | 0.5318 | ± | 0.0219 |
| **komt-llama-2-7b (ours)** | 0 | acc | **0.5530** | ± | 0.0218 |
### Example Output
Please refer to the GitHub link below for performance results of each model.
https://github.com/davidkim205/komt/tree/main/eval_results
| 질문/답변 |
| ------------------------------------------------------------ |
| 누전차단기가 내려가는 이유는 무엇입니까? |
| 누전차단기가 내려가는 이유는 다음과 같습니다:1. 플러그를 코드에 연결하는 코드 표시기 또는 핀에 압력이 분산되어 있을 수 있습니다. 예를 들어, 코드 표시기의 위치가 누전차단기의 위치와 같지 않거나 코드 표시기의 구성 요소가 작동하지 않는 경우 누전차단기가 내려가지 않을 수 있습니다.2. 플러그를 코드에 연결하는 코드 표시기 또는 핀에 금전이 충전되어 있을 수 있습니다. 예를 들어, 코드 표시기의 위치가 누전차단기의 위치와 같지 않거나 코드 표시기의 구성 요소가 작동하지 않는 경우 누전차단기가 내려가지 않을 수 있습니다.3. 코드 표시기 또는 핀에 압력이 작동하는 방식에 문제가 있을 수 있습니다. 예를 들어, 코드 표시기의 위치가 누전차단기의 위치와 같지 않거나 코드 표시기의 구성 요소가 작동하지 않는 경우 누전차단기가 내려가지 않을 수 있습니다.4. 플러그를 코드에 연결하는 코드 표시기 또는 핀에 금전이 충전되어 있을 수 있습니다. 예를 들어, 코드 표시기의 위치가 누전차단기의 위치와 같지 않거나 코드 표시기의 구성 요소가 작동하지 않는 경우 누전차단기가 내려가지 않을 수 있습니다.5. 코드 표시기 또는 핀에 금전이 충전되어 있을 수 있습니다. 예를 들어, 코드 표시기의 위치가 누전차단기의 위치와 같지 않거나 코드 표시기의 구성 요소가 작동하지 않는 경우 누전차단기가 내려가지 않을 수 있습니다. |
| 협력공인중개사란 무엇인가요? |
| 협력공인중개사는 부동산 중개업 업무에 대해 공인중개사 또는 부동산 중개사와 거래하는 일종의 파트너입니다. 협력공인중개사는 공인중개사와 거래를 처리하고 중개 수수료를 갚을 책임이 있습니다. 협력공인중개사는 공인중개사의 전문성과 업무 능력을 활용하여 공인중개사와 함께 부동산을 판매, 구매 또는 임대하는 업무를 담당합니다.협력공인중개사와 협력하면 부동산 중개업 업무에 대한 전문성을 발휘하는 동시에 다른 중개업 업무에 대해서도 편리함과 지원을 받을 수 있습니다. 협력공인중개사는 부동산 중개업체 관계에 익숙하고 분석, 마케팅 또는 고객 서비스와 같은 추가 서비스를 제공할 수 있는 능력을 갖추고 있을 수 있습니다.협력공인중개사는 공인중개사와 협력하여 부동산을 판매, 구매 또는 임대하는 업무를 담당하며, 판매 또는 구매를 원하는 고객에게 다음과 같은 몇 가지 이점을 제공할 수 있습니다. |
| 수출물품에도 원산지표시를 하여야 하나요? |
| 수출물품에 대해서는 원산지표시 의무가 없습니다. 그러나 수출 물품에 대해서는 표시자율 원산지표시 규정에 따라 원산지표시를 하는 것이 좋습니다. 표시자율 원산지표시 규정에 따라 원산지 표시가 가능하다면 원산지 표시가 가능한 제품은 표시할 의무가 있습니다. 원산지 표시가 가능하지 않은 제품은 원산지 표시를 하지 않는 것이 좋습니다. 이 때, 원산지 표시 의무가 없는 제품은 국내에서 판매되는 제품이며, 원산지 표시 의무가 없는 제품은 국내에서 판매되지 않는 제품입니다. |
| 자동차 공기압 관리가 왜 중요하나요? |
| 자동차 공기압 관리는 안전과 편안함을 위해 중요합니다. 공기압이 높아지면 파편성 및 충격 충격으로 인해 차체에 부정적인 영향을 미칠 수 있습니다. 또한 공기압이 낮으면 충격을 흡수하여 안전을 훼손시킬 수 있습니다. 또한 공기압이 낮으면 더 높은 압력을 견딜 수 있는 차체 재료가 필요하기 때문에 비용이 더 많이 들 수 있습니다. 또한 공기압이 낮으면 공기압을 유지하는 데 필요한 연료가 더 많이 필요하기 때문에 연비가 떨어질 수 있습니다. 이는 연비가 떨어지면 배기가스 배출량이 증가하여 배기가스 배출량을 줄이는 데 도움이 될 수 있습니다. 이러한 이유로 인해 안전하고 편안한 운행을 위해 자동차 공기압 관리가 중요하다는 것을 알 수 있습니다. |
| 주차위반으로 과태료가 나왔는데 행정심판을 청구할 수 있나요? |
| 주차위반으로 과태료가 나온 경우 행정심판을 청구할 수 있습니다. 이 과정은 행정심판법에 따라 이루어지며, 이 법은 공무원의 과실이나 과태료 부과 결정에 대한 소송 절차를 정하고 있습니다.\r\n\r\n행정심판을 청구하려면 먼저 행정심판위원회에 신청서를 제출해야 합니다. 행정심판위원회는 신청서를 검토하고 행정심판위원회 위원 중 3명 이상의 찬성을 얻어 행정심판법에 따라 해당 법에 따른 결정을 지지할지, 위반한 사실을 충분히 증명할지 여부를 판단합니다.\r\n\r\n예를 들어, 주차위반으로 과태료가 부과된 경우 행정심판위원회는 위반한 사실을 충분히 증명할 경우 해당 위반 사실에 대해 청구된 과태료를 지지할 수 있습니다. 그러나 위반이 충분하지 않다고 판단할 경우, 행정심판위원회는 위반 사실을 충분히 증명하지 못할 경우 해당 위반 사실에 대해 부과된 과태료를 취소할 수 있습니다.\r\n\r\n행정심판위원회가 청구된 과태료를 지지하면 행정심판위원회는 행정심판법에 따라 청구인에게 행정심판위원회의 판단을 제출할 것을 요구할 수 있습니다. 청구인은 행정심판위원회 판단을 준수하거나 행정심판법에 따라 청구된 과태료를 납부할 수 있습니다.\r\n\r\n행정심판법에 따라 행정심판위원회가 해당 위반 사실을 충분히 증명할 수 없는 경우, 해당 위반 사실을 충분히 증명할 |
| 프리는 어느 나라의 애니메이션이야 |
| 일본\n애니메이션 《프리》(プリマインズ, Pretty Maidens)는 일본의 애니메이션이다. 제작은 일본의 애니메이션 제작사인 스튜디오 지브리(Studio Ghibli)에서 이루어졌으며, 감독은 아노 하카토(猿野ハカト)이다. 극장판 애니메이션으로 일본에서 개봉한 이후, ㈜얼리버드픽쳐스가 수입하여 케이블 텔레비전을 통해 한국어 더빙으로 방영되었다. 《프리》는 스튜디오 지브리의 창작 배경이 되는 도시인 도쿄 도를 무대로 하고 있으며, 극장판 애니메이션 작품 중에서 가장 많은 관객수를 기록하고 있는 작품 중의 하나이다. 《프리》는 일본에서 2001년 개봉되어 일본영화 최다 관객수 기록을 기록하고 있으며, 《모노노케 히메》 이후 스튜디오 지브리가 제작한 일본의 애니메이션 작품 중에서 가장 많은 관객수를 기록하고 있다. 《프리》는 일본에서 애니메이션 작품 중에서 가장 많은 관객수를 기록하고 있으며, 《모노노케 히메》 이후 스튜디오 지브리가 제작한 일본의 애니메이션 작품 중에서 가장 많은 관객수를 기록하고 있다. 《프리》는 일본에서 2001년 개봉되어 일본영화 최다 관객수 기록을 기록하고 있으며, 《모노노케 히메》 이후 스튜디오 지브리가 제작한 일본의 애니메이션 작품 중에서 가장 많은 관객수를 기록하고 있다. |
| 영화 해리포터 시리즈 배급사가 어디야 |
| 워너 브라더스\n해리포터 시리즈는 콘텐츠로는 크게 세 부분으로 나누고, 배급사인 워너 브라더스는 네 부분으로 나누어 판매하고 있다. 그 중 《해리포터와 혼혈 왕자》(Harry Potter and the Half-Blood Prince) 같은 일부는 한 번에 한 챕터씩 발매하기도 한다. 이처럼 분할발매는 2007년 《해리포터와 혼혈 왕자》(Harry Potter and the Half-Blood Prince) 이후로 시작되었다. 《해리포터 시리즈》(Harry Potter Series) 또는 《해리 포터 시리즈》(Harry Potter Series) 라고도 부른다. 시리즈에 대한 논란에도 불구하고, 해리 포터 시리즈는 전 세계적으로 유명한 책 시리즈이다. 《해리포터와 죽음의 성물》(Harry Potter and the Deathly Hallows – Part 1)은 2010년 11월 26일 개봉하였고, 2011년 1월 25일 《해리포터와 죽음의 성물》(Harry Potter and the Deathly Hallows – Part 2)이 개봉한다. |
| 왜 세계시간의 기준이 영국의 GMT인가요? 그 이유는 무엇일까요? |
| 영국 항해사들이 세계시간의 기준을 삼았던 것은 당시 세계 시간을 측정하기 위해 육로에 사용되었던 메일 주소 표기 방식에서 비롯되었습니다. 그러나 당시에는 세계시간이 왜 북유럽 표준시인가에 대한 기준이 없어 전 세계 표준시로 인정받지 못하였습니다. 또한, 당시 런던에서 거리를 측정하는 방법으로 1마일 = 1/1000야드 이라는 것이 확정되어 있었기 때문에 이 방법을 세계시간의 기준으로 삼았던 것으로 알려져 있습니다. |
------------------------------------------------
# Original model card: Meta's Llama 2 13B-chat
Meta developed and released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>
Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>
Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>
**Llama 2 family of models.** Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. The 70B version uses Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "Llama-2: Open Foundation and Fine-tuned Chat Models", available at https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/.
**Where to send questions or comments about the model** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md).
# **Intended Use**
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
# **Hardware and Software**
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
# **Training Data**
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
# **Evaluation Results**
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.
For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
# **Ethical Considerations and Limitations**
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide/)
|
larabe/scandoc1
|
larabe
| 2023-08-14T08:41:40Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-08-13T17:34:50Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: scandoc1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scandoc1
This model is a fine-tuned version of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0076
|
bigmorning
| 2023-08-14T08:41:28Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:41:19Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0076
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0076
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0006
- Train Accuracy: 0.0795
- Train Wermet: 7.4517
- Validation Loss: 0.5800
- Validation Accuracy: 0.0771
- Validation Wermet: 6.4049
- Epoch: 75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
| 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 |
| 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 |
| 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 |
| 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 |
| 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 |
| 0.0013 | 0.0795 | 8.2501 | 0.5772 | 0.0770 | 6.9794 | 71 |
| 0.0013 | 0.0795 | 8.0558 | 0.5732 | 0.0770 | 6.5109 | 72 |
| 0.0011 | 0.0795 | 7.5421 | 0.5700 | 0.0771 | 6.5332 | 73 |
| 0.0006 | 0.0795 | 7.2956 | 0.5697 | 0.0771 | 6.2362 | 74 |
| 0.0006 | 0.0795 | 7.4517 | 0.5800 | 0.0771 | 6.4049 | 75 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0075
|
bigmorning
| 2023-08-14T08:37:09Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:37:02Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0075
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0075
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0006
- Train Accuracy: 0.0795
- Train Wermet: 7.2956
- Validation Loss: 0.5697
- Validation Accuracy: 0.0771
- Validation Wermet: 6.2362
- Epoch: 74
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
| 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 |
| 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 |
| 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 |
| 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 |
| 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 |
| 0.0013 | 0.0795 | 8.2501 | 0.5772 | 0.0770 | 6.9794 | 71 |
| 0.0013 | 0.0795 | 8.0558 | 0.5732 | 0.0770 | 6.5109 | 72 |
| 0.0011 | 0.0795 | 7.5421 | 0.5700 | 0.0771 | 6.5332 | 73 |
| 0.0006 | 0.0795 | 7.2956 | 0.5697 | 0.0771 | 6.2362 | 74 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
nagupv/Stable13B_contextLLMExam_f4
|
nagupv
| 2023-08-14T08:31:09Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T08:30:46Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
CyberHarem/tenten_naruto
|
CyberHarem
| 2023-08-14T08:30:47Z | 0 | 0 | null |
[
"art",
"text-to-image",
"dataset:CyberHarem/tenten_naruto",
"license:mit",
"region:us"
] |
text-to-image
| 2023-08-14T08:25:47Z |
---
license: mit
datasets:
- CyberHarem/tenten_naruto
pipeline_tag: text-to-image
tags:
- art
---
# Lora of tenten_naruto
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 1500, you need to download `1500/tenten_naruto.pt` as the embedding and `1500/tenten_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters.
**The trigger word is `tenten_naruto`.**
These are available steps:
| Steps | pattern_1 | bikini | free | nude | Download |
|--------:|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------|
| 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/tenten_naruto.zip) |
| 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/tenten_naruto.zip) |
| 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/tenten_naruto.zip) |
| 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/tenten_naruto.zip) |
| 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/tenten_naruto.zip) |
| 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) |  |  | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/tenten_naruto.zip) |
| 900 | [<NSFW, click to see>](900/previews/pattern_1.png) |  |  | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/tenten_naruto.zip) |
| 800 | [<NSFW, click to see>](800/previews/pattern_1.png) |  |  | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/tenten_naruto.zip) |
| 700 | [<NSFW, click to see>](700/previews/pattern_1.png) |  |  | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/tenten_naruto.zip) |
| 600 | [<NSFW, click to see>](600/previews/pattern_1.png) |  |  | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/tenten_naruto.zip) |
| 500 | [<NSFW, click to see>](500/previews/pattern_1.png) |  |  | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/tenten_naruto.zip) |
| 400 | [<NSFW, click to see>](400/previews/pattern_1.png) |  |  | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/tenten_naruto.zip) |
| 300 | [<NSFW, click to see>](300/previews/pattern_1.png) |  |  | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/tenten_naruto.zip) |
| 200 | [<NSFW, click to see>](200/previews/pattern_1.png) |  |  | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/tenten_naruto.zip) |
| 100 | [<NSFW, click to see>](100/previews/pattern_1.png) |  |  | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/tenten_naruto.zip) |
|
bigmorning/whisper_charsplit_new_round3__0073
|
bigmorning
| 2023-08-14T08:28:57Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:28:49Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0073
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0073
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0013
- Train Accuracy: 0.0795
- Train Wermet: 8.0558
- Validation Loss: 0.5732
- Validation Accuracy: 0.0770
- Validation Wermet: 6.5109
- Epoch: 72
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
| 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 |
| 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 |
| 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 |
| 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 |
| 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 |
| 0.0013 | 0.0795 | 8.2501 | 0.5772 | 0.0770 | 6.9794 | 71 |
| 0.0013 | 0.0795 | 8.0558 | 0.5732 | 0.0770 | 6.5109 | 72 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Punit71/CartPole-v1
|
Punit71
| 2023-08-14T08:25:10Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T08:24:59Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
bigmorning/whisper_charsplit_new_round3__0071
|
bigmorning
| 2023-08-14T08:20:41Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:20:29Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0071
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0071
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0010
- Train Accuracy: 0.0795
- Train Wermet: 7.8106
- Validation Loss: 0.5724
- Validation Accuracy: 0.0771
- Validation Wermet: 6.8654
- Epoch: 70
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
| 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 |
| 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 |
| 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 |
| 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 |
| 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
line-corporation/japanese-large-lm-1.7b-instruction-sft
|
line-corporation
| 2023-08-14T08:19:11Z | 345 | 8 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"ja",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-03T01:34:01Z |
---
license: apache-2.0
inference: false
language: ja
---
# japanese-large-lm-1.7b-instruction-sft
This repository provides a 1.7B parameters Japanese language model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/).
## For Japanese
詳細な説明や実験に関しては「[Instruction Tuningにより対話性能を向上させた3.6B日本語言語モデルを公開します](https://engineering.linecorp.com/ja/blog/3.6b-japanese-language-model-with-improved-dialog-performance-by-instruction-tuning)」をご覧ください。
## How to use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft")
tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-1.7b-instruction-sft", use_fast=False)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
input_text = """四国の県名を全て列挙してください。"""
text = generator(
f"ユーザー: {input_text}\nシステム: ",
max_length = 256,
do_sample = True,
temperature = 0.7,
top_p = 0.9,
top_k = 0,
repetition_penalty = 1.1,
num_beams = 1,
pad_token_id = tokenizer.pad_token_id,
num_return_sequences = 1,
)
print(text)
# [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 香川県、徳島県、愛媛県、高知県'}]
```
## Tokenization
We use a sentencepiece tokenizer with a unigram language model and byte-fallback.
We **do not** apply pre-tokenization with Japanese tokenizer.
Thus, a user may directly feed raw sentences into the tokenizer.
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
CyberHarem/hyuuga_hanabi_naruto
|
CyberHarem
| 2023-08-14T08:09:00Z | 0 | 0 | null |
[
"art",
"text-to-image",
"dataset:CyberHarem/hyuuga_hanabi_naruto",
"license:mit",
"region:us"
] |
text-to-image
| 2023-08-14T08:03:54Z |
---
license: mit
datasets:
- CyberHarem/hyuuga_hanabi_naruto
pipeline_tag: text-to-image
tags:
- art
---
# Lora of hyuuga_hanabi_naruto
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 1500, you need to download `1500/hyuuga_hanabi_naruto.pt` as the embedding and `1500/hyuuga_hanabi_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters.
**The trigger word is `hyuuga_hanabi_naruto`.**
These are available steps:
| Steps | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | free | nude | Download |
|--------:|:----------------------------------------------------|:----------------------------------------------------|:----------------------------------------------------|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------|
| 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | [<NSFW, click to see>](1500/previews/pattern_2.png) | [<NSFW, click to see>](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/hyuuga_hanabi_naruto.zip) |
| 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | [<NSFW, click to see>](1400/previews/pattern_2.png) | [<NSFW, click to see>](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/hyuuga_hanabi_naruto.zip) |
| 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | [<NSFW, click to see>](1300/previews/pattern_2.png) | [<NSFW, click to see>](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/hyuuga_hanabi_naruto.zip) |
| 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | [<NSFW, click to see>](1200/previews/pattern_2.png) | [<NSFW, click to see>](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/hyuuga_hanabi_naruto.zip) |
| 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | [<NSFW, click to see>](1100/previews/pattern_2.png) | [<NSFW, click to see>](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/hyuuga_hanabi_naruto.zip) |
| 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | [<NSFW, click to see>](1000/previews/pattern_2.png) | [<NSFW, click to see>](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/pattern_4.png) |  |  | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/hyuuga_hanabi_naruto.zip) |
| 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | [<NSFW, click to see>](900/previews/pattern_2.png) | [<NSFW, click to see>](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/pattern_4.png) |  |  | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/hyuuga_hanabi_naruto.zip) |
| 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | [<NSFW, click to see>](800/previews/pattern_2.png) | [<NSFW, click to see>](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/pattern_4.png) |  |  | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/hyuuga_hanabi_naruto.zip) |
| 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | [<NSFW, click to see>](700/previews/pattern_2.png) | [<NSFW, click to see>](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/pattern_4.png) |  |  | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/hyuuga_hanabi_naruto.zip) |
| 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | [<NSFW, click to see>](600/previews/pattern_2.png) | [<NSFW, click to see>](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/pattern_4.png) |  |  | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/hyuuga_hanabi_naruto.zip) |
| 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | [<NSFW, click to see>](500/previews/pattern_2.png) | [<NSFW, click to see>](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/pattern_4.png) |  |  | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/hyuuga_hanabi_naruto.zip) |
| 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | [<NSFW, click to see>](400/previews/pattern_2.png) | [<NSFW, click to see>](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/pattern_4.png) |  |  | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/hyuuga_hanabi_naruto.zip) |
| 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | [<NSFW, click to see>](300/previews/pattern_2.png) | [<NSFW, click to see>](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/pattern_4.png) |  |  | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/hyuuga_hanabi_naruto.zip) |
| 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | [<NSFW, click to see>](200/previews/pattern_2.png) | [<NSFW, click to see>](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/pattern_4.png) |  |  | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/hyuuga_hanabi_naruto.zip) |
| 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | [<NSFW, click to see>](100/previews/pattern_2.png) | [<NSFW, click to see>](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/pattern_4.png) |  |  | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/hyuuga_hanabi_naruto.zip) |
|
bigmorning/whisper_charsplit_new_round3__0068
|
bigmorning
| 2023-08-14T08:08:09Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T08:08:02Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0068
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0068
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0009
- Train Accuracy: 0.0795
- Train Wermet: 7.7899
- Validation Loss: 0.5646
- Validation Accuracy: 0.0770
- Validation Wermet: 6.8492
- Epoch: 67
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
| 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 |
| 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
FelixChao/llama2-13b-instruct-ft-adapters-math1.2
|
FelixChao
| 2023-08-14T08:07:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T08:07:07Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
Mustain/tweeter_data_translated_japanese_llama2_7b
|
Mustain
| 2023-08-14T08:01:09Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T04:38:31Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_round3__0066
|
bigmorning
| 2023-08-14T07:59:56Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:59:48Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0066
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0066
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0020
- Train Accuracy: 0.0795
- Train Wermet: 7.9131
- Validation Loss: 0.5655
- Validation Accuracy: 0.0770
- Validation Wermet: 7.0500
- Epoch: 65
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
| 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 |
| 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Krishan3168/Digit-Spatial-Diffusion
|
Krishan3168
| 2023-08-14T07:54:50Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-06-18T22:37:26Z |
# Digit-Spatial-Diffusion's Hugging Face Models
This repository contains several machine learning models developed as part of my project, "Spatial Knowledge Injection into Diffusion-based Image Generation".
## Project Overview
The project focused on the integration of spatial relations knowledge into diffusion-based image generation models. The main objective was to enhance the realism and context-awareness of the generated images. I experimented with four different methods to control the image generation process: baseline, handcrafted approach, typed control, and control dots.
## Models
This repository includes the following models:
1. **Baseline** - Stable Diffusion model trained with digits on our custom dataset
2. **Handcrafted** - ControlNet with Handcrafted tesnor.
3. **Typed** - ControlNet with typed digits as control signals.
3. **Typed dot** - ControlNet with dots as control signals.
## How to Use
Here's a basic example of how to use these models:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Krishan3168/Digit-Spatial-Diffusion")
model = AutoModel.from_pretrained("Krishan3168/Digit-Spatial-Diffusion")
inputs = tokenizer("Example input", return_tensors="pt")
outputs = model(**inputs)
|
merryjane/q-FrozenLake-v1-4x4-noSlippery
|
merryjane
| 2023-08-14T07:52:00Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T07:51:55Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
model = load_from_hub(repo_id="merryjane/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
|
bigmorning/whisper_charsplit_new_round3__0064
|
bigmorning
| 2023-08-14T07:51:39Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:51:30Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0064
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0064
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0005
- Train Accuracy: 0.0795
- Train Wermet: 7.6199
- Validation Loss: 0.5783
- Validation Accuracy: 0.0770
- Validation Wermet: 6.9551
- Epoch: 63
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
| 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 |
| 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
thibaud/controlnet-sd21-hed-diffusers
|
thibaud
| 2023-08-14T07:45:11Z | 4,904 | 0 |
diffusers
|
[
"diffusers",
"art",
"stable diffusion",
"controlnet",
"en",
"license:other",
"region:us"
] | null | 2023-03-09T08:20:15Z |
---
license: other
language:
- en
tags:
- art
- diffusers
- stable diffusion
- controlnet
---
Here's the first version of controlnet for stablediffusion 2.1 for diffusers
Trained on a subset of laion/laion-art
License: refers to the different preprocessor's ones.
### Hed:

### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
Thanks
- https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models.
- https://huggingface.co/thepowefuldeez for the conversion script to diffusers
|
thibaud/controlnet-sd21-depth-diffusers
|
thibaud
| 2023-08-14T07:45:00Z | 5,143 | 8 |
diffusers
|
[
"diffusers",
"art",
"stable diffusion",
"controlnet",
"en",
"license:other",
"region:us"
] | null | 2023-03-09T08:19:34Z |
---
license: other
language:
- en
tags:
- art
- diffusers
- stable diffusion
- controlnet
---
Here's the first version of controlnet for stablediffusion 2.1 for diffusers
Trained on a subset of laion/laion-art
License: refers to the different preprocessor's ones.
### Depth:

### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
Thanks
- https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models.
- https://huggingface.co/thepowefuldeez for the conversion script to diffusers
|
thibaud/controlnet-sd21-openpose-diffusers
|
thibaud
| 2023-08-14T07:44:42Z | 28 | 14 |
diffusers
|
[
"diffusers",
"art",
"stable diffusion",
"controlnet",
"en",
"license:other",
"region:us"
] | null | 2023-03-10T12:41:24Z |
---
license: other
language:
- en
tags:
- art
- diffusers
- stable diffusion
- controlnet
---
Here's the first version of controlnet for stablediffusion 2.1 for diffusers
Trained on a subset of laion/laion-art
License: refers to the different preprocessor's ones.
### Openpose:

### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
Thanks
- https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models.
- https://huggingface.co/thepowefuldeez for the conversion script to diffusers
|
thibaud/controlnet-sd21-lineart-diffusers
|
thibaud
| 2023-08-14T07:43:36Z | 9 | 3 |
diffusers
|
[
"diffusers",
"art",
"stable diffusion",
"controlnet",
"en",
"license:other",
"region:us"
] | null | 2023-04-10T12:04:54Z |
---
license: other
language:
- en
tags:
- art
- diffusers
- stable diffusion
- controlnet
---
Here's the first version of controlnet for stablediffusion 2.1 for diffusers
Trained on a subset of laion/laion-art
License: refers to the different preprocessor's ones.
### Lineart v2:

### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
Thanks
- https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models.
- https://huggingface.co/thepowefuldeez for the conversion script to diffusers
|
bigmorning/whisper_charsplit_new_round3__0062
|
bigmorning
| 2023-08-14T07:43:13Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:43:04Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0062
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0062
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0002
- Train Accuracy: 0.0795
- Train Wermet: 7.5238
- Validation Loss: 0.5561
- Validation Accuracy: 0.0772
- Validation Wermet: 6.6962
- Epoch: 61
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
| 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0061
|
bigmorning
| 2023-08-14T07:39:05Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:38:56Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0061
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0061
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0004
- Train Accuracy: 0.0795
- Train Wermet: 7.6676
- Validation Loss: 0.5577
- Validation Accuracy: 0.0771
- Validation Wermet: 6.7898
- Epoch: 60
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
| 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 |
| 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bookbot/sherpa-ncnn-pruned-transducer-stateless7-streaming-id
|
bookbot
| 2023-08-14T07:32:20Z | 0 | 1 | null |
[
"icefall",
"sherpa-ncnn",
"phoneme-recognition",
"automatic-speech-recognition",
"id",
"dataset:mozilla-foundation/common_voice_13_0",
"dataset:indonesian-nlp/librivox-indonesia",
"dataset:google/fleurs",
"license:apache-2.0",
"region:us"
] |
automatic-speech-recognition
| 2023-06-23T07:58:15Z |
---
language: id
license: apache-2.0
tags:
- icefall
- sherpa-ncnn
- phoneme-recognition
- automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_13_0
- indonesian-nlp/librivox-indonesia
- google/fleurs
---
# Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID
Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets:
- [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0)
- [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia)
- [FLEURS ID](https://huggingface.co/datasets/google/fleurs)
Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id).
This model was converted from the TorchScript version of [Pruned Stateless Zipformer RNN-T Streaming ID](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id) to ncnn format.
## Converting from TorchScript
Refer to the [official instructions](https://icefall.readthedocs.io/en/latest/model-export/export-ncnn-zipformer.html) for conversion to ncnn, which includes installation of `csukuangfj`'s [ncnn](https://github.com/csukuangfj/ncnn) fork.
## Frameworks
- [k2](https://github.com/k2-fsa/k2)
- [icefall](https://github.com/bookbot-hive/icefall)
- [lhotse](https://github.com/bookbot-hive/lhotse)
- [sherpa-ncnn](https://github.com/k2-fsa/sherpa-ncnn)
- [ncnn](https://github.com/csukuangfj/ncnn)
|
bookbot/pruned-transducer-stateless7-streaming-id
|
bookbot
| 2023-08-14T07:31:44Z | 0 | 0 | null |
[
"tensorboard",
"icefall",
"phoneme-recognition",
"automatic-speech-recognition",
"id",
"dataset:mozilla-foundation/common_voice_13_0",
"dataset:indonesian-nlp/librivox-indonesia",
"dataset:google/fleurs",
"license:apache-2.0",
"region:us"
] |
automatic-speech-recognition
| 2023-06-21T10:13:29Z |
---
language: id
license: apache-2.0
tags:
- icefall
- phoneme-recognition
- automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_13_0
- indonesian-nlp/librivox-indonesia
- google/fleurs
---
# Pruned Stateless Zipformer RNN-T Streaming ID
Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets:
- [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0)
- [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia)
- [FLEURS ID](https://huggingface.co/datasets/google/fleurs)
Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id).
This model was trained using [icefall](https://github.com/k2-fsa/icefall) framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tensorboard) logged via Tensorboard.
## Evaluation Results
### Simulated Streaming
```sh
for m in greedy_search fast_beam_search modified_beam_search; do
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method $m
done
```
The model achieves the following phoneme error rates on the different test sets:
| Decoding | LibriVox | FLEURS | Common Voice |
| -------------------- | :------: | :----: | :----------: |
| Greedy Search | 4.87% | 11.45% | 14.97% |
| Modified Beam Search | 4.71% | 11.25% | 14.31% |
| Fast Beam Search | 4.85% | 12.55% | 14.89% |
### Chunk-wise Streaming
```sh
for m in greedy_search fast_beam_search modified_beam_search; do
./pruned_transducer_stateless7_streaming/streaming_decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--decoding-method $m \
--decode-chunk-len 32 \
--num-decode-streams 1500
done
```
The model achieves the following phoneme error rates on the different test sets:
| Decoding | LibriVox | FLEURS | Common Voice |
| -------------------- | :------: | :----: | :----------: |
| Greedy Search | 5.12% | 12.74% | 15.78% |
| Modified Beam Search | 4.78% | 11.83% | 14.54% |
| Fast Beam Search | 4.81% | 12.93% | 14.96% |
## Usage
### Download Pre-trained Model
```sh
cd egs/bookbot/ASR
mkdir tmp
cd tmp
git lfs install
git clone https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id
```
### Inference
To decode with greedy search, run:
```sh
./pruned_transducer_stateless7_streaming/jit_pretrained.py \
--nn-model-filename ./tmp/pruned-transducer-stateless7-streaming-id/exp/cpu_jit.pt \
--lang-dir ./tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone \
./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav
```
<details>
<summary>Decoding Output</summary>
```
2023-06-21 10:19:18,563 INFO [jit_pretrained.py:217] device: cpu
2023-06-21 10:19:19,231 INFO [lexicon.py:168] Loading pre-compiled tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone/Linv.pt
2023-06-21 10:19:19,232 INFO [jit_pretrained.py:228] Constructing Fbank computer
2023-06-21 10:19:19,233 INFO [jit_pretrained.py:238] Reading sound files: ['./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav']
2023-06-21 10:19:19,234 INFO [jit_pretrained.py:244] Decoding started
2023-06-21 10:19:20,090 INFO [jit_pretrained.py:271]
./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav:
p u l a ŋ | s ə k o l a h | p i t ə r i | s a ŋ a t | l a p a r
2023-06-21 10:19:20,090 INFO [jit_pretrained.py:273] Decoding Done
```
</details>
## Training procedure
### Install icefall
```sh
git clone https://github.com/bookbot-hive/icefall
cd icefall
export PYTHONPATH=`pwd`:$PYTHONPATH
```
### Prepare Data
```sh
cd egs/bookbot_id/ASR
./prepare.sh
```
### Train
```sh
export CUDA_VISIBLE_DEVICES="0"
./pruned_transducer_stateless7_streaming/train.py \
--num-epochs 30 \
--use-fp16 1 \
--max-duration 400
```
## Frameworks
- [k2](https://github.com/k2-fsa/k2)
- [icefall](https://github.com/bookbot-hive/icefall)
- [lhotse](https://github.com/bookbot-hive/lhotse)
|
wangxso/RL-PG-Hi
|
wangxso
| 2023-08-14T07:31:03Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-14T07:31:01Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: RL-PG-Hi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: -1.20 +/- 3.52
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
bigmorning/whisper_charsplit_new_round3__0059
|
bigmorning
| 2023-08-14T07:30:48Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:30:41Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0059
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0059
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0030
- Train Accuracy: 0.0795
- Train Wermet: 7.4853
- Validation Loss: 0.5586
- Validation Accuracy: 0.0770
- Validation Wermet: 6.6707
- Epoch: 58
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
| 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 |
| 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
zjun028/results
|
zjun028
| 2023-08-14T07:28:14Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-11T06:15:09Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9905
- Accuracy: 0.5067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 132 | 0.6630 | 0.6267 |
| No log | 2.0 | 264 | 0.6697 | 0.6267 |
| No log | 3.0 | 396 | 0.6605 | 0.6267 |
| 0.6686 | 4.0 | 528 | 0.6797 | 0.6267 |
| 0.6686 | 5.0 | 660 | 0.6599 | 0.5733 |
| 0.6686 | 6.0 | 792 | 0.6702 | 0.58 |
| 0.6686 | 7.0 | 924 | 0.7593 | 0.5267 |
| 0.6278 | 8.0 | 1056 | 0.7622 | 0.6 |
| 0.6278 | 9.0 | 1188 | 0.8147 | 0.6067 |
| 0.6278 | 10.0 | 1320 | 1.2285 | 0.5733 |
| 0.6278 | 11.0 | 1452 | 1.2681 | 0.58 |
| 0.5453 | 12.0 | 1584 | 1.4571 | 0.5667 |
| 0.5453 | 13.0 | 1716 | 1.5210 | 0.5467 |
| 0.5453 | 14.0 | 1848 | 1.6548 | 0.5733 |
| 0.5453 | 15.0 | 1980 | 1.6931 | 0.5667 |
| 0.4703 | 16.0 | 2112 | 1.8606 | 0.5867 |
| 0.4703 | 17.0 | 2244 | 1.9779 | 0.56 |
| 0.4703 | 18.0 | 2376 | 2.3998 | 0.4933 |
| 0.3567 | 19.0 | 2508 | 2.2930 | 0.5 |
| 0.3567 | 20.0 | 2640 | 2.6606 | 0.4933 |
| 0.3567 | 21.0 | 2772 | 2.4945 | 0.4933 |
| 0.3567 | 22.0 | 2904 | 2.6740 | 0.5133 |
| 0.2371 | 23.0 | 3036 | 2.7472 | 0.5 |
| 0.2371 | 24.0 | 3168 | 2.7916 | 0.5 |
| 0.2371 | 25.0 | 3300 | 2.8399 | 0.5 |
| 0.2371 | 26.0 | 3432 | 2.8665 | 0.52 |
| 0.1688 | 27.0 | 3564 | 2.9246 | 0.5133 |
| 0.1688 | 28.0 | 3696 | 2.9675 | 0.5 |
| 0.1688 | 29.0 | 3828 | 2.9967 | 0.5067 |
| 0.1688 | 30.0 | 3960 | 2.9905 | 0.5067 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
petermchale/xgen-7b-tuned-alpaca
|
petermchale
| 2023-08-14T07:27:46Z | 0 | 0 | null |
[
"generated_from_trainer",
"base_model:Salesforce/xgen-7b-8k-base",
"base_model:finetune:Salesforce/xgen-7b-8k-base",
"license:apache-2.0",
"region:us"
] | null | 2023-08-10T23:43:48Z |
---
license: apache-2.0
base_model: Salesforce/xgen-7b-8k-base
tags:
- generated_from_trainer
model-index:
- name: xgen-7b-tuned-alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xgen-7b-tuned-alpaca
This model is a fine-tuned version of [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 0.15
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.1
- Datasets 2.14.3
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0057
|
bigmorning
| 2023-08-14T07:22:32Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:22:24Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0057
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0057
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 8.0364
- Validation Loss: 0.5907
- Validation Accuracy: 0.0772
- Validation Wermet: 7.0683
- Epoch: 56
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
| 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 |
| 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0055
|
bigmorning
| 2023-08-14T07:14:20Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:14:13Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0055
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0055
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.9697
- Validation Loss: 0.5846
- Validation Accuracy: 0.0772
- Validation Wermet: 7.0785
- Epoch: 54
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
| 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 |
| 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
CyberHarem/hyuuga_hinata_naruto
|
CyberHarem
| 2023-08-14T07:11:38Z | 0 | 0 | null |
[
"art",
"text-to-image",
"dataset:CyberHarem/hyuuga_hinata_naruto",
"license:mit",
"region:us"
] |
text-to-image
| 2023-08-14T07:08:01Z |
---
license: mit
datasets:
- CyberHarem/hyuuga_hinata_naruto
pipeline_tag: text-to-image
tags:
- art
---
# Lora of hyuuga_hinata_naruto
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 1500, you need to download `1500/hyuuga_hinata_naruto.pt` as the embedding and `1500/hyuuga_hinata_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters.
**The trigger word is `hyuuga_hinata_naruto`.**
These are available steps:
| Steps | pattern_1 | bikini | free | nude | Download |
|--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------|
| 1500 |  |  |  | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/hyuuga_hinata_naruto.zip) |
| 1400 |  |  |  | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/hyuuga_hinata_naruto.zip) |
| 1300 |  |  |  | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/hyuuga_hinata_naruto.zip) |
| 1200 |  |  |  | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/hyuuga_hinata_naruto.zip) |
| 1100 |  |  |  | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/hyuuga_hinata_naruto.zip) |
| 1000 |  |  |  | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/hyuuga_hinata_naruto.zip) |
| 900 |  |  |  | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/hyuuga_hinata_naruto.zip) |
| 800 |  |  |  | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/hyuuga_hinata_naruto.zip) |
| 700 |  |  |  | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/hyuuga_hinata_naruto.zip) |
| 600 |  |  |  | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/hyuuga_hinata_naruto.zip) |
| 500 |  |  |  | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/hyuuga_hinata_naruto.zip) |
| 400 |  |  |  | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/hyuuga_hinata_naruto.zip) |
| 300 |  |  |  | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/hyuuga_hinata_naruto.zip) |
| 200 |  |  |  | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/hyuuga_hinata_naruto.zip) |
| 100 |  |  |  | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/hyuuga_hinata_naruto.zip) |
|
orhay1/RVC_Amamiya_Sora
|
orhay1
| 2023-08-14T07:10:30Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-06-23T19:34:21Z |
---
license: openrail
---
RVC V2 model for the japanese voice actress and singer Amamiya Sora
|
bigmorning/whisper_charsplit_new_round3__0053
|
bigmorning
| 2023-08-14T07:05:55Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T07:05:45Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0053
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0053
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.9169
- Validation Loss: 0.5794
- Validation Accuracy: 0.0772
- Validation Wermet: 7.0149
- Epoch: 52
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
| 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 |
| 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
ihgn/Paraphrase-Detection-T5
|
ihgn
| 2023-08-14T07:01:13Z | 49 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"text-classification",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-14T06:51:38Z |
---
pipeline_tag: text-classification
---
|
bigmorning/whisper_charsplit_new_round3__0051
|
bigmorning
| 2023-08-14T06:57:31Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:57:22Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0051
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0051
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.8755
- Validation Loss: 0.5744
- Validation Accuracy: 0.0772
- Validation Wermet: 6.9767
- Epoch: 50
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
| 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Dhiraj223/Dhiraj-bert-finetuned-squad
|
Dhiraj223
| 2023-08-14T06:55:33Z | 71 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-14T04:29:18Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Dhiraj223/Dhiraj-bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Dhiraj223/Dhiraj-bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.2570
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.9529 | 0 |
| 1.2570 | 1 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
mainuzzaman/llama-2-7b-miniguanaco
|
mainuzzaman
| 2023-08-14T06:54:33Z | 0 | 1 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-14T06:48:26Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
bigmorning/whisper_charsplit_new_round3__0050
|
bigmorning
| 2023-08-14T06:53:17Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:53:09Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0050
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0050
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.8480
- Validation Loss: 0.5724
- Validation Accuracy: 0.0772
- Validation Wermet: 6.9544
- Epoch: 49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
| 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 |
| 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
TheTravellingEngineer/llama2-7b-chat-hf-dpo
|
TheTravellingEngineer
| 2023-08-14T06:50:53Z | 1,530 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-14T06:33:07Z |
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using DPO and the comparison_gpt4 dataset and the model prompt is similar to the original Guanaco model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.**
---
- license:
- llama2 <br>
- datasets:
- comparison_gpt4 <br>
- language:
- en <br>
- reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main
---
|
bigmorning/whisper_charsplit_new_round3__0048
|
bigmorning
| 2023-08-14T06:45:00Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:44:51Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0048
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0048
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.8106
- Validation Loss: 0.5680
- Validation Accuracy: 0.0772
- Validation Wermet: 6.9293
- Epoch: 47
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
| 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0047
|
bigmorning
| 2023-08-14T06:40:45Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:40:37Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0047
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0047
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.7962
- Validation Loss: 0.5659
- Validation Accuracy: 0.0772
- Validation Wermet: 6.9091
- Epoch: 46
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
| 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 |
| 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 |
| 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
morell23/missionarypov
|
morell23
| 2023-08-14T06:40:45Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-14T06:33:46Z |
---
license: creativeml-openrail-m
---
|
bigmorning/whisper_charsplit_new_round3__0044
|
bigmorning
| 2023-08-14T06:28:19Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:28:11Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0044
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0044
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.7423
- Validation Loss: 0.5600
- Validation Accuracy: 0.0772
- Validation Wermet: 6.8518
- Epoch: 43
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
| 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
samaksh-khatri-crest-data/gmra_model_gpt2_14082023T112228
|
samaksh-khatri-crest-data
| 2023-08-14T06:27:56Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-classification",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-14T05:52:28Z |
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gmra_model_gpt2_14082023T112228
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gmra_model_gpt2_14082023T112228
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3424
- Accuracy: 0.9016
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 71 | 0.7440 | 0.7636 |
| No log | 1.99 | 142 | 0.5466 | 0.8278 |
| No log | 2.99 | 213 | 0.4379 | 0.8656 |
| No log | 4.0 | 285 | 0.3959 | 0.8787 |
| No log | 5.0 | 356 | 0.3560 | 0.8919 |
| No log | 5.99 | 427 | 0.3442 | 0.8946 |
| No log | 6.99 | 498 | 0.3535 | 0.8954 |
| 0.5012 | 8.0 | 570 | 0.3232 | 0.9007 |
| 0.5012 | 9.0 | 641 | 0.3364 | 0.8989 |
| 0.5012 | 9.96 | 710 | 0.3424 | 0.9016 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
sara98/bert-finetuned-mrpc-trainerclass
|
sara98
| 2023-08-14T06:24:18Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-14T06:08:34Z |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
model-index:
- name: bert-finetuned-mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0043
|
bigmorning
| 2023-08-14T06:24:02Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:23:54Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0043
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0043
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.7199
- Validation Loss: 0.5578
- Validation Accuracy: 0.0772
- Validation Wermet: 6.8398
- Epoch: 42
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
| 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_round3__0042
|
bigmorning
| 2023-08-14T06:19:51Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:bigmorning/whisper_charsplit_new_round2__0061",
"base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-14T06:19:43Z |
---
license: apache-2.0
base_model: bigmorning/whisper_charsplit_new_round2__0061
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_round3__0042
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_round3__0042
This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0000
- Train Accuracy: 0.0795
- Train Wermet: 7.6768
- Validation Loss: 0.5556
- Validation Accuracy: 0.0771
- Validation Wermet: 6.8287
- Epoch: 41
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 |
| 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 |
| 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 |
| 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 |
| 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 |
| 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 |
| 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 |
| 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 |
| 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 |
| 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 |
| 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 |
| 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 |
| 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 |
| 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 |
| 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 |
| 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 |
| 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 |
| 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 |
| 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 |
| 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 |
| 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 |
| 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 |
| 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 |
| 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 |
| 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 |
| 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 |
| 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 |
| 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 |
| 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 |
| 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 |
| 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 |
| 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 |
| 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 |
| 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 |
| 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 |
| 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 |
| 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 |
| 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 |
| 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 |
| 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 |
| 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 |
| 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.