modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 18:52:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 18:52:05
card
stringlengths
11
1.01M
mesolitica/t5-super-tiny-bahasa-cased
mesolitica
2022-10-06T15:38:49Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-06T15:37:13Z
--- language: ms --- # t5-super-tiny-bahasa-cased Pretrained T5 super tiny on both standard and local language model for Malay. ## Pretraining Corpus `t5-super-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. 11. Social media normalization. 12. Noisy EN-MS translation. 13. Noisy MS-EN translation. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
mesolitica/t5-tiny-bahasa-cased
mesolitica
2022-10-06T15:35:23Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-06T15:29:48Z
--- language: ms --- # t5-tiny-bahasa-cased Pretrained T5 tiny on both standard and local language model for Malay. ## Pretraining Corpus `t5-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. 11. Social media normalization. 12. Noisy EN-MS translation. 13. Noisy MS-EN translation. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
ronanki/MiniLM-L12-v2-alias
ronanki
2022-10-06T15:32:00Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-06T15:31:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ronanki/MiniLM-L12-v2-alias This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/MiniLM-L12-v2-alias') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ronanki/MiniLM-L12-v2-alias') model = AutoModel.from_pretrained('ronanki/MiniLM-L12-v2-alias') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/MiniLM-L12-v2-alias) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 560 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 560, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mesolitica/t5-super-super-tiny-standard-bahasa-cased
mesolitica
2022-10-06T15:25:19Z
126
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "ms", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: ms --- # t5-super-super-tiny-standard-bahasa-cased Pretrained T5 super-super-tiny standard language model for Malay. ## Pretraining Corpus `t5-super-super-tiny-standard-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
mesolitica/t5-super-tiny-standard-bahasa-cased
mesolitica
2022-10-06T15:25:03Z
106
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "ms", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: ms --- # t5-super-tiny-standard-bahasa-cased Pretrained T5 super-tiny standard language model for Malay. ## Pretraining Corpus `t5-super-tiny-standard-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
mesolitica/t5-small-standard-bahasa-cased
mesolitica
2022-10-06T15:24:30Z
105
0
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "ms", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: ms --- # t5-small-standard-bahasa-cased Pretrained T5 small standard language model for Malay. ## Pretraining Corpus `t5-small-standard-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
Charul/my-dummy-model-1
Charul
2022-10-06T14:56:49Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-06T14:41:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 150 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 150, "warmup_steps": 15, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Sandipan1994/t5-small-mathT5-finetune_qatoexp
Sandipan1994
2022-10-06T14:03:21Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:math_qa", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-06T11:23:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - math_qa metrics: - rouge model-index: - name: t5-small-mathT5-finetune_qatoexp results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: math_qa type: math_qa config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 21.9174 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mathT5-finetune_qatoexp This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the math_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.8677 - Rouge1: 21.9174 - Rouge2: 8.4401 - Rougel: 19.1645 - Rougelsum: 19.8239 - Gen Len: 18.9765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data We have trained T5-small on MathQA dataset for sequence to sequence generation of explanations from given math problem. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.4496 | 1.0 | 2984 | 2.2096 | 19.6477 | 6.508 | 16.9295 | 17.5212 | 18.9064 | | 2.2893 | 2.0 | 5968 | 2.0837 | 20.4879 | 7.2528 | 17.7778 | 18.4085 | 18.968 | | 2.1869 | 3.0 | 8952 | 2.0125 | 20.8462 | 7.6105 | 18.1516 | 18.8343 | 18.9837 | | 2.1456 | 4.0 | 11936 | 1.9633 | 20.7623 | 7.7113 | 18.1274 | 18.783 | 18.9886 | | 2.1171 | 5.0 | 14920 | 1.9321 | 21.0648 | 7.8897 | 18.4162 | 19.0551 | 18.9844 | | 2.0854 | 6.0 | 17904 | 1.9061 | 21.4445 | 8.0883 | 18.8038 | 19.4176 | 18.9812 | | 2.0592 | 7.0 | 20888 | 1.8902 | 21.5714 | 8.2751 | 18.8864 | 19.537 | 18.9772 | | 2.0609 | 8.0 | 23872 | 1.8770 | 21.7737 | 8.3297 | 19.022 | 19.6897 | 18.9763 | | 2.0285 | 9.0 | 26856 | 1.8701 | 21.964 | 8.4358 | 19.1701 | 19.845 | 18.9747 | | 2.0165 | 10.0 | 29840 | 1.8677 | 21.9174 | 8.4401 | 19.1645 | 19.8239 | 18.9765 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
GItaf/bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch2
GItaf
2022-10-06T13:45:07Z
45
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-06T13:44:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
jasmine009/materials
jasmine009
2022-10-06T12:10:51Z
240
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-06T12:10:37Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: materials results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8928571343421936 --- # materials Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### brick ![brick](images/brick.jpg) #### metal ![metal](images/metal.jpg) #### paper ![paper](images/paper.jpg) #### plastic ![plastic](images/plastic.jpg) #### wood ![wood](images/wood.jpg)
fmartinmonier/distilbert-base-uncased-finetuned-cola
fmartinmonier
2022-10-06T10:52:34Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-06T10:08:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5477951635989807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8133 - Matthews Correlation: 0.5478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5259 | 1.0 | 535 | 0.5401 | 0.4009 | | 0.3513 | 2.0 | 1070 | 0.5403 | 0.4876 | | 0.2373 | 3.0 | 1605 | 0.5422 | 0.5384 | | 0.1795 | 4.0 | 2140 | 0.7586 | 0.5309 | | 0.1282 | 5.0 | 2675 | 0.8133 | 0.5478 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
hitchyouwithdawork/koelectra-small-v3-discriminator-finetuned
hitchyouwithdawork
2022-10-06T09:45:01Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-10-06T00:03:50Z
--- tags: - generated_from_trainer model-index: - name: koelectra-small-v3-discriminator-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-small-v3-discriminator-finetuned This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.4466 | 1.0 | 702 | 3.0850 | | 3.1639 | 2.0 | 1404 | 2.5210 | | 2.3734 | 3.0 | 2106 | 2.1738 | | 2.0019 | 4.0 | 2808 | 1.7048 | | 1.5426 | 5.0 | 3510 | 1.5741 | | 1.4233 | 6.0 | 4212 | 1.5246 | | 1.3254 | 7.0 | 4914 | 1.4860 | | 1.2166 | 8.0 | 5616 | 1.4525 | | 1.1515 | 9.0 | 6318 | 1.4354 | | 1.0863 | 10.0 | 7020 | 1.4480 | | 1.0471 | 11.0 | 7722 | 1.4549 | | 0.9938 | 12.0 | 8424 | 1.4586 | | 0.9645 | 13.0 | 9126 | 1.4276 | | 0.957 | 14.0 | 9828 | 1.4289 | | 0.9322 | 15.0 | 10530 | 1.4324 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
guma/distilgpt2-finetuned-shakespeare
guma
2022-10-06T09:40:23Z
60
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-06T09:18:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: guma/distilgpt2-finetuned-shakespeare results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # guma/distilgpt2-finetuned-shakespeare This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.1769 - Validation Loss: 3.5116 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.2136 | 3.8303 | 0 | | 3.8997 | 3.6993 | 1 | | 3.7790 | 3.6344 | 2 | | 3.7061 | 3.5923 | 3 | | 3.6476 | 3.5653 | 4 | | 3.6003 | 3.5513 | 5 | | 3.5578 | 3.5360 | 6 | | 3.5204 | 3.5277 | 7 | | 3.4843 | 3.5171 | 8 | | 3.4514 | 3.5117 | 9 | | 3.4194 | 3.5048 | 10 | | 3.3903 | 3.5040 | 11 | | 3.3627 | 3.5006 | 12 | | 3.3332 | 3.5006 | 13 | | 3.3052 | 3.5019 | 14 | | 3.2772 | 3.5051 | 15 | | 3.2514 | 3.5043 | 16 | | 3.2249 | 3.5026 | 17 | | 3.2019 | 3.5129 | 18 | | 3.1769 | 3.5116 | 19 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.12.1
jplu/tf-xlm-r-ner-40-lang
jplu
2022-10-06T09:25:04Z
639
25
transformers
[ "transformers", "tf", "xlm-roberta", "token-classification", "multilingual", "af", "ar", "bg", "bn", "de", "el", "en", "es", "et", "eu", "fa", "fi", "fr", "he", "hi", "hu", "id", "it", "ja", "jv", "ka", "kk", "ko", "ml", "mr", "ms", "my", "nl", "pt", "ru", "sw", "ta", "te", "th", "tl", "tr", "ur", "vi", "yo", "zh", "arxiv:1911.02116", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - multilingual - af - ar - bg - bn - de - el - en - es - et - eu - fa - fi - fr - he - hi - hu - id - it - ja - jv - ka - kk - ko - ml - mr - ms - my - nl - pt - ru - sw - ta - te - th - tl - tr - ur - vi - yo - zh language_bcp47: - fa-IR --- # XLM-R + NER This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME](https://github.com/google-research/xtreme) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached. The covered labels are: ``` LOC ORG PER O ``` ## Metrics on evaluation set: ### Average over the 40 languages Number of documents: 262300 ``` precision recall f1-score support ORG 0.81 0.81 0.81 102452 PER 0.90 0.91 0.91 108978 LOC 0.86 0.89 0.87 121868 micro avg 0.86 0.87 0.87 333298 macro avg 0.86 0.87 0.87 333298 ``` ### Afrikaans Number of documents: 1000 ``` precision recall f1-score support ORG 0.89 0.88 0.88 582 PER 0.89 0.97 0.93 369 LOC 0.84 0.90 0.86 518 micro avg 0.87 0.91 0.89 1469 macro avg 0.87 0.91 0.89 1469 ``` ### Arabic Number of documents: 10000 ``` precision recall f1-score support ORG 0.83 0.84 0.84 3507 PER 0.90 0.91 0.91 3643 LOC 0.88 0.89 0.88 3604 micro avg 0.87 0.88 0.88 10754 macro avg 0.87 0.88 0.88 10754 ``` ### Basque Number of documents: 10000 ``` precision recall f1-score support LOC 0.88 0.93 0.91 5228 ORG 0.86 0.81 0.83 3654 PER 0.91 0.91 0.91 4072 micro avg 0.89 0.89 0.89 12954 macro avg 0.89 0.89 0.89 12954 ``` ### Bengali Number of documents: 1000 ``` precision recall f1-score support ORG 0.86 0.89 0.87 325 LOC 0.91 0.91 0.91 406 PER 0.96 0.95 0.95 364 micro avg 0.91 0.92 0.91 1095 macro avg 0.91 0.92 0.91 1095 ``` ### Bulgarian Number of documents: 1000 ``` precision recall f1-score support ORG 0.86 0.83 0.84 3661 PER 0.92 0.95 0.94 4006 LOC 0.92 0.95 0.94 6449 micro avg 0.91 0.92 0.91 14116 macro avg 0.91 0.92 0.91 14116 ``` ### Burmese Number of documents: 100 ``` precision recall f1-score support LOC 0.60 0.86 0.71 37 ORG 0.68 0.63 0.66 30 PER 0.44 0.44 0.44 36 micro avg 0.57 0.65 0.61 103 macro avg 0.57 0.65 0.60 103 ``` ### Chinese Number of documents: 10000 ``` precision recall f1-score support ORG 0.70 0.69 0.70 4022 LOC 0.76 0.81 0.78 3830 PER 0.84 0.84 0.84 3706 micro avg 0.76 0.78 0.77 11558 macro avg 0.76 0.78 0.77 11558 ``` ### Dutch Number of documents: 10000 ``` precision recall f1-score support ORG 0.87 0.87 0.87 3930 PER 0.95 0.95 0.95 4377 LOC 0.91 0.92 0.91 4813 micro avg 0.91 0.92 0.91 13120 macro avg 0.91 0.92 0.91 13120 ``` ### English Number of documents: 10000 ``` precision recall f1-score support LOC 0.83 0.84 0.84 4781 PER 0.89 0.90 0.89 4559 ORG 0.75 0.75 0.75 4633 micro avg 0.82 0.83 0.83 13973 macro avg 0.82 0.83 0.83 13973 ``` ### Estonian Number of documents: 10000 ``` precision recall f1-score support LOC 0.89 0.92 0.91 5654 ORG 0.85 0.85 0.85 3878 PER 0.94 0.94 0.94 4026 micro avg 0.90 0.91 0.90 13558 macro avg 0.90 0.91 0.90 13558 ``` ### Finnish Number of documents: 10000 ``` precision recall f1-score support ORG 0.84 0.83 0.84 4104 LOC 0.88 0.90 0.89 5307 PER 0.95 0.94 0.94 4519 micro avg 0.89 0.89 0.89 13930 macro avg 0.89 0.89 0.89 13930 ``` ### French Number of documents: 10000 ``` precision recall f1-score support LOC 0.90 0.89 0.89 4808 ORG 0.84 0.87 0.85 3876 PER 0.94 0.93 0.94 4249 micro avg 0.89 0.90 0.90 12933 macro avg 0.89 0.90 0.90 12933 ``` ### Georgian Number of documents: 10000 ``` precision recall f1-score support PER 0.90 0.91 0.90 3964 ORG 0.83 0.77 0.80 3757 LOC 0.82 0.88 0.85 4894 micro avg 0.84 0.86 0.85 12615 macro avg 0.84 0.86 0.85 12615 ``` ### German Number of documents: 10000 ``` precision recall f1-score support LOC 0.85 0.90 0.87 4939 PER 0.94 0.91 0.92 4452 ORG 0.79 0.78 0.79 4247 micro avg 0.86 0.86 0.86 13638 macro avg 0.86 0.86 0.86 13638 ``` ### Greek Number of documents: 10000 ``` precision recall f1-score support ORG 0.86 0.85 0.85 3771 LOC 0.88 0.91 0.90 4436 PER 0.91 0.93 0.92 3894 micro avg 0.88 0.90 0.89 12101 macro avg 0.88 0.90 0.89 12101 ``` ### Hebrew Number of documents: 10000 ``` precision recall f1-score support PER 0.87 0.88 0.87 4206 ORG 0.76 0.75 0.76 4190 LOC 0.85 0.85 0.85 4538 micro avg 0.83 0.83 0.83 12934 macro avg 0.82 0.83 0.83 12934 ``` ### Hindi Number of documents: 1000 ``` precision recall f1-score support ORG 0.78 0.81 0.79 362 LOC 0.83 0.85 0.84 422 PER 0.90 0.95 0.92 427 micro avg 0.84 0.87 0.85 1211 macro avg 0.84 0.87 0.85 1211 ``` ### Hungarian Number of documents: 10000 ``` precision recall f1-score support PER 0.95 0.95 0.95 4347 ORG 0.87 0.88 0.87 3988 LOC 0.90 0.92 0.91 5544 micro avg 0.91 0.92 0.91 13879 macro avg 0.91 0.92 0.91 13879 ``` ### Indonesian Number of documents: 10000 ``` precision recall f1-score support ORG 0.88 0.89 0.88 3735 LOC 0.93 0.95 0.94 3694 PER 0.93 0.93 0.93 3947 micro avg 0.91 0.92 0.92 11376 macro avg 0.91 0.92 0.92 11376 ``` ### Italian Number of documents: 10000 ``` precision recall f1-score support LOC 0.88 0.88 0.88 4592 ORG 0.86 0.86 0.86 4088 PER 0.96 0.96 0.96 4732 micro avg 0.90 0.90 0.90 13412 macro avg 0.90 0.90 0.90 13412 ``` ### Japanese Number of documents: 10000 ``` precision recall f1-score support ORG 0.62 0.61 0.62 4184 PER 0.76 0.81 0.78 3812 LOC 0.68 0.74 0.71 4281 micro avg 0.69 0.72 0.70 12277 macro avg 0.69 0.72 0.70 12277 ``` ### Javanese Number of documents: 100 ``` precision recall f1-score support ORG 0.79 0.80 0.80 46 PER 0.81 0.96 0.88 26 LOC 0.75 0.75 0.75 40 micro avg 0.78 0.82 0.80 112 macro avg 0.78 0.82 0.80 112 ``` ### Kazakh Number of documents: 1000 ``` precision recall f1-score support ORG 0.76 0.61 0.68 307 LOC 0.78 0.90 0.84 461 PER 0.87 0.91 0.89 367 micro avg 0.81 0.83 0.82 1135 macro avg 0.81 0.83 0.81 1135 ``` ### Korean Number of documents: 10000 ``` precision recall f1-score support LOC 0.86 0.89 0.88 5097 ORG 0.79 0.74 0.77 4218 PER 0.83 0.86 0.84 4014 micro avg 0.83 0.83 0.83 13329 macro avg 0.83 0.83 0.83 13329 ``` ### Malay Number of documents: 1000 ``` precision recall f1-score support ORG 0.87 0.89 0.88 368 PER 0.92 0.91 0.91 366 LOC 0.94 0.95 0.95 354 micro avg 0.91 0.92 0.91 1088 macro avg 0.91 0.92 0.91 1088 ``` ### Malayalam Number of documents: 1000 ``` precision recall f1-score support ORG 0.75 0.74 0.75 347 PER 0.84 0.89 0.86 417 LOC 0.74 0.75 0.75 391 micro avg 0.78 0.80 0.79 1155 macro avg 0.78 0.80 0.79 1155 ``` ### Marathi Number of documents: 1000 ``` precision recall f1-score support PER 0.89 0.94 0.92 394 LOC 0.82 0.84 0.83 457 ORG 0.84 0.78 0.81 339 micro avg 0.85 0.86 0.85 1190 macro avg 0.85 0.86 0.85 1190 ``` ### Persian Number of documents: 10000 ``` precision recall f1-score support PER 0.93 0.92 0.93 3540 LOC 0.93 0.93 0.93 3584 ORG 0.89 0.92 0.90 3370 micro avg 0.92 0.92 0.92 10494 macro avg 0.92 0.92 0.92 10494 ``` ### Portuguese Number of documents: 10000 ``` precision recall f1-score support LOC 0.90 0.91 0.91 4819 PER 0.94 0.92 0.93 4184 ORG 0.84 0.88 0.86 3670 micro avg 0.89 0.91 0.90 12673 macro avg 0.90 0.91 0.90 12673 ``` ### Russian Number of documents: 10000 ``` precision recall f1-score support PER 0.93 0.96 0.95 3574 LOC 0.87 0.89 0.88 4619 ORG 0.82 0.80 0.81 3858 micro avg 0.87 0.88 0.88 12051 macro avg 0.87 0.88 0.88 12051 ``` ### Spanish Number of documents: 10000 ``` precision recall f1-score support PER 0.95 0.93 0.94 3891 ORG 0.86 0.88 0.87 3709 LOC 0.89 0.91 0.90 4553 micro avg 0.90 0.91 0.90 12153 macro avg 0.90 0.91 0.90 12153 ``` ### Swahili Number of documents: 1000 ``` precision recall f1-score support ORG 0.82 0.85 0.83 349 PER 0.95 0.92 0.94 403 LOC 0.86 0.89 0.88 450 micro avg 0.88 0.89 0.88 1202 macro avg 0.88 0.89 0.88 1202 ``` ### Tagalog Number of documents: 1000 ``` precision recall f1-score support LOC 0.90 0.91 0.90 338 ORG 0.83 0.91 0.87 339 PER 0.96 0.93 0.95 350 micro avg 0.90 0.92 0.91 1027 macro avg 0.90 0.92 0.91 1027 ``` ### Tamil Number of documents: 1000 ``` precision recall f1-score support PER 0.90 0.92 0.91 392 ORG 0.77 0.76 0.76 370 LOC 0.78 0.81 0.79 421 micro avg 0.82 0.83 0.82 1183 macro avg 0.82 0.83 0.82 1183 ``` ### Telugu Number of documents: 1000 ``` precision recall f1-score support ORG 0.67 0.55 0.61 347 LOC 0.78 0.87 0.82 453 PER 0.73 0.86 0.79 393 micro avg 0.74 0.77 0.76 1193 macro avg 0.73 0.77 0.75 1193 ``` ### Thai Number of documents: 10000 ``` precision recall f1-score support LOC 0.63 0.76 0.69 3928 PER 0.78 0.83 0.80 6537 ORG 0.59 0.59 0.59 4257 micro avg 0.68 0.74 0.71 14722 macro avg 0.68 0.74 0.71 14722 ``` ### Turkish Number of documents: 10000 ``` precision recall f1-score support PER 0.94 0.94 0.94 4337 ORG 0.88 0.89 0.88 4094 LOC 0.90 0.92 0.91 4929 micro avg 0.90 0.92 0.91 13360 macro avg 0.91 0.92 0.91 13360 ``` ### Urdu Number of documents: 1000 ``` precision recall f1-score support LOC 0.90 0.95 0.93 352 PER 0.96 0.96 0.96 333 ORG 0.91 0.90 0.90 326 micro avg 0.92 0.94 0.93 1011 macro avg 0.92 0.94 0.93 1011 ``` ### Vietnamese Number of documents: 10000 ``` precision recall f1-score support ORG 0.86 0.87 0.86 3579 LOC 0.88 0.91 0.90 3811 PER 0.92 0.93 0.93 3717 micro avg 0.89 0.90 0.90 11107 macro avg 0.89 0.90 0.90 11107 ``` ### Yoruba Number of documents: 100 ``` precision recall f1-score support LOC 0.54 0.72 0.62 36 ORG 0.58 0.31 0.41 35 PER 0.77 1.00 0.87 36 micro avg 0.64 0.68 0.66 107 macro avg 0.63 0.68 0.63 107 ``` ## Reproduce the results Download and prepare the dataset from the [XTREME repo](https://github.com/google-research/xtreme#download-the-data). Next, from the root of the transformers repo run: ``` cd examples/ner python run_tf_ner.py \ --data_dir . \ --labels ./labels.txt \ --model_name_or_path jplu/tf-xlm-roberta-base \ --output_dir model \ --max-seq-length 128 \ --num_train_epochs 2 \ --per_gpu_train_batch_size 16 \ --per_gpu_eval_batch_size 32 \ --do_train \ --do_eval \ --logging_dir logs \ --mode token-classification \ --evaluate_during_training \ --optimizer_name adamw ``` ## Usage with pipelines ```python from transformers import pipeline nlp_ner = pipeline( "ner", model="jplu/tf-xlm-r-ner-40-lang", tokenizer=( 'jplu/tf-xlm-r-ner-40-lang', {"use_fast": True}), framework="tf" ) text_fr = "Barack Obama est né à Hawaï." text_en = "Barack Obama was born in Hawaii." text_es = "Barack Obama nació en Hawai." text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。" text_ar = "ولد باراك أوباما في هاواي." nlp_ner(text_fr) #Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}] nlp_ner(text_en) #Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}] nlp_ner(test_es) #Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}] nlp_ner(test_zh) #Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}] nlp_ner(test_ar) #Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}] ```
Bingsu/timm-mobilevitv2_050-beans
Bingsu
2022-10-06T08:59:38Z
18
0
timm
[ "timm", "pytorch", "image-classification", "dataset:beans", "region:us" ]
image-classification
2022-08-08T07:40:55Z
--- tags: - image-classification - timm library_tag: timm datasets: - beans widget: - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg example_title: Angular Leaf Spot - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg example_title: Bean Rust --- # Model card for timm-mobilevitv2_050-beans This model is a fine-tuned version of `mobilevitv2_050` (from timm) on the `beans` dataset. It achieves the following results on the validation set: - Loss: 0.08228 - Accuracy: 0.9850 - F1Score: 0.9846 ## Image normalization Imagenet ```python mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] ```
ShadowPower/waifu-diffusion.openvino
ShadowPower
2022-10-06T08:52:27Z
0
9
null
[ "stable-diffusion", "text-to-image", "en", "license:bigscience-bloom-rail-1.0", "region:us" ]
text-to-image
2022-09-06T09:03:00Z
--- language: - en tags: - stable-diffusion - text-to-image license: bigscience-bloom-rail-1.0 inference: false --- for this repo: [GitHub - bes-dev/stable_diffusion.openvino](https://github.com/bes-dev/stable_diffusion.openvino) reference: [bes-dev/stable-diffusion-v1-4-openvino · Hugging Face](https://huggingface.co/bes-dev/stable-diffusion-v1-4-openvino) [hakurei/waifu-diffusion · Hugging Face](https://huggingface.co/hakurei/waifu-diffusion) [GitHub - harishanand95/diffusers: 🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch](https://github.com/harishanand95/diffusers)
Seongmi/kobert-finetuned-klue-v2
Seongmi
2022-10-06T08:20:10Z
111
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-10-06T05:48:52Z
--- tags: - generated_from_trainer model-index: - name: kobert-finetuned-klue-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobert-finetuned-klue-v2 This model is a fine-tuned version of [monologg/kobert](https://huggingface.co/monologg/kobert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.5898 | 1.08 | 500 | 5.2618 | | 5.217 | 2.16 | 1000 | 5.1505 | | 5.1044 | 3.24 | 1500 | 5.0895 | | 5.0048 | 4.32 | 2000 | 5.0649 | | 4.8292 | 5.4 | 2500 | 4.9589 | | 4.5451 | 6.48 | 3000 | 4.8549 | | 4.2284 | 7.56 | 3500 | 4.8801 | | 3.9195 | 8.64 | 4000 | 4.8797 | | 3.6506 | 9.72 | 4500 | 4.8009 | | 3.4175 | 10.8 | 5000 | 4.8996 | | 3.1964 | 11.88 | 5500 | 4.9734 | | 3.0401 | 12.96 | 6000 | 4.9378 | | 2.8965 | 14.04 | 6500 | 5.3631 | | 2.7672 | 15.12 | 7000 | 5.3234 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
YYK/YYK
YYK
2022-10-06T07:25:27Z
0
0
null
[ "region:us" ]
null
2022-10-06T07:25:08Z
想你,是孤独的嗜好; 怎样也戒不掉。 像无法根治的毒药; 根本就治不好。 爱你,是唯一的嗜好; 安眠药不如拥抱; 虽美好,但失去味道 像曾经的承诺如今的玩笑 想你,是孤独的嗜好; 怎样也戒不掉。 不论争吵或打闹 我全不想忘掉 爱你,是唯一的嗜好; 安眠药不如拥抱; 很美好希望一起到老 雨过天晴,能接受你的讯号
ArunVP3799/tf_finetuned_doctr_v2
ArunVP3799
2022-10-06T06:54:56Z
2
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2022-10-06T06:54:46Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/content/drive/Shareddrives/DataScience/DISA/datasets/IAM_Dataset/IAM/data", "val_path": "/content/drive/MyDrive/OCR_Finetuning/test", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 10, "batch_size": 64, "input_size": 32, "lr": 0.001, "workers": 2, "resume": null, "vocab": "legacy_french", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": false, "pretrained": true, "amp": false, "find_lr": false }
tubyneto/my_new_model
tubyneto
2022-10-06T05:57:16Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-06T05:57:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # tubyneto/my_new_model This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('tubyneto/my_new_model') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tubyneto/my_new_model) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/beldam
sd-concepts-library
2022-10-06T04:31:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-06T04:31:28Z
--- license: mit --- ### beldam on Stable Diffusion This is the `beldam` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![beldam 0](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/6.jpeg) ![beldam 1](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/0.jpeg) ![beldam 2](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/7.jpeg) ![beldam 3](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/9.jpeg) ![beldam 4](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/2.jpeg) ![beldam 5](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/12.jpeg) ![beldam 6](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/3.jpeg) ![beldam 7](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/14.jpeg) ![beldam 8](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/13.jpeg) ![beldam 9](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/10.jpeg) ![beldam 10](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/8.jpeg) ![beldam 11](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/15.jpeg) ![beldam 12](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/11.jpeg) ![beldam 13](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/5.jpeg) ![beldam 14](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/4.jpeg) ![beldam 15](https://huggingface.co/sd-concepts-library/beldam/resolve/main/concept_images/1.jpeg)
YujiK/deberta-v3-small-test_ver1
YujiK
2022-10-06T04:09:37Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-06T03:31:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-v3-small-test_ver1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-small-test_ver1 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7818 - Pearson: 0.8125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.8486 | 1.0 | 2052 | 0.7806 | 0.7692 | | 0.6951 | 2.0 | 4104 | 0.7546 | 0.7934 | | 0.5971 | 3.0 | 6156 | 0.7366 | 0.8085 | | 0.4998 | 4.0 | 8208 | 0.7407 | 0.8136 | | 0.4407 | 5.0 | 10260 | 0.7818 | 0.8125 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
GItaf/bert-base-uncased-bert-base-uncased-mc-weight0-epoch15
GItaf
2022-10-06T02:37:42Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-04T03:25:21Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-bert-base-uncased-mc-weight0-epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-bert-base-uncased-mc-weight0-epoch15 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3651 - Cls loss: 2.9223 - Lm loss: 4.3649 - Cls Accuracy: 0.0248 - Cls F1: 0.0057 - Cls Precision: 0.0061 - Cls Recall: 0.0248 - Perplexity: 78.64 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.8711 | 1.0 | 3470 | 4.5156 | 2.9252 | 4.5155 | 0.0213 | 0.0047 | 0.0042 | 0.0213 | 91.42 | | 4.483 | 2.0 | 6940 | 4.4193 | 2.9248 | 4.4191 | 0.0219 | 0.0048 | 0.0042 | 0.0219 | 83.02 | | 4.3345 | 3.0 | 10410 | 4.3684 | 2.9244 | 4.3682 | 0.0219 | 0.0048 | 0.0042 | 0.0219 | 78.91 | | 4.2266 | 4.0 | 13880 | 4.3445 | 2.9241 | 4.3443 | 0.0225 | 0.0049 | 0.0043 | 0.0225 | 77.04 | | 4.1388 | 5.0 | 17350 | 4.3260 | 2.9237 | 4.3258 | 0.0231 | 0.0050 | 0.0044 | 0.0231 | 75.63 | | 4.0644 | 6.0 | 20820 | 4.3299 | 2.9234 | 4.3297 | 0.0231 | 0.0050 | 0.0044 | 0.0231 | 75.92 | | 3.999 | 7.0 | 24290 | 4.3278 | 2.9232 | 4.3276 | 0.0231 | 0.0059 | 0.0061 | 0.0231 | 75.76 | | 3.9426 | 8.0 | 27760 | 4.3269 | 2.9230 | 4.3267 | 0.0231 | 0.0059 | 0.0061 | 0.0231 | 75.70 | | 3.8929 | 9.0 | 31230 | 4.3324 | 2.9228 | 4.3322 | 0.0248 | 0.0061 | 0.0062 | 0.0248 | 76.11 | | 3.8488 | 10.0 | 34700 | 4.3382 | 2.9227 | 4.3380 | 0.0248 | 0.0061 | 0.0064 | 0.0248 | 76.55 | | 3.8116 | 11.0 | 38170 | 4.3461 | 2.9225 | 4.3459 | 0.0242 | 0.0057 | 0.0061 | 0.0242 | 77.16 | | 3.7791 | 12.0 | 41640 | 4.3537 | 2.9224 | 4.3535 | 0.0248 | 0.0057 | 0.0061 | 0.0248 | 77.75 | | 3.7532 | 13.0 | 45110 | 4.3593 | 2.9223 | 4.3591 | 0.0248 | 0.0057 | 0.0061 | 0.0248 | 78.19 | | 3.7321 | 14.0 | 48580 | 4.3588 | 2.9223 | 4.3586 | 0.0248 | 0.0057 | 0.0061 | 0.0248 | 78.15 | | 3.7182 | 15.0 | 52050 | 4.3651 | 2.9223 | 4.3649 | 0.0248 | 0.0057 | 0.0061 | 0.0248 | 78.64 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/other-mother
sd-concepts-library
2022-10-06T00:58:05Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-06T00:58:00Z
--- license: mit --- ### other-mother on Stable Diffusion This is the `other-mother` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![other-mother 0](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/6.jpeg) ![other-mother 1](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/0.jpeg) ![other-mother 2](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/7.jpeg) ![other-mother 3](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/9.jpeg) ![other-mother 4](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/2.jpeg) ![other-mother 5](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/12.jpeg) ![other-mother 6](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/3.jpeg) ![other-mother 7](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/14.jpeg) ![other-mother 8](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/13.jpeg) ![other-mother 9](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/10.jpeg) ![other-mother 10](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/8.jpeg) ![other-mother 11](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/15.jpeg) ![other-mother 12](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/11.jpeg) ![other-mother 13](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/5.jpeg) ![other-mother 14](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/4.jpeg) ![other-mother 15](https://huggingface.co/sd-concepts-library/other-mother/resolve/main/concept_images/1.jpeg)
Bakuraza/q-FrozenLake-v1-4x4-noSlippery
Bakuraza
2022-10-06T00:09:23Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-06T00:09:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Bakuraza/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jEVVB/dreamSD
jEVVB
2022-10-05T22:03:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-05T22:03:26Z
--- license: creativeml-openrail-m ---
monakth/bert-base-multilingual-uncased-finetuned-squad
monakth
2022-10-05T20:20:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-05T16:46:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-multilingual-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9976 | 1.0 | 5547 | 0.9970 | | 0.7523 | 2.0 | 11094 | 0.9646 | | 0.5824 | 3.0 | 16641 | 1.0321 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
selimsametoglu/xlm-roberta-base-finetuned-panx-de
selimsametoglu
2022-10-05T19:35:08Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T21:44:24Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8683253805953192 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1386 - F1: 0.8683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2501 | 1.0 | 839 | 0.1879 | 0.8135 | | 0.1328 | 2.0 | 1678 | 0.1419 | 0.8475 | | 0.0792 | 3.0 | 2517 | 0.1386 | 0.8683 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0 - Datasets 2.3.2 - Tokenizers 0.12.1
minjibi/test1000v2
minjibi
2022-10-05T19:18:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-05T17:52:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test1000v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test1000v2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7873 - Wer: 0.6162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.7913 | 3.22 | 100 | 3.3481 | 1.0 | | 3.3831 | 6.44 | 200 | 3.3229 | 1.0 | | 3.3778 | 9.67 | 300 | 3.3211 | 1.0 | | 3.3671 | 12.89 | 400 | 3.2973 | 1.0 | | 3.3528 | 16.13 | 500 | 3.1349 | 1.0 | | 1.8611 | 19.35 | 600 | 0.7873 | 0.6162 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0+cu102 - Datasets 1.4.1 - Tokenizers 0.12.1
CalamitousVisibility/enron-spam-checker-10000
CalamitousVisibility
2022-10-05T19:00:54Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T06:52:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: enron-spam-checker-10000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enron-spam-checker-10000 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0512 - Accuracy: 0.9915 - F1: [0.99143577 0.99156328] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cpu - Datasets 2.5.1 - Tokenizers 0.12.1
et-do/invasive_plant_classifier
et-do
2022-10-05T18:07:42Z
0
0
FastAI
[ "FastAI", "region:us" ]
null
2022-08-09T02:55:02Z
--- library_name: FastAI tags: - FastAI --- # British Columbia Invasive Plants Identifier ## Model Details An invasive plant classifier trained on BingSearch Images scraped dataset with FastAi. Model is able to detect 6 species (marked for Provincial Containment) of invasive plants defined by the government of British Columbia. Hosted in a HuggingFace Space accessible here: https://huggingface.co/spaces/et-do/bc_invasive_plant_classifier ## Notebook Details In the main notebook (https://github.com/et-do/invasive_plant_classifier), I aim to apply transfer learning methods to a PyTorch image classification CNN (resnet34) to be able to identify both the species and the level of invasiveness to British Columbia as deemed by https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/invasive-species/priority-species/priority-plants Currently, the BC government identifies invasive plants across 5 categories: Prevent: Species determined to be high risk to BC and not yet established. Management objective is prevent the introduction and establishment. Provincial EDRR: Species is high risk to B.C. and is new to the Province. Management objective is eradication. Provincial Containment: Species is high risk with limited extent in B.C. but significant potential to spread. Management objective is to prevent further expansion into new areas with the ultimate goal of reducing the overall extent. Regional containment/Control: Species is high risk and well established, or medium risk with high potential for spread. Management objective is to prevent further expansion into new areas within the region through establishment of containment lines and identification of occurrences outside the line to control. Management: Species is more widespread but may be of concern in specific situations with certain high values - e.g., conservation lands, specific agriculture crops. Management objective is to reduce the invasive species impacts locally or regionally, where resources are available. All of these categories could be extremely relevant to a free-to-use plant-identifier web app. However, in the sake of API costs, resource management, and model complexity, the first version of the model will only be trained to recognize plants under the Provincial Containment category (n=6). As the web app won't be geographically restricted, being able to use it both inside BC and outside BC to identify these plants that have a management objective of limiting outer-provincial occurrences could provide immense value. The notebook will walkthrough: - Data gathering and validation - Data preprocessing & augmentation via FastAi dataloaders - Training the model on the new dataset, and using results to further clean the data - Serving the model under a huggingface space
HuggingAlex1247/gelectra-large-germaner
HuggingAlex1247
2022-10-05T17:49:34Z
60
0
transformers
[ "transformers", "tf", "tensorboard", "electra", "token-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-05T17:45:59Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: HuggingAlex1247/gelectra-large-germaner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # HuggingAlex1247/gelectra-large-germaner This model is a fine-tuned version of [deepset/gelectra-large](https://huggingface.co/deepset/gelectra-large) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1696 - Validation Loss: 0.0800 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3475, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1696 | 0.0800 | 0 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.6.2 - Datasets 1.18.0 - Tokenizers 0.12.1
grantsl/distilbert-base-uncased-finetuned-emotion-3
grantsl
2022-10-05T17:49:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T17:26:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3696 - Accuracy: 0.8333 - F1: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4146 | 1.0 | 560 | 0.3742 | 0.8317 | 0.8316 | | 0.3429 | 2.0 | 1120 | 0.3696 | 0.8333 | 0.8333 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
sd-concepts-library/lazytown-stephanie
sd-concepts-library
2022-10-05T17:25:11Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-05T17:24:59Z
--- license: mit --- ### lazytown-stephanie on Stable Diffusion This is the `lazytown-stephanie` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![lazytown-stephanie 0](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/2.jpeg) ![lazytown-stephanie 1](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/10.jpeg) ![lazytown-stephanie 2](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/15.jpeg) ![lazytown-stephanie 3](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/13.jpeg) ![lazytown-stephanie 4](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/14.jpeg) ![lazytown-stephanie 5](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/11.jpeg) ![lazytown-stephanie 6](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/0.jpeg) ![lazytown-stephanie 7](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/1.jpeg) ![lazytown-stephanie 8](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/9.jpeg) ![lazytown-stephanie 9](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/7.jpeg) ![lazytown-stephanie 10](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/4.jpeg) ![lazytown-stephanie 11](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/3.jpeg) ![lazytown-stephanie 12](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/6.jpeg) ![lazytown-stephanie 13](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/5.jpeg) ![lazytown-stephanie 14](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/12.jpeg) ![lazytown-stephanie 15](https://huggingface.co/sd-concepts-library/lazytown-stephanie/resolve/main/concept_images/8.jpeg)
MM2157/bert-finetuned-propaganda-18
MM2157
2022-10-05T17:16:57Z
135
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-08T15:04:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-propaganda-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-propaganda-18 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6542 - Precision: 0.0924 - Recall: 0.0470 - F1: 0.0623 - Accuracy: 0.8836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6679 | 1.0 | 670 | 0.7379 | 0.125 | 0.0035 | 0.0069 | 0.8868 | | 0.548 | 2.0 | 1340 | 0.5916 | 0.0845 | 0.0435 | 0.0574 | 0.8831 | | 0.3781 | 3.0 | 2010 | 0.6542 | 0.0924 | 0.0470 | 0.0623 | 0.8836 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
ivanlau/wav2vec2-large-xls-r-300m-cantonese
ivanlau
2022-10-05T16:10:07Z
71
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "zh-HK", "zh", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - zh license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - zh-HK datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Chinese_HongKong (Cantonese) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-hk metrics: - name: Test WER type: wer value: 0.8111349803079126 - name: Test CER type: cer value: 0.21962250882996914 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-hk metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 0.6160564326503191 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test WER with LM type: wer value: 0.8055853920515574 - name: Test CER with LM type: cer value: 0.21578686612008757 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test WER with LM type: wer value: 1.0012453300124533 - name: Test CER with LM type: cer value: 0.6153006382264025 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 61.55 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ZH-HK dataset. It achieves the following results on the evaluation set: - Loss: 1.4848 - Wer: 0.8004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.0 | 183 | 47.8442 | 1.0 | | No log | 2.0 | 366 | 6.3109 | 1.0 | | 41.8902 | 3.0 | 549 | 6.2392 | 1.0 | | 41.8902 | 4.0 | 732 | 5.9739 | 1.1123 | | 41.8902 | 5.0 | 915 | 4.9014 | 1.9474 | | 5.5817 | 6.0 | 1098 | 3.9892 | 1.0188 | | 5.5817 | 7.0 | 1281 | 3.5080 | 1.0104 | | 5.5817 | 8.0 | 1464 | 3.0797 | 0.9905 | | 3.5579 | 9.0 | 1647 | 2.8111 | 0.9836 | | 3.5579 | 10.0 | 1830 | 2.6726 | 0.9815 | | 2.7771 | 11.0 | 2013 | 2.7177 | 0.9809 | | 2.7771 | 12.0 | 2196 | 2.3582 | 0.9692 | | 2.7771 | 13.0 | 2379 | 2.1708 | 0.9757 | | 2.3488 | 14.0 | 2562 | 2.0491 | 0.9526 | | 2.3488 | 15.0 | 2745 | 1.8518 | 0.9378 | | 2.3488 | 16.0 | 2928 | 1.6845 | 0.9286 | | 1.7859 | 17.0 | 3111 | 1.6412 | 0.9280 | | 1.7859 | 18.0 | 3294 | 1.5488 | 0.9035 | | 1.7859 | 19.0 | 3477 | 1.4546 | 0.9010 | | 1.3898 | 20.0 | 3660 | 1.5147 | 0.9201 | | 1.3898 | 21.0 | 3843 | 1.4467 | 0.8959 | | 1.1291 | 22.0 | 4026 | 1.4743 | 0.9035 | | 1.1291 | 23.0 | 4209 | 1.3827 | 0.8762 | | 1.1291 | 24.0 | 4392 | 1.3437 | 0.8792 | | 0.8993 | 25.0 | 4575 | 1.2895 | 0.8577 | | 0.8993 | 26.0 | 4758 | 1.2928 | 0.8558 | | 0.8993 | 27.0 | 4941 | 1.2947 | 0.9163 | | 0.6298 | 28.0 | 5124 | 1.3151 | 0.8738 | | 0.6298 | 29.0 | 5307 | 1.2972 | 0.8514 | | 0.6298 | 30.0 | 5490 | 1.3030 | 0.8432 | | 0.4757 | 31.0 | 5673 | 1.3264 | 0.8364 | | 0.4757 | 32.0 | 5856 | 1.3131 | 0.8421 | | 0.3735 | 33.0 | 6039 | 1.3457 | 0.8588 | | 0.3735 | 34.0 | 6222 | 1.3450 | 0.8473 | | 0.3735 | 35.0 | 6405 | 1.3452 | 0.9218 | | 0.3253 | 36.0 | 6588 | 1.3754 | 0.8397 | | 0.3253 | 37.0 | 6771 | 1.3554 | 0.8353 | | 0.3253 | 38.0 | 6954 | 1.3532 | 0.8312 | | 0.2816 | 39.0 | 7137 | 1.3694 | 0.8345 | | 0.2816 | 40.0 | 7320 | 1.3953 | 0.8296 | | 0.2397 | 41.0 | 7503 | 1.3858 | 0.8293 | | 0.2397 | 42.0 | 7686 | 1.3959 | 0.8402 | | 0.2397 | 43.0 | 7869 | 1.4350 | 0.9318 | | 0.2084 | 44.0 | 8052 | 1.4004 | 0.8806 | | 0.2084 | 45.0 | 8235 | 1.3871 | 0.8255 | | 0.2084 | 46.0 | 8418 | 1.4060 | 0.8252 | | 0.1853 | 47.0 | 8601 | 1.3992 | 0.8501 | | 0.1853 | 48.0 | 8784 | 1.4186 | 0.8252 | | 0.1853 | 49.0 | 8967 | 1.4120 | 0.8165 | | 0.1671 | 50.0 | 9150 | 1.4166 | 0.8214 | | 0.1671 | 51.0 | 9333 | 1.4411 | 0.8501 | | 0.1513 | 52.0 | 9516 | 1.4692 | 0.8394 | | 0.1513 | 53.0 | 9699 | 1.4640 | 0.8391 | | 0.1513 | 54.0 | 9882 | 1.4501 | 0.8419 | | 0.133 | 55.0 | 10065 | 1.4134 | 0.8351 | | 0.133 | 56.0 | 10248 | 1.4593 | 0.8405 | | 0.133 | 57.0 | 10431 | 1.4560 | 0.8389 | | 0.1198 | 58.0 | 10614 | 1.4734 | 0.8334 | | 0.1198 | 59.0 | 10797 | 1.4649 | 0.8318 | | 0.1198 | 60.0 | 10980 | 1.4659 | 0.8100 | | 0.1109 | 61.0 | 11163 | 1.4784 | 0.8119 | | 0.1109 | 62.0 | 11346 | 1.4938 | 0.8149 | | 0.1063 | 63.0 | 11529 | 1.5050 | 0.8152 | | 0.1063 | 64.0 | 11712 | 1.4773 | 0.8176 | | 0.1063 | 65.0 | 11895 | 1.4836 | 0.8261 | | 0.0966 | 66.0 | 12078 | 1.4979 | 0.8157 | | 0.0966 | 67.0 | 12261 | 1.4603 | 0.8048 | | 0.0966 | 68.0 | 12444 | 1.4803 | 0.8127 | | 0.0867 | 69.0 | 12627 | 1.4974 | 0.8130 | | 0.0867 | 70.0 | 12810 | 1.4721 | 0.8078 | | 0.0867 | 71.0 | 12993 | 1.4644 | 0.8192 | | 0.0827 | 72.0 | 13176 | 1.4835 | 0.8138 | | 0.0827 | 73.0 | 13359 | 1.4934 | 0.8122 | | 0.0734 | 74.0 | 13542 | 1.4951 | 0.8062 | | 0.0734 | 75.0 | 13725 | 1.4908 | 0.8070 | | 0.0734 | 76.0 | 13908 | 1.4876 | 0.8124 | | 0.0664 | 77.0 | 14091 | 1.4934 | 0.8053 | | 0.0664 | 78.0 | 14274 | 1.4603 | 0.8048 | | 0.0664 | 79.0 | 14457 | 1.4732 | 0.8073 | | 0.0602 | 80.0 | 14640 | 1.4925 | 0.8078 | | 0.0602 | 81.0 | 14823 | 1.4812 | 0.8064 | | 0.057 | 82.0 | 15006 | 1.4950 | 0.8013 | | 0.057 | 83.0 | 15189 | 1.4785 | 0.8056 | | 0.057 | 84.0 | 15372 | 1.4856 | 0.7993 | | 0.0517 | 85.0 | 15555 | 1.4755 | 0.8034 | | 0.0517 | 86.0 | 15738 | 1.4813 | 0.8034 | | 0.0517 | 87.0 | 15921 | 1.4966 | 0.8048 | | 0.0468 | 88.0 | 16104 | 1.4883 | 0.8002 | | 0.0468 | 89.0 | 16287 | 1.4746 | 0.8023 | | 0.0468 | 90.0 | 16470 | 1.4697 | 0.7974 | | 0.0426 | 91.0 | 16653 | 1.4775 | 0.8004 | | 0.0426 | 92.0 | 16836 | 1.4852 | 0.8023 | | 0.0387 | 93.0 | 17019 | 1.4868 | 0.8004 | | 0.0387 | 94.0 | 17202 | 1.4785 | 0.8021 | | 0.0387 | 95.0 | 17385 | 1.4892 | 0.8015 | | 0.0359 | 96.0 | 17568 | 1.4862 | 0.8018 | | 0.0359 | 97.0 | 17751 | 1.4851 | 0.8007 | | 0.0359 | 98.0 | 17934 | 1.4846 | 0.7999 | | 0.0347 | 99.0 | 18117 | 1.4852 | 0.7993 | | 0.0347 | 100.0 | 18300 | 1.4848 | 0.8004 | #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id ivanlau/wav2vec2-large-xls-r-300m-cantonese --dataset mozilla-foundation/common_voice_8_0 --config zh-HK --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id ivanlau/wav2vec2-large-xls-r-300m-cantonese --dataset speech-recognition-community-v2/dev_data --config zh-HK --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
ronanki/MiniLM-L12-v2-SEP-token
ronanki
2022-10-05T15:37:39Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-05T15:37:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ronanki/MiniLM-L12-v2-SEP-token This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/MiniLM-L12-v2-SEP-token') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ronanki/MiniLM-L12-v2-SEP-token') model = AutoModel.from_pretrained('ronanki/MiniLM-L12-v2-SEP-token') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/MiniLM-L12-v2-SEP-token) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 329 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 658, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
victorbahlangene/distilbert-base-uncased-finetuned-emotion
victorbahlangene
2022-10-05T14:40:25Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T13:57:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9220357543635932 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Accuracy: 0.922 - F1: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8134 | 1.0 | 250 | 0.3017 | 0.9105 | 0.9087 | | 0.2455 | 2.0 | 500 | 0.2141 | 0.922 | 0.9220 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
DigitalUmuganda/KinyarwandaTTS
DigitalUmuganda
2022-10-05T13:59:54Z
0
0
null
[ "region:us" ]
null
2022-10-04T00:39:40Z
# Grapheme-based statistical parametric synthesizer for Kinyarwanda A Grapheme-based approach was chosen because they give acceptable performances for low-resource languages. For instance, this model was trained on approximately 5 hours of Kinyarwanda audios with their corresponding transcriptions, no further language-specific information was provided. The [Festvox](http://festvox.org/) suite of tools was employed to build the model, and the Flite engine was used to generate a small, and portable executable file for this model. Currently, this model can only be run on Linux. ## Model description To build the voice, we needed to map graphemes to their corresponding phonemes. In this work the UniTran-based approach to building the voice. The graphemes are converted to UTF-8 code points, then these are converted to guessed phonetic transcription in X-Sampa. After obtaining the phonemes, on each one of them we use an HMM model from the Clustergen framework to obtain important features. These features are then used to train RandomForest(20 decision trees) to predict spectral features. It achieves an `MCD` of ` 5.03 `. ## Limitations and Recommendations The voice produced lacks in crispness and in some cases ignore tonal information which is indispensable in Kinyarwanda. We believe that with a large corpus of linguistic information the voice would sound more natural. ## Usage Use the following to convert text to a wav file: ``` sh ./flite_du_kin_tts -f kinyarwanda.txt kinyarwanda.wav ``` And to use a terminal prompt, use: ``` sh ./flite_du_kin_tts -t "Muraho Rwanda" kinyarwanda.wav ```
murat/kyrgyz_language_NER
murat
2022-10-05T13:48:18Z
115
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ky", "dataset:wikiann", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-05T11:41:45Z
--- language: ky datasets: - wikiann examples: widget: - text: "Бириккен Улуттар Уюму" example_title: "Sentence_1" - text: "Жусуп Мамай" example_title: "Sentence_2" --- <h1>Kyrgyz Named Entity Recognition</h1> Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Kyrgyz language. WARNING: this model is not usable (see metrics below) and is built just as a proof of concept. I'll update the model after cleaning up the Wikiann dataset (`ky` part of it which contains only 100 train/test/valid items) or coming up with a completely new dataset. ## Label ID and its corresponding label name | Label ID | Label Name| | -------- | ----- | | 0 | O | | 1 | B-PER | | 2 | I-PER | | 3 | B-ORG| | 4 | I-ORG | | 5 | B-LOC | | 6 | I-LOC | <h1>Results</h1> | Name | Overall F1 | LOC F1 | ORG F1 | PER F1 | | ---- | -------- | ----- | ---- | ---- | | Train set | 0.595683 | 0.570312 | 0.687179 | 0.549180 | | Validation set | 0.461333 | 0.551181 | 0.401913 | 0.425087 | | Test set | 0.442622 | 0.456852 | 0.469565 | 0.413114 | Example ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("murat/kyrgyz_language_NER") model = AutoModelForTokenClassification.from_pretrained("murat/kyrgyz_language_NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Жусуп Мамай" ner_results = nlp(example) ner_results ```
joelearn22/ppo-LunarLander-v2
joelearn22
2022-10-05T13:14:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-05T13:13:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MLP results: - metrics: - type: mean_reward value: 262.49 +/- 31.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **MLP** Agent playing **LunarLander-v2** This is a trained model of a **MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lanpouthakoun/q-FrozenLake-v1-4x4-noSlippery
lanpouthakoun
2022-10-05T12:51:51Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-05T12:49:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andlanpo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
LondonStory/txlm-roberta-hindi-sentiment
LondonStory
2022-10-05T12:25:30Z
6,377
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "txlm-roberta-hindi-sentiment", "hi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T11:31:24Z
--- tags: - txlm-roberta-hindi-sentiment language: - hi license: mit --- # T-XLM-RoBERTa-Hindi-Sentiment `T-XLM-RoBERTa-Hindi-Sentiment` model is a fine-tuned version of the [Twitter-XLM-RoBERTa-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) model from Cardiff-NLP. ## Description of the model and the training data `txlm-roberta-hindi-sentiment` is a Hindi language sentiment classifier model (in Devanagari script) which is trained on a publicly available Hindi language dataset. See the GitHub source of the dataset [HERE](https://github.com/sid573/Hindi_Sentiment_Analysis). The training, testing and validation datasets consist of 6807, 1634 and 635 numbers of labelled Hindi language examples respectively. The trained model shows a weighted average macro F1-score of 0.89 (please see the confusion matrix in the Google Colab notebook below). ## Code The Google Colab notebook, where the model is fine-tuned by employing native PyTorch modules can be found on LondonStory's GitHub page [HERE](https://github.com/LondonStory/Supervised-NLP-models/blob/main/T-XLM-RoBERTa-base-finetuning-with-pytorch.ipynb).
arnaudlauer/distilbert-base-uncased-finetuned-emotion
arnaudlauer
2022-10-05T12:18:14Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T12:05:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.6 - name: F1 type: f1 value: 0.4998690476190476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 1.4150 - Accuracy: 0.6 - F1: 0.4999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.6648 | 1.0 | 25 | 1.4656 | 0.37 | 0.2128 | | 1.5452 | 2.0 | 50 | 1.4150 | 0.6 | 0.4999 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
bvrau/covid-general-news-bert
bvrau
2022-10-05T11:38:51Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T03:49:02Z
--- license: afl-3.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: covid-general-news-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-general-news-bert This model is a fine-tuned version of [bvrau/covid-twitter-bert-v2-struth](https://huggingface.co/bvrau/covid-twitter-bert-v2-struth) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0688 - Accuracy: 0.9774 - Precision: 0.9781 - Recall: 0.9738 - F1: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2183 | 1.0 | 365 | 0.0688 | 0.9774 | 0.9781 | 0.9738 | 0.9760 | | 0.0783 | 2.0 | 730 | 0.0754 | 0.9842 | 0.9812 | 0.9855 | 0.9833 | | 0.0354 | 3.0 | 1095 | 0.0766 | 0.9856 | 0.9785 | 0.9913 | 0.9848 | | 0.0185 | 4.0 | 1460 | 0.0956 | 0.9822 | 0.9715 | 0.9913 | 0.9813 | | 0.0227 | 5.0 | 1825 | 0.0693 | 0.9870 | 0.9827 | 0.9898 | 0.9862 | | 0.0084 | 6.0 | 2190 | 0.0870 | 0.9849 | 0.9926 | 0.9753 | 0.9839 | | 0.0021 | 7.0 | 2555 | 0.0729 | 0.9877 | 0.9883 | 0.9855 | 0.9869 | | 0.0002 | 8.0 | 2920 | 0.1197 | 0.9808 | 0.9688 | 0.9913 | 0.9799 | | 0.0033 | 9.0 | 3285 | 0.0768 | 0.9884 | 0.9912 | 0.9840 | 0.9876 | | 0.0009 | 10.0 | 3650 | 0.1013 | 0.9863 | 0.9869 | 0.9840 | 0.9854 | | 0.0 | 11.0 | 4015 | 0.1069 | 0.9863 | 0.9869 | 0.9840 | 0.9854 | | 0.0 | 12.0 | 4380 | 0.1124 | 0.9856 | 0.9854 | 0.9840 | 0.9847 | | 0.0 | 13.0 | 4745 | 0.1175 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 14.0 | 5110 | 0.1221 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 15.0 | 5475 | 0.1256 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 16.0 | 5840 | 0.1286 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 17.0 | 6205 | 0.1300 | 0.9856 | 0.9854 | 0.9840 | 0.9847 | | 0.0 | 18.0 | 6570 | 0.1293 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 19.0 | 6935 | 0.1304 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | | 0.0 | 20.0 | 7300 | 0.1308 | 0.9849 | 0.9854 | 0.9826 | 0.9840 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
svalabs/rembert-german-question-answering
svalabs
2022-10-05T09:26:02Z
111
3
transformers
[ "transformers", "pytorch", "rembert", "question-answering", "qa", "de", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-05T09:06:25Z
--- license: cc-by-4.0 language: - de task_categories: - question-answering tags: - question-answering - pytorch - qa - de --- # SVALabs - RemBERT German QA In this repository we present our german question answering model. The trained model is based on [RemBERT](https://huggingface.co/google/rembert) and was finetuned using the [SQuAD](https://huggingface.co/datasets/squad) dataset and the [GermanQuAD](https://huggingface.co/datasets/deepset/germanquad) dataset. ### Model Details | | Description or Link | |---|---| |**Base model** | [```RemBERT```](https://huggingface.co/google/rembert) | |**Finetuning task**| Question Answering | |**Source datasets**| [```SQuAD```](https://huggingface.co/datasets/squad); [```GermanQuAD```](https://huggingface.co/datasets/deepset/germanquad)| ### Performance The model was tested on 1692 samples of the GermanQuAD test dataset (the other samples were used for validation) F1-Score: 87.75 EM: 73.35
huggingtweets/anandmahindra-elonmusk-sahilbloom
huggingtweets
2022-10-05T08:56:54Z
122
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-05T08:53:14Z
--- language: en thumbnail: http://www.huggingtweets.com/anandmahindra-elonmusk-sahilbloom/1664960172385/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572573363255525377/Xz3fufYY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1574971893765251073/GglyevNe_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1462779172451983370/xAsgPikz_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & anand mahindra & Sahil Bloom</div> <div style="text-align: center; font-size: 14px;">@anandmahindra-elonmusk-sahilbloom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & anand mahindra & Sahil Bloom. | Data | Elon Musk | anand mahindra | Sahil Bloom | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3240 | 3250 | | Retweets | 123 | 705 | 202 | | Short tweets | 970 | 174 | 693 | | Tweets kept | 2107 | 2361 | 2355 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1diitahr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anandmahindra-elonmusk-sahilbloom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qdx5m74) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qdx5m74/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anandmahindra-elonmusk-sahilbloom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mfreihaut/refinement-finetuned-mnli-kaggle-yahoo
mfreihaut
2022-10-05T08:46:49Z
115
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-05T03:44:00Z
--- tags: - generated_from_trainer model-index: - name: refinement-finetuned-mnli-kaggle-yahoo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # refinement-finetuned-mnli-kaggle-yahoo This model is a fine-tuned version of [joeddav/bart-large-mnli-yahoo-answers](https://huggingface.co/joeddav/bart-large-mnli-yahoo-answers) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4649 | 1.0 | 12599 | 0.9705 | | 0.494 | 2.0 | 25198 | 1.1055 | | 0.3405 | 3.0 | 37797 | 1.1101 | | 0.5063 | 4.0 | 50396 | 1.1324 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/gpt2-span-head-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-10-05T07:41:38Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-27T11:07:36Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
shoaibazam/ppo-LunarLander-v2
shoaibazam
2022-10-05T07:35:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-04T12:47:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 229.76 +/- 21.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anas-awadalla/gpt2-span-head-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-10-05T05:49:56Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-27T10:26:06Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
fabriceyhc/bert-base-uncased-amazon_polarity
fabriceyhc
2022-10-05T05:24:12Z
149
4
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "sibyl", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - sibyl datasets: - amazon_polarity metrics: - accuracy model-index: - name: bert-base-uncased-amazon_polarity results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.94647 - task: type: text-classification name: Text Classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: test metrics: - name: Accuracy type: accuracy value: 0.9464875 verified: true - name: Precision type: precision value: 0.9528844934702675 verified: true - name: Recall type: recall value: 0.939425 verified: true - name: AUC type: auc value: 0.9863499156250001 verified: true - name: F1 type: f1 value: 0.9461068798388619 verified: true - name: loss type: loss value: 0.2944573760032654 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-amazon_polarity This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2945 - Accuracy: 0.9465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1782000 - training_steps: 17820000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.7155 | 0.0 | 2000 | 0.7060 | 0.4622 | | 0.7054 | 0.0 | 4000 | 0.6925 | 0.5165 | | 0.6842 | 0.0 | 6000 | 0.6653 | 0.6116 | | 0.6375 | 0.0 | 8000 | 0.5721 | 0.7909 | | 0.4671 | 0.0 | 10000 | 0.3238 | 0.8770 | | 0.3403 | 0.0 | 12000 | 0.3692 | 0.8861 | | 0.4162 | 0.0 | 14000 | 0.4560 | 0.8908 | | 0.4728 | 0.0 | 16000 | 0.5071 | 0.8980 | | 0.5111 | 0.01 | 18000 | 0.5204 | 0.9015 | | 0.4792 | 0.01 | 20000 | 0.5193 | 0.9076 | | 0.544 | 0.01 | 22000 | 0.4835 | 0.9133 | | 0.4745 | 0.01 | 24000 | 0.4689 | 0.9170 | | 0.4403 | 0.01 | 26000 | 0.4778 | 0.9177 | | 0.4405 | 0.01 | 28000 | 0.4754 | 0.9163 | | 0.4375 | 0.01 | 30000 | 0.4808 | 0.9175 | | 0.4628 | 0.01 | 32000 | 0.4340 | 0.9244 | | 0.4488 | 0.01 | 34000 | 0.4162 | 0.9265 | | 0.4608 | 0.01 | 36000 | 0.4031 | 0.9271 | | 0.4478 | 0.01 | 38000 | 0.4502 | 0.9253 | | 0.4237 | 0.01 | 40000 | 0.4087 | 0.9279 | | 0.4601 | 0.01 | 42000 | 0.4133 | 0.9269 | | 0.4153 | 0.01 | 44000 | 0.4230 | 0.9306 | | 0.4096 | 0.01 | 46000 | 0.4108 | 0.9301 | | 0.4348 | 0.01 | 48000 | 0.4138 | 0.9309 | | 0.3787 | 0.01 | 50000 | 0.4066 | 0.9324 | | 0.4172 | 0.01 | 52000 | 0.4812 | 0.9206 | | 0.3897 | 0.02 | 54000 | 0.4013 | 0.9325 | | 0.3787 | 0.02 | 56000 | 0.3837 | 0.9344 | | 0.4253 | 0.02 | 58000 | 0.3925 | 0.9347 | | 0.3959 | 0.02 | 60000 | 0.3907 | 0.9353 | | 0.4402 | 0.02 | 62000 | 0.3708 | 0.9341 | | 0.4115 | 0.02 | 64000 | 0.3477 | 0.9361 | | 0.3876 | 0.02 | 66000 | 0.3634 | 0.9373 | | 0.4286 | 0.02 | 68000 | 0.3778 | 0.9378 | | 0.422 | 0.02 | 70000 | 0.3540 | 0.9361 | | 0.3732 | 0.02 | 72000 | 0.3853 | 0.9378 | | 0.3641 | 0.02 | 74000 | 0.3951 | 0.9386 | | 0.3701 | 0.02 | 76000 | 0.3582 | 0.9388 | | 0.4498 | 0.02 | 78000 | 0.3268 | 0.9375 | | 0.3587 | 0.02 | 80000 | 0.3825 | 0.9401 | | 0.4474 | 0.02 | 82000 | 0.3155 | 0.9391 | | 0.3598 | 0.02 | 84000 | 0.3666 | 0.9388 | | 0.389 | 0.02 | 86000 | 0.3745 | 0.9377 | | 0.3625 | 0.02 | 88000 | 0.3776 | 0.9387 | | 0.3511 | 0.03 | 90000 | 0.4275 | 0.9336 | | 0.3428 | 0.03 | 92000 | 0.4301 | 0.9336 | | 0.4042 | 0.03 | 94000 | 0.3547 | 0.9359 | | 0.3583 | 0.03 | 96000 | 0.3763 | 0.9396 | | 0.3887 | 0.03 | 98000 | 0.3213 | 0.9412 | | 0.3915 | 0.03 | 100000 | 0.3557 | 0.9409 | | 0.3378 | 0.03 | 102000 | 0.3627 | 0.9418 | | 0.349 | 0.03 | 104000 | 0.3614 | 0.9402 | | 0.3596 | 0.03 | 106000 | 0.3834 | 0.9381 | | 0.3519 | 0.03 | 108000 | 0.3560 | 0.9421 | | 0.3598 | 0.03 | 110000 | 0.3485 | 0.9419 | | 0.3642 | 0.03 | 112000 | 0.3754 | 0.9395 | | 0.3477 | 0.03 | 114000 | 0.3634 | 0.9426 | | 0.4202 | 0.03 | 116000 | 0.3071 | 0.9427 | | 0.3656 | 0.03 | 118000 | 0.3155 | 0.9441 | | 0.3709 | 0.03 | 120000 | 0.2923 | 0.9433 | | 0.374 | 0.03 | 122000 | 0.3272 | 0.9441 | | 0.3142 | 0.03 | 124000 | 0.3348 | 0.9444 | | 0.3452 | 0.04 | 126000 | 0.3603 | 0.9436 | | 0.3365 | 0.04 | 128000 | 0.3339 | 0.9434 | | 0.3353 | 0.04 | 130000 | 0.3471 | 0.9450 | | 0.343 | 0.04 | 132000 | 0.3508 | 0.9418 | | 0.3174 | 0.04 | 134000 | 0.3753 | 0.9436 | | 0.3009 | 0.04 | 136000 | 0.3687 | 0.9422 | | 0.3785 | 0.04 | 138000 | 0.3818 | 0.9396 | | 0.3199 | 0.04 | 140000 | 0.3291 | 0.9438 | | 0.4049 | 0.04 | 142000 | 0.3372 | 0.9454 | | 0.3435 | 0.04 | 144000 | 0.3315 | 0.9459 | | 0.3814 | 0.04 | 146000 | 0.3462 | 0.9401 | | 0.359 | 0.04 | 148000 | 0.3981 | 0.9361 | | 0.3552 | 0.04 | 150000 | 0.3226 | 0.9469 | | 0.345 | 0.04 | 152000 | 0.3731 | 0.9384 | | 0.3228 | 0.04 | 154000 | 0.2956 | 0.9471 | | 0.3637 | 0.04 | 156000 | 0.2869 | 0.9477 | | 0.349 | 0.04 | 158000 | 0.3331 | 0.9430 | | 0.3374 | 0.04 | 160000 | 0.4159 | 0.9340 | | 0.3718 | 0.05 | 162000 | 0.3241 | 0.9459 | | 0.315 | 0.05 | 164000 | 0.3544 | 0.9391 | | 0.3215 | 0.05 | 166000 | 0.3311 | 0.9451 | | 0.3464 | 0.05 | 168000 | 0.3682 | 0.9453 | | 0.3495 | 0.05 | 170000 | 0.3193 | 0.9469 | | 0.305 | 0.05 | 172000 | 0.4132 | 0.9389 | | 0.3479 | 0.05 | 174000 | 0.3465 | 0.947 | | 0.3537 | 0.05 | 176000 | 0.3277 | 0.9449 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.12.1 - Tokenizers 0.10.3
anas-awadalla/gpt2-span-head-few-shot-k-256-finetuned-squad-seed-4
anas-awadalla
2022-10-05T05:20:56Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-27T10:20:06Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-256-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-10-05T03:49:12Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:44:09Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
mfreihaut/refinement-finetuned-mnli-kaggle-reversal
mfreihaut
2022-10-05T03:42:15Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-04T19:27:55Z
--- license: mit tags: - generated_from_trainer model-index: - name: refinement-finetuned-mnli-kaggle-reversal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # refinement-finetuned-mnli-kaggle-reversal This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4093 | 1.0 | 12599 | 0.7861 | | 0.5241 | 2.0 | 25198 | 0.9800 | | 0.4969 | 3.0 | 37797 | 1.0316 | | 0.4239 | 4.0 | 50396 | 1.0382 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/final-fantasy-logo
sd-concepts-library
2022-10-05T03:38:42Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-05T03:38:38Z
--- license: mit --- ### Final Fantasy logo on Stable Diffusion This is the `<final-fantasy-logo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<final-fantasy-logo> 0](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/2.jpeg) ![<final-fantasy-logo> 1](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/0.jpeg) ![<final-fantasy-logo> 2](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/1.jpeg) ![<final-fantasy-logo> 3](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/4.jpeg) ![<final-fantasy-logo> 4](https://huggingface.co/sd-concepts-library/final-fantasy-logo/resolve/main/concept_images/3.jpeg)
anas-awadalla/gpt2-span-head-few-shot-k-64-finetuned-squad-seed-2
anas-awadalla
2022-10-05T03:11:15Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:33:16Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-64-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-64-finetuned-squad-seed-0
anas-awadalla
2022-10-05T02:55:37Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:28:29Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-10-05T02:28:18Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:23:08Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-32-finetuned-squad-seed-2
anas-awadalla
2022-10-05T02:13:17Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:18:00Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-32-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-1024-finetuned-squad-seq2seq-seed-2
anas-awadalla
2022-10-05T01:32:06Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-05T01:08:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-1024-finetuned-squad-seq2seq-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-1024-finetuned-squad-seq2seq-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-10-05T01:04:35Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:04:59Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
2022-10-05T00:56:03Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T16:28:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-span-head-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-10-05T00:49:43Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-09-26T23:00:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-span-head-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-span-head-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seq2seq-seed-2
anas-awadalla
2022-10-05T00:23:21Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-05T00:08:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-512-finetuned-squad-seq2seq-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seq2seq-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-64-finetuned-squad-seed-2
anas-awadalla
2022-10-05T00:08:41Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T17:22:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-64-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-256-finetuned-squad-seq2seq-seed-4
anas-awadalla
2022-10-04T23:48:33Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T23:38:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-256-finetuned-squad-seq2seq-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-256-finetuned-squad-seq2seq-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/gpt2-large-lr-1e5-span-head-finetuned-squad
anas-awadalla
2022-10-04T23:31:54Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-10-04T20:19:03Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: gpt2-large-lr-1e5-span-head-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-lr-1e5-span-head-finetuned-squad This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-10-04T23:23:17Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T17:07:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-4
anas-awadalla
2022-10-04T22:42:11Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T22:34:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-0
anas-awadalla
2022-10-04T22:22:52Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T22:15:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-64-finetuned-squad-seq2seq-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-10-04T22:19:15Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T16:44:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-4
anas-awadalla
2022-10-04T22:13:34Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T22:06:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-2
anas-awadalla
2022-10-04T22:04:20Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T21:57:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
svenvonnatzmer/finetuning-sentiment-model-3000-samples
svenvonnatzmer
2022-10-04T21:55:25Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-04T21:45:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6942 - eval_accuracy: 0.5 - eval_f1: 0.0 - eval_runtime: 272.0623 - eval_samples_per_second: 1.103 - eval_steps_per_second: 0.07 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-0
anas-awadalla
2022-10-04T21:55:10Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T21:47:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-32-finetuned-squad-seq2seq-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
ImageIN/convnext-base-224_finetuned_on_unlabelled_IA_with_snorkel_labels
ImageIN
2022-10-04T21:54:59Z
197
0
transformers
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-04T13:58:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: convnext-base-224_finetuned_on_unlabelled_IA_with_snorkel_labels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-base-224_finetuned_on_unlabelled_IA_with_snorkel_labels This model is a fine-tuned version of [facebook/convnext-base-224](https://huggingface.co/facebook/convnext-base-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3443 - Precision: 0.9864 - Recall: 0.9822 - F1: 0.9843 - Accuracy: 0.9884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3611 | 1.0 | 2021 | 0.3467 | 0.9843 | 0.9729 | 0.9784 | 0.9842 | | 0.3524 | 2.0 | 4042 | 0.3453 | 0.9853 | 0.9790 | 0.9821 | 0.9868 | | 0.3466 | 3.0 | 6063 | 0.3438 | 0.9854 | 0.9847 | 0.9851 | 0.9889 | | 0.3433 | 4.0 | 8084 | 0.3434 | 0.9850 | 0.9808 | 0.9829 | 0.9873 | | 0.3404 | 5.0 | 10105 | 0.3459 | 0.9853 | 0.9790 | 0.9821 | 0.9868 | | 0.3384 | 6.0 | 12126 | 0.3453 | 0.9853 | 0.9790 | 0.9821 | 0.9868 | | 0.3382 | 7.0 | 14147 | 0.3437 | 0.9864 | 0.9822 | 0.9843 | 0.9884 | | 0.3358 | 8.0 | 16168 | 0.3441 | 0.9857 | 0.9829 | 0.9843 | 0.9884 | | 0.3349 | 9.0 | 18189 | 0.3448 | 0.9857 | 0.9829 | 0.9843 | 0.9884 | | 0.3325 | 10.0 | 20210 | 0.3443 | 0.9864 | 0.9822 | 0.9843 | 0.9884 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-4
anas-awadalla
2022-10-04T21:45:46Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T21:38:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-0
anas-awadalla
2022-10-04T21:27:02Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T20:39:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-16-finetuned-squad-seq2seq-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
tner/deberta-v3-large-btc
tner
2022-10-04T20:45:22Z
108
2
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/btc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-04T20:43:45Z
--- datasets: - tner/btc metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-btc results: - task: name: Token Classification type: token-classification dataset: name: tner/btc type: tner/btc args: tner/btc metrics: - name: F1 type: f1 value: 0.8399238265934805 - name: Precision type: precision value: 0.8237749945067018 - name: Recall type: recall value: 0.8567184643510055 - name: F1 (macro) type: f1_macro value: 0.7921150390682584 - name: Precision (macro) type: precision_macro value: 0.7766126681668878 - name: Recall (macro) type: recall_macro value: 0.8103758198218992 - name: F1 (entity span) type: f1_entity_span value: 0.9134087599417496 - name: Precision (entity span) type: precision_entity_span value: 0.8958470665787739 - name: Recall (entity span) type: recall_entity_span value: 0.931672760511883 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-btc This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/btc](https://huggingface.co/datasets/tner/btc) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8399238265934805 - Precision (micro): 0.8237749945067018 - Recall (micro): 0.8567184643510055 - F1 (macro): 0.7921150390682584 - Precision (macro): 0.7766126681668878 - Recall (macro): 0.8103758198218992 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7503949447077408 - organization: 0.7042372881355932 - person: 0.9217128843614413 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8283024935970381, 0.8507400882379221] - 95%: [0.8260021524132041, 0.8526162579659953] - F1 (macro): - 90%: [0.8283024935970381, 0.8507400882379221] - 95%: [0.8260021524132041, 0.8526162579659953] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-btc") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/btc'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 8 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
NimaBoscarino/dog_food
NimaBoscarino
2022-10-04T19:07:06Z
198
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:lewtun/dog_food", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-03T19:12:40Z
--- tags: - autotrain - vision - image-classification datasets: - lewtun/dog_food widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace library_name: transformers co2_eq_emissions: emissions: 6.799888815236616 eval_info: col_mapping: test model-index: - name: NimaBoscarino/dog_food results: - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 1.0 verified: true - name: Precision Macro type: precision value: 1.0 verified: true - name: Precision Micro type: precision value: 1.0 verified: true - name: Precision Weighted type: precision value: 1.0 verified: true - name: Recall Macro type: recall value: 1.0 verified: true - name: Recall Micro type: recall value: 1.0 verified: true - name: Recall Weighted type: recall value: 1.0 verified: true - name: F1 Macro type: f1 value: 1.0 verified: true - name: F1 Micro type: f1 value: 1.0 verified: true - name: F1 Weighted type: f1 value: 1.0 verified: true - name: loss type: loss value: 1.848173087637406e-05 verified: true --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1647758504 - CO2 Emissions (in grams): 6.7999 ## Validation Metrics - Loss: 0.001 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000
minjibi/aa
minjibi
2022-10-04T18:57:45Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-04T18:33:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aa This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 15.9757 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 14.5628 | 3.33 | 20 | 16.1808 | 1.0 | | 14.5379 | 6.67 | 40 | 16.1005 | 1.0 | | 14.3379 | 10.0 | 60 | 15.9757 | 1.0 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0+cu102 - Datasets 1.4.1 - Tokenizers 0.12.1
lilykaw/finetuning-sentiment-BERT-model-samples
lilykaw
2022-10-04T18:23:44Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-03T18:21:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-BERT-model-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8627450980392156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-BERT-model-samples This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7999 - Accuracy: 0.86 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
fchollet/stable-diffusion
fchollet
2022-10-04T18:16:38Z
0
15
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-09-18T21:08:48Z
--- license: creativeml-openrail-m --- Ported from weights hosted on original model repo: https://huggingface.co/CompVis/stable-diffusion-v1-4
Ktolodozo/Beau
Ktolodozo
2022-10-04T17:10:41Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-10-04T17:07:13Z
--- license: openrail --- pip install --upgrade diffusers transformers scipy huggingface-cli login import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5).images[0] image.save("astronaut_rides_horse.png") import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=True) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5).images[0] image.save("astronaut_rides_horse.png") from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-4" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5).images[0] image.save("astronaut_rides_horse.png")
scite/roberta-base-squad2-nq-bioasq
scite
2022-10-04T16:10:49Z
124
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-04T14:49:13Z
--- license: apache-2.0 tags: - question-answering - generated_from_trainer model-index: - name: roberta-base-squad2-nq-bioasq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-nq-bioasq ## Model description This model is a fine-tuned version of [nlpconnect/roberta-base-squad2-nq](https://huggingface.co/nlpconnect/roberta-base-squad2-nq) on the BioASQ 10b dataset. ## Intended uses & limitations Cross-domain question answering! ## Training and evaluation data Training: BioASQ 10B with SQUAD sampled evenly to match the same samples as BioASQ 10B Eval: BioASQ 9B Eval with SQUAD Eval sampled evenly to match the same samples as BioASQ 9B Eval ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results Went from untrained exact match: 60.9% (f1 71.8%) to exact match: 95.2% (96.6% f1) on BioASQ 9B held out training set. Scores on SQUAD+BioASQ remained stable at exact match: 72.5% (f1 81.4%) to 88.5% (f1 93.3%). ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
SzegedAI/hubertusz-tiny-wiki-seq128
SzegedAI
2022-10-04T15:45:31Z
56
0
transformers
[ "transformers", "pytorch", "tf", "bert", "pretraining", "generated_from_keras_callback", "hubert", "hu", "dataset:wikipedia", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-09-22T17:53:00Z
--- language: hu license: apache-2.0 datasets: - wikipedia tags: - generated_from_keras_callback - hubert model-index: - name: hubert-tiny-wiki-seq128 results: [] --- # hubert-tiny-wiki-seq128 Fully trained model with the second phase of training is available here: [SzegedAI/hubert-tiny-wiki](https://huggingface.co/SzegedAI/hubert-tiny-wiki) This model was trained from scratch on the Wikipedia subset of Hungarian Webcorpus 2.0 with MLM and SOP tasks. ### Pre-Training Parameters: - Training steps: 500.000 - Sequence length: 128 (the model is capable for 512) - Batch size: 1024 ### Framework versions - Transformers 4.21.3 - TensorFlow 2.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1 # Acknowledgement [![Artificial Intelligence - National Laboratory - Hungary](https://milab.tk.hu/uploads/images/milab_logo_en.png)](https://mi.nemzetilabor.hu/)
huggingtweets/breedlove22
huggingtweets
2022-10-04T15:33:15Z
123
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-04T15:31:13Z
--- language: en thumbnail: http://www.huggingtweets.com/breedlove22/1664897591383/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1530319125985169408/SIC_0P3x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Robert ₿reedlove</div> <div style="text-align: center; font-size: 14px;">@breedlove22</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Robert ₿reedlove. | Data | Robert ₿reedlove | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 600 | | Short tweets | 535 | | Tweets kept | 2105 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ip9pkdj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @breedlove22's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36ec6xyk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36ec6xyk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/breedlove22') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mindflayer/south-indian-foods
mindflayer
2022-10-04T15:01:07Z
215
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-04T15:00:53Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: south-indian-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6666666865348816 --- # south-indian-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Idli ![Idli](images/Idli.jpg) #### chutney ![chutney](images/chutney.jpg) #### dosa ![dosa](images/dosa.jpg) #### sambar ![sambar](images/sambar.jpg) #### vada ![vada](images/vada.jpg)
GItaf/bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch15
GItaf
2022-10-04T15:00:20Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-04T09:36:21Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-bert-base-uncased-mc-weight0.25-epoch15 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1343 - Cls loss: 3.0991 - Lm loss: 4.3588 - Cls Accuracy: 0.6092 - Cls F1: 0.6066 - Cls Precision: 0.6082 - Cls Recall: 0.6092 - Perplexity: 78.17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.3372 | 1.0 | 3470 | 4.9249 | 1.5682 | 4.5325 | 0.5712 | 0.5567 | 0.5751 | 0.5712 | 92.99 | | 4.8287 | 2.0 | 6940 | 4.7830 | 1.3889 | 4.4355 | 0.6231 | 0.6169 | 0.6448 | 0.6231 | 84.39 | | 4.6295 | 3.0 | 10410 | 4.7585 | 1.4752 | 4.3894 | 0.6248 | 0.6160 | 0.6340 | 0.6248 | 80.59 | | 4.4704 | 4.0 | 13880 | 4.7707 | 1.6098 | 4.3678 | 0.6121 | 0.6079 | 0.6156 | 0.6121 | 78.87 | | 4.3364 | 5.0 | 17350 | 4.8008 | 1.8102 | 4.3478 | 0.6086 | 0.6068 | 0.6105 | 0.6086 | 77.31 | | 4.2245 | 6.0 | 20820 | 4.8353 | 1.9486 | 4.3477 | 0.6121 | 0.6075 | 0.6131 | 0.6121 | 77.30 | | 4.1289 | 7.0 | 24290 | 4.8883 | 2.1912 | 4.3400 | 0.6110 | 0.6076 | 0.6182 | 0.6110 | 76.71 | | 4.0485 | 8.0 | 27760 | 4.9394 | 2.4203 | 4.3337 | 0.5914 | 0.5862 | 0.6016 | 0.5914 | 76.23 | | 3.9826 | 9.0 | 31230 | 5.0026 | 2.6664 | 4.3354 | 0.6006 | 0.5936 | 0.6035 | 0.6006 | 76.35 | | 3.9277 | 10.0 | 34700 | 4.9902 | 2.5992 | 4.3398 | 0.6035 | 0.6032 | 0.6088 | 0.6035 | 76.69 | | 3.8794 | 11.0 | 38170 | 5.0698 | 2.9006 | 4.3441 | 0.6156 | 0.6127 | 0.6213 | 0.6156 | 77.02 | | 3.8428 | 12.0 | 41640 | 5.0956 | 2.9795 | 4.3501 | 0.6127 | 0.6110 | 0.6184 | 0.6127 | 77.49 | | 3.8129 | 13.0 | 45110 | 5.1223 | 3.0646 | 4.3555 | 0.6138 | 0.6099 | 0.6172 | 0.6138 | 77.91 | | 3.7891 | 14.0 | 48580 | 5.1242 | 3.0809 | 4.3534 | 0.6058 | 0.6045 | 0.6071 | 0.6058 | 77.74 | | 3.7744 | 15.0 | 52050 | 5.1343 | 3.0991 | 4.3588 | 0.6092 | 0.6066 | 0.6082 | 0.6092 | 78.17 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
esc-benchmark/conformer-rnnt-switchboard
esc-benchmark
2022-10-04T14:47:09Z
2
0
nemo
[ "nemo", "esc", "en", "dataset:switchboard", "region:us" ]
null
2022-10-04T14:46:53Z
--- language: - en tags: - esc datasets: - switchboard --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc-benchmark/esc-datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="switchboard" \ --output_dir="./" \ --run_name="conformer-rnnt-switchboard" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-benchmark/conformer-rnnt-earnings22
esc-benchmark
2022-10-04T14:42:49Z
5
0
nemo
[ "nemo", "esc", "en", "dataset:earnings22", "region:us" ]
null
2022-10-04T14:42:33Z
--- language: - en tags: - esc datasets: - earnings22 --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc/esc-datsets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="earnings22" \ --output_dir="./" \ --run_name="conformer-rnnt-earnings22" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-benchmark/conformer-rnnt-spgispeech
esc-benchmark
2022-10-04T14:40:41Z
4
0
nemo
[ "nemo", "esc", "en", "dataset:spgispeech", "region:us" ]
null
2022-10-04T14:40:26Z
--- language: - en tags: - esc datasets: - spgispeech --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc-benchmark/esc-datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="spgispeech" \ --output_dir="./" \ --run_name="conformer-rnnt-spgispeech" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
esc-benchmark/conformer-rnnt-gigaspeech
esc-benchmark
2022-10-04T14:38:31Z
5
0
nemo
[ "nemo", "esc", "en", "dataset:gigaspeech", "region:us" ]
null
2022-10-04T14:38:16Z
--- language: - en tags: - esc datasets: - gigaspeech --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc-benchmark/esc-datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --num_train_epochs="0.88" \ --dataset_config_name="gigaspeech" \ --output_dir="./" \ --run_name="conformer-rnnt-gigaspeech" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
YassineB/test_Resnet
YassineB
2022-10-04T14:34:56Z
41
0
transformers
[ "transformers", "resnet", "image-classification", "vision", "dataset:imagenet-1k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-04T14:10:44Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k ---
esc-benchmark/conformer-rnnt-librispeech
esc-benchmark
2022-10-04T14:29:51Z
4
0
nemo
[ "nemo", "esc", "en", "dataset:librispeech", "region:us" ]
null
2022-10-04T14:29:35Z
--- language: - en tags: - esc datasets: - librispeech --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc-benchmark/esc-datasets" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --dataset_config_name="librispeech" \ --output_dir="./" \ --run_name="conformer-rnnt-librispeech" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```
helliun/conversational-qgen
helliun
2022-10-04T14:22:13Z
110
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-02T17:58:33Z
"Question generation model conversational capabilities"
esc-benchmark/whisper-aed-ami
esc-benchmark
2022-10-04T14:17:38Z
0
0
null
[ "esc", "en", "dataset:ami", "region:us" ]
null
2022-10-04T14:17:20Z
--- language: - en tags: - esc datasets: - ami --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esc-benchmark/esc-datasets" \ --dataset_config_name="ami" \ --max_steps="2500" \ --output_dir="./" \ --run_name="whisper-ami" \ --dropout_rate="0.1" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="500" \ --save_strategy="steps" \ --save_steps="500" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
esc-benchmark/whisper-aed-voxpopuli
esc-benchmark
2022-10-04T14:01:05Z
0
0
null
[ "esc", "en", "dataset:voxpopuli", "region:us" ]
null
2022-10-04T14:00:48Z
--- language: - en tags: - esc datasets: - voxpopuli --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ --model_name_or_path="medium.en" \ --dataset_name="esc-benchmark/esc-datasets" \ --dataset_config_name="voxpopuli" \ --max_steps="5000" \ --output_dir="./" \ --run_name="whisper-voxpopuli" \ --wandb_project="whisper" \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --report_to="wandb" \ --preprocessing_num_workers="16" \ --evaluation_strategy="steps" \ --eval_steps="500" \ --save_strategy="steps" \ --save_steps="500" \ --generation_max_length="224" \ --length_column_name="input_lengths" \ --gradient_checkpointing \ --group_by_length \ --freeze_encoder \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --predict_with_generate \ --use_auth_token ```
melll-uff/bertweetbr
melll-uff
2022-10-04T14:00:33Z
379
10
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "pt", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-29T21:10:30Z
--- language: pt license: apache-2.0 --- # <a name="introduction"></a> BERTweet.BR: A Pre-Trained Language Model for Tweets in Portuguese Having the same architecture of [BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet) we trained our model from scratch following [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta) pre-training procedure on a corpus of approximately 9GB containing 100M Portuguese Tweets. ## Usage ### Normalized Inputs ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained('melll-uff/bertweetbr') tokenizer = AutoTokenizer.from_pretrained('melll-uff/bertweetbr', normalization=False) # INPUT TWEETS ALREADY NORMALIZED! inputs = [ "Procuro um amor , que seja bom pra mim ... vou procurar , eu vou até o fim :nota_musical:", "Que jogo ontem @USER :mãos_juntas:", "Demojizer para Python é :polegar_para_cima: e está disponível em HTTPURL"] encoded_inputs = tokenizer(inputs, return_tensors="pt", padding=True) with torch.no_grad(): last_hidden_states = model(**encoded_inputs) # CLS Token of last hidden states. Shape: (number of input sentences, hidden sizeof the model) last_hidden_states[0][:,0,:] tensor([[-0.1430, -0.1325, 0.1595, ..., -0.0802, -0.0153, -0.1358], [-0.0108, 0.1415, 0.0695, ..., 0.1420, 0.1153, -0.0176], [-0.1854, 0.1866, 0.3163, ..., -0.2117, 0.2123, -0.1907]]) ``` ### Normalize raw input Tweets ```python from emoji import demojize import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained('melll-uff/bertweetbr') tokenizer = AutoTokenizer.from_pretrained('melll-uff/bertweetbr', normalization=True) inputs = [ "Procuro um amor , que seja bom pra mim ... vou procurar , eu vou até o fim 🎵", "Que jogo ontem @cristiano 🙏", "Demojizer para Python é 👍 e está disponível em https://pypi.org/project/emoji/"] tokenizer.demojizer = lambda x: demojize(x, language='pt') [tokenizer.normalizeTweet(s) for s in inputs] # Tokenizer first normalizes tweet sentences ['Procuro um amor , que seja bom pra mim ... vou procurar , eu vou até o fim :nota_musical:', 'Que jogo ontem @USER :mãos_juntas:', 'Demojizer para Python é :polegar_para_cima: e está disponível em HTTPURL'] encoded_inputs = tokenizer(inputs, return_tensors="pt", padding=True) with torch.no_grad(): last_hidden_states = model(**encoded_inputs) # CLS Token of last hidden states. Shape: (number of input sentences, hidden sizeof the model) last_hidden_states[0][:,0,:] tensor([[-0.1430, -0.1325, 0.1595, ..., -0.0802, -0.0153, -0.1358], [-0.0108, 0.1415, 0.0695, ..., 0.1420, 0.1153, -0.0176], [-0.1854, 0.1866, 0.3163, ..., -0.2117, 0.2123, -0.1907]]) ``` ### Mask Filling with Pipeline ```python from transformers import pipeline model_name = 'melll-uff/bertweetbr' tokenizer = AutoTokenizer.from_pretrained('melll-uff/bertweetbr', normalization=False) filler_mask = pipeline("fill-mask", model=model_name, tokenizer=tokenizer) filler_mask("Rio é a <mask> cidade do Brasil.", top_k=5) # Output [{'sequence': 'Rio é a melhor cidade do Brasil.', 'score': 0.9871652126312256, 'token': 120, 'token_str': 'm e l h o r'}, {'sequence': 'Rio é a pior cidade do Brasil.', 'score': 0.005050931591540575, 'token': 316, 'token_str': 'p i o r'}, {'sequence': 'Rio é a maior cidade do Brasil.', 'score': 0.004420778248459101, 'token': 389, 'token_str': 'm a i o r'}, {'sequence': 'Rio é a minha cidade do Brasil.', 'score': 0.0021856199018657207, 'token': 38, 'token_str': 'm i n h a'}, {'sequence': 'Rio é a segunda cidade do Brasil.', 'score': 0.0002110043278662488, 'token': 667, 'token_str': 's e g u n d a'}] ```