modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
Team-Atom/smvlb_record_blue_pick_64_40000
Team-Atom
2025-08-29T03:08:26Z
0
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:Team-Atom/blue_pick", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-29T03:08:10Z
--- base_model: lerobot/smolvla_base datasets: Team-Atom/blue_pick library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - smolvla - robotics --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Sonia280825/SoniaSkewes-Replicate
Sonia280825
2025-08-29T03:07:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-28T06:52:03Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SONIA --- # Soniaskewes Replicate <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SONIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SONIA", "lora_weights": "https://huggingface.co/Sonia280825/SoniaSkewes-Replicate/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Sonia280825/SoniaSkewes-Replicate', weight_name='lora.safetensors') image = pipeline('SONIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2024 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Sonia280825/SoniaSkewes-Replicate/discussions) to add images that show off what you’ve made with this LoRA.
ambrosfitz/roberta-base-19th-century-sentiment-multi-label
ambrosfitz
2025-08-29T03:05:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:ambrosfitz/roberta-base-19th-century-v2", "base_model:finetune:ambrosfitz/roberta-base-19th-century-v2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-29T03:04:00Z
--- library_name: transformers license: mit base_model: ambrosfitz/roberta-base-19th-century-v2 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-base-19th-century-sentiment-multi-label results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-19th-century-sentiment-multi-label This model is a fine-tuned version of [ambrosfitz/roberta-base-19th-century-v2](https://huggingface.co/ambrosfitz/roberta-base-19th-century-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5874 - F1: 0.2593 - Roc Auc: 0.5468 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 7 | 0.6639 | 0.3761 | 0.5939 | 0.0 | | No log | 2.0 | 14 | 0.6161 | 0.2593 | 0.5468 | 0.0 | | No log | 3.0 | 21 | 0.5961 | 0.2593 | 0.5468 | 0.0 | | No log | 4.0 | 28 | 0.5896 | 0.2593 | 0.5468 | 0.0 | | No log | 5.0 | 35 | 0.5874 | 0.2593 | 0.5468 | 0.0 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
losaferto22/blockassist-bc-mute_shy_clam_1756436233
losaferto22
2025-08-29T02:57:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute shy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:57:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute shy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
internlm/Intern-S1
internlm
2025-08-29T02:56:15Z
61,482
234
transformers
[ "transformers", "safetensors", "interns1", "text-generation", "image-text-to-text", "conversational", "custom_code", "arxiv:2508.15763", "license:apache-2.0", "autotrain_compatible", "region:us" ]
image-text-to-text
2025-07-24T06:05:13Z
--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers --- ## Intern-S1 <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/642695e5274e7ad464c8a5ba/E43cgEXBRWjVJlU_-hdh6.png" /> <div>&nbsp;</div> [💻Github Repo](https://github.com/InternLM/Intern-S1) • [🤗Model Collections](https://huggingface.co/collections/internlm/intern-s1-6882e325e8ac1c58ba108aa5) • [📜Technical Report](https://arxiv.org/abs/2508.15763) • [💬Online Chat](https://chat.intern-ai.org.cn/) </div> <p align="center"> 👋 join us on <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/intern-s1.jpg" target="_blank">WeChat</a> </p> ## Introduction We introduce **Intern-S1**, our **most advanced open-source multimodal reasoning model** to date. Intern-S1 combines **strong general-task capabilities with state-of-the-art performance on a wide range of scientific tasks**, rivaling leading closed-source commercial models. Built upon a 235B MoE language model (Qwen3) and a 6B Vision encoder (InternViT), Intern-S1 has been further pretrained on **5 trillion tokens** of multimodal data, including over **2.5 trillion scientific-domain tokens**. This enables the model to retain strong general capabilities while excelling in specialized scientific domains such as **interpreting chemical structures, understanding protein sequences, and planning compound synthesis routes**, making Intern-S1 to be a capable research assistant for real-world scientific applications. Features - Strong performance across language and vision reasoning benchmarks, especially scientific tasks. - Continuously pretrained on a massive 5T token dataset, with over 50% specialized scientific data, embedding deep domain expertise. - Dynamic tokenizer enables native understanding of molecular formulas, protein sequences, and seismic signals. ## Performance We evaluate the Intern-S1 on various benchmarks including general datasets and scientifc datasets. We report the performance comparsion with the recent VLMs and LLMs below. <table> <thead> <tr> <th rowspan="2">Benchmarks</th> <th colspan="2">Intern-S1</th> <th>InternVL3-78B</th> <th>Qwen2.5-VL-72B</th> <th>DS-R1-0528</th> <th>Qwen3-235B-A22B</th> <th>Kimi-K2-Instruct</th> <th>Gemini-2.5 Pro</th> <th>o3</th> <th>Grok-4</th> </tr> </thead> <tbody> <tr><td>MMLU-Pro</td><td colspan="2">83.5 ✅</td><td>73.0</td><td>72.1</td><td>83.4</td><td>82.2</td><td>82.7</td><td>86.0</td><td>85.0</td><td>85.9</td></tr> <tr><td>MMMU</td><td colspan="2">77.7 ✅</td><td>72.2</td><td>70.2</td><td>-</td><td>-</td><td>-</td><td>81.9</td><td>80.8</td><td>77.9</td></tr> <tr><td>GPQA</td><td colspan="2">77.3</td><td>49.9</td><td>49.0</td><td>80.6</td><td>71.1</td><td>77.8</td><td>83.8</td><td>83.3</td><td>87.5</td></tr> <tr><td>MMStar</td><td colspan="2">74.9 ✅</td><td>72.5</td><td>70.8</td><td>-</td><td>-</td><td>-</td><td>79.3</td><td>75.1</td><td>69.6</td></tr> <tr><td>MathVista</td><td colspan="2">81.5 👑</td><td>79.0</td><td>74.8</td><td>-</td><td>-</td><td>-</td><td>80.3</td><td>77.5</td><td>72.5</td></tr> <tr><td>AIME2025</td><td colspan="2">86.0</td><td>10.7</td><td>10.9</td><td>87.5</td><td>81.5</td><td>51.4</td><td>83.0</td><td>88.9</td><td>91.7</td></tr> <tr><td>MathVision</td><td colspan="2">62.5 ✅</td><td>43.1</td><td>38.1</td><td>-</td><td>-</td><td>-</td><td>73.0</td><td>67.7</td><td>67.3</td></tr> <tr><td>IFEval</td><td colspan="2">86.7</td><td>75.6</td><td>83.9</td><td>79.7</td><td>85.0</td><td>90.2</td><td>91.5</td><td>92.2</td><td>92.8</td></tr> <tr><td>SFE</td><td colspan="2">44.3 👑</td><td>36.2</td><td>30.5</td><td>-</td><td>-</td><td>-</td><td>43.0</td><td>37.7</td><td>31.2</td></tr> <tr><td>Physics</td><td colspan="2">44.0 ✅</td><td>23.1</td><td>15.7</td><td>-</td><td>-</td><td>-</td><td>40.0</td><td>47.9</td><td>42.8</td></tr> <tr><td>SmolInstruct</td><td colspan="2">51.0 👑</td><td>19.4</td><td>21.0</td><td>30.7</td><td>28.7</td><td>48.1</td><td>40.4</td><td>43.9</td><td>47.3</td></tr> <tr><td>ChemBench</td><td colspan="2">83.4 👑</td><td>61.3</td><td>61.6</td><td>75.6</td><td>75.8</td><td>75.3</td><td>82.8</td><td>81.6</td><td>83.3</td></tr> <tr><td>MatBench</td><td colspan="2">75.0 👑</td><td>49.3</td><td>51.5</td><td>57.7</td><td>52.1</td><td>61.7</td><td>61.7</td><td>61.6</td><td>67.9</td></tr> <tr><td>MicroVQA</td><td colspan="2">63.9 👑</td><td>59.1</td><td>53.0</td><td>-</td><td>-</td><td>-</td><td>63.1</td><td>58.3</td><td>59.5</td></tr> <tr><td>ProteinLMBench</td><td colspan="2">63.1</td><td>61.6</td><td>61.0</td><td>61.4</td><td>59.8</td><td>66.7</td><td>62.9</td><td>67.7</td><td>66.2</td></tr> <tr><td>MSEarthMCQ</td><td colspan="2">65.7 👑</td><td>57.2</td><td>37.6</td><td>-</td><td>-</td><td>-</td><td>59.9</td><td>61.0</td><td>58.0</td></tr> <tr><td>XLRS-Bench</td><td colspan="2">55.0 👑</td><td>49.3</td><td>50.9</td><td>-</td><td>-</td><td>-</td><td>45.2</td><td>43.6</td><td>45.4</td></tr> </tbody> </table> > **Note**: ✅ means the best performance among open-sourced models, 👑 indicates the best performance among all models. We use the [OpenCompass](https://github.com/open-compass/OpenCompass/) and [VLMEvalkit](https://github.com/open-compass/vlmevalkit) to evaluate all models. Please refer to [this page](https://opencompass.readthedocs.io/en/latest/user_guides/interns1.html) to quickly start the text-only evaluation task. ## Quick Start ### Sampling Parameters We recommend using the following hyperparameters to ensure better results ```python top_p = 1.0 top_k = 50 min_p = 0.0 temperature = 0.7 ``` ### Transformers The following provides demo code illustrating how to generate based on text and multimodal inputs. > **Please use transformers>=4.53.0 to ensure the model works normally.** #### Text input ```python from transformers import AutoProcessor, AutoModelForCausalLM import torch model_name = "internlm/Intern-S1" processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) messages = [ { "role": "user", "content": [ {"type": "text", "text": "tell me about an interesting physical phenomenon."}, ], } ] inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16) generate_ids = model.generate(**inputs, max_new_tokens=32768) decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True) print(decoded_output) ``` #### Image input ```python from transformers import AutoProcessor, AutoModelForCausalLM import torch model_name = "internlm/Intern-S1" processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) messages = [ { "role": "user", "content": [ {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}, {"type": "text", "text": "Please describe the image explicitly."}, ], } ] inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16) generate_ids = model.generate(**inputs, max_new_tokens=32768) decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True) print(decoded_output) ``` #### Video input Please ensure that the decord video decoding library is installed via `pip install decord`. ```python from transformers import AutoProcessor, AutoModelForCausalLM import torch model_name = "internlm/Intern-S1" processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) messages = [ { "role": "user", "content": [ { "type": "video", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4", }, {"type": "text", "text": "What type of shot is the man performing?"}, ], } ] inputs = processor.apply_chat_template( messages, return_tensors="pt", add_generation_prompt=True, video_load_backend="decord", tokenize=True, return_dict=True, ).to(model.device, dtype=torch.float16) generate_ids = model.generate(**inputs, max_new_tokens=32768) decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True) print(decoded_output) ``` ### Serving The minimum hardware requirements for deploying Intern-S1 series models are: | Model | A100(GPUs) | H800(GPUs) | H100(GPUs) | H200(GPUs) | | :---------------------------------------------------------------------: | :--------: | :--------: | :--------: | :--------: | | [internlm/Intern-S1](https://huggingface.co/internlm/Intern-S1) | 8 | 8 | 8 | 4 | | [internlm/Intern-S1-FP8](https://huggingface.co/internlm/Intern-S1-FP8) | - | 4 | 4 | 2 | You can utilize one of the following LLM inference frameworks to create an OpenAI compatible server: #### [lmdeploy (>=0.9.2)](https://github.com/InternLM/lmdeploy) ```bash lmdeploy serve api_server internlm/Intern-S1 --reasoning-parser intern-s1 --tool-call-parser intern-s1 --tp 8 ``` #### [vllm (>=0.10.1)](https://github.com/vllm-project/vllm) ```bash vllm serve internlm/Intern-S1 --tensor-parallel-size 8 --trust-remote-code ``` #### [sglang](https://github.com/sgl-project/sglang) ```bash python3 -m sglang.launch_server \ --model-path internlm/Intern-S1 \ --trust-remote-code \ --tp 8 \ --grammar-backend none ``` #### ollama for local deployment: ```bash # install ollama curl -fsSL https://ollama.com/install.sh | sh # fetch model ollama pull internlm/interns1 # run model ollama run internlm/interns1 # then use openai client to call on http://localhost:11434/v1 ``` ## Advanced Usage ### Tool Calling Many Large Language Models (LLMs) now feature **Tool Calling**, a powerful capability that allows them to extend their functionality by interacting with external tools and APIs. This enables models to perform tasks like fetching up-to-the-minute information, running code, or calling functions within other applications. A key advantage for developers is that a growing number of open-source LLMs are designed to be compatible with the OpenAI API. This means you can leverage the same familiar syntax and structure from the OpenAI library to implement tool calling with these open-source models. As a result, the code demonstrated in this tutorial is versatile—it works not just with OpenAI models, but with any model that follows the same interface standard. To illustrate how this works, let's dive into a practical code example that uses tool calling to get the latest weather forecast (based on lmdeploy api server). ```python from openai import OpenAI import json def get_current_temperature(location: str, unit: str = "celsius"): """Get current temperature at a location. Args: location: The location to get the temperature for, in the format "City, State, Country". unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"]) Returns: the temperature, the location, and the unit in a dict """ return { "temperature": 26.1, "location": location, "unit": unit, } def get_temperature_date(location: str, date: str, unit: str = "celsius"): """Get temperature at a location and date. Args: location: The location to get the temperature for, in the format "City, State, Country". date: The date to get the temperature for, in the format "Year-Month-Day". unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"]) Returns: the temperature, the location, the date and the unit in a dict """ return { "temperature": 25.9, "location": location, "date": date, "unit": unit, } def get_function_by_name(name): if name == "get_current_temperature": return get_current_temperature if name == "get_temperature_date": return get_temperature_date tools = [{ 'type': 'function', 'function': { 'name': 'get_current_temperature', 'description': 'Get current temperature at a location.', 'parameters': { 'type': 'object', 'properties': { 'location': { 'type': 'string', 'description': 'The location to get the temperature for, in the format \'City, State, Country\'.' }, 'unit': { 'type': 'string', 'enum': [ 'celsius', 'fahrenheit' ], 'description': 'The unit to return the temperature in. Defaults to \'celsius\'.' } }, 'required': [ 'location' ] } } }, { 'type': 'function', 'function': { 'name': 'get_temperature_date', 'description': 'Get temperature at a location and date.', 'parameters': { 'type': 'object', 'properties': { 'location': { 'type': 'string', 'description': 'The location to get the temperature for, in the format \'City, State, Country\'.' }, 'date': { 'type': 'string', 'description': 'The date to get the temperature for, in the format \'Year-Month-Day\'.' }, 'unit': { 'type': 'string', 'enum': [ 'celsius', 'fahrenheit' ], 'description': 'The unit to return the temperature in. Defaults to \'celsius\'.' } }, 'required': [ 'location', 'date' ] } } }] messages = [ {'role': 'user', 'content': 'Today is 2024-11-14, What\'s the temperature in San Francisco now? How about tomorrow?'} ] openai_api_key = "EMPTY" openai_api_base = "http://0.0.0.0:23333/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model_name = client.models.list().data[0].id response = client.chat.completions.create( model=model_name, messages=messages, max_tokens=32768, temperature=0.8, top_p=0.8, stream=False, extra_body=dict(spaces_between_special_tokens=False, enable_thinking=False), tools=tools) print(response.choices[0].message) messages.append(response.choices[0].message) for tool_call in response.choices[0].message.tool_calls: tool_call_args = json.loads(tool_call.function.arguments) tool_call_result = get_function_by_name(tool_call.function.name)(**tool_call_args) tool_call_result = json.dumps(tool_call_result, ensure_ascii=False) messages.append({ 'role': 'tool', 'name': tool_call.function.name, 'content': tool_call_result, 'tool_call_id': tool_call.id }) response = client.chat.completions.create( model=model_name, messages=messages, temperature=0.8, top_p=0.8, stream=False, extra_body=dict(spaces_between_special_tokens=False, enable_thinking=False), tools=tools) print(response.choices[0].message.content) ``` ### Switching Between Thinking and Non-Thinking Modes Intern-S1 enables thinking mode by default, enhancing the model's reasoning capabilities to generate higher-quality responses. This feature can be disabled by setting `enable_thinking=False` in `tokenizer.apply_chat_template` ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # think mode indicator ) ``` With LMDeploy serving Intern-S1 models, you can dynamically control the thinking mode by adjusting the `enable_thinking` parameter in your requests. ```python from openai import OpenAI import json messages = [ { 'role': 'user', 'content': 'who are you' }, { 'role': 'assistant', 'content': 'I am an AI' }, { 'role': 'user', 'content': 'AGI is?' }] openai_api_key = "EMPTY" openai_api_base = "http://0.0.0.0:23333/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model_name = client.models.list().data[0].id response = client.chat.completions.create( model=model_name, messages=messages, temperature=0.7, top_p=0.8, max_tokens=2048, extra_body={ "enable_thinking": False, } ) print(json.dumps(response.model_dump(), indent=2, ensure_ascii=False)) ``` For vllm and sglang users, configure this through, ```python extra_body={ "chat_template_kwargs": {"enable_thinking": False} } ``` ## Citation If you find this work useful, feel free to give us a cite. ``` @misc{bai2025interns1scientificmultimodalfoundation, title={Intern-S1: A Scientific Multimodal Foundation Model}, author={Lei Bai and Zhongrui Cai and Maosong Cao and Weihan Cao and Chiyu Chen and Haojiong Chen and Kai Chen and Pengcheng Chen and Ying Chen and Yongkang Chen and Yu Cheng and Yu Cheng and Pei Chu and Tao Chu and Erfei Cui and Ganqu Cui and Long Cui and Ziyun Cui and Nianchen Deng and Ning Ding and Nanqin Dong and Peijie Dong and Shihan Dou and Sinan Du and Haodong Duan and Caihua Fan and Ben Gao and Changjiang Gao and Jianfei Gao and Songyang Gao and Yang Gao and Zhangwei Gao and Jiaye Ge and Qiming Ge and Lixin Gu and Yuzhe Gu and Aijia Guo and Qipeng Guo and Xu Guo and Conghui He and Junjun He and Yili Hong and Siyuan Hou and Caiyu Hu and Hanglei Hu and Jucheng Hu and Ming Hu and Zhouqi Hua and Haian Huang and Junhao Huang and Xu Huang and Zixian Huang and Zhe Jiang and Lingkai Kong and Linyang Li and Peiji Li and Pengze Li and Shuaibin Li and Tianbin Li and Wei Li and Yuqiang Li and Dahua Lin and Junyao Lin and Tianyi Lin and Zhishan Lin and Hongwei Liu and Jiangning Liu and Jiyao Liu and Junnan Liu and Kai Liu and Kaiwen Liu and Kuikun Liu and Shichun Liu and Shudong Liu and Wei Liu and Xinyao Liu and Yuhong Liu and Zhan Liu and Yinquan Lu and Haijun Lv and Hongxia Lv and Huijie Lv and Qidang Lv and Ying Lv and Chengqi Lyu and Chenglong Ma and Jianpeng Ma and Ren Ma and Runmin Ma and Runyuan Ma and Xinzhu Ma and Yichuan Ma and Zihan Ma and Sixuan Mi and Junzhi Ning and Wenchang Ning and Xinle Pang and Jiahui Peng and Runyu Peng and Yu Qiao and Jiantao Qiu and Xiaoye Qu and Yuan Qu and Yuchen Ren and Fukai Shang and Wenqi Shao and Junhao Shen and Shuaike Shen and Chunfeng Song and Demin Song and Diping Song and Chenlin Su and Weijie Su and Weigao Sun and Yu Sun and Qian Tan and Cheng Tang and Huanze Tang and Kexian Tang and Shixiang Tang and Jian Tong and Aoran Wang and Bin Wang and Dong Wang and Lintao Wang and Rui Wang and Weiyun Wang and Wenhai Wang and Yi Wang and Ziyi Wang and Ling-I Wu and Wen Wu and Yue Wu and Zijian Wu and Linchen Xiao and Shuhao Xing and Chao Xu and Huihui Xu and Jun Xu and Ruiliang Xu and Wanghan Xu and GanLin Yang and Yuming Yang and Haochen Ye and Jin Ye and Shenglong Ye and Jia Yu and Jiashuo Yu and Jing Yu and Fei Yuan and Bo Zhang and Chao Zhang and Chen Zhang and Hongjie Zhang and Jin Zhang and Qiaosheng Zhang and Qiuyinzhe Zhang and Songyang Zhang and Taolin Zhang and Wenlong Zhang and Wenwei Zhang and Yechen Zhang and Ziyang Zhang and Haiteng Zhao and Qian Zhao and Xiangyu Zhao and Xiangyu Zhao and Bowen Zhou and Dongzhan Zhou and Peiheng Zhou and Yuhao Zhou and Yunhua Zhou and Dongsheng Zhu and Lin Zhu and Yicheng Zou}, year={2025}, eprint={2508.15763}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.15763}, } ```
John6666/mol-keun-mix-deepnavy-v2-eps-sdxl
John6666
2025-08-29T02:55:51Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "furry", "anthro", "kemono", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.0", "base_model:finetune:Laxhar/noobai-XL-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-29T02:48:55Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - furry - anthro - kemono - noobai - illustrious base_model: Laxhar/noobai-XL-1.0 --- Original model is [here](https://civitai.com/models/135477?modelVersionId=2157057). This model created by [Mol_Keun](https://civitai.com/user/Mol_Keun).
huggingtoots/TheDrummer-Behemoth-R1-123B-v2-MLX-4Bit
huggingtoots
2025-08-29T02:52:32Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "base_model:TheDrummer/Behemoth-R1-123B-v2", "base_model:quantized:TheDrummer/Behemoth-R1-123B-v2", "4-bit", "region:us" ]
null
2025-08-29T02:40:45Z
--- base_model: TheDrummer/Behemoth-R1-123B-v2 tags: - mlx --- # huggingtoots/TheDrummer-Behemoth-R1-123B-v2-MLX-4Bit The Model [huggingtoots/TheDrummer-Behemoth-R1-123B-v2-MLX-4Bit](https://huggingface.co/huggingtoots/TheDrummer-Behemoth-R1-123B-v2-MLX-4Bit) was converted to MLX format from [TheDrummer/Behemoth-R1-123B-v2](https://huggingface.co/TheDrummer/Behemoth-R1-123B-v2) using mlx-lm version **0.26.4**. ➡️ <span style="color:#800080">If you want a free consulting session, </span>[fill out this form](https://forms.gle/xM9gw1urhypC4bWS6) <span style="color:#800080">to get in touch!</span> 🤗 ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("huggingtoots/Behemoth-R1-123B-v2-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
losaferto22/blockassist-bc-mute_shy_clam_1756435842
losaferto22
2025-08-29T02:51:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute shy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:51:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute shy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1756435712
hobson123
2025-08-29T02:49:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:49:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
marvelskater/blockassist-bc-mighty_extinct_stork_1756435622
marvelskater
2025-08-29T02:47:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mighty extinct stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:47:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mighty extinct stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/illustrious-from-hades-v3-series-v3530-sdxl
John6666
2025-08-29T02:44:06Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "realistic", "semi-realistic", "photorealism", "2.5D", "facial anatomy", "emotional subtlety", "skin detail", "clothing", "hair", "prompt adherence", "shadow rendering", "lighting gradients", "depth and surface control", "anatomy", "micro detail", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-29T02:39:20Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - realistic - semi-realistic - photorealism - 2.5D - facial anatomy - emotional subtlety - skin detail - clothing - hair - prompt adherence - shadow rendering - lighting gradients - depth and surface control - anatomy - micro detail - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1653796/illustrious-from-hades?modelVersionId=2157620). This model created by [DeViLDoNia](https://civitai.com/user/DeViLDoNia).
PaddlePaddle/PP-LCNet_x0_25_textline_ori
PaddlePaddle
2025-08-29T02:43:45Z
1,185
0
PaddleOCR
[ "PaddleOCR", "OCR", "PaddlePaddle", "textline_orientation_classification", "image-to-text", "en", "zh", "license:apache-2.0", "region:us" ]
image-to-text
2025-06-12T07:35:10Z
--- license: apache-2.0 library_name: PaddleOCR language: - en - zh pipeline_tag: image-to-text tags: - OCR - PaddlePaddle - PaddleOCR - textline_orientation_classification --- # PP-LCNet_x0_25_textline_ori ## Introduction The text line orientation classification module primarily distinguishes the orientation of text lines and corrects them using post-processing. In processes such as document scanning and license/certificate photography, to capture clearer images, the capture device may be rotated, resulting in text lines in various orientations. Standard OCR pipelines cannot handle such data well. By utilizing image classification technology, the orientation of text lines can be predetermined and adjusted, thereby enhancing the accuracy of OCR processing. The key accuracy metrics are as follow: <table> <tr> <th>Model</th> <th>Recognition Avg Accuracy(%)</th> <th>Model Storage Size (M)</th> <th>Introduction</th> </tr> <tr> <td>PP-LCNet_x0_25_textline_ori</td> <td>98.85</td> <td>0.96</td> <td>Text line classification model based on PP-LCNet_x0_25, with two classes: 0 degrees and 180 degrees</td> </tr> </table> ## Quick Start ### Installation 1. PaddlePaddle Please refer to the following commands to install PaddlePaddle using pip: ```bash # for CUDA11.8 python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/ # for CUDA12.6 python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/ # for CPU python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ ``` For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick). 2. PaddleOCR Install the latest version of the PaddleOCR inference package from PyPI: ```bash python -m pip install paddleocr ``` ### Model Usage You can quickly experience the functionality with a single command: ```bash paddleocr text_line_orientation_classification \ --model_name PP-LCNet_x0_25_textline_ori \ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/m3ZmUPAnst1f9xXvTVLKS.png ``` You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine. ```python from paddleocr import TextLineOrientationClassification model = TextLineOrientationClassification(model_name="PP-LCNet_x0_25_textline_ori") output = model.predict(input="m3ZmUPAnst1f9xXvTVLKS.png", batch_size=1) for res in output: res.print() res.save_to_img(save_path="./output/") res.save_to_json(save_path="./output/res.json") ``` After running, the obtained result is as follows: ```json {'res': {'input_path': '/root/.paddlex/predict_input/m3ZmUPAnst1f9xXvTVLKS.png', 'page_index': None, 'class_ids': array([1], dtype=int32), 'scores': array([0.99671], dtype=float32), 'label_names': ['180_degree']}} ``` The visualized image is as follows: ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/0y5rEbMTzgsqP6Ptnj-Er.png) For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start). ## Links [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr) [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
liukevin666/blockassist-bc-yawning_striped_cassowary_1756435221
liukevin666
2025-08-29T02:43:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:41:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bgloh/q-FrozenLake-v1-4x4-noSlippery
bgloh
2025-08-29T02:38:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-29T02:38:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bgloh/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ilkhom199/a5d6fcda-9c8b-4d7e-8cc0-9322c13809f4
ilkhom199
2025-08-29T02:38:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T02:37:39Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hobson123/blockassist-bc-mammalian_dense_gibbon_1756434370
hobson123
2025-08-29T02:27:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:27:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thisiswooyeol/MIGC-diffusers
thisiswooyeol
2025-08-29T02:24:06Z
0
0
null
[ "text-to-image", "en", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-08-29T01:20:13Z
--- license: creativeml-openrail-m language: - en base_model: - CompVis/stable-diffusion-v1-4 - limuloo1999/MIGC pipeline_tag: text-to-image --- # About file <!-- Provide a quick summary of what the model is/does. --> Diffusers version of MIGC adapter state dict. The actual values are identical to the original checkpoint file [MICG_SD14.ckpt](https://huggingface.co/limuloo1999/MIGC) Please see the details of MIGC in the [MIGC repositiory](https://github.com/limuloo/MIGC). # How to use Please use modified pipeline class in `pipeline_stable_diffusion_migc.py` file. ```python import random import numpy as np import safetensors.torch import torch from huggingface_hub import hf_hub_download from pipeline_stable_diffusion_migc import StableDiffusionMIGCPipeline DEVICE="cuda" SEED=42 pipe = StableDiffusionMIGCPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(DEVICE) adapter_path = hf_hub_download(repo_id="thisiswooyeol/MIGC-diffusers", filename="migc_adapter_weights.safetensors") # Load MIGC adapter to UNet attn2 layers state_dict = safetensors.torch.load_file(adapter_path) for name, module in pipe.unet.named_modules(): if hasattr(module, "migc"): print(f"Found MIGC in {name}") # Get the state dict with the incorrect keys state_dict_to_load = {k: v for k, v in state_dict.items() if k.startswith(name)} # Create a new state dict, removing the "attn2." prefix from each key new_state_dict = {k.replace(f"{name}.migc.", "", 1): v for k, v in state_dict_to_load.items()} # Load the corrected state dict module.migc.load_state_dict(new_state_dict) module.to(device=pipe.unet.device, dtype=pipe.unet.dtype) # Sample inference ! prompt = "bestquality, detailed, 8k.a photo of a black potted plant and a yellow refrigerator and a brown surfboard" phrases = [ "a black potted plant", "a brown surfboard", "a yellow refrigerator", ] bboxes = [ [0.5717187499999999, 0.0, 0.8179531250000001, 0.29807511737089204], [0.85775, 0.058755868544600943, 0.9991875, 0.646525821596244], [0.6041562500000001, 0.284906103286385, 0.799046875, 0.9898591549295774], ] def seed_everything(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) seed_everything(SEED) image = pipe( prompt=prompt, phrases=phrases, bboxes=bboxes, negative_prompt="worst quality, low quality, bad anatomy", generator=torch.Generator(DEVICE).manual_seed(SEED), ).images[0] image.save("image.png") ``` This will generate following image: ![image](assets/image.png) If we overlay the box layouts to the generated image, we can see the model successfully follows the layout instructions. ![image_with_layout](assets/image_with_layout.png)
Pshuaibi/Reinforce-Cart-Pole-v1
Pshuaibi
2025-08-29T02:23:57Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-29T02:23:47Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cart-Pole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 404.40 +/- 191.21 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
anon-researcher-ua/codegpt-oss-20b
anon-researcher-ua
2025-08-29T02:23:35Z
0
0
null
[ "safetensors", "gpt_oss", "code", "programming-tasks", "algorithmic-reasoning", "code-generation", "python", "synthetic", "text-generation", "conversational", "en", "uk", "es", "ko", "ja", "zh", "fr", "hi", "de", "dataset:anon-researcher-ua/ua-codeforces-cots-open-r1", "dataset:anon-researcher-ua/ua-codeforces-cots-open-r1-for-training", "dataset:open-r1/codeforces-cots", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "license:cc-by-4.0", "region:us" ]
text-generation
2025-08-28T23:38:23Z
--- license: cc-by-4.0 language: - en - uk - es - ko - ja - zh - fr - hi - de task_categories: - text-generation - translation - summarization tags: - code - programming-tasks - algorithmic-reasoning - code-generation - python - synthetic datasets: - anon-researcher-ua/ua-codeforces-cots-open-r1 - anon-researcher-ua/ua-codeforces-cots-open-r1-for-training - open-r1/codeforces-cots base_model: - openai/gpt-oss-20b pipeline_tag: text-generation --- # Model Summary This model is a LoRA-tuned variant of [gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) adapted for competitive programming with reasoning traces in Ukrainian and English. It was trained on ~36M tokens from [ua-codeforces-cots-open-r1](https://huggingface.co/datasets/anon-researcher-ua/ua-codeforces-cots-open-r1) ([ua-codeforces-cots-open-r1-for-training](https://huggingface.co/datasets/anon-researcher-ua/ua-codeforces-cots-open-r1-for-training) in fact), which extends [open-r1/codeforces-cots](https://huggingface.co/datasets/open-r1/codeforces-cots) with translated Ukrainian problem statements and low/medium/high reasoning traces. The model supports low, medium, and high reasoning effort as well as language control for reasoning via system prompts. This model is able to reason in other languages as well with proper sampling params ([check examples below](https://huggingface.co/anon-researcher-ua/codegpt-oss-20b#other-languages)). # Training Details - Base model: gpt-oss-20b - Fine-tuning method: LoRA - Trainable parameters: ~75M - Target modules: all-linear - Target parameters: ["7.mlp.experts.gate_up_proj", "7.mlp.experts.down_proj", "15.mlp.experts.gate_up_proj", "15.mlp.experts.down_proj", "21.mlp.experts.gate_up_proj", "21.mlp.experts.down_proj", "23.mlp.experts.gate_up_proj", "23.mlp.experts.down_proj", ] - LoRA config: r=32, alpha=64, dropout=0.0 - Training tokens: 36M (4k train examples, avg length 7–8k tokens, ~300 >10k tokens) - Max length: 26496 - Epochs: 3 (early stopping after epoch 2) - Batching: per_device_batch=1, gradient_accumulation=8 (effective batch=8) - Optimizer: paged_adamw_8bit - Learning rate: 5e-5 (cosine schedule, min_lr_rate=0.01) - Weight decay: 0.01 - Precision: bf16 # Capabilities - Generates chain-of-thought reasoning traces in English or Ukrainian (works for other languages as well, check examples below) - Supports low/medium/high reasoning effort (controllable verbosity & detail) - Solves competitive programming tasks in Python with explanations - Handles long contexts (up to 32k tokens) # Limitations - Dataset is relatively small (~36M tokens, 2 epoch) → model may overfit to training traces. - Reasoning traces can be verbose or stylistically inconsistent (looped, truncated output for high reasoning effort). - Only tuned for Python competitive programming tasks, not general coding. # License - Our contribution: CC BY 4.0. - Original data from open-r1/codeforces-cots: ODC-By 4.0. - Please attribute ua-codeforces-cots-open-r1 and the upstream dataset when you share or use it. # Usage ## Transformers inference (Slow) ```python from transformers import AutoModelForCausalLM, AutoTokenizer from datasets import load_dataset tokenizer = AutoTokenizer.from_pretrained("anon-researcher-ua/codegpt-oss-20b") model_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype="auto", use_cache=True, device_map="auto") model = AutoModelForCausalLM.from_pretrained("anon-researcher-ua/codegpt-oss-20b", **model_kwargs).cuda() train_dataset = load_dataset("anon-researcher-ua/ua-codeforces-cots-open-r1-for-training") def format_row(row): return tokenizer.apply_chat_template( row["messages_gpt"][:-1], tokenize=True, return_tensors="pt", reasoning_effort=row['reasoning_effort'] ) gen_kwargs = {"max_new_tokens": 32768, "do_sample": True, "temperature": 0.2, "top_p": 1.0, "repetition_penalty": 1} for ridx, row in enumerate(train_dataset['validation']): input_ids = format_row(row).to(model.device) output_ids = model.generate(input_ids, **gen_kwargs) response = tokenizer.batch_decode(output_ids)[0] print(gen_kwargs, "\n") print(response, "\n\n=================================================\n\n") ``` ## VLLM inference (Fast) ### Prerequisites ```bash %pip install --upgrade -qqq uv %uv pip install --pre vllm==0.10.1.1 --extra-index-url https://wheels.vllm.ai/gpt-oss --extra-index-url https://download.pytorch.org/whl/nightly/cu128 --index-strategy unsafe-best-match --no-cache ``` ```python from vllm import LLM, SamplingParams from vllm.inputs import TokensPrompt from transformers import AutoTokenizer model = "anon-researcher-ua/codegpt-oss-20b" tokenizer = AutoTokenizer.from_pretrained(model) llm = LLM(model=model, dtype="bfloat16") def run_predict(messages, sampling_params, reasoning_effort="low"): formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, reasoning_effort=reasoning_effort ) input_ids = tokenizer( formatted_prompt, add_special_tokens=False ).input_ids prompt = TokensPrompt(prompt_token_ids=input_ids) output = llm.generate(prompt, sampling_params) return output[0].outputs[0].text sampling_params = SamplingParams( max_tokens=32768, temperature=0.2, # recommended temp=1.0 leads to poor performance top_p=1, repetition_penalty=1, stop_token_ids=[200002, 199999, 200012], skip_special_tokens=False ) messages = [ {"role": "system", "content": "reasoning language: Ukrainian"}, {"role": "user", "content": "Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди."}, ] print(run_predict(messages, sampling_params, reasoning_effort="medium")) ``` ## Reasoning language: Ukrainian, reasoning effort: medium ``` <|start|>system<|message|>You are ChatGPT, a large language model trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-29 Reasoning: medium # Valid channels: analysis, commentary, final. Channel must be included for every message.<|end|><|start|>developer<|message|># Instructions reasoning language: Ukrainian <|end|><|start|>user<|message|>Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди.<|end|><|start|>assistant <|channel|>analysis<|message|>Задача: обчислити площу бічної поверхні правильної трикутної піраміди. Сторона основи = 8 см. Апофема (висота бічної поверхні) = 8 + 2 = 10 см. Правильна трикутна піраміда: основа рівносторонній трикутнику. Бічна поверхня складається з трикутників, кожен з яких має однакові сторони. Бічна поверхня піраміди: 3 * (площа одного трикутника). Площа трикутника: (1/2) * a * h, де a — сторона трикутника, h — висота трикутника. Отже, площа бічної поверхні = 3 * (1/2 * a * h) = (3a h) / 2. Підставляємо a = 8, h = 10: (3 * 8 * 10) / 2 = 240 / 2 = 120 см². Потрібно вивести результат. Формат: "120 см²" (або "120 см²" з правильною одиницею). У деяких стандартах використовують "см²" або "см²". В українській мові одиниця площі позначається "см²" (або "см²"). Але в тексті задачі використано "см". Тому вивід має бути "120 см²". Підтвердити, що інші параметри (наприклад, висота основи піраміди) не впливають на площу бічної поверхні. Ні, оскільки апофема — це висота бічної поверхні. Отже, правильна відповідь: 120 см². Вивести: "120 см²". Підтвердити, що апофема — це висота бічної поверхні, а не висота основи. У задачі сказано "апофема на 2 см більша за сторону основи піраміди". Отже, 10 см. Тож відповідь: 120 см².<|end|><|start|>assistant<|channel|>final<|message|>Нам потрібно обчислити площу бічної поверхні правильної трикутної піраміди. - Сторона основи \(a = 8\) см. - Апофема (висота бічної поверхні) \(h = a + 2 = 8 + 2 = 10\) см. Бічна поверхня піраміди складається з трьох трикутників, кожен з яких має однакові сторони. Загальна площа бічної поверхні обчислюється як: \[ \text{Площа} = 3 \times \frac{1}{2} \times a \times h = \frac{3a h}{2} \] Підставляємо відомі значення: \[ \frac{3 \times 8 \times 10}{2} = \frac{240}{2} = 120 \text{ см}^2 \] Отже, площа бічної поверхні правильної трикутної піраміди становить **120 см²**. ``` ## Reasoning language: English, reasoning effort: high ``` <|start|>system<|message|>You are ChatGPT, a large language model trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-29 Reasoning: high # Valid channels: analysis, commentary, final. Channel must be included for every message.<|end|><|start|>developer<|message|># Instructions reasoning language: English <|end|><|start|>user<|message|>Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди.<|end|><|start|>assistant <|channel|>analysis<|message|>Обчисліть площу бічної поверхні правильної трикутної піраміди, де сторона основи дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди. Площа бічної поверхні складається з трикутників, кожен з яких має однакову висоту (висоту трикутника). Сума всіх трикутників — це бічна поверхня. Площа бічної поверхні — це сума площ усіх трикутників. Завдання: знайти площу бічної lateral We need to compute the lateral surface area of a regular triangular pyramid (tetrahedron) with base side length 8 cm. The slant height (apothem?) is 2 cm longer than the base side. Wait: "апофема на 2 см більша за сторону основи піраміди піраміди" maybe apothem of the pyramid (slant height) is 2 cm greater than the base side. So slant height = 8 + 2 = 10 cm. But need to confirm what exactly the apothem refers to here. The lateral surface area of a regular triangular pyramid (tetrahedron) is the sum of the areas of the three lateral faces. Each lateral face is a triangle with base side length 8 and height equal to the slant height. So each triangle area is (1/2 * base * height). So each triangle is 1/2 * 8 * 10 = 40. Multiply by 3 gives 120 cm². But maybe the apothem refers to the apothem of the base (the base is a regular triangle). Wait, the problem statement: "площа бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди піраміди." So the apothem (apothema) of the pyramid is 2 cm greater than the side of the base. So slant height (apothem of the pyramid) = 8 + 2 = 10. So each lateral face is a triangle with base 8 and height 10. So each area is (1/2*8*10) = 40. 3 faces => 120. But maybe there is a trick: the apothem of the pyramid is the slant height of the lateral faces. So yes. But let's double-check the geometry. For a regular triangular pyramid, each lateral face is a triangle with base side length equal to the base side of the pyramid. The height of each lateral face is the slant height (apothem) of the pyramid. So yes. Thus the lateral surface area = 3 * (1/2 * base * slant height) = 3 * (1/2 * 8 * 10) = 3 * 40 = 120. But maybe the problem is not that trivial. Let's read the original Ukrainian text: "Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди піраміди. Площа бічної поверхні складається з трикутників, кожен з яких має однакову висоту (висоту трикутника). Сума всіх трикутників — це бічна поверхня. Площа бічної поверхні — це сума площ усіх трикутників." So the lateral surface area is the sum of the areas of the three triangles. Each triangle has same height (the height of the triangle). The height of the triangle is the slant height of the pyramid. So each triangle area is (1/2 * base side * height). So indeed 1/2 * 8 * (8+2) = 1/2 * 8 * 10 = 40. Then sum for 3 triangles is 3 * 40 = 120. But let's check if there's any other interpretation. For a regular triangular pyramid, the base is a regular triangle. The apothem of the pyramid is the slant height of the pyramid. So yes. Alternatively, maybe "апофема" could be the apothem of the base (the distance from the center of the base to a side). But the problem says "апофема на 2 см більша за сторону основи піраміди піраміди" which suggests it's the apothem of the pyramid (the slant height). So yes. Thus the answer should be 120 cm². But maybe the problem expects a different approach. Let's re-read the problem: "Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди піраміди. Площа бічної поверхні складається з трикутників, кожен з яких має однакову висоту (висоту трикутника). Сума всіх трикутників — це бічна поверхня. Площа бічної поверхні — це сума площ усіх трикутників." So yes, it's exactly that. So answer is 120 cm². But maybe the apothem is something else. Let's think: In a pyramid, the apothem (slant height) is the height of each lateral face. So each lateral face is a triangle with height equal to the apothem. So yes. Thus each triangle area is 1/2 * base * apothem. So 1/2*8*10 = 40. Sum 3*40 = 120. Thus answer: 120 cm². But wait, the problem might be a trick: maybe the apothem is the apothem of the base (the distance from the center to a side). But the problem says "апофема на 2 см більша за сторону основи піраміди піраміди." So it's not the base's apothem. It's the pyramid's apothem. So yes. So answer: 120. But let's check the geometry: The lateral faces of a regular pyramid are congruent isosceles triangles. Each has base side length equal to the base side of the pyramid. The height of each lateral face is the slant height (apothem) of the pyramid. So yes. Thus the lateral surface area is 3 * (1/2 * base side * slant height) = 3 * (1/2 * 8 * 10) = 3 * 40 = 120. Thus answer: 120 cm². But let's double-check that there is no confusion between apothem and slant height. In a pyramid, the apothem is the slant height. So yes. Thus answer: 120. But maybe the problem expects the answer in terms of cm². So 120 cm². Thus the correct answer is 120 cm². But let's think if there's any other possible misinterpretation. For example, maybe the apothem is the apothem of the base (the distance from the center of the base to a side). But the problem says "апофема на 2 см більша за сторону основи піраміди піраміди." So it's the apothem of the pyramid. So no. Thus answer: 120 cm². So final answer: 120 cm². But let's check the original language: "правильної трикутної піраміди" which is a regular triangular pyramid. So yes. Thus answer: 120 cm². Thus the correct answer is 120. But maybe the units: cm². So 120 cm². Thus final answer: 120 cm². But let's check if there's any other geometry: For the lateral faces, each is a triangle with base side 8 and height 10. So each area is 40. So sum 3*40 = 120. Yes. Thus answer: 120 cm². Thus the solution is 120 cm². Thus the correct answer is 120. Thus final answer: 120. Thus the answer: 120 cm². Thus the solution is 120. So the answer: 120. Thus the correct answer is 120. So final answer: 120 cm².<|end|><|start|>assistant<|channel|>final<|message|>The lateral surface area of a regular triangular pyramid is the sum of the areas of its three lateral faces. Each face is a triangle with a base equal to the side of the pyramid (8 cm) and a height equal to the pyramid's apothem (10 cm, since it is 2 cm greater than the base side). Area of one triangle: \[ \frac{1}{2} \times 8 \, \text{cm} \times 10 \, \text{cm} = 40 \, \text{cm}^2 \] Since there are three such triangles: \[ 3 \times 40 \, \text{cm}^2 = 120 \, \text{cm}^2 \] \[ \boxed{120 \text{ cm}^2} \] ``` # Other languages ## Reasoning language: Korean, reasoning effort: low ``` <|start|>system<|message|>You are ChatGPT, a large language model trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-29 Reasoning: low # Valid channels: analysis, commentary, final. Channel must be included for every message.<|end|><|start|>developer<|message|># Instructions reasoning language: Korean <|end|><|start|>user<|message|>Обчисліть площу бічної поверхні правильної трикутної піраміди, сторона основи якої дорівнює 8 см, а апофема на 2 см більша за сторону основи піраміди.<|end|><|start|>assistant <|channel|>analysis<|message|>문제는 정삼각 피라미드의 옆면 표면적을 구하는 것. 밑면의 한 변이 8cm, 각 옆면의 높이(apofema)가 밑면 변보다 2cm 더 크다. 정삼각 피라미드의 옆면은 정삼각형이므로, 옆면의 높이와 밑면 변이 주어지면 각 옆면의 넓이를 구할 수 있다. 옆면 넓이 = (밑변 * 높이)/2. 주어진 값으로 대입하면 (8 * (8+2))/2 = 40cm². 피라미드의 옆면은 3개이므로 총 옆면 표면적은 3 * 40 = 120cm². 따라서 정답은 120cm². 출력 형식은 "120 cm²" 또는 "120 cm²"와 같은 형태로 제공. 정리: 120 cm².<|end|><|start|>assistant<|channel|>final<|message|>Обчислимо площу бічної поверхні трикутної піраміди. Для правильної трикутної піраміди кожна бічна поверхня є рівнобедрним трикутником. 1. **Дано:** - Сторона основи піраміди: \(a = 8\) см - Апофема (висота бічної поверхні): \(h = a + 2 = 8 + 2 = 10\) см 2. **Площа одного бічного трикутника:** \[ S_{\text{бічна}} = \frac{a \cdot h}{2} = \frac{8 \cdot 10}{2} = 40 \text{ см}^2 \] 3. **Кількість бічних трикутників:** Для правильної трикутної піраміди трикутна основа має три бічні трикутники. 4. **Загальна площа бічної поверхні:** \[ S_{\text{загальна}} = 3 \cdot S_{\text{бічна}} = 3 \cdot 40 = 120 \text{ см}^2 \] Отже, площа бічної поверхні правильної трикутної піраміди становить **120 см²**. ``` ## Reasoning language: Spanish, reasoning effort: medium (repetition_penalty=1.1) ``` <|start|>system<|message|>You are ChatGPT, a large language model trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-29 Reasoning: medium # Valid channels: analysis, commentary, final. Channel must be included for every message.<|end|><|start|>developer<|message|># Instructions Reasoning language: Spanish <|end|><|start|>user<|message|>You’re given a competitive programming problem. Analyze the maximum input constraints and identify the optimal algorithmic approach and data structures needed to process the largest possible test cases within the time and memory limits, then explain why your chosen implementation strategy is the most efficient solution. Please reason step by step about your solution approach, then provide a complete implementation in Python 3 that is thoroughly optimized for both speed and memory usage. Your solution must read input from standard input (input()), write output to standard output (print()). Do not include any debug prints or additional output. Put your final solution within a single code block: '''python <your code here> ''' # Problem You're given an integer $$$n$$$. For every integer $$$i$$$ from $$$2$$$ to $$$n$$$, assign a positive integer $$$a_i$$$ such that the following conditions hold: - For any pair of integers $$$(i,j)$$$, if $$$i$$$ and $$$j$$$ are coprime, $$$a_i eq a_j$$$. - The maximal value of all $$$a_i$$$ should be minimized (that is, as small as possible). A pair of integers is called coprime if their greatest common divisor is $$$1$$$. ## Constraints Time limit per test: 1.0 seconds Memory limit per test: 256.0 megabytes ## Input Format The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). ## Output Format Print $$$n-1$$$ integers, $$$a_2$$$, $$$a_3$$$, $$$\ldots$$$, $$$a_n$$$ ($$$1 \leq a_i \leq n$$$). If there are multiple solutions, print any of them. ## Examples '''input 4 ''' '''output 1 2 1 ''' '''input 3 ''' '''output 2 1 '''<|end|><|start|>assistant <|channel|>analysis<|message|>Para resolver este problema necesitamos asignar a cada entero i en el rango [2..n] un valor positivo a_i tal que si dos números son coprimos entonces sus valores sean distintos y el máximo de todos los valores sea lo más pequeño posible. Observaciones clave: 1. Si dos números comparten un factor primo p, pueden compartir el mismo valor porque no son coprimos. Por lo tanto, podemos agrupar los enteros según los factores primos comunes. 2. Un algoritmo eficiente para generar estos grupos es usar la técnica de **sieve** (cribado). Para cada número primo p, marcamos todos sus múltiplos y los agrupamos bajo el mismo valor. 3. El proceso: - Inicializamos una lista `a` con ceros del tamaño n+1. - Usamos una lista booleana `is_prime` para identificar los primos. - Iteramos desde 2 hasta n. Si el número es primo, asignamos un nuevo valor único a todos sus múltiplos que aún no hayan sido asignados. - Este método garantiza que cualquier par coprimo tendrá valores diferentes y minimiza el máximo valor asignado. 4. Complejidad: O(n log log n), adecuada para n ≤ 100000. Ejemplo: - Para n=4, el resultado es 1 2 1 (maximo 2). - Para n=3, el resultado es 2 1 (maximo 2). Implementación en Python: - Se utiliza un sieve clásico para marcar primos. - Se mantiene un contador `current_val` para asignar valores únicos a cada grupo de múltiplos de un primo. - Al finalizar, se imprime la lista `a[2:]`. Código optimizado: '''python n = int(input()) a = [0] * (n + 1) is_prime = [True] * (n + 1) if n >= 0: is_prime[0] = False if n >= 1: is_prime[1] = False for i in range(2, int(n**0.5) + 1): if is_prime[i]: for j in range(i*i, n + 1, i): is_prime[j] = False current_val = 1 for p in range(2, n + 1): if is_prime[p]: for m in range(p, n + 1, p): if a[m] == 0: a[m] = current_val current_val += 1 print(' '.join(map(str, a[2:n+1])) ''' Esta solución cumple con las condiciones del problema y funciona eficientemente dentro de los límites dados.<|end|><|start|>assistant<|channel|>final<|message|>To solve this problem, we need to assign values to each integer \(i\) from 2 to \(n\) such that if two numbers are coprimes, they receive different values, and the maximum assigned value is minimized. ### Approach The key insight is to use the properties of prime factors. If two numbers share a common prime factor, they can have the same value because they are not coprimes. We can group numbers based on their smallest prime factor using a sieve-like approach. This ensures that any two coprimes will belong to different groups and thus have different values. ### Algorithm 1. Use a sieve to find all primes up to \(n\). 2. Assign a unique value to each prime and its multiples that haven't been assigned yet. 3. This ensures that numbers sharing a prime factor get the same value, while coprimes get different values. ### Complexity The algorithm runs in \(O(n \log \log n)\) due to the sieve operation, which is efficient for \(n\) up to \(10^5\). ### Solution Code Here is the Python implementation of the described approach: '''python def main(): import sys n = int(sys.stdin.readline()) # Initialize array to store the values for each number a = [0] * (n + 1) # Sieve of Eratosthenes to find primes is_prime = [True] * (n + 1) if n >= 0: is_prime[0] = False if n >= 1: is_prime[1] = False for i in range(2, int(n**0.5) + 1): if is_prime[i]: for j in range(i * i, n + 1, i): is_prime[j] = False current_value = 1 for p in range(2, n + 1): if is_prime[p]: # Assign current_value to all multiples of p that are not yet assigned for m in range(p, n + 1, p): if a[m] == 0: a[m] = current_value current_value += 1 # Output the result for a[2] to a[n] print(' '.join(map(str, a[2:n+1])) if __name__ == "__main__": main() ''' This code reads the input, computes the necessary values using a sieve-based approach, assigns values efficiently, and outputs the results ensuring that the maximum value is minimized while satisfying the coprimality condition. ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1756432426
katanyasekolah
2025-08-29T02:21:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:21:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
felixZzz/student_sft_len32k_sub1k_nonoverlap_multiZ_acc-0829
felixZzz
2025-08-29T02:21:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T02:16:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MauoSama/DP_depth_cut_rope_randomized_onlywrist
MauoSama
2025-08-29T02:20:56Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "diffusion", "dataset:MauoSama/depth_cut_rope_randomized_onlywrist", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-29T02:20:49Z
--- datasets: MauoSama/depth_cut_rope_randomized_onlywrist library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - robotics - diffusion - lerobot --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
bluparsons/BART-base-HumAID
bluparsons
2025-08-29T02:20:24Z
10
0
null
[ "safetensors", "bart", "en", "dataset:bluparsons/HumAIDSum", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-06T22:27:27Z
--- license: cc-by-nc-sa-4.0 datasets: - bluparsons/HumAIDSum language: - en base_model: - facebook/bart-base --- #### Release as part of the paper Leveraging Language Models for Temporal Event Detection and Text Summarisation from Natural Disaster Incidents - An Insight using Social Media Data from Twitter/X
liukevin666/blockassist-bc-yawning_striped_cassowary_1756433893
liukevin666
2025-08-29T02:19:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:19:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
feVeRin/enko-transliterator
feVeRin
2025-08-29T02:19:09Z
18
0
null
[ "safetensors", "marian", "license:apache-2.0", "region:us" ]
null
2025-08-27T03:51:38Z
--- license: apache-2.0 --- # Please Check: https://github.com/feVeRin/enko_transliterator ```python # git clone https://github.com/feVeRin/enko_transliterator.git from transliteration import Transliterator model = Transliterator.from_pretrained('feVeRin/enko-transliterator') result = model.transliterate('LORA IS ALL YOU NEED') ```
hobson123/blockassist-bc-mammalian_dense_gibbon_1756433745
hobson123
2025-08-29T02:16:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:16:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756432322
pempekmangedd
2025-08-29T02:15:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:15:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756431832
aleebaster
2025-08-29T02:11:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:11:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dnq2025/swin-large-mask2former-pretrain-PAM
Dnq2025
2025-08-29T02:10:02Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "mask2former", "image-segmentation", "vision", "generated_from_trainer", "base_model:Dnq2025/swin-large-mask2former-finetuned-ER-Mito-LD8", "base_model:finetune:Dnq2025/swin-large-mask2former-finetuned-ER-Mito-LD8", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2025-08-29T02:01:54Z
--- library_name: transformers license: other base_model: Dnq2025/swin-large-mask2former-finetuned-ER-Mito-LD8 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: swin-large-mask2former-pretrain-PAM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-large-mask2former-pretrain-PAM This model is a fine-tuned version of [Dnq2025/swin-large-mask2former-finetuned-ER-Mito-LD8](https://huggingface.co/Dnq2025/swin-large-mask2former-finetuned-ER-Mito-LD8) on the Dnq2025/Mask2former_Pretrain_PAM dataset. It achieves the following results on the evaluation set: - Mean Iou: 0.4801 - Loss: 75.6712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1337 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: polynomial - training_steps: 672 ### Training results | Training Loss | Epoch | Step | Mean Iou | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 86.7074 | 1.0 | 14 | 0.0649 | 73.8587 | | 60.1158 | 2.0 | 28 | 0.4315 | 61.3078 | | 47.1427 | 3.0 | 42 | 0.3416 | 65.8193 | | 39.335 | 4.0 | 56 | 0.4496 | 62.5412 | | 33.9598 | 5.0 | 70 | 0.5278 | 51.6471 | | 31.4424 | 6.0 | 84 | 0.4708 | 62.5557 | | 29.2716 | 7.0 | 98 | 0.4481 | 69.7683 | | 27.8051 | 8.0 | 112 | 0.4917 | 51.5576 | | 26.4282 | 9.0 | 126 | 0.5110 | 50.2866 | | 25.0882 | 10.0 | 140 | 0.4807 | 66.0714 | | 23.8018 | 11.0 | 154 | 0.4920 | 49.7601 | | 23.3043 | 12.0 | 168 | 0.4963 | 51.5394 | | 22.6939 | 13.0 | 182 | 0.4844 | 69.5330 | | 21.9263 | 14.0 | 196 | 0.5126 | 54.2508 | | 21.2466 | 15.0 | 210 | 0.5297 | 47.1237 | | 20.9495 | 16.0 | 224 | 0.5158 | 68.3420 | | 20.2615 | 17.0 | 238 | 0.5164 | 51.2259 | | 19.7151 | 18.0 | 252 | 0.5028 | 60.2969 | | 19.3651 | 19.0 | 266 | 0.4946 | 63.1645 | | 18.9289 | 20.0 | 280 | 0.5142 | 56.4129 | | 18.4501 | 21.0 | 294 | 0.5048 | 69.7263 | | 17.9105 | 22.0 | 308 | 0.4764 | 73.4659 | | 17.7714 | 23.0 | 322 | 0.4847 | 65.6970 | | 17.5999 | 24.0 | 336 | 0.5102 | 55.8619 | | 17.2178 | 25.0 | 350 | 0.4744 | 64.8820 | | 17.0504 | 26.0 | 364 | 0.4817 | 67.6332 | | 16.9627 | 27.0 | 378 | 0.4852 | 77.5776 | | 16.4976 | 28.0 | 392 | 0.4684 | 76.7091 | | 16.0761 | 29.0 | 406 | 0.5068 | 55.3819 | | 15.9957 | 30.0 | 420 | 0.4749 | 72.6874 | | 15.9871 | 31.0 | 434 | 0.5005 | 77.6782 | | 15.8228 | 32.0 | 448 | 0.4775 | 75.3537 | | 15.4886 | 33.0 | 462 | 0.4907 | 76.7841 | | 15.1934 | 34.0 | 476 | 0.4583 | 78.3322 | | 15.3006 | 35.0 | 490 | 0.4911 | 69.4165 | | 15.0434 | 36.0 | 504 | 0.5020 | 56.2806 | | 14.9141 | 37.0 | 518 | 0.4672 | 71.5419 | | 14.8351 | 38.0 | 532 | 0.5014 | 60.7283 | | 14.5805 | 39.0 | 546 | 0.4910 | 65.7086 | | 14.702 | 40.0 | 560 | 0.4830 | 70.8683 | | 14.4871 | 41.0 | 574 | 0.4875 | 62.4533 | | 14.3313 | 42.0 | 588 | 0.4789 | 69.2328 | | 14.0295 | 43.0 | 602 | 0.4843 | 69.5139 | | 13.996 | 44.0 | 616 | 0.4807 | 76.6653 | | 14.0995 | 45.0 | 630 | 0.4840 | 67.6556 | | 13.9247 | 46.0 | 644 | 0.4818 | 71.6413 | | 14.0587 | 47.0 | 658 | 0.4804 | 79.2972 | | 13.894 | 48.0 | 672 | 0.4801 | 76.0411 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.4.1 - Datasets 3.3.2 - Tokenizers 0.21.0
xingqiang/Medical-NER-Qwen-4B-Thinking-merged
xingqiang
2025-08-29T02:08:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T01:49:03Z
--- base_model: unsloth/qwen3-4b-thinking-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** xingqiang - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-thinking-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Impish_LLAMA_4B-i1-GGUF
mradermacher
2025-08-29T02:08:25Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_LLAMA_4B", "base_model:quantized:SicariusSicariiStuff/Impish_LLAMA_4B", "license:llama3.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-29T00:14:22Z
--- base_model: SicariusSicariiStuff/Impish_LLAMA_4B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: llama3.1 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Impish_LLAMA_4B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Impish_LLAMA_4B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q2_K.gguf) | i1-Q2_K | 1.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q4_1.gguf) | i1-Q4_1 | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Impish_LLAMA_4B-i1-GGUF/resolve/main/Impish_LLAMA_4B.i1-Q6_K.gguf) | i1-Q6_K | 3.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756431548
kojeklollipop
2025-08-29T02:07:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:07:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-sturdy_leaping_jaguar_1756431383
motza0025
2025-08-29T02:01:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy leaping jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T02:00:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy leaping jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dilip025/RoBERTa-mini
dilip025
2025-08-29T01:58:33Z
6
0
null
[ "pytorch", "safetensors", "roberta-sentiment", "text-classification", "sentiment-classification", "BERT", "Roberta", "mini-roberta", "custom_code", "en", "dataset:yassiracharki/Amazon_Reviews_for_Sentiment_Analysis_fine_grained_5_classes", "license:mit", "region:us" ]
text-classification
2025-06-02T18:38:06Z
--- license: mit datasets: - yassiracharki/Amazon_Reviews_for_Sentiment_Analysis_fine_grained_5_classes language: - en metrics: - accuracy tags: - text-classification - sentiment-classification - BERT - Roberta - mini-roberta --- # RoBERTa-mini: Sentiment Classifier **Model Name**: `dilip025/RoBERTa-mini` **Task**: Sentiment Classification **Labels**: Very Negative, Negative, Neutral, Positive, Very Positive A compact RoBERTa like model trained from scratch for sentiment classification. ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("dilip025/RoBERTa-mini") model = AutoModelForSequenceClassification.from_pretrained("dilip025/RoBERTa-mini", trust_remote_code=True) id2label = { 0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive" } def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128) with torch.no_grad(): outputs = model(**inputs) probs = torch.softmax(outputs["logits"], dim=1) pred_class = torch.argmax(probs, dim=1).item() return { "text": text, "class_id": pred_class, "label": id2label[pred_class], "probabilities": probs.tolist()[0] } # Example result = predict_sentiment("I absolutely hate this product.") print(result) ``` ## Model Card - **Architecture**: RoBERTa (custom small version) - **Training Dataset**: [Amazon Reviews Dataset](https://huggingface.co/datasets/yassiracharki/Amazon_Reviews_for_Sentiment_Analysis_fine_grained_5_classes/viewer) - **Use Case**: Sentiment classification for customer feedback, reviews, etc. - **Input Format**: Plain text (string) - **Output**: Dictionary with class ID, label, and class probabilities ## License This model is licensed under the MIT License. You are free to use, modify, and distribute it with attribution. ## Author Developed and Trained by [Dilip Pokhrel](https://huggingface.co/dilip025)
Jgdshkovi/csm-1b-lora-ft
Jgdshkovi
2025-08-29T01:54:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "csm", "trl", "en", "base_model:unsloth/csm-1b", "base_model:finetune:unsloth/csm-1b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-29T01:54:02Z
--- base_model: unsloth/csm-1b tags: - text-generation-inference - transformers - unsloth - csm - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jgdshkovi - **License:** apache-2.0 - **Finetuned from model :** unsloth/csm-1b This csm model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PurplelinkPL/FinBERT_Test
PurplelinkPL
2025-08-29T01:49:01Z
58
0
null
[ "safetensors", "modernbert", "finance", "text-classification", "en", "dataset:HuggingFaceFW/fineweb", "license:mit", "region:us" ]
text-classification
2025-08-01T21:23:54Z
--- license: mit datasets: - HuggingFaceFW/fineweb language: - en tags: - finance metrics: - f1 pipeline_tag: text-classification ---
Vardis/greek-mt5-medical
Vardis
2025-08-29T01:45:24Z
13
0
null
[ "safetensors", "mt5", "region:us" ]
null
2025-05-01T16:02:00Z
# Greek mT5 Text Correction Model ## Model Details - **Model type:** Transformer-based encoder-decoder (mT5-base) - **Language:** Greek (el) - **License:** Same as [google/mt5-base](https://huggingface.co/google/mt5-base) - **Task:** Grammatical and orthographic text correction ## Model Description This model is a fine-tuned version of the multilingual T5 (mT5) model, specifically adapted for correcting noisy Greek text generated by ASR systems. The fine-tuning framed the task as a supervised sequence-to-sequence problem: the model takes a corrupted sentence as input and produces the corrected sentence as output. To guide the model, an **instruction-style prompting approach** was employed. Input sentences were formatted as: correct: "corrupted sentence" Example: | Input | Model Output | |-------|--------------| | correct:Ποσο θα διαρκέσει η αποκατάσταση μιτα από το χιρουργειο. | Πόσο θα διαρκέσει η αποκατάσταση μετά από το χειρουργείο; | The model captures long-range dependencies, allowing it to correct misspellings, punctuation errors, grammatical mistakes, and occasional missing or repeated words. ## Training Data - **Synthetic error-augmented dataset:** 56,000 corrupted–clean sentence pairs - **Data sources:** Medical corpus and Wikipedia - **Error types introduced:** Vowel swaps, duplicated letters, punctuation mistakes, grammatical issues - **Input-output format:** Sequence-to-sequence (corrupted → correct) Example corrupted–clean pairs: | Corrupted Sentence | Clean Sentence | |------------------|----------------| | Ιδανηκο για προληψοη αλλαα και θεραπεια των κατακλισεων. | Ιδανικό για πρόληψη αλλα και θεραπεία των κατακλίσεων. | | H πιεση του αερα ρυθμιζετα ανυλιογα με το βαρος του ασθενη. | H πίεση του αέρα ρυθμίζεται ανάλογα με το βάρος του ασθενή. | ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Vardis/greek-mt5-medical") model = AutoModelForSeq2SeqLM.from_pretrained("Vardis/greek-mt5-medical") input_text = "correct:Ποσο θα διαρκέσει η αποκατάσταση μιτα από το χιρουργειο." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(corrected_text)
luckycanucky/impish-llama-2
luckycanucky
2025-08-29T01:39:55Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-29T01:04:05Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hobson123/blockassist-bc-mammalian_dense_gibbon_1756431396
hobson123
2025-08-29T01:37:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:37:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
apple/mobileclip2_coca_dfn2b_s13b_recap-coco-30k_s12m_context128
apple
2025-08-29T01:37:30Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T19:11:24Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **CoCa** checkpoint pretrained on DFN-2B dataset and fine-tuned on varying datasets. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/mobileclip2_coca_dfn2b_s13b_<finetune-dataset>_context<length> ``` For models length with context lengths 128/256, copy `config.json` to `src/open_clip/model_configs/coca_ViT-L-14-context$len.json` and change the model name in below example to `coca_ViT-L-14-context$len`. ```py import torch import open_clip from PIL import Image model, _, preprocess = open_clip.create_model_and_transforms('coca_ViT-L-14', pretrained='/path/to/mobileclip2_coca.pt') model.eval() image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): syn_text = model.generate( image, generation_type="top_p", top_p=0.9, fixed_output_length=True )[0] syn_text = open_clip.decode(syn_text).split("<end_of_text>")[0].split("<start_of_text>")[-1].split(".")[0].rstrip() print("Caption:", syn_text) ```
apple/mobileclip2_coca_dfn2b_s13b_gbc1m-long_context256
apple
2025-08-29T01:37:25Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T19:07:57Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **CoCa** checkpoint pretrained on DFN-2B dataset and fine-tuned on varying datasets. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/mobileclip2_coca_dfn2b_s13b_<finetune-dataset>_context<length> ``` For models length with context lengths 128/256, copy `config.json` to `src/open_clip/model_configs/coca_ViT-L-14-context$len.json` and change the model name in below example to `coca_ViT-L-14-context$len`. ```py import torch import open_clip from PIL import Image model, _, preprocess = open_clip.create_model_and_transforms('coca_ViT-L-14', pretrained='/path/to/mobileclip2_coca.pt') model.eval() image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): syn_text = model.generate( image, generation_type="top_p", top_p=0.9, fixed_output_length=True )[0] syn_text = open_clip.decode(syn_text).split("<end_of_text>")[0].split("<start_of_text>")[-1].split(".")[0].rstrip() print("Caption:", syn_text) ```
apple/mobileclip2_coca_dfn2b_s13b_dci-extended_s12m_context128
apple
2025-08-29T01:37:09Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T18:55:18Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **CoCa** checkpoint pretrained on DFN-2B dataset and fine-tuned on varying datasets. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/mobileclip2_coca_dfn2b_s13b_<finetune-dataset>_context<length> ``` For models length with context lengths 128/256, copy `config.json` to `src/open_clip/model_configs/coca_ViT-L-14-context$len.json` and change the model name in below example to `coca_ViT-L-14-context$len`. ```py import torch import open_clip from PIL import Image model, _, preprocess = open_clip.create_model_and_transforms('coca_ViT-L-14', pretrained='/path/to/mobileclip2_coca.pt') model.eval() image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): syn_text = model.generate( image, generation_type="top_p", top_p=0.9, fixed_output_length=True )[0] syn_text = open_clip.decode(syn_text).split("<end_of_text>")[0].split("<start_of_text>")[-1].split(".")[0].rstrip() print("Caption:", syn_text) ```
apple/mobileclip2_coca_dfn2b_s13b_dci-complete_s12m_context128
apple
2025-08-29T01:37:04Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T18:52:05Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **CoCa** checkpoint pretrained on DFN-2B dataset and fine-tuned on varying datasets. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/mobileclip2_coca_dfn2b_s13b_<finetune-dataset>_context<length> ``` For models length with context lengths 128/256, copy `config.json` to `src/open_clip/model_configs/coca_ViT-L-14-context$len.json` and change the model name in below example to `coca_ViT-L-14-context$len`. ```py import torch import open_clip from PIL import Image model, _, preprocess = open_clip.create_model_and_transforms('coca_ViT-L-14', pretrained='/path/to/mobileclip2_coca.pt') model.eval() image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): syn_text = model.generate( image, generation_type="top_p", top_p=0.9, fixed_output_length=True )[0] syn_text = open_clip.decode(syn_text).split("<end_of_text>")[0].split("<start_of_text>")[-1].split(".")[0].rstrip() print("Caption:", syn_text) ```
Maori999/Qwen3-0.6B-Gensyn-Swarm-tiny_shrewd_alligator
Maori999
2025-08-29T01:31:55Z
77
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tiny_shrewd_alligator", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-27T12:29:26Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tiny_shrewd_alligator --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
badfriend221/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_amphibious_donkey
badfriend221
2025-08-29T01:31:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am rabid_amphibious_donkey", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T17:07:16Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am rabid_amphibious_donkey --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
apple/MobileCLIP2-S2
apple
2025-08-29T01:30:20Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T16:51:25Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **MobileCLIP2-S2** checkpoint. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/MobileCLIP2-S2 ``` Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip). You can run inference with a code snippet like the following: ```py import torch import open_clip from PIL import Image from mobileclip.modules.common.mobileone import reparameterize_model model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP-S2', pretrained='/path/to/mobileclip2_s2.pt') tokenizer = open_clip.get_tokenizer('MobileCLIP-S2') # For inference/model exporting purposes, please reparameterize first model = reparameterize_model(model.eval()) image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) ```
apple/MobileCLIP2-S0
apple
2025-08-29T01:30:18Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T16:51:15Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **MobileCLIP2-S0** checkpoint. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/MobileCLIP2-S0 ``` Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip). You can run inference with a code snippet like the following: ```py import torch import open_clip from PIL import Image from mobileclip.modules.common.mobileone import reparameterize_model model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP2-S0', pretrained='/path/to/mobileclip2_s0.pt') tokenizer = open_clip.get_tokenizer('MobileCLIP2-S0') # For inference/model exporting purposes, please reparameterize first model = reparameterize_model(model.eval()) image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) ```
haritsondavid/blockassist-bc-padded_howling_anteater_1756430745
haritsondavid
2025-08-29T01:26:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded howling anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:26:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded howling anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
apple/MobileCLIP-S4
apple
2025-08-29T01:26:19Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T16:49:54Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **MobileCLIP-S4** checkpoint. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/MobileCLIP-S4 ``` Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip). You can run inference with a code snippet like the following: ```py import torch import open_clip from PIL import Image from mobileclip.modules.common.mobileone import reparameterize_model model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP2-S4', pretrained='/path/to/mobileclip_s4.pt') tokenizer = open_clip.get_tokenizer('MobileCLIP2-S4') # For inference/model exporting purposes, please reparameterize first model = reparameterize_model(model.eval()) image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) ```
apple/MobileCLIP-S3
apple
2025-08-29T01:26:18Z
0
0
mobileclip
[ "mobileclip", "arxiv:2508.20691", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:apple-amlr", "region:us" ]
null
2025-08-25T16:49:52Z
--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **MobileCLIP-S3** checkpoint. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/MobileCLIP-S3 ``` Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip). You can run inference with a code snippet like the following: ```py import torch import open_clip from PIL import Image from mobileclip.modules.common.mobileone import reparameterize_model model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP2-S3', pretrained='/path/to/mobileclip_s3.pt') tokenizer = open_clip.get_tokenizer('MobileCLIP2-S3') # For inference/model exporting purposes, please reparameterize first model = reparameterize_model(model.eval()) image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) ```
Sail1013/my-awesome-model
Sail1013
2025-08-29T01:25:04Z
0
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-29T01:24:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unileon-robotics/Trasgu-1.5B
unileon-robotics
2025-08-29T01:24:11Z
9
0
null
[ "pytorch", "qwen2", "es", "dataset:unileon-robotics/lliones-dict-tr", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-08-26T18:41:17Z
--- license: apache-2.0 datasets: - unileon-robotics/lliones-dict-tr language: - es base_model: - Qwen/Qwen2.5-1.5B --- <p align="center"> <img src="Utils/Banner-Trasgu.PNG" alt="Trasgu Banner"> </p> <h1 align="center">Trasgu-1.5B — Llionés (Qwen2.5 + Unsloth, FP16 · PyTorch)</h1> <p align="center"> <img src="Utils/Logo-Trasgu.png" alt="Trasgu Logo" width="90"> </p> > Ajuste fino de **Qwen2.5-1.5B** con **Unsloth** en **Google Colab**, entrenado y evaluado con > el dataset **[`unileon-robotics/lliones-dict-tr`](https://huggingface.co/datasets/unileon-robotics/lliones-dict-tr)** (pares *input→output*). > Este repositorio publica los **pesos FP16 en formato Transformers** (compatibles con **PyTorch**). > La **versión GGUF (Q5_K_M)** está disponible en: **[Trasgu-1.5B-GGUF](https://huggingface.co/unileon-robotics/Trasgu-1.5B-GGUF)**. --- ## 📌 Descripción **Trasgu-1.5B** es un modelo conversacional en **llionés (leonés)** afinado con **aprendizaje supervisado** a partir de pares *entrada→salida* del dataset `lliones-dict-tr`. Al tratarse de datos **estructurados**, la señal de entrenamiento es directa y permite una **evaluación objetiva** sobre el propio conjunto. ### 🧰 Archivos de utilidad - Banner: `Utils/Banner-Trasgu.PNG` - Logo: `Utils/Logo-Trasgu.png` - Notebook de entrenamiento: `Utils/Training_Notebook.ipynb` - Configuración (hiperparámetros y formato): `Utils/config_entrenamiento.json` --- ## 🗂️ Dataset `lliones-dict-tr` Dataset **estructurado** de pares *input–output* (traducciones, vocabulario y significados llionés↔español). Para el *fine-tuning* se adapta cada ejemplo al **formato chat** con la plantilla **Qwen 2.5** (instrucción → respuesta), alineando el comportamiento conversacional. --- ## 🧪 Metodología de evaluación Para cada muestra del dataset (N = 3000): 1. **Se consulta el modelo** con la **entrada** (pregunta/instrucción). 2. **Se compara la salida** del modelo con la **respuesta de referencia** mediante dos criterios: **Métricas por muestra (escala 0–100):** - **Fuzzy** (`mean_fuzzy`): *fuzzy ratio* “normal” (coincidencia textual aproximada). - **Semántica** (`mean_semantic`): **cosine similarity** entre *embeddings* de [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). **Puntuación final por muestra:** `score_muestra = max(fuzzy, semantic)` **Agregados del experimento:** - `mean_fuzzy` = media de *fuzzy ratio*. - `mean_semantic` = media de similaridad semántica. - **`mean_similarity`** = media de `score_muestra` → **métrica final**. > Este esquema valida tanto coincidencias **literales** (fuzzy alto) como **paráfrasis correctas** (semántica alta). --- ## 📊 Resultados (1.5B · 3.000 ejemplos) > La fila **FP16 (Transformers)** corresponde a **este repositorio**. > La fila **GGUF Q5_K_M** corresponde a la versión en **[Trasgu-1.5B-GGUF](https://huggingface.co/unileon-robotics/Trasgu-1.5B-GGUF)**. | Modelo / Formato | mean_similarity (final) | mean_fuzzy | mean_semantic | |---|---:|---:|---:| | **Trasgu-1.5B — FP16 (Transformers)** | **79.50** | 58.48 | 79.39 | | **Trasgu-1.5B — GGUF Q5_K_M** ([repo GGUF](https://huggingface.co/unileon-robotics/Trasgu-1.5B-GGUF)) | **79.51** | 58.51 | 79.37 | **Lectura rápida:** la cuantización **Q5_K_M** mantiene resultados **prácticamente idénticos** a FP16 en la métrica final y en la semántica. --- ## 🔧 Entrenamiento (resumen) - **Base:** Qwen2.5-1.5B (vía **Unsloth**) - **Épocas:** 3 · **max_seq_length:** 4096 - **Optimización:** `paged_adamw_8bit` · **LR:** 2e-4 (scheduler lineal, *warmup_ratio* 0.1, *weight_decay* 0.01) - **Precisión:** **FP16** - **LoRA:** r=128, α=256, *dropout*=0.1, sin *bias*, aplicado a proyecciones y `lm_head` - **Exportación a GGUF (en repo aparte):** artefacto **Q5_K_M** - Referencias: `Utils/Training_Notebook.ipynb` · `Utils/config_entrenamiento.json` --- ## ⚠️ Notas - El modelo está **especializado** en los tipos de pares presentes en `lliones-dict-tr`. - Las métricas automáticas (fuzzy y semántica) son **indicativas**; la evaluación humana puede diferir.
cybertruck32489/gemma-3-1b-it-pretrain
cybertruck32489
2025-08-29T01:21:46Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T21:03:09Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** cybertruck32489 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hyunjong7/gemma-fire-finetun-4b-test
hyunjong7
2025-08-29T01:20:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "endpoints_compatible", "region:us" ]
null
2025-07-03T02:17:16Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: gemma-fire-finetun-4b-test tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-fire-finetun-4b-test This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hyunjong7/gemma-fire-finetun-4b-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 3.0.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thejaminator/qwen-hook-layer-9-step-500
thejaminator
2025-08-29T01:18:03Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-08-29T01:17:41Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SAE Introspection This is a LoRA (Low-Rank Adaptation) adapter trained for SAE (Sparse Autoencoder) introspection tasks. ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: SAE Feature Introspection ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/qwen-hook-layer-9-step-500") ``` ## Training Details This adapter was trained using the lightweight SAE introspection training script to help the model understand and explain SAE features through activation steering.
bah63843/blockassist-bc-plump_fast_antelope_1756430153
bah63843
2025-08-29T01:16:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:16:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
haritsondavid/blockassist-bc-padded_howling_anteater_1756429945
haritsondavid
2025-08-29T01:13:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded howling anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:12:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded howling anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rustamshry/Llama-electronic-radiology-TR
Rustamshry
2025-08-29T01:10:43Z
38
1
peft
[ "peft", "safetensors", "radiology", "transformers", "pretraining", "trl", "text-generation", "tr", "dataset:hazal/electronic-radiology-phd-thesis-trR", "base_model:unsloth/Llama-3.2-1B", "base_model:adapter:unsloth/Llama-3.2-1B", "license:llama3.2", "region:us" ]
text-generation
2025-06-10T01:50:33Z
--- base_model: unsloth/Llama-3.2-1B library_name: peft license: llama3.2 datasets: - hazal/electronic-radiology-phd-thesis-trR language: - tr pipeline_tag: text-generation tags: - radiology - transformers - pretraining - trl --- # Model Card for Llama-electronic-radiology-TR ## Model Details ## Model Summary This model is a domain-adapted version of Llama-3.2-1B, fine-tuned via continued pretraining on Turkish-language electronic radiology PhD theses. The model was trained in an autoregressive (causal language modeling) setup using the [hazal/electronic-radiology-phd-thesis-trR](https://huggingface.co/datasets/hazal/electronic-radiology-phd-thesis-trR) dataset. Unlike instruction-tuned models, this version focuses on improving the model’s fluency, vocabulary, and semantic consistency in highly technical medical and radiological contexts. It is intended for downstream applications such as domain-specific generation, summarization, and potential fine-tuning for clinical tasks in Turkish. ### Model Description - **Language(s) (NLP):** Turkish - **License:** Llama 3.2 - **Finetuned from model:** Llama-3.2-1B ## Uses ### Direct Use The primary intended uses include: - **Domain-specific generation**: Generating fluent, semantically rich Turkish text in radiological contexts, e.g., imaging protocols, research summaries, or academic abstracts. - **Medical document summarization**: Summarizing long Turkish-language radiological texts, such as reports or thesis chapters. - **Language modeling for downstream tasks**: Serving as a base model for fine-tuning into instruction-tuned clinical models or QA systems in radiology. - **Research applications**: Assisting in the development of Turkish-language models for clinical NLP, especially in low-resource and domain-specific contexts. This model **is not instruction-tuned** and does not perform well in prompt-based Q&A or dialogue setups without additional supervised fine-tuning. ## Bias, Risks, and Limitations ### 🔬 Domain Bias The model has been trained exclusively on Turkish PhD-level academic texts in radiology. As such, its knowledge and language patterns are narrowly focused on: - Formal, academic Turkish - Medical terminology in radiology and imaging - Structured dissertation-like content It may underperform or produce awkward completions when applied to: - Conversational Turkish - Non-medical or non-radiological topics - Informal writing styles or dialectal Turkish ### ❌ Medical Safety This model **should not be used for clinical decision-making, diagnosis, or treatment recommendations**. Despite being trained on medical content, it lacks factual grounding, context awareness, and real-time clinical judgment. Any outputs generated by this model must be verified by licensed medical professionals. ### 🧠 Memorization Risk Continued pretraining on a small or repetitive corpus can lead to memorization of phrases, potentially exposing: - Patient case formats - Study identifiers - Sections of dissertations Although this dataset appears anonymized and academic, **you should not use the model for data anonymization, patient privacy protection, or regulatory compliance tasks**. ### 🧪 Limitations - The model does not have grounding in real-world imaging data or structured knowledge bases. - Outputs may hallucinate plausible-sounding but incorrect medical facts. - Limited to Turkish; does not generalize to multilingual or English medical contexts. - Repetition or looping in generation may still occur in long sequences if decoding is not configured properly (`repetition_penalty`, `eos_token_id`, etc.). ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM import torch from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Llama-3.2-1B", device_map={"":0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/Llama-electronic-radiology-TR") input_text = "Bulgular: Gruplar arası yaş ve cinsiyet dağılımı açısından istatiksel olarakanlamlı farklılık saptanmadı." inputs = tokenizer(input_text, return_tensors="pt", add_special_tokens=True).to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=1.0, top_p=0.95, repetition_penalty = 1.2, eos_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training Details ### Training Data - **Hours used:** 10 hours ## Dataset: hazal/electronic-radiology-phd-thesis-trR This dataset contains Turkish-language PhD theses focused on electronic and diagnostic radiology. It was curated for the purpose of training language models in the Turkish medical domain. The documents are academic in tone, rich in domain-specific vocabulary, and structured into medical sections (e.g., materials & methods, results, discussion). - **Language**: Turkish - **Domain**: Electronic Radiology - **Type**: Academic dissertations - **Preprocessing**: The dataset was tokenized and truncated to a maximum sequence length suitable for LLM training. No instruction-style formatting was applied. Dataset link: [hazal/electronic-radiology-phd-thesis-trR](https://huggingface.co/datasets/hazal/electronic-radiology-phd-thesis-trR) ### Framework versions - PEFT 0.14.0
bah63843/blockassist-bc-plump_fast_antelope_1756429759
bah63843
2025-08-29T01:10:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:09:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rustamshry/QwenAzFT-v1
Rustamshry
2025-08-29T01:06:53Z
6
1
peft
[ "peft", "safetensors", "alpaca", "unsloth", "transformers", "trl", "sft", "text-generation", "conversational", "az", "dataset:omar07ibrahim/Alpaca_Stanford_Azerbaijan", "base_model:unsloth/Qwen3-1.7B", "base_model:adapter:unsloth/Qwen3-1.7B", "license:mit", "region:us" ]
text-generation
2025-05-24T12:22:38Z
--- base_model: unsloth/Qwen3-1.7B library_name: peft license: mit datasets: - omar07ibrahim/Alpaca_Stanford_Azerbaijan language: - az pipeline_tag: text-generation tags: - alpaca - unsloth - transformers - trl - sft --- # Model Card for QwenAzFT-v1 ## Model Details This model is a fine-tuned version of [`unsloth/Qwen3-1.7B`](https://huggingface.co/unsloth/Qwen3-1.7B) on a translated version of the **Alpaca Stanford dataset** in **Azerbaijani language**. The model is instruction-tuned to better follow prompts and generate relevant responses in Azerbaijani. ### Model Description - **Language(s) (NLP):** Azerbaijani - **License:** MIT - **Finetuned from model:** unsloth/Qwen3-1.7B ## Uses ### Direct Use - Instruction following in Azerbaijani - Education, research, and experimentation with low-resource language LLMs - Chatbots, task-oriented systems, language agents ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-1.7B", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/QwenAzFT-v1") question = "Bir sifət əlavə edərək aşağıdakı cümləni yenidən yazın. Tələbə mürəkkəb anlayışları anlaya bildi. " messages = [ {"role" : "user", "content" : question} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True, enable_thinking = False, ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 2048, temperature = 0.7, top_p = 0.8, top_k = 20, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` ## Training Data - **Dataset:** omar07ibrahim/Alpaca_Stanford_Azerbaijan ### Framework versions - PEFT 0.14.0
chainway9/blockassist-bc-untamed_quick_eel_1756427947
chainway9
2025-08-29T01:04:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T01:04:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756427542
coelacanthxyz
2025-08-29T00:59:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:59:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
memphiskol/blockassist-bc-deadly_hardy_flea_1756429046
memphiskol
2025-08-29T00:58:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly hardy flea", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:57:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly hardy flea --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsjang/ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-arcee_fusion-50_50
gsjang
2025-08-29T00:57:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:merge:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T00:52:05Z
--- base_model: - MLP-KTLim/llama-3-Korean-Bllossom-8B - meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers tags: - mergekit - merge --- # ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-arcee_fusion-50_50 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Arcee Fusion](https://arcee.ai) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: arcee_fusion models: - model: MLP-KTLim/llama-3-Korean-Bllossom-8B parameters: weight: 0.5 - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: weight: 0.5 parameters: {} dtype: bfloat16 tokenizer: source: union base_model: meta-llama/Meta-Llama-3-8B-Instruct write_readme: README.md ```
bah63843/blockassist-bc-plump_fast_antelope_1756428441
bah63843
2025-08-29T00:48:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:48:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calexander0614/output
calexander0614
2025-08-29T00:40:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "base_model:finetune:mistralai/Mistral-Small-3.1-24B-Instruct-2503", "endpoints_compatible", "region:us" ]
null
2025-08-28T14:30:51Z
--- base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503 library_name: transformers model_name: output tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for output This model is a fine-tuned version of [mistralai/Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="calexander0614/output", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.5.1+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
goppetoyu/blockassist-bc-barky_wiry_chicken_1756427908
goppetoyu
2025-08-29T00:38:28Z
0
0
null
[ "region:us" ]
null
2025-08-29T00:38:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wiry chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Pomni/whisper-large-v2-ggml-allquants
Pomni
2025-08-29T00:38:10Z
0
0
null
[ "whisper.cpp", "ggml", "whisper", "audio", "speech", "voice", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "base_model:openai/whisper-large-v2", "base_model:finetune:openai/whisper-large-v2", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2025-08-26T05:54:34Z
--- license: apache-2.0 quantized_by: Pomni language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su base_model: - openai/whisper-large-v2 pipeline_tag: automatic-speech-recognition tags: - whisper.cpp - ggml - whisper - audio - speech - voice new_version: Pomni/whisper-large-v3-ggml-allquants --- # Whisper-Large-v2 quants This is a repository of **GGML quants for [whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)**, for use with [whisper.cpp](https://github.com/ggml-org/whisper.cpp). If you are looking for a program to run this model with, then I would recommend [EasyWhisper UI](https://github.com/mehtabmahir/easy-whisper-ui), as it is user-friendly, has a GUI, and will automate a lot of the hard stuff for you. ## List of Quants Clicking on a link will download the corresponding quant instantly. | Link | Quant | Size | Notes |:-----|:-----|--------:|:------| | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-f32.bin) | F32 | 6.17 GB | Likely overkill. | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-f16.bin) | F16 | 3.09 GB | Performs better than Q8_0 for noisy audio and music. | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q8_0.bin) | Q8_0 | 1.66 GB | Sweet spot; superficial quality loss at nearly double the speed. | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q6_k.bin) | Q6_K | 1.28 GB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q5_k.bin) | Q5_K | 1.08 GB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q5_1.bin) | Q5_1 | 1.18 GB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q5_0.bin) | Q5_0 | 1.08 GB | Last "good" quant; anything below loses quality rapidly. | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q4_k.bin) | Q4_K | 889 MB | *Might* not have lost too much quality, but I'm not sure. | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q4_1.bin) | Q4_1 | 985 MB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q4_0.bin) | Q4_0 | 889 MB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q3_k.bin) | Q3_K | 685 MB | | | [GGML](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/resolve/main/ggml-large-v2-q2_k.bin) | Q2_K | 529 MB | Completely non-sensical outputs. | The F16 quant was taken from [ggerganov/whisper.cpp/ggml-large-v2.bin](https://huggingface.co/ggerganov/whisper.cpp/blob/main/ggml-large-v2.bin). ## Questions you may have ### Why do the "K-quants" not work for me? My guess is that your GPU might be too old to recognize them, considering that I have gotten the same error on my GTX 1080. If you would like to run them regardless, you can try switching to CPU inference. ### Are the K-quants "S", "M", or "L"? The quantizer I was using was not specific about this, so I do not know about this either. ### What program did you use to make these quants? I used [whisper.cpp v1.7.6](https://github.com/ggml-org/whisper.cpp/releases/tag/v1.7.6) on Windows x64, leveraging CUDA 12.4.0. For the F32 quant, I converted the original Hugging Face (H5) format model to a GGML using the `models/convert-h5-to-ggml.py` script. ### One or multiple of the quants are not working for me. [Open a new discussion](https://huggingface.co/Pomni/whisper-large-v2-ggml-allquants/discussions/new) in the community tab about this, and I will look into the issue.
iatop65/Civitai_Backup
iatop65
2025-08-29T00:35:48Z
0
0
null
[ "Backup", "CivArchive", "en", "region:us" ]
null
2025-08-29T00:27:07Z
--- language: - en tags: - Backup - CivArchive --- Lora Backup Upload From Civitai to be use on CivArchive for Mirrors Made by iatop65/iatop68304 On Civitai
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756425851
Loder-S
2025-08-29T00:32:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:32:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
memphiskol/blockassist-bc-deadly_hardy_flea_1756427439
memphiskol
2025-08-29T00:31:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly hardy flea", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:31:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly hardy flea --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pmcheng/leon_bin_picking_new
pmcheng
2025-08-29T00:29:49Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:pmcheng/leon_bin_picking_new", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-29T00:19:20Z
--- base_model: lerobot/smolvla_base datasets: pmcheng/leon_bin_picking_new library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - robotics - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
nvidia/FasterViT
nvidia
2025-08-29T00:29:36Z
0
19
null
[ "dataset:imagenet-1k", "arxiv:2306.06189", "license:other", "region:us" ]
null
2023-07-19T17:53:05Z
--- license: other datasets: - imagenet-1k --- [**FasterViT: Fast Vision Transformers with Hierarchical Attention**](https://arxiv.org/abs/2306.06189). FasterViT achieves a new SOTA Pareto-front in terms of accuracy vs. image throughput without extra training data ! <p align="center"> <img src="https://github.com/NVlabs/FasterViT/assets/26806394/253d1a2e-b5f5-4a9b-a362-6cdd16bfccc1" width=62% height=62% class="center"> </p> Note: Please use the [**latest NVIDIA TensorRT release**](https://docs.nvidia.com/deeplearning/tensorrt/container-release-notes/index.html) to enjoy the benefits of optimized FasterViT ops. ## Quick Start We can import pre-trained FasterViT models with **1 line of code**. First, FasterViT can be simply installed by: ```bash pip install fastervit ``` A pretrained FasterViT model with default hyper-parameters can be created as in the following: ```python >>> from fastervit import create_model # Define fastervit-0 model with 224 x 224 resolution >>> model = create_model('faster_vit_0_224', pretrained=True, model_path="/tmp/faster_vit_0.pth.tar") ``` `model_path` is used to set the directory to download the model. We can also simply test the model by passing a dummy input image. The output is the logits: ```python >>> import torch >>> image = torch.rand(1, 3, 224, 224) >>> output = model(image) # torch.Size([1, 1000]) ``` We can also use the any-resolution FasterViT model to accommodate arbitrary image resolutions. In the following, we define an any-resolution FasterViT-0 model with input resolution of 576 x 960, window sizes of 12 and 6 in 3rd and 4th stages, carrier token size of 2 and embedding dimension of 64: ```python >>> from fastervit import create_model # Define any-resolution FasterViT-0 model with 576 x 960 resolution >>> model = create_model('faster_vit_0_any_res', resolution=[576, 960], window_size=[7, 7, 12, 6], ct_size=2, dim=64, pretrained=True) ``` Note that the above model is intiliazed from the original ImageNet pre-trained FasterViT with original resolution of 224 x 224. As a result, missing keys and mis-matches could be expected since we are addign new layers (e.g. addition of new carrier tokens, etc.) We can simply test the model by passing a dummy input image. The output is the logits: ```python >>> import torch >>> image = torch.rand(1, 3, 576, 960) >>> output = model(image) # torch.Size([1, 1000]) ``` --- ## Results + Pretrained Models ### ImageNet-1K **FasterViT ImageNet-1K Pretrained Models** <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>Throughput(Img/Sec)</th> <th>Resolution</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Download</th> </tr> <tr> <td>FasterViT-0</td> <td>82.1</td> <td>95.9</td> <td>5802</td> <td>224x224</td> <td>31.4</td> <td>3.3</td> <td><a href="https://drive.google.com/uc?export=download&id=1twI2LFJs391Yrj8MR4Ui9PfrvWqjE1iB">model</a></td> </tr> <tr> <td>FasterViT-1</td> <td>83.2</td> <td>96.5</td> <td>4188</td> <td>224x224</td> <td>53.4</td> <td>5.3</td> <td><a href="https://drive.google.com/uc?export=download&id=1r7W10n5-bFtM3sz4bmaLrowN2gYPkLGT">model</a></td> </tr> <tr> <td>FasterViT-2</td> <td>84.2</td> <td>96.8</td> <td>3161</td> <td>224x224</td> <td>75.9</td> <td>8.7</td> <td><a href="https://drive.google.com/uc?export=download&id=1n_a6s0pgi0jVZOGmDei2vXHU5E6RH5wU">model</a></td> </tr> <tr> <td>FasterViT-3</td> <td>84.9</td> <td>97.2</td> <td>1780</td> <td>224x224</td> <td>159.5</td> <td>18.2</td> <td><a href="https://drive.google.com/uc?export=download&id=1tvWElZ91Sia2SsXYXFMNYQwfipCxtI7X">model</a></td> </tr> <tr> <td>FasterViT-4</td> <td>85.4</td> <td>97.3</td> <td>849</td> <td>224x224</td> <td>424.6</td> <td>36.6</td> <td><a href="https://drive.google.com/uc?export=download&id=1gYhXA32Q-_9C5DXel17avV_ZLoaHwdgz">model</a></td> </tr> <tr> <td>FasterViT-5</td> <td>85.6</td> <td>97.4</td> <td>449</td> <td>224x224</td> <td>975.5</td> <td>113.0</td> <td><a href="https://drive.google.com/uc?export=download&id=1mqpai7XiHLr_n1tjxjzT8q369xTCq_z-">model</a></td> </tr> <tr> <td>FasterViT-6</td> <td>85.8</td> <td>97.4</td> <td>352</td> <td>224x224</td> <td>1360.0</td> <td>142.0</td> <td><a href="https://drive.google.com/uc?export=download&id=12jtavR2QxmMzcKwPzWe7kw-oy34IYi59">model</a></td> </tr> </table> ### ImageNet-21K **FasterViT ImageNet-21K Pretrained Models (ImageNet-1K Fine-tuned)** <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>Resolution</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Download</th> </tr> <tr> <td>FasterViT-4-21K-224</td> <td>86.6</td> <td>97.8</td> <td>224x224</td> <td>271.9</td> <td>40.8</td> <td><a href="https://huggingface.co/ahatamiz/FasterViT/resolve/main/fastervit_4_21k_224_w14.pth.tar">model</a></td> </tr> <tr> <td>FasterViT-4-21K-384</td> <td>87.6</td> <td>98.3</td> <td>384x384</td> <td>271.9</td> <td>120.1</td> <td><a href="https://huggingface.co/ahatamiz/FasterViT/resolve/main/fastervit_4_21k_384_w24.pth.tar">model</a></td> </tr> <tr> <td>FasterViT-4-21K-512</td> <td>87.8</td> <td>98.4</td> <td>512x512</td> <td>271.9</td> <td>213.5</td> <td><a href="https://huggingface.co/ahatamiz/FasterViT/resolve/main/fastervit_4_21k_512_w32.pth.tar">model</a></td> </tr> <tr> <td>FasterViT-4-21K-768</td> <td>87.9</td> <td>98.5</td> <td>768x768</td> <td>271.9</td> <td>480.4</td> <td><a href="https://huggingface.co/ahatamiz/FasterViT/resolve/main/fastervit_4_21k_768_w48.pth.tar">model</a></td> </tr> </table> ### Robustness (ImageNet-A - ImageNet-R - ImageNet-V2) All models use `crop_pct=0.875`. Results are obtained by running inference on ImageNet-1K pretrained models without finetuning. <table> <tr> <th>Name</th> <th>A-Acc@1(%)</th> <th>A-Acc@5(%)</th> <th>R-Acc@1(%)</th> <th>R-Acc@5(%)</th> <th>V2-Acc@1(%)</th> <th>V2-Acc@5(%)</th> </tr> <tr> <td>FasterViT-0</td> <td>23.9</td> <td>57.6</td> <td>45.9</td> <td>60.4</td> <td>70.9</td> <td>90.0</td> </tr> <tr> <td>FasterViT-1</td> <td>31.2</td> <td>63.3</td> <td>47.5</td> <td>61.9</td> <td>72.6</td> <td>91.0</td> </tr> <tr> <td>FasterViT-2</td> <td>38.2</td> <td>68.9</td> <td>49.6</td> <td>63.4</td> <td>73.7</td> <td>91.6</td> </tr> <tr> <td>FasterViT-3</td> <td>44.2</td> <td>73.0</td> <td>51.9</td> <td>65.6</td> <td>75.0</td> <td>92.2</td> </tr> <tr> <td>FasterViT-4</td> <td>49.0</td> <td>75.4</td> <td>56.0</td> <td>69.6</td> <td>75.7</td> <td>92.7</td> </tr> <tr> <td>FasterViT-5</td> <td>52.7</td> <td>77.6</td> <td>56.9</td> <td>70.0</td> <td>76.0</td> <td>93.0</td> </tr> <tr> <td>FasterViT-6</td> <td>53.7</td> <td>78.4</td> <td>57.1</td> <td>70.1</td> <td>76.1</td> <td>93.0</td> </tr> </table> A, R and V2 denote ImageNet-A, ImageNet-R and ImageNet-V2 respectively. ## Citation Please consider citing FasterViT if this repository is useful for your work. ``` @article{hatamizadeh2023fastervit, title={FasterViT: Fast Vision Transformers with Hierarchical Attention}, author={Hatamizadeh, Ali and Heinrich, Greg and Yin, Hongxu and Tao, Andrew and Alvarez, Jose M and Kautz, Jan and Molchanov, Pavlo}, journal={arXiv preprint arXiv:2306.06189}, year={2023} } ``` ## Licenses Copyright © 2023, NVIDIA Corporation. All rights reserved. This work is made available under the NVIDIA Source Code License-NC. Click [here](https://huggingface.co/nvidia/FasterViT/blob/main/LICENSE) to view a copy of this license. For license information regarding the timm repository, please refer to its [repository](https://github.com/rwightman/pytorch-image-models). For license information regarding the ImageNet dataset, please see the [ImageNet official website](https://www.image-net.org/). ## Acknowledgement This repository is built on top of the [timm](https://github.com/huggingface/pytorch-image-models) repository. We thank [Ross Wrightman](https://rwightman.com/) for creating and maintaining this high-quality library.
Jackrong/llama-3.2-3B-Chinese-Elite
Jackrong
2025-08-29T00:26:48Z
0
0
null
[ "gguf", "text-generation", "zh", "en", "dataset:Jackrong/Qwen3-235B-A22B-Instruct-2507-Distilled-chat", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-28T23:41:08Z
--- license: apache-2.0 datasets: - Jackrong/Qwen3-235B-A22B-Instruct-2507-Distilled-chat language: - zh - en base_model: - meta-llama/Llama-3.2-3B-Instruct new_version: Jackrong/llama-3.2-3B-Chinese-Elite pipeline_tag: text-generation --- --- # 🦙 llama-3.2-3B-Chinese-Elite 🔥 ## 🌟 模型亮点 这是一个基于 **Meta-Llama-3.2-3B-Instruct** 的微调模型,使用 **Qwen3-235B 蒸馏数据** + **监督微调 (SFT)** 训练而成。 在实际使用中,我发现它不仅在 **中文对话、输出内容格式、简单推理、科学问题回答、聊天对话、创意写作** 等任务上表现远优于原始 Llama3.2-3B。同时 **基于中文环境的综合能力,远超越基座模型**,而且风格更接近 **2025年最新 Qwen3系列模型**,输出更自然、更贴近人类偏好,也会有表情符号使文章更生动活泼。 🔥 得益于仅 **3B 的参数规模**,该模型在 **响应速度** 上表现非常突出,交互体验 **流畅自然**。 它能够轻松处理 **日常对话、文本总结、翻译、学习资料讲解** 等常见任务,并且在 **资源受限的环境(如轻量 GPU、本地 CPU 或个人电脑)** 下依然能够 **高效运行**。 与此同时,模型支持 **离线部署**,在保障 **数据安全** 的同时大幅 **节省计算与能源开销**,非常适合 **教育、研究以及个人学习** 场景使用。 --- ## 🔧 训练详情 - **基座模型**: `meta-llama/Meta-Llama-3.2-3B-Instruct` - **训练方法**: 监督微调 (SFT) - **教师模型**: Qwen-3-235B-A22B-Instruct-2507 - **框架**: [Unsloth]官方 Notebook - **GPU**: 单卡 A100 (40GB) - **数据量**: ~50k 高质量蒸馏样本 - **量化支持**: q8_0 / gguf --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/36on6ruFQ5il8UUNwM_XF.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/kS2GDX5cNkOFrUc3W8s1G.png) ## 📊 效果对比 (Before vs After) > 表格长度有限,对比图片中只展示部分回答内容。实际模型效果可以看底下的部分问题回答的截屏。 ### 1️⃣ 数学推理 | 原始 Llama3.2-3B | 微调后模型 | |---|---| | **答案**:235.18 千克/小时 ❌<br>(计算逻辑混乱,结果错误) | **答案**:37.53 千克/小时 ✅<br>(逐步推理,验证正确) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/NLxsgNrzN2fv1MD6VyNxj.png) --- ### 2️⃣ 雅思词汇讲解 (constitution) | 原始 Llama3.2-3B | 微调后模型 | |---|---| | 简单定义 + 基础例句<br>输出略显单薄 | 系统讲解:定义、词源、政治语境、雅思常见题型、高频搭配<br>➡️ 更“懂考试”,输出能直接用来备考 ✅ | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/GCN1nofAYzWWviHR5Dvas.png) --- ### 3️⃣ 故事生成 | 原始 Llama3.2-3B | 微调后模型 | |---|---| | 故事夹杂英文单词(graduated, sad),情节简单,逻辑不完整 ❌ | 讲述心理学家 John Bleck 的哲理故事:情节完整、叙事自然、结尾升华主题 ✅ | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/gVsaNdF4RxCzVfP-ZQl3c.png) --- ### 4️⃣ 学术推理任务(Contradict a Theory) | 原始 Llama3.2-3B | 微调后模型 | |---|---| | 给出“地心说 vs 日心说”的例子,解释地球并非宇宙中心。逻辑清晰,但局限在单一实例,缺乏方法论与抽象总结。❌ | 输出分层次:**科学方法(实验可证伪)→ 哲学视角(矛盾促使修正)→ 总结(可证伪性与理论完善)**。同时举例进化论与牛顿力学,结构清晰、排版美观,内容更丰富。<br><br>✅ 优点:逻辑清楚、学术性强、对齐 Qwen3 风格。(表格长度问题,所以只展示了部分回答摘要) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/6DP9NKX62YhTNB6gpZeII.png) ### 实测输出展示: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/7k7EiZYxdI_yLVKQ1tVpi.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/VEzdclnZU8Ovwt7rvZrom.png) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/YUn5zSZtluGz66TXTrybM.jpeg) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/FcHu9xzf_OJEdKeNn3wVV.jpeg) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/Vd2QE43bmXbGCcKODzX10.jpeg) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/RPTFdRLnT2RO0VxMrMm2P.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/4wYWPk9gqW8NB0gX-VGht.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66309bd090589b7c65950665/O6q4O_Sx214bXPFeHJW7K.png) --- ## ⚖️ 局限性 - 训练数据量仅 50k,虽然效果明显提升,但对开放领域问题仍可能不足。 - 模型主要优化了 **聊天 / 语言 / 叙事/ ** 场景,专业领域可能不如更大模型强。 - 基座模型限制:Llama-3.2-3B 的基础能力和通用性能相对有限,微调虽能改善表现,但无法突破基座模型本身的上限。数学能力与复杂问题解决能力孱弱。 - 尚未使用 RLHF / DPO,个别输出在“人类偏好对齐”上还有限。 --- ## 🙏 致谢 - **Meta** 提供的基座模型 Llama3.2-3B - **Qwen 团队** 提供的强大师模型 Qwen-3-235B - **Unsloth** 高效的微调工具链 --- ## 📥 下载 & 试用 👉 这是一个轻量、实用、推理速度快的 **中英双语小模型**。 它继承了 Qwen3 的风格,又保持了 3B 模型的高效,欢迎大家下载体验,并在社区反馈效果!
Dejiat/blockassist-bc-savage_unseen_bobcat_1756427157
Dejiat
2025-08-29T00:26:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:26:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yinita/mg-ppo-4o-4b-mix-0828-v1-200step
yinita
2025-08-29T00:25:11Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T00:24:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rajat1327/Qwen2.5-Coder-7B-1E_LoRA
Rajat1327
2025-08-29T00:25:09Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-29T00:24:46Z
--- base_model: unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Rajat1327 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mano-ktk-lake-video-viral/New.full.videos.mano.ktk.lake.viral.video.Official.Tutorial
mano-ktk-lake-video-viral
2025-08-29T00:24:34Z
0
0
null
[ "region:us" ]
null
2025-08-28T09:29:31Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
yinita/mg-ppo-4o-4b-0828-mix-v1-382step
yinita
2025-08-29T00:24:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T00:23:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
weathermanj/NVIDIA-Nemotron-Nano-9B-v2-gguf
weathermanj
2025-08-29T00:20:12Z
0
1
llama.cpp
[ "llama.cpp", "gguf", "nemotron_h", "text-generation", "quantized", "nvidia", "nemotron", "mamba2", "transformer", "en", "base_model:nvidia/NVIDIA-Nemotron-Nano-9B-v2", "base_model:quantized:nvidia/NVIDIA-Nemotron-Nano-9B-v2", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T19:28:08Z
--- tags: - gguf - llama.cpp - text-generation - quantized - nvidia - nemotron - mamba2 - transformer language: - en license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ base_model: nvidia/NVIDIA-Nemotron-Nano-9B-v2 library_name: llama.cpp pipeline_tag: text-generation model_type: nemotron_h quantized: true quantization_type: gguf quantization_config: quantized: true format: gguf variants: - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q2_K.gguf size: 4.7GB bits_per_weight: "~2.0" description: "2-bit K-quantization, maximum compression" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q8_0.gguf size: 8.9GB bits_per_weight: "~8.0" description: "Near-lossless, reference quality" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q6_K.gguf size: 8.6GB bits_per_weight: "~6.0" description: "High quality, recommended" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q5_K_M.gguf size: 6.6GB bits_per_weight: "~5.0" description: "Good quality, balanced" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_M.gguf size: 6.1GB bits_per_weight: "~4.0" description: "Standard choice, good compression" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_1.gguf size: 5.5GB bits_per_weight: "~4.0" description: "Legacy 4-bit (Q4_1), slightly better quality than Q4_0" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_0.gguf size: 5.0GB bits_per_weight: "~4.0" description: "Legacy 4-bit (Q4_0), smaller, lower quality" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_S.gguf size: "~5.8GB" bits_per_weight: "~4.0" description: "4-bit K (small), smaller than Q4_K_M" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-IQ4_XS.gguf size: 5.0GB bits_per_weight: "4.25" description: "Integer quantization, excellent compression" - filename: NVIDIA-Nemotron-Nano-9B-v2-gguf-IQ3_M.gguf size: 4.9GB bits_per_weight: "3.66" description: "Ultra-small, mobile/edge" --- # NVIDIA-Nemotron-Nano-9B-v2-gguf GGUF quantizations of NVIDIA’s [NVIDIA-Nemotron-Nano-9B-v2](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2). These files target llama.cpp-compatible runtimes. ## Available Models | Model | Size | Bits/Weight | Description | |-------|------|-------------|-------------| | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q8_0.gguf` | 8.9GB | ~8.0 | Near-lossless, reference quality | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q6_K.gguf` | 8.6GB | ~6.0 | High quality, recommended for most users | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q5_K_M.gguf` | 6.6GB | ~5.0 | Good quality, balanced | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_M.gguf` | 6.1GB | ~4.0 | Standard choice, good compression | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_1.gguf` | 5.5GB | ~4.0 | Legacy 4-bit (Q4_1), better than Q4_0 | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_0.gguf` | 5.0GB | ~4.0 | Legacy 4-bit (Q4_0), smaller | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-IQ4_XS.gguf` | 5.0GB | 4.25 | Integer quantization, excellent compression | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-IQ3_M.gguf` | 4.9GB | 3.66 | Ultra-small, mobile/edge deployment | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_S.gguf` | 5.8GB | ~4.0 | 4-bit K (small), smaller than Q4_K_M | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-Q2_K.gguf` | 4.7GB | ~2.0 | 2-bit K, maximum compression | | `NVIDIA-Nemotron-Nano-9B-v2-gguf-f16.gguf` | 17GB | 16.0 | Full precision reference (optional) | ## Usage - Download a quantization - `huggingface-cli download weathermanj/NVIDIA-Nemotron-Nano-9B-v2-gguf NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_M.gguf --local-dir ./` - Run with llama.cpp - `./llama-server -m NVIDIA-Nemotron-Nano-9B-v2-gguf-Q4_K_M.gguf -c 4096` ## Performance (tokens/s) CPU vs CUDA vs CUDA+FlashAttn on a 24GB RTX 3090, n_predict=64, temp=0.7, top_p=0.95. | Model | CPU Factoid | CPU Code | CPU Reasoning | CUDA Factoid | CUDA Code | CUDA Reasoning | CUDA+FA Factoid | CUDA+FA Code | CUDA+FA Reasoning | |--------|------------:|---------:|--------------:|-------------:|----------:|---------------:|----------------:|-------------:|------------------:| | IQ3_M | 10.96 | 9.83 | 9.84 | 59.51 | 48.83 | 51.22 | 49.46 | 51.48 | 51.54 | | Q4_K_M | 8.59 | 8.03 | 8.02 | 48.28 | 48.72 | 48.70 | 53.48 | 48.73 | 47.97 | | Q5_K_M | 7.54 | 7.54 | 7.52 | 49.09 | 46.00 | 46.87 | 51.25 | 50.58 | 47.00 | | Q6_K | 6.65 | 6.19 | 5.89 | 52.77 | 41.84 | 42.06 | 47.59 | 41.48 | 42.85 | | Q8_0 | 6.95 | 5.79 | 5.93 | 45.99 | 40.81 | 41.51 | 48.32 | 41.21 | 41.54 | Notes: - IQ3_M is fastest on this setup; Q4_K_M offers stronger quality with close speed. - Flash Attention helps variably; larger micro-batches (e.g., `--ubatch-size 1024`) can improve throughput. ## Notes - Base model: [nvidia/NVIDIA-Nemotron-Nano-9B-v2](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2) - These are GGUF files suitable for llama.cpp and compatible backends. - Choose a quantization based on your resource/quality needs (see table). ## License - NVIDIA Open Model License: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
gsjang/ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-dare_ties-50_50
gsjang
2025-08-29T00:20:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:merge:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T00:17:02Z
--- base_model: - MLP-KTLim/llama-3-Korean-Bllossom-8B - meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers tags: - mergekit - merge --- # ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-dare_ties-50_50 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties models: - model: MLP-KTLim/llama-3-Korean-Bllossom-8B parameters: weight: 0.5 density: 0.4 - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: weight: 0.5 density: 0.4 parameters: int8_mask: true dtype: bfloat16 tokenizer: source: union base_model: meta-llama/Meta-Llama-3-8B-Instruct write_readme: README.md ```
maboranomet/blockassist-bc-lumbering_soft_macaw_1756426721
maboranomet
2025-08-29T00:19:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering soft macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:19:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering soft macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
deadman44/Wan2.2_Workflow_for_myxx_series_LoRA
deadman44
2025-08-29T00:16:16Z
0
11
null
[ "text-to-image", "t2i", "wan video", "safetensors", "text-to-video", "en", "license:apache-2.0", "region:us" ]
text-to-video
2025-08-04T13:08:07Z
--- license: apache-2.0 pipeline_tag: text-to-video language: - en tags: - text-to-image - t2i - wan video - safetensors --- <style> .title{ font-size: 2.5em; letter-spacing: 0.01em; padding: 0.5em 0; } .thumbwidth{ max-width: 180px; } .font_red{ color:red; } .font_blue{ color:blue; } .font_grey{ color: #aaaaaa; } </style> # Workflow for myxx series LoRA <br /> - [myxx Lora](https://huggingface.co/deadman44/WAN_T2i_LoRA) <br /> # Recent - Fix [I2v Triple High Workflow](#i2v_t) (wrong node): 2025-08-29<br /> - Add [T2v Triple High Workflow](#t2v_t) / I2v Triple High (experimental): 2025-08-21<br /> - flf2v has been integrated into I2v_better: 2025-08-16<br /> - Added Video Extend function to [I2v_better Workflow](#i2v): 2025-08-15<br /> - Implement "my series LoRA select switch" on each node: 2025-08-14<br /> - Add Interpolation Workflow / Update some nodes: 2025-08-13<br /> --- <a id="workflow"></a> <h1 class="title"> <span>Sample workflow</span> </h1> ## - Wan2.2 - [T2i / T2v Workflow](#t2i) - [I2v Workflow](#i2v) - [Highres Upscale Workflow](#highres) - [Speed Mult Workflow](#speedmult) - [Concat Workflow](#concat) - [Interpolation Workflow](#inter) - [Reccomended Models](#reccomended) --- <a id="t2i"></a> # T2i / T2v - Better Quality Workflow - <span class="font_blue">Recommended for T2i</span> <br/><br/> [Download: T2i/T2v better](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_T2i_better.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 12px; margin-bottom: 32px;"> <strong>T2i</strong> <a href="https://img1.pixhost.to/images/7710/628818240_20250804115623_t2i_00001_.jpg" target="_blank"> <img src="https://t1.pixhost.to/thumbs/7710/628818240_20250804115623_t2i_00001_.jpg" alt="T2I" style="width: 240px; height: auto; object-fit: contain; border: 1px solid #ccc;"> </a> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>15yo, myjc, japanese, photorealistic, An upper body portrait of a girl in white dress at library. She has a long black hair with bangs. She is holding books, and looking at camera.</code> </pre> </div> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 12px;"> <strong>T2v</strong> <video controls loop style="width: 480px; height: auto; object-fit: contain; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/k71i17.mp4" type="video/mp4"> Your browser cannot play the video. </video> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>A girl taking a selfie. The camera circles around the girl. She has black hair, a ponytail, and is wearing a school uniform. The background is a daytime classroom with several students.</code> </pre> </div> <br/> --- # T2i / T2v (kijai node) - <span class="font_blue">Recommended for T2v</span> <br/><br/> [Download: T2i/T2v (kijai)](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_T2i.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>T2i</strong> <a href="https://img1.pixhost.to/images/7844/630528571_20250810092108_t2i_00001_.png" target="_blank"> <img src="https://t1.pixhost.to/thumbs/7844/630528571_20250810092108_t2i_00001_.png" alt="kijai T2I" style="width: 240px; height: auto; object-fit: contain; border: 1px solid #ccc;"> </a> </div> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>T2v</strong> <video controls loop style="width: 320px; height: auto; object-fit: contain; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/m7lxqs.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>15yo, myjc, japanese, photorealistic, portrait of a girl walking at street. She has a long black ponytail with side bangs. She is wearing short sleeves school uniform.</code></pre> </div> <br/> --- <a id="t2v_t"></a> # T2v Triple High - <span class="font_blue">better motion quality, </span><span class="font_red">but very slowly</span> <br/><br/> [Download: T2v Triple High](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_T2v_Triple_High.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>T2v</strong> <video controls loop style="width: 320px; height: auto; object-fit: contain; border: 1px solid #ccc;"> <source src="https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/resolve/main/samples/20250820180348_T2V_00001.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>15yo, myjc, japanese, The camera approaches a girl in school uniform walking at street of Tokyo. She has a black twintails with side bangs. The girl smiles and waves at the camera, then turns around and runs away. The camera moves away from the girl.</code></pre> </div> <br/> --- <a id="i2v"></a> # I2v - Better Quality Workflow - <span class="font_blue">Recommended for I2v / flf2v / Extend</span> <br/><br/> [Download: I2v better](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_I2v_better.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Start Image</strong> <img src="https://img1.pixhost.to/images/7711/628837767_20250804203455_t2i_00001_.jpg" alt="I2v better" style="max-width: 240px; height: auto; border: 1px solid #ccc;"> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <video controls loop style="max-width: 320px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/5c8jt9.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>18yo, myjk, japanese, A nurse is walking down a dark hospital corridor when suddenly the doctors appear with a bouquet of flowers and she jumps up and down, smiling and overjoyed.</code> </pre> </div> </div> <br/> ### Cut Start Frames - Reduces discomfort at edges, etc. (e.g., collage images) by removing the initial few frames.<br><br> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Collage Image</strong> <a href="https://img1.pixhost.to/images/7726/629071198_20250805083230_t2i_00001_.jpg" target="_blank"> <img src="https://t1.pixhost.to/thumbs/7726/629071198_20250805083230_t2i_00001_.jpg" alt="T2I" style="width: 240px; height: auto; object-fit: contain; border: 1px solid #ccc;"></a> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/xm8s0i.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> Cut the first 4 frames. </div> <br/> ### Video Extend - Overlapping video frames ensures consistent extension<br/> - Load Image a "webp video file".<br/> - [Wan2.2-Fun-A14B-InP-GGUF](https://huggingface.co/QuantStack/Wan2.2-Fun-A14B-InP-GGUF/tree/main) required<br/> <br/> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Last Image + I2V</strong> - T2V 5sec (81frames) + LastFrame I2V 5sec (81frames) <span class="font_red">- The speed changes when switching videos.</span> <video controls loop style="width: 480px; height: auto; object-fit: contain; border: 1px solid #ccc;"> <source src="https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/resolve/main/samples/20250815180535_Concat_00002.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <br/> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Video Extend</strong> - (Base) T2V 5sec (81frames): 12frames overrap 10sec <span class="font_blue">- The transition is smooth.</span> <video controls loop style="width: 480px; height: auto; object-fit: contain; border: 1px solid #ccc;"> <source src="https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/resolve/main/samples/20250815185414_I2V_00001.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <br/> <strong>I2V StartEnd (flf2v)</strong> - Start Image -> End Image<br> <br/><br/> <div style="display: flex; flex-direction: row; gap: 24px; align-items: flex-start; margin-bottom: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Start Image</strong> <img src="https://img1.pixhost.to/images/7711/628826893_20250804200958_t2i_00001_.jpg" alt="start" style="max-width: 320px; height: auto; border: 1px solid #ccc;"> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>End Image</strong> <img src="https://img1.pixhost.to/images/7711/628826895_20250804190007_t2i_00001_.jpg" alt="end" style="max-width: 320px; height: auto; border: 1px solid #ccc;"> </div> </div> <div style="margin-bottom: 24px;"> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/s911sw.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>18yo, myjk, japanese, Suddenly A girl in a yellow parachute suit lands with her parachute open on a street crowded with people. She has a black ponytail with side bangs. People cheer and applaud.</code> </pre> </div> <strong>Only End Image</strong> - empty start -> End Image<br> <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>End Image</strong> <img src="https://img1.pixhost.to/images/7711/628839765_20250804205608_t2i_00001_.jpg" alt="randomstartend better" style="max-width: 320px; height: auto; border: 1px solid #ccc;"> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/kal8vn.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>18yo, myjk, japanese, A girl is running. She wears black twin-tail hair and a school uniform. In the background is a row of trees and a blue sky, her hair blowing in the wind.</code> </pre> </div> <br/> # I2v / StartEnd (kijai node) - <span class="font_blue">Recommended for Last Image + I2v</span> <br/><br/> [Download: I2v (kijai)](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_I2v.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Start Image</strong> <a href="https://img1.pixhost.to/images/7846/630539614_20250810103859_t2i_00001_.png" target="_blank"> <img src="https://t1.pixhost.to/thumbs/7846/630539614_20250810103859_t2i_00001_.png" alt="T2I" style="width: 240px; height: auto; object-fit: contain; border: 1px solid #ccc;"></a> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/1puol2.mp4" type="video/mp4"> Your browser cannot play the video. </video> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <pre style="background: #f4f4f4; padding: 12px; border-radius: 6px; overflow-x: auto;"> <code>15yo, myjc, japanese, photorealistic, Suddenly few students appear. The girl is dancing with students.</code></pre> </div> </div> <br/> <a id="i2v_t"></a> # I2v / flf2v / Extend Triple High - <span class="font_blue">better motion quality, </span><span class="font_red">but very slowly</span> <br/><br/> [Download: I2v Triple High](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_I2v_Triple_High.json) <br/><br/> --- # Util <a id="highres"></a> # Highres Upscale Workflow - High-resolution upscaling of load images and videos<br> - image file and movie (webp)<br> - Low denoise shows less change, high denoise shows more change<br> <br/><br/> [Download: Highres_Upscale](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_Highres_Upscale.json) <br/><br/> <div style="display: flex; flex-direction: column; align-items: flex-start; gap: 24px;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <strong>Base movie</strong> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/55jo26.mp4" type="video/mp4"> Your browser cannot play the video. </video> <div style="margin-top: 8px;">512 × 768</div> </div> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <video controls loop style="max-width: 480px; height: auto; border: 1px solid #ccc;"> <source src="https://files.catbox.moe/mdsbrh.mp4" type="video/mp4"> Your browser cannot play the video. </video> <div style="margin-top: 8px;">768 × 1024(1.5x)・denoise: 0.3</div> </div> </div> --- <a id="speedmult"></a> # Speed Mult Workflow - Change video speed - webp movie -> mp4 <br/><br/> [Download: Speed_Mult](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_Speed_Mult.json) <br/><br/> --- <a id="concat"></a> # Concat Workflow - Connecting videos - <span class="font_red">(webp) Videos with different fps don't work well together.</span> <br/><br/> [Download: Concat](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_Concat.json) <br/><br/> image -> Highres (webp) -> Speed_Mult (mp4) -> Concat (mp4) <br/><br/> --- <a id="inter"></a> # Interpolation Workflow - Frame Interpolation videos - webp / mp4 -> fps:60 <br/><br/> [Download: Interpolation](https://huggingface.co/deadman44/Wan2.2_Workflow_for_myxx_series_LoRA/raw/main/Wan2.2_Interpolation.json) <br/><br/> image -> Highres (webp) -> Speed_Mult (mp4) -> Concat (mp4) <br/><br/> <br/><br/> --- <a id="reccomended"></a> # Recommended model ### - Wan2.2 Q5, Q4, Q3... will further omit vram<br> [T2i / T2v]<br> - [wan2.2_t2v_high_noise_14B_Q8_0.gguf](https://huggingface.co/bullerwins/Wan2.2-T2V-A14B-GGUF/tree/main)<br> - [wan2.2_t2v_low_noise_14B_Q8_0.gguf](https://huggingface.co/bullerwins/Wan2.2-T2V-A14B-GGUF/tree/main)<br> [I2v]<br> - [wan2.2_i2v_high_noise_14B_Q5_K_M.gguf](https://huggingface.co/bullerwins/Wan2.2-I2V-A14B-GGUF/tree/main)<br> - [wan2.2_i2v_low_noise_14B_Q5_K_M.gguf](https://huggingface.co/bullerwins/Wan2.2-I2V-A14B-GGUF/tree/main)<br> [I2v Video Extend]<br> - [Wan2.2-Fun-A14B-InP_HighNoise-Q8_0.gguf](https://huggingface.co/QuantStack/Wan2.2-Fun-A14B-InP-GGUF/tree/main/HighNoise)<br> - [Wan2.2-Fun-A14B-InP_LowNoise-Q8_0.gguf](https://huggingface.co/QuantStack/Wan2.2-Fun-A14B-InP-GGUF/tree/main/LowNoise)<br> [etc]<br> - [umt5_xxl_fp8_e4m3fn_scaled](https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors)<br> - [umt5-xxl-enc-bf16.safetensors](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/umt5-xxl-enc-bf16.safetensors)<br> - [Wan2_1_VAE_bf16.safetensors](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1_VAE_bf16.safetensors)<br> [LoRA]<br> - [Wan2.2-T/I2V-A14B-4steps-lora-rank64-Seko-Vx](https://huggingface.co/lightx2v/Wan2.2-Lightning/tree/main) - [Wan21_T2V_14B_lightx2v_cfg_step_distill_lora_rank128.safetensors](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Lightx2v)<br> - [Wan2.1_T2V_14B_FusionX_LoRA.safetensors](https://huggingface.co/Thelocallab/WAN-2.1-loras/blob/main/Wan2.1_T2V_14B_FusionX_LoRA.safetensors)<br> - [WAN2.2-LowNoise_SmartphoneSnapshotPhotoReality_v2_by-AI_Characters.safetensors](https://civitai.com/models/1834338?modelVersionId=2075810)<br> [upscale]<br> - [4x-ClearRealityV1.pth](https://openmodeldb.info/models/4x-ClearRealityV1)<br> ---
bah63843/blockassist-bc-plump_fast_antelope_1756426503
bah63843
2025-08-29T00:15:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:15:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kamizane/Llama-3.2-1B-Instruct-bnb-FINETUNING
kamizane
2025-08-29T00:15:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-28T18:34:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dejiat/blockassist-bc-savage_unseen_bobcat_1756426486
Dejiat
2025-08-29T00:15:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:15:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsjang/ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-ties-50_50
gsjang
2025-08-29T00:11:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:merge:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T00:08:45Z
--- base_model: - meta-llama/Meta-Llama-3-8B-Instruct - MLP-KTLim/llama-3-Korean-Bllossom-8B library_name: transformers tags: - mergekit - merge --- # ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-ties-50_50 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: ties models: - model: MLP-KTLim/llama-3-Korean-Bllossom-8B parameters: weight: 0.5 density: 0.5 - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: weight: 0.5 density: 0.5 parameters: normalize: true int8_mask: true dtype: bfloat16 tokenizer: source: union base_model: meta-llama/Meta-Llama-3-8B-Instruct write_readme: README.md ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1756426194
Dejiat
2025-08-29T00:10:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:10:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Datasmartly/smartly-tourjouman-tamazight-lora-multi
Datasmartly
2025-08-29T00:06:37Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2-9b-it", "base_model:adapter:google/gemma-2-9b-it", "license:gemma", "region:us" ]
null
2025-08-27T18:15:07Z
--- base_model: google/gemma-2-9b-it library_name: peft license: gemma tags: - trl - sft - generated_from_trainer model-index: - name: smartly-tourjouman-tamazight-lora-multi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smartly-tourjouman-tamazight-lora-multi This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3253 | 0.5006 | 218 | nan | | 0.8912 | 1.0011 | 436 | nan | | 0.4228 | 1.5017 | 654 | nan | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.2.0 - Datasets 2.21.0 - Tokenizers 0.19.1
liukevin666/blockassist-bc-yawning_striped_cassowary_1756425930
liukevin666
2025-08-29T00:06:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:06:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756425883
bah63843
2025-08-29T00:06:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:06:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756424089
aleebaster
2025-08-29T00:02:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:02:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1756424108
koloni
2025-08-29T00:01:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T00:01:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onderyazici/blockassist-bc-lithe_pensive_falcon_1756424606
onderyazici
2025-08-28T23:59:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe pensive falcon", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T23:59:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe pensive falcon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsjang/ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-multislerp-50_50
gsjang
2025-08-28T23:59:36Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:merge:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T23:56:40Z
--- base_model: - MLP-KTLim/llama-3-Korean-Bllossom-8B - meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers tags: - mergekit - merge --- # ko-llama-3-korean-bllossom-8b-x-meta-llama-3-8b-instruct-multislerp-50_50 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Multi-SLERP](https://goddard.blog/posts/multislerp-wow-what-a-cool-idea) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: multislerp models: - model: MLP-KTLim/llama-3-Korean-Bllossom-8B parameters: weight: 0.5 - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: weight: 0.5 parameters: t: 0.5 dtype: bfloat16 tokenizer: source: union base_model: meta-llama/Meta-Llama-3-8B-Instruct write_readme: README.md ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1756425458
Dejiat
2025-08-28T23:58:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T23:58:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1756425213
cwayneconnor
2025-08-28T23:57:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T23:54:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
netotewerp/blockassist-bc-nasty_stubby_weasel_1756425382
netotewerp
2025-08-28T23:57:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nasty stubby weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T23:56:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nasty stubby weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ2_KS-SPECIAL_SPLIT
Thireus
2025-08-28T23:56:42Z
0
0
null
[ "gguf", "arxiv:2505.23786", "license:mit", "region:us" ]
null
2025-08-28T23:55:46Z
--- license: mit --- # Qwen3-4B-Thinking-2507 ## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about? This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly. - 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite - 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples - 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb - 📂 Browse available quant shards: https://huggingface.co/Thireus/collections *tl;dr: Expand the details section below* <details> ``` cd ~ # Make sure to install all ik_llama.cpp compilation dependencies... apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx # Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases git clone https://github.com/Thireus/ik_llama.cpp cd ik_llama.cpp git pull # Build ik_llama.cpp cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048 cmake --build build --config Release -j16 cd .. # Obtain Thireus' GGUF-Tool-Suite git clone https://github.com/Thireus/GGUF-Tool-Suite # Download model quant mix from recipe file: cd GGUF-Tool-Suite rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model mkdir -p kitchen && cd kitchen ../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe # Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples # Launch ik_llama's llama-cli: ulimit -n 9999 # Lifts "too many open files" limitation on Linux ~/ik_llama.cpp/build/bin/llama-server \ -m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \ -fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \ -b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \ --main-gpu 0 ``` </details> --- ## ❓ Why does this Tool Suite exist? 1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`. 2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity. 3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results! --- ## 📊 How does it compare to other GGUFs? Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw): ![PPLs Compared With Others](https://github.com/Thireus/GGUF-Tool-Suite/raw/main/ppl_graphs/Qwen3-4B-Thinking-2507.svg) > _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._ More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs --- ## 🚀 How do I get started? Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections: 1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile. - Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases 2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe. - Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples 3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`. 4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity. --- ## ✅ Supported Models Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`. --- ## 🤷‍♂️ Will I release baked dynamic quant GGUFs? No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s. Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`. Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`. --- ## 📦 What’s in this repository? - **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard. - **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc. - **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection. - **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits. --- ## 💡 Pro Tips You can easily download the BF16 model version to quantize your own shards: ``` mkdir kitchen echo '.*=bf16' > kitchen/bf16.recipe cd kitchen ../quant_downloader.sh bf16.recipe ``` Enjoy optimized quantization! 🎉
seraphimzzzz/603264
seraphimzzzz
2025-08-28T23:53:21Z
0
0
null
[ "region:us" ]
null
2025-08-28T23:53:15Z
[View on Civ Archive](https://civarchive.com/models/615395?modelVersionId=687937)