modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-01 00:47:04
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-01 00:46:57
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
microsoft/unispeech-sat-large-sv
|
microsoft
| 2021-12-17T18:13:15Z | 240 | 4 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"audio-xvector",
"speech",
"en",
"arxiv:1912.07875",
"arxiv:2106.06909",
"arxiv:2101.00390",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
datasets:
tags:
- speech
---
# UniSpeech-SAT-Large for Speaker Verification
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
The model was pre-trained on:
- 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875)
- 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909)
- 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Fine-tuning details
The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss
[X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf)
# Usage
## Speaker Verification
```python
from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector
from datasets import load_dataset
import torch
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-large-sv')
model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-large-sv')
# audio files are decoded on the fly
inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt")
embeddings = model(**inputs).embeddings
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
# the resulting embeddings can be used for cosine similarity-based retrieval
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
similarity = cosine_sim(embeddings[0], embeddings[1])
threshold = 0.89 # the optimal threshold is dataset-dependent
if similarity < threshold:
print("Speakers are not the same!")
```
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)

|
microsoft/unispeech-sat-base-sv
|
microsoft
| 2021-12-17T18:11:05Z | 200 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"audio-xvector",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
datasets:
- librispeech_asr
tags:
- speech
---
# UniSpeech-SAT-Base for Speaker Verification
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
The model was pre-trained on:
- 960 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Fine-tuning details
The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss
[X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf)
# Usage
## Speaker Verification
```python
from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector
from datasets import load_dataset
import torch
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-sv')
model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-base-sv')
# audio files are decoded on the fly
inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt")
embeddings = model(**inputs).embeddings
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
# the resulting embeddings can be used for cosine similarity-based retrieval
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
similarity = cosine_sim(embeddings[0], embeddings[1])
threshold = 0.86 # the optimal threshold is dataset-dependent
if similarity < threshold:
print("Speakers are not the same!")
```
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)

|
butchland/bert-finetuned-ner
|
butchland
| 2021-12-17T15:53:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9389679126695336
- name: Recall
type: recall
value: 0.9554022214742511
- name: F1
type: f1
value: 0.9471137804471137
- name: Accuracy
type: accuracy
value: 0.9873138282215812
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0586
- Precision: 0.9390
- Recall: 0.9554
- F1: 0.9471
- Accuracy: 0.9873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0877 | 1.0 | 1756 | 0.0662 | 0.9081 | 0.9344 | 0.9210 | 0.9827 |
| 0.0376 | 2.0 | 3512 | 0.0599 | 0.9362 | 0.9502 | 0.9431 | 0.9862 |
| 0.0209 | 3.0 | 5268 | 0.0586 | 0.9390 | 0.9554 | 0.9471 | 0.9873 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
osanseviero/test123
|
osanseviero
| 2021-12-17T15:42:32Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"de",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- de
license: cc-by-sa-4.0
model-index:
- name: de_udv25_germanhdt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9783706437
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9782287343
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.7811165904
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9204479606
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9728029281
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9588036494
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.99750025
---
UD v2.5 benchmarking pipeline for UD_German-HDT
| Feature | Description |
| --- | --- |
| **Name** | `de_udv25_germanhdt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (62832 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` |
| **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=3`, `Foreign=Yes\|POS=X\|Person=3`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PART\|PartType=Inf`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Dat\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ\|Person=3`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|Case=Acc\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `AdpType=Circ\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person=3`, `NumType=Card\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Sup\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|POS=NOUN\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Int`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|Person=3`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Number=Plur\|POS=DET\|Person=3`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|POS=PROPN\|Person=3`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Number=Sing\|POS=ADJ\|Person=3`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Hyph=Yes\|POS=NOUN\|Person=3`, `Degree=Pos\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|POS=SCONJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Ind,Neg,Tot`, `Degree=Pos\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `AdpType=Prep\|Case=Acc\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|POS=NOUN\|Person=3`, `Degree=Pos\|POS=VERB\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=SCONJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|POS=DET\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind,Neg,Tot`, `Degree=Sup\|Number=Plur\|POS=DET\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Masc\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `POS=DET\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:pv`, `flat`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `12`, `14`, `16`, `19`, `22`, `26`, `28`, `30`, `32`, `34`, `38`, `41`, `43`, `45`, `47`, `49`, `53`, `55`, `57`, `58`, `60`, `62`, `65`, `67`, `68`, `69`, `71`, `73`, `75`, `76`, `79`, `81`, `83`, `85`, `86`, `89`, `92`, `94`, `96`, `98`, `100`, `103`, `105`, `106`, `108`, `111`, `113`, `116`, `119`, `122`, `124`, `126`, `129`, `131`, `133`, `136`, `138`, `141`, `143`, `146`, `148`, `151`, `154`, `156`, `158`, `161`, `163`, `165`, `167`, `170`, `173`, `175`, `176`, `178`, `180`, `182`, `183`, `185`, `187`, `189`, `192`, `193`, `195`, `197`, `199`, `202`, `205`, `207`, `209`, `210`, `132`, `212`, `214`, `216`, `218`, `220`, `226`, `229`, `231`, `234`, `236`, `238`, `239`, `240`, `244`, `246`, `248`, `250`, `253`, `257`, `259`, `262`, `263`, `265`, `267`, `269`, `271`, `275`, `277`, `279`, `283`, `285`, `288`, `290`, `292`, `295`, `297`, `299`, `301`, `303`, `307`, `308`, `310`, `311`, `313`, `314`, `316`, `317`, `319`, `321`, `322`, `324`, `325`, `327`, `329`, `331`, `333`, `334`, `337`, `339`, `341`, `343`, `345`, `348`, `349`, `351`, `353`, `355`, `357`, `361`, `363`, `365`, `366`, `368`, `371`, `372`, `373`, `375`, `376`, `378`, `380`, `382`, `383`, `385`, `387`, `389`, `391`, `393`, `395`, `396`, `398`, `399`, `401`, `403`, `405`, `406`, `409`, `412`, `413`, `415`, `417`, `419`, `420`, `421`, `423`, `425`, `427`, `429`, `431`, `433`, `435`, `437`, `439`, `441`, `443`, `448`, `450`, `452`, `454`, `456`, `457`, `459`, `461`, `463`, `465`, `466`, `468`, `470`, `472`, `474`, `476`, `478`, `480`, `482`, `485`, `487`, `489`, `492`, `494`, `495`, `497`, `499`, `500`, `502`, `504`, `506`, `508`, `509`, `510`, `512`, `513`, `516`, `518`, `519`, `521`, `522`, `523`, `525`, `527`, `528`, `529`, `530`, `532`, `534`, `536`, `537`, `544`, `545`, `547`, `549`, `554`, `555`, `556`, `558`, `560`, `562`, `564`, `565`, `567`, `568`, `570`, `572`, `574`, `576`, `577`, `579`, `580`, `581`, `583`, `585`, `587`, `589`, `591`, `592`, `594`, `596`, `599`, `601`, `604`, `608`, `610`, `612`, `614`, `616`, `618`, `620`, `622`, `624`, `625`, `627`, `628`, `630`, `632`, `634`, `635`, `638`, `640`, `642`, `644`, `646`, `647`, `649`, `651`, `656`, `658`, `660`, `661`, `663`, `665`, `667`, `669`, `671`, `256`, `673`, `675`, `677`, `679`, `680`, `682`, `684`, `686`, `688`, `689`, `690`, `692`, `693`, `695`, `697`, `699`, `701`, `702`, `704`, `706`, `708`, `710`, `712`, `714`, `716`, `717`, `719`, `722`, `724`, `726`, `728`, `731`, `733`, `734`, `736`, `738`, `740`, `741`, `744`, `745`, `746`, `748`, `750`, `753`, `754`, `757`, `759`, `760`, `762`, `764`, `766`, `768`, `770`, `771`, `773`, `776`, `778`, `780`, `782`, `784`, `786`, `788`, `789`, `791`, `793`, `795`, `797`, `799`, `801`, `803`, `804`, `806`, `809`, `811`, `812`, `813`, `814`, `815`, `817`, `820`, `821`, `823`, `824`, `827`, `828`, `830`, `833`, `835`, `836`, `843`, `845`, `847`, `849`, `852`, `854`, `858`, `860`, `862`, `864`, `866`, `868`, `870`, `872`, `874`, `876`, `878`, `880`, `882`, `884`, `886`, `888`, `890`, `892`, `895`, `897`, `899`, `901`, `903`, `908`, `911`, `914`, `916`, `918`, `920`, `922`, `924`, `926`, `607`, `928`, `930`, `931`, `932`, `934`, `935`, `937`, `939`, `941`, `943`, `945`, `947`, `949`, `951`, `953`, `955`, `958`, `960`, `961`, `962`, `964`, `967`, `968`, `970`, `971`, `973`, `975`, `977`, `979`, `980`, `982`, `984`, `986`, `988`, `990`, `992`, `994`, `996`, `997`, `999`, `1000`, `1002`, `1004`, `1006`, `1009`, `1010`, `1012`, `1014`, `1016`, `1019`, `1021`, `1023`, `1025`, `1027`, `1029`, `1031`, `1033`, `1035`, `1037`, `1038`, `1040`, `1042`, `1044`, `1046`, `1047`, `1050`, `1051`, `1053`, `1055`, `1059`, `1061`, `1063`, `1065`, `1067`, `1068`, `1070`, `1075`, `1076`, `1078`, `1080`, `1083`, `1085`, `1088`, `1090`, `1094`, `1095`, `1099`, `1100`, `1102`, `1104`, `1106`, `1108`, `1110`, `1111`, `1112`, `1114`, `1116`, `1118`, `1119`, `1121`, `1123`, `1125`, `1127`, `1128`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1142`, `1144`, `1146`, `1148`, `1149`, `705`, `1151`, `1152`, `1155`, `1157`, `1158`, `1159`, `1161`, `1164`, `1165`, `1167`, `1169`, `1170`, `1172`, `1174`, `1176`, `1178`, `1180`, `1182`, `1184`, `1186`, `1188`, `1191`, `1192`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1202`, `1203`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1212`, `1213`, `1215`, `1217`, `1219`, `1221`, `1222`, `1224`, `1226`, `1228`, `1230`, `1231`, `1232`, `1234`, `1236`, `1238`, `1240`, `1242`, `1244`, `1246`, `1248`, `1250`, `1252`, `1254`, `1255`, `1256`, `1258`, `1260`, `1262`, `1263`, `1265`, `1266`, `1268`, `1270`, `1272`, `1273`, `1275`, `1276`, `1278`, `1280`, `1284`, `1287`, `1289`, `1291`, `1292`, `1294`, `1296`, `1297`, `1300`, `1302`, `1304`, `1306`, `1307`, `1309`, `1311`, `1315`, `1318`, `1320`, `1321`, `1322`, `1323`, `1324`, `1326`, `1329`, `1331`, `1333`, `1336`, `1338`, `1340`, `1342`, `1344`, `1346`, `1348`, `1350`, `1352`, `1353`, `1355`, `1358`, `1360`, `1362`, `1364`, `1366`, `1367`, `1369`, `1370`, `1372`, `1373`, `1375`, `1377`, `1378`, `1380`, `1382`, `1384`, `1385`, `1387`, `1389`, `1391`, `1393`, `1394`, `1396`, `1398`, `1400`, `1402`, `1404`, `1406`, `1407`, `1411`, `1413`, `1414`, `1415`, `1416`, `1418`, `1420`, `1422`, `1423`, `1425`, `1427`, `1429`, `1431`, `1433`, `1435`, `1437`, `1439`, `1442`, `1443`, `1445`, `1447`, `1448`, `1450`, `1452`, `1455`, `1459`, `1460`, `1462`, `1464`, `1466`, `1467`, `1471`, `1473`, `1475`, `1477`, `1479`, `1481`, `1483`, `1484`, `1485`, `1487`, `1489`, `1491`, `1493`, `1495`, `1497`, `1499`, `1501`, `1503`, `1505`, `1506`, `1509`, `1511`, `1512`, `1514`, `1515`, `1516`, `1517`, `1519`, `1521`, `1523`, `1525`, `1527`, `1529`, `1532`, `1534`, `1536`, `1538`, `1540`, `1542`, `1543`, `1544`, `1546`, `1547`, `1549`, `1550`, `1552`, `1553`, `1555`, `1556`, `1558`, `1560`, `1562`, `1564`, `1566`, `1567`, `1569`, `1571`, `1573`, `1576`, `1578`, `1581`, `1582`, `1584`, `1586`, `1587`, `1589`, `1592`, `1594`, `1595`, `1597`, `1599`, `1601`, `1603`, `1605`, `1607`, `1609`, `1610`, `1613`, `1615`, `1617`, `1618`, `1620`, `1622`, `1623`, `1625`, `1627`, `1629`, `1631`, `1635`, `1637`, `1639`, `1641`, `1643`, `1644`, `1646`, `1648`, `1653`, `1655`, `1656`, `1658`, `1660`, `1661`, `1663`, `1665`, `1668`, `1670`, `1672`, `1674`, `1676`, `1678`, `1680`, `1682`, `1685`, `1686`, `1688`, `1690`, `1691`, `1693`, `1695`, `1696`, `1698`, `1700`, `1702`, `1703`, `1705`, `1706`, `1708`, `1710`, `1711`, `1713`, `1717`, `1719`, `1721`, `1723`, `1725`, `1727`, `1729`, `1731`, `1737`, `1739`, `1741`, `1743`, `1744`, `1746`, `1747`, `1749`, `1751`, `1753`, `1755`, `1756`, `1757`, `1758`, `1760`, `1761`, `1764`, `1766`, `1768`, `1770`, `1772`, `1774`, `1776`, `1777`, `1778`, `1779`, `1781`, `1783`, `1785`, `1787`, `1789`, `1791`, `1792`, `1794`, `1796`, `1801`, `1803`, `1805`, `1807`, `1809`, `1811`, `1813`, `1815`, `1817`, `1818`, `1820`, `1822`, `1824`, `1826`, `1828`, `1829`, `1831`, `1833`, `1835`, `1837`, `1839`, `1841`, `1842`, `1844`, `1846`, `1848`, `1849`, `1850`, `1852`, `1853`, `1855`, `1858`, `1859`, `1860`, `1861`, `1863`, `1865`, `1867`, `1868`, `1870`, `1872`, `1874`, `1875`, `1876`, `1879`, `1880`, `1882`, `1885`, `1887`, `1889`, `1891`, `1892`, `1894`, `1895`, `1896`, `1898`, `1899`, `1901`, `1904`, `1906`, `1908`, `1910`, `1912`, `1914`, `1917`, `1919`, `1921`, `1923`, `1925`, `1926`, `1928`, `1930`, `1931`, `1933`, `1935`, `1936`, `1938`, `1939`, `1941`, `1943`, `1945`, `1947`, `1948`, `1950`, `1952`, `1954`, `1956`, `1957`, `1960`, `1965`, `1967`, `1969`, `1970`, `1972`, `1974`, `1976`, `1977`, `1979`, `1981`, `1983`, `1985`, `1987`, `1991`, `1993`, `1994`, `1996`, `1997`, `2001`, `2003`, `2005`, `2007`, `2009`, `2010`, `2012`, `2014`, `2015`, `2018`, `2019`, `2021`, `2023`, `2025`, `2027`, `2029`, `2030`, `2032`, `2034`, `2036`, `2037`, `2038`, `2040`, `2042`, `2044`, `2046`, `2048`, `2049`, `2051`, `2053`, `2055`, `2057`, `2062`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2071`, `2072`, `2074`, `2075`, `2076`, `2078`, `2082`, `2084`, `2085`, `2087`, `2089`, `2090`, `2092`, `2093`, `2094`, `2097`, `2099`, `2101`, `2103`, `2105`, `2108`, `2110`, `2112`, `2113`, `2115`, `2117`, `2119`, `2121`, `2123`, `2124`, `2126`, `2129`, `2131`, `2132`, `2133`, `2134`, `2135`, `2136`, `2138`, `2140`, `2142`, `2000`, `2143`, `2144`, `2146`, `2149`, `2151`, `2153`, `2155`, `2157`, `2159`, `2161`, `2163`, `2165`, `2167`, `2169`, `2171`, `2173`, `2175`, `2177`, `2179`, `2180`, `2182`, `2184`, `2186`, `2188`, `2190`, `2191`, `2193`, `2195`, `2197`, `2199`, `2201`, `2203`, `2204`, `2206`, `2208`, `2209`, `2211`, `2214`, `2215`, `2216`, `2217`, `2219`, `2221`, `2223`, `2224`, `2226`, `2228`, `2230`, `2232`, `2234`, `2236`, `2238`, `2240`, `2243`, `2246`, `2248`, `2250`, `2252`, `2254`, `2255`, `2257`, `2259`, `2260`, `2262`, `2263`, `2265`, `2267`, `2268`, `2269`, `2271`, `2273`, `2275`, `2277`, `2278`, `2280`, `2282`, `2284`, `2286`, `2288`, `2291`, `2293`, `2294`, `2295`, `2297`, `2299`, `2301`, `2303`, `2306`, `2308`, `2310`, `2311`, `2313`, `2315`, `2317`, `2319`, `2321`, `2323`, `2325`, `2327`, `2330`, `2331`, `2332`, `2333`, `2334`, `2336`, `2337`, `2341`, `2342`, `2344`, `2346`, `2348`, `2350`, `2352`, `2354`, `2355`, `2357`, `2358`, `2360`, `2362`, `2364`, `2366`, `2368`, `2370`, `2371`, `2373`, `2376`, `2378`, `2380`, `2382`, `2384`, `2386`, `2388`, `2390`, `2392`, `2393`, `2395`, `2396`, `2398`, `2400`, `2401`, `2403`, `2405`, `2407`, `2410`, `2412`, `2413`, `2414`, `2415`, `2417`, `2419`, `2420`, `2422`, `2424`, `2426`, `2428`, `2429`, `2433`, `2435`, `2436`, `2438`, `2440`, `2441`, `2443`, `2444`, `2446`, `2448`, `2451`, `2453`, `2454`, `2455`, `2456`, `2458`, `2459`, `2461`, `2463`, `2464`, `2466`, `2467`, `2469`, `2471`, `2473`, `2475`, `2477`, `2478`, `2481`, `2482`, `2484`, `2485`, `2490`, `2491`, `2494`, `2496`, `2497`, `2498`, `2500`, `2502`, `2507`, `2509`, `2511`, `2513`, `2515`, `2517`, `2519`, `2520`, `2522`, `2524`, `2526`, `2527`, `2529`, `2531`, `2533`, `2535`, `2538`, `2539`, `2540`, `2542`, `2544`, `2546`, `2549`, `2550`, `2552`, `2554`, `2556`, `2558`, `2559`, `2562`, `2565`, `2569`, `2571`, `2573`, `2575`, `2577`, `2579`, `2581`, `2583`, `2585`, `2588`, `2590`, `2592`, `2594`, `2596`, `2599`, `2601`, `2603`, `2605`, `2607`, `2609`, `2611`, `2613`, `2615`, `2618`, `2619`, `2621`, `2623`, `2625`, `2626`, `2628`, `2630`, `2632`, `2633`, `2635`, `2636`, `2637`, `2638`, `2639`, `2641`, `2643`, `2645`, `2647`, `2649`, `2651`, `2654`, `2656`, `2658`, `2660`, `2662`, `2663`, `2665`, `2667`, `2668`, `2672`, `2674`, `2676`, `2678`, `2680`, `2682`, `2684`, `2686`, `2688`, `2691`, `2693`, `2695`, `2696`, `2698`, `2699`, `2701`, `2702`, `2704`, `2706`, `2708`, `2710`, `2711`, `2714`, `2716`, `2718`, `2720`, `2722`, `2724`, `2725`, `2727`, `2728`, `2730`, `2732`, `2734`, `2736`, `2738`, `2740`, `2742`, `2743`, `2745`, `2747`, `2749`, `2751`, `2753`, `2754`, `2757`, `2759`, `2761`, `2763`, `2765`, `2768`, `2770`, `2772`, `2776`, `2783`, `2787`, `2789`, `2791`, `2793`, `2795`, `2796`, `2798`, `2800`, `2802`, `2804`, `2805`, `2806`, `2809`, `2811`, `2813`, `2814`, `2816`, `2818`, `2819`, `2820`, `2822`, `2824`, `2826`, `2827`, `2829`, `2831`, `2833`, `2835`, `2837`, `2839`, `2841`, `2844`, `2846`, `2847`, `2848`, `2850`, `2852`, `2857`, `2859`, `2860`, `2861`, `2863`, `2864`, `2866`, `2868`, `2870`, `2872`, `2874`, `2875`, `2877`, `2878`, `2880`, `2881`, `2883`, `2886`, `2888`, `2894`, `2896`, `2902`, `2906`, `2908`, `2910`, `2912`, `2913`, `2915`, `2916`, `2918`, `2920`, `2922`, `2924`, `2926`, `2928`, `2930`, `2934`, `2936`, `2937`, `2939`, `2941`, `2943`, `2944`, `2946`, `2947`, `2949`, `2952`, `2954`, `2956`, `2957`, `2960`, `2962`, `2964`, `2965`, `2967`, `2968`, `2970`, `2972`, `2974`, `2976`, `2979`, `2982`, `2984`, `2986`, `2988`, `2990`, `2991`, `2993`, `2995`, `2997`, `2998`, `3000`, `3002`, `3004`, `3006`, `3008`, `3010`, `3015`, `3017`, `3019`, `3021`, `3023`, `3025`, `3027`, `3030`, `3031`, `3032`, `3034`, `3036`, `3038`, `3039`, `3041`, `3043`, `3045`, `3046`, `3048`, `3050`, `3051`, `3054`, `3055`, `3057`, `3060`, `3062`, `3064`, `3065`, `3066`, `3068`, `3069`, `3071`, `3072`, `3074`, `3076`, `3077`, `3080`, `3082`, `3083`, `3085`, `3088`, `3091`, `3093`, `3095`, `3097`, `3099`, `3101`, `3103`, `3105`, `3106`, `3107`, `3109`, `3111`, `3112`, `3114`, `3116`, `3118`, `3120`, `3122`, `3125`, `3126`, `3128`, `3130`, `3132`, `3134`, `3136`, `3139`, `3140`, `3142`, `3143`, `3144`, `3150`, `3152`, `3154`, `3156`, `3158`, `3159`, `3161`, `3163`, `3166`, `3168`, `3170`, `3172`, `3173`, `3174`, `3176`, `3177`, `3179`, `3180`, `3182`, `3184`, `3185`, `3187`, `3189`, `3191`, `3193`, `3194`, `3195`, `3197`, `3198`, `3200`, `3201`, `3203`, `3205`, `3208`, `3210`, `3212`, `3214`, `3216`, `3218`, `3220`, `3221`, `3224`, `3226`, `3229`, `3231`, `3233`, `3234`, `3236`, `3238`, `3240`, `3242`, `3244`, `3245`, `3247`, `3248`, `3250`, `3252`, `3254`, `3255`, `3257`, `3259`, `3261`, `3263`, `3265`, `3267`, `3269`, `3271`, `3273`, `3275`, `3278`, `3279`, `3281`, `3283`, `3285`, `3287`, `3288`, `3289`, `3290`, `3292`, `3294`, `3297`, `3299`, `3301`, `3303`, `3304`, `3306`, `3307`, `3311`, `3313`, `3315`, `3317`, `3319`, `3321`, `3323`, `1441`, `3324`, `3325`, `3326`, `3328`, `3330`, `3332`, `3333`, `3335`, `3337`, `3339`, `3341`, `3343`, `3345`, `3346`, `3348`, `3349`, `3351`, `3353`, `3355`, `3356`, `3358`, `3359`, `3361`, `3363`, `3365`, `3367`, `3368`, `3370`, `3372`, `3373`, `3375`, `3377`, `3379`, `3381`, `3382`, `3385`, `3387`, `3388`, `3389`, `3391`, `3393`, `3395`, `3397`, `3399`, `3401`, `3405`, `3407`, `3409`, `3411`, `3413`, `3415`, `3417`, `3419`, `3421`, `3423`, `3425`, `3426`, `3427`, `3428`, `3430`, `3432`, `3436`, `3437`, `3439`, `3441`, `3442`, `3444`, `3447`, `3448`, `3450`, `3452`, `3454`, `3456`, `3457`, `3459`, `3461`, `3463`, `3466`, `3468`, `3469`, `3470`, `3471`, `3473`, `3474`, `3476`, `3478`, `3479`, `3481`, `3483`, `3484`, `3486`, `3488`, `3490`, `3492`, `3494`, `3496`, `3498`, `3500`, `3501`, `3502`, `3504`, `3505`, `3507`, `3509`, `3510`, `3512`, `3515`, `3517`, `3521`, `3523`, `3525`, `3528`, `3529`, `3530`, `3532`, `3535`, `3536`, `3538`, `3539`, `3541`, `3542`, `3544`, `3547`, `3548`, `3550`, `3552`, `3553`, `3555`, `3557`, `3559`, `3561`, `3563`, `3565`, `3566`, `3568`, `3570`, `3575`, `3578`, `3580`, `3581`, `3583`, `3584`, `3586`, `3588`, `3589`, `3591`, `3593`, `3595`, `3597`, `3598`, `3600`, `3601`, `3603`, `3605`, `3607`, `3609`, `3611`, `3612`, `3614`, `3616`, `3618`, `3620`, `3622`, `3624`, `3626`, `3629`, `3631`, `3633`, `3635`, `3637`, `3639`, `3640`, `3642`, `3644`, `3645`, `3646`, `3648`, `3649`, `3651`, `3653`, `3659`, `3661`, `3663`, `3665`, `3667`, `3669`, `3671`, `3675`, `3677`, `3679`, `3681`, `3682`, `3684`, `3685`, `3687`, `3688`, `3689`, `3691`, `3693`, `3694`, `3696`, `3698`, `3701`, `3703`, `3704`, `3706`, `3708`, `3710`, `3711`, `3713`, `3715`, `3717`, `3719`, `3720`, `3722`, `3725`, `3726`, `3727`, `3729`, `3731`, `3732`, `3734`, `3736`, `3738`, `3740`, `3742`, `3744`, `3746`, `3749`, `3751`, `3752`, `3754`, `3757`, `3758`, `3759`, `3760`, `3762`, `3764`, `3766`, `3767`, `3769`, `3771`, `3774`, `3776`, `3777`, `3779`, `3781`, `3782`, `3784`, `3786`, `3787`, `3789`, `3790`, `3791`, `3793`, `3795`, `3797`, `3798`, `3799`, `3801`, `3803`, `3805`, `3807`, `3809`, `3810`, `3812`, `3814`, `3816`, `3818`, `3820`, `3821`, `3823`, `3825`, `3827`, `3829`, `3832`, `3834`, `3835`, `3836`, `3837`, `3838`, `3840`, `3842`, `3843`, `3845`, `3847`, `3848`, `3850`, `3852`, `3854`, `3855`, `3857`, `3859`, `3860`, `3862`, `3863`, `3865`, `3867`, `3869`, `3871`, `3873`, `3874`, `3876`, `3878`, `3879`, `3881`, `3882`, `3883`, `3885`, `3887`, `3889`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3902`, `3904`, `3905`, `3907`, `3909`, `3911`, `3913`, `3915`, `3917`, `3919`, `3920`, `3922`, `3924`, `3926`, `3927`, `3928`, `3930`, `3932`, `3934`, `3936`, `3938`, `3939`, `3940`, `3942`, `3944`, `3946`, `3948`, `3950`, `3952`, `3954`, `3956`, `3957`, `3958`, `3960`, `3962`, `3964`, `3966`, `3967`, `3968`, `3970`, `3972`, `3974`, `3976`, `3979`, `3980`, `3981`, `3982`, `3983`, `3985`, `3987`, `3989`, `3990`, `3992`, `3994`, `3996`, `3997`, `3998`, `4000`, `4002`, `4004`, `4006`, `4008`, `4010`, `4012`, `4014`, `4016`, `4018`, `4019`, `4021`, `4023`, `4024`, `4025`, `4027`, `4029`, `4031`, `486`, `4033`, `4035`, `4037`, `4040`, `4042`, `4044`, `4046`, `4048`, `4050`, `4052`, `4053`, `4055`, `4056`, `4057`, `4058`, `4061`, `4062`, `4063`, `4065`, `4066`, `4068`, `4070`, `4072`, `4074`, `4076`, `4077`, `4080`, `4082`, `4084`, `4086`, `4088`, `4090`, `4091`, `4093`, `4095`, `4097`, `4099`, `4101`, `4103`, `4105`, `4106`, `4107`, `4109`, `4112`, `4114`, `4116`, `4117`, `4119`, `4121`, `4123`, `4124`, `4125`, `4127`, `4129`, `4131`, `4133`, `4134`, `4136`, `4138`, `4139`, `4141`, `4142`, `4145`, `4148`, `4149`, `4151`, `4153`, `4155`, `4156`, `4158`, `4159`, `4160`, `4161`, `4162`, `4164`, `4166`, `4168`, `4170`, `4171`, `3945`, `4173`, `4175`, `4177`, `4178`, `4180`, `4182`, `4184`, `4186`, `4188`, `4190`, `4192`, `4194`, `4195`, `4197`, `4199`, `4201`, `4203`, `4205`, `4208`, `4210`, `4211`, `4213`, `4215`, `4217`, `4219`, `4221`, `4224`, `4226`, `4228`, `4230`, `4232`, `4234`, `4236`, `4237`, `4239`, `4241`, `4243`, `4245`, `4247`, `4249`, `4251`, `4253`, `4255`, `4257`, `4259`, `4260`, `4262`, `4264`, `4267`, `4268`, `4270`, `4272`, `4274`, `4277`, `4278`, `4279`, `4281`, `4283`, `4284`, `4285`, `4287`, `4289`, `4291`, `4292`, `4294`, `4296`, `4298`, `4300`, `4302`, `4304`, `4305`, `4307`, `4308`, `4310`, `4312`, `4314`, `4315`, `4317`, `4319`, `4321`, `4323`, `4325`, `4327`, `4329`, `4331`, `4332`, `4334`, `4336`, `4338`, `4340`, `4342`, `4343`, `4344`, `4345`, `4347`, `4349`, `4351`, `4353`, `4354`, `4356`, `4358`, `4360`, `4362`, `4363`, `4365`, `4367`, `4368`, `4370`, `4372`, `4373`, `4375`, `4377`, `4379`, `4380`, `4382`, `4384`, `4386`, `4388`, `4390`, `4392`, `4393`, `4395`, `4397`, `4399`, `4401`, `4402`, `4404`, `4406`, `4407`, `4409`, `4411`, `4413`, `4415`, `4417`, `4419`, `4421`, `4423`, `4425`, `4427`, `4429`, `4431`, `4433`, `4435`, `4436`, `4438`, `4440`, `4442`, `4444`, `4445`, `4447`, `4449`, `4451`, `4453`, `4455`, `4457`, `4458`, `4460`, `4461`, `4462`, `4464`, `4466`, `4468`, `4469`, `4470`, `4472`, `4474`, `4475`, `4477`, `4478`, `4480`, `4482`, `4483`, `4485`, `4487`, `4488`, `4490`, `4491`, `4492`, `4493`, `4495`, `4497`, `4499`, `4502`, `4503`, `4504`, `4506`, `4508`, `4510`, `4512`, `4514`, `4516`, `4518`, `4519`, `4521`, `4523`, `4527`, `4529`, `4531`, `4532`, `4533`, `4534`, `4536`, `4538`, `4539`, `4542`, `4544`, `4547`, `4549`, `4551`, `4553`, `4555`, `4557`, `4559`, `4560`, `4562`, `4564`, `4566`, `4567`, `4569`, `4570`, `4572`, `4573`, `4575`, `4576`, `4578`, `4580`, `4581`, `4583`, `4585`, `4587`, `4589`, `4590`, `4592`, `4594`, `4596`, `4597`, `4599`, `4601`, `4603`, `4605`, `4607`, `4609`, `4610`, `4612`, `4613`, `4614`, `4615`, `4617`, `4619`, `4620`, `4621`, `4623`, `4624`, `4626`, `4628`, `4630`, `4632`, `4633`, `4634`, `4636`, `4638`, `4640`, `4642`, `4645`, `4647`, `4648`, `4650`, `4652`, `4654`, `4656`, `4657`, `4659`, `4661`, `4663`, `4666`, `4667`, `4668`, `4670`, `4672`, `4673`, `4675`, `4676`, `4678`, `4679`, `4681`, `4683`, `4685`, `4687`, `4689`, `4691`, `4693`, `4694`, `4696`, `4698`, `4699`, `4700`, `4704`, `4706`, `4708`, `4710`, `4712`, `4714`, `4716`, `4718`, `4720`, `4722`, `4724`, `4726`, `4727`, `4729`, `4731`, `4732`, `4733`, `4735`, `4737`, `4739`, `4740`, `4742`, `4743`, `4745`, `4746`, `4748`, `4750`, `4752`, `4755`, `4758`, `4760`, `4761`, `4763`, `4765`, `4767`, `4769`, `4771`, `4773`, `4774`, `4776`, `4778`, `4780`, `4782`, `4783`, `4785`, `4787`, `4789`, `4791`, `4792`, `4794`, `4796`, `4798`, `4800`, `4801`, `4803`, `4806`, `4808`, `4810`, `4811`, `4814`, `4815`, `4816`, `4818`, `4820`, `4822`, `4823`, `4825`, `4827`, `4829`, `4831`, `4834`, `4836`, `4838`, `4840`, `4842`, `4844`, `4846`, `4848`, `4850`, `4851`, `4853`, `4855`, `4857`, `4858`, `4860`, `4862`, `4864`, `4866`, `4868`, `4870`, `4872`, `4874`, `4876`, `4877`, `4879`, `4881`, `4883`, `4885`, `4886`, `4887`, `4889`, `4892`, `4893`, `4895`, `4897`, `4899`, `4900`, `4902`, `4905`, `4906`, `4908`, `4909`, `4910`, `4912`, `4914`, `4916`, `4917`, `4919`, `4920`, `4921`, `4923`, `4925`, `4927`, `4929`, `4932`, `4933`, `4935`, `4937`, `4940`, `4941`, `4943`, `4946`, `4949`, `4951`, `4952`, `4954`, `4955`, `4958`, `4959`, `4961`, `4963`, `4965`, `4967`, `4969`, `4971`, `4973`, `4975`, `4977`, `4979`, `4980`, `4982`, `4984`, `4986`, `4988`, `4990`, `4992`, `4995`, `4997`, `4999`, `5000`, `5002`, `5004`, `5006`, `5008`, `5010`, `5012`, `5014`, `5015`, `5016`, `5017`, `5019`, `5022`, `5023`, `5025`, `5027`, `5030`, `5035`, `5037`, `5039`, `5041`, `5043`, `5045`, `5047`, `5049`, `5054`, `5055`, `5057`, `5059`, `5061`, `5063`, `5065`, `5067`, `5072`, `5074`, `5076`, `5078`, `5080`, `5081`, `5083`, `5085`, `5087`, `5089`, `5091`, `5093`, `5095`, `5097`, `5099`, `5101`, `5103`, `5105`, `5107`, `5109`, `5111`, `5113`, `5114`, `5115`, `5117`, `5119`, `5121`, `5123`, `5125`, `5127`, `5128`, `5130`, `5132`, `5134`, `5135`, `5136`, `5138`, `5139`, `5141`, `5143`, `5145`, `5147`, `5149`, `5150`, `5152`, `5154`, `5156`, `5158`, `5160`, `5162`, `5164`, `5166`, `5168`, `5169`, `5170`, `5171`, `5173`, `5175`, `5177`, `5179`, `5181`, `5183`, `5186`, `5188`, `5190`, `5192`, `5193`, `5195`, `5197`, `5199`, `5201`, `5203`, `5205`, `5206`, `5208`, `5210`, `5212`, `5214`, `5216`, `5217`, `5220`, `5223`, `5225`, `5227`, `5229`, `5231`, `5233`, `5235`, `5237`, `5239`, `5241`, `5243`, `5246`, `5248`, `5250`, `5252`, `5253`, `5254`, `5255`, `5257`, `5259`, `5261`, `5263`, `5265`, `5267`, `5269`, `5270`, `5272`, `5274`, `5276`, `5278`, `5280`, `5281`, `5283`, `5285`, `5287`, `5288`, `5290`, `5292`, `5294`, `5296`, `5298`, `5300`, `5302`, `5304`, `5307`, `5309`, `5311`, `5313`, `5315`, `5316`, `5318`, `5319`, `5321`, `5323`, `5325`, `5326`, `5328`, `5330`, `5332`, `5334`, `5335`, `5336`, `5337`, `5339`, `5341`, `5343`, `5345`, `5347`, `5349`, `5351`, `5352`, `5355`, `5357`, `5359`, `5361`, `5363`, `5365`, `5367`, `5369`, `5371`, `5374`, `5375`, `5377`, `5379`, `5381`, `5382`, `5384`, `5386`, `5389`, `5391`, `5392`, `5394`, `5396`, `27`, `5398`, `5400`, `5403`, `5405`, `5407`, `5409`, `5411`, `5414`, `5416`, `5420`, `5422`, `5424`, `5426`, `5428`, `5430`, `5431`, `5433`, `5435`, `5437`, `5439`, `5441`, `5442`, `5444`, `5446`, `5448`, `5450`, `5452`, `5454`, `5455`, `5458`, `5460`, `5462`, `5463`, `5464`, `5466`, `5468`, `5470`, `5472`, `5474`, `5476`, `5477`, `5479`, `5481`, `5482`, `5484`, `5486`, `5488`, `5490`, `5492`, `5493`, `5495`, `5496`, `5498`, `5500`, `5502`, `5503`, `5504`, `5506`, `5507`, `5508`, `5510`, `5512`, `5514`, `5516`, `5521`, `5523`, `5525`, `5527`, `5530`, `5531`, `5533`, `5535`, `5538`, `5540`, `5542`, `5544`, `5545`, `5547`, `5548`, `5550`, `5551`, `5554`, `5556`, `5557`, `5559`, `5561`, `5562`, `5565`, `5567`, `5569`, `5571`, `5573`, `5576`, `5578`, `5580`, `5582`, `5584`, `5586`, `5588`, `5590`, `5592`, `5594`, `5595`, `5597`, `5599`, `5601`, `5603`, `5604`, `5606`, `5608`, `5610`, `5611`, `5613`, `5614`, `5616`, `5618`, `5620`, `5622`, `5625`, `5627`, `5629`, `5630`, `5632`, `5635`, `5636`, `5638`, `5640`, `5642`, `5644`, `5647`, `5651`, `5653`, `5655`, `5657`, `5659`, `5660`, `5662`, `5664`, `5666`, `5668`, `5670`, `5671`, `5673`, `5675`, `5676`, `5678`, `5680`, `5682`, `5684`, `5686`, `5688`, `5690`, `5692`, `5695`, `5697`, `5699`, `5701`, `5703`, `5705`, `5707`, `5709`, `5711`, `5713`, `5716`, `5718`, `5720`, `5722`, `5723`, `5725`, `5727`, `5728`, `5730`, `5732`, `5734`, `5736`, `5738`, `5740`, `5742`, `5744`, `5746`, `5748`, `5749`, `5751`, `5753`, `5756`, `5758`, `5762`, `5764`, `5766`, `5768`, `5770`, `5772`, `5774`, `5776`, `5778`, `5780`, `5782`, `5784`, `5786`, `5788`, `5790`, `5792`, `5794`, `5795`, `5797`, `5799`, `5801`, `5803`, `5805`, `5807`, `5808`, `5810`, `5813`, `5815`, `5817`, `5819`, `5821`, `5823`, `5824`, `5826`, `5828`, `5830`, `5832`, `5834`, `5836`, `5838`, `5839`, `5841`, `5843`, `5844`, `5846`, `5848`, `5851`, `5853`, `5854`, `5856`, `5857`, `5858`, `5860`, `5862`, `5864`, `5866`, `5868`, `5869`, `5871`, `5873`, `5874`, `5876`, `5878`, `5880`, `5881`, `5883`, `5886`, `5888`, `5890`, `5891`, `5893`, `5895`, `5897`, `5899`, `5900`, `5901`, `5902`, `5904`, `5906`, `5908`, `5911`, `5913`, `5915`, `5917`, `5918`, `1652`, `5920`, `5922`, `5924`, `5926`, `5928`, `5930`, `5932`, `5934`, `5936`, `5937`, `5939`, `5940`, `5942`, `5944`, `5946`, `5947`, `5948`, `5950`, `5952`, `5953`, `5955`, `5957`, `5959`, `5961`, `5962`, `5964`, `5966`, `5968`, `5970`, `5972`, `5974`, `5976`, `5978`, `5979`, `5981`, `5982`, `5984`, `5986`, `5988`, `5990`, `5992`, `5994`, `5995`, `5996`, `5998`, `6000`, `6001`, `6003`, `6005`, `6007`, `6008`, `6010`, `6012`, `6013`, `6015`, `6016`, `6018`, `6020`, `6022`, `6024`, `6026`, `6028`, `6030`, `6032`, `6034`, `6036`, `6038`, `6040`, `6042`, `6043`, `6045`, `6046`, `6048`, `6050`, `6052`, `6054`, `6056`, `6058`, `6059`, `6061`, `6063`, `6065`, `6067`, `6069`, `6071`, `6073`, `6074`, `6076`, `6078`, `6080`, `6082`, `6084`, `6086`, `6088`, `6089`, `6090`, `6092`, `6093`, `6095`, `6097`, `6098`, `6100`, `6102`, `6103`, `6105`, `6106`, `6108`, `6109`, `6111`, `6113`, `6115`, `6118`, `6119`, `6121`, `6123`, `6125`, `6127`, `6129`, `6131`, `6133`, `6135`, `6137`, `6140`, `6142`, `6145`, `6147`, `6149`, `6151`, `6153`, `6156`, `6157`, `6159`, `6161`, `6162`, `6164`, `6166`, `6167`, `6169`, `6171`, `6173`, `6175`, `6177`, `6179`, `6181`, `6183`, `6185`, `6187`, `6188`, `6189`, `6191`, `6193`, `6195`, `6197`, `6198`, `6200`, `6202`, `6204`, `6205`, `6207`, `6209`, `6211`, `6213`, `6215`, `6217`, `6219`, `6221`, `6223`, `6225`, `6226`, `6228`, `6230`, `6232`, `6234`, `6236`, `6238`, `6240`, `6243`, `6245`, `6246`, `6248`, `6250`, `6252`, `6253`, `6256`, `6257`, `6259`, `6262`, `6264`, `6265`, `6267`, `6268`, `6269`, `6271`, `6273`, `6276`, `6278`, `6280`, `6282`, `6284`, `6286`, `6288`, `6289`, `6290`, `6291`, `6293`, `6294`, `6296`, `6298`, `6300`, `6302`, `6304`, `6305`, `6306`, `6307`, `6309`, `6311`, `6313`, `6317`, `6319`, `6321`, `6323`, `6325`, `6328`, `6330`, `6332`, `6334`, `6335`, `6336`, `6338`, `6339`, `6341`, `6343`, `6345`, `6346`, `6347`, `6349`, `6351`, `6353`, `6355`, `6357`, `6359`, `6361`, `6363`, `6366`, `6367`, `6369`, `6371`, `6373`, `6375`, `6377`, `6379`, `6381`, `6383`, `6385`, `6387`, `6389`, `6391`, `6394`, `6396`, `6398`, `6400`, `6402`, `6404`, `6405`, `6407`, `6409`, `6411`, `6413`, `6415`, `6417`, `6419`, `6421`, `6423`, `6425`, `6426`, `6428`, `6429`, `6430`, `6431`, `6433`, `6435`, `6437`, `6439`, `6441`, `6443`, `6444`, `6447`, `6449`, `6451`, `6453`, `6455`, `6457`, `6459`, `6461`, `6463`, `6465`, `6467`, `6469`, `6472`, `6474`, `6476`, `6478`, `6479`, `6480`, `6482`, `6484`, `6485`, `6487`, `6489`, `6491`, `6493`, `6495`, `6497`, `6498`, `6500`, `6501`, `6505`, `6506`, `6508`, `6510`, `6511`, `6513`, `6517`, `6519`, `6521`, `6523`, `6524`, `6526`, `6527`, `6529`, `6531`, `6533`, `6534`, `6536`, `6539`, `6541`, `6543`, `6545`, `6547`, `6549`, `6551`, `6553`, `6555`, `6557`, `6558`, `6560`, `6561`, `6563`, `6565`, `6568`, `6570`, `6572`, `6574`, `6577`, `6579`, `6581`, `6583`, `6584`, `6586`, `6588`, `6590`, `6592`, `6594`, `6596`, `6599`, `6601`, `6603`, `6604`, `6606`, `6608`, `6610`, `6612`, `6614`, `6615`, `6617`, `6619`, `6621`, `6623`, `6624`, `6625`, `6627`, `6629`, `6631`, `6633`, `6636`, `6637`, `6639`, `6641`, `6642`, `6644`, `6646`, `6648`, `6649`, `6651`, `6653`, `6655`, `6657`, `6659`, `6660`, `6662`, `6665`, `6668`, `6670`, `6672`, `6674`, `6676`, `6678`, `6680`, `6682`, `6684`, `6686`, `6688`, `6690`, `6691`, `6692`, `6693`, `6694`, `6695`, `6697`, `6698`, `6700`, `6701`, `6702`, `6704`, `6705`, `6707`, `6709`, `6711`, `6712`, `6714`, `6715`, `6717`, `6718`, `6720`, `6722`, `6724`, `6726`, `6729`, `6731`, `6733`, `6734`, `6735`, `6738`, `6740`, `6741`, `6743`, `6745`, `6747`, `6749`, `6751`, `6753`, `6755`, `6757`, `6759`, `6761`, `6763`, `6765`, `6767`, `6769`, `6771`, `6773`, `6775`, `6777`, `6779`, `6781`, `6783`, `6785`, `6787`, `6788`, `6789`, `6790`, `6791`, `6793`, `6795`, `6796`, `6798`, `6799`, `6800`, `6802`, `6804`, `6805`, `6806`, `6808`, `6810`, `6812`, `6814`, `6815`, `6817`, `6819`, `6821`, `6823`, `6824`, `6826`, `6828`, `6830`, `6831`, `6832`, `6834`, `6836`, `6838`, `6840`, `6842`, `6844`, `6846`, `6848`, `6850`, `6852`, `6853`, `6855`, `6857`, `6859`, `6861`, `6862`, `6864`, `6866`, `6868`, `6870`, `6871`, `6874`, `6876`, `6878`, `6879`, `6881`, `6882`, `6884`, `6886`, `6888`, `6890`, `6892`, `6894`, `6896`, `6898`, `6900`, `6902`, `6904`, `6907`, `6910`, `6912`, `6914`, `6915`, `6917`, `6919`, `6921`, `6922`, `6924`, `6926`, `6928`, `6930`, `6932`, `6934`, `6936`, `6938`, `6940`, `6942`, `6944`, `6946`, `6948`, `6950`, `6952`, `6954`, `6955`, `6956`, `6958`, `6960`, `6962`, `6964`, `6966`, `6968`, `6970`, `6972`, `6974`, `6976`, `6978`, `6979`, `6980`, `6981`, `6983`, `6985`, `6987`, `6989`, `6991`, `6993`, `6995`, `6997`, `6999`, `7000`, `7002`, `7005`, `7007`, `7008`, `7010`, `7012`, `7013`, `7015`, `7017`, `7019`, `7021`, `7023`, `7025`, `7027`, `7029`, `7031`, `7032`, `7034`, `7036`, `7038`, `7040`, `7042`, `7044`, `7046`, `7047`, `7048`, `7050`, `7052`, `7054`, `7056`, `7057`, `7059`, `7061`, `7063`, `7065`, `7067`, `7069`, `7071`, `7073`, `7077`, `7079`, `7081`, `7083`, `7085`, `7086`, `7088`, `7090`, `7092`, `7094`, `7096`, `7098`, `7100`, `7104`, `7107`, `7108`, `7110`, `7112`, `7114`, `7116`, `7118`, `7119`, `7121`, `7122`, `7124`, `7125`, `7128`, `7130`, `7132`, `7133`, `7135`, `7137`, `7139`, `7141`, `7143`, `7145`, `7147`, `7149`, `7150`, `7152`, `7154`, `7156`, `7158`, `7160`, `7162`, `7164`, `7166`, `7168`, `7171`, `7172`, `7174`, `7176`, `7178`, `7180`, `7182`, `7183`, `7185`, `7186`, `7188`, `7190`, `7192`, `7195`, `7197`, `7199`, `7201`, `7203`, `7205`, `7207`, `7208`, `7210`, `7212`, `7214`, `7217`, `7221`, `7223`, `7225`, `7227`, `7229`, `7230`, `7232`, `7234`, `7236`, `7237`, `7239`, `7241`, `7244`, `7246`, `7248`, `7249`, `7251`, `7252`, `7254`, `7256`, `7258`, `7260`, `7262`, `7265`, `7267`, `7269`, `7271`, `7273`, `7275`, `7278`, `7280`, `7282`, `7284`, `7285`, `7287`, `7289`, `7290`, `7293`, `7295`, `7298`, `7300`, `7302`, `7304`, `7306`, `7308`, `7313`, `7314`, `7315`, `7317`, `7319`, `7321`, `7322`, `7324`, `7326`, `7328`, `7330`, `7332`, `7336`, `7338`, `7340`, `7342`, `7344`, `7346`, `7348`, `7350`, `7352`, `7354`, `7355`, `7357`, `7358`, `7359`, `7360`, `7362`, `7364`, `7366`, `7368`, `7370`, `7372`, `7374`, `7376`, `7377`, `7379`, `7380`, `7382`, `7384`, `7386`, `7388`, `7389`, `7391`, `7393`, `7395`, `7397`, `7399`, `7401`, `7402`, `7403`, `7405`, `7406`, `7409`, `7411`, `7413`, `7415`, `7417`, `7419`, `7421`, `7424`, `7426`, `7428`, `7429`, `7433`, `7435`, `7440`, `7441`, `7443`, `7445`, `7448`, `7450`, `7452`, `7455`, `7457`, `7459`, `7461`, `7462`, `7464`, `7466`, `7468`, `7469`, `7471`, `7473`, `7476`, `7478`, `7480`, `7482`, `7484`, `7486`, `7488`, `7490`, `7492`, `7494`, `7496`, `7498`, `7499`, `7501`, `7503`, `7505`, `7507`, `7508`, `7509`, `7511`, `7513`, `7516`, `7518`, `7519`, `7521`, `7522`, `7523`, `7525`, `7527`, `7529`, `7531`, `7533`, `7535`, `7537`, `7539`, `7541`, `7543`, `7545`, `7546`, `7548`, `7551`, `7553`, `7555`, `7557`, `7558`, `7560`, `7562`, `7563`, `7566`, `7568`, `7570`, `7572`, `7574`, `7576`, `7577`, `7578`, `7580`, `7582`, `7585`, `7587`, `7589`, `7590`, `7591`, `7593`, `7594`, `7596`, `7598`, `7600`, `7601`, `7603`, `7605`, `7607`, `7608`, `7610`, `7613`, `7615`, `7617`, `7619`, `7621`, `7622`, `7623`, `7624`, `7626`, `7628`, `7630`, `7633`, `7635`, `7638`, `7639`, `7641`, `7643`, `7645`, `7647`, `7651`, `7653`, `7654`, `7656`, `7658`, `7660`, `7662`, `7664`, `7666`, `7668`, `7670`, `7672`, `7674`, `7676`, `7677`, `7679`, `7681`, `7683`, `7685`, `7687`, `7690`, `7694`, `7696`, `7698`, `7700`, `7702`, `7703`, `7705`, `7707`, `7709`, `7711`, `7713`, `7714`, `7716`, `7718`, `7720`, `7722`, `7723`, `7725`, `7728`, `7730`, `7733`, `7735`, `7736`, `7739`, `7741`, `7744`, `7746`, `7747`, `7749`, `7751`, `7753`, `7754`, `7756`, `7758`, `7760`, `7762`, `7764`, `7766`, `7769`, `7770`, `7772`, `7774`, `7776`, `7777`, `7779`, `7783`, `7785`, `7787`, `7789`, `7791`, `7792`, `7795`, `7797`, `7799`, `7801`, `7803`, `7805`, `7806`, `7808`, `7810`, `7811`, `7813`, `7815`, `7817`, `7819`, `7820`, `7822`, `7825`, `7827`, `7829`, `7831`, `7833`, `7835`, `7837`, `7839`, `7840`, `7841`, `7843`, `7845`, `7846`, `7849`, `7852`, `7854`, `7856`, `7858`, `7859`, `7861`, `7863`, `7865`, `7866`, `7867`, `7868`, `7870`, `7871`, `7872`, `7874`, `7876`, `7878`, `7880`, `7882`, `7884`, `7886`, `7887`, `7889`, `7891`, `7892`, `7894`, `7895`, `7896`, `7898`, `7900`, `7902`, `7904`, `7906`, `7908`, `7910`, `7911`, `7912`, `7914`, `7916`, `7918`, `7920`, `7922`, `7923`, `7925`, `7927`, `7929`, `7931`, `7932`, `7934`, `7936`, `7937`, `7940`, `7941`, `7942`, `7944`, `7946`, `7947`, `7948`, `7950`, `7952`, `7954`, `7956`, `7957`, `7959`, `7961`, `7963`, `7965`, `7966`, `7968`, `7970`, `7971`, `7973`, `7974`, `7976`, `7977`, `7979`, `7981`, `7983`, `7985`, `7987`, `7989`, `7991`, `7993`, `7995`, `7997`, `7999`, `8001`, `8003`, `8004`, `8005`, `8007`, `8009`, `8012`, `8014`, `8016`, `8018`, `8019`, `8021`, `8023`, `8025`, `8026`, `8027`, `8028`, `8030`, `8031`, `8034`, `8036`, `8037`, `8039`, `8041`, `8045`, `8047`, `8049`, `735`, `8051`, `8053`, `8056`, `8057`, `8059`, `8061`, `8063`, `8065`, `8067`, `8069`, `8071`, `8073`, `8075`, `8077`, `8078`, `8080`, `8082`, `8084`, `8086`, `8088`, `8091`, `8092`, `8094`, `8095`, `8097`, `8098`, `8100`, `8102`, `8104`, `8106`, `8108`, `8110`, `8112`, `8114`, `8116`, `8118`, `8120`, `8121`, `8123`, `8125`, `8127`, `8129`, `8131`, `8133`, `8135`, `8136`, `8137`, `8138`, `8140`, `8142`, `8144`, `8146`, `8147`, `8149`, `8151`, `8153`, `8155`, `8157`, `8159`, `8160`, `8162`, `8164`, `8167`, `8168`, `8170`, `8172`, `8173`, `8177`, `8178`, `8180`, `8182`, `8184`, `8186`, `8187`, `8189`, `8191`, `8193`, `8194`, `8196`, `8198`, `8199`, `8201`, `8203`, `8204`, `8206`, `8207`, `8209`, `8211`, `8212`, `8214`, `8216`, `8219`, `8221`, `8223`, `8224`, `8226`, `8228`, `8229`, `8231`, `8233`, `8235`, `8237`, `8239`, `8241`, `8242`, `8244`, `8246`, `8248`, `8250`, `8252`, `8254`, `8256`, `8258`, `8260`, `8261`, `8263`, `8265`, `8270`, `8272`, `8274`, `8275`, `8277`, `8279`, `8281`, `8282`, `8284`, `8286`, `8288`, `8290`, `8291`, `8293`, `8294`, `8296`, `8298`, `8300`, `8302`, `8304`, `8306`, `8307`, `8308`, `8309`, `8311`, `8313`, `8315`, `8317`, `8319`, `8321`, `8323`, `8325`, `8326`, `8328`, `8330`, `8332`, `8334`, `8336`, `8338`, `8340`, `8342`, `8344`, `8346`, `8348`, `8350`, `8352`, `8354`, `8356`, `8358`, `8360`, `8362`, `8363`, `8366`, `8368`, `8370`, `8372`, `8373`, `8375`, `8378`, `8380`, `8382`, `8383`, `8385`, `8387`, `8389`, `8391`, `8393`, `8395`, `8397`, `8399`, `8401`, `8406`, `8407`, `8409`, `8411`, `8413`, `8415`, `8417`, `8419`, `8420`, `8422`, `8424`, `8426`, `8428`, `8429`, `8430`, `8432`, `8433`, `8434`, `8436`, `8438`, `8440`, `8442`, `8444`, `8446`, `8448`, `8450`, `8451`, `8452`, `8454`, `8455`, `8457`, `8461`, `8463`, `8465`, `8467`, `8469`, `8471`, `8473`, `8475`, `8477`, `8479`, `8481`, `8483`, `8485`, `8487`, `8490`, `8492`, `8494`, `8496`, `8498`, `8500`, `8502`, `8504`, `8505`, `8507`, `8509`, `8511`, `8513`, `8514`, `8515`, `8517`, `8519`, `8520`, `8521`, `8523`, `8525`, `8527`, `8529`, `8531`, `8532`, `8534`, `8536`, `8538`, `8540`, `8542`, `8544`, `8546`, `8548`, `8550`, `8552`, `8554`, `8556`, `8558`, `8560`, `8563`, `8565`, `8567`, `8569`, `8571`, `8573`, `8574`, `8577`, `8579`, `8580`, `8581`, `8583`, `8585`, `8586`, `8588`, `8589`, `8591`, `8593`, `8595`, `8597`, `8599`, `8603`, `8604`, `8606`, `8608`, `8609`, `8610`, `8611`, `8614`, `8616`, `8617`, `8618`, `8620`, `8622`, `8624`, `8625`, `8627`, `8629`, `8632`, `8634`, `8639`, `8641`, `8643`, `8645`, `8647`, `8649`, `8651`, `8653`, `8655`, `8657`, `8659`, `8660`, `8662`, `8665`, `8666`, `8667`, `8669`, `8671`, `8674`, `8676`, `8678`, `8680`, `8682`, `8684`, `8686`, `8687`, `8690`, `8692`, `8694`, `8696`, `8697`, `8699`, `8701`, `8703`, `8704`, `8706`, `8707`, `8709`, `8710`, `8713`, `8715`, `8716`, `8718`, `8720`, `3508`, `8722`, `8723`, `8725`, `8727`, `8729`, `8731`, `8733`, `8735`, `8736`, `8737`, `8739`, `8741`, `8742`, `8748`, `8750`, `8751`, `8752`, `8753`, `8755`, `8756`, `8757`, `8759`, `8761`, `8763`, `8765`, `8767`, `8768`, `8770`, `8772`, `8774`, `8775`, `8777`, `8779`, `8781`, `8783`, `8785`, `8787`, `8789`, `8791`, `8793`, `8795`, `8797`, `8799`, `8800`, `8802`, `8805`, `8807`, `8810`, `8812`, `8814`, `8816`, `8818`, `8820`, `8822`, `8823`, `8825`, `8826`, `8828`, `8830`, `8832`, `8834`, `8836`, `8838`, `8840`, `8842`, `8844`, `8845`, `8846`, `8847`, `8849`, `8851`, `8853`, `8855`, `8857`, `8859`, `8861`, `8862`, `8864`, `8866`, `8869`, `8871`, `8873`, `8875`, `8877`, `8879`, `8880`, `8882`, `8884`, `8887`, `8889`, `8891`, `8893`, `8895`, `8896`, `8898`, `8899`, `8901`, `8903`, `8905`, `8906`, `8908`, `8909`, `8910`, `8912`, `8913`, `8915`, `8917`, `8918`, `8920`, `8921`, `8923`, `8924`, `8926`, `8928`, `8930`, `8931`, `8933`, `8935`, `8937`, `8939`, `8941`, `8943`, `8944`, `8945`, `8947`, `8949`, `8951`, `8953`, `8955`, `8956`, `8958`, `8960`, `8962`, `8964`, `8966`, `8968`, `8970`, `8972`, `8974`, `8976`, `8978`, `8980`, `8982`, `8984`, `8985`, `8987`, `8989`, `8991`, `8993`, `8995`, `8997`, `8998`, `9000`, `9002`, `9005`, `9007`, `9009`, `9011`, `9013`, `9015`, `9017`, `9021`, `9023`, `9024`, `9026`, `9028`, `9030`, `9032`, `9034`, `9036`, `9038`, `9040`, `9042`, `9044`, `9046`, `9050`, `9051`, `9053`, `9055`, `9057`, `9059`, `9061`, `9063`, `9065`, `9067`, `9069`, `9071`, `8369`, `9073`, `9074`, `9076`, `9078`, `9080`, `9081`, `9083`, `9085`, `9087`, `9089`, `9091`, `9093`, `9095`, `9097`, `9099`, `9101`, `9102`, `9104`, `9106`, `9107`, `9109`, `9111`, `9115`, `9118`, `9120`, `9122`, `9124`, `9126`, `9128`, `9130`, `9132`, `9134`, `9136`, `9137`, `9139`, `9141`, `9143`, `9145`, `9147`, `9148`, `9150`, `9152`, `9154`, `9156`, `9159`, `9160`, `9162`, `9164`, `9165`, `9167`, `9169`, `9171`, `9173`, `9175`, `9177`, `9179`, `9181`, `9183`, `9184`, `9186`, `9188`, `9190`, `9192`, `9194`, `9196`, `9198`, `9200`, `9202`, `9204`, `9206`, `9208`, `9209`, `9211`, `9213`, `9215`, `9217`, `9218`, `9220`, `9222`, `9224`, `9226`, `9228`, `9230`, `9232`, `9233`, `9235`, `9237`, `9239`, `9241`, `9243`, `9245`, `9247`, `9249`, `9251`, `9253`, `9255`, `9257`, `9259`, `9261`, `9263`, `9264`, `9266`, `9267`, `9269`, `9270`, `9272`, `9273`, `9275`, `9277`, `9279`, `9284`, `9286`, `9287`, `9289`, `9291`, `9292`, `9294`, `9296`, `9298`, `9300`, `9303`, `9305`, `9307`, `9308`, `9310`, `9312`, `9314`, `9316`, `9318`, `9319`, `9320`, `9323`, `9325`, `9326`, `9328`, `9330`, `9332`, `9334`, `9336`, `9338`, `9340`, `9342`, `9344`, `9345`, `9347`, `9348`, `9350`, `9352`, `9354`, `9356`, `9357`, `9359`, `9360`, `9362`, `9364`, `9366`, `9368`, `9370`, `9372`, `9373`, `9375`, `9376`, `9378`, `9380`, `9381`, `9383`, `9385`, `9386`, `9389`, `9391`, `9393`, `9394`, `9396`, `9397`, `9399`, `9400`, `9402`, `9403`, `9407`, `9408`, `9410`, `9412`, `9414`, `9416`, `9418`, `9420`, `9423`, `9426`, `9430`, `9431`, `9433`, `9435`, `9436`, `9438`, `9440`, `9442`, `9444`, `9447`, `9449`, `9451`, `9453`, `9455`, `9457`, `9459`, `9460`, `9463`, `9467`, `9468`, `9470`, `9472`, `9474`, `9476`, `9478`, `9480`, `9482`, `9484`, `9486`, `9487`, `9489`, `9491`, `9493`, `9497`, `9498`, `9500`, `9501`, `9503`, `9504`, `9506`, `9508`, `9510`, `9512`, `9513`, `9515`, `9517`, `9519`, `9521`, `9523`, `9526`, `9529`, `9531`, `9533`, `9535`, `9537`, `9538`, `9540`, `9542`, `9544`, `9546`, `9548`, `9550`, `9552`, `9554`, `9555`, `9557`, `9559`, `9561`, `9563`, `9565`, `9566`, `9568`, `9570`, `9571`, `9572`, `9574`, `9576`, `9578`, `9580`, `9582`, `9583`, `9585`, `9587`, `9589`, `9591`, `9592`, `9594`, `9596`, `9598`, `9600`, `9602`, `9604`, `9606`, `9608`, `9609`, `9611`, `9613`, `9615`, `9617`, `9619`, `9621`, `9623`, `9625`, `9627`, `9629`, `9631`, `9633`, `9634`, `9638`, `9639`, `9640`, `9643`, `9644`, `9647`, `9650`, `9652`, `9654`, `9657`, `9659`, `9661`, `9663`, `9665`, `9667`, `9669`, `9671`, `9673`, `9675`, `9677`, `9679`, `9682`, `9684`, `9686`, `9687`, `9689`, `9691`, `9693`, `9695`, `9698`, `9702`, `9703`, `9705`, `9707`, `9709`, `9711`, `9713`, `9716`, `9718`, `9720`, `9722`, `9723`, `9725`, `9727`, `9728`, `9730`, `9732`, `9734`, `9736`, `9738`, `9740`, `9742`, `9744`, `9746`, `9747`, `9749`, `9751`, `9753`, `9755`, `9757`, `9759`, `9761`, `9764`, `9766`, `9768`, `9770`, `9772`, `9774`, `9776`, `9778`, `9780`, `9782`, `9784`, `9785`, `9787`, `9789`, `9791`, `9792`, `9794`, `9797`, `9798`, `9800`, `9802`, `9803`, `9808`, `9810`, `9812`, `9815`, `9817`, `9819`, `9821`, `9823`, `9825`, `9826`, `9827`, `9829`, `9831`, `9833`, `9835`, `9836`, `9837`, `9840`, `9842`, `9844`, `9845`, `9847`, `9849`, `9851`, `9852`, `9853`, `9855`, `9856`, `9858`, `9860`, `9861`, `9863`, `9865`, `9867`, `9869`, `9871`, `9874`, `9876`, `9878`, `9881`, `9883`, `9885`, `9887`, `9889`, `9891`, `9893`, `9895`, `9898`, `9901`, `9903`, `9904`, `9906`, `9908`, `9910`, `9912`, `9913`, `9915`, `9917`, `9920`, `9921`, `9923`, `9924`, `9926`, `9927`, `9929`, `9931`, `9934`, `9936`, `9937`, `9939`, `9941`, `9944`, `9945`, `9946`, `9947`, `9948`, `9950`, `9952`, `9954`, `9957`, `9961`, `9963`, `9965`, `9967`, `9969`, `9971`, `9974`, `9976`, `9978`, `9980`, `9982`, `9983`, `9985`, `9986`, `9988`, `9989`, `9991`, `9993`, `9995`, `9997`, `9999`, `10001`, `10003`, `10005`, `10006`, `10009`, `10011`, `10014`, `10015`, `10016`, `10017`, `10019`, `10021`, `10023`, `10025`, `10028`, `10029`, `10031`, `10033`, `10034`, `10036`, `10040`, `10041`, `10043`, `10045`, `10047`, `10049`, `10051`, `10053`, `10055`, `10056`, `10057`, `10059`, `10062`, `10064`, `10065`, `10067`, `10069`, `10071`, `10073`, `10075`, `10077`, `10079`, `10081`, `10084`, `10085`, `10087`, `10089`, `10091`, `10093`, `10095`, `10097`, `10098`, `10099`, `10101`, `10103`, `10104`, `10106`, `10107`, `10109`, `10111`, `10113`, `10117`, `10118`, `10119`, `10121`, `10123`, `10125`, `10127`, `10129`, `10131`, `10133`, `10135`, `10137`, `10139`, `10140`, `10142`, `10144`, `10146`, `10148`, `10152`, `10155`, `10157`, `10159`, `10160`, `10162`, `10164`, `10166`, `10168`, `10170`, `10172`, `10175`, `10177`, `10178`, `10179`, `10181`, `10183`, `10184`, `10185`, `10187`, `10189`, `10191`, `10193`, `10195`, `10197`, `10199`, `10201`, `10203`, `10204`, `10206`, `10208`, `10210`, `10212`, `10213`, `10215`, `10217`, `10219`, `10221`, `10223`, `10225`, `10227`, `10229`, `10231`, `10234`, `10235`, `10237`, `10239`, `10241`, `10243`, `10245`, `10247`, `10249`, `10251`, `10253`, `10254`, `10256`, `10258`, `10260`, `10262`, `10264`, `10266`, `10268`, `10270`, `10271`, `10273`, `10275`, `10277`, `10279`, `10281`, `10283`, `10285`, `10287`, `10289`, `10290`, `10292`, `10294`, `10295`, `10297`, `10299`, `10301`, `10303`, `10305`, `10307`, `10309`, `10312`, `10315`, `10319`, `10322`, `10324`, `10326`, `10327`, `10329`, `10331`, `10333`, `10334`, `10336`, `10338`, `10340`, `10342`, `10344`, `10345`, `10347`, `10348`, `10350`, `10351`, `10352`, `10354`, `10356`, `10358`, `10360`, `10362`, `10363`, `10364`, `10366`, `10368`, `10370`, `10372`, `10374`, `10376`, `10378`, `10380`, `10382`, `10384`, `10386`, `10388`, `10389`, `10392`, `10394`, `10396`, `10398`, `10400`, `10401`, `10402`, `10404`, `10406`, `10408`, `10410`, `10412`, `10414`, `10415`, `10417`, `10418`, `10420`, `10422`, `10424`, `10427`, `10430`, `10432`, `10433`, `10435`, `10437`, `10439`, `10441`, `10443`, `10445`, `10447`, `10448`, `10449`, `10451`, `10453`, `10455`, `10457`, `10459`, `10461`, `10463`, `10465`, `10467`, `10470`, `10471`, `10472`, `10474`, `10475`, `10477`, `10479`, `10481`, `10482`, `10483`, `10485`, `10486`, `10487`, `10489`, `10491`, `10493`, `10495`, `10497`, `10499`, `10501`, `10503`, `10505`, `10507`, `10509`, `10511`, `10513`, `10515`, `10517`, `10518`, `10520`, `10522`, `10523`, `10525`, `10527`, `10529`, `10530`, `10531`, `10535`, `10537`, `10539`, `10541`, `10542`, `10544`, `10546`, `10547`, `10549`, `10554`, `10557`, `10558`, `10560`, `10562`, `10564`, `10565`, `10567`, `10568`, `10570`, `10572`, `10574`, `10576`, `10578`, `10580`, `10581`, `10582`, `10584`, `6554`, `10586`, `10588`, `10590`, `10592`, `10594`, `10596`, `10598`, `10599`, `10601`, `10603`, `10605`, `10607`, `10610`, `10612`, `10614`, `10615`, `10617`, `10619`, `10621`, `10623`, `10625`, `10627`, `10629`, `10631`, `10632`, `10634`, `10636`, `10639`, `10641`, `10643`, `10645`, `10647`, `10649`, `10651`, `10653`, `10655`, `10657`, `10659`, `10661`, `10662`, `10666`, `10668`, `10670`, `10672`, `10674`, `10676`, `10678`, `10680`, `10681`, `10683`, `10685`, `10687`, `10689`, `10691`, `10693`, `10695`, `10696`, `10699`, `10701`, `10703`, `10704`, `10706`, `10708`, `10710`, `10711`, `10715`, `10718`, `10720`, `10722`, `10723`, `10725`, `10727`, `10729`, `10731`, `10733`, `10737`, `10739`, `10741`, `10743`, `10745`, `10747`, `10749`, `10750`, `10752`, `10754`, `10755`, `10757`, `10758`, `10760`, `10762`, `10764`, `10766`, `10768`, `10770`, `10772`, `10773`, `10775`, `10777`, `10778`, `10780`, `10782`, `10784`, `10786`, `10788`, `10790`, `10792`, `10794`, `10796`, `10798`, `10800`, `10801`, `10803`, `10805`, `10806`, `10808`, `10809`, `10811`, `10813`, `10815`, `10817`, `10819`, `10824`, `10826`, `10828`, `10829`, `10831`, `10833`, `10835`, `10836`, `10838`, `10840`, `10842`, `10844`, `10846`, `10848`, `10850`, `10855`, `10857`, `10859`, `10862`, `10864`, `10866`, `10868`, `10870`, `10872`, `10875`, `10877`, `10879`, `10880`, `10882`, `10883`, `10884`, `10886`, `10890`, `10892`, `10894`, `10895`, `10896`, `10897`, `10899`, `10901`, `10902`, `10904`, `10906`, `10907`, `10909`, `10912`, `10914`, `10916`, `10918`, `10920`, `10921`, `10923`, `10925`, `10927`, `10929`, `10930`, `10932`, `10933`, `10934`, `10936`, `10938`, `10939`, `10940`, `10943`, `10945`, `10947`, `10949`, `10951`, `10952`, `10953`, `10955`, `10957`, `10959`, `10960`, `10962`, `10964`, `10966`, `10968`, `10970`, `10972`, `10974`, `10975`, `10977`, `10979`, `10981`, `10982`, `10984`, `10988`, `10990`, `10992`, `10994`, `10995`, `10996`, `10998`, `11000`, `11002`, `11004`, `11006`, `11008`, `11009`, `11011`, `11013`, `11015`, `11019`, `11021`, `11023`, `11025`, `11027`, `11029`, `11031`, `11033`, `11035`, `11037`, `11039`, `11040`, `11042`, `11044`, `11046`, `11047`, `11048`, `11049`, `11050`, `11051`, `11053`, `11055`, `11057`, `11059`, `11062`, `11065`, `11067`, `11069`, `11071`, `11072`, `11074`, `11075`, `11080`, `11081`, `11083`, `11085`, `11087`, `11089`, `11090`, `11091`, `11093`, `11095`, `11097`, `11098`, `11100`, `11102`, `11103`, `11104`, `11106`, `11108`, `11110`, `11111`, `11112`, `11116`, `11118`, `11120`, `11124`, `11125`, `11131`, `11134`, `11135`, `11137`, `11138`, `11140`, `11142`, `11144`, `11146`, `11148`, `11150`, `11151`, `11153`, `11155`, `11157`, `11159`, `11160`, `11162`, `11164`, `11166`, `11168`, `11170`, `11172`, `11174`, `11176`, `11177`, `11179`, `11181`, `11183`, `11184`, `11185`, `11187`, `11188`, `11190`, `11192`, `11194`, `11196`, `11198`, `11200`, `11202`, `11203`, `11207`, `11208`, `11210`, `11212`, `11213`, `11215`, `11217`, `11219`, `11221`, `11222`, `11224`, `11226`, `11229`, `11230`, `11232`, `11234`, `11236`, `11239`, `11241`, `11244`, `11246`, `11248`, `11249`, `11251`, `11253`, `11254`, `11256`, `11258`, `11260`, `11262`, `11264`, `11266`, `11268`, `11270`, `11273`, `11274`, `11276`, `11277`, `11279`, `11280`, `11282`, `11284`, `11286`, `11287`, `11289`, `11290`, `11292`, `11294`, `11295`, `11297`, `11299`, `11301`, `11303`, `11304`, `11305`, `11307`, `11309`, `11311`, `11312`, `11314`, `11315`, `7064`, `11317`, `11318`, `11319`, `11321`, `11322`, `11324`, `11326`, `11328`, `11329`, `11332`, `11334`, `11336`, `11337`, `11339`, `11341`, `11343`, `11344`, `11346`, `11348`, `11350`, `11352`, `11355`, `11357`, `11359`, `11361`, `11363`, `11365`, `11367`, `11369`, `11370`, `11372`, `11374`, `11376`, `11378`, `11379`, `11381`, `11382`, `11383`, `11385`, `11386`, `11388`, `11389`, `11392`, `11393`, `11395`, `11397`, `11399`, `11401`, `11402`, `11404`, `11406`, `11407`, `11409`, `11410`, `11412`, `11414`, `11416`, `11418`, `11419`, `11420`, `11422`, `11424`, `11426`, `11428`, `11430`, `11431`, `11433`, `11435`, `11437`, `11439`, `11441`, `11443`, `11445`, `11447`, `11449`, `11450`, `11452`, `11454`, `11456`, `11459`, `11461`, `11462`, `11465`, `11467`, `11469`, `11471`, `11472`, `11473`, `11475`, `11477`, `11479`, `11481`, `11485`, `11487`, `11489`, `11491`, `11493`, `11495`, `11497`, `11498`, `11500`, `11502`, `11504`, `11506`, `11507`, `11509`, `11511`, `11513`, `11515`, `11517`, `11519`, `11521`, `11523`, `11525`, `11527`, `11529`, `11531`, `11533`, `11535`, `11537`, `11539`, `11542`, `11544`, `11546`, `11548`, `11550`, `11551`, `11552`, `11553`, `11555`, `11557`, `11559`, `11561`, `11562`, `11565`, `11567`, `11569`, `11571`, `11573`, `11575`, `11577`, `11579`, `11581`, `11583`, `11585`, `11587`, `11589`, `11591`, `11593`, `11595`, `11597`, `11599`, `11602`, `11604`, `11605`, `11608`, `11610`, `11612`, `11613`, `11615`, `11617`, `11623`, `11626`, `11629`, `11631`, `11632`, `11635`, `11638`, `11640`, `11642`, `11644`, `11646`, `11648`, `11649`, `11651`, `11653`, `11655`, `11657`, `11659`, `11661`, `11663`, `11665`, `11667`, `8961`, `11669`, `11671`, `11673`, `11675`, `11677`, `11680`, `11682`, `11684`, `11685`, `11687`, `11688`, `11690`, `11692`, `11694`, `11696`, `11698`, `11700`, `11702`, `11704`, `11705`, `11707`, `11710`, `11712`, `11714`, `11716`, `11718`, `11719`, `11721`, `11723`, `11727`, `11728`, `11729`, `11731`, `11733`, `11735`, `11737`, `11739`, `11741`, `11742`, `11743`, `11745`, `11747`, `11750`, `11751`, `11752`, `11754`, `11756`, `11758`, `11763`, `11765`, `11767`, `11769`, `11771`, `11772`, `11774`, `11776`, `11778`, `11780`, `11782`, `11784`, `11786`, `11788`, `11789`, `11790`, `11791`, `11793`, `11795`, `11797`, `11799`, `11800`, `11802`, `11804`, `11805`, `11806`, `11807`, `11808`, `11810`, `11811`, `11813`, `11815`, `11817`, `11820`, `11821`, `11823`, `11824`, `11826`, `11828`, `11830`, `11832`, `11834`, `11836`, `11837`, `11838`, `11840`, `11842`, `11844`, `11845`, `11846`, `11848`, `11850`, `11852`, `11853`, `11855`, `11857`, `11859`, `11862`, `11864`, `11866`, `11868`, `11870`, `11872`, `11874`, `11876`, `11877`, `11879`, `11880`, `11881`, `11882`, `11884`, `11885`, `11887`, `11889`, `11891`, `11892`, `11893`, `11894`, `11896`, `11897`, `11898`, `11901`, `11907`, `11909`, `11910`, `11911`, `11913`, `11914`, `11915`, `11917`, `11919`, `11921`, `11923`, `11925`, `11927`, `11928`, `11930`, `11932`, `11933`, `11934`, `11936`, `11938`, `11940`, `11942`, `11945`, `11947`, `11949`, `11951`, `11953`, `11955`, `11956`, `11958`, `11960`, `11962`, `11964`, `11966`, `11968`, `11970`, `11971`, `11973`, `11974`, `11975`, `11976`, `11978`, `11980`, `11982`, `11984`, `11986`, `11988`, `11989`, `11991`, `11993`, `11995`, `11997`, `11998`, `12000`, `12004`, `12006`, `12007`, `12009`, `12011`, `12012`, `12014`, `12016`, `12018`, `12020`, `12022`, `12024`, `12026`, `12028`, `12030`, `12032`, `12035`, `12037`, `12039`, `12040`, `12042`, `12044`, `12046`, `12047`, `12049`, `12051`, `12053`, `12055`, `12057`, `12059`, `12061`, `12063`, `12065`, `12067`, `12069`, `12070`, `12072`, `12075`, `12076`, `12079`, `12081`, `12083`, `12085`, `12087`, `12089`, `12090`, `12092`, `12094`, `12097`, `12099`, `12101`, `12103`, `12106`, `12107`, `12108`, `12109`, `12111`, `12113`, `12116`, `12117`, `12118`, `12120`, `12123`, `12124`, `12126`, `12130`, `12132`, `12134`, `12136`, `12138`, `12141`, `12142`, `12144`, `12146`, `12148`, `12150`, `12152`, `12154`, `12156`, `12158`, `12160`, `12162`, `12164`, `12166`, `12168`, `12169`, `12171`, `12173`, `12175`, `12176`, `12178`, `12180`, `12182`, `12183`, `12185`, `12187`, `12190`, `12192`, `12194`, `12196`, `12198`, `12200`, `12202`, `12204`, `12206`, `12210`, `12211`, `12212`, `12214`, `12215`, `12217`, `12219`, `12221`, `12223`, `12225`, `12227`, `12229`, `12231`, `12233`, `12235`, `12237`, `12239`, `12241`, `12243`, `12244`, `12245`, `12247`, `12249`, `12251`, `12253`, `12255`, `12256`, `12258`, `12260`, `12261`, `12263`, `12265`, `12267`, `12269`, `12271`, `12273`, `12276`, `12278`, `12280`, `12282`, `12284`, `12286`, `12287`, `12290`, `12291`, `12293`, `12297`, `12299`, `12301`, `12303`, `12304`, `12306`, `12308`, `12309`, `12311`, `12312`, `12314`, `12316`, `12318`, `12320`, `12322`, `12324`, `12325`, `12328`, `12330`, `12332`, `12333`, `12334`, `12336`, `12338`, `12340`, `12342`, `12345`, `12346`, `12347`, `12349`, `12351`, `12353`, `12355`, `12356`, `12357`, `12359`, `12361`, `12363`, `12365`, `12367`, `12369`, `12371`, `12373`, `12375`, `12377`, `12379`, `12381`, `12383`, `12385`, `12387`, `12389`, `12391`, `12392`, `12394`, `12395`, `12396`, `12398`, `12400`, `12402`, `12403`, `12405`, `12406`, `12407`, `12409`, `12411`, `12412`, `12414`, `12416`, `12418`, `12420`, `12422`, `12424`, `12426`, `12428`, `12429`, `12431`, `12433`, `12434`, `12436`, `12437`, `12441`, `12443`, `12444`, `12445`, `12447`, `12449`, `12451`, `12453`, `12455`, `12457`, `12459`, `12461`, `12463`, `12465`, `12467`, `12469`, `12471`, `12473`, `12475`, `12477`, `12479`, `12481`, `12483`, `12485`, `12487`, `12488`, `12490`, `12491`, `12493`, `12495`, `12497`, `12498`, `12499`, `12500`, `12502`, `12504`, `12506`, `12508`, `12510`, `12512`, `12514`, `12516`, `12518`, `12520`, `12522`, `12524`, `12526`, `12528`, `12530`, `12533`, `12534`, `12535`, `12537`, `12539`, `12541`, `12542`, `12543`, `12545`, `12547`, `12549`, `12551`, `12553`, `12555`, `12557`, `12559`, `12561`, `12562`, `12563`, `12564`, `12565`, `12567`, `12569`, `12571`, `12573`, `12574`, `12576`, `12578`, `12579`, `12581`, `12583`, `12584`, `12586`, `12587`, `12588`, `12589`, `12591`, `12593`, `12595`, `12597`, `12598`, `12600`, `12602`, `12604`, `12608`, `12610`, `12612`, `12614`, `12616`, `1897`, `12617`, `12619`, `12621`, `12622`, `12624`, `12626`, `12628`, `12630`, `12632`, `12634`, `12636`, `12638`, `12639`, `12641`, `12643`, `12645`, `12647`, `12648`, `12650`, `12652`, `12654`, `12656`, `12658`, `12660`, `12661`, `12663`, `12665`, `12667`, `12669`, `12671`, `12672`, `12674`, `12676`, `12680`, `12682`, `12683`, `12684`, `12686`, `12688`, `12689`, `12691`, `12693`, `12695`, `12696`, `12697`, `12699`, `12701`, `12703`, `12704`, `12707`, `12709`, `12711`, `12712`, `12714`, `12716`, `12718`, `12720`, `12722`, `12724`, `12726`, `12728`, `12730`, `12732`, `12734`, `12736`, `12738`, `12739`, `12741`, `12743`, `12745`, `12748`, `12750`, `12752`, `12754`, `12756`, `12757`, `12759`, `12761`, `12763`, `12764`, `12766`, `12769`, `12771`, `12773`, `12775`, `12777`, `12779`, `12781`, `12783`, `12785`, `12787`, `12789`, `12790`, `12793`, `12795`, `12797`, `12799`, `12801`, `12803`, `12805`, `12806`, `12807`, `12809`, `12811`, `12812`, `12814`, `12816`, `12818`, `12821`, `12824`, `12826`, `12828`, `12830`, `12832`, `12834`, `12836`, `12838`, `12840`, `12842`, `12844`, `12846`, `12848`, `12850`, `12853`, `12855`, `12857`, `12859`, `12860`, `12862`, `12864`, `12866`, `12867`, `12869`, `12870`, `12872`, `12873`, `12875`, `12876`, `12878`, `12879`, `12881`, `12883`, `12884`, `12886`, `12888`, `12891`, `12893`, `12895`, `12897`, `12899`, `12902`, `12904`, `12905`, `12906`, `12908`, `12910`, `12912`, `12914`, `12916`, `12918`, `12921`, `12923`, `12925`, `12926`, `12928`, `12930`, `12932`, `12934`, `12935`, `12936`, `12938`, `12940`, `12941`, `12942`, `12944`, `12946`, `12947`, `12949`, `12950`, `12952`, `12953`, `12955`, `12957`, `12959`, `12961`, `12963`, `12965`, `12966`, `12968`, `12970`, `12972`, `12974`, `12976`, `12978`, `12980`, `12982`, `12984`, `12986`, `12988`, `12990`, `12992`, `12994`, `12996`, `12998`, `12999`, `13001`, `13003`, `13005`, `13007`, `13009`, `13011`, `13013`, `13014`, `13016`, `13018`, `13020`, `13022`, `13024`, `13026`, `13028`, `13030`, `13032`, `13034`, `13036`, `13037`, `13038`, `13040`, `13042`, `13043`, `13044`, `13046`, `13048`, `13050`, `13052`, `13054`, `13056`, `13058`, `13060`, `13061`, `13062`, `13063`, `13065`, `13068`, `13069`, `13070`, `13071`, `13073`, `13075`, `13077`, `13078`, `13080`, `13082`, `13083`, `13084`, `13086`, `13087`, `13090`, `13092`, `13093`, `13095`, `13096`, `13098`, `13100`, `13102`, `13104`, `13106`, `13108`, `13109`, `13111`, `13113`, `13114`, `13116`, `13118`, `13120`, `13122`, `13123`, `13125`, `13126`, `13129`, `13131`, `13133`, `13135`, `13139`, `13140`, `13142`, `13144`, `13146`, `13148`, `13149`, `13150`, `13152`, `13153`, `13155`, `13157`, `13159`, `13161`, `13162`, `13164`, `13166`, `13168`, `13170`, `13172`, `13173`, `13175`, `13177`, `13179`, `13181`, `13183`, `13185`, `13187`, `13189`, `13191`, `13193`, `13194`, `13196`, `13197`, `13198`, `13200`, `13202`, `13204`, `13206`, `13208`, `13211`, `13212`, `13215`, `13217`, `13219`, `13220`, `13222`, `13224`, `13226`, `13227`, `13229`, `13231`, `13233`, `13235`, `13237`, `13238`, `13239`, `13241`, `13243`, `13245`, `13246`, `13247`, `13249`, `13251`, `13252`, `13254`, `13256`, `13257`, `13259`, `13260`, `13262`, `13264`, `13266`, `13270`, `13272`, `13274`, `13276`, `13278`, `13280`, `13282`, `13284`, `13286`, `13288`, `13289`, `13291`, `13294`, `13296`, `13298`, `13300`, `13302`, `13304`, `13305`, `13307`, `13309`, `13311`, `13313`, `13314`, `13316`, `13319`, `13324`, `13327`, `13329`, `13331`, `13332`, `13333`, `13335`, `13337`, `13339`, `13341`, `13343`, `13345`, `13347`, `13349`, `13351`, `13353`, `13355`, `13356`, `13358`, `13360`, `13362`, `13365`, `13367`, `13368`, `13369`, `13371`, `13372`, `13374`, `13376`, `13378`, `13379`, `13381`, `13383`, `13385`, `13387`, `13389`, `13391`, `13395`, `13397`, `13399`, `13401`, `13402`, `13406`, `13408`, `13410`, `13412`, `13414`, `13415`, `13417`, `13419`, `13421`, `13424`, `13426`, `13428`, `13430`, `13432`, `13433`, `13435`, `13436`, `13438`, `13441`, `13443`, `13444`, `13446`, `13448`, `13449`, `13450`, `13452`, `13454`, `13456`, `13458`, `13459`, `13461`, `13463`, `13465`, `13467`, `13468`, `13469`, `13471`, `13473`, `13474`, `13476`, `13477`, `13480`, `13481`, `13482`, `13484`, `13485`, `13487`, `13489`, `13490`, `13491`, `13492`, `13494`, `13496`, `13498`, `13500`, `13502`, `13505`, `13508`, `13510`, `13512`, `13515`, `13517`, `13519`, `13521`, `13523`, `13525`, `13526`, `13528`, `13530`, `13532`, `13535`, `13536`, `13538`, `13540`, `3001`, `13541`, `13543`, `13545`, `13546`, `13548`, `13549`, `13551`, `13553`, `13555`, `13556`, `13557`, `13559`, `13561`, `13563`, `13565`, `13567`, `13569`, `13571`, `13572`, `13573`, `13575`, `13577`, `13579`, `13580`, `13582`, `13584`, `13585`, `13587`, `13589`, `13591`, `13592`, `13594`, `13596`, `13598`, `13600`, `13602`, `13604`, `13606`, `13608`, `13610`, `13611`, `13612`, `13614`, `13616`, `13617`, `13619`, `13621`, `13622`, `13623`, `13625`, `13627`, `13629`, `13631`, `13632`, `13634`, `13636`, `13637`, `13639`, `13640`, `13642`, `13643`, `13645`, `13646`, `13648`, `13650`, `13651`, `13653`, `13655`, `13656`, `13657`, `13659`, `13661`, `13662`, `13663`, `13664`, `13666`, `13668`, `13670`, `13672`, `13674`, `13676`, `13677`, `13679`, `13681`, `13683`, `13685`, `13687`, `13689`, `13690`, `13692`, `13693`, `13695`, `13697`, `13698`, `13700`, `13701`, `13702`, `13704`, `13706`, `13707`, `13708`, `13709`, `13711`, `13714`, `13716`, `13718`, `13721`, `13722`, `13724`, `13726`, `13728`, `13730`, `13731`, `13732`, `13733`, `13734`, `13735`, `13737`, `13738`, `13740`, `13742`, `13744`, `13745`, `13746`, `13747`, `13749`, `13751`, `13753`, `13754`, `13755`, `13758`, `13760`, `13761`, `13763`, `13764`, `13766`, `13768`, `13770`, `13772`, `13774`, `13775`, `13776`, `13777`, `13779`, `13782`, `13784`, `13786`, `13787`, `13789`, `13792`, `13793`, `13795`, `13796`, `13798`, `13800`, `13802`, `13804`, `13806`, `13807`, `13808`, `13810`, `13812`, `13813`, `13815`, `13817`, `13819`, `13820`, `13821`, `13824`, `13826`, `13827`, `13829`, `13830`, `13831`, `13832`, `13833`, `13834`, `13836`, `13838`, `13840`, `13843`, `13847`, `13852`, `13854`, `13856`, `13858`, `13860`, `13861`, `13862`, `13863`, `13865`, `13867`, `13869`, `13871`, `13873`, `13875`, `13876`, `13878`, `13880`, `13881`, `13883`, `13884`, `13886`, `13888`, `13890`, `13892`, `13894`, `13896`, `13897`, `13899`, `13901`, `13903`, `13905`, `13906`, `13907`, `13909`, `13911`, `13912`, `13914`, `13916`, `13917`, `13919`, `13921`, `13922`, `13924`, `13926`, `13928`, `13929`, `13931`, `13933`, `13935`, `13937`, `13938`, `13940`, `13943`, `13945`, `13947`, `13949`, `13950`, `13951`, `13953`, `13956`, `13957`, `13959`, `13960`, `13962`, `13965`, `13967`, `13969`, `13972`, `13975`, `13976`, `13978`, `13979`, `13982`, `13983`, `13984`, `13987`, `13989`, `13991`, `13993`, `13994`, `13996`, `13998`, `14000`, `14003`, `14005`, `14008`, `14009`, `14010`, `14011`, `14013`, `14015`, `14017`, `14019`, `14021`, `14026`, `14029`, `14031`, `14033`, `14034`, `14035`, `14038`, `14040`, `14041`, `14042`, `14046`, `14047`, `14049`, `14051`, `14053`, `14055`, `14057`, `14059`, `14061`, `14065`, `14066`, `14068`, `14070`, `14071`, `14073`, `14074`, `14075`, `14076`, `14078`, `14080`, `14082`, `14084`, `14086`, `14087`, `14089`, `14092`, `14094`, `14096`, `14098`, `14099`, `14101`, `14103`, `14104`, `14106`, `14108`, `14110`, `14112`, `14113`, `14116`, `14118`, `14119`, `14120`, `14122`, `14124`, `14127`, `14129`, `14130`, `14132`, `14134`, `14135`, `14137`, `14139`, `14141`, `14143`, `14145`, `14146`, `14147`, `14149`, `14151`, `14153`, `14156`, `14159`, `14161`, `14163`, `14165`, `14167`, `14169`, `14171`, `14173`, `14175`, `14176`, `14178`, `14180`, `14183`, `14184`, `14186`, `14188`, `14190`, `14192`, `14194`, `14196`, `14197`, `14198`, `14199`, `14202`, `14204`, `14206`, `14208`, `14210`, `14212`, `14214`, `14215`, `14217`, `14218`, `14219`, `14221`, `14223`, `14224`, `14226`, `14228`, `14230`, `14232`, `14233`, `14235`, `14236`, `14237`, `14239`, `14240`, `14243`, `14246`, `14247`, `14248`, `14249`, `14251`, `14252`, `14254`, `14256`, `14258`, `14260`, `14262`, `14263`, `14264`, `14265`, `14267`, `14269`, `14272`, `14274`, `14275`, `14277`, `14279`, `14280`, `14282`, `14283`, `14285`, `14286`, `14287`, `14289`, `14291`, `14292`, `14294`, `14296`, `14298`, `14300`, `14302`, `14303`, `14304`, `14306`, `14308`, `14310`, `14311`, `14312`, `14314`, `14316`, `14318`, `14320`, `14322`, `14324`, `14326`, `14328`, `14329`, `14331`, `14333`, `14335`, `14337`, `14339`, `14341`, `14343`, `14345`, `14347`, `14350`, `14352`, `14354`, `14356`, `14359`, `14361`, `14363`, `14365`, `14367`, `14369`, `14373`, `14374`, `14375`, `14377`, `14379`, `14381`, `14383`, `14384`, `14385`, `14387`, `14389`, `14391`, `14392`, `14393`, `14395`, `14397`, `14399`, `14401`, `14403`, `14404`, `14409`, `14411`, `14413`, `14415`, `14417`, `14419`, `14424`, `14426`, `14428`, `14430`, `14431`, `14432`, `14434`, `14435`, `14436`, `14438`, `14439`, `14441`, `14443`, `14445`, `14447`, `14449`, `14451`, `14453`, `14455`, `14457`, `14459`, `14460`, `14463`, `14465`, `14467`, `14469`, `14471`, `14472`, `14474`, `14475`, `14477`, `14479`, `14481`, `14482`, `14483`, `14485`, `14488`, `14490`, `14492`, `14495`, `14496`, `14498`, `14500`, `14502`, `14504`, `14506`, `14508`, `14509`, `14511`, `14513`, `14514`, `14516`, `14518`, `14520`, `14523`, `14525`, `14527`, `14528`, `14530`, `14532`, `14533`, `14535`, `14536`, `14538`, `14539`, `14541`, `14542`, `14543`, `14545`, `14547`, `14549`, `14551`, `14552`, `14553`, `14554`, `14556`, `14558`, `14560`, `14562`, `14563`, `14565`, `14567`, `14569`, `14571`, `14572`, `14574`, `14576`, `14577`, `14578`, `14580`, `14582`, `14584`, `14585`, `14587`, `14589`, `14592`, `14593`, `14595`, `14597`, `14599`, `14601`, `14603`, `14604`, `14605`, `14607`, `14609`, `14611`, `14613`, `14614`, `14615`, `14616`, `14618`, `14620`, `14622`, `14624`, `14626`, `14627`, `14629`, `14631`, `14633`, `14635`, `14637`, `14639`, `14643`, `14645`, `14648`, `14650`, `14652`, `14653`, `14655`, `14656`, `14657`, `14659`, `14661`, `14663`, `14664`, `14666`, `14668`, `14669`, `14671`, `14673`, `14675`, `14677`, `14679`, `14681`, `14683`, `14685`, `14687`, `14689`, `14691`, `14693`, `14694`, `14696`, `14697`, `14699`, `14700`, `14702`, `14703`, `14705`, `14707`, `14709`, `14711`, `14712`, `14714`, `14715`, `14716`, `14718`, `14720`, `14723`, `14724`, `14725`, `14727`, `14729`, `14730`, `14731`, `14732`, `14733`, `14735`, `14737`, `14739`, `14740`, `14742`, `14744`, `14746`, `14747`, `14748`, `14750`, `14752`, `14754`, `14755`, `14756`, `14758`, `14760`, `14762`, `14764`, `14766`, `14768`, `14770`, `14772`, `14774`, `14776`, `14778`, `14780`, `14782`, `14784`, `14787`, `14788`, `14790`, `14792`, `14796`, `14798`, `14799`, `14800`, `14802`, `14804`, `14805`, `14807`, `14809`, `14810`, `14812`, `14814`, `14816`, `14817`, `14818`, `14819`, `14820`, `14823`, `14825`, `14826`, `14827`, `14828`, `14829`, `14831`, `14833`, `14835`, `14836`, `14838`, `14840`, `14841`, `14843`, `14845`, `14846`, `14848`, `14850`, `14852`, `14853`, `14855`, `14857`, `14859`, `14861`, `14863`, `14865`, `14867`, `14868`, `14870`, `14871`, `14875`, `14877`, `14878`, `14879`, `14882`, `14885`, `14887`, `14889`, `14891`, `14893`, `14895`, `14897`, `14898`, `14900`, `14902`, `14904`, `14906`, `14908`, `14911`, `14912`, `14914`, `14916`, `14918`, `14920`, `14921`, `14922`, `14924`, `14926`, `14928`, `14929`, `14931`, `14934`, `14935`, `14937`, `14939`, `14941`, `14943`, `14945`, `14946`, `14950`, `14952`, `14953`, `14954`, `14955`, `14957`, `14958`, `14961`, `14963`, `14965`, `14967`, `14969`, `14971`, `14972`, `14974`, `14976`, `14978`, `14980`, `14982`, `14984`, `14987`, `14988`, `14990`, `14992`, `14993`, `14995`, `14997`, `14998`, `14999`, `15000`, `15003`, `15005`, `15007`, `15009`, `15011`, `15012`, `15013`, `15015`, `15017`, `15019`, `15022`, `15024`, `15025`, `15027`, `15028`, `15030`, `15032`, `15034`, `15035`, `15036`, `15038`, `15040`, `15042`, `15044`, `15046`, `15047`, `15048`, `15050`, `15052`, `15053`, `15054`, `15055`, `15057`, `15058`, `15059`, `15061`, `15064`, `15066`, `15067`, `15069`, `15071`, `15073`, `15078`, `15080`, `15082`, `15084`, `15085`, `15086`, `15087`, `15089`, `15091`, `15093`, `15094`, `15095`, `15097`, `15099`, `15101`, `15102`, `15103`, `15104`, `15106`, `15108`, `15109`, `15110`, `15112`, `15114`, `15117`, `15118`, `15120`, `15122`, `15125`, `15127`, `15129`, `15131`, `15132`, `15134`, `15135`, `15137`, `15138`, `15139`, `15140`, `15141`, `15142`, `15144`, `15146`, `15148`, `15150`, `15153`, `15154`, `15157`, `15158`, `15160`, `15161`, `15162`, `15163`, `15165`, `15169`, `15171`, `15173`, `15174`, `15176`, `15177`, `15178`, `15179`, `15181`, `15182`, `15183`, `15185`, `15187`, `15188`, `15190`, `15191`, `15193`, `15195`, `15196`, `15197`, `15200`, `15201`, `15203`, `15204`, `15205`, `15207`, `15209`, `15210`, `15211`, `15213`, `15215`, `15216`, `15194`, `15218`, `15219`, `15221`, `15223`, `15225`, `15227`, `15229`, `15231`, `15236`, `15238`, `15239`, `15241`, `15243`, `15245`, `15247`, `15248`, `15250`, `15251`, `15253`, `15255`, `15256`, `15258`, `15260`, `15264`, `15266`, `15268`, `15269`, `15271`, `15272`, `15273`, `15275`, `15277`, `15279`, `15281`, `15282`, `15285`, `15287`, `15289`, `15291`, `15292`, `15294`, `15296`, `15298`, `15300`, `15301`, `15303`, `15304`, `15306`, `15307`, `15309`, `15310`, `15312`, `15314`, `15315`, `15317`, `15319`, `15320`, `15322`, `15324`, `15326`, `15328`, `15330`, `15332`, `15334`, `15336`, `15337`, `15338`, `15340`, `15341`, `15343`, `15344`, `15346`, `15348`, `15349`, `15351`, `15353`, `15355`, `15357`, `15358`, `15360`, `15362`, `15364`, `15366`, `15368`, `15369`, `15371`, `15373`, `15375`, `15377`, `15379`, `15381`, `15383`, `15385`, `15387`, `15389`, `15391`, `15393`, `15394`, `15395`, `15397`, `15399`, `15402`, `15404`, `15405`, `15406`, `15407`, `15409`, `15411`, `15413`, `15415`, `15417`, `15419`, `15421`, `15422`, `15424`, `15425`, `15427`, `15429`, `15430`, `15432`, `15433`, `15435`, `15437`, `15439`, `15441`, `15442`, `15444`, `15446`, `15448`, `15450`, `15452`, `15454`, `15455`, `15457`, `15462`, `15463`, `15465`, `15467`, `15469`, `15470`, `15471`, `15473`, `15475`, `15477`, `15479`, `15483`, `15485`, `15487`, `15489`, `15493`, `15495`, `15497`, `15499`, `15501`, `15504`, `15507`, `15509`, `15511`, `15513`, `15515`, `15517`, `15518`, `15520`, `15521`, `15523`, `15525`, `15526`, `15527`, `15529`, `15531`, `15533`, `15536`, `15537`, `15539`, `15540`, `15542`, `15544`, `15546`, `15547`, `15549`, `15550`, `15552`, `15554`, `15557`, `15559`, `15561`, `15562`, `15564`, `15566`, `15568`, `15570`, `15572`, `15574`, `15576`, `15578`, `15580`, `15582`, `15584`, `15586`, `15587`, `15589`, `15591`, `15592`, `15593`, `15594`, `15596`, `15597`, `15599`, `15601`, `15603`, `15605`, `15607`, `15609`, `15611`, `15613`, `15615`, `15617`, `15620`, `15622`, `15624`, `15626`, `15627`, `15629`, `15631`, `15633`, `15634`, `15636`, `15638`, `15640`, `15642`, `15643`, `15645`, `15647`, `15649`, `15650`, `15651`, `15653`, `15655`, `15657`, `15658`, `15660`, `15661`, `15664`, `15666`, `15669`, `15671`, `15673`, `15674`, `15676`, `15678`, `15680`, `15681`, `15683`, `15685`, `15687`, `15689`, `15690`, `15692`, `15693`, `15695`, `15696`, `15698`, `15700`, `15702`, `15704`, `15705`, `15707`, `15709`, `15711`, `15713`, `6792`, `15714`, `15716`, `15718`, `15722`, `15723`, `15725`, `15727`, `15728`, `15729`, `15730`, `15732`, `15734`, `15736`, `15737`, `15739`, `15741`, `15743`, `15744`, `15746`, `15747`, `15749`, `15751`, `15756`, `15758`, `15759`, `15764`, `15765`, `15766`, `15768`, `15770`, `15772`, `15774`, `15777`, `15779`, `15781`, `15785`, `15786`, `15788`, `15789`, `15790`, `15791`, `15793`, `15794`, `15796`, `15798`, `15800`, `15803`, `15804`, `15805`, `15807`, `15809`, `15813`, `15815`, `15817`, `15818`, `15819`, `15821`, `15823`, `15825`, `15827`, `15829`, `15831`, `15833`, `15834`, `15837`, `15838`, `15840`, `15841`, `15843`, `15844`, `15846`, `15847`, `15849`, `15850`, `15854`, `15855`, `15856`, `15862`, `15864`, `15866`, `15868`, `15869`, `15871`, `15873`, `15875`, `15877`, `15878`, `15881`, `15883`, `15885`, `15887`, `15888`, `15890`, `15892`, `15894`, `15896`, `15898`, `15900`, `15901`, `15902`, `15904`, `15906`, `15911`, `15913`, `15914`, `15915`, `15917`, `15919`, `15921`, `15923`, `15925`, `15926`, `15928`, `15929`, `15931`, `15932`, `15934`, `15936`, `15938`, `15941`, `15943`, `15945`, `15947`, `15948`, `15950`, `15952`, `15953`, `15955`, `15957`, `15959`, `15961`, `15962`, `15964`, `15966`, `15968`, `15970`, `15972`, `15974`, `15976`, `15978`, `15980`, `15982`, `15984`, `15986`, `15988`, `15989`, `15991`, `15992`, `15994`, `15996`, `15997`, `15999`, `16001`, `16002`, `16003`, `16005`, `16006`, `16008`, `16009`, `16011`, `16012`, `16014`, `16016`, `16017`, `16019`, `16023`, `16025`, `16027`, `16029`, `16031`, `16032`, `16034`, `16036`, `16037`, `16039`, `16041`, `16043`, `16045`, `16046`, `16047`, `16048`, `16050`, `16052`, `16054`, `16056`, `16057`, `16059`, `16061`, `16063`, `16064`, `16065`, `16067`, `16069`, `16070`, `16071`, `16072`, `16073`, `16074`, `16076`, `16078`, `16080`, `16081`, `16083`, `16085`, `16087`, `16089`, `16091`, `16093`, `16095`, `16097`, `16099`, `16101`, `16102`, `16104`, `16106`, `16108`, `16111`, `16112`, `16113`, `16115`, `16116`, `16118`, `16120`, `16121`, `16123`, `16125`, `16127`, `16129`, `16130`, `16134`, `16136`, `16138`, `16140`, `16142`, `16144`, `16145`, `16147`, `16149`, `16151`, `16153`, `16155`, `16156`, `16158`, `16160`, `16161`, `16163`, `16164`, `16166`, `16169`, `16171`, `16173`, `16174`, `16176`, `16179`, `16181`, `16184`, `16185`, `16187`, `16188`, `16190`, `16192`, `16193`, `16194`, `16196`, `16198`, `16200`, `16202`, `16204`, `16206`, `16207`, `16208`, `16210`, `16213`, `16214`, `16216`, `16218`, `16219`, `16221`, `16223`, `16225`, `16228`, `16230`, `16234`, `16236`, `16237`, `16239`, `16241`, `16242`, `16243`, `16245`, `2856`, `16246`, `16248`, `16249`, `16251`, `16253`, `16255`, `16257`, `16259`, `16261`, `16263`, `16265`, `16267`, `16269`, `16271`, `16273`, `16275`, `16276`, `16277`, `16279`, `16281`, `16283`, `16285`, `16287`, `16289`, `16291`, `16292`, `16294`, `16296`, `16298`, `16300`, `16302`, `16305`, `16308`, `16310`, `16315`, `16317`, `16318`, `16319`, `16321`, `16325`, `16328`, `16329`, `16332`, `16334`, `16335`, `16337`, `16338`, `16339`, `16341`, `16343`, `16345`, `16347`, `16349`, `16350`, `16352`, `16354`, `16356`, `16358`, `16360`, `16362`, `16363`, `16365`, `16368`, `16370`, `16373`, `16375`, `16377`, `16378`, `16379`, `16381`, `16383`, `16384`, `16385`, `16387`, `16389`, `16391`, `16393`, `16394`, `16396`, `16397`, `16399`, `16400`, `16401`, `16402`, `16404`, `16406`, `16407`, `16409`, `16411`, `16413`, `16415`, `16417`, `16419`, `16420`, `16421`, `16422`, `16424`, `16426`, `16427`, `16429`, `16431`, `16432`, `16434`, `16436`, `16437`, `16438`, `16441`, `16442`, `16444`, `16446`, `16448`, `16450`, `16452`, `16453`, `16455`, `16457`, `16458`, `16459`, `16461`, `16462`, `16464`, `16466`, `16467`, `16469`, `16470`, `16471`, `16474`, `16475`, `16477`, `16478`, `16480`, `16481`, `16483`, `16485`, `16487`, `16488`, `16490`, `16491`, `16492`, `16494`, `16496`, `16497`, `16499`, `16501`, `16503`, `16505`, `16507`, `16508`, `16509`, `16513`, `16514`, `16516`, `16518`, `16520`, `16522`, `16523`, `16524`, `16525`, `16527`, `16529`, `16531`, `16532`, `16533`, `16534`, `16535`, `16537`, `16539`, `16541`, `16543`, `16544`, `16546`, `16548`, `16552`, `16553`, `16555`, `16557`, `16559`, `16562`, `16563`, `16565`, `16568`, `16570`, `16572`, `16574`, `16576`, `16578`, `16579`, `16581`, `16583`, `16585`, `16587`, `16589`, `16590`, `16591`, `16592`, `16594`, `16596`, `16598`, `16600`, `16602`, `16603`, `16605`, `16606`, `16608`, `16610`, `16612`, `16614`, `16615`, `16617`, `16618`, `16620`, `16622`, `16624`, `16626`, `16628`, `16630`, `16631`, `16633`, `16635`, `16637`, `16639`, `16640`, `16642`, `16643`, `16645`, `16646`, `16648`, `16649`, `16650`, `16652`, `16654`, `16656`, `16659`, `16661`, `16662`, `16664`, `16666`, `16668`, `16670`, `16672`, `16674`, `16676`, `16678`, `16679`, `16680`, `16682`, `16683`, `16685`, `16686`, `16688`, `16689`, `16690`, `16691`, `16693`, `16695`, `16698`, `16699`, `16701`, `16702`, `16704`, `16705`, `16707`, `16708`, `16710`, `16712`, `16715`, `16717`, `16719`, `16720`, `16721`, `16723`, `16725`, `16727`, `16729`, `16731`, `16733`, `16734`, `16736`, `16738`, `16740`, `16741`, `16744`, `16745`, `16746`, `16748`, `16749`, `16751`, `16753`, `16755`, `16757`, `16758`, `16760`, `16764`, `16766`, `16768`, `16770`, `16772`, `16774`, `16775`, `16778`, `16780`, `16782`, `16784`, `16785`, `16786`, `16788`, `16789`, `16792`, `16794`, `16795`, `16797`, `16799`, `16802`, `16803`, `16807`, `16809`, `16811`, `16812`, `16814`, `16816`, `16818`, `16819`, `16820`, `16822`, `16824`, `16826`, `16828`, `16830`, `16832`, `16833`, `16835`, `16837`, `16839`, `16840`, `16841`, `16842`, `16844`, `16846`, `16847`, `16849`, `16850`, `16852`, `16854`, `16856`, `16858`, `16860`, `16862`, `16864`, `16865`, `16867`, `16868`, `16869`, `16871`, `16872`, `16873`, `16874`, `16876`, `16878`, `16880`, `16882`, `16883`, `16885`, `16886`, `16888`, `16889`, `16891`, `16893`, `16895`, `16896`, `16898`, `16900`, `16902`, `16904`, `16906`, `16908`, `16910`, `16912`, `16914`, `16916`, `16918`, `16920`, `16922`, `16924`, `16926`, `16927`, `16929`, `16930`, `16932`, `16934`, `16935`, `16936`, `16938`, `16940`, `16942`, `16943`, `16945`, `16947`, `16949`, `16951`, `16953`, `16955`, `16957`, `16959`, `16961`, `16962`, `16964`, `16965`, `16967`, `16968`, `16969`, `16970`, `16971`, `16973`, `16974`, `16975`, `16977`, `16978`, `16980`, `16982`, `16984`, `16985`, `16986`, `16988`, `16989`, `16991`, `16993`, `16995`, `16996`, `16998`, `16999`, `17000`, `17002`, `17003`, `17008`, `17009`, `17011`, `17013`, `17015`, `17017`, `17019`, `17020`, `17022`, `17024`, `17026`, `17028`, `17029`, `17030`, `17034`, `17036`, `17038`, `17040`, `17042`, `17043`, `17045`, `17047`, `17048`, `17050`, `17052`, `17054`, `17055`, `17057`, `17059`, `17061`, `17062`, `17064`, `17066`, `17068`, `17070`, `17072`, `17074`, `17078`, `17080`, `17081`, `17083`, `17085`, `17087`, `17089`, `17090`, `17091`, `17093`, `17095`, `17097`, `17098`, `17099`, `17100`, `17102`, `17104`, `17105`, `17107`, `17109`, `17111`, `17113`, `17115`, `17117`, `17119`, `17120`, `17121`, `17123`, `17125`, `17126`, `17128`, `17130`, `17131`, `17132`, `17134`, `17136`, `17137`, `17138`, `17140`, `17142`, `17144`, `17145`, `17147`, `17149`, `17150`, `17151`, `17152`, `17153`, `17154`, `17156`, `17158`, `17159`, `17161`, `17162`, `17164`, `17165`, `17167`, `17168`, `17170`, `17173`, `17175`, `17177`, `17179`, `17180`, `17181`, `17185`, `17187`, `17188`, `17191`, `17192`, `17194`, `17196`, `17198`, `17200`, `17202`, `17207`, `17209`, `17210`, `17212`, `17215`, `17217`, `17219`, `17221`, `17222`, `17223`, `17225`, `17226`, `17228`, `17230`, `17232`, `17233`, `17235`, `17236`, `17237`, `17240`, `17242`, `17244`, `17245`, `17247`, `17249`, `17251`, `17253`, `17255`, `17257`, `17259`, `17261`, `17263`, `17264`, `17266`, `17268`, `17269`, `17271`, `17273`, `17275`, `17277`, `17278`, `17280`, `17282`, `17284`, `17286`, `17288`, `17290`, `17292`, `17294`, `17295`, `17297`, `17299`, `17301`, `17302`, `17306`, `17308`, `17310`, `17312`, `17314`, `17316`, `17318`, `17320`, `17322`, `17324`, `17326`, `17328`, `17330`, `17331`, `17334`, `17336`, `17338`, `17341`, `17342`, `17343`, `17346`, `17347`, `17348`, `17350`, `17351`, `17353`, `17354`, `17356`, `17358`, `17362`, `17366`, `17368`, `17369`, `17371`, `17372`, `17373`, `17375`, `17376`, `17378`, `17380`, `17382`, `17387`, `17389`, `17391`, `17392`, `17394`, `17396`, `17398`, `17399`, `17401`, `17402`, `17404`, `17405`, `17406`, `17407`, `17408`, `17410`, `17411`, `17413`, `17414`, `17416`, `17418`, `17419`, `17421`, `17423`, `17425`, `17427`, `17429`, `17431`, `17433`, `17435`, `17439`, `17443`, `17444`, `17445`, `17447`, `17449`, `17451`, `17453`, `17456`, `17458`, `17459`, `17460`, `17462`, `17463`, `17465`, `17467`, `17468`, `17470`, `17472`, `17473`, `17475`, `17477`, `17479`, `17481`, `17482`, `17484`, `17486`, `17487`, `17489`, `17491`, `17493`, `17496`, `17498`, `17500`, `17502`, `17504`, `17506`, `17508`, `17510`, `17512`, `17514`, `17516`, `17517`, `17519`, `17521`, `17523`, `17525`, `17527`, `17529`, `17530`, `17531`, `17533`, `17535`, `17537`, `17539`, `17541`, `17543`, `17544`, `17546`, `17548`, `17551`, `17553`, `17555`, `17557`, `17559`, `17560`, `17562`, `17564`, `17566`, `17568`, `17569`, `17571`, `17573`, `17575`, `17576`, `17578`, `17579`, `17581`, `17583`, `17584`, `17585`, `17586`, `17588`, `17589`, `17590`, `17592`, `17594`, `17596`, `17598`, `17599`, `17600`, `17602`, `17604`, `17606`, `17608`, `17610`, `17611`, `17613`, `17614`, `17616`, `17618`, `17620`, `17622`, `17624`, `17628`, `17629`, `17630`, `17632`, `17634`, `17636`, `17637`, `17639`, `17641`, `17643`, `17647`, `17649`, `17650`, `17654`, `17657`, `17663`, `17664`, `17666`, `17668`, `17669`, `17670`, `17672`, `17674`, `17675`, `17677`, `17679`, `17680`, `17681`, `17683`, `17684`, `17685`, `17688`, `17690`, `17691`, `17694`, `17695`, `17696`, `17697`, `17699`, `17700`, `17702`, `17703`, `17705`, `17707`, `17709`, `17711`, `17712`, `17713`, `17715`, `17717`, `17719`, `17720`, `17722`, `17724`, `17726`, `17727`, `17728`, `17729`, `17731`, `17732`, `17734`, `17736`, `17738`, `17739`, `17741`, `17743`, `17745`, `17747`, `17750`, `17751`, `17752`, `17754`, `17755`, `17757`, `17759`, `17760`, `17762`, `17764`, `17765`, `17766`, `17767`, `17769`, `17771`, `17773`, `17775`, `17777`, `17778`, `17780`, `17781`, `17783`, `17786`, `17788`, `17790`, `17792`, `17794`, `17796`, `17797`, `17799`, `17801`, `17803`, `17806`, `17808`, `17810`, `17812`, `17814`, `17816`, `17818`, `17820`, `17821`, `17823`, `17825`, `17827`, `17829`, `17831`, `17833`, `17835`, `17837`, `17839`, `17841`, `17843`, `17845`, `17847`, `17849`, `17851`, `17853`, `17855`, `17857`, `17859`, `17861`, `17863`, `17864`, `17866`, `17868`, `17870`, `17872`, `17873`, `17874`, `17876`, `17877`, `17879`, `17881`, `17883`, `17886`, `17887`, `17889`, `17891`, `8806`, `17893`, `17894`, `17896`, `17898`, `17900`, `17903`, `17904`, `17906`, `17908`, `17910`, `17911`, `17913`, `17915`, `17917`, `17919`, `17920`, `17921`, `17923`, `17925`, `17927`, `17928`, `17932`, `17934`, `17936`, `17938`, `17940`, `17942`, `17944`, `17946`, `17948`, `17952`, `17954`, `17956`, `17958`, `17960`, `17962`, `17964`, `17966`, `17968`, `17970`, `17972`, `17974`, `17975`, `17976`, `17977`, `17979`, `17980`, `17982`, `17983`, `17985`, `17988`, `17990`, `17993`, `17994`, `17996`, `17997`, `17998`, `17999`, `18001`, `18003`, `18005`, `18006`, `18007`, `18009`, `18011`, `18013`, `18015`, `18017`, `18019`, `18021`, `18023`, `18025`, `18026`, `18027`, `18028`, `18029`, `18031`, `18033`, `18035`, `18037`, `18038`, `18040`, `18045`, `18047`, `18049`, `18051`, `18052`, `18054`, `18055`, `18057`, `18059`, `18061`, `18063`, `18065`, `18066`, `18069`, `18070`, `18072`, `18073`, `18075`, `18077`, `18079`, `18081`, `18082`, `18083`, `18085`, `18086`, `18087`, `18088`, `18090`, `18092`, `18093`, `18094`, `18096`, `18097`, `18099`, `18100`, `18102`, `18104`, `18106`, `18108`, `18110`, `18111`, `18113`, `18115`, `18117`, `18118`, `18120`, `18122`, `18123`, `18124`, `18126`, `18128`, `18133`, `18135`, `18136`, `18138`, `18140`, `18142`, `18144`, `18146`, `18148`, `18150`, `18151`, `18152`, `18153`, `18155`, `18157`, `18159`, `18161`, `18162`, `18163`, `18166`, `18168`, `18169`, `18171`, `18172`, `18175`, `18176`, `18178`, `18180`, `18182`, `18183`, `18185`, `18187`, `18189`, `18190`, `18192`, `18194`, `18195`, `18197`, `18199`, `18200`, `18202`, `18204`, `18206`, `18208`, `18209`, `18212`, `18214`, `18215`, `18217`, `18219`, `18220`, `18223`, `18224`, `18225`, `18227`, `18229`, `18231`, `18232`, `18234`, `18236`, `18238`, `18240`, `18242`, `18244`, `18245`, `18247`, `18250`, `18252`, `18256`, `18260`, `18261`, `18263`, `18265`, `18267`, `18268`, `18270`, `18272`, `18273`, `18275`, `18277`, `18278`, `18279`, `18280`, `18282`, `18283`, `18285`, `18286`, `18287`, `18289`, `18290`, `18292`, `18294`, `18295`, `18296`, `18297`, `18299`, `18303`, `18305`, `18306`, `18308`, `18309`, `18311`, `18312`, `18313`, `18315`, `18317`, `18319`, `18321`, `18323`, `18325`, `18326`, `18328`, `18329`, `18331`, `18333`, `18334`, `18336`, `18338`, `18340`, `18341`, `18343`, `18345`, `18346`, `18348`, `18349`, `18350`, `18352`, `18354`, `18355`, `18357`, `18358`, `18359`, `18361`, `18362`, `18364`, `18366`, `18368`, `18370`, `18372`, `18373`, `18375`, `18377`, `18380`, `18384`, `18390`, `18392`, `18394`, `18396`, `18398`, `18402`, `18404`, `18405`, `18407`, `18409`, `18411`, `18413`, `18416`, `18418`, `18420`, `18422`, `18424`, `18426`, `18428`, `1074`, `18430`, `18432`, `18434`, `18436`, `18438`, `18440`, `18442`, `18444`, `18446`, `18448`, `18450`, `18452`, `18454`, `18455`, `18456`, `18457`, `18459`, `18460`, `18462`, `18463`, `18465`, `18466`, `18468`, `18470`, `18472`, `18474`, `18475`, `18477`, `18479`, `18482`, `18484`, `18485`, `18487`, `18489`, `18491`, `18494`, `18495`, `18497`, `18499`, `18501`, `18502`, `18504`, `18505`, `18506`, `18507`, `18509`, `18511`, `18513`, `18515`, `18517`, `18518`, `18520`, `18522`, `18524`, `18526`, `18527`, `18529`, `18530`, `18532`, `18534`, `18535`, `18536`, `18537`, `18539`, `18541`, `18543`, `18545`, `18547`, `18550`, `18551`, `18553`, `18555`, `18558`, `18560`, `18562`, `18564`, `18566`, `18568`, `18571`, `18573`, `18575`, `18581`, `18583`, `18585`, `18586`, `18588`, `18589`, `18591`, `18593`, `18597`, `18598`, `18600`, `18602`, `18604`, `18606`, `18608`, `18609`, `18610`, `18612`, `18614`, `18615`, `18617`, `18618`, `18620`, `18621`, `18622`, `18623`, `18625`, `18627`, `18629`, `18631`, `18632`, `18634`, `18637`, `18638`, `18641`, `18642`, `18644`, `18646`, `18647`, `18649`, `18651`, `18654`, `18656`, `18658`, `18659`, `18661`, `18663`, `18665`, `18666`, `18667`, `18668`, `18671`, `18673`, `18675`, `18677`, `18678`, `18679`, `18680`, `18682`, `18684`, `18687`, `18689`, `18691`, `18693`, `18695`, `18697`, `18698`, `18700`, `18702`, `18704`, `18706`, `18708`, `18710`, `18712`, `18713`, `18715`, `18717`, `18722`, `18724`, `18726`, `18728`, `18730`, `18732`, `18734`, `18735`, `18737`, `18738`, `18739`, `18741`, `18743`, `18745`, `18747`, `18748`, `18750`, `18754`, `18756`, `18758`, `18760`, `18763`, `18765`, `18767`, `18768`, `18770`, `18772`, `18774`, `18776`, `18778`, `18780`, `18782`, `18784`, `18786`, `18787`, `18789`, `18791`, `18792`, `18794`, `18796`, `18798`, `18800`, `18801`, `18802`, `18803`, `18805`, `18807`, `18809`, `18812`, `18814`, `18815`, `18816`, `18819`, `18821`, `18823`, `18827`, `18829`, `18830`, `18833`, `18835`, `18837`, `18839`, `18841`, `18842`, `18844`, `18845`, `18847`, `18848`, `18850`, `18852`, `18853`, `18854`, `18856`, `18857`, `18859`, `18861`, `18863`, `18865`, `18866`, `18868`, `18869`, `18871`, `18873`, `18875`, `18876`, `18877`, `18878`, `18880`, `18882`, `18883`, `18885`, `18887`, `18889`, `18892`, `18893`, `18894`, `18896`, `18898`, `18900`, `18902`, `18903`, `18905`, `18907`, `18367`, `18909`, `18911`, `18913`, `18915`, `18916`, `18918`, `18920`, `18922`, `18923`, `18925`, `18927`, `18929`, `18931`, `18933`, `18935`, `18937`, `18939`, `18943`, `18944`, `18946`, `18948`, `18950`, `18951`, `18952`, `18956`, `18958`, `18960`, `18961`, `18963`, `18965`, `18967`, `18969`, `18970`, `18972`, `18973`, `18974`, `18975`, `18977`, `18979`, `18981`, `18982`, `18983`, `18984`, `18986`, `18988`, `18990`, `18992`, `18994`, `18996`, `18997`, `18998`, `19000`, `19002`, `19003`, `19005`, `19007`, `19008`, `19009`, `19011`, `19013`, `19015`, `19016`, `19018`, `19020`, `19022`, `19024`, `19025`, `19027`, `19029`, `19031`, `19033`, `19035`, `19036`, `19038`, `19039`, `19041`, `19042`, `19044`, `19046`, `19048`, `19049`, `19050`, `19051`, `19052`, `19054`, `19056`, `19057`, `19058`, `19060`, `19064`, `19066`, `19068`, `19069`, `19071`, `19073`, `19075`, `19076`, `19083`, `19088`, `19091`, `19093`, `19095`, `19096`, `19097`, `19098`, `19099`, `19101`, `19102`, `19104`, `19106`, `19107`, `19109`, `19111`, `19113`, `19115`, `19116`, `19119`, `19121`, `19123`, `19124`, `19126`, `19127`, `19128`, `19130`, `19132`, `19137`, `19139`, `19140`, `19142`, `19144`, `19145`, `19146`, `19147`, `19148`, `19150`, `19152`, `19154`, `19155`, `19156`, `19158`, `19159`, `19161`, `19162`, `19163`, `19165`, `19166`, `19168`, `19173`, `19174`, `19176`, `19178`, `19180`, `19182`, `19183`, `19184`, `19186`, `19188`, `19190`, `19192`, `19197`, `19198`, `19200`, `19202`, `19204`, `19205`, `19206`, `19208`, `19209`, `19210`, `19212`, `19213`, `19214`, `19216`, `19217`, `19219`, `19220`, `19221`, `19223`, `19225`, `19227`, `19228`, `19230`, `19232`, `19234`, `19235`, `19237`, `19239`, `19240`, `19242`, `19244`, `264`, `19246`, `19247`, `19249`, `19250`, `19252`, `19254`, `19255`, `19256`, `19258`, `19260`, `19262`, `19264`, `19265`, `19267`, `19269`, `19271`, `19273`, `19275`, `19277`, `19279`, `19280`, `19282`, `19284`, `19286`, `19288`, `19290`, `19291`, `19293`, `19295`, `19297`, `19299`, `19300`, `19302`, `19304`, `19305`, `19306`, `19308`, `19310`, `19312`, `19314`, `19315`, `19317`, `19319`, `19321`, `19324`, `19325`, `19327`, `19329`, `19331`, `19333`, `19334`, `19335`, `19337`, `19339`, `19341`, `19343`, `19344`, `19346`, `19348`, `19349`, `19351`, `19353`, `19355`, `19357`, `19359`, `19361`, `19362`, `19363`, `19365`, `19367`, `19368`, `19370`, `19373`, `19375`, `19376`, `19378`, `19380`, `19382`, `19383`, `19384`, `19385`, `19387`, `19389`, `19390`, `19392`, `19394`, `19395`, `19397`, `19399`, `19400`, `19401`, `19403`, `19405`, `19406`, `19408`, `19410`, `19412`, `19413`, `19416`, `19418`, `19419`, `19421`, `19423`, `19424`, `19426`, `19428`, `19430`, `19432`, `19433`, `19436`, `19438`, `19440`, `19442`, `19444`, `19446`, `19448`, `19450`, `19452`, `19453`, `19457`, `19458`, `19459`, `19464`, `19466`, `19467`, `19468`, `19470`, `19471`, `19473`, `19475`, `19476`, `19478`, `19480`, `19482`, `19483`, `19485`, `19487`, `19490`, `19492`, `19494`, `19496`, `19498`, `19500`, `19502`, `19504`, `19507`, `19509`, `19510`, `19511`, `19513`, `19515`, `19516`, `19517`, `19519`, `19521`, `19523`, `19525`, `19526`, `19528`, `19529`, `19531`, `19533`, `19534`, `19536`, `19537`, `19538`, `19541`, `19542`, `19543`, `19545`, `19547`, `19548`, `19549`, `19551`, `19553`, `19554`, `19556`, `19558`, `19559`, `19561`, `19563`, `19565`, `19567`, `19569`, `19570`, `19573`, `19575`, `19577`, `19578`, `19580`, `19581`, `19583`, `19584`, `19586`, `19587`, `19589`, `19592`, `19594`, `19595`, `19597`, `19598`, `19600`, `19602`, `19604`, `19606`, `19609`, `19611`, `19612`, `19614`, `19616`, `19618`, `19620`, `19622`, `19623`, `19624`, `19626`, `19628`, `19631`, `19633`, `19635`, `19637`, `19639`, `19641`, `19643`, `19646`, `19647`, `19649`, `19651`, `19653`, `19655`, `19657`, `19659`, `19661`, `19662`, `19665`, `19667`, `19669`, `19672`, `19673`, `19675`, `19677`, `19680`, `19683`, `19685`, `19687`, `19689`, `19691`, `19693`, `19696`, `19697`, `19699`, `19701`, `19703`, `19705`, `19707`, `19709`, `19711`, `19713`, `19715`, `19717`, `19718`, `19720`, `19723`, `19724`, `19726`, `19728`, `19730`, `19732`, `19733`, `19735`, `19737`, `19739`, `19741`, `19743`, `19744`, `19746`, `19747`, `19749`, `19752`, `19755`, `19756`, `19758`, `19759`, `19760`, `19762`, `19764`, `19765`, `19766`, `19768`, `19769`, `19771`, `19773`, `19775`, `19777`, `19779`, `19780`, `19781`, `19783`, `19784`, `19786`, `19787`, `19789`, `19791`, `19793`, `19795`, `19796`, `19798`, `19799`, `19800`, `19802`, `19804`, `19806`, `19808`, `19810`, `19812`, `19814`, `19816`, `19818`, `19820`, `19822`, `19823`, `19825`, `19827`, `19829`, `19830`, `19832`, `19834`, `19836`, `19838`, `19840`, `19842`, `19843`, `19846`, `19848`, `19850`, `19852`, `19854`, `19856`, `19858`, `19860`, `19862`, `19863`, `19865`, `19866`, `19869`, `19870`, `19871`, `19873`, `19875`, `19877`, `19878`, `19879`, `19884`, `19886`, `19888`, `19889`, `19891`, `19892`, `19894`, `19895`, `19896`, `19898`, `19900`, `19902`, `19903`, `19905`, `19907`, `19909`, `19910`, `19912`, `19913`, `19915`, `19917`, `19919`, `19920`, `19921`, `19923`, `19925`, `19926`, `19927`, `19929`, `19932`, `19933`, `19935`, `19937`, `19938`, `19940`, `19941`, `19942`, `19944`, `19946`, `19948`, `19951`, `19953`, `19955`, `19956`, `19958`, `19960`, `19961`, `19962`, `19964`, `19968`, `19970`, `19975`, `19977`, `19979`, `19981`, `19983`, `19985`, `19987`, `19989`, `19991`, `19992`, `19993`, `19995`, `19996`, `19998`, `20000`, `20003`, `20005`, `20006`, `20008`, `20012`, `20014`, `20016`, `20018`, `20020`, `20022`, `20025`, `20027`, `20029`, `20030`, `20031`, `20035`, `20037`, `20038`, `20039`, `20041`, `20042`, `20043`, `20045`, `20046`, `20048`, `20049`, `20051`, `20053`, `20054`, `20055`, `20057`, `20058`, `20060`, `20061`, `20063`, `20065`, `20066`, `20068`, `20069`, `20070`, `20072`, `20074`, `20075`, `20076`, `20078`, `20080`, `20082`, `20085`, `20087`, `20088`, `20090`, `20092`, `20095`, `20096`, `20098`, `20100`, `20101`, `20103`, `20104`, `20106`, `20108`, `20110`, `20113`, `20115`, `20117`, `20119`, `20121`, `20122`, `20124`, `20127`, `20129`, `20131`, `20133`, `20136`, `20138`, `20140`, `20142`, `20144`, `20146`, `20148`, `20150`, `20151`, `20152`, `20154`, `20158`, `20159`, `20160`, `20162`, `20163`, `20165`, `20167`, `20169`, `20171`, `20172`, `20174`, `20176`, `20177`, `20179`, `20181`, `20183`, `20184`, `20185`, `20186`, `20187`, `20189`, `20191`, `20193`, `20195`, `20196`, `20198`, `20199`, `20201`, `20203`, `20205`, `20207`, `20209`, `20211`, `20213`, `20215`, `20217`, `20219`, `20221`, `20223`, `20225`, `20226`, `20228`, `20230`, `20232`, `20235`, `20237`, `20239`, `20242`, `20244`, `20245`, `20247`, `20249`, `20251`, `20252`, `20253`, `20254`, `20255`, `20256`, `20258`, `20259`, `20260`, `20262`, `20266`, `20268`, `20271`, `20273`, `20274`, `20276`, `20278`, `20281`, `20283`, `20284`, `20285`, `20287`, `20289`, `20291`, `20293`, `20295`, `20297`, `20298`, `20300`, `20302`, `20303`, `20305`, `20307`, `20309`, `20311`, `20312`, `20314`, `20316`, `20317`, `20319`, `20321`, `20323`, `20324`, `20326`, `20328`, `20330`, `20332`, `20334`, `20336`, `20338`, `20340`, `20342`, `20344`, `20345`, `20347`, `20348`, `20350`, `20357`, `20360`, `20362`, `20363`, `20365`, `20367`, `20369`, `20372`, `20374`, `20375`, `20377`, `20378`, `20380`, `20381`, `20383`, `20385`, `20387`, `20388`, `20390`, `20392`, `20393`, `20395`, `20397`, `20398`, `20399`, `20400`, `20402`, `20403`, `20404`, `20406`, `20408`, `20409`, `20411`, `20413`, `20415`, `20417`, `20419`, `20420`, `20422`, `20426`, `20428`, `20430`, `20432`, `20434`, `20435`, `20437`, `20439`, `20441`, `20443`, `20445`, `20446`, `20448`, `20450`, `20452`, `20455`, `20456`, `20458`, `20460`, `20462`, `20464`, `20466`, `20467`, `20469`, `20470`, `20471`, `20473`, `20474`, `20476`, `20478`, `20480`, `20482`, `20485`, `20488`, `20490`, `20493`, `20495`, `20497`, `20499`, `20500`, `20502`, `20504`, `20506`, `20507`, `20509`, `20510`, `20512`, `20514`, `20516`, `20518`, `20520`, `20522`, `20524`, `20525`, `20527`, `20529`, `20531`, `20534`, `20536`, `20538`, `20540`, `20541`, `20543`, `20545`, `20547`, `20549`, `20551`, `20553`, `20555`, `20556`, `20557`, `20558`, `20559`, `20560`, `20562`, `20564`, `20565`, `20567`, `20569`, `20570`, `20572`, `20573`, `20574`, `20576`, `20578`, `20580`, `20582`, `20584`, `20585`, `20586`, `20587`, `20591`, `20592`, `20593`, `20595`, `20597`, `20598`, `20599`, `20600`, `20602`, `20603`, `20605`, `20606`, `20609`, `20611`, `20613`, `20614`, `20616`, `20618`, `20619`, `20621`, `20623`, `20624`, `20626`, `20628`, `20633`, `20634`, `20636`, `20638`, `20640`, `20641`, `20643`, `20645`, `20647`, `20649`, `20651`, `20653`, `20654`, `20656`, `20657`, `20659`, `20661`, `20662`, `20664`, `20666`, `20667`, `20669`, `20671`, `20673`, `20675`, `20678`, `20679`, `20680`, `20682`, `20684`, `20686`, `20687`, `20689`, `20690`, `20691`, `20694`, `20696`, `20697`, `20699`, `20700`, `20702`, `20704`, `20705`, `20707`, `20709`, `20710`, `20712`, `20714`, `20716`, `20718`, `20720`, `20722`, `20724`, `20726`, `20727`, `20729`, `20732`, `20734`, `20736`, `20738`, `20740`, `20742`, `20743`, `20745`, `20747`, `20749`, `20751`, `20755`, `20757`, `20758`, `20760`, `20762`, `20764`, `20765`, `20767`, `20769`, `20771`, `20773`, `20775`, `20777`, `20779`, `20782`, `20783`, `20785`, `20787`, `20789`, `20791`, `20792`, `20795`, `20797`, `20799`, `20801`, `20803`, `20804`, `20806`, `20808`, `20809`, `20810`, `20812`, `20814`, `20816`, `20818`, `20820`, `20822`, `20824`, `20826`, `20828`, `20830`, `20832`, `20834`, `20836`, `20837`, `20839`, `20841`, `20842`, `20844`, `20845`, `20846`, `20850`, `20852`, `20854`, `20856`, `20858`, `20859`, `20861`, `20863`, `20864`, `20867`, `20868`, `20870`, `20872`, `20874`, `20875`, `20877`, `20879`, `20880`, `20882`, `20884`, `20885`, `20887`, `20889`, `20890`, `20892`, `20894`, `20895`, `20897`, `20898`, `20900`, `20902`, `20904`, `20906`, `20908`, `20910`, `20912`, `20914`, `20916`, `20917`, `20919`, `20920`, `20921`, `20923`, `20925`, `20927`, `20928`, `20930`, `20932`, `20934`, `20936`, `20938`, `20939`, `20940`, `20942`, `20944`, `20946`, `20948`, `20949`, `20951`, `20952`, `20954`, `20956`, `20958`, `20959`, `20961`, `20963`, `20964`, `20966`, `20967`, `20968`, `20970`, `20971`, `20972`, `20974`, `20976`, `20977`, `20979`, `20981`, `20983`, `20985`, `20986`, `20987`, `20989`, `20991`, `20993`, `20995`, `20997`, `20999`, `21000`, `21002`, `21004`, `21005`, `21007`, `21009`, `21011`, `21013`, `21015`, `21016`, `21018`, `21020`, `21021`, `21022`, `21024`, `21025`, `21026`, `21027`, `21028`, `21030`, `21031`, `21033`, `21035`, `21039`, `21041`, `21043`, `21045`, `21047`, `21048`, `21050`, `21052`, `21055`, `21056`, `21058`, `21060`, `21062`, `21064`, `21067`, `21068`, `21070`, `21072`, `21074`, `21076`, `21078`, `21080`, `21081`, `21084`, `21086`, `21088`, `21089`, `21090`, `21091`, `21094`, `21097`, `21099`, `21101`, `21103`, `21105`, `21107`, `21109`, `21111`, `21113`, `21115`, `21116`, `21118`, `21120`, `21121`, `21124`, `21126`, `21128`, `21130`, `21131`, `21133`, `21135`, `21137`, `21139`, `21141`, `21143`, `21144`, `21146`, `21148`, `21150`, `21152`, `21154`, `21155`, `21157`, `21159`, `21161`, `21163`, `21164`, `21166`, `21168`, `21169`, `21170`, `21172`, `21173`, `21175`, `21177`, `21179`, `21180`, `21182`, `21184`, `21186`, `21188`, `21190`, `21193`, `21195`, `21197`, `21198`, `21199`, `21201`, `21203`, `21205`, `21207`, `21208`, `21209`, `21211`, `21213`, `21215`, `21216`, `21218`, `21220`, `21222`, `21224`, `21226`, `21228`, `21230`, `21231`, `21233`, `21238`, `21240`, `21242`, `21243`, `21245`, `21247`, `21249`, `21251`, `21253`, `21255`, `21256`, `21258`, `21259`, `21261`, `21263`, `21265`, `21266`, `21268`, `21270`, `21272`, `21274`, `21276`, `21278`, `21281`, `21283`, `21284`, `21286`, `21288`, `21289`, `21290`, `21292`, `21297`, `21299`, `21300`, `21301`, `21302`, `21303`, `21305`, `21306`, `21307`, `21309`, `21311`, `21312`, `21314`, `21316`, `21318`, `21319`, `21321`, `21322`, `21323`, `21325`, `21327`, `21329`, `21331`, `21333`, `21335`, `21337`, `21339`, `21341`, `21343`, `21344`, `21346`, `21348`, `21350`, `21351`, `21353`, `21354`, `21356`, `21358`, `21360`, `21361`, `21363`, `21365`, `21367`, `21369`, `21371`, `21373`, `21375`, `21377`, `21379`, `21381`, `21383`, `21385`, `21387`, `21388`, `21390`, `21392`, `21396`, `21398`, `21400`, `21402`, `21404`, `21405`, `21406`, `21410`, `21411`, `21412`, `21414`, `21415`, `21416`, `21418`, `21420`, `21421`, `21422`, `21425`, `21426`, `21428`, `21431`, `21433`, `21435`, `21437`, `21439`, `21440`, `21442`, `21444`, `21446`, `21448`, `21450`, `21452`, `21454`, `21456`, `21458`, `21460`, `21461`, `21462`, `21464`, `21466`, `21469`, `21471`, `21473`, `21475`, `21477`, `21481`, `21483`, `21485`, `21486`, `21488`, `21490`, `21492`, `21494`, `21496`, `21497`, `21499`, `21501`, `21503`, `21505`, `21508`, `21510`, `21511`, `21513`, `21514`, `21516`, `21517`, `21518`, `21520`, `21521`, `21523`, `21525`, `21527`, `21529`, `21531`, `21533`, `21535`, `21537`, `21538`, `21540`, `21542`, `21544`, `21546`, `21548`, `21550`, `21551`, `21553`, `21554`, `21556`, `21558`, `21560`, `21562`, `21564`, `21565`, `21567`, `21570`, `21572`, `21574`, `21576`, `21578`, `21580`, `21582`, `21583`, `21586`, `21588`, `21591`, `21593`, `21595`, `21597`, `21598`, `21600`, `21601`, `21602`, `21604`, `21606`, `21608`, `21610`, `21613`, `21614`, `21616`, `21618`, `21620`, `21622`, `21624`, `21625`, `21627`, `21629`, `21631`, `21633`, `21634`, `21636`, `21637`, `21639`, `21640`, `21641`, `21643`, `21645`, `21646`, `21648`, `21649`, `21651`, `21657`, `21659`, `21661`, `21662`, `21664`, `21665`, `21667`, `21669`, `21671`, `21673`, `21674`, `21676`, `21677`, `21678`, `21680`, `21682`, `21684`, `21686`, `21687`, `21689`, `21691`, `21693`, `21695`, `21696`, `21697`, `21698`, `21700`, `21702`, `21703`, `21705`, `21707`, `21709`, `21712`, `21714`, `21715`, `21717`, `21719`, `21721`, `21722`, `21724`, `21726`, `21727`, `21729`, `21731`, `21733`, `21734`, `21736`, `21738`, `21740`, `21741`, `21743`, `21745`, `21746`, `21748`, `21750`, `21751`, `21753`, `21755`, `21757`, `21759`, `21761`, `21763`, `21767`, `21768`, `21770`, `21772`, `21774`, `21776`, `21777`, `21779`, `21781`, `21783`, `21785`, `21786`, `21788`, `21790`, `21791`, `21793`, `21795`, `21797`, `21799`, `21801`, `21803`, `21804`, `21806`, `21808`, `21809`, `21811`, `21813`, `21815`, `21818`, `21820`, `21821`, `21822`, `21823`, `21825`, `21826`, `21827`, `21828`, `21830`, `21831`, `21832`, `21834`, `21835`, `21837`, `21839`, `21840`, `21842`, `21845`, `21847`, `21849`, `21851`, `21852`, `21854`, `21855`, `21857`, `21858`, `21859`, `21861`, `21863`, `21864`, `21865`, `21867`, `21869`, `21872`, `21874`, `21877`, `21879`, `21880`, `21882`, `21884`, `21886`, `21888`, `21890`, `21891`, `21893`, `21895`, `21896`, `21897`, `21898`, `21900`, `21902`, `21904`, `21906`, `21907`, `21909`, `21910`, `21914`, `21915`, `21917`, `21919`, `21923`, `21925`, `21927`, `21928`, `21929`, `21931`, `21933`, `21936`, `21938`, `21939`, `21940`, `21941`, `21943`, `21945`, `21947`, `21949`, `21951`, `21952`, `21954`, `21955`, `21957`, `21958`, `21960`, `21961`, `21963`, `21965`, `21967`, `21969`, `21971`, `21973`, `21975`, `21977`, `21979`, `21980`, `21982`, `21983`, `21984`, `21986`, `21987`, `21988`, `21990`, `21992`, `21994`, `21996`, `21997`, `21999`, `22001`, `22003`, `22004`, `22006`, `22007`, `22011`, `22013`, `22015`, `22017`, `22018`, `22020`, `22022`, `22024`, `22026`, `22028`, `22030`, `22031`, `22033`, `22037`, `22039`, `22041`, `22042`, `22043`, `22045`, `22047`, `22049`, `22050`, `22052`, `22054`, `22056`, `22058`, `22059`, `22061`, `22063`, `22065`, `22066`, `22067`, `22068`, `22069`, `22070`, `22072`, `22074`, `22077`, `22078`, `22080`, `22082`, `22084`, `22085`, `22087`, `22089`, `22090`, `22092`, `22094`, `22096`, `22097`, `22098`, `22099`, `22101`, `22103`, `22104`, `22106`, `22108`, `22110`, `22112`, `22113`, `22115`, `22117`, `22119`, `22121`, `22123`, `22125`, `22127`, `22128`, `22130`, `22131`, `22133`, `22134`, `22136`, `22138`, `22140`, `22143`, `22145`, `22147`, `22148`, `22150`, `22152`, `22153`, `22155`, `22157`, `22160`, `22162`, `22164`, `22165`, `22167`, `22168`, `22170`, `22173`, `22175`, `22178`, `22180`, `22181`, `22182`, `22183`, `22184`, `22185`, `22187`, `22189`, `22190`, `22191`, `22193`, `22194`, `22196`, `22197`, `22199`, `629`, `22201`, `22203`, `22204`, `22206`, `22209`, `22211`, `22213`, `22215`, `22216`, `22218`, `22221`, `22223`, `22225`, `22226`, `22228`, `22230`, `22234`, `22237`, `22241`, `22242`, `22244`, `22246`, `22248`, `22250`, `22251`, `22253`, `22254`, `22256`, `22258`, `22259`, `22261`, `22262`, `22263`, `22265`, `22267`, `22269`, `22271`, `22272`, `22273`, `22275`, `22276`, `22278`, `22281`, `22283`, `22284`, `22285`, `22287`, `22289`, `22291`, `22293`, `22294`, `22300`, `22301`, `22302`, `22304`, `22306`, `22308`, `22309`, `22311`, `22313`, `22316`, `22317`, `22319`, `22321`, `22323`, `22324`, `22326`, `22331`, `22332`, `22333`, `22335`, `22336`, `22337`, `22339`, `22340`, `22342`, `22344`, `22346`, `22347`, `22348`, `22351`, `22353`, `22355`, `22357`, `22358`, `22361`, `22363`, `22365`, `22367`, `22369`, `22370`, `22371`, `22373`, `22375`, `22377`, `22379`, `22380`, `22382`, `22384`, `22385`, `22387`, `22389`, `22391`, `22393`, `22395`, `22397`, `22398`, `22400`, `22402`, `22404`, `22406`, `22408`, `22410`, `22412`, `22414`, `22415`, `22417`, `22419`, `22421`, `22425`, `22427`, `22429`, `22431`, `22433`, `22435`, `22437`, `22438`, `22439`, `22441`, `22443`, `22444`, `22446`, `22448`, `22450`, `22452`, `22454`, `22456`, `22458`, `22460`, `22462`, `22463`, `22465`, `22466`, `22467`, `22468`, `22470`, `22472`, `22474`, `22476`, `22478`, `22480`, `22482`, `22484`, `22486`, `22490`, `22492`, `22494`, `22495`, `22497`, `22499`, `22501`, `22503`, `22505`, `22507`, `22510`, `22511`, `22513`, `22515`, `22517`, `22519`, `22521`, `22523`, `22525`, `22527`, `22529`, `22533`, `22535`, `22537`, `22543`, `22545`, `22546`, `22548`, `22550`, `22552`, `22553`, `22555`, `22557`, `22558`, `22559`, `22561`, `22562`, `22565`, `22567`, `22569`, `22571`, `22573`, `22575`, `22577`, `22579`, `22580`, `22582`, `22585`, `22586`, `22588`, `22590`, `22592`, `22594`, `22595`, `22597`, `22598`, `22599`, `22600`, `22601`, `22602`, `22604`, `22606`, `22607`, `22609`, `22610`, `22612`, `22614`, `22616`, `22617`, `22619`, `22621`, `22623`, `22624`, `22627`, `22630`, `22631`, `22633`, `22634`, `22636`, `22637`, `22639`, `22641`, `22643`, `22645`, `22646`, `22647`, `22649`, `22652`, `22654`, `22655`, `22657`, `22659`, `22660`, `22661`, `22663`, `22665`, `22667`, `22668`, `22670`, `22672`, `22674`, `22676`, `22678`, `22680`, `22681`, `22682`, `22684`, `22685`, `22686`, `22687`, `22689`, `22690`, `22692`, `22696`, `22698`, `22700`, `22702`, `22704`, `22705`, `22707`, `22708`, `22710`, `22711`, `22713`, `22715`, `22716`, `22717`, `22719`, `22721`, `22723`, `22725`, `22727`, `22728`, `22729`, `22731`, `22732`, `22733`, `22735`, `22736`, `22738`, `22740`, `22743`, `22746`, `22748`, `22750`, `22751`, `22753`, `22755`, `22757`, `22759`, `22761`, `22763`, `22765`, `22766`, `22767`, `22769`, `22771`, `22774`, `22776`, `22778`, `22779`, `22780`, `22781`, `22782`, `22784`, `22786`, `22788`, `22790`, `22791`, `22796`, `22798`, `22799`, `22801`, `22802`, `22804`, `22806`, `22807`, `22809`, `22810`, `22811`, `22813`, `22815`, `22817`, `22819`, `22820`, `22822`, `22823`, `22825`, `22827`, `22828`, `22830`, `22831`, `22832`, `22834`, `22840`, `22841`, `22843`, `22845`, `22849`, `22850`, `22852`, `22853`, `22855`, `22857`, `22858`, `22860`, `22861`, `22862`, `22864`, `22866`, `22867`, `22869`, `22871`, `22872`, `22874`, `22877`, `22879`, `22880`, `22882`, `22883`, `22885`, `22886`, `22887`, `22888`, `22889`, `22891`, `22894`, `22895`, `22897`, `22899`, `22901`, `22902`, `22905`, `22907`, `22909`, `22910`, `22912`, `22915`, `22917`, `22918`, `22920`, `22922`, `22924`, `22925`, `22927`, `22929`, `22931`, `22932`, `22933`, `22935`, `22937`, `22939`, `22941`, `22943`, `22944`, `22946`, `22947`, `22949`, `22951`, `22953`, `22955`, `22959`, `22960`, `22962`, `22964`, `22966`, `22967`, `22969`, `22971`, `22972`, `22974`, `22976`, `22977`, `22979`, `22981`, `22983`, `22985`, `22987`, `22990`, `22992`, `22994`, `22996`, `22998`, `23000`, `23002`, `23003`, `23005`, `23007`, `23009`, `23011`, `23012`, `23014`, `23017`, `23019`, `23020`, `23022`, `23024`, `23027`, `23029`, `23031`, `23033`, `23041`, `23043`, `23046`, `23049`, `23051`, `23053`, `23054`, `23056`, `23057`, `23059`, `23061`, `23064`, `23066`, `23068`, `23070`, `23072`, `23076`, `23078`, `23079`, `23081`, `23083`, `23084`, `23086`, `23087`, `23089`, `23091`, `23096`, `23098`, `23100`, `23103`, `23104`, `23106`, `23107`, `23109`, `23111`, `23113`, `23115`, `23117`, `23119`, `23121`, `23123`, `23125`, `23127`, `23129`, `23130`, `23131`, `23132`, `23134`, `23135`, `23136`, `23138`, `23139`, `23140`, `23142`, `23144`, `23146`, `23147`, `23149`, `23151`, `23153`, `23155`, `23157`, `23161`, `23162`, `23164`, `23165`, `23167`, `23169`, `23171`, `23173`, `23174`, `23175`, `23179`, `23181`, `23183`, `23185`, `23187`, `23189`, `23191`, `23192`, `23194`, `23196`, `23198`, `23200`, `23202`, `23204`, `23206`, `23207`, `23208`, `23210`, `23212`, `23214`, `23215`, `23217`, `23218`, `23220`, `23222`, `23224`, `23225`, `23227`, `23230`, `23231`, `23232`, `23234`, `23236`, `23237`, `23238`, `23240`, `23241`, `23243`, `23245`, `23246`, `23248`, `23250`, `23252`, `23255`, `23259`, `23261`, `23264`, `23266`, `23267`, `23269`, `23271`, `23273`, `23274`, `23276`, `23277`, `23279`, `23281`, `23282`, `23284`, `23286`, `23288`, `23290`, `23292`, `23294`, `23295`, `23296`, `23297`, `23299`, `23301`, `23303`, `23305`, `23306`, `23307`, `23309`, `23311`, `23313`, `23315`, `23318`, `23320`, `23322`, `23324`, `23327`, `23328`, `23329`, `23332`, `23334`, `23336`, `23339`, `23340`, `23341`, `23344`, `23347`, `23349`, `23351`, `23353`, `23355`, `23356`, `23358`, `23360`, `23362`, `23364`, `23366`, `23369`, `23371`, `23374`, `23377`, `23379`, `23381`, `23383`, `23385`, `23388`, `23390`, `23391`, `23392`, `23393`, `23395`, `23396`, `23398`, `23400`, `23401`, `23403`, `23405`, `23407`, `23409`, `23411`, `23413`, `23414`, `23415`, `23417`, `23418`, `23423`, `23424`, `23427`, `23428`, `23430`, `23431`, `23433`, `23434`, `23436`, `23438`, `23440`, `23442`, `23444`, `23446`, `23447`, `23449`, `23451`, `23453`, `23455`, `23457`, `23459`, `23461`, `23462`, `23464`, `23466`, `23467`, `23470`, `23472`, `23473`, `23474`, `23475`, `23477`, `23478`, `23481`, `23483`, `23484`, `23486`, `23488`, `23490`, `23492`, `23493`, `23496`, `23498`, `23504`, `23506`, `23507`, `23509`, `23510`, `23512`, `23514`, `23515`, `23517`, `23519`, `23522`, `23524`, `23526`, `23528`, `23530`, `23531`, `23533`, `23534`, `23536`, `23538`, `23540`, `23541`, `23542`, `23544`, `23546`, `23547`, `23550`, `23554`, `23556`, `23559`, `23561`, `23563`, `23565`, `23566`, `23568`, `23570`, `23571`, `23573`, `23574`, `23576`, `23577`, `23579`, `23581`, `23583`, `23585`, `23586`, `23587`, `23589`, `23591`, `23593`, `23594`, `23596`, `23598`, `23600`, `23602`, `23603`, `23604`, `23606`, `23608`, `23610`, `23611`, `23613`, `23617`, `23619`, `23621`, `23623`, `23625`, `23627`, `23628`, `23630`, `23631`, `23634`, `23635`, `23637`, `23639`, `23641`, `23643`, `23645`, `23647`, `23648`, `23650`, `23652`, `23654`, `23656`, `23657`, `23658`, `23659`, `23661`, `23663`, `23665`, `23667`, `23669`, `23671`, `23673`, `23674`, `23675`, `23676`, `23678`, `23680`, `23681`, `23683`, `23685`, `23686`, `23689`, `23691`, `23693`, `23695`, `23697`, `23699`, `23701`, `23703`, `23704`, `23706`, `23708`, `23709`, `23711`, `23713`, `23714`, `23715`, `23717`, `23719`, `23720`, `23721`, `23722`, `23723`, `23724`, `23725`, `23727`, `23731`, `23733`, `23735`, `23737`, `23739`, `23741`, `23742`, `23744`, `23746`, `23747`, `23748`, `23749`, `23750`, `23751`, `23752`, `23754`, `23755`, `23757`, `23758`, `23760`, `23762`, `23764`, `23766`, `23768`, `23770`, `23772`, `23773`, `23775`, `23777`, `23778`, `23780`, `23781`, `23783`, `23785`, `23786`, `23788`, `23790`, `23792`, `23794`, `23795`, `23796`, `23798`, `23799`, `23801`, `23802`, `23805`, `23806`, `23807`, `23808`, `23809`, `23811`, `23813`, `23815`, `23817`, `23819`, `23821`, `23823`, `23825`, `23830`, `23832`, `23834`, `23835`, `23836`, `23837`, `23838`, `23840`, `23842`, `23844`, `23847`, `23849`, `23850`, `23852`, `23853`, `23855`, `23858`, `23860`, `23864`, `23867`, `23869`, `23872`, `23874`, `23876`, `23878`, `23879`, `23882`, `23884`, `23885`, `23887`, `23889`, `23891`, `23892`, `23893`, `23895`, `23897`, `23899`, `23900`, `23902`, `23904`, `23906`, `23907`, `23908`, `23909`, `23911`, `23912`, `23913`, `23914`, `23916`, `23918`, `23919`, `23920`, `23922`, `23924`, `23925`, `23926`, `23928`, `23929`, `23932`, `23934`, `23936`, `23938`, `23940`, `23942`, `23944`, `23946`, `23948`, `23951`, `23952`, `23954`, `23957`, `23958`, `23960`, `23961`, `23963`, `23965`, `23966`, `23967`, `23969`, `23971`, `23973`, `23975`, `23977`, `23978`, `23980`, `23981`, `23983`, `23985`, `23987`, `23989`, `23991`, `23993`, `23995`, `23997`, `24001`, `24003`, `24004`, `24005`, `24007`, `24009`, `24011`, `24013`, `24015`, `24016`, `24017`, `24020`, `24022`, `24023`, `24025`, `24027`, `24029`, `24031`, `24033`, `24035`, `24036`, `24037`, `24039`, `24041`, `24044`, `24046`, `24048`, `24050`, `24052`, `24054`, `24055`, `24057`, `24059`, `24061`, `24063`, `24064`, `24066`, `24068`, `24069`, `24070`, `24071`, `24072`, `24073`, `24075`, `24076`, `24077`, `24079`, `24082`, `24086`, `24088`, `24089`, `24091`, `24093`, `24095`, `24097`, `24101`, `24103`, `24104`, `24106`, `24108`, `24109`, `24111`, `24112`, `24114`, `24115`, `24116`, `24118`, `24120`, `24124`, `24126`, `24128`, `24132`, `24133`, `24135`, `24136`, `24138`, `24140`, `24142`, `24144`, `24145`, `24147`, `24149`, `24151`, `24153`, `24155`, `24157`, `24159`, `24160`, `24162`, `24164`, `24167`, `24169`, `24170`, `24172`, `24174`, `24175`, `24176`, `24177`, `24179`, `24180`, `24182`, `24184`, `24185`, `24187`, `24189`, `24191`, `24193`, `24195`, `24197`, `24199`, `24201`, `24203`, `24207`, `24208`, `24210`, `24211`, `24212`, `24214`, `24215`, `531`, `24217`, `24218`, `24219`, `24221`, `24223`, `24225`, `24227`, `24229`, `24230`, `24232`, `24233`, `24235`, `24237`, `24239`, `24241`, `24243`, `24244`, `24246`, `24248`, `24250`, `24252`, `24254`, `24256`, `24257`, `24258`, `24259`, `24261`, `24262`, `24264`, `24265`, `24266`, `24268`, `24272`, `24275`, `24277`, `24278`, `24279`, `24281`, `24282`, `24283`, `24285`, `24287`, `24289`, `24291`, `24292`, `24294`, `24295`, `24297`, `24299`, `24301`, `24304`, `24306`, `24308`, `24310`, `24312`, `24314`, `24315`, `24317`, `24319`, `24321`, `24322`, `24324`, `24326`, `24328`, `24330`, `24332`, `24336`, `24338`, `24339`, `24342`, `24344`, `24347`, `24350`, `24352`, `24354`, `24355`, `24356`, `24358`, `24360`, `24361`, `24363`, `24365`, `24367`, `24369`, `24372`, `24374`, `24376`, `24377`, `24378`, `24379`, `24380`, `24382`, `24383`, `24387`, `24389`, `24391`, `24393`, `24394`, `24396`, `24397`, `24398`, `24401`, `24403`, `24405`, `24407`, `24409`, `24412`, `24413`, `24415`, `24417`, `24419`, `24420`, `24421`, `24423`, `24425`, `24426`, `24428`, `24430`, `24431`, `24432`, `24434`, `24436`, `24438`, `24440`, `24442`, `24444`, `24446`, `24448`, `24450`, `24451`, `24453`, `24455`, `24457`, `24460`, `24461`, `24463`, `24464`, `24466`, `24468`, `24471`, `24473`, `24475`, `24477`, `24478`, `24480`, `24482`, `24485`, `24487`, `24488`, `24490`, `24492`, `24493`, `24495`, `24496`, `24497`, `24498`, `24499`, `24501`, `24503`, `24505`, `24508`, `24510`, `24513`, `24515`, `24517`, `24519`, `24520`, `24522`, `24523`, `24525`, `24526`, `24528`, `24530`, `24532`, `24533`, `24535`, `24537`, `24538`, `24541`, `24543`, `24545`, `24547`, `24549`, `24551`, `24553`, `24555`, `24557`, `24558`, `24560`, `24562`, `24564`, `24565`, `24567`, `24568`, `24570`, `24572`, `24577`, `24579`, `24580`, `24582`, `24584`, `24586`, `24588`, `24589`, `24591`, `24593`, `24595`, `24596`, `24597`, `24599`, `24601`, `24603`, `24605`, `24607`, `24609`, `24612`, `24614`, `24617`, `24619`, `24621`, `24623`, `24625`, `24627`, `24629`, `24631`, `24633`, `24634`, `24635`, `24636`, `24638`, `24639`, `24641`, `24643`, `24645`, `24647`, `24649`, `24651`, `24653`, `24654`, `24656`, `24658`, `24661`, `24663`, `24665`, `24666`, `24667`, `24668`, `24671`, `24673`, `24675`, `24676`, `24678`, `24680`, `24681`, `24683`, `24685`, `24687`, `24689`, `24691`, `24693`, `24695`, `24697`, `24699`, `24702`, `24704`, `24707`, `24709`, `24710`, `24712`, `24714`, `24715`, `24716`, `24718`, `24721`, `24723`, `24724`, `24726`, `24727`, `24729`, `24730`, `24732`, `24734`, `24735`, `24737`, `24738`, `24740`, `24742`, `24744`, `24746`, `24748`, `24750`, `24753`, `24755`, `24756`, `24758`, `24760`, `24761`, `24762`, `24763`, `24765`, `24767`, `24769`, `24771`, `24773`, `24775`, `24777`, `24779`, `24780`, `24781`, `24783`, `24786`, `24788`, `24790`, `24792`, `24793`, `24794`, `24796`, `24798`, `24801`, `24803`, `24804`, `24806`, `24808`, `24809`, `24811`, `24812`, `24814`, `24815`, `24817`, `24818`, `24820`, `24821`, `24823`, `24825`, `24827`, `24829`, `24830`, `24832`, `24834`, `24835`, `24837`, `24839`, `24841`, `24843`, `24845`, `24846`, `24848`, `24849`, `24850`, `24852`, `24854`, `24856`, `24857`, `24859`, `24860`, `24861`, `24864`, `24867`, `24869`, `24870`, `24872`, `24875`, `24877`, `24879`, `24881`, `24883`, `24885`, `24887`, `24889`, `24891`, `24893`, `24895`, `24897`, `24899`, `24900`, `24902`, `24904`, `24906`, `24908`, `24909`, `24911`, `24913`, `24915`, `24918`, `24920`, `24922`, `24924`, `24926`, `24928`, `24931`, `24932`, `24935`, `24937`, `24938`, `24939`, `24941`, `24942`, `24943`, `24945`, `24946`, `24948`, `24949`, `24950`, `24951`, `24952`, `24954`, `24955`, `24956`, `24957`, `24958`, `24959`, `24961`, `24962`, `24964`, `24966`, `24967`, `24968`, `24969`, `24971`, `24972`, `24974`, `24976`, `24978`, `24980`, `24982`, `24984`, `24986`, `24988`, `24990`, `24991`, `24992`, `24994`, `24996`, `24997`, `24999`, `25001`, `25002`, `25003`, `25005`, `25007`, `25009`, `25010`, `25011`, `25013`, `25014`, `25016`, `25017`, `25018`, `25020`, `25021`, `25023`, `25025`, `25027`, `25028`, `25030`, `25032`, `25035`, `25036`, `25037`, `25038`, `25040`, `25042`, `25044`, `25045`, `25046`, `25048`, `25051`, `25052`, `25053`, `25055`, `25057`, `25058`, `25060`, `25062`, `25064`, `25066`, `25067`, `25068`, `25070`, `25072`, `25074`, `25076`, `25078`, `25079`, `25080`, `25081`, `25083`, `25085`, `25086`, `25088`, `25089`, `25091`, `25092`, `25093`, `25095`, `25097`, `25099`, `25101`, `25104`, `25106`, `25108`, `25110`, `25112`, `25113`, `25115`, `25116`, `25119`, `25121`, `25123`, `25124`, `25126`, `25128`, `25130`, `25132`, `25133`, `25135`, `25136`, `25138`, `25139`, `25141`, `25143`, `25144`, `25146`, `25148`, `25150`, `25151`, `25153`, `25155`, `25158`, `25160`, `25162`, `25164`, `25166`, `25168`, `25171`, `25173`, `25175`, `25177`, `25179`, `25181`, `25183`, `25186`, `25188`, `25190`, `25193`, `25195`, `25196`, `25198`, `25200`, `25202`, `25204`, `25206`, `25208`, `25210`, `25212`, `25214`, `25216`, `25218`, `25220`, `25222`, `25224`, `25226`, `25230`, `25232`, `25234`, `25236`, `25239`, `25241`, `25243`, `25245`, `25247`, `25249`, `25251`, `25252`, `25254`, `25256`, `25257`, `25258`, `25259`, `25260`, `25262`, `25265`, `25267`, `25268`, `25269`, `25272`, `25273`, `25274`, `25275`, `25277`, `25279`, `25281`, `25283`, `25284`, `25286`, `25288`, `25289`, `25290`, `25291`, `25293`, `25295`, `25297`, `25298`, `25300`, `25302`, `25304`, `25307`, `25308`, `25312`, `25314`, `25315`, `25318`, `25321`, `25323`, `25324`, `25326`, `25328`, `25330`, `25331`, `25333`, `25334`, `25336`, `25337`, `25338`, `25339`, `25341`, `25342`, `25343`, `25345`, `25346`, `25349`, `25351`, `25352`, `25354`, `25356`, `25357`, `25359`, `25360`, `25362`, `25363`, `25365`, `25366`, `25367`, `25371`, `25375`, `25377`, `25378`, `25379`, `25381`, `25382`, `25384`, `25386`, `25388`, `25390`, `25391`, `25392`, `25394`, `25396`, `25398`, `25400`, `25401`, `25402`, `25404`, `25406`, `25408`, `25410`, `25412`, `25414`, `25416`, `25418`, `25420`, `25421`, `25422`, `25424`, `25425`, `25427`, `25428`, `25430`, `25431`, `25433`, `25435`, `25436`, `25437`, `25438`, `25440`, `25442`, `25444`, `25447`, `25448`, `25450`, `25452`, `25453`, `25456`, `25458`, `25460`, `25462`, `25464`, `25465`, `25466`, `25468`, `25471`, `25472`, `25473`, `25474`, `25476`, `25478`, `25480`, `25482`, `25484`, `25485`, `25487`, `25489`, `25491`, `25493`, `25495`, `25497`, `25499`, `25501`, `25502`, `25504`, `25505`, `25507`, `25509`, `25511`, `25513`, `25514`, `25516`, `25519`, `25521`, `25522`, `25523`, `25525`, `25528`, `25531`, `25533`, `25535`, `25537`, `25539`, `25541`, `25543`, `25545`, `25547`, `25548`, `25550`, `25553`, `25555`, `25556`, `25558`, `25560`, `25561`, `25562`, `25563`, `25564`, `25566`, `25568`, `25570`, `25572`, `25574`, `25576`, `25578`, `25580`, `25582`, `25584`, `25585`, `25587`, `25589`, `25590`, `25592`, `25594`, `25595`, `25597`, `25598`, `25599`, `25601`, `25603`, `25604`, `25606`, `25608`, `25609`, `25610`, `25612`, `25614`, `25616`, `25618`, `25619`, `25621`, `25623`, `25625`, `25627`, `25628`, `25630`, `25631`, `25633`, `25635`, `25636`, `25638`, `25639`, `25641`, `25642`, `25644`, `25646`, `25647`, `25649`, `25651`, `25653`, `25655`, `25657`, `25659`, `25660`, `25661`, `25663`, `25665`, `25666`, `25668`, `25670`, `25671`, `25673`, `25675`, `25677`, `25678`, `25680`, `25682`, `25685`, `25687`, `25688`, `25690`, `25692`, `25694`, `25696`, `25698`, `25699`, `25701`, `25703`, `25706`, `25708`, `25711`, `25713`, `25718`, `25720`, `25722`, `25724`, `25725`, `25727`, `25729`, `25730`, `25734`, `25736`, `25738`, `25739`, `25741`, `25745`, `25746`, `25750`, `25752`, `25755`, `25757`, `25760`, `25762`, `25764`, `25766`, `25767`, `25769`, `25771`, `25775`, `25776`, `25778`, `25780`, `25782`, `25783`, `25784`, `25785`, `25786`, `25788`, `25790`, `25792`, `25794`, `25796`, `25798`, `25799`, `25801`, `25802`, `25803`, `25805`, `25806`, `25807`, `25808`, `25809`, `25811`, `25812`, `25814`, `25816`, `25817`, `25818`, `25820`, `25821`, `25822`, `25824`, `25826`, `25828`, `25830`, `25832`, `25833`, `25836`, `25837`, `25839`, `25841`, `25842`, `25844`, `25845`, `25847`, `25848`, `25850`, `25852`, `25853`, `25855`, `25857`, `25859`, `25861`, `25863`, `25865`, `25867`, `25868`, `25870`, `25872`, `25875`, `25877`, `25879`, `25881`, `25883`, `25885`, `25886`, `25889`, `25891`, `25893`, `25895`, `25897`, `25899`, `25900`, `25902`, `25903`, `25904`, `25905`, `25906`, `25908`, `25910`, `25912`, `25914`, `25916`, `25918`, `25920`, `25922`, `25924`, `25926`, `25927`, `25929`, `25931`, `25933`, `25935`, `25937`, `25938`, `25940`, `25942`, `25944`, `25946`, `25948`, `25950`, `25952`, `25953`, `25954`, `25956`, `25958`, `25959`, `25961`, `25963`, `25965`, `25967`, `25969`, `25970`, `25972`, `25974`, `25977`, `25979`, `25981`, `25983`, `25985`, `25986`, `25988`, `25989`, `25991`, `25992`, `25994`, `25997`, `25998`, `26000`, `26002`, `26004`, `26007`, `26011`, `26013`, `26014`, `26015`, `26016`, `26017`, `26018`, `26019`, `26021`, `26023`, `26024`, `26026`, `26028`, `26030`, `26031`, `26033`, `26035`, `26036`, `26038`, `26039`, `26043`, `26044`, `26046`, `26048`, `26050`, `26052`, `26054`, `26055`, `26057`, `26058`, `26060`, `26063`, `26065`, `26066`, `26068`, `26072`, `26074`, `26075`, `26077`, `26079`, `26080`, `26082`, `26084`, `26086`, `26088`, `26089`, `26090`, `26092`, `26094`, `26096`, `26098`, `26099`, `26101`, `26102`, `26103`, `26105`, `26107`, `26109`, `26110`, `26112`, `26113`, `26115`, `26116`, `26118`, `26120`, `26122`, `26124`, `26126`, `26128`, `26131`, `26133`, `26134`, `26136`, `26139`, `26143`, `26144`, `26146`, `26149`, `26151`, `26153`, `26154`, `26156`, `26158`, `26160`, `26162`, `26163`, `26165`, `26167`, `26169`, `26170`, `26172`, `26174`, `26175`, `26176`, `26178`, `26180`, `26182`, `26184`, `26185`, `26189`, `26191`, `26193`, `26195`, `26197`, `26198`, `26199`, `26200`, `26201`, `26203`, `26205`, `26207`, `26209`, `26212`, `26213`, `26216`, `26218`, `26219`, `26220`, `26222`, `26223`, `26224`, `26225`, `26227`, `26229`, `26230`, `26232`, `26234`, `26235`, `26237`, `26239`, `26241`, `26243`, `26244`, `26246`, `26248`, `26250`, `26252`, `26254`, `26256`, `26257`, `26258`, `26260`, `26262`, `26264`, `26266`, `26268`, `26270`, `26272`, `26274`, `26276`, `26278`, `26279`, `26281`, `26284`, `26285`, `26286`, `26288`, `26290`, `26292`, `26293`, `26295`, `26299`, `26300`, `26301`, `26302`, `26304`, `26305`, `26306`, `26307`, `26309`, `26312`, `26313`, `26315`, `26317`, `26321`, `26323`, `26325`, `26326`, `26328`, `26329`, `26332`, `26334`, `26335`, `26337`, `26338`, `26340`, `26341`, `26343`, `26344`, `26346`, `26349`, `26351`, `26353`, `26355`, `26357`, `26359`, `26361`, `26362`, `26364`, `26367`, `26369`, `26371`, `26373`, `26374`, `26376`, `26378`, `26379`, `26381`, `26382`, `26383`, `26385`, `26387`, `26388`, `26390`, `26392`, `26394`, `26396`, `26398`, `26399`, `26402`, `26404`, `26406`, `26408`, `26410`, `26411`, `26413`, `26415`, `26417`, `26419`, `26421`, `26423`, `26425`, `26426`, `26428`, `26430`, `26432`, `26434`, `26436`, `26438`, `26440`, `26442`, `26444`, `26445`, `26447`, `26448`, `26450`, `26451`, `26453`, `26455`, `26457`, `26459`, `26461`, `26462`, `26464`, `26466`, `26467`, `26469`, `26472`, `26474`, `26475`, `26476`, `26477`, `26479`, `26481`, `26483`, `26485`, `26487`, `26489`, `26491`, `26493`, `26494`, `26496`, `26498`, `26499`, `26501`, `26502`, `26504`, `26506`, `26507`, `26509`, `26511`, `26513`, `26515`, `26517`, `26519`, `26521`, `26523`, `26525`, `26527`, `26529`, `26530`, `26533`, `26535`, `26537`, `26539`, `26540`, `26541`, `26546`, `26548`, `26551`, `26553`, `26555`, `26557`, `26559`, `26560`, `26562`, `26563`, `26565`, `26566`, `26568`, `26569`, `26571`, `26574`, `26576`, `26577`, `26578`, `26581`, `26582`, `26583`, `26584`, `26585`, `26587`, `26589`, `26590`, `26592`, `26593`, `26594`, `26595`, `26597`, `26598`, `26600`, `26601`, `26603`, `26605`, `26607`, `26609`, `26610`, `26611`, `26613`, `26614`, `26615`, `26617`, `26619`, `26623`, `26624`, `26625`, `26627`, `26629`, `26631`, `26633`, `26635`, `26637`, `26639`, `26641`, `26642`, `26644`, `26645`, `26647`, `26649`, `26651`, `26652`, `26654`, `26656`, `26658`, `26660`, `26662`, `26664`, `26666`, `26668`, `26669`, `26670`, `26672`, `26674`, `26675`, `26677`, `26678`, `26680`, `26681`, `26682`, `26684`, `26687`, `26688`, `26692`, `26694`, `26696`, `26698`, `26700`, `26702`, `26703`, `26705`, `26707`, `26709`, `26712`, `26713`, `26715`, `26717`, `26718`, `26720`, `26722`, `26724`, `26726`, `26727`, `26729`, `26731`, `26733`, `26736`, `26740`, `26741`, `26742`, `26743`, `26745`, `26746`, `26748`, `26749`, `26751`, `26756`, `26758`, `26760`, `26762`, `26763`, `26765`, `26767`, `26769`, `26770`, `26772`, `26774`, `26776`, `26778`, `26779`, `26780`, `26782`, `26783`, `26784`, `26786`, `26788`, `26790`, `26791`, `26792`, `26794`, `26796`, `26798`, `26801`, `26803`, `26805`, `26807`, `26809`, `26812`, `26814`, `26817`, `26819`, `26820`, `26822`, `26823`, `26825`, `26827`, `26829`, `26830`, `26831`, `26832`, `26834`, `26835`, `26836`, `26837`, `26839`, `26840`, `26843`, `26845`, `26847`, `26849`, `26851`, `26853`, `26855`, `26857`, `26860`, `26862`, `26864`, `26866`, `26868`, `26870`, `26872`, `26873`, `26875`, `26877`, `26879`, `26881`, `26882`, `26884`, `26888`, `26890`, `26891`, `26893`, `26895`, `26898`, `26900`, `26901`, `26903`, `26906`, `26908`, `26910`, `26912`, `26914`, `26917`, `26923`, `26925`, `26928`, `26931`, `26934`, `26936`, `26938`, `26940`, `26942`, `26944`, `26945`, `26946`, `26948`, `26950`, `26952`, `26954`, `26956`, `26959`, `26961`, `26962`, `26963`, `26965`, `26969`, `26971`, `26973`, `26975`, `26976`, `26979`, `26982`, `26984`, `26985`, `26991`, `26992`, `26994`, `26996`, `26998`, `27000`, `27001`, `27002`, `27003`, `27009`, `27011`, `27013`, `27015`, `27017`, `27020`, `27026`, `27028`, `27030`, `27032`, `27036`, `27037`, `27039`, `27041`, `27043`, `27045`, `27046`, `27048`, `27050`, `27052`, `27054`, `27055`, `27057`, `27058`, `27060`, `27062`, `27064`, `27066`, `27067`, `27068`, `27070`, `27073`, `27075`, `27076`, `27077`, `27078`, `27079`, `27080`, `27083`, `27084`, `27086`, `27088`, `27090`, `27092`, `27094`, `27096`, `27097`, `27100`, `27102`, `27103`, `27104`, `27106`, `27107`, `27108`, `27110`, `27112`, `27114`, `27117`, `27119`, `27121`, `27123`, `27125`, `27127`, `27131`, `27133`, `27135`, `27137`, `27139`, `27141`, `27142`, `27144`, `27146`, `27147`, `27149`, `27151`, `27152`, `27154`, `27156`, `27158`, `27160`, `27161`, `27163`, `27164`, `27166`, `27167`, `27169`, `27171`, `27172`, `27174`, `27176`, `27178`, `27179`, `27181`, `27183`, `27185`, `27187`, `27189`, `27191`, `27193`, `27194`, `27196`, `27199`, `27201`, `27202`, `27204`, `27206`, `27208`, `27210`, `27212`, `27214`, `27216`, `27218`, `27219`, `27220`, `27221`, `27222`, `27223`, `27225`, `27227`, `27229`, `27231`, `27232`, `27233`, `27234`, `27236`, `27238`, `27240`, `27242`, `27244`, `27246`, `27248`, `27249`, `27250`, `27251`, `27253`, `27255`, `27257`, `27259`, `27260`, `27261`, `27262`, `27263`, `27265`, `27266`, `27268`, `27272`, `27274`, `27275`, `27276`, `27278`, `27279`, `27281`, `27283`, `27284`, `27285`, `27287`, `27288`, `27289`, `27291`, `27293`, `27295`, `27297`, `27299`, `27301`, `27303`, `27305`, `27307`, `27309`, `27311`, `27312`, `27314`, `27315`, `27316`, `27317`, `27319`, `27321`, `27323`, `27325`, `27327`, `27328`, `27330`, `27332`, `27334`, `27336`, `27338`, `27339`, `27341`, `27343`, `27347`, `27349`, `27351`, `27353`, `27354`, `27356`, `27357`, `27359`, `27360`, `27361`, `27362`, `27364`, `27366`, `27368`, `27370`, `27372`, `27373`, `27375`, `27376`, `27377`, `27379`, `27381`, `27382`, `27384`, `27386`, `27388`, `27389`, `27391`, `27393`, `27394`, `27396`, `27398`, `27402`, `27404`, `27405`, `27407`, `27409`, `27410`, `27412`, `27413`, `27415`, `27416`, `27418`, `27419`, `27420`, `27422`, `27424`, `27425`, `27426`, `27431`, `27433`, `27434`, `27436`, `27438`, `27439`, `27442`, `27443`, `27445`, `27446`, `27447`, `27449`, `27450`, `27452`, `27454`, `27456`, `27458`, `27459`, `27460`, `27461`, `27463`, `27464`, `27465`, `27467`, `27468`, `27470`, `27472`, `27474`, `27476`, `27478`, `27480`, `27482`, `27484`, `27487`, `27488`, `27489`, `27491`, `27493`, `27495`, `27497`, `27500`, `27501`, `27503`, `27507`, `27509`, `27511`, `27513`, `27515`, `27517`, `27518`, `27520`, `27522`, `27523`, `27524`, `27526`, `27527`, `27529`, `27531`, `27533`, `27534`, `27537`, `27538`, `27540`, `27541`, `27542`, `27545`, `27549`, `27551`, `27553`, `27555`, `27556`, `27557`, `27559`, `27560`, `27562`, `27564`, `27566`, `27567`, `27569`, `27571`, `27573`, `27575`, `27577`, `27582`, `27584`, `27585`, `27586`, `27588`, `27589`, `27590`, `27591`, `27594`, `27595`, `27599`, `27601`, `27603`, `27605`, `27607`, `27608`, `27610`, `27611`, `27614`, `27616`, `27618`, `27619`, `27622`, `27624`, `27627`, `27629`, `27632`, `27634`, `27635`, `27636`, `27637`, `27640`, `27642`, `27644`, `27645`, `27647`, `27649`, `27651`, `27653`, `27654`, `27656`, `27658`, `27660`, `27661`, `27663`, `27665`, `27667`, `27669`, `27670`, `27672`, `27677`, `27679`, `27681`, `27682`, `27684`, `27686`, `27688`, `27690`, `27692`, `27694`, `27695`, `27696`, `27698`, `27700`, `27701`, `27703`, `27705`, `27706`, `27707`, `27709`, `27711`, `27713`, `27717`, `27719`, `27720`, `27722`, `27724`, `27725`, `27727`, `27729`, `27730`, `27732`, `27734`, `27735`, `27737`, `27738`, `27739`, `27740`, `27742`, `27744`, `27746`, `27747`, `27749`, `27751`, `27753`, `27755`, `27758`, `27759`, `27761`, `27762`, `27765`, `27767`, `27768`, `27770`, `27772`, `27773`, `27775`, `27777`, `27779`, `27781`, `27783`, `27784`, `27785`, `27786`, `27787`, `27789`, `27791`, `27792`, `27794`, `27795`, `27797`, `27798`, `27799`, `27801`, `27803`, `27805`, `27807`, `27808`, `27809`, `27811`, `27814`, `27817`, `27819`, `27821`, `27822`, `27824`, `27825`, `27826`, `27827`, `27829`, `27830`, `328`, `1086`, `27831`, `27833`, `27835`, `27839`, `27841`, `27842`, `27843`, `27846`, `27849`, `27851`, `27853`, `27855`, `27857`, `27859`, `27860`, `27861`, `27864`, `27865`, `27866`, `27868`, `27870`, `27872`, `27874`, `27876`, `27877`, `27878`, `27883`, `27884`, `27886`, `27887`, `27888`, `27890`, `27891`, `27894`, `27896`, `27900`, `27902`, `27903`, `27905`, `27906`, `27910`, `27912`, `27913`, `27914`, `27915`, `27918`, `27919`, `27921`, `27923`, `27925`, `27927`, `27929`, `27930`, `27932`, `27934`, `27935`, `27937`, `27940`, `27942`, `27944`, `27945`, `27947`, `27949`, `27951`, `27953`, `27955`, `27957`, `27959`, `27961`, `27963`, `27964`, `27968`, `27969`, `27970`, `27971`, `27973`, `27975`, `27977`, `27979`, `27980`, `27981`, `27984`, `27986`, `27988`, `27990`, `27991`, `27993`, `27994`, `27995`, `27996`, `27999`, `28000`, `28002`, `28004`, `28005`, `28006`, `28008`, `28010`, `28013`, `28014`, `28016`, `28018`, `28023`, `28025`, `28026`, `28028`, `28030`, `28032`, `28033`, `28034`, `28035`, `28037`, `28039`, `28040`, `28042`, `28043`, `28045`, `28047`, `28049`, `28051`, `28053`, `28054`, `28056`, `28058`, `28060`, `28062`, `28064`, `28066`, `28068`, `28069`, `28070`, `28071`, `28073`, `28075`, `28077`, `28078`, `28080`, `28081`, `28083`, `28085`, `28087`, `28089`, `28092`, `28094`, `28097`, `28098`, `28099`, `28101`, `28102`, `28106`, `28107`, `28109`, `28110`, `28111`, `28112`, `28114`, `28116`, `28118`, `28119`, `28122`, `28124`, `28125`, `28127`, `28129`, `28131`, `28132`, `28134`, `28135`, `28137`, `28138`, `28139`, `28141`, `28142`, `28144`, `28146`, `28148`, `28151`, `28152`, `28153`, `28155`, `28157`, `28159`, `28161`, `28163`, `28164`, `28165`, `28167`, `28169`, `28171`, `28173`, `28175`, `28177`, `28179`, `28181`, `28184`, `28185`, `28186`, `28187`, `28189`, `28190`, `28191`, `28193`, `28194`, `28196`, `28198`, `28199`, `28201`, `28203`, `28205`, `28207`, `28208`, `28210`, `28212`, `28213`, `28215`, `28217`, `28219`, `28221`, `28223`, `28225`, `28226`, `28227`, `28229`, `28231`, `28233`, `28235`, `28237`, `28238`, `28240`, `28241`, `28243`, `28245`, `28247`, `28248`, `28249`, `28251`, `28253`, `28255`, `28257`, `28258`, `28260`, `28261`, `28263`, `28265`, `28267`, `28269`, `28271`, `28273`, `28275`, `28277`, `28279`, `28281`, `28283`, `28284`, `28286`, `28287`, `28288`, `28289`, `28290`, `28292`, `28293`, `28295`, `28297`, `28299`, `28301`, `28303`, `28305`, `28306`, `28308`, `28310`, `28311`, `28313`, `28315`, `28317`, `28319`, `28321`, `28323`, `28324`, `28326`, `28328`, `28330`, `28332`, `28333`, `28335`, `28337`, `28338`, `28339`, `28340`, `28342`, `28344`, `28345`, `28347`, `28349`, `28350`, `28351`, `28353`, `28355`, `28358`, `28359`, `28360`, `28361`, `28363`, `28368`, `28370`, `28372`, `28374`, `28376`, `28378`, `28379`, `28380`, `28381`, `28384`, `28386`, `28388`, `28390`, `28391`, `28392`, `28394`, `28396`, `28397`, `28399`, `28401`, `28403`, `28406`, `28407`, `28412`, `28413`, `28415`, `28417`, `28418`, `28419`, `28420`, `28422`, `28423`, `28425`, `28427`, `28430`, `28432`, `28434`, `28436`, `28440`, `28441`, `28444`, `28446`, `28448`, `28450`, `28451`, `28453`, `28456`, `28457`, `28459`, `28461`, `28463`, `28465`, `28466`, `28468`, `28470`, `28472`, `28474`, `28475`, `28476`, `28477`, `28479`, `28480`, `28482`, `28484`, `28486`, `28488`, `28490`, `28492`, `28494`, `28496`, `28498`, `28502`, `28503`, `28506`, `28508`, `28509`, `28510`, `28512`, `28513`, `28515`, `28517`, `28518`, `28520`, `28522`, `28523`, `28525`, `28526`, `28528`, `28531`, `28532`, `28533`, `28534`, `28537`, `28539`, `28540`, `28541`, `28542`, `28544`, `28546`, `28548`, `28550`, `28551`, `28552`, `28554`, `28556`, `28557`, `28559`, `28561`, `28562`, `28564`, `28566`, `28568`, `28570`, `28571`, `28572`, `28574`, `28576`, `28578`, `28580`, `28581`, `28582`, `28585`, `28586`, `28588`, `28589`, `28592`, `28594`, `28595`, `28600`, `28602`, `28603`, `28604`, `28606`, `28607`, `28609`, `28611`, `28612`, `28614`, `28616`, `28618`, `28620`, `28622`, `28624`, `28626`, `28628`, `28633`, `28635`, `28638`, `28640`, `28643`, `28647`, `28649`, `28650`, `28651`, `28652`, `28654`, `28655`, `28657`, `28659`, `28661`, `28662`, `28663`, `28664`, `28666`, `28668`, `28669`, `28671`, `28673`, `28674`, `28678`, `28681`, `28682`, `28687`, `28689`, `28690`, `28692`, `28693`, `28698`, `28699`, `28700`, `28702`, `28704`, `28706`, `28708`, `28709`, `28710`, `28711`, `28713`, `28717`, `28719`, `28725`, `28728`, `28730`, `28731`, `28732`, `28734`, `28736`, `28738`, `28740`, `28742`, `28743`, `28744`, `28746`, `28748`, `28750`, `28751`, `28753`, `28755`, `28757`, `28759`, `28760`, `28761`, `28763`, `28764`, `28766`, `28768`, `28770`, `28772`, `28773`, `28775`, `28777`, `28782`, `28784`, `28785`, `28786`, `28788`, `28790`, `28792`, `28793`, `28794`, `28796`, `28798`, `28800`, `28802`, `28803`, `28804`, `28805`, `28807`, `28808`, `28810`, `28815`, `28817`, `28818`, `28819`, `28820`, `28822`, `28826`, `28828`, `28830`, `28831`, `28832`, `28834`, `28836`, `28838`, `28840`, `28843`, `28846`, `28848`, `28850`, `28853`, `28855`, `28856`, `28859`, `28861`, `28863`, `28865`, `28866`, `28868`, `28870`, `28872`, `28874`, `28876`, `28878`, `28879`, `28881`, `28883`, `28884`, `28886`, `28887`, `28889`, `28891`, `28893`, `28895`, `28896`, `28900`, `28901`, `28903`, `28904`, `28905`, `28909`, `28910`, `28912`, `28914`, `28916`, `28917`, `28920`, `28922`, `28923`, `28924`, `28926`, `28928`, `28933`, `28935`, `28937`, `28939`, `28941`, `28943`, `28945`, `28947`, `28949`, `28951`, `28952`, `28956`, `28957`, `28959`, `28960`, `28962`, `28964`, `28966`, `28968`, `28970`, `28972`, `28974`, `28976`, `28978`, `28980`, `28981`, `28986`, `28988`, `28990`, `28991`, `28992`, `28995`, `28996`, `28998`, `29000`, `29002`, `29003`, `29005`, `29006`, `29007`, `29008`, `29010`, `29012`, `29014`, `29016`, `29018`, `29020`, `29021`, `29022`, `29024`, `29025`, `29027`, `29029`, `29031`, `29032`, `29034`, `29035`, `29038`, `29040`, `29042`, `29044`, `29045`, `29046`, `29047`, `29049`, `29050`, `29052`, `29054`, `29056`, `29058`, `29060`, `29062`, `29066`, `29068`, `29069`, `29071`, `29074`, `29075`, `29077`, `29080`, `29081`, `29084`, `29085`, `29087`, `29089`, `29091`, `29093`, `29095`, `29097`, `29099`, `29101`, `29102`, `29104`, `29105`, `29107`, `29110`, `29112`, `29114`, `29116`, `29117`, `29121`, `29123`, `29125`, `29127`, `29129`, `29131`, `29132`, `29133`, `29134`, `29137`, `29139`, `29140`, `29142`, `29143`, `29145`, `29147`, `29152`, `29154`, `29157`, `29158`, `29160`, `29162`, `29164`, `29166`, `29170`, `29172`, `29174`, `29175`, `29178`, `29182`, `29183`, `29185`, `29187`, `29191`, `29193`, `29196`, `29198`, `29200`, `29201`, `29204`, `29206`, `29208`, `29209`, `29211`, `29213`, `29215`, `29216`, `29218`, `29220`, `29222`, `29224`, `29226`, `29228`, `29230`, `29235`, `29237`, `29239`, `29241`, `29247`, `29248`, `29250`, `29252`, `29255`, `29257`, `29258`, `29259`, `29261`, `29262`, `29264`, `29266`, `29269`, `29271`, `29273`, `29275`, `29276`, `29279`, `29281`, `29283`, `29285`, `29287`, `29288`, `29290`, `29292`, `29293`, `29294`, `29296`, `29300`, `29301`, `29303`, `29304`, `29305`, `29306`, `29312`, `29314`, `29316`, `29318`, `29319`, `29320`, `29321`, `29323`, `29324`, `29325`, `29326`, `29328`, `29329`, `29331`, `29332`, `29334`, `29336`, `29337`, `29339`, `29341`, `29345`, `29346`, `29348`, `29350`, `29352`, `29354`, `29356`, `29358`, `29360`, `29362`, `29364`, `29367`, `29371`, `29374`, `29375`, `29377`, `29379`, `29380`, `29382`, `29384`, `29386`, `29388`, `29390`, `29392`, `29394`, `29396`, `29399`, `29401`, `29403`, `29405`, `29407`, `29409`, `29411`, `29413`, `29414`, `29416`, `29419`, `29420`, `29421`, `29422`, `29424`, `29427`, `29429`, `29431`, `29433`, `29434`, `29436`, `29438`, `29440`, `29442`, `29443`, `29445`, `29447`, `29449`, `29451`, `29453`, `29455`, `29457`, `29459`, `29461`, `29463`, `29464`, `29466`, `29468`, `29470`, `29473`, `29475`, `29477`, `29480`, `29481`, `29483`, `29486`, `29488`, `29490`, `29493`, `29494`, `29497`, `29499`, `29501`, `29503`, `29505`, `29508`, `29510`, `29516`, `29518`, `29520`, `29522`, `29524`, `29526`, `29528`, `29529`, `29531`, `29533`, `29535`, `29537`, `29539`, `29541`, `29543`, `29544`, `29545`, `29547`, `29549`, `29550`, `29552`, `29554`, `29556`, `29557`, `29560`, `29562`, `29564`, `29566`, `29568`, `29572`, `29574`, `29576`, `29577`, `29579`, `29581`, `29583`, `29585`, `29587`, `29589`, `29592`, `29594`, `29596`, `29598`, `29600`, `29602`, `29604`, `29606`, `29608`, `29610`, `29612`, `29614`, `29616`, `29618`, `29620`, `29622`, `29624`, `29626`, `29627`, `29629`, `29631`, `29633`, `29635`, `29636`, `29638`, `29639`, `29640`, `29642`, `29644`, `29648`, `29650`, `29652`, `29654`, `29657`, `29658`, `29659`, `29660`, `29662`, `29663`, `29665`, `29667`, `29669`, `29670`, `29672`, `29673`, `29674`, `29677`, `29679`, `29681`, `29683`, `29685`, `29687`, `29688`, `29690`, `29691`, `29693`, `29695`, `29696`, `29699`, `29700`, `29702`, `29704`, `29706`, `29711`, `29712`, `29714`, `29716`, `29717`, `29719`, `29721`, `29723`, `29725`, `29727`, `29729`, `29731`, `29733`, `29736`, `29738`, `29740`, `29742`, `29744`, `29746`, `29748`, `29750`, `29752`, `29754`, `29755`, `29757`, `29758`, `29760`, `29762`, `29764`, `29765`, `29768`, `29769`, `29771`, `29773`, `29775`, `29777`, `29779`, `29781`, `29783`, `29785`, `29787`, `29789`, `29792`, `29794`, `29795`, `29797`, `29798`, `29800`, `29803`, `29805`, `29807`, `29809`, `29810`, `29812`, `29814`, `29816`, `29820`, `29822`, `29823`, `29825`, `29827`, `29830`, `29831`, `29833`, `29835`, `29837`, `29839`, `29840`, `29841`, `29842`, `29844`, `29846`, `29850`, `29852`, `29854`, `29855`, `29856`, `29858`, `29860`, `29862`, `29864`, `29866`, `29867`, `29869`, `29871`, `29872`, `29874`, `29876`, `29878`, `29880`, `29882`, `29885`, `29887`, `29889`, `29890`, `29892`, `29894`, `29895`, `29897`, `29900`, `29902`, `29903`, `29904`, `29905`, `29908`, `29910`, `29912`, `29914`, `29916`, `29918`, `29919`, `29921`, `29923`, `29925`, `29926`, `29928`, `29929`, `29931`, `29933`, `29934`, `29935`, `29937`, `29938`, `29939`, `29941`, `29943`, `29944`, `29946`, `29949`, `29951`, `29952`, `29954`, `29956`, `29958`, `29960`, `29962`, `29966`, `29968`, `29973`, `29975`, `29977`, `29979`, `29982`, `29983`, `29984`, `29986`, `29988`, `29991`, `29992`, `29994`, `29996`, `29998`, `30000`, `30002`, `30004`, `30006`, `30008`, `30010`, `30012`, `30014`, `30016`, `30018`, `30020`, `30022`, `30023`, `30025`, `30027`, `30028`, `30029`, `30031`, `30033`, `30035`, `30038`, `30040`, `30042`, `30044`, `30046`, `30048`, `30049`, `30050`, `30051`, `30053`, `30055`, `30058`, `30060`, `30064`, `30067`, `30069`, `30071`, `30073`, `30075`, `30077`, `30078`, `30080`, `30082`, `30084`, `30086`, `30088`, `30090`, `30092`, `30093`, `30095`, `30098`, `30100`, `30102`, `30103`, `30105`, `30107`, `30109`, `30111`, `30112`, `30114`, `30116`, `30117`, `30119`, `30121`, `30123`, `30125`, `30127`, `30130`, `30132`, `30136`, `30137`, `30139`, `30141`, `30143`, `30145`, `30147`, `30148`, `30150`, `30151`, `30152`, `30154`, `30156`, `30160`, `30163`, `30169`, `30171`, `30172`, `30174`, `30176`, `30177`, `30179`, `30181`, `30183`, `30185`, `30187`, `30189`, `30190`, `30192`, `30193`, `30195`, `30197`, `30198`, `30201`, `30202`, `30204`, `30205`, `30207`, `30208`, `30210`, `30211`, `30213`, `30215`, `30217`, `30219`, `30220`, `30222`, `30224`, `30225`, `30229`, `30231`, `30233`, `30235`, `30236`, `30237`, `30239`, `30241`, `30243`, `30244`, `30246`, `30247`, `30249`, `30250`, `30252`, `30254`, `30256`, `30258`, `30260`, `30264`, `30265`, `30268`, `30269`, `30271`, `30274`, `30275`, `30276`, `30277`, `30278`, `30279`, `30280`, `30281`, `30283`, `30284`, `30285`, `30287`, `30289`, `30291`, `30293`, `30295`, `30296`, `30299`, `30300`, `30302`, `30303`, `30305`, `30307`, `30308`, `30310`, `30311`, `30313`, `30314`, `30316`, `30317`, `30319`, `30322`, `30323`, `30325`, `30327`, `30329`, `30331`, `30333`, `30335`, `30337`, `30338`, `30340`, `30342`, `30344`, `30347`, `30349`, `30350`, `30352`, `30354`, `30356`, `30357`, `30359`, `30361`, `30363`, `30365`, `30367`, `30368`, `30370`, `30371`, `30373`, `30375`, `30376`, `30379`, `30382`, `30384`, `30386`, `30387`, `30388`, `30390`, `30392`, `30393`, `30395`, `30397`, `30399`, `30401`, `30402`, `30404`, `30406`, `30408`, `30409`, `30410`, `30412`, `30413`, `30414`, `30416`, `30421`, `30425`, `30427`, `30429`, `30431`, `30436`, `30437`, `30438`, `30440`, `30442`, `30444`, `30446`, `30448`, `30450`, `30452`, `30453`, `30455`, `30457`, `30459`, `30460`, `30461`, `30463`, `30465`, `30467`, `30469`, `30470`, `30472`, `30476`, `30478`, `30480`, `30482`, `30484`, `30485`, `30487`, `30488`, `30489`, `30490`, `30492`, `30494`, `30496`, `30498`, `30500`, `30502`, `30504`, `30507`, `30509`, `30511`, `30512`, `30513`, `30515`, `30517`, `30519`, `30520`, `30522`, `30524`, `30527`, `30528`, `30530`, `30532`, `30533`, `30535`, `30537`, `30538`, `30540`, `30542`, `30543`, `30545`, `30547`, `30549`, `30551`, `30553`, `30555`, `30559`, `30561`, `30562`, `30564`, `30566`, `1720`, `30568`, `30570`, `30572`, `30574`, `30576`, `30578`, `30579`, `30581`, `30583`, `30586`, `30588`, `30589`, `30591`, `30592`, `30594`, `30596`, `30598`, `30600`, `30602`, `30603`, `30608`, `30609`, `30610`, `30612`, `30613`, `30615`, `30617`, `30618`, `30621`, `30623`, `30625`, `30627`, `30629`, `30631`, `30633`, `30635`, `30637`, `30639`, `30640`, `30642`, `30644`, `30645`, `30649`, `30651`, `30654`, `30655`, `30656`, `30657`, `30658`, `30660`, `30661`, `30662`, `30664`, `30666`, `30667`, `30671`, `30672`, `30673`, `30674`, `30676`, `30678`, `30680`, `30682`, `30683`, `30686`, `30688`, `30689`, `30691`, `30693`, `30695`, `30696`, `30697`, `30699`, `30701`, `30702`, `30704`, `30706`, `30708`, `30709`, `30710`, `30712`, `30714`, `30716`, `30717`, `30719`, `30721`, `30723`, `30725`, `30727`, `30729`, `30731`, `30733`, `30735`, `30737`, `30739`, `30741`, `30743`, `30745`, `30747`, `30749`, `30751`, `30753`, `30755`, `30757`, `30759`, `30760`, `30762`, `30764`, `30766`, `30768`, `30769`, `30771`, `30773`, `30775`, `30776`, `30778`, `30780`, `30782`, `30784`, `30786`, `30788`, `30790`, `30792`, `30794`, `30797`, `30799`, `30801`, `30803`, `30805`, `30807`, `30809`, `30811`, `30813`, `30814`, `30815`, `30816`, `30818`, `30820`, `30822`, `30824`, `30825`, `30827`, `30829`, `30831`, `30833`, `30835`, `30837`, `30839`, `30841`, `30847`, `30848`, `30850`, `30852`, `30855`, `30857`, `30859`, `30861`, `30863`, `30865`, `30867`, `30869`, `30871`, `30874`, `30876`, `30878`, `30880`, `30882`, `30884`, `30885`, `30887`, `30888`, `30889`, `30891`, `30892`, `30893`, `30895`, `30899`, `30900`, `30902`, `30904`, `30906`, `30908`, `30909`, `30911`, `30913`, `30915`, `30917`, `30919`, `30921`, `30922`, `30924`, `30925`, `30926`, `30928`, `30929`, `30931`, `30932`, `30934`, `30936`, `30939`, `30941`, `30943`, `30945`, `30947`, `30950`, `30952`, `30954`, `30955`, `30957`, `30959`, `30961`, `30963`, `30964`, `30966`, `30968`, `30970`, `30971`, `30973`, `30975`, `30976`, `30978`, `30980`, `30982`, `30984`, `30987`, `30991`, `30993`, `30995`, `30997`, `30999`, `31000`, `31002`, `31003`, `31005`, `31007`, `31008`, `31010`, `31011`, `31013`, `31014`, `31016`, `31018`, `31020`, `31022`, `31023`, `31025`, `31026`, `31029`, `31031`, `31032`, `31036`, `31038`, `31040`, `31042`, `31043`, `31045`, `31047`, `31049`, `31051`, `31053`, `31054`, `31056`, `31058`, `31061`, `31063`, `31064`, `31066`, `31068`, `31070`, `31071`, `31073`, `31074`, `31075`, `31076`, `31077`, `31079`, `31081`, `31082`, `31084`, `31085`, `31091`, `31092`, `31093`, `31095`, `31096`, `31098`, `31101`, `31103`, `31105`, `31107`, `921`, `31108`, `31110`, `31112`, `31114`, `31115`, `31116`, `31118`, `31120`, `31124`, `31126`, `31127`, `31129`, `31130`, `31132`, `31134`, `31136`, `31137`, `31139`, `31141`, `31143`, `31145`, `31147`, `31149`, `31150`, `31153`, `219`, `31155`, `31157`, `31159`, `31161`, `31162`, `31164`, `31166`, `31167`, `31170`, `31171`, `31174`, `31175`, `31177`, `31179`, `31181`, `31184`, `31186`, `31188`, `31190`, `31192`, `31194`, `31196`, `31198`, `31199`, `31200`, `31201`, `31203`, `31205`, `31207`, `31209`, `31210`, `31211`, `31212`, `31213`, `31215`, `31217`, `31219`, `31221`, `31222`, `31223`, `31226`, `31228`, `31230`, `31232`, `31235`, `31238`, `31240`, `31241`, `31244`, `31245`, `31247`, `31249`, `31251`, `31252`, `31253`, `31255`, `31257`, `31259`, `31261`, `31263`, `31265`, `31266`, `31268`, `31270`, `31272`, `31274`, `31276`, `31278`, `31279`, `31281`, `31283`, `31284`, `31286`, `31287`, `31288`, `31290`, `31293`, `31295`, `31297`, `31300`, `31303`, `31304`, `31306`, `31308`, `31310`, `31311`, `31312`, `31313`, `31315`, `31316`, `31318`, `31320`, `31322`, `31323`, `31325`, `31326`, `31328`, `31329`, `31332`, `31334`, `31336`, `31338`, `31340`, `31342`, `31343`, `31344`, `31346`, `31349`, `31351`, `31353`, `31354`, `31355`, `31357`, `31359`, `31361`, `31363`, `31369`, `31370`, `31372`, `31375`, `31377`, `31378`, `31380`, `31382`, `31384`, `31385`, `31386`, `31387`, `31389`, `31392`, `31393`, `31394`, `31397`, `31399`, `31401`, `31403`, `31405`, `31406`, `31408`, `31410`, `31411`, `31413`, `31415`, `31417`, `31419`, `31421`, `31423`, `31424`, `31426`, `31427`, `31429`, `31430`, `31432`, `31434`, `31435`, `31436`, `31438`, `31440`, `31442`, `31444`, `31446`, `31448`, `31449`, `31451`, `31452`, `31454`, `31456`, `31457`, `31460`, `31462`, `31463`, `31464`, `31466`, `31468`, `31470`, `31473`, `31475`, `31477`, `31479`, `31481`, `31482`, `31484`, `31486`, `31488`, `31489`, `31490`, `31492`, `31495`, `31497`, `31499`, `31501`, `31502`, `31504`, `31506`, `31508`, `31509`, `31512`, `31514`, `31516`, `31518`, `31519`, `31521`, `31523`, `31525`, `31527`, `31529`, `31531`, `31533`, `31536`, `31537`, `31538`, `31540`, `31541`, `31543`, `31544`, `31546`, `31548`, `31549`, `31551`, `31553`, `31555`, `31556`, `31558`, `31560`, `31561`, `31563`, `31565`, `31566`, `31567`, `31569`, `31571`, `31574`, `31575`, `31576`, `31578`, `31580`, `31582`, `31583`, `31585`, `31586`, `31588`, `31590`, `31592`, `31593`, `31595`, `31597`, `31599`, `31600`, `31602`, `31604`, `31606`, `31607`, `31609`, `31610`, `31612`, `31614`, `31615`, `31617`, `31619`, `31620`, `31621`, `31623`, `31625`, `31626`, `31628`, `31630`, `31631`, `31632`, `31633`, `31635`, `31637`, `31639`, `31641`, `31642`, `31644`, `31646`, `31648`, `31650`, `31652`, `31653`, `31655`, `31657`, `31659`, `31661`, `31663`, `31665`, `31667`, `31668`, `31670`, `31672`, `31674`, `31675`, `31677`, `31679`, `31680`, `31682`, `31683`, `31685`, `31686`, `31688`, `31690`, `31692`, `31694`, `31695`, `31697`, `31698`, `31699`, `31700`, `31702`, `31703`, `31704`, `31705`, `31708`, `31710`, `31712`, `31713`, `31715`, `31717`, `31719`, `31721`, `31723`, `31725`, `31727`, `31729`, `31731`, `31733`, `31735`, `31737`, `31739`, `31741`, `31743`, `31745`, `31746`, `31748`, `31750`, `31752`, `31754`, `31756`, `31758`, `31760`, `31765`, `31766`, `31769`, `31771`, `31773`, `31775`, `31777`, `31779`, `31781`, `31783`, `31784`, `31785`, `31788`, `31790`, `31791`, `31793`, `31795`, `31797`, `31799`, `31801`, `31802`, `31804`, `31806`, `31808`, `31809`, `31811`, `31813`, `31815`, `31816`, `31817`, `31819`, `31825`, `31827`, `31829`, `31831`, `31833`, `31835`, `31837`, `31839`, `31840`, `31841`, `31842`, `31843`, `31845`, `31848`, `31850`, `31851`, `31853`, `31854`, `31855`, `31858`, `31860`, `31862`, `31863`, `31865`, `31867`, `31869`, `31871`, `31872`, `31874`, `31875`, `31877`, `31878`, `31880`, `31882`, `31883`, `31885`, `31887`, `31888`, `31890`, `31892`, `31894`, `31895`, `31897`, `31898`, `31900`, `31902`, `31904`, `31906`, `31908`, `31910`, `31912`, `31918`, `31920`, `31921`, `31923`, `31924`, `31925`, `31927`, `31929`, `31931`, `31933`, `31935`, `31937`, `31940`, `31941`, `31942`, `31944`, `31946`, `31948`, `31951`, `31954`, `31955`, `31957`, `31958`, `31959`, `31961`, `31963`, `31965`, `31967`, `31969`, `31972`, `31973`, `31975`, `31976`, `31978`, `31979`, `31981`, `31983`, `31985`, `31986`, `31987`, `31988`, `31990`, `31992`, `31993`, `31995`, `31996`, `31998`, `32000`, `32001`, `32004`, `32005`, `32007`, `32009`, `32011`, `32013`, `32015`, `32017`, `32019`, `32021`, `32022`, `32023`, `32025`, `32026`, `32027`, `32029`, `32032`, `32034`, `32036`, `32037`, `32038`, `32040`, `32042`, `32044`, `32046`, `32048`, `32050`, `32052`, `32054`, `32057`, `32059`, `32061`, `32063`, `32065`, `32067`, `32069`, `32071`, `32075`, `32077`, `32079`, `32081`, `32083`, `32084`, `32086`, `32087`, `32088`, `32090`, `32092`, `32094`, `32096`, `32097`, `32098`, `32099`, `32101`, `32104`, `32105`, `32106`, `32107`, `32108`, `32110`, `32111`, `32113`, `32115`, `32117`, `32118`, `32120`, `32122`, `32124`, `32126`, `32127`, `32129`, `32131`, `32133`, `32135`, `32137`, `32139`, `32141`, `32143`, `32145`, `32146`, `32148`, `32150`, `32154`, `32155`, `32156`, `32158`, `32159`, `32161`, `32162`, `32164`, `32165`, `32167`, `32169`, `32170`, `32172`, `32173`, `32174`, `32176`, `32177`, `32179`, `32181`, `32183`, `32185`, `32186`, `32188`, `32190`, `32192`, `32194`, `32196`, `32198`, `32200`, `32202`, `32203`, `32205`, `32208`, `32210`, `32212`, `32214`, `32216`, `32218`, `32220`, `32222`, `32224`, `32225`, `32227`, `32229`, `32230`, `32234`, `32235`, `32237`, `32238`, `32239`, `32240`, `32242`, `32244`, `32245`, `32247`, `32249`, `32252`, `32254`, `32256`, `32257`, `32259`, `32261`, `32263`, `32265`, `32267`, `32269`, `32271`, `32273`, `32275`, `32278`, `32279`, `32281`, `32283`, `32284`, `32286`, `32288`, `32290`, `32291`, `32293`, `32294`, `32295`, `32296`, `32297`, `32298`, `32300`, `32302`, `32304`, `32306`, `32307`, `32309`, `32310`, `32312`, `32313`, `32315`, `32319`, `32321`, `32323`, `32325`, `32327`, `32329`, `32331`, `32333`, `32335`, `32337`, `32339`, `32341`, `32343`, `32345`, `32347`, `32348`, `32350`, `32352`, `32354`, `32356`, `32357`, `32358`, `32359`, `32361`, `32363`, `32365`, `32367`, `32368`, `32371`, `32373`, `32375`, `32376`, `32377`, `32378`, `32380`, `32384`, `32386`, `32388`, `32390`, `32391`, `32392`, `32394`, `32396`, `32397`, `32398`, `32401`, `32403`, `32405`, `32407`, `32409`, `32411`, `32413`, `32414`, `32415`, `32417`, `32421`, `32423`, `32429`, `32431`, `32434`, `32435`, `32439`, `32441`, `32442`, `32444`, `32446`, `32448`, `32450`, `32452`, `32454`, `32455`, `32457`, `32459`, `32461`, `32463`, `32465`, `32467`, `32469`, `32470`, `32472`, `32477`, `32479`, `32481`, `32483`, `32484`, `32486`, `32488`, `32489`, `32492`, `32494`, `32495`, `32498`, `32499`, `32501`, `32503`, `32505`, `32507`, `32509`, `32513`, `32514`, `32516`, `32519`, `32521`, `32523`, `32525`, `32528`, `32530`, `32531`, `32536`, `32538`, `32540`, `32542`, `32545`, `32547`, `32549`, `32551`, `32553`, `32558`, `32559`, `32561`, `32562`, `32564`, `32566`, `32568`, `32570`, `32571`, `32572`, `32574`, `32576`, `32578`, `32580`, `32582`, `32583`, `32585`, `32586`, `32587`, `32589`, `32591`, `32593`, `32594`, `32596`, `32598`, `32600`, `32602`, `32604`, `32605`, `32607`, `32608`, `32609`, `32611`, `32613`, `32615`, `32617`, `32619`, `32620`, `32622`, `32624`, `32626`, `32628`, `32630`, `32632`, `32634`, `32636`, `32638`, `32640`, `32641`, `32643`, `32645`, `32647`, `32649`, `32651`, `32652`, `32655`, `32657`, `32659`, `32661`, `32663`, `32664`, `32666`, `32668`, `32671`, `32672`, `32673`, `32677`, `32679`, `32681`, `32682`, `32683`, `32685`, `32687`, `32689`, `32691`, `32693`, `32695`, `32696`, `32698`, `32700`, `32702`, `32703`, `32705`, `32707`, `32708`, `32710`, `32712`, `32714`, `32718`, `32719`, `32722`, `32724`, `32726`, `32727`, `32729`, `32731`, `32733`, `32735`, `32737`, `32739`, `32742`, `32744`, `32746`, `32748`, `32750`, `32752`, `32759`, `32761`, `32762`, `32763`, `32765`, `32768`, `32770`, `32774`, `32776`, `32777`, `32779`, `32780`, `32781`, `32782`, `32783`, `32785`, `32787`, `32788`, `32790`, `32791`, `32792`, `32794`, `32795`, `32798`, `32799`, `32801`, `32803`, `32804`, `32806`, `32808`, `32810`, `32811`, `32813`, `32815`, `32817`, `32820`, `32821`, `32822`, `32824`, `32826`, `32827`, `32829`, `32831`, `32833`, `32835`, `32836`, `32838`, `32839`, `32840`, `32841`, `32843`, `32845`, `32847`, `32849`, `32850`, `32852`, `32854`, `32855`, `32858`, `32860`, `32862`, `32864`, `32867`, `32869`, `32870`, `32872`, `32874`, `32876`, `32877`, `32878`, `32880`, `32884`, `32886`, `32888`, `32890`, `32891`, `32893`, `32895`, `32897`, `32899`, `32901`, `32903`, `32905`, `32908`, `32910`, `32913`, `32914`, `32916`, `32918`, `32920`, `32921`, `32923`, `32924`, `32926`, `32928`, `32932`, `32933`, `32934`, `32936`, `32938`, `32942`, `32945`, `32947`, `32949`, `32950`, `32951`, `32953`, `32955`, `32957`, `32958`, `32959`, `32963`, `32964`, `32965`, `32966`, `32968`, `32971`, `32972`, `32974`, `32975`, `32977`, `32980`, `32982`, `32984`, `32986`, `32988`, `32989`, `32990`, `32992`, `32993`, `32995`, `32996`, `32998`, `33000`, `33001`, `33005`, `33007`, `33009`, `33010`, `33012`, `33013`, `33014`, `33016`, `33017`, `33019`, `33021`, `33023`, `33025`, `33027`, `33029`, `33030`, `33032`, `33036`, `33038`, `33040`, `33042`, `33044`, `33046`, `33048`, `33049`, `33050`, `33051`, `33053`, `33055`, `33057`, `33059`, `33060`, `33061`, `33063`, `33065`, `33066`, `33067`, `33068`, `33070`, `33071`, `33073`, `33075`, `33077`, `33079`, `33081`, `33082`, `33084`, `33086`, `33088`, `33090`, `33092`, `33094`, `33096`, `33098`, `33100`, `33102`, `33103`, `33104`, `33106`, `33108`, `33109`, `33111`, `33112`, `33113`, `33114`, `33115`, `33118`, `33119`, `33120`, `33121`, `33123`, `33124`, `33125`, `33127`, `33129`, `33131`, `33132`, `33134`, `33136`, `33137`, `33139`, `33140`, `33141`, `33143`, `33145`, `33147`, `33148`, `33150`, `33152`, `33154`, `33155`, `33157`, `33159`, `33160`, `33161`, `33163`, `33164`, `33165`, `33167`, `33169`, `33171`, `33173`, `33175`, `33177`, `33179`, `33181`, `33184`, `33187`, `33188`, `33190`, `33192`, `33193`, `33195`, `33197`, `33198`, `33200`, `33202`, `33204`, `33206`, `33207`, `33208`, `33209`, `33210`, `33212`, `33213`, `33215`, `33216`, `33217`, `33219`, `33220`, `33222`, `33225`, `33226`, `33228`, `33230`, `33232`, `33233`, `33235`, `33237`, `33239`, `33241`, `33242`, `33244`, `33245`, `33246`, `33247`, `33249`, `33250`, `33252`, `33254`, `33255`, `33257`, `33259`, `33261`, `33263`, `33265`, `33268`, `33270`, `33273`, `33275`, `33277`, `33281`, `33283`, `33285`, `33287`, `33289`, `33291`, `33293`, `33295`, `33296`, `33299`, `33300`, `33302`, `33304`, `33305`, `33307`, `33308`, `33310`, `33312`, `33313`, `33315`, `33317`, `33319`, `33321`, `33322`, `33324`, `33326`, `33328`, `33329`, `33330`, `33332`, `33334`, `33336`, `33338`, `33339`, `33340`, `33341`, `33343`, `33345`, `33347`, `33349`, `33350`, `33352`, `33354`, `33356`, `33358`, `33359`, `33360`, `33362`, `33364`, `33366`, `33369`, `33371`, `33372`, `33374`, `33376`, `33378`, `33380`, `33382`, `33386`, `33388`, `33390`, `33391`, `33393`, `33395`, `33397`, `33398`, `33400`, `33402`, `33404`, `33406`, `33408`, `33410`, `33412`, `33414`, `33416`, `33418`, `33420`, `33422`, `33424`, `33426`, `33427`, `33428`, `33430`, `33432`, `33434`, `33435`, `33436`, `33438`, `33439`, `33441`, `33443`, `33446`, `33447`, `33449`, `33451`, `33453`, `33455`, `33457`, `33459`, `33460`, `33462`, `33464`, `33466`, `33467`, `33469`, `33470`, `33471`, `33473`, `33475`, `33477`, `33479`, `33481`, `33483`, `33484`, `33487`, `33489`, `33491`, `33493`, `33495`, `33497`, `33498`, `33500`, `33501`, `33502`, `33504`, `33505`, `33506`, `33508`, `33512`, `33514`, `33516`, `33519`, `33524`, `33525`, `33526`, `33530`, `33532`, `33534`, `33536`, `33537`, `33540`, `33542`, `33543`, `33545`, `33546`, `33547`, `33549`, `33551`, `33553`, `33555`, `33557`, `33558`, `33563`, `33564`, `33567`, `33569`, `33571`, `33573`, `33575`, `33577`, `33578`, `33580`, `33582`, `33584`, `33586`, `33588`, `33590`, `33591`, `33593`, `33594`, `33595`, `33597`, `33599`, `33601`, `33603`, `33604`, `33606`, `33608`, `33610`, `33612`, `33614`, `33616`, `33617`, `33619`, `33620`, `33621`, `33623`, `33624`, `33626`, `33628`, `33630`, `33631`, `33633`, `33635`, `33637`, `33638`, `33639`, `33641`, `33643`, `33645`, `33647`, `33651`, `33653`, `33655`, `33657`, `33659`, `33661`, `33663`, `33664`, `33665`, `33667`, `33669`, `33671`, `33673`, `33675`, `33676`, `33677`, `33678`, `33679`, `33681`, `33683`, `33684`, `33685`, `33687`, `33688`, `33689`, `33692`, `33693`, `33695`, `33697`, `33699`, `33700`, `33701`, `33703`, `33704`, `33706`, `33707`, `33709`, `33711`, `33713`, `33715`, `33717`, `33719`, `33721`, `33722`, `33724`, `33726`, `33727`, `33728`, `33729`, `33731`, `33733`, `33735`, `33738`, `33740`, `33742`, `33744`, `33745`, `33747`, `33749`, `33751`, `33752`, `33754`, `33756`, `33758`, `33759`, `33760`, `33763`, `33765`, `33766`, `33767`, `33768`, `33770`, `33773`, `33776`, `33778`, `33780`, `33782`, `33784`, `33785`, `33787`, `33788`, `33790`, `33792`, `33794`, `33795`, `33796`, `33798`, `33799`, `33800`, `33802`, `33807`, `33809`, `33811`, `33813`, `33814`, `33816`, `33817`, `33819`, `33820`, `33822`, `33824`, `33826`, `33828`, `33831`, `33833`, `33835`, `33836`, `33838`, `33840`, `33842`, `33844`, `33846`, `33848`, `33849`, `33851`, `33853`, `33855`, `33857`, `33859`, `33861`, `33863`, `33865`, `33866`, `33868`, `33870`, `33874`, `33876`, `33878`, `33880`, `33881`, `33882`, `33883`, `33885`, `33888`, `33890`, `33892`, `33894`, `33896`, `33898`, `33900`, `33902`, `33904`, `33906`, `33908`, `33909`, `33911`, `33912`, `33913`, `33915`, `33917`, `33918`, `33920`, `33922`, `33923`, `33924`, `33926`, `33928`, `33930`, `33932`, `33933`, `33934`, `33935`, `33936`, `33937`, `33938`, `33939`, `33941`, `33942`, `33944`, `33946`, `33948`, `33949`, `33951`, `33953`, `33955`, `33957`, `33959`, `33961`, `33963`, `33965`, `33967`, `33968`, `33969`, `33971`, `33973`, `33975`, `33977`, `33979`, `33981`, `33982`, `33984`, `33987`, `33989`, `33990`, `33991`, `33992`, `33994`, `33996`, `33998`, `33999`, `34001`, `34003`, `34005`, `34007`, `34010`, `34011`, `34013`, `34015`, `34017`, `34018`, `34020`, `34022`, `34023`, `34024`, `34025`, `34029`, `34032`, `34034`, `34036`, `34038`, `34040`, `34042`, `34044`, `34046`, `34047`, `34049`, `34051`, `34053`, `34055`, `34059`, `34060`, `34061`, `34063`, `34065`, `34066`, `34067`, `34068`, `34070`, `34071`, `34073`, `34074`, `34076`, `34077`, `34079`, `34081`, `34082`, `34084`, `34086`, `34089`, `34092`, `34093`, `34095`, `34097`, `34098`, `34099`, `34100`, `34101`, `34103`, `34105`, `34107`, `34108`, `34110`, `34112`, `34113`, `34115`, `34117`, `34118`, `34119`, `34120`, `34121`, `34122`, `34124`, `34125`, `34127`, `34130`, `34132`, `34134`, `34135`, `34137`, `34140`, `34142`, `34144`, `34147`, `34148`, `34150`, `34152`, `34154`, `34157`, `34159`, `34161`, `34163`, `34164`, `34167`, `34169`, `34171`, `34172`, `34174`, `34176`, `34178`, `34180`, `34182`, `34184`, `34186`, `34188`, `34190`, `34191`, `34192`, `34196`, `34197`, `34199`, `34201`, `34202`, `34203`, `34206`, `34207`, `34209`, `34211`, `34214`, `34216`, `34218`, `34220`, `34221`, `34223`, `34225`, `34227`, `34228`, `34230`, `34231`, `34233`, `34236`, `34238`, `34240`, `34241`, `34243`, `34245`, `34247`, `34249`, `34251`, `34252`, `34253`, `34255`, `34257`, `34258`, `34260`, `34262`, `34264`, `34265`, `34269`, `34271`, `34273`, `34274`, `34277`, `34279`, `34281`, `34283`, `34285`, `34287`, `34289`, `34290`, `34292`, `34294`, `34296`, `34298`, `34300`, `34303`, `34306`, `34307`, `34312`, `34314`, `34315`, `34317`, `34319`, `34321`, `34323`, `34325`, `34327`, `34329`, `34330`, `34332`, `34333`, `34334`, `34335`, `34337`, `34339`, `34341`, `34343`, `34345`, `34347`, `34349`, `34350`, `34352`, `34354`, `34356`, `34357`, `34358`, `34360`, `34362`, `34364`, `34366`, `34368`, `34370`, `34372`, `34374`, `34376`, `34378`, `34380`, `34382`, `34384`, `34386`, `34388`, `34390`, `34392`, `34394`, `34396`, `34398`, `34400`, `34401`, `34403`, `34405`, `34407`, `34408`, `34410`, `34412`, `34414`, `34417`, `34418`, `34420`, `34424`, `34427`, `34429`, `34431`, `34433`, `34435`, `34436`, `34437`, `34438`, `34439`, `34441`, `34443`, `34445`, `34446`, `34448`, `34450`, `34454`, `34456`, `34458`, `34460`, `34462`, `34464`, `34465`, `34467`, `34469`, `34470`, `34473`, `34477`, `34479`, `34480`, `34482`, `34484`, `34487`, `34489`, `34491`, `34492`, `34493`, `34497`, `34499`, `34501`, `34503`, `34504`, `34507`, `34509`, `34511`, `34512`, `34514`, `34516`, `34518`, `34520`, `34523`, `34524`, `34526`, `34528`, `34530`, `34532`, `34533`, `34535`, `34537`, `34539`, `34541`, `34543`, `34545`, `34547`, `34549`, `34551`, `34553`, `34556`, `34557`, `34558`, `34561`, `34565`, `34567`, `34568`, `34569`, `34571`, `34573`, `34575`, `34576`, `34577`, `34578`, `34580`, `34582`, `34585`, `34586`, `34587`, `34588`, `34590`, `34592`, `34594`, `34596`, `34597`, `34599`, `34600`, `34602`, `34604`, `34605`, `34606`, `34607`, `34609`, `34612`, `34613`, `34615`, `34617`, `34618`, `34619`, `34621`, `34622`, `34624`, `34625`, `34626`, `34628`, `34629`, `34631`, `34634`, `34636`, `34640`, `34642`, `34644`, `34646`, `34647`, `34649`, `34651`, `34652`, `34654`, `34655`, `34656`, `34659`, `34661`, `34662`, `34664`, `34666`, `34667`, `34669`, `34671`, `34673`, `34675`, `34676`, `34678`, `34679`, `34681`, `34683`, `34684`, `34686`, `34690`, `34692`, `34694`, `34696`, `34698`, `34700`, `34701`, `34704`, `34706`, `34707`, `34709`, `34710`, `34711`, `34713`, `34715`, `34717`, `34718`, `34720`, `34722`, `34723`, `34724`, `34726`, `34728`, `34733`, `34735`, `34737`, `34739`, `34741`, `34743`, `34746`, `34748`, `34751`, `34752`, `34753`, `34756`, `34758`, `34760`, `34762`, `34763`, `34765`, `34766`, `34768`, `34770`, `34772`, `34774`, `34776`, `34778`, `34780`, `34782`, `34784`, `34786`, `34787`, `34789`, `34790`, `34792`, `34793`, `34795`, `34797`, `34799`, `34801`, `34803`, `34804`, `34805`, `34807`, `34808`, `34810`, `34812`, `34813`, `34815`, `34816`, `34818`, `34820`, `34822`, `34823`, `34825`, `34827`, `34829`, `34831`, `34833`, `34834`, `34836`, `34838`, `34840`, `34842`, `34843`, `34845`, `34846`, `34847`, `34848`, `34850`, `34852`, `34856`, `34858`, `34860`, `34862`, `34863`, `34864`, `34866`, `34868`, `34870`, `34871`, `34873`, `34875`, `34877`, `34879`, `34881`, `34883`, `34884`, `34886`, `34888`, `34890`, `34891`, `34893`, `34895`, `34900`, `34906`, `34908`, `34910`, `34912`, `34914`, `34916`, `34918`, `34919`, `34921`, `34923`, `34925`, `34926`, `11536`, `34928`, `34930`, `34931`, `34933`, `34935`, `34937`, `34939`, `34941`, `34942`, `34945`, `34947`, `34949`, `34951`, `34952`, `34957`, `34959`, `34960`, `34962`, `34965`, `34967`, `34969`, `34971`, `34973`, `34975`, `34978`, `34980`, `34982`, `34984`, `34985`, `34987`, `34988`, `34990`, `34992`, `34994`, `34996`, `34998`, `35000`, `35004`, `35006`, `35008`, `35011`, `35013`, `35015`, `35016`, `35018`, `35019`, `35020`, `35022`, `35024`, `35026`, `35028`, `35029`, `35030`, `35032`, `35034`, `35035`, `35036`, `35037`, `35039`, `35040`, `35042`, `35045`, `35046`, `35048`, `35050`, `35051`, `35052`, `35053`, `35055`, `35056`, `35057`, `35059`, `35061`, `35062`, `35064`, `35066`, `35068`, `35070`, `35072`, `35074`, `35076`, `35077`, `35078`, `35079`, `35081`, `35083`, `35084`, `35086`, `35088`, `35090`, `35092`, `35093`, `35095`, `35097`, `35099`, `35100`, `35102`, `35104`, `35106`, `35108`, `35110`, `35112`, `35113`, `35114`, `35116`, `35117`, `35119`, `35124`, `35126`, `35128`, `35131`, `35133`, `35135`, `35138`, `35139`, `35140`, `35143`, `35145`, `35147`, `35149`, `35151`, `35153`, `35157`, `35159`, `35161`, `35163`, `35164`, `35166`, `35168`, `35170`, `35172`, `35174`, `35177`, `35178`, `35180`, `35181`, `35184`, `35186`, `35188`, `35190`, `35192`, `35193`, `35195`, `35196`, `35198`, `35200`, `35202`, `35203`, `35204`, `35206`, `35208`, `35210`, `35211`, `35213`, `35215`, `35217`, `35219`, `35220`, `35221`, `35223`, `35225`, `35226`, `35228`, `35230`, `35231`, `35232`, `35234`, `35235`, `35237`, `35239`, `35241`, `35243`, `35244`, `35246`, `35248`, `35249`, `35251`, `35253`, `35256`, `35258`, `35259`, `35261`, `35263`, `35265`, `35266`, `35267`, `35268`, `35269`, `35271`, `35277`, `35279`, `35281`, `35283`, `35285`, `35286`, `35288`, `35289`, `35292`, `35295`, `35297`, `35298`, `35300`, `35301`, `35302`, `35304`, `35306`, `35308`, `35311`, `35313`, `35315`, `35317`, `35319`, `35321`, `35323`, `35325`, `35326`, `35328`, `35330`, `35331`, `35333`, `35335`, `35336`, `35338`, `35340`, `35341`, `35343`, `35345`, `35347`, `35348`, `35349`, `35351`, `35353`, `35356`, `35358`, `35359`, `35362`, `35366`, `35369`, `35371`, `35373`, `35375`, `35376`, `35377`, `35378`, `35379`, `35381`, `35383`, `35387`, `35389`, `35391`, `35392`, `35394`, `35396`, `35398`, `35401`, `35403`, `35405`, `35407`, `35413`, `35415`, `35418`, `35420`, `35422`, `35423`, `35425`, `35426`, `35427`, `35429`, `35431`, `35433`, `35436`, `35438`, `35440`, `35441`, `35442`, `35444`, `35446`, `35447`, `35448`, `35450`, `35451`, `35453`, `35456`, `35458`, `35460`, `35462`, `35464`, `35466`, `35467`, `35469`, `35470`, `35471`, `35473`, `35474`, `35475`, `35477`, `35479`, `35481`, `35483`, `35484`, `35486`, `35488`, `35490`, `35492`, `35494`, `35496`, `35497`, `35499`, `35500`, `35503`, `35505`, `35507`, `35509`, `35511`, `35513`, `35514`, `35516`, `35518`, `35520`, `35521`, `35524`, `35526`, `35527`, `35529`, `35531`, `35532`, `35534`, `35536`, `35537`, `35540`, `35542`, `35543`, `35545`, `35547`, `35549`, `35551`, `35553`, `35555`, `35556`, `35557`, `35559`, `35561`, `35563`, `35565`, `35567`, `35569`, `35571`, `35573`, `35575`, `35576`, `35578`, `35580`, `35581`, `35582`, `35584`, `35585`, `35587`, `35589`, `35590`, `35592`, `35594`, `35595`, `35597`, `35599`, `35601`, `35603`, `35605`, `35606`, `35607`, `35608`, `35610`, `35612`, `35614`, `35615`, `35616`, `35617`, `35619`, `35621`, `35622`, `35624`, `35626`, `35628`, `35630`, `35631`, `35633`, `35635`, `35637`, `35639`, `35641`, `35643`, `35644`, `35649`, `35650`, `35651`, `35653`, `35655`, `35659`, `35661`, `35663`, `35665`, `35666`, `35668`, `35670`, `35672`, `35675`, `35677`, `35679`, `35681`, `35683`, `35684`, `35685`, `35687`, `35689`, `35691`, `35692`, `35694`, `35696`, `35698`, `35700`, `35702`, `35704`, `35706`, `35708`, `35710`, `35712`, `35713`, `35716`, `35718`, `35719`, `35720`, `35721`, `35722`, `35724`, `35726`, `35730`, `35732`, `35733`, `35735`, `35737`, `35738`, `35740`, `35743`, `35745`, `35747`, `35748`, `35750`, `35751`, `35753`, `35755`, `35756`, `35759`, `35761`, `35763`, `35765`, `35766`, `35768`, `35771`, `35772`, `35774`, `35776`, `35778`, `35780`, `35781`, `35783`, `35784`, `35786`, `35788`, `35790`, `35792`, `35793`, `35794`, `35795`, `35798`, `35800`, `35802`, `35804`, `35807`, `35809`, `35811`, `35813`, `35815`, `35816`, `35818`, `35819`, `35821`, `35822`, `35824`, `35826`, `35830`, `35831`, `35833`, `35835`, `35836`, `35837`, `35838`, `35840`, `35842`, `35845`, `35846`, `35848`, `35850`, `35852`, `35853`, `35855`, `35857`, `35859`, `35860`, `35862`, `35867`, `35869`, `35871`, `35873`, `35875`, `35877`, `35878`, `35883`, `35884`, `35886`, `35888`, `35891`, `35893`, `35895`, `35896`, `35898`, `35899`, `35901`, `35903`, `35905`, `35907`, `35908`, `35912`, `35914`, `35916`, `35917`, `35918`, `35920`, `35921`, `35923`, `35925`, `35926`, `35927`, `35929`, `35931`, `35933`, `35936`, `35938`, `35940`, `35942`, `35944`, `35945`, `35947`, `35949`, `35951`, `35953`, `35956`, `35959`, `35963`, `35965`, `35966`, `35968`, `35970`, `35972`, `35976`, `35979`, `35982`, `35984`, `35986`, `35988`, `35992`, `35993`, `35994`, `35996`, `35999`, `36001`, `36003`, `36005`, `36007`, `36009`, `36011`, `36013`, `36015`, `36016`, `36018`, `36021`, `36023`, `36024`, `36025`, `36028`, `36030`, `36032`, `36034`, `36035`, `36037`, `36038`, `36040`, `36042`, `36043`, `36045`, `36046`, `36047`, `36048`, `36049`, `36050`, `36052`, `36054`, `36057`, `36059`, `36061`, `36062`, `36064`, `36066`, `36068`, `36070`, `36072`, `36073`, `36075`, `36077`, `36079`, `36080`, `36082`, `36084`, `36086`, `36089`, `36091`, `36093`, `36094`, `36095`, `36097`, `36099`, `36101`, `36102`, `36103`, `36105`, `36107`, `36109`, `36110`, `36112`, `36114`, `36116`, `36118`, `36121`, `36123`, `36126`, `36128`, `36130`, `36132`, `36134`, `36135`, `36136`, `36138`, `36139`, `36141`, `36143`, `36144`, `36146`, `36148`, `36150`, `36152`, `36154`, `36155`, `36157`, `36159`, `36161`, `36163`, `36165`, `36167`, `36169`, `36170`, `36171`, `36173`, `36175`, `36176`, `36178`, `36180`, `36181`, `36182`, `36184`, `36186`, `36188`, `36190`, `36192`, `36193`, `36195`, `36196`, `36198`, `36200`, `36202`, `36204`, `36206`, `36209`, `36211`, `36213`, `36215`, `36217`, `36219`, `36221`, `36223`, `36225`, `36227`, `36229`, `36230`, `36232`, `36234`, `36236`, `36238`, `36242`, `36244`, `36247`, `36249`, `36251`, `36253`, `36255`, `36257`, `36259`, `36260`, `36262`, `36264`, `36266`, `36268`, `36270`, `36272`, `36274`, `36275`, `36278`, `36280`, `36281`, `36283`, `36285`, `36287`, `36288`, `36289`, `36290`, `36292`, `36294`, `36296`, `36298`, `36300`, `36305`, `36306`, `36308`, `36310`, `36311`, `36312`, `36314`, `36315`, `36316`, `36317`, `36319`, `36320`, `36321`, `36322`, `36324`, `36326`, `36328`, `36334`, `36335`, `36337`, `36339`, `36342`, `36344`, `36345`, `36347`, `36349`, `36350`, `36352`, `36354`, `36356`, `36357`, `36359`, `36361`, `36363`, `36365`, `36367`, `36370`, `36372`, `36375`, `36376`, `36379`, `36380`, `36382`, `36384`, `36385`, `36387`, `36389`, `36392`, `36393`, `36395`, `36396`, `36398`, `36399`, `36401`, `36403`, `36405`, `36407`, `36409`, `36411`, `36412`, `36413`, `36414`, `36416`, `36418`, `36419`, `36423`, `36424`, `36426`, `36428`, `36429`, `36430`, `36431`, `36433`, `36435`, `36437`, `36441`, `36444`, `36445`, `36447`, `36449`, `36450`, `36452`, `36453`, `36454`, `36455`, `36457`, `36458`, `36460`, `36461`, `36463`, `36464`, `36466`, `36469`, `36470`, `36472`, `36475`, `36477`, `36479`, `36480`, `36481`, `36483`, `36484`, `36486`, `36488`, `36490`, `36491`, `36493`, `36494`, `36496`, `36498`, `36500`, `36501`, `36503`, `36505`, `36507`, `36509`, `36510`, `36511`, `36512`, `36514`, `36516`, `36518`, `36519`, `36521`, `36522`, `36524`, `36525`, `36526`, `36528`, `36530`, `36531`, `36532`, `36537`, `36539`, `36540`, `36542`, `36544`, `36546`, `36548`, `36551`, `36553`, `36555`, `36556`, `36558`, `36560`, `36561`, `36562`, `36564`, `36566`, `36568`, `36570`, `36572`, `36574`, `36575`, `36577`, `36578`, `36580`, `36584`, `36586`, `36588`, `36590`, `36592`, `36594`, `36596`, `36598`, `36605`, `36607`, `36610`, `36612`, `36614`, `36616`, `36620`, `36621`, `36623`, `36624`, `36625`, `36627`, `36629`, `36631`, `36633`, `36635`, `36637`, `36639`, `36641`, `36644`, `36646`, `36647`, `36648`, `36650`, `36651`, `36653`, `36655`, `36657`, `36659`, `36661`, `36663`, `36664`, `36665`, `36667`, `36669`, `36671`, `36672`, `36673`, `36675`, `36677`, `36679`, `36681`, `36683`, `36685`, `36689`, `36691`, `36693`, `36695`, `36697`, `36699`, `36700`, `36702`, `36704`, `36706`, `36708`, `36710`, `36711`, `36713`, `36715`, `36717`, `36718`, `36719`, `36721`, `36722`, `36724`, `36726`, `36728`, `36730`, `36732`, `36734`, `36736`, `36738`, `36739`, `36741`, `36743`, `36746`, `36748`, `36750`, `36752`, `36755`, `36757`, `36759`, `36761`, `36763`, `36765`, `36766`, `36768`, `36770`, `36771`, `36772`, `36774`, `36775`, `36777`, `36779`, `36781`, `36783`, `36785`, `36787`, `36789`, `36790`, `36791`, `36793`, `36795`, `36797`, `36799`, `36800`, `36805`, `36807`, `36809`, `36811`, `36813`, `36814`, `36815`, `36817`, `36819`, `36821`, `36823`, `36824`, `36826`, `36827`, `36829`, `36830`, `36833`, `36836`, `36838`, `36839`, `36841`, `36843`, `36844`, `36846`, `36847`, `36849`, `36851`, `36857`, `36859`, `36860`, `36861`, `36863`, `36865`, `36867`, `36869`, `36871`, `36873`, `36875`, `36877`, `36879`, `36881`, `36885`, `36887`, `36890`, `36892`, `36894`, `36896`, `36898`, `36899`, `36901`, `36904`, `36906`, `36908`, `36910`, `36912`, `36914`, `36916`, `36918`, `36920`, `36922`, `36924`, `36925`, `36927`, `36929`, `36930`, `36931`, `36933`, `36934`, `36935`, `36936`, `36938`, `36940`, `36941`, `36942`, `36944`, `36946`, `36948`, `36950`, `36954`, `36957`, `36959`, `36961`, `36963`, `36964`, `36966`, `36968`, `36969`, `36970`, `36972`, `36974`, `36976`, `36980`, `36981`, `36983`, `36985`, `36986`, `36987`, `36989`, `36991`, `36993`, `36994`, `36997`, `36999`, `37000`, `37004`, `37006`, `37008`, `37010`, `37012`, `37013`, `37015`, `37016`, `37017`, `37018`, `37020`, `37021`, `37023`, `37024`, `37026`, `37028`, `37030`, `37032`, `37033`, `37034`, `37036`, `37037`, `37039`, `37040`, `37042`, `37044`, `37046`, `37047`, `37049`, `37050`, `37053`, `37054`, `37056`, `37057`, `37060`, `37062`, `37064`, `37066`, `37068`, `37070`, `37072`, `37074`, `37076`, `37078`, `37080`, `37081`, `37083`, `37085`, `37086`, `37088`, `37090`, `37092`, `37094`, `37095`, `37099`, `37101`, `37102`, `37104`, `37105`, `37107`, `37108`, `37109`, `37111`, `37113`, `37115`, `37117`, `37120`, `37121`, `37123`, `37126`, `37128`, `37130`, `37131`, `37133`, `37135`, `37137`, `37139`, `37141`, `37143`, `37145`, `37147`, `37149`, `37151`, `37153`, `37155`, `37159`, `37161`, `37163`, `37165`, `37168`, `37170`, `37171`, `37172`, `37174`, `37175`, `37176`, `37182`, `37183`, `37184`, `37185`, `37186`, `37188`, `37190`, `37192`, `37193`, `37195`, `37197`, `37198`, `37202`, `37204`, `37206`, `37207`, `37208`, `37210`, `37211`, `37213`, `37214`, `37215`, `37217`, `37218`, `37219`, `37221`, `37223`, `37227`, `37229`, `37231`, `37232`, `37234`, `37235`, `37237`, `37239`, `37243`, `37245`, `37246`, `37247`, `37248`, `37249`, `37251`, `37253`, `37254`, `37255`, `37257`, `37259`, `37262`, `37263`, `37265`, `37267`, `37269`, `37271`, `37273`, `37274`, `37276`, `37277`, `37279`, `37281`, `37283`, `37284`, `37286`, `37288`, `37290`, `37291`, `37293`, `37295`, `37297`, `37298`, `37300`, `37302`, `37306`, `37308`, `37309`, `37310`, `37314`, `37316`, `37317`, `37319`, `37321`, `37323`, `37325`, `37327`, `37329`, `37330`, `37331`, `37333`, `37335`, `37337`, `37339`, `37341`, `37343`, `37345`, `37347`, `37348`, `37349`, `37350`, `37352`, `37354`, `37356`, `37358`, `37360`, `37362`, `37363`, `37365`, `37366`, `37367`, `37369`, `37371`, `37373`, `37375`, `37376`, `37377`, `37380`, `37382`, `37384`, `37385`, `37387`, `37390`, `37392`, `37394`, `37396`, `37398`, `37399`, `37401`, `37402`, `37404`, `37405`, `37407`, `37408`, `37409`, `37411`, `37413`, `37415`, `37417`, `37418`, `37420`, `37422`, `37424`, `37426`, `37428`, `37429`, `37431`, `37433`, `37434`, `37436`, `37440`, `37442`, `37444`, `37446`, `37448`, `37450`, `37451`, `37453`, `37455`, `37457`, `37459`, `37462`, `37464`, `37466`, `37467`, `37468`, `37469`, `37470`, `37472`, `37474`, `37475`, `37476`, `37478`, `37479`, `37481`, `37482`, `37485`, `37489`, `37492`, `37494`, `37495`, `37497`, `37498`, `37499`, `37501`, `37503`, `37505`, `37506`, `37508`, `37510`, `37512`, `37514`, `37516`, `37518`, `37520`, `37521`, `37523`, `37525`, `37527`, `37530`, `37531`, `37533`, `37535`, `37537`, `37539`, `37541`, `37544`, `37546`, `37548`, `37550`, `37552`, `37555`, `37557`, `37559`, `37561`, `37564`, `37566`, `37568`, `37570`, `37571`, `37572`, `37574`, `37576`, `37578`, `37580`, `37581`, `37583`, `37585`, `37586`, `37587`, `37589`, `37591`, `37593`, `37594`, `37595`, `37597`, `37599`, `37600`, `37602`, `37604`, `37605`, `37607`, `37609`, `37611`, `37612`, `37614`, `37616`, `37618`, `37619`, `37621`, `37625`, `37627`, `37628`, `37629`, `37630`, `37632`, `37634`, `37637`, `37639`, `37640`, `37642`, `37644`, `37646`, `37648`, `37650`, `37652`, `37653`, `37655`, `37656`, `37657`, `37659`, `37661`, `37663`, `37664`, `37666`, `37668`, `37669`, `37671`, `37673`, `37675`, `37677`, `37678`, `37680`, `37681`, `37683`, `37686`, `37688`, `37690`, `37692`, `37694`, `37696`, `37698`, `37699`, `37701`, `37704`, `37705`, `37707`, `37709`, `37711`, `37713`, `37715`, `37716`, `37718`, `37719`, `37721`, `37723`, `37724`, `37726`, `37728`, `37730`, `37731`, `37732`, `37734`, `37735`, `37736`, `37740`, `37742`, `37746`, `37748`, `37749`, `37750`, `37752`, `37753`, `37754`, `37756`, `37758`, `37760`, `37763`, `37764`, `37766`, `37767`, `37769`, `37771`, `37773`, `37775`, `37777`, `37779`, `37781`, `37783`, `37785`, `37786`, `37788`, `37790`, `37792`, `37794`, `37795`, `37796`, `37797`, `37799`, `37801`, `37803`, `37804`, `37806`, `37808`, `37812`, `37814`, `37816`, `37817`, `37818`, `37819`, `37821`, `37822`, `37824`, `37825`, `37827`, `37828`, `37829`, `37830`, `37832`, `37834`, `37835`, `37837`, `37839`, `37842`, `37843`, `37844`, `37848`, `37850`, `37852`, `37854`, `37856`, `37857`, `37859`, `37860`, `37862`, `37863`, `37866`, `37869`, `37871`, `37872`, `37874`, `37875`, `37876`, `37877`, `37878`, `37881`, `37883`, `37884`, `37885`, `37886`, `37887`, `37889`, `37891`, `37892`, `37894`, `37895`, `37897`, `37900`, `37902`, `37904`, `37906`, `37908`, `37909`, `37911`, `37913`, `37915`, `37916`, `37918`, `37922`, `37923`, `37925`, `37926`, `37928`, `37930`, `37932`, `37934`, `37935`, `37936`, `37937`, `37939`, `37941`, `37943`, `37945`, `37947`, `37950`, `37951`, `37952`, `37954`, `37956`, `37958`, `37960`, `37962`, `37964`, `37965`, `37966`, `37968`, `37970`, `37972`, `37974`, `37977`, `37978`, `37980`, `37982`, `37983`, `37986`, `37988`, `37989`, `37993`, `37994`, `37996`, `37998`, `37999`, `38001`, `38003`, `38005`, `38007`, `38008`, `38010`, `38011`, `38013`, `38015`, `38016`, `38018`, `38019`, `38021`, `38023`, `38025`, `38027`, `38029`, `38030`, `38031`, `38033`, `38035`, `38037`, `38038`, `38040`, `38042`, `38044`, `38045`, `38046`, `38048`, `38050`, `38052`, `38054`, `38055`, `38056`, `38058`, `38060`, `38062`, `38064`, `38066`, `38068`, `38070`, `38071`, `38073`, `38075`, `38076`, `38078`, `38080`, `38082`, `38088`, `38090`, `38091`, `38093`, `38095`, `38097`, `38098`, `38099`, `38101`, `38103`, `38105`, `38106`, `38107`, `38108`, `38110`, `38111`, `38112`, `38115`, `38117`, `38119`, `38122`, `38124`, `38126`, `38128`, `38130`, `38131`, `38133`, `38135`, `38136`, `38137`, `38139`, `38141`, `38142`, `38143`, `38145`, `38148`, `38149`, `38151`, `38152`, `38154`, `38156`, `38157`, `38161`, `38163`, `38165`, `38166`, `38168`, `38170`, `38172`, `38173`, `38175`, `38177`, `38178`, `38179`, `38182`, `38183`, `38184`, `38186`, `38188`, `38189`, `38192`, `38193`, `38194`, `38195`, `38197`, `38199`, `38201`, `38202`, `38204`, `38205`, `38207`, `38209`, `38211`, `38212`, `38213`, `38216`, `38218`, `38220`, `38223`, `38225`, `38226`, `38227`, `38229`, `38232`, `38233`, `38235`, `38238`, `38239`, `38240`, `38242`, `38244`, `38245`, `38247`, `38249`, `38251`, `38253`, `17591`, `38255`, `38257`, `38259`, `38261`, `38263`, `38264`, `38266`, `38268`, `38269`, `38271`, `38272`, `38274`, `38275`, `38277`, `38279`, `38280`, `38281`, `38283`, `38284`, `38286`, `38287`, `38288`, `38290`, `38292`, `38294`, `38296`, `38298`, `38300`, `38302`, `38304`, `38306`, `38308`, `38310`, `38311`, `38313`, `38315`, `38316`, `38317`, `38319`, `38320`, `38322`, `38324`, `38325`, `38326`, `38328`, `38330`, `38332`, `38333`, `38335`, `38336`, `38337`, `38340`, `38342`, `38343`, `38345`, `38346`, `38348`, `38350`, `38352`, `38354`, `38356`, `38358`, `38360`, `38362`, `38364`, `38366`, `38368`, `38369`, `38372`, `38373`, `38375`, `38376`, `38378`, `38380`, `38382`, `38383`, `38386`, `38388`, `38391`, `38393`, `38395`, `38397`, `38399`, `38400`, `38404`, `38405`, `38407`, `38409`, `38410`, `38413`, `38414`, `38416`, `38419`, `38421`, `38423`, `38425`, `38427`, `38428`, `38430`, `38432`, `38433`, `38434`, `38436`, `38437`, `38438`, `38441`, `38443`, `38444`, `38446`, `38448`, `38450`, `38453`, `38455`, `38457`, `38459`, `38462`, `38464`, `38465`, `38467`, `38471`, `38473`, `38474`, `38475`, `38477`, `38480`, `38482`, `38483`, `38487`, `38488`, `38490`, `38491`, `38493`, `38496`, `38498`, `38500`, `38502`, `38504`, `38505`, `38507`, `38509`, `38511`, `38512`, `38514`, `38515`, `38517`, `38519`, `38521`, `38523`, `38526`, `38527`, `38528`, `38530`, `38532`, `38534`, `38535`, `38537`, `38539`, `38541`, `38543`, `38545`, `38546`, `38549`, `38551`, `38553`, `38554`, `38555`, `38556`, `38560`, `38562`, `38563`, `38564`, `38565`, `38567`, `38568`, `38570`, `38571`, `38573`, `38575`, `38577`, `38579`, `38582`, `38584`, `38589`, `38591`, `38593`, `38595`, `38596`, `38597`, `38600`, `38601`, `38602`, `38603`, `38604`, `38606`, `38608`, `38610`, `38612`, `38614`, `38615`, `38616`, `38618`, `38619`, `38621`, `38622`, `38624`, `38626`, `38628`, `38631`, `38632`, `38633`, `38634`, `38637`, `38639`, `38640`, `38642`, `38644`, `38646`, `38647`, `38649`, `38650`, `38652`, `38654`, `38656`, `38658`, `38659`, `38661`, `38662`, `38664`, `38666`, `38668`, `38670`, `38672`, `38674`, `38676`, `38678`, `38680`, `38682`, `38684`, `38685`, `38687`, `38689`, `38691`, `38694`, `38695`, `38697`, `38698`, `38700`, `38701`, `38703`, `38705`, `38706`, `38708`, `38710`, `38712`, `38714`, `38715`, `38718`, `38720`, `38721`, `38723`, `38725`, `38727`, `38729`, `38731`, `38733`, `38736`, `38738`, `38739`, `38741`, `38742`, `38744`, `38745`, `38747`, `38749`, `38751`, `38753`, `38754`, `38756`, `38758`, `38759`, `38761`, `38763`, `38765`, `38766`, `38767`, `38769`, `38770`, `38771`, `38773`, `38775`, `38779`, `38781`, `38783`, `38785`, `38786`, `38788`, `38790`, `38792`, `38795`, `38797`, `38799`, `38802`, `38803`, `38805`, `38807`, `38809`, `38811`, `38813`, `38815`, `38817`, `38819`, `38820`, `38822`, `38824`, `38827`, `38829`, `38830`, `38831`, `38833`, `38835`, `38837`, `38838`, `38840`, `38842`, `38844`, `38846`, `38848`, `38850`, `38852`, `38854`, `38856`, `38857`, `38858`, `38860`, `38861`, `38863`, `38865`, `38867`, `38869`, `38871`, `38872`, `38873`, `38875`, `38877`, `38879`, `38881`, `38883`, `38885`, `38887`, `38888`, `38890`, `38892`, `38895`, `38896`, `38897`, `38898`, `38902`, `38903`, `38904`, `38906`, `38908`, `38909`, `38910`, `38911`, `38913`, `38915`, `38916`, `38918`, `38920`, `38922`, `38924`, `38926`, `38928`, `38929`, `38930`, `38933`, `38934`, `38935`, `38936`, `38938`, `38940`, `38942`, `38944`, `38946`, `38948`, `38949`, `38951`, `38953`, `38955`, `38957`, `38959`, `38960`, `38961`, `38964`, `38966`, `38967`, `38969`, `38972`, `38973`, `38974`, `38976`, `38978`, `38980`, `38981`, `38983`, `38986`, `38987`, `38988`, `38989`, `38991`, `38993`, `38995`, `38996`, `38997`, `38999`, `39001`, `39002`, `39003`, `39004`, `39005`, `39006`, `39008`, `39011`, `39013`, `39015`, `39017`, `39019`, `39023`, `39024`, `39026`, `39027`, `39029`, `39031`, `39032`, `39034`, `39036`, `39037`, `39040`, `39042`, `39043`, `39044`, `39046`, `39048`, `39049`, `39051`, `39053`, `39055`, `39057`, `39059`, `39060`, `39062`, `39063`, `39066`, `39067`, `39069`, `39071`, `39074`, `39075`, `39077`, `39078`, `39080`, `39082`, `39083`, `39084`, `39087`, `39089`, `39092`, `39094`, `39096`, `39097`, `39100`, `39102`, `39104`, `39106`, `39108`, `39110`, `39112`, `39114`, `39116`, `39118`, `39120`, `39121`, `39123`, `39124`, `39126`, `39128`, `39129`, `39131`, `39133`, `39134`, `39136`, `39138`, `39140`, `39141`, `39142`, `39144`, `39145`, `39147`, `39148`, `39149`, `39151`, `39155`, `39159`, `39160`, `39161`, `39163`, `39164`, `39166`, `39168`, `39170`, `39172`, `39174`, `39176`, `39178`, `39180`, `39182`, `39184`, `39186`, `39187`, `39189`, `39191`, `39193`, `39194`, `39195`, `39197`, `39198`, `39199`, `39201`, `39205`, `39206`, `39207`, `39208`, `39210`, `39212`, `39214`, `39216`, `39218`, `39219`, `39221`, `39222`, `39224`, `39225`, `39227`, `39229`, `39230`, `39232`, `39234`, `39236`, `39238`, `39239`, `39241`, `39244`, `39245`, `39247`, `39248`, `39249`, `39251`, `39253`, `39255`, `39256`, `39258`, `39259`, `39261`, `39262`, `39263`, `39265`, `39267`, `39269`, `39271`, `39273`, `39275`, `39276`, `39278`, `39280`, `39282`, `39283`, `39285`, `39287`, `39289`, `39290`, `39292`, `39294`, `39296`, `39298`, `39300`, `39302`, `39305`, `39306`, `39307`, `39309`, `39310`, `39313`, `39314`, `39316`, `39318`, `39320`, `39322`, `39324`, `39326`, `39327`, `39329`, `39331`, `39333`, `39334`, `39336`, `39337`, `39339`, `39340`, `39341`, `39342`, `39344`, `39345`, `39346`, `39347`, `39349`, `39351`, `39353`, `39355`, `39356`, `39358`, `39359`, `39361`, `39363`, `39364`, `39366`, `39367`, `39368`, `39369`, `39370`, `39375`, `39377`, `39378`, `39379`, `39381`, `39383`, `39385`, `39387`, `39389`, `39391`, `39392`, `39393`, `39394`, `39396`, `39398`, `39399`, `39400`, `39404`, `39406`, `39408`, `39410`, `39412`, `39414`, `39416`, `39418`, `39420`, `39422`, `39423`, `39425`, `39427`, `39428`, `39429`, `39432`, `39433`, `39435`, `39436`, `39439`, `39441`, `39442`, `39443`, `39444`, `39445`, `39447`, `39448`, `39450`, `39452`, `39454`, `39457`, `39459`, `39460`, `39462`, `39464`, `39466`, `39468`, `39470`, `39471`, `39472`, `39475`, `39477`, `39479`, `39480`, `39482`, `39484`, `39485`, `39487`, `39489`, `39491`, `39492`, `39493`, `39494`, `39496`, `39499`, `39501`, `39502`, `39506`, `39507`, `39508`, `39509`, `39511`, `39513`, `39514`, `39516`, `39518`, `39519`, `39521`, `39522`, `39525`, `39526`, `39529`, `39530`, `39532`, `39533`, `39535`, `39537`, `39539`, `39541`, `39542`, `39544`, `39546`, `39547`, `39548`, `39550`, `39552`, `39554`, `39556`, `39558`, `39560`, `39562`, `39563`, `39565`, `39567`, `39568`, `39570`, `39572`, `39573`, `39575`, `39577`, `39578`, `39579`, `39581`, `39584`, `39586`, `39587`, `39588`, `39589`, `39592`, `39593`, `39595`, `39597`, `39598`, `39600`, `39602`, `39604`, `39606`, `39608`, `39610`, `39612`, `39614`, `39616`, `39617`, `39619`, `39621`, `39623`, `39625`, `39626`, `39627`, `39629`, `39631`, `39633`, `39634`, `39636`, `39637`, `39638`, `39640`, `39644`, `39649`, `39651`, `39653`, `39655`, `39657`, `39659`, `39661`, `39662`, `39664`, `39666`, `39668`, `39673`, `39675`, `39677`, `39679`, `39681`, `39683`, `39685`, `39687`, `39689`, `39692`, `39693`, `39695`, `39697`, `39699`, `39701`, `39703`, `39705`, `39706`, `39708`, `39712`, `39714`, `39716`, `39718`, `39720`, `39722`, `39724`, `39727`, `39729`, `39731`, `39732`, `39734`, `39736`, `39738`, `39740`, `39742`, `39744`, `39746`, `39749`, `39751`, `39752`, `39754`, `39755`, `39757`, `39758`, `39760`, `39762`, `39763`, `39765`, `39766`, `39768`, `39770`, `39772`, `39773`, `39774`, `39775`, `39779`, `39781`, `39783`, `39784`, `39786`, `39787`, `39789`, `39792`, `39794`, `39796`, `39798`, `39800`, `39802`, `39804`, `39806`, `39808`, `39810`, `39814`, `39816`, `39819`, `39820`, `39822`, `39823`, `39825`, `39826`, `39828`, `39830`, `39831`, `39833`, `39835`, `39841`, `39842`, `39846`, `39848`, `39852`, `39854`, `39856`, `39858`, `39860`, `39862`, `39864`, `39867`, `39869`, `39871`, `39873`, `39875`, `39877`, `39879`, `39881`, `39882`, `39883`, `39885`, `39887`, `39889`, `39890`, `39892`, `39894`, `39896`, `39898`, `39899`, `39901`, `39903`, `39905`, `39907`, `39908`, `39910`, `39912`, `39913`, `39915`, `39917`, `39918`, `39920`, `39922`, `39924`, `39926`, `39928`, `39930`, `39932`, `39934`, `39936`, `39937`, `39938`, `39939`, `39940`, `39941`, `39943`, `39945`, `39947`, `39950`, `39951`, `39952`, `39953`, `39955`, `39956`, `39958`, `39960`, `39962`, `39964`, `39965`, `39967`, `39969`, `39971`, `39973`, `39974`, `39977`, `39979`, `39981`, `39982`, `39984`, `39985`, `39987`, `39989`, `39991`, `39993`, `39995`, `39999`, `40001`, `40002`, `40004`, `40005`, `40007`, `40009`, `40011`, `40013`, `40014`, `40015`, `40017`, `40019`, `40021`, `40023`, `40025`, `40027`, `40028`, `40029`, `40030`, `40032`, `40034`, `40035`, `40036`, `40037`, `40038`, `40041`, `40042`, `40043`, `40045`, `40046`, `40047`, `40049`, `40051`, `40053`, `40055`, `40056`, `40057`, `40059`, `40060`, `40061`, `40063`, `40065`, `40067`, `40069`, `40074`, `40075`, `40076`, `40078`, `40080`, `40082`, `40084`, `40085`, `40087`, `40089`, `40091`, `40095`, `40096`, `40098`, `40099`, `40100`, `40101`, `40103`, `40104`, `40105`, `40107`, `40108`, `40110`, `40112`, `40114`, `40116`, `40117`, `40119`, `40121`, `40123`, `40125`, `40126`, `40128`, `40130`, `40132`, `40134`, `40136`, `40138`, `40140`, `40142`, `40143`, `40145`, `40146`, `40147`, `40148`, `40150`, `40152`, `40153`, `40155`, `40157`, `40163`, `40165`, `40167`, `40169`, `40172`, `40174`, `40175`, `40176`, `40178`, `40180`, `40182`, `40184`, `40185`, `40186`, `40188`, `40190`, `40192`, `40193`, `40194`, `40195`, `40197`, `40199`, `40201`, `40202`, `40205`, `40207`, `40209`, `40211`, `40213`, `40215`, `40217`, `40218`, `40220`, `40222`, `40223`, `40225`, `40226`, `40227`, `40229`, `40230`, `40231`, `40233`, `40235`, `40237`, `40239`, `40241`, `40243`, `40245`, `40246`, `40249`, `40250`, `40252`, `40253`, `40255`, `40257`, `40259`, `40261`, `40263`, `40265`, `40267`, `40268`, `40274`, `40276`, `40281`, `40282`, `40283`, `40284`, `40285`, `40287`, `40289`, `40291`, `40293`, `40294`, `40297`, `40299`, `40300`, `40301`, `40304`, `40306`, `40307`, `40309`, `40311`, `40313`, `40315`, `40317`, `40319`, `40323`, `40324`, `40327`, `40329`, `40331`, `40332`, `40334`, `40338`, `40340`, `40342`, `40343`, `40346`, `40347`, `40349`, `40350`, `40352`, `40353`, `40355`, `40357`, `40359`, `40360`, `40362`, `40364`, `40366`, `40367`, `40369`, `40370`, `40373`, `40376`, `40377`, `40379`, `40381`, `40383`, `40385`, `40387`, `40389`, `40391`, `40393`, `40395`, `40397`, `40402`, `40404`, `40406`, `40408`, `40410`, `40412`, `40414`, `40416`, `40417`, `40418`, `40420`, `40424`, `40426`, `40428`, `40430`, `40432`, `40433`, `40435`, `40437`, `40438`, `40440`, `40443`, `40444`, `40446`, `40448`, `40450`, `40452`, `40454`, `40457`, `40458`, `40460`, `40461`, `40463`, `40465`, `40467`, `40468`, `40470`, `40471`, `40473`, `40475`, `40477`, `40478`, `40480`, `40481`, `40484`, `40485`, `40487`, `40489`, `40490`, `40493`, `40495`, `40499`, `40500`, `40502`, `40503`, `40505`, `40506`, `40508`, `40509`, `40512`, `40515`, `40517`, `40518`, `40520`, `40522`, `40523`, `40525`, `40527`, `40529`, `40531`, `40533`, `40535`, `40539`, `40541`, `40543`, `40545`, `40546`, `40549`, `40551`, `40553`, `40555`, `40557`, `40559`, `40561`, `40563`, `40564`, `40566`, `40568`, `40570`, `40573`, `40575`, `40577`, `40579`, `40581`, `40583`, `40585`, `40586`, `40590`, `40591`, `40592`, `40593`, `40595`, `40597`, `40599`, `40601`, `40603`, `40605`, `40607`, `40609`, `40611`, `40612`, `40613`, `40615`, `40617`, `40619`, `40620`, `40621`, `40623`, `40625`, `40627`, `40628`, `40629`, `40631`, `40632`, `40633`, `40634`, `40635`, `40636`, `40638`, `40639`, `40641`, `40643`, `40645`, `40646`, `40647`, `40648`, `40650`, `40652`, `40653`, `40654`, `40655`, `40657`, `40659`, `40660`, `40661`, `40663`, `40665`, `40667`, `40669`, `40671`, `40673`, `40675`, `40676`, `40678`, `40680`, `40682`, `40683`, `40685`, `40686`, `40688`, `40689`, `40691`, `40692`, `40694`, `40696`, `40698`, `40699`, `40700`, `40702`, `40704`, `40706`, `40708`, `40709`, `40713`, `40714`, `40716`, `40717`, `40719`, `40720`, `40722`, `40724`, `40725`, `40728`, `40730`, `40732`, `40733`, `40734`, `40736`, `40738`, `40739`, `40740`, `40741`, `40743`, `40745`, `40747`, `40749`, `40750`, `40752`, `40754`, `40755`, `40756`, `40758`, `40759`, `40760`, `40762`, `40764`, `40766`, `40767`, `40769`, `40771`, `40773`, `40776`, `40779`, `40780`, `40782`, `40784`, `40785`, `40787`, `40788`, `40790`, `40792`, `40794`, `40795`, `40797`, `40798`, `40799`, `40801`, `40803`, `40805`, `40806`, `40808`, `40809`, `40811`, `40813`, `40815`, `40816`, `40818`, `40819`, `40821`, `40823`, `40825`, `40826`, `40828`, `40829`, `40831`, `40832`, `40834`, `40836`, `40837`, `40839`, `40840`, `40842`, `40844`, `40846`, `40848`, `40850`, `40852`, `40854`, `40856`, `40858`, `40860`, `40862`, `40864`, `40866`, `40868`, `40870`, `40872`, `40873`, `40875`, `40877`, `40878`, `40880`, `40885`, `40887`, `40889`, `40891`, `40893`, `40895`, `40897`, `40899`, `40900`, `40902`, `40905`, `40907`, `40909`, `40911`, `40912`, `40914`, `40916`, `40918`, `40920`, `40922`, `40924`, `40926`, `40928`, `40929`, `40933`, `40935`, `40936`, `40937`, `40941`, `40945`, `40947`, `40948`, `40950`, `40952`, `40954`, `40956`, `40958`, `40960`, `40964`, `40966`, `40969`, `40971`, `40973`, `40974`, `40976`, `40979`, `40981`, `40984`, `40988`, `40991`, `40992`, `40993`, `40995`, `40997`, `40999`, `41000`, `41002`, `41004`, `41006`, `41007`, `41008`, `41009`, `41011`, `41013`, `41015`, `41016`, `41018`, `41020`, `41022`, `41024`, `41026`, `41028`, `41030`, `41031`, `41033`, `41035`, `41039`, `41040`, `41042`, `41044`, `41045`, `41046`, `41048`, `41050`, `41051`, `41053`, `41055`, `41057`, `41058`, `41060`, `41061`, `41062`, `41063`, `41064`, `41066`, `41068`, `41070`, `41071`, `41072`, `41073`, `41075`, `41076`, `41078`, `41080`, `41081`, `41083`, `41084`, `41086`, `41088`, `41093`, `41094`, `41095`, `41097`, `41098`, `41099`, `41100`, `41101`, `41103`, `41104`, `41106`, `41107`, `41109`, `41111`, `41112`, `41114`, `41115`, `41117`, `41118`, `41119`, `41120`, `41122`, `41123`, `41125`, `41127`, `41129`, `41130`, `41132`, `41134`, `41136`, `41138`, `41140`, `41142`, `41144`, `41146`, `41148`, `41149`, `41150`, `41152`, `41154`, `41156`, `41158`, `41159`, `41161`, `41162`, `41164`, `41166`, `41168`, `41170`, `41172`, `41174`, `41175`, `41176`, `41178`, `41181`, `41182`, `41184`, `41185`, `41186`, `41189`, `41190`, `41192`, `41194`, `41196`, `41198`, `41199`, `41200`, `41202`, `41204`, `41206`, `41209`, `41210`, `41213`, `41215`, `41216`, `41217`, `41218`, `41220`, `41221`, `41223`, `41227`, `41229`, `41230`, `41231`, `41233`, `41235`, `41236`, `41238`, `41239`, `41240`, `41242`, `41244`, `41245`, `41247`, `41248`, `41250`, `41252`, `41254`, `41256`, `41258`, `41259`, `41261`, `41263`, `41265`, `41267`, `41268`, `41270`, `41272`, `41275`, `41278`, `41279`, `41280`, `41281`, `41283`, `41284`, `41286`, `41288`, `41290`, `41292`, `41294`, `41296`, `41298`, `41300`, `41302`, `41303`, `41306`, `41310`, `41312`, `41314`, `41316`, `41318`, `41320`, `41322`, `41324`, `41326`, `41327`, `41329`, `41331`, `41333`, `41335`, `41337`, `41338`, `41340`, `41341`, `41342`, `41343`, `41345`, `41346`, `41347`, `41349`, `41353`, `41354`, `41357`, `41360`, `41361`, `41362`, `41364`, `41366`, `41367`, `41369`, `41374`, `41375`, `41377`, `41379`, `41380`, `41381`, `41383`, `41385`, `41387`, `41389`, `41390`, `41393`, `41394`, `41396`, `41398`, `41399`, `41401`, `41403`, `41405`, `41406`, `41407`, `41410`, `41412`, `41413`, `41414`, `41416`, `41418`, `41420`, `41422`, `41423`, `41424`, `41425`, `41427`, `41428`, `41431`, `41432`, `41433`, `41435`, `41437`, `41438`, `41440`, `41442`, `41444`, `41446`, `41447`, `41449`, `41450`, `41453`, `41455`, `41457`, `41459`, `41461`, `41463`, `41466`, `41468`, `41470`, `41472`, `41474`, `41475`, `41479`, `41481`, `41483`, `41485`, `41488`, `41491`, `41492`, `41494`, `41496`, `41497`, `41499`, `41500`, `41502`, `41505`, `41507`, `41509`, `41511`, `41513`, `41514`, `41516`, `41519`, `41521`, `41523`, `41525`, `41527`, `41528`, `41530`, `41532`, `41534`, `41536`, `41537`, `41540`, `41542`, `41543`, `41545`, `41547`, `41548`, `41549`, `41551`, `41554`, `41557`, `41558`, `41559`, `41561`, `41563`, `41565`, `41566`, `41568`, `41570`, `41572`, `41574`, `41576`, `41578`, `41580`, `41582`, `41584`, `41586`, `41587`, `41588`, `41590`, `41592`, `41594`, `41596`, `41598`, `41599`, `41600`, `41601`, `41603`, `41606`, `41607`, `41610`, `41613`, `41615`, `41618`, `41620`, `41622`, `41623`, `41624`, `41626`, `41627`, `41630`, `41632`, `41634`, `41635`, `41636`, `41638`, `41639`, `41641`, `41643`, `41645`, `41646`, `41648`, `41650`, `41652`, `41655`, `41656`, `41658`, `41660`, `41662`, `41663`, `41668`, `41670`, `41672`, `41674`, `41675`, `41677`, `41678`, `41680`, `41682`, `41684`, `41686`, `41688`, `41690`, `41691`, `41693`, `41694`, `41696`, `41697`, `41698`, `41699`, `41701`, `41702`, `41704`, `41706`, `41708`, `41710`, `41711`, `41712`, `41716`, `41718`, `41719`, `41721`, `41724`, `41726`, `41728`, `41729`, `41731`, `41732`, `41734`, `41736`, `41738`, `41740`, `41742`, `41743`, `41746`, `41749`, `41751`, `41753`, `41755`, `41757`, `41759`, `41761`, `41762`, `41763`, `41764`, `41765`, `41767`, `41769`, `41770`, `41774`, `41776`, `41778`, `41779`, `41782`, `41783`, `41785`, `41786`, `41787`, `41789`, `41791`, `41793`, `41795`, `41797`, `41799`, `41801`, `41803`, `41804`, `41806`, `41808`, `41809`, `41812`, `41814`, `41816`, `41818`, `41820`, `41822`, `41824`, `41826`, `41827`, `41828`, `41829`, `41831`, `41833`, `41835`, `41836`, `41837`, `41839`, `41842`, `41844`, `41845`, `41847`, `41848`, `41849`, `41851`, `41855`, `41856`, `41858`, `41859`, `41861`, `41863`, `41868`, `41870`, `41872`, `41874`, `41877`, `41879`, `41883`, `41885`, `41887`, `41889`, `41891`, `41894`, `41896`, `41899`, `41901`, `41902`, `41904`, `41905`, `41907`, `41909`, `41911`, `41913`, `41915`, `41917`, `41919`, `41921`, `41924`, `41925`, `41927`, `41928`, `41929`, `41931`, `41933`, `41935`, `41937`, `41939`, `41941`, `41943`, `41945`, `41947`, `41949`, `41950`, `41951`, `41953`, `41955`, `41957`, `41958`, `41960`, `41962`, `41966`, `41967`, `41969`, `41972`, `41974`, `41976`, `41978`, `41979`, `41981`, `41983`, `41984`, `41985`, `41986`, `41988`, `41990`, `41991`, `41992`, `41994`, `41996`, `41997`, `41998`, `42000`, `42002`, `42005`, `42007`, `42009`, `42012`, `42014`, `42016`, `42017`, `42019`, `42021`, `42023`, `42024`, `42027`, `42029`, `42030`, `42032`, `42033`, `42035`, `42037`, `42039`, `42040`, `42044`, `42047`, `42048`, `42050`, `42051`, `42054`, `42056`, `42058`, `42060`, `42061`, `42063`, `42064`, `42065`, `42066`, `42067`, `42068`, `42070`, `42072`, `42073`, `42075`, `42077`, `42079`, `42081`, `42082`, `42084`, `42086`, `42087`, `42088`, `42090`, `42092`, `42093`, `42095`, `42097`, `42099`, `42101`, `42102`, `42104`, `42105`, `42107`, `42109`, `42110`, `42112`, `42114`, `42116`, `42118`, `42119`, `42121`, `42123`, `42125`, `42128`, `42129`, `42131`, `42133`, `42135`, `42137`, `42138`, `42140`, `42142`, `42144`, `42145`, `42147`, `42148`, `42152`, `42155`, `42157`, `42160`, `42162`, `42164`, `42165`, `42166`, `42168`, `42170`, `42172`, `42174`, `42175`, `42177`, `42179`, `42181`, `42184`, `42186`, `42188`, `42190`, `42192`, `42195`, `42197`, `42202`, `42204`, `42206`, `42208`, `42209`, `42210`, `42211`, `42213`, `42214`, `42216`, `42218`, `42220`, `42221`, `42225`, `42226`, `42228`, `42229`, `42231`, `42232`, `42233`, `42235`, `42237`, `42239`, `42241`, `42245`, `42248`, `42250`, `42252`, `42254`, `42255`, `42256`, `42258`, `42260`, `42263`, `42265`, `42266`, `42268`, `42270`, `42271`, `42273`, `42275`, `42277`, `42279`, `42282`, `42283`, `42285`, `42287`, `42289`, `42290`, `42291`, `42293`, `42295`, `42298`, `42300`, `42302`, `42304`, `42306`, `42308`, `42310`, `42312`, `42314`, `42315`, `42317`, `42319`, `42321`, `42323`, `42325`, `42326`, `42328`, `42329`, `42333`, `42334`, `42338`, `42340`, `42341`, `42343`, `42346`, `42347`, `42349`, `42351`, `42353`, `42354`, `42356`, `42357`, `42359`, `42361`, `42363`, `42364`, `42365`, `42366`, `42368`, `42370`, `42371`, `42372`, `42374`, `42375`, `42377`, `42378`, `42384`, `42386`, `42388`, `42390`, `42391`, `42393`, `42395`, `42397`, `42399`, `42400`, `42401`, `42404`, `42406`, `42408`, `42411`, `42412`, `42414`, `42415`, `42419`, `42422`, `42425`, `42427`, `42428`, `42431`, `42433`, `42435`, `42436`, `42437`, `42439`, `42443`, `42445`, `42446`, `42448`, `42450`, `42452`, `42454`, `42455`, `42456`, `42458`, `42460`, `42462`, `42464`, `42466`, `42468`, `42469`, `42471`, `42473`, `42477`, `42479`, `42481`, `42484`, `42486`, `42488`, `42490`, `42492`, `42494`, `42495`, `42496`, `42497`, `42499`, `42501`, `42503`, `42505`, `42507`, `42509`, `42510`, `42512`, `42513`, `42515`, `42517`, `42519`, `42520`, `42521`, `42523`, `42525`, `42526`, `42528`, `42529`, `42531`, `42532`, `42534`, `42535`, `42538`, `42540`, `42542`, `42546`, `42548`, `42550`, `42553`, `42554`, `42557`, `42559`, `42561`, `42563`, `42564`, `42566`, `42568`, `42570`, `42572`, `42574`, `42576`, `42578`, `42581`, `42583`, `42585`, `42587`, `42588`, `42590`, `42591`, `42593`, `42594`, `42597`, `42598`, `42599`, `42601`, `42603`, `42604`, `42606`, `42607`, `42609`, `42612`, `42614`, `42615`, `42617`, `42619`, `42621`, `42623`, `42627`, `42629`, `42632`, `42635`, `42636`, `42637`, `42639`, `42641`, `42643`, `42645`, `42647`, `42649`, `42651`, `42653`, `42655`, `42657`, `42659`, `42661`, `42663`, `42665`, `42667`, `42669`, `42671`, `4891`, `42673`, `42675`, `42677`, `42679`, `42681`, `42683`, `42686`, `42688`, `42689`, `42690`, `42692`, `42694`, `42696`, `42699`, `42700`, `42701`, `42704`, `42706`, `42707`, `42709`, `42711`, `42713`, `42715`, `42716`, `42718`, `42720`, `42722`, `42724`, `42725`, `42727`, `42729`, `42731`, `42733`, `42735`, `42736`, `42738`, `42740`, `42742`, `42744`, `42746`, `42748`, `42749`, `42752`, `42753`, `42755`, `42756`, `42758`, `42759`, `42760`, `42762`, `42763`, `42764`, `42766`, `42768`, `42770`, `42771`, `42773`, `42777`, `42779`, `42780`, `42781`, `42783`, `42785`, `42787`, `42788`, `42790`, `42792`, `42793`, `42795`, `42797`, `42798`, `42799`, `42801`, `42803`, `42805`, `42807`, `42809`, `42810`, `42812`, `42814`, `42815`, `42817`, `42818`, `42819`, `42821`, `42822`, `42823`, `42825`, `42826`, `42828`, `42830`, `42832`, `42834`, `42835`, `42837`, `42838`, `42839`, `42840`, `42841`, `42843`, `42845`, `42850`, `42852`, `42853`, `42855`, `42856`, `42857`, `42858`, `42862`, `42866`, `42870`, `42872`, `42874`, `42876`, `42878`, `42879`, `42881`, `42882`, `42883`, `42885`, `42886`, `42888`, `42890`, `42892`, `42894`, `42898`, `42900`, `42901`, `42903`, `42905`, `42907`, `42909`, `42911`, `42912`, `42914`, `42917`, `42919`, `42920`, `42924`, `42926`, `42927`, `42929`, `42931`, `42933`, `42935`, `42937`, `42938`, `42940`, `42942`, `42944`, `42945`, `42947`, `42949`, `42951`, `42953`, `42955`, `42957`, `42958`, `42960`, `42962`, `42964`, `42965`, `42966`, `42968`, `42970`, `42971`, `42973`, `42975`, `42977`, `42980`, `42982`, `42983`, `42985`, `42987`, `42989`, `42991`, `42993`, `42994`, `42996`, `42998`, `43000`, `43003`, `43005`, `43006`, `43009`, `43011`, `43012`, `43014`, `43015`, `43016`, `43018`, `43020`, `43022`, `43024`, `43026`, `43027`, `43029`, `43033`, `43034`, `43036`, `43038`, `43039`, `43041`, `43043`, `43044`, `43045`, `43046`, `43048`, `43049`, `43051`, `43053`, `43055`, `43057`, `43059`, `43060`, `43062`, `43063`, `43065`, `43066`, `43068`, `43069`, `43070`, `43072`, `43073`, `43075`, `43076`, `43078`, `43079`, `43081`, `43083`, `43085`, `43086`, `43088`, `43089`, `43091`, `43092`, `43094`, `43096`, `43099`, `43102`, `43104`, `43107`, `43109`, `43112`, `43115`, `43119`, `43123`, `43125`, `43127`, `43129`, `43130`, `43132`, `43134`, `43137`, `43139`, `43140`, `43144`, `43146`, `43148`, `43150`, `43151`, `43153`, `43154`, `43156`, `43158`, `43159`, `43162`, `43164`, `43167`, `43168`, `43171`, `43173`, `43175`, `43176`, `43177`, `43179`, `43181`, `43183`, `43186`, `43188`, `43190`, `43192`, `43195`, `43196`, `43197`, `43199`, `43203`, `43204`, `43205`, `43207`, `43209`, `43211`, `43213`, `43215`, `43217`, `43220`, `43222`, `43224`, `43227`, `43229`, `43232`, `43233`, `43234`, `43236`, `43237`, `43239`, `43241`, `43242`, `43244`, `43246`, `43248`, `43249`, `43251`, `43253`, `43254`, `43255`, `43256`, `43258`, `43260`, `43262`, `43264`, `43267`, `43269`, `43272`, `43273`, `43274`, `43276`, `43278`, `43279`, `43280`, `43281`, `43283`, `43285`, `43287`, `43288`, `43289`, `43291`, `43293`, `43294`, `43296`, `43298`, `43299`, `43302`, `43304`, `43306`, `43308`, `43310`, `43312`, `43313`, `43315`, `43318`, `43320`, `43322`, `43324`, `43326`, `43328`, `43329`, `43331`, `43333`, `43334`, `43336`, `43338`, `43340`, `43342`, `43344`, `43347`, `43349`, `43351`, `43353`, `43355`, `43357`, `43358`, `43360`, `43362`, `43364`, `43366`, `43368`, `43370`, `43372`, `43374`, `43375`, `43376`, `43378`, `43380`, `43382`, `43383`, `43385`, `43387`, `43389`, `43390`, `43392`, `43393`, `43395`, `43397`, `43398`, `43400`, `43402`, `43403`, `43405`, `43407`, `43409`, `43411`, `43413`, `43415`, `43417`, `43419`, `43421`, `43423`, `43424`, `43426`, `43428`, `43430`, `43431`, `43432`, `43434`, `43435`, `43436`, `43437`, `43439`, `43441`, `43443`, `43445`, `43446`, `43448`, `43450`, `43452`, `43454`, `43456`, `43458`, `43459`, `43462`, `43464`, `43467`, `43469`, `43471`, `43473`, `43474`, `43476`, `43477`, `43478`, `43479`, `43481`, `43482`, `43484`, `43486`, `43488`, `43489`, `43490`, `43492`, `43493`, `43494`, `43495`, `43497`, `43499`, `43501`, `43502`, `43504`, `43505`, `43507`, `43510`, `43512`, `43514`, `43516`, `43518`, `43520`, `43522`, `43524`, `43526`, `43528`, `43530`, `43532`, `43534`, `43536`, `43539`, `43541`, `43545`, `43546`, `43548`, `43552`, `43554`, `43556`, `43558`, `43560`, `43564`, `43566`, `43569`, `43571`, `43572`, `43574`, `43576`, `43577`, `43578`, `43579`, `43581`, `43583`, `43585`, `43586`, `43588`, `43590`, `43592`, `43593`, `43595`, `43597`, `43600`, `43602`, `43603`, `43604`, `43606`, `43608`, `43610`, `43613`, `43614`, `43616`, `43618`, `43619`, `43621`, `43625`, `43626`, `43628`, `43630`, `43631`, `43633`, `43635`, `43637`, `43638`, `43641`, `43643`, `43644`, `43645`, `43646`, `43648`, `43649`, `43651`, `43653`, `43655`, `43657`, `43659`, `43660`, `43661`, `43662`, `43664`, `43666`, `43667`, `43669`, `43672`, `43674`, `43675`, `43677`, `43679`, `43680`, `43681`, `43682`, `43684`, `43685`, `43687`, `43689`, `43690`, `43692`, `43694`, `43696`, `43697`, `43699`, `43700`, `43701`, `43702`, `43704`, `43706`, `43708`, `43709`, `43710`, `43711`, `43712`, `43713`, `43715`, `43717`, `43719`, `43721`, `43723`, `43725`, `43727`, `43729`, `43730`, `43731`, `43733`, `43735`, `43737`, `43739`, `43740`, `43741`, `43742`, `43744`, `43746`, `43747`, `43749`, `43751`, `43752`, `43754`, `43756`, `43758`, `43759`, `43760`, `43762`, `43764`, `43765`, `43767`, `43769`, `43771`, `43772`, `43774`, `43776`, `43778`, `43780`, `43782`, `43784`, `43786`, `43788`, `43789`, `43791`, `43794`, `43796`, `43798`, `43799`, `43801`, `43803`, `43804`, `43805`, `43807`, `43808`, `43809`, `43811`, `43813`, `43815`, `43817`, `43819`, `43821`, `43822`, `43823`, `43824`, `43826`, `43828`, `43830`, `43831`, `43833`, `43835`, `43839`, `43841`, `43843`, `43845`, `43847`, `43849`, `43852`, `43854`, `43856`, `43857`, `43859`, `43860`, `43862`, `43863`, `43865`, `43866`, `43868`, `43870`, `43872`, `43874`, `43876`, `43878`, `43880`, `43882`, `43884`, `43886`, `43888`, `43890`, `43892`, `43894`, `43896`, `43897`, `43899`, `43901`, `43903`, `43905`, `43907`, `43909`, `43912`, `43915`, `43917`, `43919`, `43920`, `43922`, `43924`, `43926`, `43928`, `43929`, `43931`, `43932`, `43933`, `43934`, `43936`, `43938`, `43940`, `43941`, `43943`, `43945`, `43947`, `43949`, `43951`, `43953`, `43955`, `43959`, `43960`, `43962`, `43963`, `43965`, `291`, `43967`, `43969`, `43971`, `43972`, `43975`, `43976`, `43980`, `43982`, `43984`, `43986`, `43987`, `43988`, `43990`, `43991`, `43993`, `43995`, `43996`, `43997`, `43999`, `44001`, `44002`, `44004`, `44006`, `44008`, `44010`, `44012`, `44015`, `44016`, `44017`, `44018`, `44020`, `44022`, `44024`, `44026`, `44028`, `44030`, `44032`, `44034`, `44036`, `44038`, `44039`, `44040`, `44043`, `44045`, `44047`, `44049`, `44051`, `44052`, `44053`, `44056`, `44058`, `44061`, `44063`, `44065`, `44066`, `44067`, `44069`, `44071`, `44073`, `44075`, `44077`, `44079`, `44080`, `44081`, `44083`, `44085`, `44087`, `44089`, `44091`, `44092`, `44095`, `44097`, `44099`, `44101`, `44105`, `44107`, `44109`, `44111`, `44112`, `44116`, `44117`, `44118`, `44122`, `44124`, `44126`, `44128`, `44130`, `44132`, `44133`, `44135`, `44137`, `44139`, `44141`, `44143`, `44144`, `44147`, `44149`, `44150`, `44151`, `44154`, `44156`, `44157`, `44158`, `44159`, `44161`, `44163`, `44165`, `44168`, `44170`, `44172`, `44174`, `44176`, `44177`, `44178`, `44180`, `44182`, `44183`, `44185`, `44186`, `44188`, `44190`, `44192`, `44195`, `44197`, `44199`, `44201`, `44202`, `44205`, `44206`, `44207`, `44209`, `44211`, `44212`, `44213`, `44215`, `44217`, `44219`, `44222`, `44224`, `44226`, `44228`, `44230`, `44234`, `44238`, `44240`, `44242`, `44244`, `44246`, `44248`, `44249`, `44251`, `44254`, `44256`, `44258`, `44260`, `44262`, `44264`, `44265`, `44266`, `44269`, `44271`, `44274`, `44276`, `44278`, `44280`, `44282`, `44283`, `44285`, `44287`, `44289`, `44291`, `44293`, `44295`, `44297`, `44299`, `44301`, `44303`, `44304`, `44306`, `44307`, `44308`, `44310`, `44312`, `44314`, `44316`, `44318`, `44320`, `44324`, `44326`, `44327`, `44329`, `44331`, `44332`, `44335`, `44337`, `44339`, `44341`, `44342`, `44345`, `44347`, `44349`, `44351`, `44352`, `44354`, `44355`, `44357`, `44358`, `44360`, `44361`, `44364`, `44365`, `44366`, `44367`, `44369`, `44371`, `44373`, `44375`, `44378`, `44380`, `44382`, `44384`, `44386`, `44388`, `44390`, `44392`, `44394`, `44396`, `44399`, `44401`, `44404`, `44406`, `44407`, `44409`, `44410`, `44411`, `44413`, `44416`, `44417`, `44419`, `44420`, `44422`, `44425`, `44426`, `44428`, `44429`, `44431`, `44432`, `44435`, `44436`, `44437`, `44440`, `44442`, `44447`, `44448`, `44450`, `44451`, `44452`, `44453`, `44458`, `44460`, `44462`, `44465`, `44466`, `44467`, `44468`, `44470`, `44472`, `44474`, `44476`, `44478`, `44479`, `44480`, `44483`, `44485`, `44487`, `44489`, `44490`, `44492`, `44494`, `44496`, `44498`, `44500`, `44502`, `44504`, `44505`, `44508`, `44510`, `44512`, `44514`, `44515`, `44517`, `44519`, `44523`, `44524`, `44526`, `44528`, `44530`, `44531`, `44533`, `44535`, `44536`, `44538`, `44540`, `44542`, `44544`, `44546`, `44548`, `44550`, `44551`, `44553`, `44554`, `44556`, `44558`, `44560`, `44561`, `44562`, `44563`, `44565`, `44566`, `44568`, `44570`, `44572`, `44574`, `44576`, `44578`, `44580`, `44582`, `44584`, `44586`, `44587`, `44590`, `44592`, `44594`, `44596`, `44598`, `44601`, `44602`, `44604`, `44605`, `44607`, `44611`, `44613`, `44615`, `44618`, `44619`, `44620`, `44622`, `44623`, `44625`, `44627`, `44631`, `44633`, `44635`, `44637`, `44638`, `44640`, `44644`, `44646`, `44648`, `44650`, `44652`, `44654`, `44655`, `44657`, `44658`, `44660`, `44661`, `44662`, `44664`, `44666`, `44667`, `44669`, `44670`, `44672`, `44673`, `44674`, `44676`, `44680`, `44682`, `44684`, `44686`, `44688`, `44690`, `44691`, `44692`, `44694`, `44695`, `44697`, `44699`, `44700`, `44701`, `44703`, `44705`, `44707`, `44710`, `44712`, `44714`, `44716`, `44718`, `44720`, `44722`, `44725`, `44727`, `44729`, `44730`, `44731`, `44732`, `44733`, `44735`, `44737`, `44739`, `44740`, `44741`, `44743`, `44744`, `44746`, `44748`, `44750`, `44752`, `44753`, `44754`, `44755`, `44757`, `44758`, `44760`, `44762`, `44764`, `44766`, `44767`, `44768`, `44771`, `44773`, `44775`, `44778`, `44780`, `44783`, `44785`, `44786`, `44788`, `44790`, `44792`, `44794`, `44795`, `44797`, `44798`, `44800`, `44802`, `44804`, `44806`, `44808`, `44809`, `44811`, `44813`, `44815`, `44817`, `44818`, `44820`, `44822`, `44826`, `44827`, `44829`, `44831`, `44833`, `44834`, `44836`, `44837`, `44839`, `44841`, `44843`, `44844`, `44845`, `44847`, `44849`, `44851`, `44853`, `44855`, `44857`, `44858`, `44860`, `44862`, `44863`, `44865`, `44867`, `44869`, `44871`, `44873`, `44875`, `44877`, `44879`, `44881`, `44883`, `44884`, `44886`, `44887`, `44889`, `44890`, `44892`, `44893`, `44896`, `44898`, `44900`, `44902`, `44904`, `44906`, `44907`, `44908`, `44909`, `44911`, `44913`, `44914`, `44916`, `44918`, `44920`, `44922`, `44924`, `44928`, `44930`, `44932`, `44934`, `44935`, `44939`, `44941`, `44943`, `44946`, `44948`, `44950`, `44951`, `44953`, `44956`, `44957`, `44959`, `44960`, `44962`, `44964`, `44966`, `44968`, `44970`, `44972`, `44973`, `44975`, `44977`, `44979`, `44981`, `44982`, `44983`, `44984`, `44986`, `44988`, `44989`, `44991`, `44992`, `44994`, `44996`, `44998`, `45000`, `45001`, `45002`, `45004`, `45006`, `45007`, `45009`, `45011`, `45012`, `45014`, `45016`, `45018`, `45020`, `45021`, `45022`, `45023`, `45026`, `45027`, `45029`, `45031`, `45032`, `45034`, `45037`, `45039`, `45040`, `45042`, `45044`, `45045`, `45047`, `45048`, `45050`, `45051`, `45053`, `45055`, `45056`, `45057`, `45059`, `45060`, `45062`, `45064`, `45066`, `45068`, `45069`, `45070`, `45072`, `45074`, `45076`, `45078`, `45080`, `45082`, `45084`, `45086`, `45087`, `45089`, `45091`, `45093`, `45095`, `45097`, `45099`, `45100`, `45102`, `45104`, `45106`, `45107`, `45108`, `45109`, `45110`, `45111`, `45113`, `45114`, `45116`, `45118`, `45120`, `45121`, `45123`, `45125`, `45127`, `45128`, `45130`, `45136`, `45139`, `45140`, `45141`, `45142`, `45145`, `45147`, `45149`, `45150`, `45152`, `45154`, `45157`, `45159`, `45160`, `45161`, `45163`, `45165`, `45166`, `45168`, `45170`, `45172`, `45174`, `45177`, `45179`, `45181`, `45182`, `45184`, `45186`, `45188`, `45190`, `45192`, `45193`, `45194`, `45197`, `45200`, `45203`, `45205`, `45207`, `45209`, `45213`, `45214`, `45216`, `45218`, `45220`, `45223`, `45225`, `45227`, `45229`, `45231`, `45233`, `45236`, `45237`, `45239`, `45241`, `45243`, `45245`, `45247`, `45252`, `45254`, `45257`, `45259`, `45260`, `45262`, `45263`, `45264`, `45267`, `45268`, `45269`, `45271`, `45273`, `45275`, `45277`, `45280`, `45282`, `45283`, `45284`, `45285`, `45287`, `45289`, `45291`, `45292`, `45294`, `45296`, `45297`, `45299`, `45301`, `45303`, `45306`, `45308`, `45309`, `45310`, `45311`, `45313`, `45315`, `45317`, `45319`, `45320`, `45322`, `45324`, `45326`, `45328`, `45329`, `45330`, `45332`, `45334`, `45335`, `45336`, `45337`, `45338`, `45340`, `45342`, `45344`, `45347`, `45349`, `45350`, `45352`, `45354`, `45355`, `45357`, `45360`, `45361`, `45364`, `45366`, `45367`, `45370`, `45372`, `45374`, `45375`, `45377`, `45379`, `45381`, `45383`, `45384`, `45386`, `45388`, `45391`, `45393`, `45394`, `45396`, `45398`, `45400`, `45401`, `45403`, `45405`, `45406`, `45408`, `45410`, `45411`, `45413`, `45415`, `45417`, `45418`, `45419`, `45421`, `45422`, `45423`, `45424`, `45426`, `45428`, `45429`, `45430`, `45432`, `45434`, `45437`, `45439`, `45441`, `45442`, `45444`, `45445`, `45447`, `45448`, `45450`, `45452`, `45456`, `45457`, `45459`, `45461`, `45463`, `45465`, `45467`, `45469`, `45474`, `45476`, `45478`, `45479`, `45480`, `45482`, `45484`, `45486`, `45488`, `45489`, `45491`, `45492`, `45493`, `45494`, `45497`, `45499`, `45500`, `45502`, `45503`, `45505`, `45506`, `45509`, `45510`, `45512`, `45514`, `45516`, `45518`, `45520`, `45522`, `45524`, `45525`, `45527`, `45529`, `45531`, `45532`, `45535`, `45537`, `45539`, `45541`, `45543`, `45545`, `45546`, `45548`, `45549`, `45551`, `45553`, `45555`, `45556`, `45558`, `45560`, `45562`, `45564`, `45567`, `45569`, `45570`, `45572`, `45575`, `45578`, `45580`, `45582`, `45584`, `45585`, `45587`, `45589`, `45591`, `45593`, `45595`, `45597`, `45599`, `45601`, `45603`, `45604`, `45605`, `45606`, `45608`, `45609`, `45610`, `45611`, `45612`, `45613`, `45614`, `45615`, `45616`, `45618`, `45620`, `45621`, `45623`, `45625`, `45628`, `45630`, `45631`, `45633`, `45635`, `45637`, `45639`, `45641`, `45643`, `45645`, `45647`, `45649`, `45651`, `45652`, `45655`, `45656`, `45657`, `45659`, `45660`, `45662`, `45664`, `45666`, `45668`, `45670`, `45671`, `45673`, `45675`, `45677`, `45678`, `45679`, `45680`, `45681`, `45684`, `45685`, `45687`, `45689`, `45690`, `45692`, `45694`, `45696`, `45697`, `45699`, `45700`, `45703`, `45705`, `45707`, `45709`, `45711`, `45713`, `45715`, `45717`, `45718`, `45719`, `45720`, `45722`, `45726`, `45728`, `45730`, `45733`, `45734`, `45736`, `45738`, `45740`, `45742`, `45744`, `45746`, `45748`, `45749`, `45751`, `45752`, `45754`, `45755`, `45757`, `45759`, `45761`, `45763`, `45764`, `45766`, `45767`, `45769`, `45772`, `45775`, `45777`, `45779`, `45782`, `45784`, `45786`, `45788`, `45790`, `45792`, `45793`, `45795`, `45797`, `45798`, `45799`, `45800`, `45802`, `45803`, `45805`, `45806`, `45807`, `45809`, `45811`, `45812`, `45814`, `45816`, `45817`, `45819`, `45820`, `45822`, `45824`, `45825`, `45827`, `45828`, `45829`, `45831`, `45833`, `45834`, `45837`, `45838`, `45842`, `45844`, `45845`, `45847`, `45848`, `45850`, `45852`, `45854`, `45856`, `45858`, `45860`, `45862`, `45864`, `45868`, `45869`, `45873`, `45875`, `45877`, `45878`, `45879`, `45881`, `45883`, `45884`, `45890`, `45891`, `45893`, `45895`, `45896`, `45898`, `45900`, `45902`, `45904`, `45906`, `45908`, `45910`, `45912`, `45914`, `45916`, `45918`, `45920`, `45922`, `45923`, `45925`, `45926`, `45928`, `45930`, `45931`, `45933`, `45935`, `45937`, `45940`, `45941`, `45943`, `45945`, `45947`, `45950`, `45951`, `45952`, `45953`, `45955`, `45956`, `45958`, `45959`, `45960`, `45962`, `45963`, `45965`, `45969`, `45970`, `45972`, `45974`, `45976`, `45979`, `45981`, `45983`, `45984`, `45985`, `45986`, `45988`, `45990`, `45993`, `45994`, `45995`, `45997`, `45998`, `46000`, `46002`, `46004`, `46006`, `46007`, `46009`, `46011`, `46013`, `46014`, `46015`, `46017`, `46019`, `46020`, `46022`, `46024`, `46025`, `46027`, `46028`, `46030`, `46031`, `46032`, `46034`, `46036`, `46037`, `46038`, `46040`, `46042`, `46044`, `46045`, `46047`, `46049`, `46051`, `46053`, `46057`, `46058`, `46060`, `46062`, `46065`, `46067`, `46069`, `46070`, `46072`, `46074`, `46076`, `46078`, `46080`, `46081`, `46082`, `46086`, `46087`, `46089`, `46090`, `46091`, `46092`, `46093`, `46095`, `46097`, `46099`, `46101`, `46103`, `46105`, `46107`, `46109`, `46111`, `46112`, `46114`, `46115`, `46117`, `46118`, `46119`, `46121`, `46122`, `46124`, `46127`, `46129`, `46130`, `46132`, `46134`, `46137`, `46139`, `46141`, `46143`, `46144`, `46146`, `46148`, `46153`, `46154`, `46155`, `46156`, `46157`, `46159`, `46160`, `46162`, `46164`, `46166`, `46167`, `46168`, `46169`, `46171`, `46173`, `46174`, `46176`, `46178`, `46181`, `46183`, `46185`, `46188`, `46190`, `46192`, `46193`, `46194`, `46196`, `46197`, `46199`, `46201`, `46205`, `46207`, `46208`, `46209`, `46212`, `46214`, `46216`, `46218`, `46220`, `46221`, `46223`, `46224`, `46225`, `46227`, `46229`, `46231`, `46232`, `46233`, `46235`, `46237`, `46239`, `46241`, `46243`, `46244`, `46246`, `46248`, `46250`, `46252`, `46254`, `46256`, `46258`, `46260`, `46261`, `46262`, `46263`, `46265`, `46267`, `46268`, `46270`, `46272`, `46274`, `46275`, `46276`, `46278`, `46280`, `46282`, `46284`, `46286`, `46287`, `46289`, `46291`, `46292`, `46293`, `46295`, `46298`, `46301`, `46303`, `46305`, `46307`, `46309`, `46310`, `46312`, `46314`, `46317`, `46318`, `46319`, `46321`, `46322`, `46324`, `46326`, `46329`, `46331`, `46333`, `46335`, `46336`, `46338`, `46342`, `46343`, `46345`, `46347`, `46349`, `46352`, `46354`, `46355`, `46357`, `46359`, `46360`, `46361`, `46363`, `46364`, `46365`, `46367`, `46369`, `46370`, `46372`, `46375`, `46377`, `46379`, `46381`, `46383`, `46384`, `46386`, `46388`, `46389`, `46391`, `46393`, `46395`, `46396`, `46398`, `46400`, `46401`, `46402`, `46404`, `46406`, `46407`, `46408`, `46410`, `46412`, `46414`, `46415`, `46417`, `46419`, `46421`, `46423`, `46424`, `46426`, `46428`, `46431`, `46433`, `46435`, `46437`, `46440`, `46442`, `46444`, `46446`, `46448`, `46450`, `46451`, `46454`, `46456`, `46458`, `46459`, `46460`, `46462`, `46464`, `46465`, `46467`, `46469`, `46470`, `46472`, `46475`, `46477`, `46479`, `46483`, `46484`, `46485`, `46486`, `46487`, `46489`, `46491`, `46492`, `46493`, `46495`, `46496`, `46497`, `46499`, `46501`, `46503`, `46504`, `46505`, `46506`, `46508`, `46510`, `46511`, `46512`, `46514`, `46515`, `46517`, `46519`, `46520`, `46522`, `46524`, `46526`, `46528`, `46529`, `46530`, `46533`, `46537`, `46538`, `46539`, `46541`, `46543`, `46545`, `46547`, `46549`, `46552`, `46555`, `46556`, `46557`, `46558`, `46559`, `46560`, `46562`, `46564`, `46567`, `46569`, `46571`, `46573`, `46575`, `46577`, `46578`, `46580`, `46581`, `46582`, `46583`, `46584`, `46588`, `46589`, `46590`, `46592`, `46594`, `46596`, `46598`, `46601`, `46603`, `46604`, `46605`, `46607`, `46608`, `46611`, `46614`, `46618`, `46620`, `46623`, `46625`, `46627`, `46628`, `46629`, `46631`, `46632`, `46634`, `46635`, `46636`, `46638`, `46640`, `46642`, `46643`, `46645`, `46647`, `46650`, `46653`, `46655`, `46657`, `46659`, `46661`, `46662`, `46663`, `46665`, `46666`, `46669`, `46670`, `46671`, `46672`, `46673`, `46674`, `46675`, `46676`, `46678`, `46680`, `46682`, `46683`, `46685`, `46687`, `46689`, `46691`, `46693`, `46695`, `46696`, `46698`, `46700`, `46701`, `46703`, `46705`, `46707`, `46708`, `46711`, `46712`, `46714`, `46716`, `46718`, `46719`, `46720`, `46722`, `46723`, `46724`, `46726`, `46728`, `46729`, `46731`, `46733`, `46735`, `46736`, `46738`, `46740`, `46742`, `46745`, `46747`, `46748`, `46749`, `46750`, `46752`, `46754`, `46755`, `46757`, `46758`, `46759`, `46761`, `46763`, `46764`, `46765`, `46767`, `46769`, `46771`, `46773`, `46775`, `46777`, `46779`, `46781`, `46785`, `46786`, `46788`, `46790`, `46792`, `46794`, `46796`, `46798`, `46800`, `46801`, `46803`, `46805`, `46807`, `46809`, `46811`, `46813`, `46815`, `46817`, `46819`, `46820`, `46822`, `46824`, `46826`, `46828`, `46830`, `46831`, `46834`, `46836`, `46838`, `46839`, `46840`, `46843`, `46845`, `46847`, `46849`, `46850`, `46852`, `46853`, `46854`, `46856`, `46858`, `46860`, `46862`, `46864`, `46866`, `46868`, `46869`, `46870`, `46871`, `46874`, `46876`, `46877`, `46879`, `46883`, `46885`, `46889`, `46891`, `46893`, `46895`, `46897`, `46899`, `46901`, `46903`, `46905`, `46907`, `46908`, `46910`, `46912`, `46914`, `46915`, `46916`, `46918`, `46920`, `46921`, `46923`, `46925`, `46927`, `46928`, `46930`, `46931`, `46932`, `46933`, `46934`, `46936`, `46938`, `46940`, `46942`, `46944`, `46946`, `46947`, `46949`, `46950`, `46952`, `46954`, `46956`, `46958`, `46960`, `46961`, `46962`, `46963`, `46964`, `46966`, `46968`, `46969`, `46971`, `46972`, `46973`, `46975`, `46977`, `46979`, `46981`, `46983`, `46985`, `46986`, `46988`, `46990`, `46992`, `46994`, `46996`, `46997`, `47000`, `47001`, `47003`, `47005`, `47006`, `47008`, `47011`, `47012`, `47013`, `47014`, `47017`, `47020`, `47024`, `47025`, `47027`, `47029`, `47030`, `47032`, `47033`, `47034`, `47036`, `47037`, `47039`, `47040`, `47042`, `47043`, `47044`, `47046`, `47048`, `47051`, `47053`, `47055`, `47057`, `47059`, `47061`, `47063`, `47064`, `47066`, `47068`, `47070`, `47072`, `47074`, `47077`, `47078`, `47080`, `47081`, `47082`, `47084`, `47085`, `47087`, `47089`, `47091`, `47093`, `47094`, `47099`, `47101`, `47102`, `47104`, `47106`, `47107`, `47109`, `47111`, `47113`, `47115`, `47117`, `47118`, `47120`, `47122`, `47124`, `47126`, `47127`, `47129`, `47130`, `47132`, `47133`, `47136`, `47138`, `47140`, `47141`, `47142`, `47143`, `47145`, `47147`, `47149`, `47151`, `47153`, `47154`, `47155`, `47156`, `47158`, `47160`, `47161`, `47163`, `47165`, `47167`, `47168`, `47169`, `47171`, `47172`, `47176`, `47177`, `47178`, `47180`, `47182`, `47184`, `47186`, `47188`, `47190`, `47191`, `47192`, `47193`, `47196`, `47198`, `47199`, `47201`, `47202`, `47204`, `47208`, `47209`, `47211`, `47213`, `47215`, `47217`, `47219`, `47220`, `47222`, `47224`, `47226`, `47228`, `47230`, `47231`, `47233`, `47235`, `47236`, `47238`, `47240`, `47242`, `47244`, `47246`, `47248`, `47249`, `47251`, `47253`, `47257`, `47259`, `47261`, `47262`, `47264`, `47265`, `47266`, `47268`, `47271`, `47273`, `47275`, `47277`, `47279`, `47282`, `47284`, `47286`, `47288`, `47289`, `47290`, `47292`, `47294`, `47296`, `47298`, `47300`, `47302`, `47305`, `47307`, `47309`, `47311`, `47312`, `47313`, `47314`, `47315`, `47316`, `47318`, `47320`, `47321`, `47323`, `47325`, `47326`, `47328`, `47330`, `47332`, `47333`, `47335`, `47337`, `47339`, `47340`, `47341`, `47343`, `47345`, `47346`, `47348`, `47350`, `47352`, `47354`, `47356`, `47358`, `47360`, `47361`, `47363`, `47365`, `47367`, `47369`, `47371`, `47372`, `47378`, `47380`, `47382`, `47384`, `47386`, `47388`, `47390`, `47391`, `47393`, `47395`, `47397`, `47399`, `47402`, `47404`, `47406`, `47408`, `47409`, `47410`, `47411`, `47412`, `47414`, `47416`, `47418`, `47420`, `47421`, `47423`, `47424`, `47426`, `47428`, `47430`, `47431`, `47433`, `47435`, `47437`, `47438`, `47439`, `47441`, `47444`, `47445`, `47447`, `47449`, `47451`, `47453`, `47454`, `47456`, `47457`, `47459`, `47461`, `47463`, `47465`, `47467`, `47468`, `47470`, `47472`, `47474`, `47476`, `47477`, `47479`, `47481`, `47483`, `47485`, `47487`, `47489`, `47491`, `47493`, `47494`, `47496`, `47498`, `47500`, `47501`, `47503`, `47505`, `47507`, `47511`, `47513`, `47515`, `47517`, `47518`, `47520`, `47521`, `47523`, `47525`, `47527`, `47529`, `47530`, `47532`, `47536`, `47538`, `47543`, `47544`, `47546`, `47549`, `47550`, `47551`, `47553`, `47555`, `47557`, `47559`, `47561`, `47563`, `47564`, `47566`, `47567`, `47569`, `47573`, `47574`, `47576`, `47579`, `47580`, `47582`, `47584`, `47586`, `47587`, `47592`, `47594`, `47596`, `47598`, `47600`, `47601`, `47603`, `47605`, `47607`, `47608`, `47609`, `47611`, `47613`, `47615`, `47617`, `47619`, `47620`, `47622`, `47624`, `47626`, `47627`, `47629`, `47631`, `47633`, `47636`, `47639`, `47641`, `47645`, `47647`, `47649`, `47650`, `47655`, `47657`, `47660`, `47662`, `47663`, `47665`, `47666`, `47668`, `47669`, `47674`, `47676`, `47678`, `47680`, `47682`, `47684`, `47687`, `47688`, `47689`, `47691`, `47692`, `47693`, `47695`, `47696`, `47698`, `47700`, `47701`, `47703`, `47704`, `47706`, `47708`, `47710`, `47712`, `47714`, `47715`, `47716`, `47717`, `47718`, `47721`, `47722`, `47724`, `47725`, `47727`, `47728`, `47729`, `47731`, `47733`, `47734`, `47735`, `47737`, `47739`, `47740`, `47742`, `47744`, `47745`, `47746`, `47748`, `47749`, `47751`, `47753`, `47756`, `47758`, `47759`, `47760`, `47762`, `47765`, `47766`, `47768`, `47769`, `47773`, `47775`, `47777`, `47779`, `47780`, `47781`, `47783`, `47785`, `47786`, `47789`, `47791`, `47794`, `47795`, `47797`, `47798`, `47800`, `47803`, `47805`, `47807`, `47809`, `47811`, `47813`, `47814`, `47816`, `47818`, `47819`, `47821`, `47824`, `47826`, `47828`, `47830`, `47832`, `47833`, `47835`, `47837`, `47839`, `47841`, `47843`, `47844`, `47846`, `47848`, `47850`, `47852`, `47854`, `47856`, `47859`, `47861`, `47863`, `47864`, `47866`, `47868`, `47871`, `47873`, `47875`, `47877`, `47879`, `47880`, `47881`, `47883`, `47885`, `47886`, `47887`, `47889`, `47892`, `47894`, `47895`, `47897`, `47898`, `47900`, `47904`, `47906`, `47908`, `47909`, `47910`, `47912`, `47913`, `47917`, `47919`, `47920`, `47921`, `47923`, `47925`, `47927`, `47928`, `47930`, `47931`, `47933`, `47935`, `47937`, `47938`, `47940`, `47941`, `47942`, `47943`, `47945`, `47946`, `47948`, `47950`, `47951`, `47952`, `47956`, `47958`, `47960`, `47962`, `47964`, `47966`, `47968`, `47970`, `47972`, `47975`, `47977`, `47979`, `47981`, `47983`, `47985`, `47986`, `47987`, `47989`, `47990`, `47992`, `47994`, `47996`, `47998`, `47999`, `48001`, `48003`, `48005`, `48007`, `48009`, `48011`, `48013`, `48015`, `48016`, `48018`, `48020`, `48022`, `48024`, `48026`, `48028`, `48029`, `48031`, `48033`, `48034`, `48036`, `48038`, `48041`, `48043`, `48044`, `48045`, `48047`, `48049`, `48051`, `48053`, `48054`, `48055`, `48056`, `48058`, `48060`, `48062`, `48064`, `48066`, `48068`, `48070`, `48071`, `48073`, `48075`, `48077`, `48078`, `48080`, `48082`, `48085`, `48087`, `48089`, `48091`, `48093`, `48094`, `48095`, `48097`, `48099`, `48100`, `48101`, `48103`, `48105`, `48106`, `48108`, `48110`, `48112`, `48113`, `48116`, `48117`, `48119`, `48120`, `48122`, `48124`, `48126`, `48128`, `48129`, `48131`, `48132`, `48133`, `48134`, `48136`, `48137`, `48139`, `48142`, `48144`, `48146`, `48148`, `48150`, `48152`, `48154`, `48155`, `48157`, `48158`, `48159`, `48161`, `48163`, `48164`, `48165`, `48166`, `48168`, `48169`, `48171`, `48172`, `48174`, `48176`, `48180`, `48182`, `48184`, `48186`, `48188`, `48190`, `48192`, `48194`, `48195`, `48197`, `48199`, `48200`, `48201`, `48203`, `48205`, `48207`, `48209`, `48211`, `48213`, `48215`, `48216`, `48219`, `48221`, `48223`, `48224`, `48226`, `48228`, `48230`, `48234`, `48236`, `48238`, `48239`, `48241`, `48242`, `48243`, `48245`, `48247`, `48249`, `48251`, `48253`, `48255`, `48257`, `48259`, `48261`, `48263`, `48265`, `48266`, `48269`, `48271`, `48272`, `48274`, `48275`, `48276`, `48278`, `48279`, `48280`, `48281`, `48282`, `48284`, `48286`, `48288`, `48289`, `48291`, `48293`, `48294`, `48295`, `48298`, `48300`, `48302`, `48304`, `48306`, `48311`, `48312`, `48313`, `48315`, `48317`, `48319`, `48320`, `48322`, `48324`, `48326`, `48328`, `48330`, `48332`, `48334`, `48335`, `48337`, `48340`, `48342`, `48344`, `48346`, `48347`, `48349`, `48351`, `48353`, `48355`, `48360`, `48363`, `48364`, `48365`, `48367`, `48369`, `48371`, `48372`, `48374`, `48375`, `48376`, `48379`, `48381`, `48383`, `48384`, `48386`, `48388`, `48390`, `48391`, `48393`, `48395`, `48397`, `48399`, `48402`, `48404`, `48406`, `48408`, `48410`, `48411`, `48413`, `48415`, `48417`, `48419`, `48421`, `48423`, `48425`, `48426`, `48427`, `48429`, `48430`, `48432`, `48433`, `48434`, `48435`, `48436`, `48437`, `48441`, `48443`, `48445`, `48446`, `48448`, `48450`, `48451`, `48453`, `48455`, `48457`, `48459`, `48461`, `48462`, `48464`, `48466`, `48468`, `48470`, `48472`, `48473`, `48475`, `48476`, `48478`, `48480`, `48481`, `48482`, `48483`, `48485`, `48487`, `48489`, `48490`, `48492`, `48493`, `48494`, `48495`, `48496`, `48498`, `48499`, `48501`, `48503`, `48505`, `48507`, `48508`, `48510`, `48511`, `48513`, `48515`, `48517`, `48519`, `48521`, `48522`, `48524`, `48526`, `48528`, `48530`, `48532`, `48533`, `48535`, `48537`, `48539`, `48541`, `48543`, `48545`, `48547`, `48548`, `48549`, `48551`, `48553`, `48557`, `48559`, `48561`, `48563`, `48565`, `48567`, `48569`, `48571`, `48572`, `48573`, `48575`, `48576`, `48578`, `48579`, `48581`, `48583`, `48584`, `48587`, `48589`, `48590`, `48592`, `48593`, `48594`, `48596`, `48599`, `48601`, `48603`, `48605`, `48607`, `48609`, `48611`, `48614`, `48617`, `48618`, `48621`, `48623`, `48625`, `48628`, `48629`, `48630`, `48631`, `48633`, `48635`, `48637`, `48639`, `48640`, `48642`, `48643`, `48645`, `48647`, `48649`, `48652`, `48654`, `48656`, `48659`, `48661`, `48662`, `48663`, `48665`, `48666`, `48668`, `48670`, `48672`, `48674`, `48675`, `48676`, `48683`, `48684`, `48686`, `48688`, `48689`, `48691`, `48693`, `48694`, `48696`, `48698`, `48699`, `48701`, `48703`, `48705`, `48707`, `48709`, `48710`, `48711`, `48712`, `48713`, `48714`, `48715`, `48716`, `48717`, `48718`, `48720`, `48721`, `48723`, `48725`, `48727`, `48729`, `48731`, `48734`, `48736`, `48737`, `48739`, `48740`, `48743`, `48745`, `48747`, `48749`, `48750`, `48751`, `48753`, `48754`, `48757`, `48759`, `48761`, `48764`, `48766`, `48768`, `48770`, `48772`, `48774`, `48776`, `48778`, `48779`, `48780`, `48782`, `48784`, `48786`, `48788`, `48790`, `48792`, `48793`, `48795`, `48796`, `48798`, `48800`, `48801`, `48803`, `48805`, `48806`, `48808`, `48810`, `48811`, `48812`, `48813`, `48814`, `48816`, `48818`, `48820`, `48822`, `48824`, `48825`, `48828`, `48830`, `48832`, `48834`, `48835`, `48837`, `48840`, `48842`, `48845`, `48847`, `48848`, `48850`, `48853`, `48855`, `48857`, `48858`, `48860`, `48862`, `48864`, `48866`, `48868`, `48869`, `48871`, `48873`, `48874`, `48875`, `48877`, `48879`, `48881`, `48883`, `48885`, `48887`, `48889`, `48891`, `48893`, `48895`, `48896`, `48900`, `48901`, `48903`, `48905`, `48907`, `48909`, `48911`, `48912`, `48914`, `48915`, `48917`, `48918`, `48920`, `48922`, `48923`, `48925`, `48927`, `48928`, `48930`, `48931`, `48932`, `48933`, `48934`, `48935`, `48936`, `48938`, `48940`, `48941`, `48943`, `48945`, `48947`, `48949`, `48950`, `48952`, `48954`, `48955`, `48957`, `48959`, `48962`, `48964`, `48965`, `48966`, `48968`, `48970`, `48971`, `48972`, `48974`, `48976`, `48977`, `48978`, `48980`, `48982`, `48984`, `48985`, `48987`, `48988`, `48992`, `48994`, `48996`, `48998`, `48999`, `49002`, `49004`, `49006`, `49007`, `49009`, `49011`, `49012`, `49013`, `49014`, `49015`, `49016`, `49018`, `49020`, `49022`, `49024`, `49025`, `49027`, `49028`, `49029`, `49030`, `49031`, `49033`, `49034`, `49035`, `49036`, `49039`, `49040`, `49042`, `49044`, `49046`, `49047`, `49049`, `49052`, `49054`, `49056`, `49058`, `49060`, `49061`, `49062`, `49063`, `49065`, `49067`, `49068`, `49070`, `49072`, `49073`, `49075`, `49077`, `49079`, `49081`, `49083`, `49085`, `49087`, `49094`, `49095`, `49096`, `49099`, `49101`, `49102`, `49104`, `49108`, `49111`, `49113`, `49115`, `49118`, `49120`, `49123`, `49124`, `49125`, `49126`, `49128`, `49130`, `49131`, `49132`, `49134`, `49136`, `49137`, `49139`, `49141`, `49143`, `49145`, `49147`, `49149`, `49151`, `49153`, `49155`, `49156`, `49158`, `49160`, `49162`, `49163`, `49164`, `49167`, `49169`, `49171`, `49173`, `49175`, `49177`, `49179`, `49181`, `49183`, `49186`, `49188`, `49190`, `49195`, `49196`, `49199`, `49201`, `49202`, `49203`, `49205`, `49211`, `49213`, `49215`, `49217`, `49220`, `49222`, `49223`, `49225`, `49226`, `49227`, `49229`, `49230`, `49232`, `49234`, `49236`, `49238`, `49239`, `49240`, `49242`, `49245`, `49246`, `49248`, `49249`, `49252`, `49254`, `49256`, `49257`, `49258`, `49260`, `49262`, `49264`, `49266`, `49267`, `49269`, `49271`, `49273`, `49274`, `49276`, `49278`, `49279`, `49281`, `49283`, `49285`, `49287`, `49290`, `49292`, `49293`, `49295`, `49297`, `49299`, `49301`, `49303`, `49305`, `49308`, `49311`, `49312`, `49313`, `49315`, `49317`, `49319`, `49321`, `49322`, `49323`, `49324`, `49326`, `49328`, `49330`, `49332`, `49333`, `49335`, `49340`, `49341`, `49343`, `49345`, `49347`, `49349`, `49351`, `49354`, `49356`, `49357`, `49360`, `49362`, `49363`, `49364`, `49366`, `49367`, `49368`, `49370`, `49371`, `49372`, `49374`, `49376`, `49378`, `49379`, `49380`, `49381`, `49382`, `49383`, `49384`, `49387`, `49388`, `49390`, `49392`, `49394`, `49396`, `49397`, `49398`, `49399`, `49400`, `49401`, `49403`, `49405`, `49408`, `49410`, `49412`, `49414`, `49415`, `49417`, `49419`, `49421`, `49423`, `49425`, `49427`, `49428`, `49430`, `49431`, `49433`, `49435`, `49437`, `49438`, `49440`, `49442`, `49444`, `49446`, `49448`, `49449`, `49451`, `49452`, `49454`, `49456`, `49458`, `49461`, `49462`, `49463`, `49464`, `49465`, `49467`, `49468`, `49470`, `49474`, `49475`, `49477`, `49479`, `49480`, `49482`, `49484`, `49486`, `49488`, `49490`, `49492`, `49494`, `49496`, `49498`, `49499`, `49501`, `49503`, `49505`, `49507`, `49508`, `49510`, `49512`, `49514`, `49515`, `49516`, `49518`, `49520`, `49521`, `49522`, `49524`, `49525`, `49526`, `49527`, `49528`, `49530`, `49532`, `49533`, `49534`, `49536`, `49537`, `49538`, `49539`, `49541`, `49542`, `49543`, `49544`, `49546`, `49547`, `49549`, `49550`, `49551`, `49553`, `49555`, `49556`, `49558`, `49559`, `49560`, `49562`, `49564`, `49565`, `49567`, `49570`, `49571`, `49573`, `49575`, `49576`, `49578`, `49581`, `49583`, `49585`, `49587`, `49589`, `49591`, `49595`, `49597`, `49598`, `49600`, `49602`, `49604`, `49606`, `49608`, `49610`, `49613`, `49615`, `49617`, `49618`, `49619`, `49621`, `49622`, `49623`, `49624`, `49625`, `49627`, `49628`, `49630`, `49632`, `49633`, `49636`, `49637`, `49638`, `49639`, `49641`, `49643`, `49644`, `49645`, `49646`, `49648`, `49649`, `49651`, `49653`, `49655`, `49656`, `49658`, `49659`, `49661`, `49663`, `49664`, `49667`, `49669`, `49671`, `49672`, `49674`, `49676`, `49678`, `49680`, `49682`, `49684`, `49686`, `49688`, `49689`, `49691`, `49693`, `49696`, `49701`, `49703`, `49705`, `49707`, `49709`, `49711`, `49713`, `49715`, `49717`, `49720`, `49722`, `49724`, `49725`, `49726`, `49729`, `49730`, `49733`, `49734`, `49736`, `49738`, `49740`, `49742`, `49744`, `49746`, `49748`, `49749`, `49750`, `49752`, `49754`, `49756`, `49758`, `49759`, `49760`, `49762`, `49764`, `49766`, `49768`, `49770`, `49771`, `49773`, `49775`, `49777`, `49779`, `49781`, `49782`, `49784`, `49786`, `49788`, `49789`, `49790`, `49794`, `49797`, `49799`, `49800`, `49801`, `49802`, `49804`, `49806`, `49808`, `49809`, `49813`, `49818`, `49819`, `49822`, `49824`, `49825`, `49827`, `49829`, `49830`, `49832`, `49833`, `49835`, `49836`, `49838`, `49840`, `49842`, `49843`, `49844`, `49846`, `49848`, `49850`, `49852`, `49854`, `49855`, `49857`, `49858`, `49860`, `49861`, `49862`, `49864`, `49865`, `49870`, `49874`, `49876`, `49878`, `49880`, `49882`, `49884`, `49885`, `49886`, `49888`, `49890`, `49892`, `49894`, `49896`, `49898`, `49900`, `49901`, `49903`, `49905`, `49907`, `49908`, `49910`, `49912`, `49913`, `49915`, `49916`, `49917`, `49919`, `49921`, `49922`, `49926`, `49928`, `49929`, `49931`, `49933`, `49934`, `49936`, `49937`, `49939`, `49940`, `49941`, `49943`, `49945`, `49947`, `49949`, `49951`, `49953`, `49955`, `49956`, `49958`, `49960`, `49962`, `49964`, `49966`, `49968`, `49970`, `49972`, `49974`, `49975`, `49976`, `49978`, `49979`, `49981`, `49983`, `49986`, `49987`, `49988`, `49990`, `49995`, `49998`, `50000`, `50002`, `50003`, `50005`, `50006`, `50008`, `50010`, `50011`, `50013`, `50016`, `50017`, `50019`, `50021`, `50023`, `50024`, `50025`, `50028`, `50030`, `50032`, `50034`, `50036`, `50037`, `50038`, `50040`, `50042`, `50044`, `50046`, `50047`, `50049`, `50051`, `50053`, `50056`, `50057`, `50059`, `50062`, `50063`, `50064`, `50065`, `50066`, `50067`, `50068`, `50069`, `50071`, `50073`, `50074`, `50075`, `50077`, `50078`, `50079`, `50081`, `50083`, `50085`, `50087`, `50088`, `50090`, `50092`, `50094`, `50096`, `50098`, `50100`, `50102`, `50104`, `50107`, `50109`, `50111`, `50113`, `50114`, `50115`, `50117`, `50119`, `50120`, `50122`, `50123`, `50126`, `50127`, `50128`, `50130`, `50132`, `50133`, `50135`, `50137`, `50138`, `50142`, `50144`, `50146`, `50147`, `50148`, `50149`, `50151`, `50153`, `50154`, `50156`, `50157`, `50158`, `50160`, `50162`, `50163`, `50164`, `50166`, `50169`, `50171`, `50172`, `50174`, `50176`, `50177`, `50178`, `50179`, `50180`, `50182`, `50183`, `50185`, `50186`, `50188`, `50190`, `50192`, `50194`, `50196`, `50198`, `50199`, `50200`, `50202`, `50204`, `50205`, `50207`, `50209`, `50211`, `50213`, `50215`, `50217`, `50218`, `50219`, `50221`, `50223`, `50225`, `50227`, `50229`, `50230`, `50232`, `50234`, `50236`, `50238`, `50239`, `50241`, `50242`, `50243`, `50245`, `50247`, `50252`, `50254`, `50255`, `50257`, `50259`, `50262`, `50263`, `50265`, `50267`, `50269`, `50271`, `50272`, `50274`, `50277`, `50279`, `50281`, `50282`, `50285`, `50287`, `50289`, `50290`, `50291`, `50293`, `50294`, `50296`, `50298`, `50300`, `50303`, `50305`, `50306`, `50308`, `50310`, `50312`, `50314`, `50316`, `50318`, `50319`, `50321`, `50323`, `50325`, `50327`, `50329`, `50332`, `50334`, `50336`, `50337`, `50339`, `50340`, `50341`, `50343`, `50345`, `50346`, `50348`, `50349`, `50351`, `50354`, `50356`, `50357`, `50360`, `50362`, `50364`, `50366`, `50367`, `50369`, `50372`, `50374`, `50376`, `50380`, `50381`, `50382`, `50384`, `50386`, `50387`, `50388`, `50390`, `50391`, `50393`, `50395`, `50398`, `50399`, `50401`, `50402`, `50403`, `50404`, `50406`, `50407`, `50408`, `50410`, `50411`, `50413`, `50414`, `50415`, `50416`, `50418`, `50419`, `50421`, `50423`, `50425`, `50427`, `50429`, `50431`, `50433`, `50434`, `50436`, `50438`, `50440`, `50441`, `50443`, `50445`, `50447`, `50449`, `50451`, `50453`, `50455`, `50457`, `50459`, `50461`, `50462`, `50464`, `50465`, `50467`, `50468`, `50470`, `50472`, `50474`, `50476`, `50477`, `50479`, `50480`, `50481`, `50483`, `50486`, `50487`, `50489`, `50491`, `50492`, `50493`, `50495`, `50497`, `50499`, `50500`, `50501`, `50503`, `50504`, `50506`, `50508`, `50510`, `50511`, `50512`, `50514`, `50516`, `50518`, `50520`, `50522`, `50523`, `50526`, `50528`, `50530`, `50531`, `50533`, `50535`, `50537`, `50538`, `50540`, `50542`, `50544`, `50546`, `50548`, `50550`, `50553`, `50556`, `50557`, `50559`, `50561`, `50562`, `50564`, `50565`, `50567`, `50569`, `50571`, `50573`, `50575`, `50577`, `50579`, `50581`, `50582`, `50586`, `50588`, `50590`, `50592`, `50594`, `50596`, `50597`, `50599`, `50600`, `50602`, `50605`, `50606`, `50607`, `50608`, `50610`, `50612`, `50613`, `50615`, `50616`, `50618`, `50620`, `50622`, `50624`, `50625`, `50626`, `50628`, `50630`, `50631`, `50632`, `50633`, `50635`, `50637`, `50639`, `50641`, `50642`, `50644`, `50645`, `50649`, `50651`, `50653`, `50654`, `50658`, `50659`, `50661`, `50662`, `50665`, `50667`, `50669`, `50671`, `50672`, `50674`, `50676`, `50678`, `50679`, `50680`, `50682`, `50684`, `50686`, `50687`, `50688`, `50690`, `50691`, `50693`, `50695`, `50696`, `50698`, `50699`, `50701`, `50703`, `50704`, `50706`, `50708`, `50710`, `50713`, `50715`, `50718`, `50720`, `50721`, `50723`, `50724`, `50726`, `50727`, `50728`, `50730`, `50732`, `50734`, `50735`, `50737`, `50738`, `50740`, `50742`, `50743`, `50745`, `50746`, `50747`, `50748`, `50750`, `50751`, `50753`, `50755`, `50757`, `50758`, `50760`, `50762`, `50763`, `50765`, `50766`, `50767`, `50768`, `50770`, `50771`, `50773`, `50775`, `50777`, `50779`, `50781`, `50783`, `50785`, `50787`, `50789`, `50790`, `50791`, `50792`, `50793`, `50795`, `50797`, `50799`, `50801`, `50802`, `50804`, `50807`, `50809`, `50813`, `50815`, `50817`, `50818`, `50820`, `50822`, `50824`, `50826`, `50828`, `50830`, `50832`, `50834`, `50836`, `50837`, `50839`, `50840`, `50842`, `50844`, `50845`, `50847`, `50849`, `50850`, `50852`, `50854`, `50856`, `50859`, `50860`, `50861`, `50863`, `50866`, `50868`, `50870`, `50872`, `50874`, `50876`, `50879`, `50881`, `50883`, `50884`, `50886`, `50887`, `50889`, `50891`, `50893`, `50894`, `50895`, `50898`, `50899`, `50901`, `50904`, `50906`, `50908`, `50910`, `50911`, `50912`, `50914`, `50916`, `50920`, `50921`, `50922`, `50923`, `50924`, `50926`, `50928`, `50931`, `50932`, `50934`, `50935`, `50936`, `50938`, `50939`, `50940`, `50941`, `50943`, `50945`, `50947`, `50949`, `50951`, `50953`, `50955`, `50957`, `50958`, `50960`, `50962`, `50963`, `50965`, `50967`, `50969`, `50971`, `50973`, `50974`, `50976`, `50977`, `50979`, `50981`, `50983`, `50985`, `50987`, `50990`, `50991`, `50992`, `50994`, `50995`, `50999`, `51001`, `51003`, `51005`, `51007`, `51009`, `51012`, `51013`, `51015`, `51017`, `51019`, `51021`, `51023`, `51025`, `51026`, `51028`, `51030`, `51032`, `51034`, `51036`, `51038`, `51040`, `51041`, `51043`, `51045`, `51050`, `51052`, `51053`, `51054`, `51056`, `51057`, `51059`, `51061`, `51062`, `51063`, `51065`, `51067`, `51069`, `51071`, `51074`, `51075`, `51077`, `51078`, `51079`, `51080`, `51081`, `51082`, `51083`, `51085`, `51089`, `51091`, `51093`, `51095`, `51096`, `51097`, `51098`, `51100`, `51102`, `51103`, `51105`, `51106`, `51108`, `51110`, `51111`, `51113`, `51115`, `51117`, `51118`, `51119`, `51121`, `51123`, `51124`, `51126`, `51127`, `51129`, `51130`, `51132`, `51134`, `51136`, `51138`, `51140`, `51144`, `51146`, `51148`, `51149`, `51150`, `51152`, `51154`, `51156`, `51158`, `51160`, `51162`, `51164`, `51166`, `51169`, `51172`, `51174`, `51175`, `51177`, `51179`, `51181`, `51183`, `51184`, `51186`, `51188`, `51189`, `51191`, `51192`, `51193`, `51194`, `51196`, `51198`, `51199`, `51201`, `51203`, `51206`, `51207`, `51209`, `51210`, `51212`, `51213`, `51215`, `51217`, `51218`, `51220`, `51222`, `51223`, `51225`, `51226`, `51229`, `51230`, `51232`, `51234`, `51236`, `51237`, `51238`, `51239`, `51241`, `51243`, `51245`, `51246`, `51248`, `51250`, `51252`, `51254`, `51255`, `51257`, `51260`, `51261`, `51263`, `51265`, `51267`, `51269`, `51271`, `51273`, `51274`, `51275`, `51277`, `51279`, `51281`, `51283`, `51285`, `51286`, `51287`, `51290`, `51292`, `51294`, `51295`, `51297`, `51299`, `51301`, `51302`, `51304`, `51305`, `51307`, `51309`, `51311`, `51312`, `51314`, `51315`, `51317`, `51319`, `51321`, `51322`, `51323`, `51324`, `51326`, `51327`, `51328`, `51330`, `51331`, `51332`, `51333`, `51335`, `51336`, `51338`, `51339`, `51341`, `51342`, `51344`, `51346`, `51348`, `51349`, `51351`, `51353`, `51354`, `51355`, `51356`, `51358`, `51360`, `51362`, `51364`, `51366`, `51368`, `51371`, `51373`, `51376`, `51378`, `51379`, `51380`, `51381`, `51383`, `51385`, `51388`, `51390`, `51392`, `51394`, `51395`, `51397`, `51399`, `51401`, `51402`, `51403`, `51405`, `51407`, `51409`, `51411`, `51412`, `51413`, `51414`, `51416`, `51418`, `51419`, `51420`, `51422`, `51423`, `51425`, `51427`, `51428`, `51430`, `51432`, `51434`, `51436`, `51441`, `51442`, `51443`, `51444`, `51445`, `51446`, `51448`, `51451`, `51453`, `51455`, `51457`, `51459`, `51462`, `51464`, `51466`, `51468`, `51470`, `51471`, `51474`, `51476`, `51478`, `51480`, `51481`, `51483`, `51485`, `51487`, `51489`, `51493`, `51494`, `51496`, `51498`, `51499`, `51501`, `51502`, `51504`, `51506`, `51508`, `51512`, `51514`, `51517`, `51518`, `51519`, `51520`, `51522`, `51524`, `51525`, `51528`, `51530`, `51532`, `51534`, `51536`, `51538`, `51540`, `51542`, `51545`, `51547`, `51549`, `51551`, `51552`, `51554`, `51556`, `51558`, `51560`, `51561`, `51563`, `51570`, `51572`, `51574`, `51575`, `51576`, `51578`, `51580`, `51583`, `51585`, `51587`, `51589`, `51590`, `51592`, `51594`, `51595`, `51596`, `51598`, `51600`, `51602`, `51603`, `51604`, `51605`, `51607`, `51608`, `51610`, `51613`, `51615`, `51616`, `51617`, `51618`, `51619`, `51620`, `51622`, `51627`, `51629`, `51631`, `51632`, `51633`, `51635`, `51637`, `51638`, `51642`, `51643`, `51645`, `51647`, `51649`, `51651`, `51653`, `51655`, `51656`, `51657`, `51659`, `51661`, `51662`, `51665`, `51667`, `51668`, `51670`, `51672`, `51674`, `51676`, `51677`, `51679`, `51681`, `51683`, `51685`, `51686`, `51688`, `51689`, `51692`, `51696`, `51698`, `51700`, `51702`, `51703`, `51704`, `51706`, `51708`, `51709`, `51712`, `51714`, `51716`, `51718`, `51720`, `51721`, `51722`, `51724`, `51725`, `51727`, `51729`, `51731`, `51732`, `51734`, `51736`, `51738`, `51740`, `51742`, `51745`, `51747`, `51749`, `51751`, `51753`, `51754`, `51755`, `51757`, `51759`, `51761`, `51762`, `51764`, `51766`, `51768`, `51769`, `51771`, `51773`, `51775`, `51776`, `51778`, `51780`, `51781`, `51783`, `51785`, `51787`, `51789`, `51791`, `51793`, `51794`, `51796`, `51798`, `51800`, `51801`, `51803`, `51805`, `51807`, `51809`, `51811`, `51812`, `51813`, `51815`, `51817`, `51819`, `51821`, `51822`, `51823`, `51824`, `51826`, `51827`, `51828`, `51829`, `51831`, `51832`, `51833`, `51834`, `51835`, `51837`, `51839`, `51841`, `51843`, `51845`, `51847`, `51848`, `51850`, `51852`, `51853`, `51855`, `51856`, `51858`, `51860`, `51862`, `51864`, `51866`, `51868`, `51870`, `51871`, `51872`, `51873`, `51874`, `51875`, `51876`, `51878`, `51879`, `51881`, `51884`, `51886`, `51888`, `51890`, `51892`, `51894`, `51896`, `51900`, `51901`, `51905`, `51907`, `51911`, `51913`, `51915`, `51917`, `51920`, `51921`, `51923`, `51925`, `51926`, `51927`, `51929`, `51930`, `51932`, `51934`, `51936`, `51937`, `51939`, `51941`, `51944`, `51945`, `51947`, `51949`, `51951`, `51953`, `51955`, `51958`, `51963`, `51965`, `51967`, `51969`, `51971`, `51973`, `51974`, `51975`, `51976`, `51977`, `51979`, `51981`, `51983`, `51985`, `51986`, `51988`, `51990`, `51992`, `51994`, `51995`, `51996`, `51999`, `52001`, `52003`, `52004`, `52007`, `52009`, `52010`, `52012`, `52014`, `52015`, `52016`, `52018`, `52022`, `52024`, `52027`, `52028`, `52030`, `52032`, `52035`, `52037`, `52039`, `52041`, `52042`, `52044`, `52046`, `52048`, `52049`, `52051`, `52053`, `52054`, `52056`, `52057`, `52059`, `52061`, `52063`, `52065`, `52067`, `52069`, `52070`, `52071`, `52072`, `52074`, `52076`, `52078`, `52080`, `52082`, `52083`, `52085`, `52087`, `52088`, `52090`, `52092`, `52093`, `52097`, `52099`, `52102`, `52104`, `52106`, `52108`, `52110`, `52112`, `52114`, `52116`, `52118`, `52120`, `52122`, `52124`, `52125`, `52127`, `52129`, `52131`, `52132`, `52133`, `52135`, `52137`, `52138`, `52140`, `52141`, `52144`, `52145`, `52147`, `52149`, `52150`, `52152`, `52154`, `52157`, `52159`, `52160`, `52161`, `52164`, `52166`, `52168`, `52170`, `52172`, `52174`, `52176`, `52178`, `52179`, `52180`, `52182`, `52184`, `52186`, `52187`, `52189`, `52190`, `52192`, `52194`, `52196`, `52199`, `52201`, `52203`, `52205`, `52207`, `52209`, `52211`, `52213`, `52215`, `52216`, `52218`, `52223`, `52225`, `52228`, `52230`, `52231`, `52232`, `52234`, `52235`, `52237`, `52239`, `52241`, `52244`, `52246`, `52247`, `52248`, `52250`, `52251`, `52252`, `52253`, `52255`, `52257`, `52259`, `52260`, `52261`, `52262`, `52265`, `52266`, `52268`, `52270`, `52272`, `52274`, `52275`, `52277`, `52279`, `52281`, `52282`, `52283`, `52285`, `52287`, `52288`, `52290`, `52291`, `52293`, `52295`, `52297`, `52299`, `52301`, `52302`, `52304`, `52306`, `52308`, `52310`, `52311`, `52313`, `52316`, `52318`, `52319`, `52321`, `52322`, `52324`, `52325`, `52326`, `52328`, `52331`, `52332`, `52334`, `52336`, `52338`, `52341`, `52342`, `52343`, `52345`, `52349`, `52351`, `52353`, `52354`, `52356`, `52357`, `52358`, `52360`, `52362`, `52364`, `52365`, `52367`, `52368`, `52369`, `52371`, `52373`, `52374`, `52376`, `52378`, `52380`, `52382`, `52383`, `52385`, `52386`, `52387`, `52388`, `52390`, `52392`, `52393`, `52395`, `52397`, `52398`, `52400`, `52401`, `52402`, `52404`, `52405`, `52407`, `52409`, `52410`, `52412`, `52414`, `52415`, `52416`, `52417`, `52419`, `52424`, `52425`, `52427`, `52430`, `52431`, `52434`, `52437`, `52439`, `52440`, `52442`, `52443`, `52445`, `52447`, `52449`, `52451`, `52453`, `52455`, `52457`, `52460`, `52461`, `52463`, `52465`, `52466`, `52467`, `52470`, `52472`, `52473`, `52474`, `52476`, `52478`, `52479`, `52481`, `52482`, `52483`, `52485`, `52486`, `52488`, `52489`, `52491`, `52493`, `52494`, `52495`, `52496`, `52497`, `52499`, `52501`, `52503`, `52505`, `52507`, `52509`, `52511`, `52513`, `52515`, `52517`, `52520`, `52523`, `52525`, `52527`, `52528`, `52530`, `52532`, `52534`, `52536`, `52537`, `52539`, `52541`, `52543`, `52545`, `52547`, `52549`, `52551`, `52553`, `52555`, `52557`, `52558`, `52560`, `52561`, `52562`, `52564`, `52565`, `52566`, `52567`, `52569`, `52571`, `52573`, `52575`, `52577`, `52578`, `52580`, `52582`, `52587`, `52589`, `52591`, `52593`, `52595`, `52597`, `52598`, `52599`, `52600`, `52603`, `52606`, `52607`, `52610`, `52613`, `52615`, `52617`, `52619`, `52622`, `52624`, `52627`, `52630`, `52632`, `52633`, `52635`, `52636`, `52637`, `52639`, `52641`, `52642`, `52644`, `52646`, `52647`, `52649`, `52651`, `52652`, `52653`, `52656`, `52658`, `52659`, `52660`, `52662`, `52664`, `52666`, `52668`, `52670`, `52672`, `52673`, `52674`, `52676`, `52678`, `52679`, `52680`, `52681`, `52683`, `52685`, `52687`, `52689`, `52691`, `52693`, `52695`, `52697`, `52698`, `52699`, `52701`, `52703`, `52705`, `52707`, `52709`, `52711`, `52713`, `52714`, `52716`, `52717`, `52719`, `52720`, `52722`, `52724`, `52725`, `52726`, `52727`, `52730`, `52732`, `52733`, `52735`, `52736`, `52738`, `52740`, `52742`, `52745`, `52747`, `52748`, `52750`, `52752`, `52754`, `52756`, `52759`, `52760`, `52762`, `52764`, `52768`, `52770`, `52772`, `52773`, `52775`, `52777`, `52779`, `52780`, `52782`, `52784`, `52790`, `52793`, `52794`, `52796`, `52798`, `52800`, `52801`, `52803`, `52805`, `52806`, `52807`, `52809`, `52811`, `52813`, `52817`, `52819`, `52820`, `52822`, `52824`, `52825`, `52827`, `52828`, `52830`, `52831`, `52833`, `52834`, `52837`, `52838`, `52840`, `52842`, `52844`, `52847`, `52849`, `52851`, `52853`, `52855`, `52857`, `52858`, `52861`, `52862`, `52864`, `52865`, `52866`, `52868`, `52870`, `52872`, `52873`, `52874`, `52876`, `52877`, `52880`, `52882`, `52885`, `52886`, `52887`, `52889`, `52891`, `52893`, `52894`, `52895`, `52896`, `52897`, `52899`, `52901`, `52902`, `52906`, `52908`, `52910`, `52913`, `52915`, `52917`, `52919`, `52920`, `52922`, `52923`, `52924`, `52926`, `52929`, `52931`, `52933`, `52935`, `52936`, `52937`, `52938`, `52940`, `52941`, `52943`, `52944`, `52946`, `52947`, `52948`, `52950`, `52952`, `52953`, `52954`, `52956`, `52958`, `52959`, `52961`, `52963`, `52965`, `52969`, `52971`, `52973`, `52975`, `52977`, `52979`, `52980`, `52981`, `52983`, `52985`, `52986`, `52988`, `52990`, `52992`, `52994`, `52995`, `52997`, `52999`, `53001`, `53003`, `53004`, `53005`, `53006`, `53008`, `53009`, `53010`, `53011`, `53013`, `53015`, `53017`, `53018`, `53019`, `53021`, `53022`, `53024`, `53026`, `53029`, `53031`, `53033`, `53034`, `53037`, `53039`, `53040`, `53042`, `53044`, `53047`, `53049`, `53050`, `53052`, `53054`, `53055`, `53056`, `53058`, `53060`, `53062`, `53064`, `53066`, `53068`, `53069`, `53071`, `53073`, `53074`, `53076`, `53077`, `53080`, `53082`, `53083`, `53084`, `53087`, `53089`, `53091`, `53095`, `53097`, `53098`, `53100`, `53101`, `53102`, `53104`, `53105`, `53107`, `53108`, `53110`, `53111`, `53113`, `53115`, `53117`, `53119`, `53121`, `53122`, `53124`, `53125`, `53128`, `53129`, `53131`, `53133`, `53134`, `53135`, `53136`, `53139`, `53140`, `53141`, `53144`, `53146`, `53147`, `53149`, `53150`, `53152`, `53154`, `53155`, `53156`, `53158`, `53159`, `53161`, `53162`, `53164`, `53165`, `53166`, `53168`, `53170`, `53171`, `53173`, `53175`, `53177`, `53179`, `53181`, `53183`, `53185`, `53186`, `53190`, `53191`, `53193`, `53195`, `53197`, `53199`, `53201`, `53203`, `53205`, `53207`, `53208`, `53210`, `53212`, `53214`, `53216`, `53218`, `53220`, `53222`, `53223`, `53225`, `53227`, `53228`, `53230`, `53231`, `53232`, `53234`, `53235`, `53238`, `53241`, `53242`, `53244`, `53246`, `53248`, `53249`, `53250`, `53252`, `53254`, `53256`, `53258`, `53260`, `53262`, `53263`, `53264`, `53265`, `53269`, `53272`, `53274`, `53276`, `53278`, `53279`, `53280`, `53281`, `53283`, `53284`, `53286`, `53288`, `53290`, `53292`, `53294`, `53296`, `53298`, `53299`, `53301`, `53302`, `53303`, `53304`, `53306`, `53308`, `53310`, `53311`, `53313`, `53315`, `53316`, `53318`, `53321`, `53323`, `53327`, `53329`, `53330`, `53332`, `53333`, `53335`, `53337`, `53339`, `53341`, `53343`, `53344`, `53346`, `53347`, `53350`, `53351`, `53353`, `53355`, `53357`, `53358`, `53360`, `53362`, `53363`, `53365`, `53367`, `53368`, `53369`, `53370`, `53371`, `53373`, `53374`, `53375`, `53379`, `53381`, `53383`, `53384`, `53385`, `53387`, `53389`, `53392`, `53394`, `53395`, `53396`, `53398`, `53403`, `53405`, `53407`, `53408`, `53410`, `53413`, `53416`, `53417`, `53419`, `53420`, `53421`, `53423`, `53424`, `53425`, `53428`, `53429`, `53430`, `53432`, `53433`, `53435`, `53437`, `53439`, `53441`, `53443`, `53445`, `53447`, `53448`, `53449`, `53452`, `53454`, `53455`, `53456`, `53457`, `53459`, `53460`, `53461`, `53464`, `53465`, `53467`, `53469`, `53470`, `53471`, `53472`, `53474`, `53476`, `53478`, `53479`, `53481`, `53482`, `53484`, `53485`, `53486`, `53488`, `53490`, `53491`, `53492`, `53493`, `53495`, `53496`, `53497`, `53498`, `53503`, `53504`, `53505`, `53506`, `53507`, `53509`, `53510`, `53512`, `53514`, `53516`, `53517`, `53519`, `53521`, `53523`, `53526`, `53527`, `53529`, `53530`, `53532`, `53533`, `53534`, `53536`, `53538`, `53540`, `53542`, `53545`, `53547`, `53548`, `53550`, `53552`, `53554`, `53555`, `53559`, `53561`, `53563`, `53565`, `53567`, `53569`, `53570`, `53572`, `53573`, `53575`, `53577`, `53579`, `53581`, `53583`, `53584`, `53586`, `53588`, `53589`, `53591`, `53593`, `53595`, `53597`, `53598`, `53599`, `53600`, `53603`, `53605`, `53606`, `53607`, `53609`, `53610`, `53611`, `53613`, `53614`, `53616`, `53618`, `53619`, `53621`, `53623`, `53625`, `53627`, `53630`, `53631`, `53633`, `53635`, `53637`, `53639`, `53642`, `53644`, `53646`, `53648`, `53649`, `53651`, `53653`, `53655`, `53657`, `53658`, `53660`, `53661`, `53662`, `53663`, `53665`, `53666`, `53668`, `53669`, `53670`, `53671`, `53673`, `53674`, `53676`, `53677`, `53679`, `53681`, `53683`, `53684`, `53687`, `53688`, `53690`, `53692`, `53695`, `53696`, `53699`, `53701`, `53703`, `53705`, `53707`, `53710`, `53711`, `53713`, `53715`, `53717`, `53719`, `53721`, `53723`, `53724`, `53726`, `53727`, `53731`, `53733`, `53735`, `53736`, `53737`, `53739`, `53740`, `53742`, `53743`, `53745`, `53747`, `53748`, `53750`, `53752`, `53754`, `53755`, `53757`, `53759`, `53760`, `53762`, `53764`, `53766`, `53768`, `53770`, `53772`, `53773`, `53774`, `53776`, `53778`, `53780`, `53782`, `53784`, `53786`, `53788`, `53790`, `53792`, `53794`, `53796`, `53797`, `53799`, `53801`, `53803`, `53805`, `53807`, `53809`, `53811`, `53813`, `53815`, `53817`, `53819`, `53821`, `53823`, `53825`, `53828`, `53830`, `53831`, `53833`, `53835`, `53837`, `53839`, `53841`, `53843`, `53844`, `53846`, `53848`, `53850`, `53852`, `53854`, `53856`, `53858`, `53860`, `53862`, `53863`, `53866`, `53867`, `53869`, `53871`, `53873`, `53875`, `53877`, `53879`, `53881`, `53882`, `53883`, `53885`, `53886`, `53888`, `53890`, `53891`, `53892`, `53894`, `53896`, `53897`, `53900`, `53902`, `53904`, `53906`, `53908`, `53910`, `53911`, `53913`, `53914`, `53915`, `53917`, `53918`, `53920`, `53922`, `53924`, `53927`, `53929`, `53930`, `53932`, `53934`, `53936`, `53938`, `53940`, `53942`, `53944`, `53945`, `53946`, `53947`, `53948`, `53950`, `53952`, `53953`, `53955`, `53957`, `53958`, `53959`, `53960`, `53961`, `53963`, `53965`, `53967`, `53968`, `53969`, `53971`, `53972`, `53974`, `53976`, `53978`, `53980`, `53982`, `53984`, `53986`, `53990`, `53992`, `53994`, `53996`, `53997`, `53999`, `54000`, `54001`, `54003`, `54007`, `54009`, `54011`, `54013`, `54015`, `54017`, `54019`, `54021`, `54023`, `54025`, `54027`, `54029`, `54030`, `54032`, `54033`, `54034`, `54036`, `54038`, `54040`, `54041`, `54043`, `54044`, `54045`, `54046`, `54048`, `54050`, `54052`, `54054`, `54056`, `54058`, `54060`, `54062`, `54064`, `54066`, `54068`, `54070`, `54071`, `54072`, `54076`, `54077`, `54079`, `54081`, `54082`, `54083`, `54085`, `54087`, `54089`, `54090`, `54092`, `54093`, `54094`, `54095`, `54096`, `54098`, `54100`, `54102`, `54104`, `54106`, `54109`, `54111`, `54112`, `54113`, `54115`, `54116`, `54117`, `54118`, `54120`, `54121`, `54123`, `54125`, `54127`, `54129`, `54132`, `54134`, `54136`, `54138`, `54140`, `54142`, `54143`, `54146`, `54148`, `54150`, `54153`, `54155`, `54157`, `54159`, `54161`, `54162`, `54163`, `54165`, `54167`, `54169`, `54172`, `54174`, `54176`, `54177`, `54179`, `54180`, `54184`, `54186`, `54188`, `54191`, `54193`, `54195`, `54196`, `54198`, `54200`, `54201`, `54202`, `54204`, `54207`, `54208`, `54210`, `54212`, `54214`, `54216`, `54220`, `54222`, `54224`, `54226`, `54227`, `54228`, `54230`, `54232`, `54234`, `54235`, `54236`, `54238`, `54239`, `54241`, `54242`, `54243`, `54245`, `54246`, `54248`, `54249`, `54251`, `54253`, `54254`, `54256`, `54258`, `54260`, `54262`, `54265`, `54267`, `54270`, `54272`, `54274`, `54276`, `54280`, `54282`, `54283`, `54284`, `54285`, `54287`, `54289`, `54291`, `54293`, `54295`, `54297`, `54299`, `54301`, `54303`, `54305`, `54306`, `54308`, `54310`, `54311`, `54312`, `54313`, `54314`, `54316`, `54318`, `54320`, `54321`, `54323`, `54325`, `54327`, `54329`, `54332`, `54334`, `54337`, `54339`, `54341`, `54343`, `54345`, `54348`, `54349`, `54351`, `54352`, `54354`, `54355`, `54357`, `54359`, `54360`, `54362`, `54363`, `54365`, `54366`, `54367`, `54368`, `54370`, `54372`, `54373`, `54374`, `54376`, `54378`, `54379`, `54381`, `54383`, `54385`, `54387`, `54389`, `54391`, `54393`, `54394`, `54396`, `54398`, `54400`, `54401`, `54402`, `54404`, `54406`, `54407`, `54408`, `54410`, `54412`, `54414`, `54417`, `54418`, `54420`, `54422`, `54424`, `54426`, `54428`, `54429`, `54432`, `54434`, `54436`, `54438`, `54439`, `54441`, `54442`, `54445`, `54447`, `54449`, `54451`, `54453`, `54455`, `54457`, `54461`, `54463`, `54464`, `54467`, `54469`, `54471`, `54473`, `54475`, `54477`, `54478`, `54480`, `54483`, `54485`, `54487`, `54489`, `54491`, `54493`, `54495`, `54497`, `54499`, `54501`, `54502`, `54504`, `54506`, `54508`, `54510`, `54512`, `54514`, `54516`, `54518`, `54520`, `54522`, `54524`, `54528`, `54530`, `54531`, `54532`, `54534`, `54537`, `54538`, `54540`, `54541`, `54542`, `54543`, `54545`, `54546`, `54548`, `54549`, `54551`, `54553`, `54554`, `54555`, `54557`, `54559`, `54561`, `54564`, `54566`, `54568`, `54569`, `54571`, `54573`, `54574`, `54576`, `54578`, `54580`, `54582`, `54584`, `54586`, `54588`, `54590`, `54592`, `54594`, `54595`, `54597`, `54599`, `54601`, `54604`, `54606`, `54608`, `54610`, `54611`, `54613`, `54615`, `54616`, `54617`, `54619`, `54621`, `54622`, `54624`, `54626`, `54628`, `54630`, `54631`, `54632`, `54634`, `54636`, `54638`, `54639`, `54641`, `54643`, `54644`, `54645`, `54646`, `54648`, `54652`, `54653`, `54654`, `54656`, `54658`, `54660`, `54662`, `54664`, `54666`, `54668`, `54670`, `54672`, `54674`, `54675`, `54676`, `54678`, `54680`, `54682`, `54683`, `54685`, `54687`, `54688`, `54690`, `54691`, `54693`, `54697`, `54698`, `54700`, `54701`, `54702`, `54704`, `54705`, `54707`, `54708`, `54710`, `54711`, `54713`, `54715`, `54717`, `54718`, `54720`, `54721`, `54723`, `54725`, `54727`, `54728`, `54730`, `54732`, `54734`, `54735`, `54736`, `54737`, `54739`, `54741`, `54743`, `54745`, `54747`, `54749`, `54751`, `54753`, `54754`, `54759`, `54761`, `54763`, `54764`, `54766`, `54768`, `54769`, `54770`, `54772`, `54773`, `54775`, `54777`, `54779`, `54781`, `54782`, `54784`, `54785`, `54786`, `54788`, `54790`, `54792`, `54794`, `54796`, `54798`, `54800`, `54802`, `54803`, `54805`, `54806`, `54807`, `54808`, `54810`, `54813`, `54815`, `54817`, `54819`, `54821`, `54823`, `54825`, `54827`, `54829`, `54831`, `54832`, `54833`, `54835`, `54837`, `54838`, `54839`, `54841`, `54844`, `54846`, `54848`, `54850`, `54854`, `54856`, `54858`, `54860`, `54862`, `54864`, `54866`, `54868`, `54870`, `54871`, `54873`, `54875`, `54877`, `54879`, `54882`, `54884`, `54888`, `54890`, `54892`, `54894`, `54896`, `54898`, `54899`, `54900`, `54902`, `54903`, `54905`, `54907`, `54909`, `54911`, `54913`, `54916`, `54919`, `54921`, `54923`, `54925`, `54926`, `54928`, `54930`, `54932`, `54934`, `54935`, `54937`, `54939`, `54940`, `54942`, `54943`, `54945`, `54947`, `54949`, `54951`, `54953`, `54955`, `54956`, `54958`, `54960`, `54961`, `54963`, `54964`, `54966`, `54968`, `54970`, `54972`, `54974`, `54976`, `54977`, `54979`, `54981`, `54982`, `54983`, `54985`, `54986`, `54987`, `54988`, `54990`, `54992`, `54993`, `54994`, `54995`, `54997`, `54998`, `54999`, `55001`, `55003`, `55005`, `55007`, `55009`, `55012`, `55013`, `55015`, `55016`, `55018`, `55019`, `55020`, `55021`, `55022`, `55024`, `55026`, `55028`, `55031`, `55033`, `55035`, `55037`, `55039`, `55042`, `55044`, `55045`, `55046`, `55048`, `55050`, `55052`, `55055`, `55057`, `55059`, `55061`, `55063`, `55065`, `55067`, `55068`, `55071`, `55073`, `55074`, `55076`, `55079`, `55080`, `55082`, `55083`, `55085`, `55087`, `55089`, `55091`, `55092`, `55093`, `55095`, `55097`, `55100`, `55102`, `55104`, `55105`, `55106`, `55108`, `55109`, `55111`, `55113`, `55114`, `55116`, `55122`, `55124`, `55125`, `55127`, `55128`, `55130`, `55132`, `55134`, `55136`, `55138`, `55140`, `55143`, `55145`, `55146`, `55148`, `55149`, `55150`, `55153`, `55154`, `55155`, `55157`, `55158`, `55160`, `55162`, `55163`, `55170`, `55172`, `55176`, `55177`, `55179`, `55180`, `55182`, `55184`, `55186`, `55188`, `55189`, `55191`, `55192`, `55194`, `55196`, `55198`, `55200`, `55203`, `55205`, `55207`, `55209`, `55210`, `55212`, `55213`, `55215`, `55217`, `55218`, `55220`, `55222`, `55224`, `55226`, `55227`, `55229`, `55231`, `55233`, `55235`, `55237`, `55238`, `55240`, `55241`, `55243`, `55244`, `55246`, `55249`, `55250`, `55251`, `55253`, `55255`, `55257`, `55260`, `55262`, `55264`, `55266`, `55267`, `55269`, `55271`, `55272`, `55274`, `55275`, `55277`, `55278`, `55280`, `55281`, `55283`, `55285`, `55288`, `55289`, `55293`, `55295`, `55297`, `55299`, `55304`, `55306`, `55309`, `55311`, `55313`, `55315`, `55317`, `55320`, `55322`, `55323`, `55325`, `55326`, `55328`, `55330`, `55331`, `55332`, `55334`, `55336`, `55338`, `55339`, `55341`, `55343`, `55345`, `55347`, `55349`, `55351`, `55353`, `55356`, `55359`, `55362`, `55364`, `55368`, `55371`, `55373`, `55375`, `55377`, `55379`, `55381`, `55382`, `55385`, `55386`, `55387`, `55391`, `55392`, `55394`, `55395`, `55396`, `55397`, `55399`, `55401`, `55402`, `55404`, `55405`, `55408`, `55410`, `55411`, `55412`, `55414`, `55416`, `55418`, `55420`, `55422`, `55424`, `55426`, `55428`, `55429`, `55433`, `55436`, `55440`, `55441`, `55442`, `55444`, `55445`, `55448`, `55450`, `55452`, `55454`, `55455`, `55456`, `55458`, `55460`, `55461`, `55462`, `55464`, `55466`, `55468`, `55469`, `55470`, `55472`, `55474`, `55476`, `55478`, `55479`, `55481`, `55482`, `55484`, `55485`, `55486`, `55489`, `55490`, `55492`, `55493`, `55495`, `55497`, `55498`, `55501`, `55502`, `55503`, `55505`, `55507`, `55508`, `55510`, `55511`, `55513`, `55515`, `55517`, `55519`, `55521`, `55523`, `55528`, `55530`, `55531`, `55533`, `55535`, `55536`, `55538`, `55540`, `55542`, `55543`, `55544`, `55545`, `55550`, `55552`, `55554`, `55557`, `55559`, `55562`, `55566`, `55567`, `55568`, `55570`, `55572`, `55574`, `55576`, `55577`, `55579`, `55581`, `55583`, `55584`, `55585`, `55587`, `55589`, `55592`, `55594`, `55595`, `55597`, `55598`, `55600`, `55602`, `55603`, `55605`, `55607`, `55609`, `55610`, `55611`, `55612`, `55613`, `55614`, `55616`, `55618`, `55620`, `55622`, `55625`, `55628`, `55629`, `55632`, `55634`, `55636`, `55638`, `55640`, `55642`, `55644`, `55646`, `55649`, `55650`, `55651`, `55652`, `55653`, `55655`, `55658`, `55662`, `55664`, `55666`, `55668`, `55671`, `55673`, `55676`, `55678`, `55679`, `55681`, `55683`, `55685`, `55686`, `55688`, `55690`, `55692`, `55693`, `55694`, `55696`, `55697`, `55699`, `55700`, `55701`, `55703`, `55705`, `55707`, `55708`, `55709`, `55711`, `55713`, `55714`, `55716`, `55718`, `55719`, `55723`, `55725`, `55727`, `55729`, `55731`, `55732`, `55735`, `55737`, `55739`, `55741`, `55742`, `55743`, `55745`, `55747`, `55748`, `55751`, `55753`, `55754`, `55756`, `55757`, `55758`, `55759`, `55762`, `55764`, `55767`, `55769`, `55771`, `55772`, `55774`, `55776`, `55778`, `55779`, `55780`, `55781`, `55782`, `55784`, `55786`, `55788`, `55791`, `55793`, `55794`, `55796`, `55797`, `55799`, `55800`, `55802`, `55804`, `55806`, `55808`, `55810`, `55812`, `55814`, `55816`, `55818`, `55820`, `55821`, `55822`, `55824`, `55825`, `55827`, `55829`, `55831`, `55833`, `55835`, `55836`, `55837`, `55839`, `55841`, `55844`, `55845`, `55847`, `55848`, `55851`, `55853`, `55854`, `55856`, `55858`, `55859`, `55861`, `55862`, `55864`, `55865`, `55866`, `55868`, `55870`, `55872`, `55873`, `55875`, `55877`, `55878`, `55880`, `55882`, `55884`, `55886`, `55889`, `55891`, `55892`, `55894`, `55895`, `55896`, `55897`, `55898`, `55900`, `55902`, `55903`, `55905`, `55907`, `55909`, `55910`, `55912`, `55913`, `55914`, `55915`, `55917`, `55919`, `55921`, `55923`, `55924`, `55926`, `55928`, `55930`, `55932`, `55934`, `55935`, `55936`, `55938`, `55939`, `55941`, `55943`, `55944`, `55946`, `55948`, `55949`, `55951`, `55953`, `55957`, `55958`, `55960`, `55962`, `55963`, `55965`, `55967`, `55969`, `55971`, `55972`, `55973`, `55975`, `55976`, `55978`, `55979`, `55980`, `55982`, `55983`, `55984`, `55985`, `55987`, `55988`, `55989`, `55990`, `55992`, `55994`, `55996`, `55997`, `55999`, `56001`, `56002`, `56004`, `56005`, `56007`, `56008`, `56011`, `56012`, `56014`, `56016`, `56019`, `56020`, `56022`, `56024`, `56026`, `56028`, `56030`, `56032`, `56033`, `56036`, `56038`, `56039`, `56041`, `56043`, `56045`, `56047`, `56049`, `56050`, `56052`, `56053`, `56055`, `56057`, `56059`, `56062`, `56064`, `56068`, `56069`, `56070`, `56072`, `56073`, `56074`, `56075`, `56077`, `56078`, `56079`, `56081`, `56082`, `56083`, `56084`, `56086`, `56087`, `56089`, `56091`, `56093`, `56095`, `56097`, `56099`, `56101`, `56103`, `56105`, `56107`, `56109`, `56110`, `56111`, `56113`, `56115`, `56117`, `56119`, `56121`, `56123`, `56125`, `56127`, `56129`, `56131`, `56134`, `56136`, `56138`, `56139`, `56143`, `56145`, `56146`, `56147`, `56149`, `56150`, `56151`, `56152`, `56154`, `56156`, `56158`, `56160`, `56163`, `56164`, `56166`, `56167`, `56169`, `56171`, `56173`, `56175`, `56181`, `56182`, `56183`, `56184`, `56186`, `56188`, `56190`, `56192`, `56193`, `56194`, `56195`, `56197`, `56199`, `56201`, `56203`, `56205`, `56207`, `56209`, `56211`, `56212`, `56213`, `56214`, `56218`, `56220`, `56222`, `56223`, `56226`, `56227`, `56228`, `56230`, `56232`, `56234`, `56235`, `56238`, `56240`, `56242`, `56244`, `56245`, `56246`, `56247`, `56248`, `56249`, `56250`, `56252`, `56254`, `56256`, `56258`, `56260`, `56262`, `56264`, `56266`, `56268`, `56270`, `56275`, `56276`, `56278`, `56279`, `56280`, `56282`, `56286`, `56287`, `56288`, `56290`, `56292`, `56293`, `56295`, `56296`, `56298`, `56299`, `56300`, `56302`, `56304`, `56306`, `56308`, `56309`, `56311`, `56314`, `56316`, `56317`, `56318`, `56320`, `56322`, `56324`, `56326`, `56327`, `56329`, `56331`, `56333`, `56334`, `56336`, `56339`, `56340`, `56342`, `56343`, `56344`, `56347`, `56348`, `56349`, `56351`, `56353`, `56356`, `56358`, `56361`, `56363`, `56367`, `56369`, `56373`, `56374`, `56376`, `56378`, `56379`, `56383`, `56385`, `56386`, `56388`, `56389`, `56391`, `56393`, `56394`, `56395`, `56397`, `56400`, `56403`, `56406`, `56408`, `56410`, `56412`, `56413`, `56415`, `56417`, `56419`, `56421`, `56422`, `56424`, `56425`, `56427`, `56428`, `56429`, `56432`, `56433`, `56435`, `56436`, `56437`, `56439`, `56441`, `56443`, `56446`, `56448`, `56451`, `56453`, `56455`, `56457`, `56458`, `56459`, `56461`, `56462`, `56463`, `56465`, `56469`, `56470`, `56471`, `56472`, `56474`, `56476`, `56477`, `56479`, `56481`, `56483`, `56485`, `56487`, `56489`, `56491`, `56493`, `56495`, `56496`, `56499`, `56500`, `56502`, `56503`, `56506`, `56508`, `56509`, `56512`, `56514`, `56515`, `56516`, `56518`, `56520`, `56523`, `56525`, `56526`, `56528`, `56529`, `56531`, `56533`, `56535`, `56537`, `56538`, `56540`, `56542`, `56544`, `56546`, `56548`, `56550`, `56552`, `56554`, `56556`, `56558`, `56560`, `56563`, `56565`, `56567`, `56568`, `56570`, `56572`, `56574`, `56576`, `56577`, `56578`, `56580`, `56582`, `56584`, `56587`, `56589`, `56591`, `56593`, `56595`, `56597`, `56598`, `56599`, `56601`, `56603`, `56604`, `56606`, `56608`, `56609`, `56610`, `56612`, `56614`, `56616`, `56618`, `56619`, `56621`, `56626`, `56627`, `56629`, `56630`, `56632`, `56633`, `56635`, `56637`, `56639`, `56640`, `56641`, `56644`, `56647`, `56649`, `56650`, `56652`, `56654`, `56656`, `56657`, `56659`, `56660`, `56662`, `56665`, `56668`, `56669`, `56670`, `56672`, `56674`, `56676`, `56678`, `56680`, `56682`, `56684`, `56685`, `56686`, `56689`, `56691`, `56693`, `56695`, `56697`, `56699`, `56701`, `56702`, `56704`, `56706`, `56707`, `56708`, `56709`, `56711`, `56713`, `56715`, `56717`, `56719`, `56721`, `56722`, `56725`, `56727`, `56731`, `56732`, `56733`, `56735`, `56737`, `56739`, `56742`, `56743`, `56744`, `56745`, `56747`, `56749`, `56753`, `56756`, `56758`, `56760`, `56762`, `56764`, `56766`, `56770`, `56771`, `56773`, `56774`, `56775`, `56776`, `56777`, `56779`, `56781`, `56782`, `56783`, `56785`, `56787`, `56789`, `56791`, `56792`, `56794`, `56795`, `56796`, `56798`, `56800`, `56802`, `56803`, `56804`, `56805`, `56807`, `56809`, `56810`, `56813`, `56816`, `56817`, `56818`, `56820`, `56822`, `56824`, `56826`, `56828`, `56830`, `56831`, `56832`, `56833`, `56834`, `56836`, `56838`, `56839`, `56840`, `56841`, `56843`, `56845`, `56848`, `56850`, `56852`, `56853`, `56855`, `56858`, `56860`, `56862`, `56864`, `56865`, `56870`, `56872`, `56874`, `56877`, `56878`, `56879`, `56880`, `56884`, `56886`, `56888`, `56889`, `56892`, `56895`, `56896`, `56897`, `56898`, `56900`, `56902`, `56903`, `56905`, `56907`, `56909`, `56910`, `56912`, `56914`, `56916`, `56917`, `56919`, `56921`, `56923`, `56925`, `56927`, `56928`, `56930`, `56932`, `56934`, `56936`, `56938`, `56939`, `56940`, `56941`, `56945`, `56947`, `56949`, `56951`, `56953`, `56954`, `56956`, `56958`, `56960`, `56961`, `56963`, `56965`, `56967`, `56969`, `56973`, `56975`, `56977`, `56979`, `56980`, `56982`, `56983`, `56985`, `56987`, `56988`, `56990`, `56991`, `56992`, `56993`, `56994`, `56995`, `56997`, `56998`, `57000`, `57002`, `57004`, `57005`, `57006`, `57008`, `57009`, `57011`, `57013`, `57016`, `57018`, `57020`, `57022`, `57024`, `57029`, `57031`, `57033`, `57034`, `57035`, `57037`, `57039`, `57041`, `57042`, `57044`, `57046`, `57048`, `57050`, `57052`, `57054`, `57055`, `57057`, `57058`, `57059`, `57060`, `57061`, `57063`, `57065`, `57067`, `57069`, `57071`, `57073`, `57075`, `57076`, `57078`, `57080`, `57082`, `57084`, `57086`, `57087`, `57089`, `57094`, `57097`, `57098`, `57099`, `57100`, `57102`, `57105`, `57107`, `57109`, `57110`, `57112`, `57114`, `57116`, `57118`, `57120`, `57121`, `57123`, `57124`, `57126`, `57127`, `57128`, `57129`, `57133`, `57135`, `57137`, `57139`, `57141`, `57143`, `57145`, `57147`, `57149`, `57150`, `57152`, `57154`, `57156`, `57158`, `57160`, `57161`, `57164`, `57165`, `57166`, `57168`, `57170`, `57171`, `57173`, `57174`, `57175`, `57176`, `57178`, `57180`, `57182`, `57184`, `57186`, `57188`, `57189`, `57190`, `57192`, `57194`, `57196`, `57198`, `57199`, `57201`, `57203`, `57205`, `57207`, `57209`, `57211`, `57212`, `57214`, `57217`, `57219`, `57221`, `57223`, `57229`, `57231`, `57232`, `57233`, `57235`, `57241`, `57243`, `57245`, `57247`, `57249`, `57250`, `57253`, `57254`, `57256`, `57258`, `57259`, `57261`, `57262`, `57264`, `57266`, `57267`, `57269`, `57270`, `57271`, `57272`, `57274`, `57275`, `57277`, `57278`, `57280`, `57282`, `57284`, `57285`, `57287`, `57288`, `57289`, `57291`, `57294`, `57295`, `57296`, `57297`, `57299`, `57300`, `57302`, `57303`, `57304`, `57305`, `57307`, `57310`, `57312`, `57314`, `57316`, `57318`, `57319`, `57321`, `57323`, `57325`, `57329`, `57331`, `57332`, `57334`, `57336`, `57338`, `57340`, `57341`, `57343`, `57344`, `57345`, `57347`, `57349`, `57351`, `57353`, `57355`, `57356`, `57358`, `57360`, `57363`, `57365`, `57367`, `57373`, `57374`, `57376`, `57378`, `57379`, `57381`, `57383`, `57385`, `57387`, `57391`, `57393`, `57395`, `57397`, `57398`, `57399`, `57403`, `57405`, `57407`, `57409`, `57410`, `57411`, `57412`, `57414`, `57416`, `57417`, `57420`, `57421`, `57423`, `57425`, `57427`, `57428`, `57430`, `57431`, `57433`, `57437`, `57438`, `57439`, `57440`, `57441`, `57443`, `57445`, `57447`, `57449`, `57451`, `57453`, `57455`, `57457`, `57459`, `57461`, `57463`, `57465`, `107`, `57468`, `57470`, `57472`, `57473`, `57475`, `57477`, `57479`, `57480`, `57481`, `57483`, `57485`, `57489`, `57490`, `57492`, `57494`, `57496`, `57502`, `57504`, `57506`, `57508`, `57510`, `57512`, `57514`, `57516`, `57518`, `57519`, `57521`, `57524`, `57526`, `57527`, `57528`, `57530`, `57532`, `57533`, `57535`, `57536`, `57537`, `57539`, `57541`, `57543`, `57545`, `57547`, `57549`, `57551`, `57552`, `57553`, `57555`, `57557`, `57558`, `57560`, `57562`, `57563`, `57564`, `57565`, `57567`, `57569`, `57571`, `57574`, `57576`, `57577`, `57578`, `57580`, `57582`, `57585`, `57587`, `57591`, `57593`, `57599`, `57600`, `57602`, `57604`, `57611`, `57613`, `57615`, `57617`, `57618`, `57619`, `57621`, `57625`, `57627`, `57629`, `42369`, `57630`, `57632`, `57633`, `57634`, `57636`, `57638`, `57640`, `57642`, `57645`, `57647`, `57649`, `57651`, `57652`, `57654`, `57655`, `57657`, `57659`, `57661`, `57663`, `57665`, `57667`, `57670`, `57672`, `57674`, `57676`, `57678`, `57680`, `57681`, `57683`, `57685`, `57687`, `57689`, `57691`, `57693`, `57695`, `57696`, `57697`, `57699`, `57701`, `57706`, `57709`, `57710`, `57711`, `57713`, `57715`, `57717`, `57721`, `57722`, `57724`, `57726`, `57728`, `57730`, `57732`, `57733`, `57735`, `57736`, `57737`, `57739`, `57741`, `57743`, `57744`, `57745`, `57746`, `57748`, `57750`, `57752`, `57754`, `57755`, `57756`, `57757`, `57759`, `57760`, `57762`, `57765`, `57767`, `57768`, `57770`, `57774`, `57776`, `57778`, `57780`, `57782`, `57783`, `57785`, `57787`, `57789`, `57790`, `57792`, `57794`, `57795`, `57797`, `57799`, `57801`, `57803`, `57804`, `57805`, `57806`, `57808`, `57810`, `57812`, `57813`, `57814`, `57816`, `57817`, `57819`, `57821`, `57823`, `57828`, `57830`, `57832`, `57834`, `57835`, `57838`, `57839`, `57840`, `57842`, `57844`, `57846`, `57848`, `57850`, `57852`, `57854`, `57856`, `57858`, `57860`, `57862`, `57864`, `57866`, `57868`, `57870`, `57871`, `57873`, `57875`, `57876`, `57877`, `57878`, `57880`, `57881`, `57883`, `57885`, `57887`, `57889`, `57891`, `57893`, `57894`, `57896`, `57897`, `57898`, `57899`, `57900`, `57902`, `57904`, `57906`, `57908`, `57909`, `57911`, `57913`, `57914`, `57917`, `57919`, `57920`, `57922`, `57924`, `57926`, `57927`, `57929`, `57931`, `57933`, `57934`, `57936`, `57938`, `57940`, `57942`, `57944`, `57946`, `57947`, `57948`, `57950`, `57951`, `57953`, `57955`, `57956`, `57958`, `57959`, `57961`, `57963`, `57965`, `57966`, `57969`, `57970`, `57972`, `57975`, `57977`, `57979`, `57981`, `57983`, `57985`, `57987`, `57989`, `57991`, `57993`, `57996`, `57998`, `58000`, `58002`, `58004`, `58005`, `58006`, `58007`, `58009`, `58011`, `58012`, `58013`, `58015`, `58017`, `58019`, `58021`, `58023`, `58026`, `58027`, `58028`, `58029`, `58031`, `58033`, `58034`, `58035`, `58036`, `58037`, `58040`, `58042`, `58044`, `58046`, `58048`, `58050`, `58052`, `58054`, `58055`, `58057`, `58058`, `58060`, `58062`, `58065`, `58066`, `58068`, `58070`, `58071`, `58072`, `58073`, `58079`, `58080`, `58081`, `58082`, `58084`, `58086`, `58088`, `58090`, `58093`, `58095`, `58096`, `58098`, `58099`, `58101`, `58103`, `58105`, `58107`, `58110`, `58112`, `58114`, `58117`, `58119`, `58121`, `58123`, `58125`, `58127`, `58128`, `58130`, `58132`, `58133`, `58136`, `58138`, `58139`, `58140`, `58141`, `58143`, `58145`, `58147`, `58149`, `58150`, `58152`, `58153`, `58155`, `58156`, `58157`, `58159`, `58161`, `58164`, `58166`, `58168`, `58169`, `58171`, `58173`, `58175`, `58176`, `58178`, `58180`, `58182`, `58184`, `58187`, `58188`, `58190`, `58192`, `58194`, `58196`, `58198`, `58200`, `58202`, `58204`, `58206`, `58208`, `58210`, `58211`, `58213`, `58215`, `58216`, `58217`, `58222`, `58224`, `58226`, `58228`, `58230`, `58232`, `58234`, `58236`, `58238`, `58239`, `58241`, `58244`, `58246`, `58248`, `58250`, `58252`, `58255`, `58256`, `58258`, `58259`, `58261`, `58263`, `58264`, `58265`, `58267`, `58269`, `58270`, `58272`, `58273`, `58275`, `58278`, `58279`, `58280`, `58283`, `58285`, `58286`, `58287`, `58289`, `58291`, `58293`, `58294`, `58295`, `58296`, `58298`, `58301`, `58302`, `58304`, `58306`, `58308`, `58310`, `58313`, `58315`, `58318`, `58320`, `58321`, `58322`, `58323`, `58324`, `58325`, `58326`, `58328`, `58330`, `58332`, `58334`, `58335`, `58337`, `58339`, `58340`, `58342`, `58344`, `58345`, `58346`, `58347`, `58349`, `58351`, `58352`, `58354`, `58356`, `58358`, `58360`, `58361`, `58363`, `58366`, `58372`, `58373`, `58374`, `58375`, `58378`, `58379`, `58380`, `58381`, `58383`, `58384`, `58385`, `58388`, `58390`, `58391`, `58393`, `58394`, `58395`, `58396`, `58398`, `58399`, `58401`, `58402`, `58403`, `58405`, `58407`, `58409`, `58411`, `58413`, `58414`, `58416`, `58417`, `58418`, `58420`, `58421`, `58423`, `58425`, `58426`, `58428`, `58431`, `58432`, `58434`, `58436`, `58438`, `58440`, `58443`, `58445`, `58447`, `58449`, `58451`, `58454`, `58456`, `58457`, `58458`, `58459`, `58460`, `58463`, `58465`, `58466`, `58468`, `58470`, `58472`, `58473`, `58475`, `58477`, `58479`, `58480`, `58481`, `58483`, `58485`, `58486`, `58488`, `58489`, `58491`, `58493`, `58494`, `58495`, `58497`, `58499`, `58500`, `58501`, `58503`, `58505`, `58507`, `58508`, `58510`, `58511`, `58513`, `58514`, `58516`, `58518`, `58520`, `58521`, `58522`, `58524`, `58526`, `58528`, `58529`, `58530`, `58531`, `58534`, `58536`, `58538`, `58540`, `58542`, `58544`, `58547`, `58548`, `58549`, `58551`, `58553`, `58555`, `58556`, `58557`, `58558`, `58560`, `58564`, `58566`, `58568`, `58569`, `58571`, `58572`, `58573`, `58575`, `58576`, `58578`, `58580`, `58582`, `58583`, `58585`, `58586`, `58588`, `58590`, `58591`, `58593`, `58594`, `58596`, `58598`, `58600`, `58601`, `58603`, `58607`, `58608`, `58610`, `58613`, `58614`, `58618`, `58620`, `58622`, `58623`, `58624`, `58626`, `58627`, `58628`, `58629`, `58631`, `58633`, `58634`, `58636`, `58638`, `58640`, `58642`, `58644`, `58645`, `58647`, `58650`, `58652`, `58653`, `58654`, `58656`, `58657`, `58659`, `58661`, `58663`, `58665`, `58667`, `58669`, `58671`, `58672`, `58674`, `58678`, `58680`, `58681`, `58684`, `58686`, `58688`, `58690`, `58692`, `58694`, `58695`, `58697`, `58699`, `58700`, `58701`, `58705`, `58709`, `58710`, `58711`, `58712`, `58715`, `58717`, `58718`, `58720`, `58724`, `58726`, `58727`, `58728`, `58730`, `58731`, `422`, `58733`, `58735`, `58737`, `58740`, `58742`, `58743`, `58745`, `58748`, `58750`, `58751`, `58753`, `58755`, `58757`, `58759`, `58761`, `58763`, `58765`, `58767`, `58769`, `58771`, `58773`, `58775`, `58777`, `58779`, `58781`, `58783`, `58786`, `58788`, `58789`, `58791`, `58793`, `58795`, `58797`, `58798`, `58801`, `58802`, `58804`, `58806`, `58807`, `58809`, `58810`, `58812`, `58813`, `58814`, `58816`, `58818`, `58820`, `58821`, `58823`, `58825`, `58827`, `58828`, `58830`, `58831`, `58833`, `58835`, `58837`, `58840`, `58842`, `58843`, `58845`, `58846`, `58848`, `58849`, `58853`, `58855`, `58856`, `58858`, `58859`, `58860`, `58864`, `58865`, `58866`, `58868`, `58870`, `58872`, `58874`, `58875`, `58876`, `58878`, `58880`, `58881`, `58882`, `58883`, `58884`, `58885`, `58886`, `58888`, `58889`, `58890`, `58892`, `58894`, `58895`, `58896`, `58897`, `58901`, `58903`, `58904`, `58906`, `58908`, `58909`, `58911`, `58912`, `58916`, `58917`, `58919`, `58920`, `58921`, `58923`, `58925`, `58927`, `58929`, `58931`, `58932`, `58934`, `58935`, `58937`, `58939`, `58940`, `58942`, `58944`, `58945`, `58947`, `58948`, `58949`, `58951`, `58953`, `58954`, `58956`, `58958`, `58959`, `58960`, `58962`, `58964`, `58966`, `58968`, `58970`, `58971`, `58973`, `58977`, `58980`, `58982`, `58985`, `58987`, `58988`, `58989`, `58990`, `58991`, `58993`, `58995`, `58997`, `58999`, `59001`, `59002`, `59005`, `59007`, `59009`, `59010`, `59011`, `59013`, `59015`, `59017`, `59019`, `59021`, `59025`, `59030`, `59032`, `59034`, `59036`, `59039`, `59043`, `59046`, `59048`, `59049`, `59051`, `59054`, `59055`, `59056`, `59059`, `59061`, `59063`, `59066`, `59069`, `59070`, `59072`, `59075`, `59077`, `59080`, `59084`, `59086`, `59088`, `59090`, `59091`, `59094`, `59096`, `59098`, `59100`, `59101`, `59102`, `59104`, `59105`, `59106`, `59107`, `59109`, `59110`, `59111`, `59113`, `59114`, `59115`, `59116`, `59118`, `59120`, `59122`, `59126`, `59127`, `59129`, `59131`, `59133`, `59134`, `59136`, `59140`, `59142`, `59143`, `59145`, `59146`, `59148`, `59152`, `59153`, `59154`, `59156`, `59157`, `59159`, `59160`, `59162`, `59164`, `59166`, `59168`, `59169`, `59170`, `59171`, `59173`, `59174`, `59177`, `59178`, `59179`, `59181`, `59183`, `59184`, `59186`, `59188`, `59190`, `59192`, `59194`, `59196`, `59198`, `59201`, `59202`, `59204`, `59206`, `59208`, `59209`, `59211`, `59213`, `59216`, `59218`, `59220`, `59222`, `59224`, `59226`, `59228`, `59229`, `59231`, `59232`, `59234`, `59235`, `59236`, `59239`, `59241`, `59243`, `59245`, `59246`, `59247`, `59248`, `59251`, `59252`, `59253`, `59254`, `59256`, `59257`, `59259`, `59261`, `59263`, `59265`, `59267`, `59269`, `59271`, `59272`, `59273`, `59275`, `59276`, `59277`, `59279`, `59281`, `59283`, `59286`, `59287`, `59289`, `59291`, `59293`, `59295`, `59297`, `59299`, `59301`, `59303`, `59305`, `59306`, `59307`, `59309`, `59311`, `59313`, `59315`, `59317`, `59318`, `59320`, `59322`, `59324`, `59326`, `59327`, `59330`, `59332`, `59334`, `59335`, `59337`, `59338`, `59340`, `59341`, `59343`, `59344`, `59346`, `59348`, `59350`, `59352`, `59354`, `59355`, `59356`, `59358`, `59360`, `59361`, `59363`, `59366`, `59368`, `59370`, `59373`, `59374`, `59376`, `59378`, `59380`, `59382`, `59384`, `59387`, `59389`, `59391`, `59393`, `59394`, `59396`, `59397`, `59399`, `59401`, `59403`, `59405`, `59409`, `59412`, `59413`, `59415`, `59417`, `59419`, `59421`, `59423`, `59424`, `59426`, `59428`, `59430`, `59432`, `59433`, `59434`, `59435`, `59436`, `59437`, `59438`, `59443`, `59445`, `59446`, `59448`, `59450`, `59451`, `59453`, `59455`, `59457`, `59458`, `59459`, `59462`, `59464`, `59465`, `59467`, `59468`, `59470`, `59472`, `59474`, `59476`, `59477`, `59478`, `59479`, `59481`, `59483`, `59485`, `59486`, `59489`, `59492`, `59494`, `59496`, `59498`, `59500`, `59502`, `59505`, `59506`, `59507`, `59510`, `59512`, `59514`, `59515`, `59516`, `59518`, `59520`, `59522`, `59523`, `59524`, `59525`, `59526`, `59528`, `59529`, `59531`, `59533`, `59534`, `59535`, `59536`, `59537`, `59538`, `59541`, `59543`, `59545`, `59547`, `59548`, `59549`, `59553`, `59554`, `59556`, `59557`, `59558`, `59560`, `59561`, `59563`, `59565`, `59567`, `59569`, `59571`, `59572`, `59574`, `59576`, `59578`, `59579`, `59580`, `59581`, `59583`, `59585`, `59587`, `59589`, `59590`, `59591`, `59593`, `59594`, `59596`, `59598`, `59600`, `59602`, `59603`, `59605`, `59608`, `59610`, `59613`, `59615`, `59617`, `59619`, `59621`, `59623`, `59625`, `59626`, `59628`, `59630`, `59631`, `59633`, `59635`, `59637`, `59641`, `59643`, `59644`, `59646`, `59648`, `59649`, `59650`, `59652`, `59654`, `59656`, `59657`, `59659`, `59661`, `59663`, `59665`, `59667`, `59669`, `59670`, `59672`, `59674`, `59676`, `59678`, `59680`, `59682`, `59685`, `59687`, `59689`, `59691`, `59692`, `59694`, `59696`, `59698`, `59699`, `59700`, `59701`, `59704`, `59705`, `59706`, `59708`, `59709`, `59712`, `59713`, `59715`, `59716`, `59718`, `59719`, `59722`, `59724`, `59726`, `59728`, `59730`, `59732`, `59735`, `59736`, `59737`, `59738`, `59740`, `59742`, `59743`, `59744`, `59748`, `59749`, `59751`, `59752`, `59753`, `59755`, `59757`, `59759`, `59761`, `59763`, `59765`, `59766`, `59767`, `59769`, `59771`, `59772`, `59773`, `59774`, `59775`, `59777`, `59779`, `59782`, `59783`, `59785`, `59787`, `59789`, `59792`, `59794`, `59795`, `59797`, `59799`, `59800`, `59802`, `59804`, `59805`, `59807`, `59809`, `59811`, `59812`, `59814`, `59816`, `59818`, `59820`, `59822`, `59823`, `59825`, `59826`, `59828`, `59830`, `59833`, `59835`, `59837`, `59838`, `59839`, `59841`, `59842`, `59843`, `59845`, `59846`, `59848`, `59850`, `59852`, `59855`, `59856`, `59857`, `59858`, `59859`, `59861`, `59863`, `59864`, `59866`, `59867`, `59869`, `59871`, `59873`, `59874`, `59876`, `59878`, `59879`, `59881`, `59882`, `59883`, `59886`, `59888`, `59891`, `59893`, `59896`, `59897`, `59900`, `59902`, `59904`, `59905`, `59907`, `59909`, `59910`, `59911`, `59914`, `59918`, `59919`, `59921`, `59926`, `59928`, `59929`, `59930`, `59931`, `59932`, `59934`, `59936`, `59937`, `59939`, `59941`, `59944`, `59945`, `59946`, `59949`, `59950`, `59954`, `59956`, `59958`, `59960`, `59962`, `59964`, `59966`, `59968`, `59970`, `59972`, `59973`, `59975`, `59978`, `59980`, `59981`, `59982`, `59983`, `59984`, `59986`, `59988`, `59990`, `59991`, `59992`, `59994`, `59997`, `59999`, `60000`, `60001`, `60003`, `60005`, `60007`, `60009`, `60010`, `60012`, `60014`, `60016`, `60018`, `60020`, `60022`, `60023`, `60025`, `60027`, `60029`, `60030`, `60031`, `60036`, `60038`, `60039`, `60041`, `60043`, `60044`, `60046`, `60048`, `60050`, `60052`, `60054`, `60056`, `60057`, `60059`, `60061`, `60062`, `60063`, `60066`, `60068`, `60070`, `60073`, `60075`, `60078`, `60079`, `60080`, `60082`, `60084`, `60085`, `60088`, `60089`, `60091`, `60096`, `60097`, `60098`, `60100`, `60102`, `60104`, `60106`, `60107`, `60108`, `60110`, `60112`, `60114`, `60116`, `60118`, `60119`, `60121`, `60123`, `60125`, `60127`, `60129`, `60131`, `60133`, `60135`, `60137`, `60138`, `60140`, `60141`, `60143`, `60144`, `60145`, `60146`, `60147`, `60149`, `60152`, `60154`, `60155`, `60157`, `60158`, `60159`, `60160`, `60164`, `60166`, `60168`, `60170`, `60171`, `60173`, `60177`, `60178`, `60179`, `60180`, `60182`, `60183`, `60185`, `60187`, `60189`, `60191`, `60193`, `60194`, `60196`, `60198`, `60200`, `60202`, `60204`, `60206`, `60208`, `60209`, `60213`, `60214`, `60215`, `60217`, `60219`, `60221`, `60223`, `60224`, `60226`, `60227`, `60229`, `60231`, `60235`, `60237`, `60239`, `60241`, `60243`, `60244`, `60245`, `60248`, `60249`, `60250`, `60251`, `60253`, `60254`, `60256`, `60258`, `60260`, `60262`, `60265`, `60267`, `60269`, `60271`, `60273`, `60275`, `60276`, `60278`, `60279`, `60281`, `60282`, `60284`, `60285`, `60287`, `60289`, `60291`, `60293`, `60296`, `60298`, `60299`, `60301`, `60303`, `60305`, `60306`, `60307`, `60309`, `60311`, `60312`, `60314`, `60316`, `60318`, `60320`, `60322`, `60324`, `60326`, `60327`, `60329`, `60331`, `60333`, `60335`, `60337`, `60340`, `60342`, `60343`, `60344`, `60346`, `60350`, `60352`, `60354`, `60355`, `60356`, `60358`, `60359`, `60361`, `60363`, `60365`, `60367`, `60368`, `60370`, `60372`, `60373`, `60375`, `60376`, `60378`, `60379`, `60380`, `60382`, `60384`, `60386`, `60388`, `60389`, `60391`, `60393`, `49647`, `60395`, `60397`, `60399`, `60401`, `60403`, `60405`, `60407`, `60409`, `60411`, `60412`, `60413`, `60415`, `60417`, `60418`, `60419`, `60421`, `60423`, `60424`, `60426`, `60428`, `60430`, `60432`, `2476`, `60434`, `60436`, `60439`, `60441`, `60443`, `60444`, `60446`, `60448`, `60450`, `60452`, `60455`, `60457`, `60461`, `60463`, `60464`, `60466`, `60467`, `60468`, `60473`, `60477`, `60479`, `60481`, `60482`, `60484`, `60485`, `60487`, `60489`, `60491`, `60495`, `60497`, `60498`, `60499`, `60501`, `60503`, `60504`, `60505`, `60508`, `60509`, `60511`, `60513`, `60515`, `60516`, `60518`, `60519`, `60520`, `60522`, `60524`, `60526`, `60527`, `60529`, `60531`, `60532`, `60534`, `60536`, `60537`, `60539`, `60541`, `60542`, `60544`, `60546`, `60548`, `60550`, `60552`, `60553`, `60554`, `60557`, `60559`, `60560`, `60562`, `60564`, `60566`, `60569`, `60570`, `60574`, `60576`, `60578`, `60581`, `60582`, `60584`, `60586`, `60587`, `60588`, `60592`, `60593`, `60595`, `60596`, `60598`, `60599`, `60600`, `60602`, `60604`, `60605`, `60606`, `60607`, `60608`, `60610`, `60611`, `60613`, `60615`, `60617`, `60618`, `60619`, `60621`, `60623`, `60626`, `60628`, `60630`, `60632`, `60634`, `60636`, `60638`, `60639`, `60641`, `60643`, `60645`, `60646`, `60648`, `60650`, `60652`, `60654`, `60655`, `60657`, `60661`, `60663`, `60664`, `60666`, `60668`, `60670`, `60672`, `60674`, `60676`, `60678`, `60680`, `60681`, `60682`, `60684`, `60687`, `60689`, `60690`, `60692`, `60693`, `60694`, `60696`, `60698`, `60699`, `60701`, `60702`, `60704`, `60705`, `60707`, `60711`, `60715`, `60716`, `60718`, `60720`, `60722`, `60724`, `60725`, `60727`, `60729`, `60731`, `60732`, `60733`, `60734`, `60736`, `60737`, `60739`, `60740`, `60741`, `60744`, `60746`, `60747`, `60748`, `60752`, `60754`, `60756`, `60758`, `60763`, `60765`, `60767`, `60769`, `60771`, `60772`, `60773`, `60774`, `60776`, `60779`, `60781`, `60784`, `60787`, `60789`, `60790`, `60792`, `60795`, `60796`, `60798`, `60800`, `60801`, `60802`, `60804`, `60806`, `60808`, `60809`, `60810`, `60811`, `60813`, `60814`, `60815`, `60816`, `60818`, `60820`, `60822`, `60823`, `60824`, `60825`, `60826`, `60828`, `60830`, `60831`, `60833`, `60834`, `60836`, `60838`, `60840`, `60841`, `60843`, `60845`, `60847`, `60848`, `60849`, `60851`, `60852`, `60854`, `60855`, `60857`, `60859`, `60860`, `60862`, `60863`, `60864`, `60866`, `60868`, `60870`, `60872`, `60873`, `60875`, `60876`, `60877`, `60879`, `60881`, `60883`, `60884`, `60889`, `60890`, `60892`, `60893`, `60895`, `60897`, `60898`, `60899`, `60900`, `60902`, `60903`, `60904`, `60906`, `60908`, `60909`, `60914`, `60918`, `60919`, `60921`, `60923`, `60925`, `60927`, `60929`, `60930`, `60932`, `60933`, `60934`, `60937`, `60939`, `60940`, `60943`, `60944`, `60946`, `60948`, `60949`, `60951`, `60953`, `60955`, `60957`, `60959`, `60961`, `60963`, `60965`, `60967`, `60969`, `60970`, `60972`, `60975`, `60977`, `60978`, `60980`, `60982`, `60984`, `60986`, `60988`, `60991`, `60993`, `60996`, `60998`, `61000`, `61002`, `61004`, `61005`, `61006`, `61008`, `61009`, `61011`, `61014`, `61015`, `61016`, `61018`, `61020`, `61022`, `61023`, `61025`, `61027`, `61029`, `61031`, `61033`, `61035`, `61037`, `61039`, `61040`, `61041`, `61042`, `61043`, `61044`, `61046`, `61048`, `61050`, `61052`, `61054`, `61055`, `61056`, `61057`, `61058`, `61059`, `61061`, `61063`, `61065`, `61066`, `61067`, `61068`, `61070`, `61072`, `61076`, `61078`, `61079`, `61081`, `61083`, `61085`, `61088`, `61089`, `61091`, `61094`, `61095`, `61096`, `61098`, `61100`, `61102`, `61104`, `61105`, `61106`, `61108`, `61110`, `61112`, `61114`, `61115`, `61117`, `61118`, `61120`, `61123`, `61125`, `61126`, `61127`, `61128`, `61130`, `61132`, `61133`, `61135`, `61136`, `61138`, `61139`, `61141`, `61142`, `61144`, `61145`, `61147`, `61149`, `61151`, `61153`, `61155`, `61157`, `61159`, `61160`, `61161`, `61163`, `61166`, `61170`, `61172`, `61174`, `61176`, `61178`, `61180`, `61182`, `61183`, `61185`, `61187`, `61188`, `61189`, `61191`, `61193`, `61194`, `61196`, `61198`, `61199`, `61200`, `61201`, `61202`, `61203`, `61204`, `61205`, `61207`, `61209`, `61211`, `61214`, `61215`, `61216`, `61218`, `61220`, `61221`, `61222`, `61223`, `61225`, `61227`, `61230`, `61232`, `61234`, `61237`, `61238`, `61240`, `61242`, `61244`, `61245`, `61247`, `61248`, `61250`, `61251`, `61252`, `61253`, `61255`, `61257`, `61259`, `61263`, `61265`, `61266`, `61268`, `61269`, `61271`, `61273`, `61275`, `61277`, `61279`, `61280`, `61281`, `61283`, `61285`, `61286`, `61287`, `61289`, `61291`, `61293`, `61295`, `61296`, `61297`, `61299`, `61300`, `61302`, `61304`, `61306`, `61307`, `61309`, `61311`, `61313`, `61315`, `61316`, `61318`, `61320`, `61322`, `61324`, `61325`, `61326`, `61328`, `61330`, `61332`, `61333`, `61335`, `61336`, `61337`, `61339`, `61341`, `61343`, `61345`, `61347`, `61349`, `61351`, `61352`, `61354`, `61355`, `61357`, `61358`, `61360`, `61361`, `61363`, `61364`, `61365`, `61367`, `61368`, `61369`, `61371`, `61373`, `61375`, `61377`, `61379`, `61381`, `61383`, `61387`, `61389`, `61391`, `61392`, `61394`, `61396`, `61398`, `61399`, `61401`, `61403`, `61404`, `61405`, `61407`, `272`, `61408`, `61410`, `61412`, `61414`, `61415`, `61416`, `61420`, `61422`, `61424`, `61427`, `61429`, `61431`, `61433`, `61436`, `61438`, `61439`, `61442`, `61444`, `61447`, `61449`, `61450`, `61452`, `61454`, `61456`, `61459`, `61461`, `61462`, `61464`, `61466`, `61467`, `61469`, `61470`, `61472`, `61476`, `61478`, `61480`, `61484`, `61486`, `61488`, `61490`, `61491`, `61493`, `61495`, `61496`, `61498`, `61500`, `61502`, `61503`, `61505`, `61506`, `61508`, `61510`, `61513`, `61514`, `61516`, `61518`, `61521`, `61522`, `61523`, `61524`, `61525`, `61527`, `61528`, `61530`, `61531`, `61533`, `61535`, `61537`, `61539`, `61540`, `61541`, `61542`, `61543`, `61544`, `61545`, `61547`, `61549`, `61551`, `61553`, `61555`, `61559`, `61561`, `61562`, `61564`, `61565`, `61566`, `61568`, `61571`, `61573`, `61575`, `61577`, `61580`, `61582`, `61584`, `61585`, `61586`, `61588`, `61589`, `61590`, `61592`, `61595`, `61596`, `61598`, `61600`, `61602`, `61604`, `61606`, `61607`, `61608`, `61610`, `61612`, `61613`, `61614`, `61616`, `61618`, `61620`, `61624`, `61625`, `61628`, `61629`, `61630`, `61632`, `61634`, `61636`, `61638`, `61641`, `61645`, `61647`, `61651`, `61653`, `61656`, `61658`, `61660`, `61662`, `61664`, `61666`, `61668`, `61670`, `61672`, `61673`, `61675`, `61677`, `61679`, `61680`, `61682`, `61684`, `61686`, `61688`, `61690`, `61691`, `61693`, `61695`, `61697`, `61701`, `61702`, `61703`, `61705`, `61707`, `61708`, `61710`, `61712`, `61714`, `61716`, `61717`, `61719`, `61721`, `29340`, `61723`, `61725`, `61726`, `61728`, `61731`, `61733`, `61734`, `61735`, `61738`, `61740`, `61741`, `61743`, `61744`, `61746`, `61748`, `61749`, `61751`, `61753`, `61755`, `61756`, `61757`, `61759`, `61761`, `61763`, `61765`, `61767`, `61768`, `61770`, `61771`, `61772`, `61773`, `61775`, `61777`, `61779`, `61781`, `61782`, `61784`, `61785`, `61787`, `61789`, `61791`, `61792`, `61794`, `61796`, `61798`, `61801`, `61803`, `61806`, `61808`, `61809`, `61810`, `61811`, `61813`, `61815`, `61817`, `61818`, `61820`, `61822`, `61823`, `61825`, `61826`, `61828`, `61830`, `61831`, `61832`, `61834`, `61836`, `61838`, `61839`, `61841`, `61842`, `61844`, `61847`, `61849`, `61850`, `61853`, `61855`, `61859`, `61861`, `61864`, `61868`, `61870`, `61874`, `61875`, `61877`, `61879`, `61881`, `61883`, `61885`, `61889`, `61891`, `61894`, `61896`, `61898`, `61899`, `61904`, `61908`, `61910`, `61912`, `61914`, `61916`, `61918`, `61919`, `61923`, `61924`, `61926`, `61928`, `61930`, `61932`, `61934`, `61936`, `61938`, `61940`, `61942`, `61943`, `61945`, `61949`, `61951`, `61952`, `61954`, `61956`, `61957`, `61959`, `61961`, `61963`, `61964`, `61965`, `61966`, `61969`, `61971`, `61973`, `61974`, `61975`, `61977`, `61980`, `61981`, `61983`, `61985`, `61987`, `61989`, `61990`, `61992`, `61994`, `61996`, `61997`, `61999`, `62000`, `62002`, `62003`, `62005`, `62006`, `62008`, `62009`, `62010`, `62011`, `62013`, `62015`, `62016`, `62018`, `62020`, `62022`, `62024`, `62025`, `62027`, `62029`, `62031`, `62033`, `62035`, `62037`, `62039`, `62041`, `62045`, `62047`, `62049`, `62051`, `62053`, `62055`, `62056`, `62064`, `62066`, `62068`, `62070`, `62071`, `62073`, `62075`, `62076`, `62078`, `62080`, `62082`, `62084`, `62086`, `62089`, `62091`, `62092`, `62096`, `62097`, `62099`, `62101`, `62102`, `62104`, `62106`, `62107`, `62108`, `62110`, `62112`, `62113`, `62114`, `62116`, `62117`, `62118`, `62119`, `62121`, `62123`, `62124`, `62126`, `62127`, `62129`, `62130`, `62132`, `62134`, `62135`, `62136`, `62138`, `62140`, `62142`, `62143`, `62144`, `62145`, `62147`, `62148`, `62151`, `62153`, `62155`, `62156`, `62158`, `62160`, `62162`, `62164`, `62166`, `62168`, `62169`, `62171`, `62172`, `62174`, `62175`, `62177`, `62178`, `62180`, `62182`, `62183`, `62185`, `62187`, `62189`, `62191`, `62193`, `62195`, `62196`, `62197`, `62199`, `62201`, `62203`, `62205`, `62207`, `62209`, `62211`, `62213`, `62215`, `62216`, `62218`, `62220`, `62222`, `62223`, `62225`, `62227`, `62229`, `62231`, `62232`, `62234`, `62236`, `62238`, `62239`, `62246`, `62248`, `62252`, `62254`, `62256`, `62257`, `62259`, `62260`, `62262`, `62264`, `62266`, `62268`, `62270`, `62273`, `62275`, `62277`, `62279`, `62281`, `62283`, `62284`, `62285`, `62287`, `62289`, `62290`, `62291`, `62292`, `62293`, `62295`, `62297`, `62300`, `62303`, `62306`, `62307`, `62308`, `62309`, `62310`, `62313`, `62315`, `62317`, `62318`, `62320`, `62321`, `62323`, `62324`, `62326`, `62327`, `62329`, `62330`, `62332`, `62333`, `62336`, `62337`, `62339`, `62341`, `62343`, `62344`, `62345`, `62348`, `62350`, `62351`, `62352`, `62354`, `62355`, `62357`, `62359`, `62361`, `62362`, `62364`, `62365`, `62367`, `62369`, `62371`, `62373`, `62375`, `62377`, `62379`, `62381`, `62383`, `62385`, `62387`, `62390`, `62392`, `62393`, `62395`, `62397`, `62399`, `62401`, `62403`, `62406`, `62408`, `62410`, `62411`, `62413`, `62414`, `62416`, `62418`, `62419`, `62421`, `62423`, `62424`, `62426`, `62428`, `62429`, `62430`, `62431`, `62433`, `62434`, `62436`, `62439`, `62441`, `62443`, `62446`, `62450`, `62451`, `62453`, `62455`, `62457`, `62459`, `62461`, `62464`, `62465`, `62467`, `62468`, `62470`, `62472`, `62474`, `62476`, `62477`, `62479`, `62481`, `62483`, `62485`, `62487`, `62489`, `62490`, `62492`, `62493`, `62499`, `62501`, `62503`, `62505`, `62506`, `62509`, `62511`, `62513`, `62515`, `62516`, `62517`, `62519`, `62521`, `62523`, `62525`, `62526`, `62528`, `62530`, `62532`, `62534`, `62536`, `62538`, `62540`, `62542`, `62544`, `62546`, `62548`, `62550`, `62552`, `62554`, `62555`, `62557`, `62559`, `62561`, `62563`, `62565`, `62567`, `62569`, `62570`, `62572`, `62574`, `62576`, `62578`, `62580`, `62581`, `62583`, `62585`, `62587`, `62588`, `62591`, `62592`, `62593`, `62595`, `62601`, `62604`, `62606`, `62609`, `62611`, `62615`, `62617`, `62621`, `62623`, `62624`, `62625`, `62627`, `62631`, `62633`, `62634`, `62635`, `62636`, `62639`, `62641`, `62643`, `62646`, `62647`, `62649`, `62651`, `62652`, `62653`, `62654`, `62655`, `62656`, `62658`, `62660`, `62663`, `62665`, `62667`, `62668`, `62670`, `62672`, `62674`, `62675`, `62677`, `62679`, `62681`, `62682`, `62683`, `62685`, `62686`, `62688`, `62691`, `62693`, `62694`, `62695`, `62696`, `62698`, `62700`, `62702`, `62704`, `62706`, `62708`, `62709`, `62710`, `62712`, `62714`, `62717`, `62719`, `62722`, `62725`, `62726`, `62728`, `62729`, `62731`, `62735`, `62736`, `62738`, `62740`, `62742`, `62744`, `62746`, `62748`, `62750`, `62752`, `62754`, `62755`, `62758`, `62761`, `62763`, `62764`, `62766`, `62768`, `62771`, `62773`, `62774`, `62776`, `62778`, `62780`, `62781`, `62782`, `62783`, `62785`, `62787`, `62788`, `62791`, `62792`, `62793`, `62795`, `62797`, `62799`, `62801`, `62803`, `62805`, `62807`, `62809`, `62811`, `62813`, `62815`, `62817`, `62818`, `62819`, `62821`, `62823`, `62825`, `62827`, `62829`, `62830`, `62831`, `62832`, `62834`, `62836`, `62838`, `62840`, `62842`, `62843`, `62845`, `62847`, `62849`, `62851`, `62854`, `62859`, `62860`, `62863`, `62865`, `62867`, `62869`, `62870`, `62871`, `62873`, `62875`, `62876`, `62877`, `62878`, `62880`, `62881`, `62883`, `62885`, `62886`, `62889`, `62891`, `62893`, `62895`, `62897`, `62898`, `62900`, `62901`, `62904`, `62906`, `62908`, `62910`, `62912`, `62913`, `62915`, `62916`, `62918`, `62920`, `62922`, `62924`, `62926`, `62928`, `62930`, `62932`, `62935`, `62938`, `62940`, `62942`, `62944`, `62946`, `62948`, `62950`, `62952`, `62954`, `62956`, `62957`, `62959`, `62961`, `62963`, `62964`, `62966`, `62967`, `62968`, `62970`, `62972`, `62973`, `62975`, `62977`, `62978`, `62980`, `62981`, `62982`, `62984`, `62986`, `62988`, `62990`, `62992`, `62997`, `62999`, `63004`, `63006`, `63010`, `63012`, `63015`, `63017`, `63018`, `63020`, `63022`, `63024`, `63025`, `63027`, `63029`, `63031`, `63033`, `63035`, `63037`, `63039`, `63041`, `63045`, `63046`, `63047`, `63049`, `63050`, `63052`, `63054`, `63055`, `63057`, `63059`, `63061`, `63062`, `63064`, `63068`, `63070`, `63072`, `63074`, `63078`, `63080`, `63082`, `63084`, `63086`, `63088`, `63090`, `63093`, `63095`, `63097`, `63099`, `63101`, `63103`, `63105`, `63107`, `63109`, `63110`, `63112`, `63114`, `63118`, `63120`, `63121`, `63123`, `63125`, `63127`, `63128`, `63129`, `63131`, `63133`, `63136`, `63137`, `63138`, `63140`, `63141`, `63142`, `63143`, `63145`, `63147`, `63149`, `63150`, `63152`, `63154`, `63156`, `63158`, `63160`, `63161`, `63163`, `63165`, `63166`, `63168`, `63170`, `63172`, `63175`, `63177`, `63179`, `63180`, `63183`, `63187`, `63189`, `63190`, `63192`, `63194`, `63196`, `63198`, `63200`, `63202`, `63204`, `63206`, `63208`, `63209`, `63211`, `63213`, `63215`, `63217`, `63219`, `63221`, `63222`, `63223`, `63224`, `63226`, `63227`, `63228`, `63229`, `63230`, `63232`, `63234`, `63236`, `63239`, `63242`, `63244`, `63248`, `63249`, `63250`, `63252`, `63253`, `63254`, `63256`, `63258`, `63259`, `63261`, `63262`, `63264`, `63266`, `63268`, `63270`, `63271`, `63273`, `63276`, `63278`, `63279`, `63281`, `63284`, `63285`, `63286`, `63287`, `63288`, `63290`, `63291`, `63293`, `63295`, `63296`, `63298`, `63300`, `63301`, `63302`, `63304`, `63306`, `63310`, `63312`, `63313`, `63315`, `63318`, `63320`, `63322`, `63324`, `63325`, `63327`, `63328`, `63330`, `63332`, `63333`, `63335`, `63337`, `63339`, `63341`, `63343`, `63344`, `63346`, `63348`, `63350`, `63352`, `63353`, `63355`, `63356`, `63358`, `63360`, `63361`, `63363`, `63364`, `63366`, `63368`, `63372`, `63374`, `63377`, `63379`, `63380`, `63382`, `63384`, `63385`, `63387`, `63388`, `63390`, `63391`, `63395`, `63399`, `63401`, `63402`, `63404`, `63406`, `63408`, `63410`, `63412`, `63413`, `63416`, `63418`, `63420`, `63421`, `63423`, `63425`, `63428`, `63430`, `63432`, `63434`, `63436`, `63438`, `63440`, `63442`, `63443`, `63445`, `63447`, `63448`, `63450`, `63451`, `63453`, `63454`, `63455`, `63456`, `63458`, `63460`, `63462`, `63464`, `63465`, `63467`, `63469`, `63471`, `63473`, `63474`, `63475`, `63477`, `63479`, `63480`, `63481`, `63488`, `63493`, `63496`, `63498`, `63500`, `63502`, `63507`, `63508`, `63510`, `63512`, `63514`, `63517`, `63520`, `63521`, `63523`, `63525`, `63527`, `63529`, `63531`, `63533`, `63535`, `63537`, `63538`, `63539`, `63541`, `63542`, `63544`, `63545`, `63546`, `63548`, `63549`, `63550`, `63552`, `63553`, `63554`, `63556`, `63558`, `63560`, `63561`, `63563`, `63565`, `63567`, `63569`, `63571`, `63573`, `63576`, `63579`, `63581`, `63583`, `63584`, `63586`, `63588`, `63590`, `63594`, `63595`, `63598`, `63600`, `63603`, `63604`, `63606`, `63608`, `63610`, `63612`, `63614`, `63615`, `63616`, `63619`, `63621`, `63622`, `63624`, `63626`, `63628`, `63631`, `63633`, `63634`, `63635`, `63637`, `63638`, `63639`, `63642`, `63644`, `63646`, `63648`, `63650`, `63652`, `63653`, `63654`, `63656`, `63657`, `63659`, `63661`, `63663`, `63665`, `63666`, `63668`, `63669`, `63671`, `63673`, `63675`, `63677`, `63679`, `63681`, `63683`, `63684`, `63686`, `63688`, `63690`, `63692`, `63693`, `63694`, `63697`, `63699`, `63701`, `63703`, `63705`, `63707`, `63709`, `63711`, `63713`, `63717`, `63719`, `63721`, `63722`, `63723`, `63724`, `63726`, `63728`, `63730`, `63732`, `63733`, `63735`, `63737`, `63738`, `63742`, `63744`, `63745`, `63747`, `63749`, `63750`, `63752`, `63756`, `63757`, `63758`, `63760`, `63762`, `63764`, `63766`, `63768`, `63770`, `63772`, `63774`, `63776`, `63778`, `63779`, `63782`, `63783`, `63785`, `63787`, `63789`, `63791`, `63794`, `63797`, `63799`, `63802`, `63803`, `63805`, `63807`, `63809`, `63811`, `63812`, `63813`, `63814`, `63816`, `63819`, `63820`, `63822`, `63824`, `63826`, `63828`, `63830`, `63831`, `63833`, `63834`, `63838`, `63839`, `63841`, `63843`, `63845`, `63847`, `63849`, `63851`, `63853`, `63854`, `63856`, `63858`, `63860`, `63861`, `63863`, `63865`, `63869`, `63871`, `63876`, `63878`, `63880`, `63882`, `63884`, `63886`, `63887`, `63888`, `63889`, `63892`, `63895`, `63897`, `63899`, `63901`, `63903`, `63906`, `63908`, `63909`, `63910`, `63912`, `63914`, `63916`, `63917`, `63919`, `63921`, `63922`, `63925`, `63927`, `63929`, `63932`, `63934`, `63936`, `63937`, `63941`, `63942`, `63944`, `63946`, `63947`, `63948`, `63950`, `63952`, `63953`, `63955`, `63957`, `63960`, `63961`, `63962`, `63964`, `63966`, `63969`, `63972`, `63976`, `63978`, `63980`, `63982`, `63984`, `63986`, `63988`, `63990`, `63991`, `63993`, `63995`, `63997`, `63999`, `64001`, `64003`, `64005`, `64006`, `64008`, `64010`, `64011`, `64012`, `64014`, `64015`, `64017`, `64019`, `64021`, `64024`, `64026`, `64027`, `64029`, `64031`, `64032`, `64035`, `64038`, `64040`, `64042`, `64044`, `64046`, `64049`, `64050`, `64052`, `64054`, `64056`, `64058`, `64060`, `64062`, `64064`, `64066`, `64068`, `64070`, `64072`, `64074`, `64075`, `64077`, `64079`, `64080`, `64082`, `64084`, `64086`, `64088`, `64090`, `64092`, `64093`, `64095`, `64096`, `64098`, `64099`, `64100`, `64102`, `64104`, `64106`, `64107`, `64109`, `64110`, `64111`, `64112`, `64114`, `64115`, `64117`, `64118`, `64120`, `64122`, `64124`, `64127`, `64128`, `64129`, `64131`, `64133`, `64135`, `64137`, `64139`, `64143`, `64145`, `64146`, `64148`, `64150`, `64151`, `64153`, `64155`, `64156`, `64159`, `64161`, `64163`, `64164`, `64166`, `64167`, `64169`, `64171`, `64172`, `64174`, `64176`, `64177`, `64179`, `64181`, `64183`, `64184`, `64186`, `64187`, `64189`, `64190`, `64192`, `64194`, `64196`, `64197`, `64199`, `64201`, `64206`, `64207`, `64209`, `64210`, `64211`, `64212`, `64214`, `64216`, `64219`, `64220`, `64221`, `64223`, `64224`, `64226`, `64227`, `64229`, `64231`, `64232`, `64234`, `64235`, `64237`, `64239`, `64240`, `64242`, `64244`, `64246`, `64247`, `64248`, `64249`, `64250`, `64251`, `64253`, `64255`, `64256`, `64257`, `64259`, `64261`, `64262`, `64264`, `64266`, `64267`, `64269`, `64271`, `64273`, `64275`, `64276`, `64278`, `64280`, `64282`, `64284`, `64289`, `64291`, `64293`, `64295`, `64297`, `64299`, `64302`, `64305`, `64306`, `64310`, `64312`, `64314`, `64316`, `64317`, `64319`, `64321`, `64323`, `64324`, `64327`, `64328`, `64330`, `64332`, `64333`, `64334`, `64336`, `64338`, `64340`, `64342`, `64344`, `64349`, `64351`, `64354`, `64356`, `64357`, `64359`, `64361`, `64362`, `64364`, `64366`, `64369`, `64370`, `64371`, `64373`, `64375`, `64377`, `64378`, `64380`, `64382`, `64386`, `64388`, `64389`, `64391`, `64393`, `64394`, `64396`, `64398`, `64400`, `64402`, `64404`, `64406`, `64407`, `64408`, `64410`, `64412`, `64414`, `64416`, `64418`, `64419`, `64421`, `64423`, `64425`, `64426`, `64430`, `64432`, `64433`, `64434`, `64436`, `64437`, `64439`, `64441`, `64442`, `64444`, `64445`, `64447`, `64449`, `64451`, `64454`, `64456`, `64458`, `64461`, `64463`, `64465`, `64467`, `64469`, `64471`, `64473`, `64474`, `64476`, `64478`, `64480`, `64482`, `64484`, `64485`, `64487`, `64489`, `64490`, `64491`, `64493`, `64494`, `64495`, `64496`, `64497`, `64499`, `64501`, `64503`, `64504`, `64506`, `64507`, `64509`, `64512`, `64514`, `64516`, `64518`, `64519`, `64521`, `64522`, `64523`, `64525`, `64527`, `64530`, `64532`, `64534`, `64536`, `64537`, `64539`, `64542`, `64543`, `64545`, `64547`, `64549`, `64551`, `64553`, `64554`, `64555`, `64557`, `64559`, `64561`, `64563`, `64564`, `64566`, `64568`, `64570`, `64572`, `64574`, `64575`, `64577`, `64579`, `64581`, `64583`, `64585`, `64586`, `64589`, `64590`, `64592`, `64594`, `64596`, `64598`, `64600`, `64601`, `64603`, `64605`, `64607`, `64609`, `64611`, `64613`, `64615`, `64617`, `64619`, `64621`, `64623`, `64625`, `64626`, `64627`, `64628`, `64630`, `64632`, `64634`, `64636`, `64638`, `64639`, `64641`, `64643`, `64645`, `64647`, `64650`, `64652`, `64656`, `64658`, `64660`, `64662`, `64664`, `64666`, `64667`, `64669`, `64670`, `64672`, `64674`, `64676`, `64678`, `64683`, `64684`, `64686`, `64688`, `64690`, `64691`, `64692`, `64696`, `64698`, `64700`, `64702`, `64704`, `64705`, `64707`, `64708`, `64712`, `64715`, `64716`, `64717`, `64718`, `64721`, `64722`, `64723`, `64725`, `64726`, `64727`, `64729`, `64731`, `64732`, `64735`, `64737`, `64739`, `64741`, `64742`, `64744`, `64745`, `64747`, `64749`, `64750`, `64752`, `64753`, `64755`, `64757`, `64758`, `64759`, `64761`, `64763`, `64765`, `64766`, `64768`, `64769`, `64771`, `64772`, `64773`, `64776`, `64777`, `64778`, `64779`, `64781`, `64782`, `64784`, `64786`, `64789`, `64791`, `64793`, `64797`, `64799`, `64801`, `64803`, `64804`, `64807`, `64808`, `64810`, `64812`, `64814`, `64816`, `64818`, `64820`, `64822`, `64823`, `64826`, `64827`, `64829`, `64830`, `64832`, `64834`, `64836`, `64838`, `64840`, `64842`, `64844`, `64846`, `64848`, `64850`, `64852`, `64854`, `64857`, `64859`, `64862`, `64865`, `64867`, `64868`, `64869`, `64870`, `64872`, `64874`, `64875`, `64877`, `64878`, `64881`, `64883`, `64886`, `64888`, `64890`, `64893`, `64895`, `64897`, `64898`, `64899`, `64901`, `64903`, `64904`, `64905`, `64907`, `64909`, `64911`, `64913`, `64915`, `64917`, `64918`, `64919`, `64920`, `64922`, `64925`, `64927`, `64928`, `64929`, `64930`, `64932`, `64934`, `64936`, `64938`, `64939`, `64940`, `64942`, `64944`, `64946`, `64948`, `64950`, `64952`, `64953`, `64955`, `64957`, `64958`, `64960`, `64961`, `64962`, `64964`, `64966`, `64968`, `64970`, `64973`, `64977`, `64981`, `64982`, `64984`, `64986`, `64988`, `64990`, `64992`, `64994`, `64996`, `64998`, `65000`, `65001`, `65002`, `65004`, `65006`, `65008`, `65010`, `65012`, `65014`, `65016`, `65018`, `65020`, `65021`, `65022`, `65024`, `65026`, `65028`, `65030`, `65032`, `65034`, `65035`, `65036`, `65038`, `65039`, `65041`, `65043`, `65045`, `65047`, `65049`, `65053`, `65055`, `65056`, `65058`, `65060`, `65062`, `65064`, `65065`, `65067`, `65069`, `65071`, `65074`, `65076`, `65078`, `65080`, `65083`, `65085`, `65086`, `65090`, `65091`, `65093`, `65095`, `65096`, `65098`, `65099`, `65101`, `65103`, `65105`, `65107`, `65109`, `65111`, `65112`, `65113`, `65115`, `65118`, `65120`, `65122`, `65124`, `65125`, `65129`, `65131`, `65133`, `65134`, `65137`, `65139`, `65140`, `65142`, `65143`, `65145`, `65146`, `65148`, `65150`, `65151`, `65153`, `65154`, `65156`, `65157`, `65158`, `65159`, `65161`, `65166`, `65167`, `65169`, `65171`, `65172`, `65173`, `65175`, `65176`, `65178`, `65179`, `65180`, `65182`, `65184`, `65186`, `65188`, `65190`, `65192`, `65193`, `65195`, `65196`, `65197`, `65198`, `65199`, `65200`, `65202`, `65204`, `65205`, `65209`, `65211`, `65213`, `65215`, `65217`, `65218`, `65219`, `65220`, `65221`, `65223`, `65226`, `65229`, `65231`, `65233`, `65235`, `65236`, `65239`, `65241`, `65243`, `65245`, `65247`, `65250`, `65251`, `65252`, `65254`, `65257`, `65259`, `65261`, `65263`, `65265`, `65267`, `65268`, `65270`, `65272`, `65273`, `65275`, `65276`, `65278`, `65279`, `65281`, `65284`, `65285`, `65286`, `65287`, `65289`, `65290`, `65292`, `65294`, `65297`, `65299`, `65300`, `65301`, `65302`, `65304`, `65306`, `65308`, `65310`, `65311`, `65313`, `65315`, `65318`, `65319`, `65320`, `65322`, `65324`, `65326`, `65327`, `65329`, `65331`, `65335`, `65337`, `65339`, `65341`, `65342`, `65343`, `65345`, `65346`, `65348`, `65350`, `65352`, `65354`, `65356`, `65357`, `65361`, `65362`, `65364`, `65366`, `65367`, `65369`, `65371`, `65373`, `65374`, `65375`, `65377`, `65378`, `65379`, `65381`, `65382`, `65384`, `65386`, `65388`, `65390`, `65392`, `65394`, `65395`, `65397`, `65399`, `65403`, `65405`, `65406`, `65407`, `65408`, `65410`, `65412`, `65416`, `65420`, `65422`, `65424`, `65425`, `65427`, `65429`, `65433`, `65436`, `65438`, `65439`, `65441`, `65442`, `65443`, `65445`, `65447`, `65449`, `65451`, `65453`, `65455`, `65457`, `65458`, `65460`, `65462`, `65463`, `65465`, `65466`, `65468`, `65469`, `65470`, `65472`, `65474`, `65476`, `65478`, `65479`, `65480`, `65482`, `65483`, `65484`, `65487`, `65489`, `65491`, `65492`, `65494`, `65495`, `65497`, `65499`, `65501`, `65502`, `65503`, `65505`, `65507`, `65509`, `65511`, `65513`, `65514`, `65516`, `65518`, `65519`, `65520`, `65522`, `65524`, `65525`, `65529`, `65531`, `65533`, `65534`, `65536`, `65537`, `65539`, `65541`, `65543`, `65544`, `65546`, `65548`, `65550`, `65552`, `65554`, `65555`, `65557`, `65560`, `65562`, `65564`, `65566`, `65567`, `65569`, `65570`, `65572`, `65574`, `65575`, `65576`, `65578`, `65580`, `65581`, `65583`, `65584`, `65585`, `65587`, `65589`, `65591`, `65593`, `65595`, `65597`, `65598`, `65600`, `65602`, `65603`, `65604`, `65606`, `65608`, `65610`, `65612`, `65614`, `65616`, `65617`, `65618`, `65619`, `65620`, `65622`, `65624`, `65625`, `65627`, `65629`, `65631`, `65633`, `65635`, `65637`, `65638`, `65640`, `65642`, `65644`, `65646`, `65647`, `65649`, `65651`, `65654`, `65656`, `65657`, `65658`, `65660`, `65661`, `65663`, `65666`, `65670`, `65673`, `65674`, `65675`, `65676`, `65678`, `65680`, `65681`, `65683`, `65684`, `65686`, `65688`, `65690`, `65692`, `65694`, `65695`, `65697`, `65699`, `65700`, `65702`, `65704`, `65706`, `65708`, `65709`, `65711`, `65713`, `65715`, `65717`, `65719`, `65720`, `65722`, `65725`, `65726`, `65728`, `65730`, `65731`, `65733`, `65735`, `65739`, `65741`, `65743`, `65744`, `65746`, `65748`, `65750`, `65752`, `65754`, `65756`, `65759`, `65761`, `65762`, `65764`, `65768`, `65770`, `65771`, `65772`, `65773`, `65775`, `65776`, `65778`, `65780`, `65782`, `65783`, `65785`, `65787`, `65789`, `65791`, `65793`, `65794`, `65796`, `65798`, `65799`, `65800`, `65802`, `65805`, `65807`, `65809`, `65811`, `65813`, `65815`, `65817`, `65819`, `65820`, `65821`, `65823`, `65824`, `65826`, `65828`, `65829`, `65831`, `65832`, `65834`, `65836`, `65837`, `65838`, `65839`, `65840`, `65842`, `65846`, `65849`, `65854`, `65858`, `65859`, `65861`, `65865`, `65867`, `65869`, `65871`, `65873`, `65875`, `65877`, `65879`, `65881`, `65884`, `65887`, `65890`, `65892`, `65895`, `65897`, `65899`, `65900`, `65904`, `65906`, `65907`, `65908`, `65909`, `65910`, `65911`, `65912`, `65913`, `65914`, `65916`, `65917`, `65918`, `65920`, `65925`, `65927`, `65929`, `65931`, `65933`, `65935`, `65937`, `65939`, `65941`, `65944`, `65946`, `65948`, `65950`, `65952`, `65953`, `65954`, `65955`, `65958`, `65960`, `65962`, `65964`, `65966`, `65968`, `65969`, `65971`, `65972`, `65974`, `65976`, `65979`, `65981`, `65983`, `65984`, `65985`, `65987`, `65989`, `65991`, `65992`, `65993`, `65994`, `65996`, `65998`, `65999`, `66003`, `66004`, `66006`, `66007`, `66009`, `66010`, `66011`, `66013`, `66015`, `66017`, `66019`, `66021`, `66023`, `66025`, `66026`, `66028`, `66030`, `66031`, `66033`, `66034`, `66036`, `66038`, `66040`, `66041`, `66044`, `66045`, `66046`, `66048`, `66050`, `66051`, `66053`, `66056`, `66057`, `66058`, `66062`, `66063`, `66065`, `66067`, `66068`, `66070`, `66072`, `66074`, `66076`, `66078`, `66080`, `66082`, `66085`, `66086`, `66088`, `66089`, `66092`, `66093`, `66094`, `66095`, `66097`, `66099`, `66100`, `66102`, `66104`, `66106`, `66107`, `66108`, `66109`, `66110`, `66111`, `66113`, `66114`, `66116`, `66119`, `66121`, `66122`, `66124`, `66130`, `66132`, `66133`, `66137`, `66139`, `66141`, `66143`, `66145`, `66147`, `66149`, `66151`, `66153`, `66154`, `66155`, `66156`, `66158`, `66160`, `66162`, `66163`, `66164`, `66165`, `66168`, `66169`, `66171`, `66172`, `66174`, `66175`, `66177`, `66180`, `66181`, `66185`, `66187`, `66188`, `66189`, `66190`, `66192`, `66193`, `66194`, `66195`, `66196`, `66198`, `66200`, `66204`, `66205`, `66206`, `66208`, `66209`, `66211`, `66213`, `66215`, `66216`, `66218`, `66220`, `66221`, `66223`, `66224`, `66226`, `66227`, `66228`, `66230`, `66232`, `66233`, `66234`, `66236`, `66237`, `66239`, `66241`, `66243`, `66244`, `66245`, `66249`, `66251`, `66252`, `66254`, `66256`, `66258`, `66260`, `66261`, `66263`, `66265`, `66267`, `66269`, `66271`, `66272`, `66274`, `66276`, `66278`, `66279`, `66281`, `66283`, `66285`, `66288`, `66289`, `66291`, `66293`, `66294`, `66296`, `66298`, `66300`, `66302`, `66303`, `66305`, `66307`, `66309`, `66311`, `66313`, `66315`, `66320`, `66323`, `66324`, `66325`, `66327`, `66329`, `66331`, `66332`, `66333`, `66335`, `66337`, `66339`, `66341`, `66342`, `66344`, `66345`, `66347`, `66348`, `66350`, `66352`, `66353`, `66355`, `66356`, `66357`, `66358`, `66359`, `66361`, `66362`, `66363`, `66365`, `66367`, `66369`, `66371`, `66374`, `66376`, `66377`, `66378`, `66380`, `66381`, `66383`, `66384`, `66386`, `66388`, `66390`, `66391`, `66393`, `66395`, `66396`, `66398`, `66401`, `66403`, `66404`, `66406`, `66408`, `66410`, `66412`, `66414`, `66416`, `66419`, `66420`, `66421`, `66423`, `66424`, `66425`, `66427`, `66428`, `66430`, `66432`, `66433`, `66434`, `66435`, `66438`, `66440`, `66441`, `66442`, `66444`, `66446`, `66448`, `66450`, `66452`, `66453`, `66455`, `66457`, `66459`, `66460`, `66462`, `66463`, `66464`, `66466`, `66468`, `66469`, `66470`, `66472`, `66475`, `66477`, `66480`, `66483`, `66485`, `66487`, `66491`, `66493`, `66495`, `66497`, `66499`, `66501`, `66503`, `66504`, `66506`, `66508`, `66510`, `66514`, `66515`, `66516`, `66518`, `66519`, `66521`, `66523`, `66524`, `66526`, `66527`, `66528`, `66530`, `66532`, `66533`, `66534`, `66537`, `66539`, `66541`, `66542`, `66544`, `66547`, `66549`, `66551`, `66553`, `66555`, `66557`, `66558`, `66560`, `66562`, `66564`, `66566`, `66568`, `66572`, `66574`, `66576`, `66578`, `66580`, `66582`, `66584`, `66585`, `66586`, `66587`, `66588`, `66589`, `66590`, `66591`, `66593`, `66594`, `66595`, `66597`, `66599`, `66602`, `66604`, `66606`, `66607`, `66609`, `66611`, `66613`, `66615`, `66617`, `66619`, `66621`, `66623`, `66625`, `66626`, `66627`, `66631`, `66633`, `66634`, `66636`, `66638`, `66640`, `66641`, `66643`, `66645`, `66646`, `66648`, `66650`, `66652`, `66654`, `66656`, `66658`, `66661`, `66664`, `66666`, `66668`, `66670`, `66672`, `66675`, `66677`, `66679`, `66681`, `66683`, `66684`, `66686`, `66688`, `66689`, `66690`, `66691`, `66692`, `66695`, `66697`, `66699`, `66701`, `66703`, `66704`, `66705`, `66706`, `66708`, `66711`, `66713`, `66714`, `66715`, `66717`, `66720`, `66721`, `66723`, `66725`, `66727`, `66729`, `66733`, `66735`, `66737`, `66739`, `66741`, `66743`, `66745`, `66746`, `66750`, `66752`, `66757`, `66759`, `66761`, `66762`, `66764`, `66765`, `66767`, `66769`, `66770`, `66773`, `66775`, `66776`, `66778`, `66780`, `66783`, `66785`, `66787`, `66788`, `66789`, `66791`, `66793`, `66795`, `66799`, `66802`, `66803`, `66807`, `66809`, `66811`, `66813`, `66815`, `66816`, `66817`, `66819`, `66822`, `66825`, `66827`, `66829`, `66831`, `66833`, `66836`, `66838`, `66839`, `66841`, `66842`, `66844`, `66845`, `66848`, `66850`, `66851`, `66853`, `66855`, `66856`, `66857`, `66859`, `66860`, `66863`, `66866`, `66867`, `66868`, `66870`, `66872`, `66874`, `66878`, `66880`, `66882`, `66884`, `66886`, `66887`, `66888`, `66890`, `66891`, `66893`, `66894`, `66896`, `66897`, `66898`, `66899`, `66901`, `66902`, `66904`, `66907`, `66909`, `66910`, `66912`, `66914`, `66915`, `66916`, `66920`, `66922`, `66924`, `66926`, `66928`, `66931`, `66933`, `66934`, `66935`, `66936`, `66937`, `66939`, `66941`, `66943`, `66945`, `66947`, `66949`, `66950`, `66953`, `66955`, `66957`, `66959`, `66963`, `66965`, `66968`, `66970`, `66971`, `66973`, `66974`, `66976`, `66978`, `66979`, `66980`, `66981`, `66982`, `66983`, `66984`, `66986`, `66988`, `66989`, `66991`, `66993`, `66995`, `66996`, `66998`, `66999`, `67003`, `67005`, `67006`, `67007`, `67009`, `67011`, `67013`, `67015`, `67016`, `67017`, `67018`, `67020`, `67022`, `67024`, `67026`, `67028`, `67030`, `67032`, `67035`, `67037`, `67040`, `67042`, `67043`, `67045`, `67046`, `67048`, `67049`, `67050`, `67052`, `67053`, `67055`, `67057`, `67058`, `67060`, `67061`, `67062`, `67063`, `67064`, `67067`, `67068`, `67071`, `67073`, `67074`, `67076`, `67080`, `67081`, `67083`, `67085`, `67087`, `67088`, `67090`, `67091`, `67092`, `67097`, `67099`, `67100`, `67102`, `67104`, `67106`, `67108`, `67109`, `67110`, `67113`, `67115`, `67117`, `67119`, `67120`, `67122`, `67124`, `67126`, `67128`, `67130`, `67132`, `67134`, `67136`, `67138`, `67140`, `67142`, `67146`, `67148`, `67152`, `67155`, `67163`, `67165`, `67168`, `67169`, `67172`, `67174`, `67175`, `67177`, `67179`, `67180`, `67182`, `67183`, `67186`, `67188`, `67189`, `67191`, `67193`, `67194`, `67195`, `67197`, `67199`, `67201`, `67205`, `67207`, `67209`, `67210`, `67212`, `67214`, `67216`, `67218`, `67219`, `67221`, `67223`, `67225`, `67227`, `67228`, `67230`, `67231`, `67232`, `67233`, `67235`, `67237`, `67239`, `67242`, `67244`, `67246`, `67248`, `67250`, `67252`, `67254`, `67257`, `67261`, `67263`, `67266`, `67268`, `67270`, `67272`, `67274`, `67276`, `67277`, `67279`, `67282`, `67284`, `67286`, `67289`, `67292`, `67294`, `67296`, `67297`, `67299`, `67300`, `67302`, `67303`, `67305`, `67306`, `67308`, `67309`, `67312`, `67313`, `67314`, `67316`, `67318`, `67319`, `67320`, `67324`, `67325`, `67327`, `67328`, `67329`, `67331`, `67332`, `67334`, `67336`, `67338`, `67339`, `67341`, `67343`, `67345`, `67346`, `67348`, `67350`, `67351`, `67353`, `67355`, `67356`, `67359`, `67360`, `67362`, `67364`, `67365`, `67366`, `67367`, `67368`, `67370`, `67373`, `67375`, `67377`, `67379`, `67381`, `67383`, `67385`, `67388`, `67391`, `67392`, `67394`, `67396`, `67398`, `67400`, `67401`, `67403`, `67405`, `67408`, `67409`, `67410`, `67412`, `67414`, `67415`, `67416`, `67418`, `67420`, `67421`, `67423`, `67425`, `67427`, `67429`, `67431`, `67433`, `67435`, `67437`, `67439`, `67441`, `67442`, `67443`, `67444`, `67445`, `67447`, `67449`, `67450`, `67451`, `67453`, `67454`, `67456`, `67457`, `67458`, `67460`, `67461`, `67463`, `67465`, `67466`, `67467`, `67469`, `67471`, `67473`, `67475`, `67477`, `67479`, `67481`, `67482`, `67483`, `67485`, `67487`, `67488`, `67490`, `67492`, `67495`, `67496`, `67500`, `67501`, `67503`, `67505`, `67506`, `67508`, `67510`, `67512`, `67514`, `67515`, `67517`, `67518`, `67520`, `67522`, `67523`, `67525`, `67526`, `67527`, `67528`, `67529`, `67532`, `67534`, `67536`, `67537`, `67538`, `67540`, `67542`, `67546`, `67549`, `67550`, `67551`, `67552`, `67554`, `67555`, `67556`, `67558`, `67560`, `67561`, `67562`, `67564`, `67566`, `67568`, `67569`, `67570`, `67572`, `67575`, `67576`, `67578`, `67580`, `67582`, `67584`, `67586`, `67591`, `67592`, `67594`, `67595`, `67596`, `67597`, `67598`, `67599`, `67601`, `67603`, `67605`, `67609`, `67611`, `67613`, `67614`, `67615`, `67616`, `67617`, `67618`, `67620`, `67622`, `67623`, `67625`, `67627`, `67629`, `67631`, `67632`, `67634`, `67636`, `67637`, `67639`, `67641`, `67643`, `67645`, `67648`, `67650`, `67652`, `67655`, `67656`, `67658`, `67660`, `67662`, `67664`, `67665`, `67667`, `67668`, `67669`, `67670`, `67671`, `67673`, `67674`, `67675`, `67677`, `67680`, `67682`, `67684`, `67686`, `67690`, `67692`, `67694`, `67696`, `67697`, `67699`, `67700`, `67701`, `67702`, `67705`, `67707`, `67711`, `67713`, `67714`, `67715`, `67716`, `67718`, `67720`, `67721`, `67722`, `67724`, `67725`, `67726`, `67727`, `67728`, `67729`, `67731`, `67733`, `67735`, `67737`, `67739`, `67740`, `67742`, `67744`, `67745`, `67746`, `67747`, `67748`, `67750`, `67751`, `67752`, `67754`, `67756`, `67758`, `67761`, `67763`, `67764`, `67766`, `67769`, `67770`, `18694`, `67774`, `67776`, `67778`, `67780`, `67782`, `67784`, `67786`, `67788`, `67789`, `67791`, `67793`, `67794`, `67796`, `67798`, `67799`, `67802`, `67803`, `67805`, `67807`, `67808`, `67810`, `67811`, `67812`, `67814`, `67815`, `67817`, `67819`, `67822`, `67824`, `67825`, `67827`, `67828`, `67829`, `67831`, `67832`, `67834`, `67838`, `67840`, `67843`, `67845`, `67847`, `67849`, `67850`, `67851`, `67854`, `67855`, `67857`, `67859`, `67861`, `67862`, `67863`, `67865`, `67866`, `67868`, `67871`, `67872`, `67874`, `67877`, `67879`, `67881`, `67883`, `67884`, `67885`, `67887`, `67889`, `67890`, `67892`, `67894`, `67896`, `67898`, `67899`, `67901`, `67902`, `67903`, `67905`, `67907`, `67909`, `67911`, `67913`, `67915`, `67917`, `67918`, `67919`, `67921`, `67923`, `67925`, `67927`, `67929`, `67931`, `67933`, `67935`, `67937`, `67939`, `67940`, `67942`, `67944`, `67948`, `67950`, `67951`, `67953`, `67954`, `67956`, `67958`, `67960`, `67962`, `67964`, `67965`, `67966`, `67968`, `67970`, `67972`, `67973`, `67974`, `67977`, `67978`, `67980`, `67981`, `67982`, `67983`, `67985`, `67986`, `67988`, `67990`, `67992`, `67994`, `67995`, `67996`, `67998`, `67999`, `68002`, `68004`, `68006`, `68008`, `68010`, `68011`, `68013`, `68016`, `68018`, `68020`, `68021`, `68023`, `68025`, `68026`, `68027`, `68029`, `68030`, `68032`, `68033`, `68034`, `68035`, `68037`, `68039`, `68041`, `68043`, `68045`, `68047`, `68048`, `68050`, `68051`, `68052`, `68053`, `68055`, `68057`, `68059`, `68060`, `68062`, `68064`, `68067`, `68068`, `68069`, `68073`, `68075`, `68077`, `68079`, `68081`, `68084`, `68086`, `68089`, `68091`, `68093`, `68095`, `68097`, `68098`, `68100`, `68102`, `68104`, `68105`, `68107`, `68109`, `68111`, `68112`, `68113`, `68115`, `68116`, `68117`, `68119`, `68121`, `68123`, `68125`, `68126`, `68129`, `68131`, `68133`, `68134`, `68136`, `68137`, `68139`, `68140`, `68142`, `68145`, `68148`, `68149`, `68151`, `68153`, `68155`, `68157`, `68160`, `68166`, `68167`, `68168`, `68169`, `68171`, `68173`, `68174`, `68176`, `68178`, `68180`, `68181`, `68182`, `68184`, `68186`, `68188`, `68189`, `68191`, `68192`, `68194`, `68196`, `68198`, `68199`, `68200`, `68201`, `68203`, `68205`, `68207`, `68209`, `68211`, `68213`, `68215`, `68218`, `68220`, `68221`, `68222`, `68223`, `68224`, `68225`, `68227`, `68229`, `68230`, `68234`, `68236`, `68238`, `68240`, `68242`, `68245`, `68246`, `68247`, `68248`, `68250`, `68252`, `68254`, `68256`, `68257`, `68259`, `68261`, `68262`, `68263`, `68265`, `68267`, `68270`, `68271`, `68273`, `68275`, `68276`, `68279`, `68280`, `68281`, `68283`, `68285`, `68286`, `68288`, `68290`, `68291`, `68293`, `68295`, `68296`, `68297`, `68300`, `68301`, `68303`, `68305`, `68307`, `68308`, `68309`, `68311`, `68313`, `68315`, `68316`, `68318`, `68319`, `68321`, `68323`, `68324`, `68325`, `68327`, `68328`, `68329`, `68330`, `68331`, `68333`, `68335`, `68339`, `68341`, `68343`, `68345`, `68346`, `68348`, `68350`, `68353`, `68355`, `68356`, `68358`, `68360`, `68361`, `68363`, `68365`, `68368`, `68370`, `68372`, `68374`, `68375`, `68376`, `68377`, `68378`, `68380`, `68383`, `68384`, `68385`, `68387`, `68389`, `68391`, `68392`, `68394`, `68397`, `68402`, `68404`, `68406`, `68408`, `68411`, `68413`, `68415`, `68417`, `68418`, `68421`, `68423`, `68425`, `68426`, `68429`, `68430`, `68432`, `68433`, `68434`, `68436`, `68438`, `68440`, `68441`, `68443`, `68445`, `68446`, `68447`, `68449`, `68450`, `68451`, `68453`, `68454`, `68456`, `68457`, `68459`, `68461`, `68463`, `68464`, `68466`, `68467`, `68468`, `68469`, `68471`, `68472`, `68473`, `68475`, `68476`, `68478`, `68480`, `68482`, `68484`, `68485`, `68487`, `68489`, `68490`, `68491`, `68493`, `68494`, `68495`, `68496`, `68497`, `68499`, `68500`, `68502`, `68504`, `68505`, `68507`, `68508`, `68510`, `68512`, `68513`, `68515`, `68516`, `68518`, `68520`, `68522`, `68525`, `68526`, `68528`, `68531`, `68532`, `68534`, `68536`, `68538`, `68539`, `68541`, `68542`, `68543`, `68546`, `68549`, `68551`, `68553`, `68555`, `68557`, `68559`, `68561`, `68562`, `68565`, `68566`, `68567`, `68568`, `68570`, `68571`, `68573`, `68575`, `68577`, `68578`, `68580`, `68581`, `68582`, `68584`, `68586`, `68588`, `68589`, `68591`, `68593`, `68595`, `68597`, `68598`, `68599`, `68600`, `68602`, `68604`, `68605`, `68606`, `68608`, `68609`, `68611`, `68613`, `68615`, `68617`, `68619`, `68621`, `68622`, `68625`, `68627`, `68628`, `68630`, `68632`, `68633`, `68635`, `68636`, `68638`, `68639`, `68642`, `68643`, `68645`, `68647`, `68649`, `68650`, `68651`, `68652`, `68653`, `68655`, `68657`, `68658`, `68661`, `68663`, `68665`, `68667`, `68669`, `68670`, `68671`, `68672`, `68674`, `68676`, `68677`, `68679`, `68681`, `68683`, `68684`, `68686`, `68689`, `68690`, `68693`, `68694`, `68696`, `68698`, `68700`, `68701`, `68704`, `68706`, `68707`, `68709`, `68711`, `68712`, `68714`, `68716`, `68718`, `68720`, `68722`, `68724`, `68726`, `68728`, `68729`, `68730`, `68732`, `68734`, `68736`, `68737`, `68738`, `68739`, `68740`, `68742`, `68743`, `68745`, `68746`, `68748`, `68750`, `68751`, `68752`, `68755`, `68756`, `68757`, `68760`, `68761`, `68763`, `68765`, `68767`, `68768`, `68770`, `68773`, `68774`, `68776`, `68777`, `68779`, `68780`, `68781`, `68783`, `68785`, `68787`, `68788`, `68790`, `68792`, `68794`, `68795`, `68797`, `68798`, `68799`, `68801`, `68802`, `68803`, `68805`, `68806`, `68808`, `68811`, `68812`, `68814`, `68816`, `68818`, `68820`, `68821`, `68824`, `68825`, `68827`, `68828`, `68829`, `68831`, `68834`, `68835`, `68837`, `68840`, `68842`, `68844`, `68846`, `68850`, `68851`, `68852`, `68853`, `68857`, `68858`, `68859`, `68861`, `68863`, `68865`, `68867`, `68869`, `68870`, `68872`, `68873`, `68874`, `68876`, `68878`, `68880`, `68881`, `68883`, `68884`, `68885`, `68887`, `68889`, `68892`, `68894`, `68896`, `68898`, `68902`, `68904`, `68905`, `68907`, `68909`, `68911`, `68913`, `68914`, `68916`, `68917`, `68919`, `68921`, `68923`, `68924`, `68925`, `68927`, `68928`, `68930`, `68931`, `68933`, `68937`, `68938`, `68941`, `68942`, `68944`, `68946`, `68947`, `68949`, `68951`, `68953`, `68954`, `68955`, `68957`, `68959`, `68961`, `68963`, `68966`, `68968`, `68970`, `68972`, `68974`, `68977`, `68978`, `68982`, `68984`, `68986`, `68988`, `68991`, `68992`, `68993`, `68995`, `68997`, `68998`, `68999`, `69002`, `69003`, `69004`, `69005`, `69006`, `69009`, `69011`, `69013`, `69014`, `69016`, `69018`, `69019`, `69022`, `69026`, `69028`, `69029`, `69031`, `69033`, `69035`, `69036`, `69038`, `69040`, `69042`, `69044`, `69045`, `69047`, `69050`, `69051`, `69052`, `69055`, `69057`, `69059`, `69060`, `69062`, `69064`, `69066`, `69068`, `69070`, `69071`, `69072`, `69074`, `69075`, `69079`, `69081`, `69083`, `69085`, `69086`, `69087`, `69089`, `69091`, `69093`, `69094`, `69096`, `69097`, `69099`, `69100`, `69102`, `69103`, `69105`, `69106`, `69108`, `69109`, `69111`, `69113`, `69115`, `69116`, `69118`, `69120`, `69121`, `69124`, `69125`, `69126`, `69127`, `69129`, `69131`, `69132`, `69134`, `69136`, `69137`, `69139`, `69141`, `69143`, `69144`, `69145`, `69146`, `69147`, `69149`, `69151`, `69152`, `69154`, `69156`, `69157`, `69160`, `69161`, `69162`, `69163`, `69164`, `69165`, `69166`, `69167`, `69169`, `69172`, `69174`, `69176`, `69178`, `69179`, `69181`, `69183`, `69184`, `69186`, `69187`, `69189`, `69191`, `69192`, `69194`, `69195`, `69197`, `69198`, `69200`, `69201`, `69203`, `69205`, `69207`, `69209`, `69211`, `69213`, `69215`, `69217`, `69219`, `69221`, `69223`, `69226`, `69229`, `69230`, `69232`, `69234`, `69236`, `69237`, `69240`, `69242`, `69243`, `69245`, `69246`, `69247`, `69248`, `69250`, `69252`, `69254`, `69257`, `69258`, `69259`, `69261`, `69262`, `69264`, `69266`, `69268`, `69270`, `69273`, `69275`, `69277`, `69279`, `69281`, `69283`, `69286`, `69288`, `69289`, `69290`, `69291`, `69293`, `69295`, `69297`, `69298`, `69304`, `69305`, `69308`, `69310`, `69312`, `69314`, `69318`, `69319`, `69320`, `69321`, `69323`, `69324`, `69326`, `69328`, `69330`, `69331`, `69333`, `69335`, `69336`, `69338`, `69341`, `69344`, `69346`, `69348`, `69351`, `69354`, `69357`, `69358`, `69359`, `69361`, `69363`, `69364`, `69366`, `69368`, `69370`, `69372`, `69373`, `69375`, `69377`, `69379`, `69381`, `69383`, `69385`, `69387`, `69388`, `69390`, `69392`, `69394`, `69396`, `69398`, `69399`, `69401`, `69403`, `69405`, `69406`, `69408`, `69410`, `69412`, `69413`, `69415`, `69416`, `69418`, `69419`, `69421`, `69423`, `69425`, `69427`, `69430`, `69431`, `69432`, `69433`, `69436`, `69437`, `69439`, `69440`, `69442`, `69444`, `69445`, `69447`, `69449`, `69451`, `69452`, `69454`, `69455`, `69456`, `69458`, `69459`, `69461`, `69463`, `69465`, `69466`, `69468`, `69469`, `69471`, `69472`, `69474`, `69478`, `69480`, `69481`, `69483`, `69484`, `69488`, `69489`, `69491`, `69493`, `69495`, `69497`, `69499`, `69500`, `69501`, `69502`, `69503`, `69505`, `69506`, `69508`, `69509`, `69510`, `69511`, `69513`, `69515`, `69517`, `69521`, `69523`, `69525`, `69527`, `69529`, `69530`, `69533`, `69535`, `69537`, `69539`, `69541`, `69543`, `69545`, `69547`, `69548`, `69551`, `69553`, `69556`, `69558`, `69560`, `69562`, `69564`, `69565`, `69566`, `69567`, `69569`, `69571`, `69574`, `69576`, `69578`, `69580`, `69582`, `69584`, `69586`, `69588`, `69590`, `69592`, `69594`, `69597`, `69599`, `69602`, `69604`, `69605`, `69607`, `69608`, `69613`, `69615`, `69617`, `69619`, `69621`, `69623`, `69625`, `69627`, `69630`, `69631`, `69632`, `69633`, `69635`, `69637`, `69639`, `69641`, `69643`, `69645`, `69647`, `69649`, `69651`, `69653`, `69654`, `69655`, `69657`, `69659`, `69661`, `69663`, `69665`, `69667`, `69669`, `69671`, `69673`, `69675`, `69676`, `69677`, `69678`, `69679`, `69683`, `69685`, `69688`, `69690`, `69692`, `69693`, `69695`, `69697`, `69699`, `69701`, `69703`, `69706`, `69708`, `69710`, `69711`, `69713`, `69714`, `69716`, `69718`, `69720`, `69721`, `69722`, `69724`, `69725`, `69727`, `69729`, `69731`, `69733`, `69734`, `69736`, `69738`, `69740`, `69742`, `69744`, `69746`, `69748`, `69750`, `69753`, `69756`, `69758`, `69759`, `69761`, `69763`, `69764`, `69765`, `69767`, `69769`, `69771`, `69773`, `69775`, `69777`, `69779`, `69780`, `69782`, `69784`, `69786`, `69787`, `69789`, `69791`, `69792`, `69794`, `69797`, `69799`, `69800`, `69802`, `69804`, `69805`, `69806`, `69808`, `69810`, `69811`, `69812`, `69814`, `69816`, `69818`, `69819`, `69821`, `69823`, `69824`, `69826`, `69828`, `69830`, `69831`, `69832`, `69835`, `69837`, `69839`, `69841`, `69842`, `69844`, `69845`, `69847`, `69849`, `69850`, `69852`, `69853`, `69854`, `69855`, `69857`, `69859`, `69860`, `69863`, `69865`, `69866`, `69868`, `69869`, `69870`, `69872`, `69874`, `69876`, `69877`, `69879`, `69882`, `69884`, `69888`, `69890`, `69893`, `69894`, `69896`, `69898`, `69900`, `69901`, `69902`, `69904`, `69906`, `69908`, `69910`, `69911`, `69912`, `69913`, `69914`, `69916`, `69918`, `69920`, `69922`, `69924`, `69926`, `69929`, `69931`, `69933`, `69935`, `69936`, `69938`, `69940`, `69941`, `69943`, `69945`, `69947`, `69949`, `69950`, `38693`, `69952`, `69953`, `69955`, `69956`, `69958`, `69960`, `69962`, `69964`, `69966`, `69968`, `69969`, `69970`, `69972`, `69973`, `69975`, `69977`, `69978`, `69980`, `69981`, `69983`, `69984`, `69986`, `69987`, `69988`, `69990`, `69992`, `69996`, `69998`, `70000`, `70001`, `70003`, `70005`, `70006`, `70007`, `70008`, `70010`, `70012`, `70014`, `70015`, `70019`, `70021`, `70022`, `70023`, `70025`, `70027`, `70029`, `70030`, `70032`, `70033`, `70035`, `70037`, `70039`, `70041`, `70043`, `70045`, `70047`, `70048`, `70050`, `70055`, `70056`, `70057`, `70061`, `70064`, `70066`, `70068`, `70070`, `70072`, `70073`, `70074`, `70075`, `70077`, `70079`, `70081`, `70082`, `70084`, `70086`, `70088`, `70090`, `70092`, `70093`, `70094`, `70096`, `70097`, `70099`, `70100`, `70102`, `70104`, `70106`, `70108`, `70110`, `70111`, `70113`, `70115`, `70117`, `70119`, `70122`, `70124`, `70126`, `70128`, `70130`, `70132`, `70134`, `70136`, `70138`, `70140`, `70142`, `70144`, `70146`, `70148`, `70150`, `70153`, `70154`, `70155`, `70157`, `70159`, `70161`, `70162`, `70164`, `70165`, `70167`, `70170`, `70172`, `70174`, `70175`, `70177`, `70178`, `70180`, `70181`, `70182`, `70184`, `70186`, `70187`, `70188`, `70190`, `70192`, `70193`, `70194`, `70195`, `70197`, `70198`, `70200`, `70202`, `70203`, `70204`, `70206`, `70208`, `70210`, `70212`, `70213`, `70215`, `70216`, `70217`, `70218`, `70220`, `70222`, `70223`, `70225`, `70228`, `70230`, `70231`, `70233`, `70235`, `70238`, `70239`, `70241`, `70246`, `70247`, `70249`, `70252`, `70254`, `70255`, `70257`, `70258`, `70260`, `70262`, `70263`, `70265`, `70267`, `70268`, `70270`, `70272`, `70274`, `70275`, `70277`, `70280`, `70282`, `70285`, `70286`, `70288`, `70290`, `70292`, `70295`, `70297`, `70299`, `70301`, `70303`, `70307`, `70308`, `70310`, `70312`, `70316`, `70318`, `70320`, `70322`, `70323`, `70325`, `70327`, `70329`, `70331`, `70336`, `70338`, `70341`, `70342`, `70343`, `70345`, `70347`, `70349`, `70351`, `70353`, `70355`, `70357`, `70359`, `70360`, `70362`, `70363`, `70364`, `70367`, `70370`, `70372`, `70374`, `70375`, `70377`, `70379`, `70381`, `70382`, `70384`, `70385`, `70387`, `70388`, `70390`, `70393`, `70394`, `70395`, `70396`, `70398`, `70400`, `70402`, `70404`, `70406`, `70408`, `70410`, `70411`, `70413`, `70415`, `70416`, `70418`, `70420`, `70422`, `70424`, `70426`, `70428`, `70430`, `70432`, `70434`, `70435`, `70437`, `70440`, `70441`, `70442`, `70443`, `70445`, `70446`, `70448`, `70450`, `70451`, `70452`, `70454`, `70455`, `70457`, `70459`, `70460`, `70462`, `70464`, `70467`, `70469`, `70471`, `70473`, `70475`, `70476`, `70478`, `70479`, `70481`, `70483`, `70486`, `70489`, `70491`, `70493`, `70494`, `70495`, `70496`, `70498`, `70499`, `70500`, `70501`, `70502`, `70504`, `70506`, `70508`, `70510`, `70512`, `70514`, `70516`, `70518`, `70520`, `70521`, `70523`, `70525`, `70526`, `70527`, `70529`, `70531`, `70532`, `70534`, `70536`, `70538`, `70542`, `70544`, `70546`, `70548`, `70552`, `70554`, `70556`, `70558`, `70559`, `70560`, `70562`, `70563`, `70564`, `70566`, `70568`, `70569`, `70570`, `70572`, `70573`, `70574`, `70576`, `70578`, `70579`, `70580`, `70582`, `70584`, `70586`, `70587`, `70589`, `70591`, `70593`, `70595`, `70597`, `70598`, `70599`, `70600`, `70602`, `70603`, `70604`, `70606`, `70608`, `70609`, `70611`, `70612`, `70614`, `70616`, `70617`, `70619`, `70621`, `70622`, `70624`, `70626`, `70629`, `70630`, `70631`, `70634`, `70636`, `70637`, `70638`, `70639`, `70640`, `70641`, `70642`, `70643`, `70644`, `70646`, `70647`, `70649`, `70650`, `70652`, `70653`, `70655`, `70657`, `70659`, `70661`, `70663`, `70665`, `70666`, `70667`, `70668`, `70670`, `70671`, `70674`, `70676`, `70677`, `70678`, `70681`, `70682`, `70687`, `70690`, `70692`, `70693`, `70694`, `70695`, `70697`, `70699`, `70701`, `70706`, `70708`, `70712`, `70714`, `70716`, `70718`, `70720`, `70721`, `70722`, `70723`, `70724`, `70725`, `70726`, `70728`, `70730`, `70732`, `70733`, `70734`, `70736`, `70737`, `70738`, `70740`, `70742`, `70744`, `70746`, `70747`, `70750`, `70752`, `70754`, `70756`, `70758`, `70759`, `70760`, `70762`, `70765`, `70766`, `70767`, `70768`, `70770`, `70772`, `70774`, `70775`, `70777`, `70779`, `70781`, `70782`, `70784`, `70785`, `70786`, `70790`, `70792`, `70794`, `70795`, `70797`, `70799`, `70802`, `70804`, `70806`, `70807`, `70810`, `70811`, `70812`, `70813`, `70815`, `70817`, `70818`, `70820`, `70822`, `70823`, `70825`, `70827`, `70828`, `70829`, `70832`, `70837`, `70839`, `70840`, `70842`, `70844`, `70846`, `70847`, `70849`, `70850`, `70852`, `70853`, `70854`, `70855`, `70857`, `70859`, `70860`, `70861`, `70863`, `70865`, `70866`, `70868`, `70869`, `70872`, `70873`, `70878`, `70879`, `70881`, `70882`, `70884`, `70886`, `70888`, `70890`, `70891`, `70892`, `70894`, `70898`, `70900`, `70902`, `70904`, `70906`, `70908`, `70910`, `70912`, `70914`, `70916`, `70917`, `70918`, `70919`, `70921`, `70923`, `70925`, `70926`, `70927`, `70929`, `70930`, `70931`, `70933`, `70934`, `70935`, `70937`, `70938`, `70939`, `70941`, `70942`, `70943`, `70945`, `70947`, `70948`, `70950`, `70951`, `70953`, `70954`, `70955`, `70956`, `70957`, `70959`, `70961`, `70962`, `70964`, `70965`, `70966`, `70968`, `70970`, `70973`, `70975`, `70979`, `70981`, `70983`, `70985`, `70987`, `70989`, `70990`, `70992`, `70994`, `70997`, `70999`, `71001`, `71003`, `71005`, `71006`, `71007`, `71009`, `71010`, `71012`, `71013`, `71014`, `71016`, `71018`, `71020`, `71022`, `71024`, `71025`, `71027`, `71028`, `71029`, `71031`, `71033`, `71034`, `71037`, `71038`, `71040`, `71043`, `71044`, `71046`, `71048`, `71050`, `71052`, `71055`, `71057`, `71058`, `71060`, `71062`, `71064`, `71069`, `71071`, `71073`, `71075`, `71076`, `71078`, `71080`, `71082`, `71084`, `71086`, `71088`, `71090`, `71091`, `71092`, `71093`, `71095`, `71096`, `71097`, `71099`, `71103`, `71105`, `71109`, `71110`, `71112`, `71113`, `71115`, `71117`, `71119`, `71120`, `71122`, `71124`, `71125`, `71127`, `71128`, `71130`, `71132`, `71135`, `71137`, `71139`, `71142`, `71143`, `71145`, `71147`, `71149`, `71150`, `71152`, `71153`, `71155`, `71157`, `71159`, `71162`, `71164`, `71165`, `71167`, `71168`, `71170`, `71171`, `71173`, `71174`, `71175`, `71176`, `71180`, `71182`, `71184`, `71186`, `71189`, `71191`, `71193`, `71195`, `71196`, `71198`, `71203`, `71204`, `71205`, `71207`, `71209`, `71211`, `71213`, `71216`, `71218`, `71220`, `71221`, `71223`, `71225`, `71226`, `71227`, `71229`, `71230`, `71231`, `71232`, `71235`, `71238`, `71241`, `71243`, `71244`, `71245`, `71247`, `71249`, `71250`, `71253`, `71254`, `71256`, `71258`, `71260`, `71262`, `71264`, `71266`, `71268`, `71270`, `71272`, `71274`, `71276`, `71277`, `71279`, `71281`, `71283`, `71285`, `71289`, `71291`, `71294`, `71298`, `71299`, `71300`, `71302`, `71303`, `71305`, `71306`, `71308`, `71310`, `71312`, `71314`, `71316`, `71318`, `71320`, `71322`, `71324`, `71326`, `71327`, `71329`, `71331`, `71332`, `71334`, `71335`, `71336`, `71337`, `71339`, `71340`, `71341`, `71343`, `71345`, `71347`, `71349`, `71351`, `71353`, `71355`, `71357`, `71359`, `71360`, `71362`, `71364`, `71366`, `71368`, `71370`, `71372`, `71374`, `71375`, `71376`, `71379`, `71380`, `71381`, `71382`, `71384`, `71386`, `71387`, `71388`, `71389`, `71391`, `71393`, `71395`, `71397`, `71399`, `71401`, `71402`, `71403`, `71406`, `71408`, `71410`, `71412`, `71413`, `71416`, `71417`, `71419`, `71421`, `71423`, `71425`, `71427`, `71429`, `71430`, `71432`, `71434`, `71436`, `71438`, `71440`, `71442`, `71444`, `71445`, `71447`, `71449`, `71451`, `71452`, `71453`, `71456`, `71458`, `71459`, `71461`, `71462`, `71464`, `71466`, `71468`, `71470`, `71472`, `71473`, `71475`, `71477`, `71478`, `71482`, `71484`, `71486`, `71488`, `71489`, `71491`, `71493`, `71495`, `71497`, `71499`, `71501`, `71503`, `71504`, `71505`, `71506`, `71507`, `71509`, `71510`, `71512`, `71515`, `71517`, `71518`, `71520`, `71522`, `71525`, `71527`, `71530`, `71531`, `71532`, `71534`, `71535`, `71537`, `71539`, `71541`, `71543`, `71544`, `71546`, `71549`, `71553`, `71557`, `71558`, `71560`, `71561`, `71562`, `71563`, `71567`, `71572`, `71573`, `71576`, `71577`, `71578`, `71580`, `71582`, `71583`, `71585`, `71587`, `71589`, `71591`, `71592`, `71593`, `71594`, `71598`, `71599`, `71601`, `71603`, `71604`, `71605`, `71607`, `71608`, `71610`, `71611`, `71612`, `71613`, `71615`, `71616`, `71618`, `71619`, `71621`, `71623`, `71624`, `71626`, `71628`, `71631`, `71632`, `71633`, `71635`, `71637`, `71639`, `71641`, `71642`, `71643`, `71644`, `71646`, `71647`, `71649`, `71651`, `71652`, `71654`, `71656`, `71658`, `71660`, `71662`, `71664`, `71666`, `71668`, `71669`, `71670`, `71671`, `71673`, `71677`, `71679`, `71681`, `71683`, `71685`, `71686`, `71688`, `71690`, `71692`, `71693`, `71695`, `71697`, `71701`, `71703`, `71705`, `71707`, `71708`, `71709`, `71711`, `71712`, `71716`, `71717`, `71718`, `71720`, `71721`, `71722`, `71724`, `71726`, `71728`, `71729`, `71730`, `71731`, `71732`, `71733`, `71734`, `71736`, `71739`, `71741`, `71745`, `71747`, `71749`, `71751`, `71755`, `71757`, `71759`, `71760`, `71761`, `71763`, `71765`, `71767`, `71769`, `71770`, `71771`, `71773`, `71775`, `71777`, `71778`, `71780`, `71781`, `71782`, `71783`, `71785`, `71787`, `71788`, `71789`, `71791`, `71793`, `71795`, `71797`, `71799`, `71800`, `71801`, `71803`, `71805`, `71806`, `71808`, `71810`, `71812`, `71813`, `71815`, `71818`, `71822`, `71824`, `71826`, `71828`, `71830`, `71833`, `71835`, `71837`, `71839`, `71841`, `71842`, `71844`, `71846`, `71847`, `71849`, `71851`, `71853`, `71855`, `71858`, `71860`, `71861`, `71862`, `71864`, `71867`, `71869`, `71871`, `71874`, `71875`, `71876`, `71877`, `71879`, `71881`, `71885`, `71887`, `71889`, `71891`, `71893`, `71895`, `71897`, `71899`, `71904`, `71906`, `71909`, `71914`, `71916`, `71918`, `71922`, `71924`, `71927`, `71928`, `71929`, `71930`, `71931`, `71932`, `71934`, `71936`, `71937`, `71939`, `71940`, `71941`, `71943`, `71945`, `71948`, `71950`, `71952`, `71953`, `71955`, `71956`, `71958`, `71962`, `71963`, `71965`, `71966`, `71968`, `71970`, `71972`, `71973`, `71975`, `71977`, `71980`, `71981`, `71983`, `71985`, `71987`, `71988`, `71989`, `71990`, `71991`, `71992`, `71993`, `71994`, `71995`, `71997`, `71999`, `72003`, `72004`, `72006`, `72009`, `72012`, `72016`, `72018`, `72020`, `72022`, `72024`, `72025`, `72026`, `72028`, `72029`, `72030`, `72032`, `72034`, `72036`, `72038`, `72039`, `72041`, `72043`, `72045`, `72049`, `72050`, `72052`, `72054`, `72056`, `72057`, `72059`, `72060`, `72062`, `72064`, `72066`, `72071`, `72072`, `72074`, `72076`, `72078`, `72080`, `72082`, `72083`, `72085`, `72087`, `72089`, `72093`, `72094`, `72095`, `72096`, `72098`, `72100`, `72102`, `72104`, `72106`, `72108`, `72109`, `72110`, `72111`, `72113`, `72115`, `72117`, `72119`, `72121`, `72123`, `72125`, `72126`, `72129`, `72130`, `72133`, `72135`, `72137`, `72139`, `72140`, `72142`, `72145`, `72147`, `72149`, `72151`, `72152`, `72153`, `72156`, `72157`, `72158`, `72162`, `72164`, `72165`, `72167`, `72169`, `72170`, `72172`, `72174`, `72175`, `72177`, `72181`, `72183`, `72185`, `72187`, `72190`, `72191`, `72193`, `72197`, `72198`, `72199`, `72200`, `72202`, `72204`, `72206`, `72208`, `72211`, `72213`, `72215`, `72216`, `72219`, `72220`, `72223`, `72225`, `72227`, `72228`, `72230`, `72231`, `72232`, `72233`, `72235`, `72237`, `72238`, `72240`, `72242`, `72244`, `72246`, `72247`, `72248`, `72250`, `72251`, `72252`, `72255`, `72257`, `72259`, `72260`, `72262`, `72263`, `72264`, `72266`, `72267`, `72269`, `72271`, `72273`, `72275`, `72276`, `72278`, `72279`, `72281`, `72282`, `72284`, `72286`, `72287`, `72289`, `72292`, `72293`, `72295`, `72296`, `72298`, `72300`, `72302`, `72304`, `72305`, `72307`, `72308`, `72310`, `72312`, `72314`, `72315`, `72317`, `72319`, `72320`, `72322`, `72325`, `72330`, `72332`, `72334`, `72336`, `72337`, `72338`, `72340`, `72341`, `72342`, `72344`, `72346`, `72348`, `72350`, `72351`, `72353`, `72356`, `72358`, `72360`, `72361`, `72362`, `72366`, `72369`, `72373`, `72375`, `72377`, `72379`, `72383`, `72386`, `72388`, `72390`, `72392`, `72394`, `72396`, `72397`, `72399`, `72401`, `72403`, `72404`, `72406`, `72407`, `72409`, `72411`, `72412`, `72413`, `72414`, `72415`, `72417`, `72419`, `72420`, `72421`, `72423`, `72424`, `72427`, `72429`, `72430`, `72432`, `72434`, `72438`, `72440`, `72442`, `72444`, `72445`, `72449`, `72450`, `72451`, `72452`, `72454`, `72455`, `72456`, `72458`, `72460`, `72462`, `72464`, `72466`, `72468`, `72470`, `72472`, `72474`, `72476`, `72478`, `72480`, `72481`, `72483`, `72485`, `72487`, `72488`, `72489`, `72491`, `72493`, `72495`, `72496`, `72498`, `72500`, `72502`, `72504`, `72506`, `72509`, `72511`, `72515`, `72517`, `72519`, `72521`, `72523`, `72525`, `72527`, `72528`, `72529`, `72531`, `72533`, `72535`, `72536`, `72537`, `72538`, `72539`, `72541`, `72544`, `72546`, `72548`, `72550`, `72551`, `72553`, `72554`, `72555`, `72557`, `72559`, `72561`, `72562`, `72566`, `72569`, `72571`, `72574`, `72576`, `72577`, `72579`, `72581`, `72582`, `72583`, `72584`, `72586`, `72587`, `72588`, `72590`, `72592`, `72594`, `72596`, `72597`, `72600`, `72602`, `72605`, `72606`, `72607`, `72609`, `72610`, `72612`, `72614`, `72616`, `72617`, `72618`, `72620`, `72622`, `72624`, `72626`, `72627`, `72629`, `72630`, `72632`, `72634`, `72636`, `72638`, `72640`, `72643`, `72644`, `72646`, `72648`, `72650`, `72652`, `72653`, `72654`, `72655`, `72658`, `72659`, `72661`, `72662`, `72663`, `72664`, `72665`, `72666`, `72667`, `72669`, `72671`, `72673`, `72674`, `72675`, `72676`, `72677`, `72678`, `72680`, `72681`, `72683`, `72685`, `72690`, `72692`, `72694`, `72696`, `72697`, `72699`, `72701`, `72702`, `72703`, `72705`, `72707`, `72709`, `72711`, `72712`, `72714`, `72715`, `72717`, `72719`, `72721`, `72724`, `72725`, `72728`, `72729`, `72732`, `72734`, `72735`, `72736`, `72738`, `72739`, `72741`, `72743`, `72745`, `72746`, `72747`, `72748`, `72749`, `72753`, `72754`, `72756`, `72758`, `72760`, `72761`, `72765`, `72766`, `72770`, `72772`, `72774`, `72776`, `72777`, `72779`, `72781`, `72782`, `72783`, `72785`, `72787`, `72788`, `72792`, `72794`, `72796`, `72797`, `72798`, `72800`, `72802`, `72804`, `72806`, `72807`, `72809`, `72811`, `72814`, `72816`, `72818`, `72820`, `72821`, `72823`, `72825`, `72827`, `72829`, `72830`, `72831`, `72833`, `72834`, `72835`, `72836`, `72838`, `72840`, `72842`, `72844`, `72846`, `72848`, `72849`, `72851`, `72852`, `72854`, `72856`, `72857`, `72859`, `72861`, `72863`, `72864`, `72865`, `72867`, `72869`, `72870`, `72873`, `72875`, `72877`, `72878`, `72880`, `72882`, `72884`, `72887`, `72889`, `72891`, `72893`, `72895`, `72897`, `72899`, `72901`, `72902`, `72903`, `72906`, `72908`, `72910`, `72912`, `72915`, `72917`, `72918`, `72919`, `72921`, `72922`, `72924`, `72926`, `72927`, `72928`, `72932`, `72934`, `72936`, `72938`, `72941`, `72943`, `72944`, `72946`, `72948`, `72949`, `72951`, `72952`, `72954`, `72955`, `72957`, `72960`, `72961`, `72963`, `72965`, `72967`, `72968`, `72969`, `72972`, `72974`, `72975`, `72977`, `72982`, `72984`, `72985`, `72987`, `72989`, `72993`, `72996`, `72998`, `73000`, `73003`, `73005`, `73006`, `73007`, `73009`, `73010`, `73012`, `73013`, `73015`, `73017`, `73021`, `73023`, `73025`, `73028`, `73030`, `73032`, `73035`, `73036`, `73038`, `73040`, `73042`, `73044`, `73045`, `73046`, `73048`, `73050`, `73052`, `73054`, `73057`, `73059`, `73060`, `73061`, `73063`, `73065`, `73067`, `73068`, `73070`, `73071`, `73072`, `73074`, `73076`, `73077`, `73079`, `73081`, `73082`, `73084`, `73086`, `73087`, `73090`, `73093`, `73095`, `73097`, `73098`, `73100`, `73102`, `73103`, `73105`, `73106`, `73108`, `73110`, `73112`, `73113`, `73115`, `73117`, `73118`, `73120`, `73122`, `73124`, `73126`, `73127`, `73129`, `73132`, `73133`, `73135`, `73136`, `73138`, `73139`, `73140`, `73142`, `73144`, `73146`, `73148`, `73150`, `73152`, `73154`, `73155`, `73156`, `73157`, `73159`, `73160`, `73161`, `73163`, `73165`, `73166`, `73168`, `73170`, `73172`, `73173`, `73174`, `73175`, `73177`, `73178`, `73179`, `73182`, `73184`, `73186`, `73187`, `73189`, `73191`, `73192`, `73193`, `73194`, `73195`, `73196`, `73198`, `73199`, `73201`, `73203`, `73206`, `73207`, `73209`, `73210`, `73212`, `73214`, `73216`, `73217`, `73219`, `73222`, `73223`, `73225`, `73229`, `73230`, `73232`, `73234`, `73236`, `73238`, `73240`, `73242`, `73244`, `73246`, `73248`, `73250`, `73251`, `73252`, `73254`, `73256`, `73258`, `73259`, `73261`, `73262`, `73263`, `73265`, `73267`, `73268`, `73269`, `73271`, `73273`, `73275`, `73276`, `73278`, `73280`, `73282`, `73283`, `73284`, `73285`, `73286`, `73287`, `73289`, `73290`, `73291`, `73293`, `73294`, `73296`, `73301`, `73303`, `73305`, `73307`, `73309`, `73310`, `73314`, `73316`, `73319`, `73321`, `73322`, `73325`, `73327`, `73329`, `73330`, `73331`, `73333`, `73335`, `73337`, `73338`, `73342`, `73344`, `73345`, `73346`, `73347`, `73349`, `73350`, `73351`, `73353`, `73357`, `73359`, `73361`, `73362`, `73364`, `73366`, `73367`, `73368`, `73370`, `73372`, `73374`, `73375`, `73376`, `73377`, `73379`, `73381`, `73383`, `73385`, `73386`, `73388`, `73390`, `73391`, `73393`, `73395`, `73398`, `73399`, `73400`, `73402`, `73403`, `73404`, `73406`, `73407`, `73411`, `73412`, `73414`, `73416`, `73418`, `73420`, `73421`, `73423`, `73425`, `73427`, `73429`, `73430`, `73432`, `73433`, `73435`, `73437`, `73438`, `73439`, `73441`, `73442`, `73443`, `73444`, `73446`, `73447`, `73448`, `73450`, `73452`, `73454`, `73457`, `73458`, `73460`, `73462`, `73464`, `73465`, `73467`, `73468`, `73469`, `73471`, `73472`, `73474`, `73475`, `73477`, `73480`, `73481`, `73483`, `73484`, `73486`, `73488`, `73490`, `73492`, `73494`, `73497`, `73499`, `73501`, `73503`, `73505`, `73506`, `73507`, `73508`, `73510`, `73512`, `73514`, `73516`, `73519`, `73521`, `73523`, `73526`, `73528`, `73530`, `73531`, `73533`, `73535`, `73536`, `73539`, `73540`, `73541`, `73543`, `73544`, `73546`, `73548`, `73549`, `73551`, `73553`, `73555`, `73557`, `73559`, `73561`, `73563`, `73565`, `73567`, `73573`, `28343`, `73574`, `73576`, `73578`, `73580`, `73582`, `73583`, `73584`, `73585`, `73587`, `73589`, `73591`, `73593`, `73595`, `73596`, `73600`, `73602`, `73604`, `73605`, `73606`, `73608`, `73610`, `73611`, `73613`, `73614`, `73616`, `73618`, `73619`, `73620`, `73622`, `73624`, `73626`, `73628`, `73630`, `73631`, `73633`, `73635`, `73636`, `73640`, `73642`, `73644`, `73645`, `73646`, `73647`, `73648`, `73649`, `73651`, `73652`, `73654`, `73656`, `73657`, `73659`, `73661`, `73664`, `73666`, `73667`, `73669`, `73671`, `73673`, `73674`, `73675`, `73679`, `73681`, `73682`, `73684`, `73685`, `73687`, `73689`, `73694`, `73696`, `73697`, `73699`, `73701`, `73702`, `73704`, `73705`, `73707`, `73709`, `73710`, `73713`, `73716`, `73718`, `73719`, `73720`, `73722`, `73723`, `73725`, `73727`, `73728`, `73732`, `73734`, `73736`, `73738`, `73740`, `73741`, `73743`, `73745`, `73746`, `73748`, `73749`, `73751`, `73752`, `73753`, `73757`, `73759`, `73760`, `73761`, `73763`, `73765`, `73766`, `73768`, `73769`, `73773`, `73775`, `73777`, `73778`, `73780`, `73782`, `73784`, `73786`, `73788`, `73789`, `73792`, `73795`, `73797`, `73799`, `73800`, `73801`, `73803`, `73805`, `73807`, `73809`, `73810`, `73812`, `73814`, `73817`, `73819`, `73820`, `73822`, `73824`, `73826`, `73828`, `73830`, `73832`, `73834`, `73836`, `73838`, `73840`, `73842`, `73844`, `73845`, `73847`, `73849`, `73850`, `73851`, `73852`, `73854`, `73857`, `73858`, `73859`, `73861`, `73863`, `73864`, `73865`, `73867`, `73869`, `73871`, `73873`, `73874`, `73875`, `73879`, `73882`, `73883`, `73885`, `73887`, `73889`, `73891`, `73893`, `73895`, `73897`, `73899`, `73900`, `73903`, `73904`, `73905`, `73907`, `73909`, `73910`, `73911`, `73913`, `73915`, `73916`, `73917`, `73921`, `73922`, `73924`, `73925`, `73927`, `73929`, `73931`, `73933`, `73935`, `73936`, `73938`, `73940`, `73941`, `73944`, `73945`, `73947`, `73948`, `73949`, `73951`, `73953`, `73955`, `73957`, `73959`, `73961`, `73963`, `73966`, `73967`, `73968`, `73972`, `73973`, `73975`, `73977`, `73978`, `73979`, `73981`, `73982`, `73984`, `73986`, `73988`, `73989`, `73991`, `73993`, `73996`, `73997`, `73998`, `73999`, `74002`, `74004`, `74006`, `74008`, `74010`, `74012`, `74014`, `74016`, `74017`, `74019`, `74021`, `74022`, `74023`, `74024`, `74025`, `74026`, `74027`, `74029`, `74030`, `74032`, `74034`, `74035`, `74036`, `74038`, `74040`, `74042`, `74044`, `74046`, `74048`, `74051`, `74053`, `74055`, `74057`, `74060`, `74062`, `74064`, `74066`, `74068`, `74069`, `74071`, `74073`, `74075`, `74077`, `74078`, `74080`, `74081`, `74082`, `74084`, `74086`, `74088`, `74090`, `74091`, `74092`, `74094`, `74096`, `74098`, `74100`, `74102`, `74103`, `74104`, `74106`, `74108`, `74109`, `74112`, `74114`, `74116`, `74117`, `74118`, `74121`, `74123`, `74124`, `74126`, `74128`, `74130`, `74132`, `74134`, `74136`, `74139`, `74140`, `74142`, `74143`, `74145`, `74147`, `74149`, `74150`, `74152`, `74155`, `74156`, `74158`, `74160`, `74162`, `74163`, `74164`, `74166`, `74169`, `74171`, `74173`, `74175`, `74177`, `74179`, `74180`, `74183`, `74185`, `74186`, `74187`, `74190`, `74192`, `74194`, `74197`, `74198`, `74200`, `74201`, `74203`, `74204`, `74205`, `74207`, `74209`, `74210`, `74212`, `74214`, `74216`, `74221`, `74223`, `74225`, `74226`, `74228`, `74230`, `74232`, `74233`, `74235`, `74238`, `74240`, `74242`, `74243`, `74245`, `74246`, `74248`, `74250`, `74251`, `74252`, `74253`, `74255`, `74257`, `74259`, `74261`, `74263`, `74265`, `74266`, `74267`, `74268`, `74270`, `74272`, `74273`, `74274`, `74276`, `74278`, `74279`, `74281`, `74283`, `74285`, `74287`, `74288`, `74290`, `74292`, `74294`, `74295`, `74297`, `74299`, `74300`, `74303`, `74304`, `74307`, `74308`, `74310`, `74312`, `74314`, `74315`, `74317`, `74319`, `74320`, `74322`, `74323`, `74324`, `74326`, `74328`, `74330`, `74333`, `74335`, `74336`, `74337`, `74339`, `74345`, `74347`, `74350`, `74353`, `74354`, `74355`, `74357`, `74359`, `74360`, `74362`, `74364`, `74365`, `74367`, `74369`, `74370`, `74371`, `74373`, `74375`, `74377`, `74379`, `74381`, `74385`, `74387`, `74388`, `74389`, `74391`, `74392`, `74395`, `74396`, `74397`, `74398`, `74400`, `74402`, `74404`, `74405`, `74406`, `74407`, `74409`, `74410`, `74412`, `74413`, `74416`, `74418`, `74420`, `74423`, `74425`, `74426`, `74431`, `74433`, `74434`, `74436`, `74437`, `74439`, `74440`, `74442`, `74444`, `74445`, `74446`, `74447`, `74449`, `74450`, `74452`, `74453`, `74454`, `74456`, `74458`, `74460`, `74462`, `74464`, `74466`, `74468`, `74470`, `74472`, `74474`, `74476`, `74478`, `74480`, `74484`, `74486`, `74489`, `74490`, `74491`, `74493`, `74495`, `74497`, `74499`, `74500`, `74501`, `74502`, `74504`, `74506`, `74509`, `74511`, `74513`, `74517`, `74518`, `74520`, `74521`, `74522`, `74524`, `74525`, `74528`, `74530`, `74533`, `74535`, `74537`, `74538`, `74540`, `74542`, `74543`, `74546`, `74548`, `74549`, `74552`, `74554`, `74556`, `74557`, `74558`, `74560`, `74561`, `74563`, `74564`, `74566`, `74568`, `74569`, `74570`, `74572`, `74573`, `74575`, `74577`, `74578`, `74580`, `74584`, `74586`, `74588`, `74589`, `74590`, `74594`, `74596`, `74597`, `74598`, `74600`, `74601`, `74603`, `74604`, `74605`, `74607`, `74608`, `74610`, `74612`, `74613`, `74615`, `74617`, `74618`, `74619`, `74621`, `74622`, `74624`, `74625`, `74627`, `74630`, `74632`, `74633`, `74634`, `74636`, `74638`, `74640`, `74642`, `74643`, `74645`, `74647`, `74649`, `74652`, `74655`, `74657`, `74659`, `74661`, `74664`, `74665`, `74666`, `74667`, `74669`, `74671`, `74673`, `74676`, `74677`, `74679`, `74680`, `74681`, `74683`, `74685`, `74687`, `74688`, `74689`, `74691`, `74693`, `74694`, `74695`, `74697`, `74699`, `74700`, `74702`, `74703`, `74705`, `74708`, `74710`, `74711`, `74713`, `74714`, `74716`, `74718`, `74721`, `74723`, `74725`, `74726`, `74730`, `74732`, `74734`, `74736`, `74738`, `74740`, `74742`, `74744`, `74746`, `74748`, `74751`, `74752`, `74754`, `74757`, `74758`, `74760`, `74762`, `74764`, `74766`, `74768`, `74770`, `74771`, `74773`, `74775`, `74778`, `74779`, `74780`, `74782`, `74783`, `74785`, `74786`, `74788`, `74790`, `74791`, `74793`, `74797`, `74798`, `74799`, `74801`, `74803`, `74804`, `74806`, `74807`, `74809`, `74811`, `74813`, `74814`, `74816`, `74818`, `74820`, `74822`, `74824`, `74825`, `74827`, `74828`, `74831`, `74833`, `74834`, `74836`, `74838`, `74839`, `74841`, `74842`, `19402`, `74843`, `74845`, `74846`, `74847`, `74848`, `74850`, `74852`, `74853`, `74855`, `74857`, `74859`, `74861`, `74862`, `74863`, `74865`, `74866`, `74867`, `74868`, `74870`, `74872`, `74874`, `74877`, `74879`, `74881`, `74883`, `74884`, `74885`, `74886`, `74888`, `74890`, `74892`, `74894`, `74895`, `74896`, `74897`, `74898`, `74899`, `74903`, `74905`, `74906`, `74908`, `74909`, `74910`, `74911`, `74913`, `74915`, `74917`, `74919`, `74921`, `74923`, `74924`, `74926`, `74928`, `74930`, `74932`, `74934`, `74936`, `74937`, `74939`, `74941`, `74943`, `74945`, `74948`, `74949`, `74950`, `74952`, `74954`, `74956`, `74958`, `74961`, `74962`, `74963`, `74965`, `74967`, `74969`, `74970`, `74971`, `74973`, `74975`, `74977`, `74978`, `74979`, `74980`, `74982`, `74983`, `74986`, `74987`, `74989`, `74991`, `74993`, `74995`, `74998`, `75000`, `75002`, `75005`, `75006`, `75008`, `75009`, `75011`, `75012`, `75014`, `75016`, `75017`, `75019`, `75021`, `75023`, `75024`, `75025`, `75026`, `75028`, `75030`, `75032`, `75035`, `75036`, `75037`, `75040`, `75042`, `75044`, `75046`, `75048`, `75049`, `75051`, `75053`, `75054`, `75055`, `75056`, `75058`, `75060`, `75062`, `75063`, `75065`, `75066`, `75068`, `75070`, `75072`, `75074`, `75076`, `75078`, `75079`, `75080`, `75082`, `75084`, `75087`, `75089`, `75091`, `75094`, `75095`, `75096`, `75098`, `75100`, `75101`, `75102`, `75104`, `75106`, `75108`, `75109`, `75111`, `75113`, `75115`, `75117`, `75119`, `75120`, `75123`, `75125`, `75127`, `75128`, `75129`, `75130`, `75131`, `75133`, `75135`, `75137`, `75140`, `75142`, `75143`, `75145`, `75146`, `75148`, `75150`, `75152`, `75155`, `75158`, `75160`, `75161`, `75163`, `75165`, `75167`, `75169`, `75171`, `75172`, `75173`, `75176`, `75177`, `75179`, `75181`, `75183`, `75184`, `75185`, `75186`, `75188`, `75190`, `75192`, `75195`, `75196`, `75198`, `75200`, `75202`, `75204`, `75205`, `75207`, `75209`, `75211`, `75212`, `75213`, `75215`, `75216`, `75218`, `75220`, `75221`, `75223`, `75226`, `75229`, `75231`, `75233`, `75234`, `75235`, `75237`, `75239`, `75240`, `75242`, `75243`, `75244`, `75246`, `75248`, `75250`, `75252`, `75253`, `75255`, `75257`, `75258`, `75259`, `75261`, `75263`, `75267`, `75269`, `75271`, `75273`, `75275`, `75276`, `75277`, `75279`, `75280`, `75282`, `75284`, `75286`, `75287`, `75289`, `75291`, `75292`, `75293`, `75294`, `75296`, `75298`, `75299`, `75300`, `75301`, `75303`, `75305`, `75306`, `75308`, `75310`, `75312`, `75314`, `75315`, `75316`, `75319`, `75321`, `75323`, `75325`, `75326`, `75328`, `75329`, `75331`, `75332`, `75333`, `75335`, `75336`, `75338`, `75339`, `75341`, `75343`, `75344`, `75345`, `75346`, `75349`, `75351`, `75353`, `75354`, `75356`, `75358`, `75359`, `75360`, `75361`, `75363`, `75364`, `75365`, `75366`, `75367`, `75369`, `75371`, `75373`, `75374`, `75376`, `75377`, `75379`, `75381`, `75383`, `75385`, `75386`, `75390`, `75391`, `75392`, `75394`, `75395`, `75396`, `75398`, `75399`, `75401`, `75404`, `75405`, `75407`, `75409`, `75410`, `75412`, `75414`, `75417`, `75419`, `75421`, `75424`, `75425`, `75426`, `75429`, `75433`, `75434`, `75435`, `75437`, `75439`, `75442`, `75443`, `75445`, `75447`, `75449`, `75451`, `75452`, `75456`, `75458`, `75461`, `75463`, `75464`, `75467`, `75469`, `75470`, `75471`, `75473`, `75476`, `75477`, `75480`, `75481`, `75483`, `75485`, `75486`, `75488`, `75489`, `75491`, `75493`, `75494`, `75495`, `75497`, `75498`, `75499`, `75500`, `75502`, `75505`, `75507`, `75509`, `75510`, `75512`, `75513`, `75516`, `75517`, `75518`, `75520`, `75524`, `75526`, `75528`, `75530`, `75532`, `75533`, `75535`, `75536`, `75538`, `75540`, `75543`, `75545`, `75546`, `75548`, `75550`, `75552`, `75554`, `75555`, `75557`, `75559`, `75561`, `75564`, `75566`, `75567`, `75568`, `75570`, `75573`, `75575`, `75576`, `75578`, `75579`, `75581`, `75583`, `75585`, `75586`, `75588`, `75591`, `75592`, `75593`, `75594`, `75595`, `75598`, `75600`, `75602`, `75604`, `75606`, `75607`, `75609`, `75611`, `75616`, `75618`, `75620`, `75622`, `75623`, `75625`, `75627`, `75628`, `75630`, `75632`, `75634`, `75636`, `75642`, `75644`, `75646`, `75647`, `75649`, `75651`, `75652`, `75654`, `75655`, `75657`, `75658`, `75660`, `75662`, `75664`, `75666`, `75668`, `75670`, `75672`, `75675`, `75676`, `75677`, `75679`, `75681`, `75683`, `75684`, `75685`, `75686`, `75690`, `75692`, `75694`, `75696`, `75698`, `75700`, `75702`, `75704`, `75706`, `75708`, `75710`, `75712`, `75713`, `75715`, `75717`, `75718`, `75720`, `75722`, `75723`, `75727`, `75729`, `75730`, `75732`, `75734`, `75737`, `75738`, `75740`, `75742`, `75744`, `75745`, `75747`, `75748`, `75750`, `75751`, `75753`, `75755`, `75758`, `75759`, `75760`, `75761`, `75763`, `75765`, `75766`, `75767`, `75769`, `75770`, `75772`, `75774`, `75775`, `75776`, `75778`, `75779`, `75780`, `75782`, `75783`, `75784`, `75786`, `75788`, `75789`, `75790`, `75792`, `75794`, `75795`, `75797`, `75799`, `75802`, `75804`, `75805`, `75807`, `75809`, `75811`, `75814`, `75816`, `75818`, `75820`, `75822`, `75825`, `75827`, `75829`, `75830`, `75832`, `75834`, `75837`, `75838`, `75840`, `75842`, `75844`, `75845`, `75846`, `75848`, `75850`, `75852`, `75853`, `75854`, `75856`, `75857`, `75858`, `75860`, `75862`, `75865`, `75867`, `75870`, `75871`, `75872`, `75874`, `75876`, `75877`, `75879`, `75880`, `75882`, `75884`, `75886`, `75887`, `75889`, `75890`, `75892`, `75893`, `75894`, `75898`, `75900`, `75902`, `75904`, `75905`, `75906`, `75908`, `75910`, `75912`, `75914`, `75915`, `75917`, `75918`, `75920`, `75926`, `75927`, `75929`, `75930`, `75932`, `75934`, `75935`, `75936`, `75938`, `75939`, `75941`, `75942`, `75944`, `75946`, `75948`, `75949`, `75951`, `75953`, `75954`, `75956`, `75957`, `75958`, `75959`, `75960`, `75961`, `75963`, `75965`, `75967`, `75968`, `75969`, `75971`, `75972`, `75973`, `75974`, `75975`, `75976`, `75978`, `75980`, `75981`, `75983`, `75984`, `75985`, `75987`, `75992`, `75995`, `75996`, `75998`, `75999`, `76001`, `76004`, `76006`, `76008`, `76010`, `76012`, `76014`, `76016`, `76018`, `76019`, `76021`, `76023`, `76024`, `76026`, `76028`, `76029`, `76030`, `76032`, `76034`, `76037`, `76039`, `76041`, `76043`, `76046`, `76047`, `76049`, `76051`, `76052`, `76054`, `76056`, `76058`, `76060`, `76062`, `76064`, `76066`, `76067`, `76069`, `76070`, `76072`, `76074`, `76075`, `76077`, `76079`, `76081`, `76083`, `76084`, `76086`, `76088`, `76090`, `76091`, `76092`, `76095`, `76097`, `76099`, `76101`, `76103`, `76106`, `76108`, `76110`, `76112`, `76113`, `76115`, `76116`, `76119`, `76121`, `76122`, `76124`, `76126`, `76128`, `76130`, `76132`, `76134`, `76135`, `76138`, `76140`, `76141`, `76142`, `76143`, `76145`, `76146`, `76147`, `76151`, `76152`, `76153`, `76155`, `76156`, `76157`, `76158`, `76159`, `76161`, `76162`, `76165`, `76166`, `76167`, `76169`, `76171`, `76172`, `76174`, `76176`, `76177`, `76179`, `76181`, `76184`, `76185`, `76186`, `76187`, `76188`, `76190`, `76192`, `76194`, `76195`, `76197`, `76199`, `76200`, `76201`, `76203`, `76205`, `76206`, `76210`, `76212`, `76213`, `76215`, `76216`, `76217`, `76219`, `76221`, `76222`, `76224`, `76227`, `76229`, `76231`, `76233`, `76235`, `76236`, `76238`, `76240`, `76242`, `76244`, `76245`, `76247`, `76251`, `76252`, `76254`, `76256`, `76259`, `76261`, `76263`, `76265`, `76266`, `76268`, `76272`, `76278`, `76280`, `76282`, `76284`, `76287`, `76289`, `76291`, `76294`, `76296`, `76298`, `76300`, `76301`, `76302`, `76303`, `76305`, `76306`, `76307`, `76309`, `76310`, `76312`, `76316`, `76317`, `76319`, `76321`, `76323`, `76325`, `76327`, `76331`, `76332`, `76334`, `76335`, `76337`, `76338`, `76339`, `76340`, `76342`, `76344`, `76346`, `76347`, `76349`, `76350`, `76353`, `76354`, `76355`, `76356`, `76357`, `76359`, `76361`, `76363`, `76365`, `76366`, `76368`, `76370`, `76372`, `76374`, `76377`, `76379`, `76380`, `76382`, `76384`, `76386`, `76388`, `76390`, `76392`, `76394`, `76396`, `76397`, `76398`, `76400`, `76402`, `76404`, `76405`, `76407`, `76408`, `76409`, `76411`, `76413`, `76414`, `76416`, `76419`, `76421`, `76422`, `76425`, `76427`, `76428`, `76432`, `76433`, `76434`, `76435`, `76436`, `76438`, `76440`, `76441`, `76443`, `76444`, `76445`, `76446`, `76448`, `76449`, `76451`, `76454`, `76457`, `76459`, `76461`, `76463`, `76465`, `76466`, `76467`, `76469`, `76471`, `76472`, `76473`, `76476`, `76478`, `76480`, `76481`, `76483`, `76484`, `76486`, `76488`, `76489`, `76491`, `76493`, `76494`, `76496`, `76498`, `76500`, `76501`, `76503`, `76504`, `76506`, `76507`, `76508`, `76510`, `76512`, `76514`, `76516`, `76517`, `76518`, `76520`, `76522`, `76524`, `76526`, `76529`, `76531`, `76532`, `76534`, `76535`, `76536`, `76538`, `76539`, `76540`, `76542`, `76544`, `76546`, `76548`, `76550`, `76552`, `76554`, `76555`, `76557`, `76559`, `76560`, `76564`, `76566`, `76567`, `76568`, `76569`, `76571`, `76573`, `76574`, `76575`, `76576`, `76577`, `76579`, `76581`, `76584`, `76585`, `76587`, `76589`, `76591`, `76593`, `76594`, `76595`, `76597`, `76598`, `76600`, `76602`, `76604`, `76606`, `76607`, `76609`, `76611`, `76613`, `76615`, `76617`, `76619`, `76621`, `76624`, `76626`, `76627`, `76629`, `76630`, `76631`, `76632`, `76633`, `76634`, `76635`, `76636`, `76638`, `76640`, `76641`, `76643`, `76645`, `76647`, `76649`, `76651`, `76653`, `76655`, `76657`, `76659`, `76661`, `76663`, `76665`, `76667`, `76669`, `76671`, `76674`, `76676`, `76678`, `76680`, `76681`, `76683`, `76685`, `76687`, `76688`, `76690`, `76692`, `76693`, `76695`, `76697`, `76698`, `76700`, `76702`, `76704`, `76705`, `76706`, `76707`, `76709`, `76710`, `76712`, `76713`, `76715`, `76717`, `76718`, `76720`, `76721`, `76725`, `76728`, `76729`, `76731`, `76732`, `76734`, `76736`, `76737`, `76739`, `76741`, `76743`, `76747`, `76749`, `76751`, `76752`, `76754`, `76756`, `76758`, `76759`, `76761`, `76763`, `76764`, `76765`, `76767`, `76768`, `76770`, `76772`, `76774`, `76775`, `76776`, `76778`, `76780`, `76782`, `76784`, `76786`, `76788`, `76789`, `76791`, `76792`, `76794`, `76795`, `76798`, `76799`, `76801`, `76804`, `76805`, `76807`, `76809`, `76811`, `76815`, `76816`, `76820`, `76822`, `76824`, `76825`, `76826`, `76828`, `76830`, `76832`, `76834`, `76836`, `76837`, `76838`, `76841`, `76843`, `76845`, `76848`, `76851`, `76853`, `76855`, `76857`, `76859`, `76861`, `76862`, `76864`, `76866`, `76867`, `76869`, `76871`, `76873`, `76875`, `76876`, `76878`, `76879`, `76880`, `76881`, `76883`, `76885`, `76887`, `76890`, `76891`, `76894`, `76896`, `76898`, `76900`, `76902`, `76904`, `76905`, `76907`, `76908`, `76909`, `76911`, `76913`, `76915`, `76917`, `76918`, `76919`, `76920`, `76921`, `76925`, `76927`, `76929`, `76930`, `76932`, `76934`, `76935`, `76937`, `76938`, `76940`, `76942`, `76943`, `76944`, `76946`, `76947`, `76949`, `76950`, `76951`, `76953`, `76954`, `76955`, `76956`, `76958`, `76959`, `76960`, `76961`, `76962`, `76963`, `76965`, `76966`, `76968`, `76970`, `76971`, `76974`, `76976`, `76977`, `76979`, `76981`, `76983`, `76985`, `76987`, `76989`, `76991`, `76992`, `76994`, `76996`, `76998`, `77000`, `77003`, `77005`, `77007`, `77009`, `77013`, `77015`, `77017`, `77019`, `77023`, `77024`, `77026`, `77027`, `77029`, `77030`, `77032`, `77033`, `77035`, `77036`, `77038`, `77040`, `77042`, `77044`, `77046`, `77048`, `77050`, `77052`, `77054`, `77055`, `77056`, `77058`, `77059`, `77061`, `77062`, `77064`, `77065`, `77066`, `77067`, `77070`, `77072`, `77074`, `77076`, `77077`, `77079`, `77082`, `77084`, `77086`, `77088`, `77090`, `77091`, `77092`, `77094`, `77095`, `77096`, `77097`, `77099`, `77100`, `77102`, `77106`, `77108`, `77110`, `77112`, `77113`, `77114`, `77116`, `77117`, `77119`, `77121`, `77123`, `77124`, `77125`, `77126`, `77127`, `77128`, `77130`, `77132`, `77134`, `77135`, `77137`, `77139`, `77141`, `77142`, `77143`, `77144`, `77146`, `77148`, `77150`, `77152`, `77153`, `77155`, `77157`, `77159`, `77160`, `77161`, `77163`, `77165`, `77166`, `77167`, `77169`, `77171`, `77172`, `77174`, `77175`, `77176`, `77178`, `77180`, `77182`, `77184`, `77185`, `77187`, `77189`, `77191`, `77193`, `77195`, `77198`, `77199`, `77200`, `77203`, `77204`, `77206`, `77208`, `77209`, `77210`, `77211`, `77213`, `77215`, `77217`, `77218`, `77219`, `77221`, `77222`, `77223`, `77224`, `77226`, `77227`, `77229`, `77230`, `77232`, `77234`, `77235`, `77238`, `77240`, `77244`, `77246`, `77248`, `77250`, `77251`, `77253`, `77255`, `77258`, `77260`, `77261`, `77264`, `77266`, `77268`, `77269`, `77270`, `77271`, `77273`, `77275`, `77276`, `77278`, `77281`, `77283`, `77285`, `77286`, `77288`, `77290`, `77292`, `77294`, `77295`, `77297`, `77299`, `77301`, `77303`, `77304`, `77305`, `77306`, `77308`, `77309`, `77310`, `77313`, `77315`, `77316`, `77317`, `77319`, `77324`, `77326`, `77329`, `77331`, `77332`, `77334`, `77336`, `77337`, `77339`, `77341`, `77343`, `77345`, `77347`, `77349`, `77351`, `77354`, `77355`, `77356`, `77358`, `77360`, `77362`, `77363`, `77365`, `77366`, `77368`, `77370`, `77372`, `77374`, `77375`, `77376`, `77378`, `77380`, `77381`, `77383`, `77384`, `77386`, `77387`, `77389`, `77390`, `77391`, `77392`, `77393`, `77394`, `77396`, `77398`, `77400`, `77403`, `77406`, `77407`, `77408`, `77410`, `77411`, `77412`, `77413`, `77415`, `77417`, `77419`, `77421`, `77423`, `77424`, `77427`, `77430`, `77432`, `77434`, `77435`, `77436`, `77438`, `77440`, `77441`, `77444`, `77448`, `77450`, `77452`, `77454`, `77456`, `77457`, `77459`, `77461`, `77463`, `77464`, `77466`, `77468`, `77470`, `77472`, `77474`, `77476`, `77478`, `77480`, `77482`, `77485`, `77487`, `77489`, `77491`, `77492`, `77495`, `77497`, `77498`, `77499`, `77500`, `77502`, `77504`, `77505`, `77507`, `77509`, `77510`, `77512`, `77514`, `77515`, `77516`, `77518`, `77520`, `77521`, `77523`, `77525`, `77527`, `77528`, `77529`, `77531`, `77533`, `77535`, `77536`, `77537`, `77538`, `77540`, `77542`, `77544`, `77546`, `77548`, `77550`, `77552`, `77555`, `77556`, `77558`, `77559`, `77560`, `77561`, `77562`, `77564`, `77566`, `77569`, `77571`, `77574`, `77576`, `77578`, `77580`, `77582`, `77584`, `77585`, `77586`, `77588`, `77590`, `77592`, `77593`, `77595`, `77596`, `77597`, `77601`, `77603`, `77604`, `77606`, `77607`, `77609`, `77611`, `77613`, `77615`, `77617`, `77618`, `77619`, `77622`, `77623`, `77625`, `77627`, `77628`, `77630`, `77631`, `77633`, `77635`, `77639`, `77641`, `77643`, `77645`, `77646`, `77648`, `77649`, `77651`, `77653`, `77654`, `77656`, `77658`, `77660`, `77661`, `77663`, `77665`, `77668`, `77669`, `77671`, `77672`, `77674`, `77675`, `77677`, `77679`, `77680`, `77682`, `77684`, `77685`, `77687`, `77689`, `77691`, `77692`, `77694`, `77696`, `77698`, `77701`, `77704`, `77706`, `77708`, `77710`, `77713`, `77715`, `77716`, `77717`, `77719`, `77720`, `77722`, `77724`, `77726`, `77728`, `77730`, `77731`, `77732`, `77734`, `77735`, `77737`, `77739`, `77741`, `77743`, `77744`, `77746`, `77747`, `77749`, `77751`, `77752`, `77754`, `77756`, `77758`, `77760`, `77763`, `77765`, `77769`, `77770`, `77772`, `77773`, `77775`, `77777`, `77779`, `77781`, `77782`, `77784`, `77786`, `77787`, `77789`, `77791`, `77792`, `77793`, `77795`, `77798`, `77800`, `77802`, `77804`, `77806`, `77808`, `77810`, `77811`, `77812`, `77813`, `77817`, `77818`, `77820`, `77823`, `77824`, `77827`, `77828`, `77829`, `77831`, `77832`, `77834`, `77836`, `77837`, `77839`, `77840`, `77842`, `77845`, `77846`, `77848`, `77849`, `77851`, `77853`, `77855`, `77857`, `77859`, `77861`, `77863`, `77865`, `77867`, `77868`, `77870`, `77871`, `77872`, `77873`, `77874`, `77876`, `77878`, `77879`, `77880`, `77882`, `77883`, `77885`, `77886`, `77888`, `77890`, `77892`, `77893`, `77895`, `77897`, `77899`, `77900`, `77902`, `77904`, `77905`, `77907`, `77909`, `77910`, `77912`, `77914`, `77916`, `77917`, `77918`, `77919`, `77922`, `77924`, `77926`, `77928`, `77930`, `77934`, `77936`, `77938`, `77940`, `77941`, `77943`, `77945`, `77947`, `77949`, `77951`, `77952`, `77954`, `77956`, `77958`, `77959`, `77960`, `77962`, `77963`, `77965`, `77966`, `77968`, `77970`, `77972`, `77974`, `77976`, `77977`, `77979`, `77981`, `77982`, `77984`, `1041`, `77986`, `77988`, `77990`, `77993`, `77995`, `77997`, `77999`, `78001`, `78002`, `78003`, `78006`, `78008`, `78010`, `78012`, `78014`, `78017`, `78019`, `78020`, `78022`, `78023`, `78024`, `78025`, `78027`, `78029`, `78031`, `78033`, `78034`, `78036`, `78038`, `78040`, `78042`, `78043`, `78044`, `78045`, `78050`, `78052`, `78054`, `78056`, `78059`, `78061`, `78063`, `78064`, `78066`, `78068`, `78070`, `78071`, `78073`, `78075`, `78077`, `78078`, `78079`, `78083`, `78087`, `78091`, `78093`, `78096`, `78097`, `78099`, `78101`, `78103`, `78105`, `78106`, `78107`, `78109`, `78110`, `78111`, `78112`, `78113`, `78114`, `78115`, `78117`, `78118`, `78120`, `78122`, `78124`, `78126`, `78127`, `78129`, `78130`, `78131`, `78132`, `78134`, `78136`, `78138`, `78140`, `78141`, `78143`, `78145`, `78146`, `78147`, `78148`, `78150`, `78151`, `78153`, `78156`, `78158`, `78159`, `78160`, `78162`, `78163`, `78166`, `78168`, `78170`, `78172`, `78173`, `78175`, `78176`, `78177`, `78179`, `78181`, `78182`, `78184`, `78185`, `78186`, `78188`, `78190`, `78191`, `78192`, `78193`, `78194`, `78196`, `78198`, `78200`, `78202`, `78204`, `78205`, `78207`, `78208`, `78209`, `78210`, `78213`, `78215`, `78217`, `78219`, `78221`, `78223`, `78224`, `78226`, `78228`, `78229`, `78230`, `78231`, `78233`, `78234`, `78235`, `78236`, `78238`, `78240`, `78241`, `78243`, `78245`, `78247`, `78249`, `78250`, `78252`, `78253`, `78255`, `78257`, `78258`, `78259`, `78260`, `78261`, `78263`, `78264`, `78266`, `78267`, `78268`, `78269`, `78270`, `78273`, `78275`, `78277`, `78279`, `78281`, `78282`, `78284`, `78285`, `78286`, `78288`, `78289`, `78291`, `78292`, `78294`, `78296`, `78297`, `78299`, `78301`, `78303`, `78305`, `78309`, `78311`, `78312`, `78314`, `78316`, `78317`, `78319`, `78320`, `78322`, `78324`, `78326`, `78327`, `78328`, `78329`, `78330`, `78331`, `78332`, `78334`, `78336`, `78338`, `78339`, `78342`, `78343`, `78345`, `78347`, `78351`, `78353`, `78355`, `78357`, `78359`, `78361`, `78363`, `78367`, `78369`, `78371`, `78373`, `78375`, `78377`, `78379`, `78381`, `78383`, `78385`, `78387`, `78389`, `78390`, `78392`, `78393`, `78395`, `78397`, `78399`, `78400`, `78402`, `78405`, `78407`, `78408`, `78410`, `78412`, `78413`, `78414`, `78417`, `78419`, `78421`, `78423`, `78424`, `78426`, `78427`, `78429`, `78431`, `78432`, `78433`, `78435`, `78437`, `78438`, `78439`, `78440`, `78442`, `78444`, `78446`, `78448`, `78449`, `78450`, `78452`, `78454`, `78455`, `78456`, `78457`, `78459`, `78461`, `78463`, `78465`, `78466`, `78468`, `78471`, `78473`, `78475`, `78477`, `78481`, `78483`, `78484`, `78485`, `78487`, `78489`, `78491`, `78492`, `78494`, `78495`, `78496`, `78497`, `78499`, `78501`, `78502`, `78504`, `78506`, `78507`, `78508`, `78510`, `78511`, `78513`, `78514`, `78519`, `78521`, `78523`, `78525`, `78527`, `78529`, `78530`, `78532`, `78534`, `78535`, `78537`, `78539`, `78540`, `78541`, `78543`, `78545`, `78547`, `78549`, `78550`, `78551`, `78553`, `78555`, `78557`, `78559`, `78561`, `78563`, `78565`, `78568`, `78569`, `78572`, `78574`, `78576`, `78578`, `78579`, `78581`, `78582`, `78583`, `78584`, `78586`, `78587`, `78589`, `78591`, `78592`, `78593`, `78594`, `78595`, `78596`, `78598`, `78600`, `78601`, `78603`, `78605`, `78606`, `78609`, `78612`, `78614`, `78615`, `78617`, `78619`, `78621`, `78623`, `78624`, `78626`, `78627`, `78628`, `78629`, `78630`, `78631`, `78632`, `78634`, `78636`, `78638`, `78639`, `78641`, `78645`, `78647`, `78649`, `78651`, `78652`, `78653`, `78655`, `78656`, `78658`, `78660`, `78662`, `78665`, `78666`, `78668`, `78669`, `78672`, `78674`, `78675`, `78676`, `78677`, `78679`, `78680`, `78682`, `78684`, `78685`, `78687`, `78688`, `78689`, `78691`, `78692`, `78694`, `78696`, `78697`, `78698`, `78700`, `78702`, `78703`, `78705`, `78707`, `78709`, `78711`, `78712`, `78714`, `78716`, `78717`, `78718`, `78719`, `78720`, `78721`, `78723`, `78725`, `78727`, `78728`, `78729`, `78731`, `78733`, `78735`, `78736`, `78737`, `78739`, `78740`, `78742`, `78744`, `78746`, `78747`, `78748`, `78749`, `78753`, `78755`, `78756`, `78757`, `78758`, `78759`, `78760`, `78762`, `78763`, `78765`, `78767`, `78769`, `78770`, `78771`, `78775`, `78776`, `78777`, `78778`, `78780`, `78782`, `78784`, `78786`, `78787`, `78789`, `78791`, `78793`, `78794`, `78796`, `78797`, `78798`, `78799`, `78800`, `78802`, `78803`, `78805`, `78806`, `78810`, `78812`, `78815`, `78817`, `78818`, `78819`, `78820`, `78823`, `78826`, `78827`, `78828`, `78830`, `78833`, `78835`, `78837`, `78839`, `78841`, `78842`, `78843`, `78844`, `78845`, `78847`, `78848`, `78850`, `78852`, `78854`, `78855`, `78857`, `78860`, `78862`, `78863`, `78865`, `78867`, `78869`, `78870`, `78872`, `78873`, `78875`, `78876`, `78877`, `78879`, `78881`, `78882`, `78883`, `78885`, `78887`, `78889`, `78892`, `78895`, `78897`, `78900`, `78902`, `78904`, `78906`, `78907`, `78909`, `78910`, `78911`, `78915`, `78917`, `78919`, `78921`, `78923`, `78925`, `78927`, `78929`, `78931`, `78935`, `78937`, `78938`, `78939`, `78941`, `78943`, `78945`, `78947`, `78949`, `78950`, `78952`, `78954`, `78956`, `78957`, `78959`, `78961`, `78963`, `78964`, `78966`, `78968`, `78973`, `78975`, `78976`, `78978`, `78980`, `78982`, `78984`, `78986`, `78988`, `78991`, `78992`, `78994`, `78996`, `78998`, `78999`, `79000`, `79002`, `79004`, `79006`, `79008`, `79010`, `79012`, `79014`, `79016`, `79018`, `79021`, `79023`, `79025`, `79027`, `79029`, `79030`, `79032`, `79033`, `79035`, `79037`, `79038`, `79040`, `79042`, `79044`, `79046`, `79047`, `79049`, `79051`, `79053`, `79055`, `79057`, `79058`, `79060`, `79061`, `79063`, `79066`, `79067`, `79069`, `79070`, `79072`, `79073`, `79074`, `79076`, `79077`, `79079`, `79083`, `79084`, `79087`, `79088`, `79090`, `79091`, `79092`, `79094`, `79096`, `79097`, `79099`, `79101`, `79103`, `79105`, `79107`, `79109`, `79110`, `79112`, `79114`, `79115`, `79116`, `79117`, `79118`, `79120`, `79121`, `79123`, `79124`, `79126`, `79128`, `79130`, `79133`, `79135`, `79139`, `79140`, `79142`, `79143`, `79146`, `79148`, `79149`, `79151`, `79153`, `79155`, `79158`, `79161`, `79163`, `79164`, `79165`, `79167`, `79169`, `79171`, `79173`, `79175`, `79177`, `79179`, `79181`, `79183`, `79184`, `79186`, `79187`, `79189`, `79192`, `79194`, `79196`, `79198`, `79200`, `79202`, `79204`, `79207`, `79209`, `79211`, `79213`, `79215`, `79217`, `79219`, `79221`, `79223`, `79224`, `79226`, `79228`, `79230`, `79232`, `79234`, `79236`, `79238`, `79240`, `79242`, `79244`, `79247`, `79249`, `79250`, `79252`, `79254`, `79255`, `79256`, `79258`, `79259`, `79260`, `79262`, `79267`, `79269`, `79271`, `79273`, `79275`, `79276`, `79277`, `79278`, `79280`, `79282`, `79284`, `79288`, `79289`, `79291`, `79293`, `79294`, `79295`, `79297`, `79299`, `79300`, `79301`, `79303`, `79304`, `79306`, `79308`, `79309`, `79311`, `79313`, `79314`, `79315`, `79318`, `79320`, `79321`, `79323`, `79325`, `79326`, `79329`, `79332`, `79333`, `79335`, `79336`, `79337`, `79339`, `79341`, `79342`, `79345`, `79347`, `79349`, `79351`, `79352`, `79354`, `79356`, `79361`, `79363`, `79365`, `79367`, `79369`, `79371`, `79373`, `79374`, `79376`, `79378`, `79380`, `79381`, `79382`, `79384`, `79386`, `79388`, `79390`, `79392`, `79394`, `79395`, `79397`, `79399`, `79401`, `79404`, `79406`, `79408`, `79409`, `79411`, `79413`, `79414`, `79415`, `79417`, `79419`, `79421`, `79423`, `79425`, `79427`, `79428`, `79429`, `79431`, `79434`, `79436`, `79438`, `79439`, `79441`, `79443`, `79444`, `79446`, `79448`, `79449`, `79451`, `79453`, `79455`, `79457`, `79459`, `79461`, `79463`, `79465`, `79466`, `79467`, `79468`, `79470`, `79474`, `79477`, `79479`, `79481`, `79484`, `79486`, `79487`, `79488`, `79489`, `79490`, `79491`, `79492`, `79494`, `79496`, `79498`, `79499`, `79501`, `79502`, `79504`, `79506`, `79507`, `79508`, `79509`, `79511`, `79513`, `79515`, `79517`, `79518`, `79521`, `79523`, `79525`, `79527`, `79529`, `79530`, `79533`, `79535`, `79536`, `79538`, `79539`, `79541`, `79542`, `79544`, `79548`, `79550`, `79552`, `79553`, `79554`, `79555`, `79557`, `79558`, `79560`, `79561`, `79563`, `79564`, `79565`, `79566`, `79567`, `79569`, `79571`, `79573`, `79574`, `79576`, `79578`, `79580`, `79581`, `79583`, `79584`, `79585`, `79587`, `79589`, `79590`, `79594`, `79595`, `79597`, `79599`, `79600`, `79602`, `79603`, `79605`, `79606`, `79608`, `79610`, `79612`, `79613`, `79614`, `79615`, `79616`, `79619`, `79621`, `79623`, `79625`, `79627`, `79630`, `79632`, `79634`, `70207`, `79636`, `79638`, `79642`, `79644`, `79646`, `79647`, `79649`, `79651`, `79654`, `79656`, `79658`, `79661`, `79663`, `79665`, `79667`, `79669`, `79671`, `79673`, `79674`, `79676`, `79678`, `79679`, `79680`, `79681`, `79683`, `79686`, `79687`, `79688`, `79689`, `79690`, `79691`, `79693`, `79695`, `79697`, `79699`, `79700`, `79701`, `79702`, `79703`, `79704`, `79706`, `79707`, `79708`, `79712`, `79714`, `79715`, `79716`, `79717`, `79719`, `79721`, `79723`, `79725`, `79727`, `79729`, `79730`, `79731`, `79732`, `79733`, `79734`, `79735`, `79737`, `79738`, `79740`, `79742`, `79743`, `79746`, `79747`, `79748`, `79749`, `79750`, `79751`, `79755`, `79757`, `79758`, `79759`, `79761`, `79765`, `79767`, `79770`, `79772`, `79774`, `79776`, `79777`, `79779`, `79781`, `79783`, `79785`, `79788`, `79789`, `79791`, `79793`, `79794`, `79796`, `79798`, `79800`, `79802`, `79804`, `79805`, `79807`, `79808`, `79809`, `79810`, `79811`, `79813`, `79817`, `79819`, `79821`, `79823`, `79824`, `79825`, `79826`, `79828`, `79830`, `79832`, `79834`, `79836`, `79838`, `79839`, `79841`, `79843`, `79846`, `79847`, `79849`, `79851`, `79853`, `79854`, `79856`, `79859`, `79865`, `79867`, `79868`, `79869`, `79870`, `79872`, `79874`, `79875`, `79876`, `79878`, `79879`, `79881`, `79882`, `79884`, `79886`, `79889`, `79890`, `79891`, `79892`, `79894`, `79896`, `79897`, `79898`, `79900`, `79902`, `79907`, `79909`, `79911`, `79913`, `79915`, `79917`, `79918`, `79919`, `79921`, `79923`, `79925`, `79927`, `79929`, `79931`, `79933`, `79934`, `79936`, `79938`, `79940`, `79942`, `79944`, `79946`, `79948`, `79950`, `79952`, `79954`, `79956`, `79958`, `79960`, `79962`, `79964`, `79965`, `79967`, `79970`, `79972`, `79974`, `79978`, `79980`, `79982`, `79983`, `79985`, `79988`, `79989`, `79990`, `79992`, `79995`, `79997`, `79999`, `80001`, `80003`, `80005`, `80009`, `80011`, `80014`, `80019`, `80022`, `80024`, `80025`, `80028`, `80030`, `80031`, `80032`, `80033`, `80035`, `80039`, `80041`, `80043`, `80045`, `80046`, `80049`, `80052`, `80054`, `80056`, `80058`, `80060`, `80062`, `80064`, `80066`, `80068`, `80070`, `80071`, `80072`, `80073`, `80074`, `80077`, `80079`, `80081`, `80083`, `80085`, `80086`, `80087`, `80089`, `80091`, `80094`, `80096`, `80098`, `80099`, `80100`, `80102`, `80104`, `80106`, `80108`, `80110`, `80112`, `80114`, `80116`, `80117`, `80118`, `80119`, `80121`, `80123`, `80125`, `80127`, `80129`, `80131`, `80133`, `80135`, `80136`, `80137`, `80140`, `80142`, `80143`, `80145`, `80147`, `80149`, `80151`, `80152`, `80154`, `80155`, `80157`, `80158`, `80160`, `80161`, `80163`, `80165`, `80166`, `80167`, `80168`, `80170`, `80172`, `80175`, `80176`, `80178`, `80180`, `80182`, `80184`, `80186`, `80188`, `80190`, `80192`, `80194`, `80196`, `80197`, `80199`, `80201`, `80203`, `80204`, `80206`, `80207`, `80208`, `80210`, `80212`, `80213`, `80215`, `80216`, `80218`, `80219`, `80221`, `80223`, `80224`, `80225`, `80227`, `80228`, `80230`, `80232`, `80235`, `80238`, `80242`, `80244`, `80246`, `80248`, `80250`, `80252`, `80254`, `80256`, `80258`, `80259`, `80261`, `80264`, `80266`, `80268`, `80270`, `80271`, `80272`, `80274`, `80276`, `80279`, `80281`, `80283`, `80284`, `80286`, `80287`, `80289`, `80291`, `80293`, `80294`, `80296`, `80298`, `80300`, `80301`, `80303`, `80305`, `80307`, `80309`, `80311`, `80313`, `80314`, `80316`, `80317`, `80319`, `80321`, `80323`, `80324`, `80327`, `80328`, `80330`, `80332`, `80334`, `80336`, `80337`, `80339`, `80340`, `80343`, `80345`, `80347`, `80349`, `80351`, `80353`, `80355`, `80359`, `80361`, `80363`, `80365`, `80367`, `80369`, `80371`, `80373`, `80375`, `80376`, `80378`, `80379`, `80380`, `80382`, `80384`, `80386`, `80387`, `80388`, `80390`, `80391`, `80392`, `80394`, `80396`, `80398`, `80400`, `80402`, `80404`, `80406`, `80408`, `80410`, `80411`, `80414`, `80416`, `80418`, `80419`, `80420`, `80422`, `80424`, `80426`, `80428`, `80429`, `80431`, `80433`, `80435`, `80437`, `80439`, `80441`, `80442`, `80444`, `80446`, `80449`, `80450`, `80452`, `80454`, `80456`, `80458`, `80460`, `80461`, `80462`, `80464`, `80466`, `80468`, `80470`, `80471`, `80473`, `80475`, `80478`, `80480`, `80483`, `80485`, `80487`, `80489`, `80490`, `80494`, `80496`, `80498`, `80500`, `80501`, `80502`, `80504`, `80505`, `80507`, `80510`, `80511`, `80513`, `80515`, `80516`, `80518`, `80520`, `80522`, `80524`, `80526`, `80528`, `80529`, `80531`, `80533`, `80534`, `80535`, `80538`, `80540`, `80542`, `80544`, `80546`, `80548`, `80550`, `80551`, `80553`, `80554`, `80556`, `80558`, `80559`, `80561`, `80563`, `80564`, `80566`, `80568`, `80570`, `80572`, `80573`, `80574`, `80576`, `80578`, `80580`, `80582`, `80584`, `80586`, `80588`, `80589`, `80593`, `80594`, `80596`, `80597`, `80598`, `80600`, `80602`, `80603`, `80605`, `80606`, `80607`, `80609`, `80610`, `80612`, `80614`, `80620`, `80623`, `80626`, `80628`, `80629`, `80631`, `80633`, `80635`, `80637`, `80638`, `80640`, `80642`, `80643`, `80645`, `80647`, `80649`, `80651`, `80653`, `80655`, `80656`, `80658`, `80659`, `80661`, `80663`, `80666`, `80669`, `80671`, `80673`, `80675`, `80677`, `80682`, `80683`, `80685`, `80687`, `80689`, `80691`, `80693`, `80695`, `80696`, `80698`, `80699`, `80701`, `80703`, `80705`, `80707`, `80709`, `80710`, `80711`, `80712`, `80713`, `80717`, `80719`, `80721`, `80722`, `80723`, `80725`, `80727`, `80730`, `80732`, `80734`, `80736`, `80739`, `80741`, `80743`, `80744`, `80746`, `80747`, `80748`, `80750`, `80752`, `80754`, `80756`, `80757`, `80759`, `80761`, `80762`, `80763`, `80765`, `80766`, `80768`, `80770`, `80772`, `80774`, `80776`, `80778`, `80780`, `80782`, `80784`, `80786`, `80788`, `80790`, `80792`, `80793`, `80795`, `80797`, `80799`, `80800`, `80801`, `80803`, `80805`, `80807`, `80808`, `80810`, `80812`, `80814`, `80815`, `80817`, `80819`, `80821`, `80825`, `80827`, `80828`, `80829`, `80830`, `80832`, `80834`, `80835`, `80836`, `80838`, `80839`, `80840`, `80842`, `80843`, `80845`, `80847`, `80848`, `80850`, `80852`, `80854`, `80856`, `80858`, `80860`, `80862`, `80863`, `80864`, `80866`, `80868`, `80870`, `80873`, `80875`, `80876`, `80877`, `80878`, `80879`, `80881`, `80883`, `80885`, `80886`, `80888`, `80892`, `80893`, `80896`, `80897`, `80899`, `80901`, `80902`, `80903`, `80905`, `80908`, `80911`, `80913`, `80914`, `80918`, `80919`, `80920`, `80922`, `80923`, `80924`, `80925`, `80927`, `80929`, `80931`, `80932`, `80933`, `80935`, `80937`, `80939`, `80940`, `80942`, `80944`, `80945`, `80947`, `80948`, `80950`, `80952`, `80954`, `80956`, `80958`, `80959`, `80961`, `80962`, `80964`, `80967`, `80969`, `80972`, `80974`, `80976`, `80978`, `80980`, `80981`, `80982`, `80984`, `80986`, `80988`, `80990`, `80992`, `80994`, `80995`, `80997`, `80999`, `81001`, `81003`, `81005`, `81007`, `81009`, `81014`, `81016`, `81017`, `81019`, `81020`, `81021`, `81023`, `81025`, `81029`, `81031`, `81033`, `81035`, `81036`, `81038`, `81040`, `81042`, `81045`, `81046`, `81047`, `81048`, `81050`, `81052`, `81053`, `81056`, `81058`, `81060`, `81061`, `81063`, `81064`, `81066`, `81068`, `81070`, `81072`, `81075`, `81076`, `81078`, `81080`, `81081`, `81083`, `81085`, `81087`, `81089`, `81091`, `81092`, `81093`, `81097`, `81101`, `81104`, `81106`, `81108`, `81110`, `81112`, `81113`, `81114`, `81116`, `81118`, `81120`, `81122`, `81124`, `81126`, `81128`, `81130`, `81132`, `81134`, `81136`, `81138`, `81140`, `81142`, `81144`, `81146`, `81148`, `81150`, `81151`, `81153`, `81156`, `81158`, `81160`, `81162`, `81164`, `81166`, `81167`, `81168`, `81170`, `81172`, `81173`, `81175`, `81176`, `81178`, `81180`, `81182`, `81183`, `81184`, `81185`, `81187`, `81189`, `81191`, `81193`, `81195`, `81196`, `81197`, `81199`, `81202`, `81204`, `81206`, `81208`, `81209`, `81211`, `81213`, `81214`, `81216`, `81221`, `81223`, `81224`, `81226`, `81228`, `81230`, `81231`, `81233`, `81235`, `81236`, `81239`, `81241`, `81243`, `81245`, `81247`, `81249`, `81250`, `81251`, `81254`, `81256`, `81259`, `81261`, `81263`, `81265`, `81269`, `81271`, `81272`, `81274`, `81276`, `81278`, `81279`, `81281`, `81282`, `81284`, `81286`, `81288`, `81290`, `81292`, `81294`, `81296`, `81299`, `81300`, `81302`, `81304`, `81305`, `81307`, `81309`, `81311`, `81313`, `81314`, `81315`, `81319`, `81321`, `81323`, `81325`, `81327`, `81329`, `81330`, `81332`, `81334`, `81336`, `81337`, `81339`, `81341`, `81343`, `81344`, `81346`, `81347`, `81348`, `81349`, `81351`, `81353`, `81355`, `81356`, `81358`, `81360`, `81361`, `81362`, `81364`, `81366`, `81368`, `81369`, `81371`, `81373`, `81375`, `81377`, `81378`, `81379`, `81381`, `81382`, `81384`, `81386`, `81387`, `81390`, `81391`, `81392`, `81393`, `81395`, `81396`, `81398`, `81399`, `81400`, `81402`, `81404`, `81406`, `81407`, `81409`, `81411`, `81413`, `81414`, `81417`, `81419`, `81420`, `81421`, `81423`, `81424`, `81426`, `81428`, `81429`, `81431`, `81432`, `81434`, `81436`, `81437`, `81439`, `81441`, `81442`, `81444`, `81446`, `81447`, `81448`, `81452`, `81453`, `81455`, `81457`, `81459`, `81460`, `81462`, `81464`, `81465`, `81467`, `81469`, `81471`, `81473`, `81475`, `81478`, `81480`, `81481`, `81483`, `81484`, `81485`, `81487`, `81489`, `81490`, `81492`, `81493`, `81494`, `81495`, `81497`, `81499`, `81501`, `81503`, `81505`, `81507`, `81509`, `81511`, `81513`, `81515`, `81516`, `81517`, `81519`, `81521`, `81523`, `81525`, `81528`, `81530`, `81532`, `81534`, `81536`, `81537`, `81539`, `81543`, `81545`, `81546`, `81548`, `81550`, `81552`, `81554`, `81555`, `81557`, `81559`, `81560`, `81565`, `81566`, `81567`, `81569`, `81570`, `81572`, `81574`, `81576`, `81577`, `81580`, `81582`, `81583`, `81584`, `81585`, `81586`, `81587`, `81589`, `81591`, `81593`, `81596`, `81597`, `81598`, `81600`, `81601`, `81604`, `81606`, `81611`, `81613`, `81614`, `81615`, `81616`, `81618`, `81621`, `81622`, `81625`, `81626`, `81628`, `81630`, `81632`, `81633`, `81635`, `81637`, `81640`, `81642`, `81643`, `81644`, `81646`, `81648`, `81649`, `81650`, `81652`, `81656`, `81658`, `81659`, `81660`, `81661`, `81663`, `81665`, `81666`, `81668`, `81670`, `81672`, `81674`, `81676`, `81678`, `81680`, `81681`, `81682`, `81684`, `81687`, `81689`, `81692`, `81694`, `81696`, `81697`, `81698`, `81699`, `81701`, `81704`, `81705`, `81706`, `81707`, `81708`, `81710`, `81711`, `81712`, `81713`, `81714`, `81716`, `81718`, `81720`, `81722`, `81723`, `81725`, `81726`, `81728`, `81730`, `81732`, `81733`, `81734`, `81737`, `81739`, `81741`, `81743`, `81745`, `81748`, `81750`, `81751`, `81753`, `81754`, `81756`, `81758`, `81760`, `81762`, `81764`, `81766`, `81767`, `81769`, `81771`, `81773`, `81774`, `81776`, `81778`, `81779`, `81783`, `81785`, `81787`, `81790`, `81793`, `81795`, `81797`, `81798`, `81800`, `81802`, `81804`, `81805`, `81806`, `81808`, `81810`, `81811`, `81812`, `81813`, `81814`, `81816`, `81818`, `81822`, `81824`, `81825`, `81827`, `81829`, `81830`, `81831`, `81832`, `81833`, `81835`, `81836`, `81838`, `81839`, `81840`, `81844`, `81846`, `81848`, `81850`, `81852`, `81853`, `81855`, `81856`, `81858`, `81860`, `81862`, `81864`, `81865`, `81867`, `81869`, `81871`, `81873`, `81874`, `81877`, `81878`, `81880`, `81881`, `81883`, `81885`, `81887`, `81888`, `81889`, `81891`, `81893`, `81895`, `81897`, `81898`, `81900`, `81902`, `81903`, `81905`, `81906`, `81908`, `81912`, `81917`, `81920`, `81922`, `81924`, `81926`, `81927`, `81929`, `81930`, `81931`, `81932`, `81933`, `81935`, `81937`, `81939`, `81940`, `81941`, `81942`, `81944`, `81946`, `81948`, `81950`, `81952`, `81954`, `81955`, `81957`, `81958`, `81960`, `81962`, `81963`, `81965`, `81967`, `81970`, `81971`, `81973`, `81974`, `81975`, `81976`, `81978`, `81979`, `81981`, `81983`, `81984`, `81987`, `81988`, `81990`, `81992`, `81995`, `81997`, `81999`, `82002`, `82004`, `82005`, `82007`, `82009`, `82011`, `82012`, `82014`, `82015`, `82016`, `82018`, `82023`, `82024`, `82025`, `82027`, `82029`, `82031`, `82033`, `82035`, `82038`, `82040`, `82042`, `82044`, `82046`, `82048`, `82049`, `82050`, `82051`, `82052`, `82054`, `82056`, `82057`, `82059`, `82060`, `82061`, `82062`, `82063`, `82064`, `82066`, `82068`, `82069`, `82071`, `82072`, `82073`, `82075`, `82077`, `82079`, `82081`, `82082`, `82084`, `82086`, `82087`, `82089`, `82092`, `82094`, `82096`, `82098`, `82100`, `82103`, `82105`, `82107`, `82108`, `82110`, `82113`, `82114`, `82116`, `82117`, `82119`, `82120`, `82122`, `82123`, `82124`, `82125`, `82127`, `82129`, `82130`, `82131`, `82133`, `82138`, `82140`, `82141`, `82144`, `82146`, `82147`, `82149`, `82153`, `82155`, `82157`, `82158`, `82159`, `82160`, `82162`, `82164`, `82165`, `82167`, `82169`, `82170`, `82172`, `82175`, `82176`, `82178`, `82179`, `82181`, `82182`, `82185`, `82187`, `82188`, `82190`, `82192`, `82194`, `82195`, `82197`, `82199`, `82201`, `82203`, `82205`, `82207`, `82208`, `82210`, `82212`, `82214`, `82219`, `82220`, `82221`, `82223`, `82224`, `82225`, `82227`, `82228`, `82229`, `82230`, `82232`, `82233`, `82234`, `82235`, `82237`, `82238`, `82240`, `82242`, `82244`, `82246`, `82248`, `82250`, `82252`, `82254`, `82255`, `82257`, `82259`, `82261`, `82263`, `82264`, `82266`, `82267`, `82268`, `47405`, `82270`, `82272`, `82276`, `82277`, `82280`, `82281`, `82284`, `82285`, `82287`, `82288`, `82290`, `82292`, `82294`, `82296`, `82298`, `82299`, `82300`, `82302`, `82303`, `82304`, `82306`, `82307`, `82308`, `82310`, `82312`, `82313`, `82315`, `82316`, `82317`, `82319`, `82321`, `82323`, `82325`, `82327`, `82328`, `82330`, `82332`, `82333`, `82335`, `82336`, `82338`, `82339`, `82341`, `82342`, `82344`, `82346`, `82347`, `82349`, `82351`, `82353`, `82355`, `82356`, `82358`, `82359`, `82360`, `82362`, `82363`, `82364`, `82365`, `82367`, `82368`, `82370`, `82372`, `82373`, `82375`, `82377`, `82379`, `82381`, `82383`, `82384`, `82386`, `82387`, `82389`, `82391`, `82392`, `82394`, `82396`, `82397`, `82400`, `82402`, `82403`, `82405`, `82407`, `82409`, `82410`, `82412`, `82414`, `82417`, `82419`, `82420`, `82422`, `82424`, `82426`, `82427`, `82430`, `82433`, `82434`, `82435`, `82437`, `82439`, `82440`, `82442`, `82444`, `82445`, `82446`, `82448`, `82452`, `82453`, `82454`, `82456`, `82458`, `82461`, `82463`, `82464`, `82465`, `82467`, `82469`, `82471`, `82473`, `82475`, `82476`, `82478`, `82479`, `82483`, `82485`, `82486`, `82487`, `251`, `82489`, `82491`, `82492`, `82494`, `82495`, `82497`, `82499`, `82501`, `82503`, `82505`, `82507`, `82509`, `82510`, `82511`, `82512`, `82514`, `82515`, `82517`, `82519`, `82521`, `82523`, `82526`, `82528`, `82529`, `82530`, `82532`, `82536`, `82540`, `82542`, `82543`, `82546`, `82548`, `82550`, `82552`, `82554`, `82556`, `82558`, `82560`, `82561`, `82563`, `82564`, `82566`, `82568`, `82570`, `82572`, `82573`, `82575`, `82577`, `82579`, `82580`, `82582`, `82584`, `82586`, `82589`, `82592`, `82593`, `82595`, `82598`, `82600`, `82602`, `82603`, `82604`, `82606`, `82607`, `82609`, `82611`, `82612`, `82614`, `82615`, `82617`, `82618`, `82619`, `82621`, `82623`, `82624`, `82626`, `82628`, `82630`, `82632`, `82634`, `82636`, `82637`, `82639`, `82641`, `82642`, `82644`, `82646`, `82650`, `82654`, `82656`, `82657`, `82659`, `82661`, `82663`, `82664`, `82665`, `82667`, `82669`, `82671`, `82673`, `82675`, `82676`, `82678`, `82679`, `82681`, `82683`, `82684`, `82685`, `82688`, `82690`, `82692`, `82694`, `82695`, `82697`, `82700`, `82701`, `82703`, `82704`, `82706`, `82708`, `82710`, `82711`, `82712`, `82714`, `82716`, `82718`, `82719`, `82720`, `82722`, `82723`, `82724`, `82725`, `82727`, `82729`, `82731`, `82732`, `82734`, `82736`, `82737`, `82739`, `82741`, `82743`, `82744`, `82745`, `82746`, `82748`, `82751`, `82753`, `82754`, `82756`, `82758`, `82760`, `82762`, `82764`, `82766`, `82768`, `82769`, `82770`, `82772`, `82774`, `82776`, `82778`, `82780`, `82782`, `82783`, `82784`, `82787`, `82789`, `82790`, `82792`, `82793`, `82795`, `82797`, `82798`, `82800`, `82802`, `82804`, `82806`, `82808`, `82810`, `82812`, `82814`, `82816`, `82817`, `82818`, `82820`, `82821`, `82823`, `82824`, `82827`, `851`, `82828`, `82829`, `82830`, `82832`, `82834`, `82837`, `82838`, `82840`, `82843`, `82844`, `82845`, `82847`, `82848`, `82850`, `82852`, `82854`, `82855`, `82856`, `82858`, `82860`, `82862`, `82864`, `82865`, `82867`, `82870`, `82871`, `82877`, `82879`, `82880`, `82882`, `82885`, `82887`, `82891`, `82893`, `82896`, `82898`, `82901`, `82903`, `82906`, `82908`, `82910`, `82912`, `82914`, `82915`, `82916`, `82917`, `82918`, `82919`, `82921`, `82923`, `82925`, `82927`, `82929`, `82931`, `82933`, `82934`, `82936`, `82937`, `82938`, `82940`, `82941`, `82942`, `82944`, `82948`, `82949`, `82952`, `82953`, `82955`, `82956`, `82957`, `82959`, `82961`, `82963`, `82964`, `82965`, `82966`, `82968`, `82969`, `82970`, `82971`, `82972`, `82974`, `82975`, `82976`, `82977`, `82980`, `82982`, `82983`, `82985`, `82987`, `82989`, `82990`, `82991`, `82992`, `82994`, `82995`, `82996`, `82997`, `82999`, `83003`, `83004`, `83006`, `83008`, `83009`, `83010`, `83012`, `83013`, `83015`, `83016`, `83019`, `83022`, `83023`, `83025`, `83027`, `83029`, `83031`, `83033`, `83034`, `83036`, `83038`, `83040`, `83042`, `83046`, `83048`, `83050`, `83052`, `83054`, `83057`, `83058`, `83061`, `83062`, `83064`, `83065`, `83066`, `83067`, `83069`, `83070`, `83072`, `83073`, `83075`, `83077`, `83078`, `83080`, `83082`, `83084`, `83085`, `83086`, `83088`, `83089`, `83091`, `83092`, `83093`, `83094`, `83095`, `83097`, `83098`, `83100`, `83102`, `83103`, `83104`, `83107`, `83109`, `83110`, `83111`, `83112`, `83113`, `83115`, `83117`, `83119`, `83121`, `83122`, `83124`, `83126`, `83128`, `83130`, `83131`, `83133`, `83134`, `83137`, `83138`, `83139`, `83141`, `83142`, `83144`, `83148`, `83150`, `83152`, `83153`, `83155`, `83157`, `83159`, `83162`, `83163`, `83165`, `83167`, `83168`, `83170`, `83171`, `83173`, `83174`, `83175`, `83176`, `83178`, `83180`, `83183`, `83185`, `83188`, `83190`, `83192`, `83193`, `83195`, `83196`, `83198`, `83200`, `83201`, `83203`, `83204`, `83207`, `83208`, `83209`, `83211`, `83213`, `83215`, `83216`, `83218`, `83220`, `83221`, `83223`, `83225`, `83226`, `83228`, `83229`, `83230`, `83232`, `83233`, `83234`, `83235`, `83237`, `83238`, `83239`, `83241`, `83242`, `83244`, `83245`, `83247`, `83249`, `83251`, `83253`, `83255`, `83257`, `83258`, `83260`, `83262`, `83263`, `83265`, `83267`, `83269`, `83270`, `83272`, `83274`, `83276`, `83278`, `83280`, `83281`, `83283`, `83285`, `83287`, `83288`, `83292`, `83293`, `83296`, `83298`, `83300`, `83303`, `83304`, `83306`, `83307`, `83308`, `83310`, `83311`, `83312`, `83314`, `83316`, `83317`, `83318`, `83319`, `83321`, `83324`, `83326`, `83327`, `83328`, `83329`, `83331`, `83333`, `83335`, `83336`, `83338`, `83342`, `83344`, `83346`, `83348`, `83350`, `83352`, `83354`, `83355`, `83358`, `83361`, `83362`, `83363`, `83364`, `83367`, `83369`, `83371`, `83373`, `83378`, `83380`, `83382`, `83383`, `83384`, `83387`, `83389`, `83391`, `83394`, `83396`, `83399`, `83400`, `83401`, `83403`, `83405`, `83407`, `83409`, `83411`, `83413`, `83415`, `83417`, `83418`, `83420`, `83422`, `83424`, `83426`, `83428`, `83430`, `83431`, `83434`, `83436`, `83438`, `83439`, `83441`, `83443`, `83445`, `83446`, `83448`, `83449`, `83451`, `83453`, `83454`, `83458`, `83462`, `83464`, `83465`, `83466`, `83467`, `83469`, `83471`, `83472`, `83473`, `83475`, `83477`, `83479`, `83480`, `83482`, `83483`, `83485`, `83487`, `83489`, `83491`, `83492`, `83495`, `83497`, `83499`, `83501`, `83502`, `83504`, `83506`, `83508`, `83510`, `83512`, `83514`, `83516`, `83517`, `83519`, `83520`, `83521`, `83523`, `83525`, `83527`, `83529`, `83531`, `83533`, `83534`, `83535`, `83537`, `83540`, `83541`, `83543`, `83544`, `83547`, `83548`, `83549`, `83551`, `83554`, `83557`, `83559`, `83560`, `83561`, `83563`, `83565`, `83567`, `83569`, `83571`, `83572`, `83574`, `83576`, `83577`, `83579`, `83581`, `83583`, `83586`, `83588`, `83589`, `83591`, `83593`, `83595`, `83597`, `83598`, `83600`, `83602`, `83604`, `83605`, `83606`, `83609`, `83611`, `83612`, `83613`, `83615`, `83617`, `83618`, `83620`, `83622`, `83624`, `83626`, `83629`, `83631`, `83633`, `83635`, `83638`, `83640`, `83642`, `83643`, `83644`, `83647`, `83649`, `83650`, `83651`, `83653`, `83655`, `83657`, `83658`, `83660`, `83661`, `83663`, `83664`, `83665`, `83666`, `83667`, `83669`, `83670`, `83672`, `83674`, `83676`, `83677`, `83679`, `83682`, `83684`, `83686`, `83688`, `83689`, `83691`, `83693`, `83694`, `83696`, `83697`, `83699`, `83700`, `83702`, `83704`, `83706`, `83709`, `83710`, `83712`, `83714`, `83715`, `83719`, `83721`, `83722`, `83723`, `83726`, `83727`, `83729`, `83731`, `83735`, `83737`, `83738`, `83740`, `83744`, `83746`, `83748`, `83750`, `83752`, `83753`, `83755`, `83757`, `83759`, `83760`, `83762`, `83764`, `83766`, `83768`, `83770`, `83771`, `83775`, `83776`, `83778`, `83780`, `83782`, `83783`, `83784`, `83785`, `83786`, `83788`, `83790`, `83792`, `83793`, `83795`, `83797`, `83800`, `83802`, `83803`, `83804`, `83805`, `83807`, `83809`, `83811`, `83813`, `83814`, `83817`, `83819`, `83822`, `83823`, `83825`, `83827`, `83829`, `83831`, `83833`, `83834`, `83837`, `83839`, `83840`, `83841`, `83844`, `83845`, `83847`, `83848`, `83850`, `83851`, `83853`, `83855`, `83857`, `83859`, `83860`, `83863`, `83867`, `83868`, `83869`, `83870`, `83871`, `83873`, `83875`, `83877`, `83879`, `83881`, `83882`, `83884`, `83885`, `83887`, `83889`, `83891`, `83893`, `83895`, `83897`, `83899`, `83901`, `83903`, `83904`, `83905`, `83907`, `83909`, `83911`, `83912`, `83914`, `83916`, `83918`, `83919`, `83922`, `83924`, `83926`, `83928`, `83930`, `83932`, `83934`, `83936`, `83940`, `83943`, `83945`, `83946`, `83949`, `83951`, `83953`, `83954`, `83956`, `83961`, `83963`, `83965`, `83966`, `83970`, `83972`, `83974`, `83977`, `83979`, `83981`, `83982`, `83984`, `83985`, `83986`, `83987`, `83990`, `83992`, `83996`, `83997`, `83998`, `84000`, `84002`, `84007`, `84008`, `84010`, `84012`, `84013`, `84015`, `84020`, `84024`, `84026`, `84027`, `84028`, `84030`, `84032`, `84034`, `84035`, `84037`, `84040`, `84042`, `84043`, `84045`, `84047`, `84049`, `84050`, `84052`, `84054`, `84055`, `84057`, `84058`, `84063`, `84065`, `84067`, `84068`, `84070`, `84071`, `84072`, `84074`, `84076`, `84077`, `84078`, `84080`, `84082`, `84083`, `84085`, `84086`, `84087`, `84088`, `84090`, `84091`, `84092`, `84093`, `84095`, `84097`, `84098`, `84100`, `84103`, `84105`, `84107`, `84108`, `84110`, `84112`, `84114`, `84116`, `84118`, `84119`, `84120`, `84121`, `84122`, `84124`, `84126`, `84128`, `84129`, `84131`, `84132`, `84134`, `84135`, `84137`, `84138`, `84139`, `84140`, `84141`, `84142`, `84144`, `84146`, `84150`, `84153`, `84154`, `84156`, `84158`, `84160`, `84161`, `84164`, `84166`, `84167`, `84170`, `84172`, `84173`, `84175`, `84177`, `84179`, `84181`, `84183`, `84185`, `84187`, `84189`, `84191`, `84192`, `84194`, `84196`, `84198`, `84200`, `84202`, `84203`, `84205`, `84207`, `84208`, `84210`, `84212`, `84213`, `84214`, `84215`, `84217`, `84218`, `84220`, `84222`, `84223`, `84225`, `84227`, `84229`, `84231`, `84232`, `84234`, `84236`, `84237`, `84238`, `84240`, `84242`, `84244`, `84246`, `84249`, `84251`, `84252`, `84254`, `84256`, `84258`, `84260`, `84262`, `84263`, `84265`, `84267`, `84269`, `84271`, `84272`, `84274`, `84275`, `84276`, `84277`, `84279`, `84280`, `84282`, `84284`, `84286`, `84287`, `84291`, `84294`, `84296`, `84298`, `84300`, `84302`, `84304`, `84306`, `84310`, `84311`, `84313`, `84315`, `84317`, `84318`, `84319`, `84321`, `84322`, `84323`, `84325`, `84327`, `84329`, `84331`, `84332`, `84334`, `84336`, `84339`, `84341`, `84343`, `84344`, `84346`, `84347`, `84349`, `84351`, `84353`, `84355`, `84356`, `84357`, `84359`, `84361`, `84362`, `84364`, `84365`, `84368`, `84370`, `84372`, `84374`, `84375`, `84377`, `84378`, `84380`, `84381`, `84382`, `84383`, `84384`, `84386`, `84387`, `84388`, `84390`, `84392`, `84394`, `84395`, `84397`, `84399`, `84401`, `84403`, `84405`, `84407`, `84409`, `84411`, `84412`, `84414`, `84416`, `84418`, `84420`, `84422`, `84425`, `84427`, `84429`, `84430`, `84432`, `84435`, `84437`, `84439`, `84441`, `84445`, `84447`, `84449`, `84452`, `84453`, `84455`, `84457`, `84459`, `84461`, `84464`, `84466`, `84468`, `84470`, `84472`, `84474`, `84475`, `84476`, `84478`, `84479`, `84480`, `84481`, `84483`, `84486`, `84487`, `84489`, `84490`, `84491`, `84492`, `84494`, `84498`, `84499`, `84500`, `84502`, `84504`, `84508`, `84509`, `84510`, `84511`, `84512`, `84514`, `84516`, `84518`, `84520`, `84522`, `84524`, `84526`, `84528`, `84533`, `84535`, `84536`, `84538`, `84539`, `84542`, `84543`, `84545`, `84547`, `84548`, `84549`, `84551`, `84552`, `84554`, `84556`, `84558`, `84560`, `84562`, `84564`, `84566`, `84567`, `84569`, `84571`, `84573`, `84575`, `84577`, `84578`, `84581`, `84583`, `84585`, `84587`, `84589`, `84590`, `84592`, `84595`, `84596`, `84598`, `84600`, `84602`, `84604`, `84605`, `84606`, `84607`, `84609`, `84611`, `84612`, `84613`, `84615`, `84617`, `84618`, `84619`, `84621`, `84622`, `84623`, `84624`, `84625`, `84627`, `84628`, `84631`, `84633`, `84635`, `84636`, `84638`, `84640`, `84641`, `84643`, `84645`, `84646`, `84648`, `84649`, `84651`, `84652`, `84653`, `84655`, `84657`, `84659`, `84660`, `84661`, `84663`, `84665`, `84666`, `84667`, `84669`, `84671`, `84673`, `84674`, `84676`, `84678`, `84679`, `84680`, `84682`, `84685`, `84687`, `84688`, `84689`, `84690`, `84691`, `84692`, `84693`, `84695`, `84697`, `84699`, `84701`, `84703`, `84704`, `84706`, `84707`, `84709`, `84711`, `84714`, `84715`, `84716`, `84717`, `84719`, `84721`, `84723`, `84724`, `84726`, `84728`, `84730`, `84731`, `84733`, `84734`, `84735`, `84737`, `84739`, `84740`, `84741`, `84743`, `84744`, `84746`, `84747`, `84748`, `84750`, `84752`, `84754`, `84755`, `84757`, `84759`, `84761`, `84763`, `84765`, `84767`, `84770`, `84772`, `84773`, `84774`, `84775`, `84777`, `84781`, `84783`, `84785`, `84787`, `84789`, `84791`, `84792`, `84797`, `84799`, `84801`, `84803`, `84804`, `84806`, `84807`, `84809`, `84811`, `84813`, `84815`, `84818`, `84820`, `84823`, `84825`, `84827`, `84829`, `84832`, `84833`, `84834`, `84837`, `84838`, `84839`, `84841`, `84843`, `84845`, `84847`, `84849`, `84851`, `84853`, `84856`, `84857`, `84858`, `84859`, `84861`, `84863`, `84867`, `84868`, `84869`, `84870`, `84872`, `84873`, `84875`, `84877`, `84878`, `84879`, `84881`, `84883`, `84885`, `84887`, `84889`, `84892`, `84893`, `84895`, `84897`, `84899`, `84901`, `84903`, `84905`, `84907`, `84908`, `84910`, `84911`, `84913`, `84914`, `84916`, `84917`, `84919`, `84921`, `84922`, `84923`, `84925`, `84927`, `84928`, `84929`, `84930`, `84933`, `84935`, `84937`, `84939`, `84940`, `84941`, `84943`, `84945`, `84946`, `84948`, `84949`, `84950`, `84952`, `84953`, `84955`, `84958`, `84959`, `84961`, `84962`, `84964`, `84966`, `84967`, `84968`, `84970`, `84972`, `84973`, `84975`, `84976`, `84977`, `84979`, `84981`, `84983`, `84984`, `84986`, `84988`, `84990`, `84992`, `84995`, `84997`, `84998`, `84999`, `85001`, `85003`, `85005`, `85007`, `85008`, `85010`, `85012`, `85014`, `85016`, `85018`, `85020`, `85021`, `85022`, `85024`, `85026`, `85028`, `85030`, `85031`, `85033`, `85035`, `85037`, `85039`, `85041`, `85043`, `85045`, `85046`, `85050`, `85052`, `85054`, `85056`, `85059`, `85061`, `85064`, `85065`, `85067`, `85068`, `85070`, `85072`, `85073`, `85075`, `85076`, `85077`, `85079`, `85080`, `85082`, `85085`, `85086`, `85088`, `85090`, `85092`, `85094`, `85096`, `85097`, `85099`, `85101`, `85103`, `85104`, `85106`, `85107`, `85110`, `85113`, `85114`, `85116`, `85118`, `85120`, `85122`, `85123`, `85124`, `85125`, `85126`, `85127`, `85128`, `85130`, `85133`, `85134`, `85135`, `85137`, `85138`, `85140`, `85142`, `85145`, `85147`, `85149`, `85151`, `85153`, `85155`, `85157`, `85158`, `85160`, `85161`, `85163`, `85165`, `85166`, `85168`, `85170`, `85172`, `85174`, `85175`, `85176`, `85178`, `85180`, `85182`, `85183`, `85185`, `85187`, `85189`, `85191`, `85194`, `85196`, `85198`, `85199`, `85201`, `85203`, `85205`, `85207`, `85208`, `85210`, `85212`, `85215`, `85216`, `85218`, `85220`, `85222`, `85223`, `85224`, `85226`, `85228`, `85230`, `85232`, `85236`, `85238`, `85240`, `85242`, `85244`, `85245`, `85247`, `85248`, `85250`, `85252`, `85254`, `85256`, `85257`, `85259`, `85261`, `85263`, `85265`, `85266`, `85268`, `85269`, `85271`, `85273`, `85274`, `85276`, `85278`, `85279`, `85281`, `85283`, `85284`, `85286`, `85288`, `85290`, `85291`, `85292`, `85294`, `85296`, `85297`, `85298`, `85300`, `85305`, `85307`, `85309`, `85310`, `85311`, `85313`, `85317`, `85318`, `85319`, `85321`, `85322`, `85326`, `85328`, `85330`, `85331`, `85333`, `85334`, `85336`, `85338`, `85340`, `85341`, `85342`, `85344`, `85346`, `85347`, `85349`, `85351`, `85353`, `85355`, `85357`, `85359`, `85360`, `85362`, `85363`, `85365`, `85367`, `85369`, `85370`, `85371`, `85373`, `85375`, `85377`, `85379`, `85383`, `85384`, `85386`, `85388`, `85394`, `85395`, `85397`, `85399`, `85400`, `85401`, `85403`, `85405`, `85406`, `85407`, `85408`, `85409`, `85410`, `85411`, `85413`, `85414`, `85416`, `85418`, `85421`, `85423`, `85425`, `85427`, `85429`, `85430`, `85431`, `85433`, `85434`, `85436`, `85438`, `85440`, `85441`, `85444`, `85446`, `85447`, `85449`, `85451`, `85453`, `85455`, `85456`, `85458`, `85460`, `85462`, `85465`, `85468`, `85469`, `85470`, `85472`, `85474`, `85476`, `85478`, `85480`, `85481`, `85483`, `85486`, `85487`, `85488`, `85490`, `85491`, `85493`, `85495`, `85497`, `85499`, `85501`, `85503`, `85506`, `85509`, `85510`, `85513`, `85514`, `85515`, `85517`, `85519`, `85521`, `85523`, `85525`, `85527`, `85529`, `85530`, `85533`, `85534`, `85536`, `85539`, `85540`, `85542`, `85543`, `85545`, `85546`, `85548`, `85550`, `85551`, `85553`, `85555`, `85556`, `85558`, `85559`, `85561`, `85562`, `85563`, `85565`, `85568`, `85569`, `85571`, `85573`, `85574`, `85576`, `85577`, `85578`, `85579`, `85582`, `85583`, `85585`, `85589`, `85591`, `85593`, `85596`, `85597`, `85600`, `85601`, `85603`, `85605`, `85606`, `85609`, `85610`, `85613`, `85614`, `85616`, `85617`, `85619`, `85621`, `85624`, `85626`, `85628`, `85630`, `85631`, `85632`, `85634`, `85636`, `85637`, `85639`, `85641`, `85642`, `85643`, `85645`, `85647`, `85649`, `85650`, `85651`, `85653`, `85654`, `85655`, `85657`, `85659`, `85661`, `85662`, `85664`, `85666`, `85668`, `85670`, `85671`, `85678`, `85680`, `85681`, `85683`, `85685`, `85687`, `85689`, `85691`, `85692`, `85694`, `85696`, `85698`, `85699`, `85700`, `85701`, `85702`, `85703`, `85704`, `85706`, `85707`, `85709`, `85711`, `85713`, `85714`, `85716`, `85718`, `85720`, `85722`, `85724`, `85726`, `85728`, `85729`, `85730`, `85731`, `85733`, `85735`, `85737`, `85740`, `85741`, `85742`, `85748`, `85750`, `85752`, `85754`, `85756`, `85757`, `85759`, `85761`, `85764`, `85767`, `85769`, `85770`, `85771`, `85773`, `85776`, `85777`, `85779`, `85781`, `85783`, `85784`, `85785`, `85787`, `85789`, `85790`, `85792`, `85794`, `85796`, `85798`, `85800`, `85802`, `85804`, `85805`, `85807`, `85810`, `85812`, `85814`, `85816`, `85818`, `85819`, `85821`, `85822`, `85824`, `85828`, `85829`, `85830`, `85831`, `85833`, `85835`, `85838`, `85840`, `85843`, `85845`, `85849`, `85851`, `85852`, `85854`, `85855`, `85857`, `85860`, `85861`, `85863`, `85864`, `85866`, `85867`, `85869`, `85870`, `85872`, `85874`, `85876`, `85877`, `85879`, `85881`, `85882`, `85883`, `85884`, `85885`, `85886`, `85888`, `85889`, `85891`, `85892`, `85893`, `85894`, `85895`, `85896`, `85898`, `85900`, `85902`, `85904`, `85906`, `85908`, `85909`, `85912`, `85913`, `85914`, `85915`, `85916`, `85918`, `85920`, `85922`, `85924`, `85926`, `85927`, `85929`, `85931`, `85933`, `85934`, `85935`, `85937`, `85938`, `85940`, `85941`, `85946`, `85948`, `85949`, `85950`, `85952`, `85955`, `85956`, `85958`, `85959`, `85960`, `85962`, `85963`, `85966`, `85971`, `85973`, `85975`, `52292`, `85976`, `85980`, `85982`, `85983`, `85985`, `85987`, `85989`, `85990`, `85992`, `85994`, `85996`, `85998`, `86000`, `86001`, `86003`, `86004`, `86005`, `86006`, `86008`, `86010`, `86012`, `86014`, `86015`, `86016`, `86017`, `86019`, `86020`, `86024`, `86026`, `86028`, `86030`, `86031`, `86032`, `86033`, `86035`, `86037`, `86038`, `86042`, `86043`, `86045`, `86046`, `86048`, `86050`, `86053`, `86055`, `86057`, `86060`, `86062`, `86064`, `86066`, `86068`, `86069`, `86070`, `86072`, `86074`, `86076`, `86078`, `86079`, `86081`, `86083`, `86084`, `86085`, `86086`, `86087`, `86089`, `86091`, `86093`, `86094`, `86096`, `86098`, `86100`, `86102`, `86104`, `86106`, `86107`, `86109`, `86111`, `86113`, `86115`, `86116`, `86117`, `86119`, `86122`, `86124`, `86126`, `86127`, `86131`, `86132`, `86134`, `86135`, `86137`, `86139`, `86141`, `86142`, `86143`, `86144`, `86146`, `86148`, `86149`, `86151`, `86153`, `86157`, `86158`, `86159`, `86160`, `86162`, `86164`, `86165`, `86167`, `86169`, `86170`, `86172`, `86174`, `86176`, `86177`, `86179`, `86180`, `86182`, `86184`, `86186`, `86187`, `86188`, `86189`, `86191`, `86193`, `86195`, `86196`, `86198`, `86200`, `86201`, `86203`, `86205`, `86208`, `86209`, `86210`, `86212`, `86214`, `86215`, `86216`, `86218`, `86219`, `86220`, `86221`, `86222`, `86223`, `86224`, `86225`, `86227`, `86229`, `86230`, `86232`, `86233`, `86238`, `86240`, `86241`, `86243`, `86244`, `86246`, `86247`, `86248`, `86249`, `86251`, `86253`, `86255`, `86256`, `86258`, `86259`, `86260`, `86262`, `86263`, `86265`, `86267`, `86269`, `86271`, `86272`, `86274`, `86276`, `86278`, `86280`, `86282`, `86284`, `86285`, `86286`, `86288`, `86289`, `86290`, `86292`, `86294`, `86295`, `86297`, `86299`, `86302`, `86303`, `86305`, `86307`, `86308`, `86311`, `86313`, `86315`, `86317`, `86319`, `86321`, `86322`, `86324`, `86326`, `86327`, `86329`, `86331`, `86333`, `86335`, `86336`, `86339`, `86341`, `86342`, `86343`, `86344`, `86345`, `86347`, `86349`, `86351`, `86353`, `86354`, `86358`, `86360`, `86361`, `86363`, `86365`, `86367`, `86368`, `86369`, `86371`, `86373`, `86375`, `86377`, `86379`, `86381`, `86383`, `86385`, `86387`, `86389`, `86390`, `86392`, `86394`, `86396`, `86397`, `86398`, `86400`, `86402`, `86404`, `86405`, `86406`, `86410`, `86411`, `86413`, `86414`, `86416`, `86418`, `86419`, `86421`, `86424`, `86426`, `86427`, `86431`, `86432`, `86434`, `86436`, `86438`, `86440`, `86441`, `86442`, `86444`, `86446`, `86448`, `86450`, `86452`, `86454`, `86457`, `86459`, `86462`, `86464`, `86465`, `86467`, `86469`, `86471`, `86472`, `86474`, `86476`, `86477`, `86479`, `86481`, `86483`, `86485`, `86487`, `86489`, `86491`, `86493`, `86495`, `86496`, `86498`, `86500`, `86502`, `86504`, `86505`, `86507`, `86508`, `86510`, `86512`, `86513`, `86514`, `86516`, `86518`, `86520`, `86522`, `86527`, `86529`, `86531`, `86532`, `86533`, `86536`, `86537`, `86538`, `86542`, `86544`, `86546`, `86548`, `86549`, `86550`, `86552`, `86554`, `86556`, `86558`, `86560`, `86561`, `86562`, `86564`, `86566`, `86568`, `86569`, `86570`, `86572`, `86573`, `86574`, `86576`, `86577`, `86579`, `86580`, `86581`, `86583`, `86586`, `86588`, `86591`, `86593`, `86595`, `86597`, `86599`, `86600`, `86602`, `86604`, `86605`, `86607`, `86609`, `86610`, `86612`, `86614`, `86615`, `86617`, `86618`, `86619`, `86622`, `86624`, `86626`, `86627`, `86628`, `86629`, `86630`, `86631`, `86633`, `86634`, `86636`, `86638`, `86640`, `86642`, `86644`, `86645`, `86647`, `86649`, `86650`, `86651`, `86652`, `86653`, `86655`, `86656`, `86658`, `86660`, `86662`, `86665`, `86667`, `86669`, `86671`, `86672`, `86674`, `86675`, `86677`, `86678`, `86680`, `86681`, `86682`, `86684`, `86685`, `86687`, `86689`, `86691`, `86693`, `86694`, `86695`, `86697`, `86698`, `86699`, `86700`, `86703`, `86705`, `86707`, `86709`, `86714`, `86716`, `86717`, `86720`, `86721`, `86723`, `86725`, `86727`, `86729`, `86731`, `86733`, `86735`, `86737`, `86739`, `86740`, `86741`, `86743`, `86744`, `86745`, `86747`, `86749`, `86751`, `86753`, `86754`, `86755`, `86756`, `86757`, `86759`, `86760`, `86761`, `86762`, `86764`, `86766`, `86767`, `86770`, `86772`, `86774`, `86775`, `86776`, `86781`, `86782`, `86783`, `86785`, `86787`, `86789`, `86791`, `86792`, `86794`, `86796`, `86797`, `86799`, `86802`, `86804`, `86807`, `86809`, `86811`, `86813`, `86814`, `86816`, `86818`, `86820`, `86821`, `86822`, `86825`, `86827`, `86828`, `86831`, `86833`, `86835`, `86836`, `86838`, `86840`, `86842`, `86844`, `86845`, `86846`, `86848`, `86850`, `86852`, `86853`, `86854`, `86855`, `86857`, `86858`, `86859`, `86860`, `86861`, `86863`, `86865`, `86866`, `86867`, `86869`, `86870`, `86872`, `86874`, `86875`, `86877`, `86878`, `86880`, `86881`, `86883`, `86885`, `86886`, `86888`, `86889`, `86890`, `86892`, `86893`, `86895`, `86896`, `86898`, `86900`, `86902`, `86904`, `86905`, `86907`, `86908`, `86909`, `86911`, `86912`, `86914`, `86916`, `86917`, `86919`, `86920`, `86922`, `86924`, `86925`, `86927`, `86929`, `86931`, `86933`, `86935`, `86936`, `86939`, `86942`, `86944`, `86946`, `86948`, `86950`, `86952`, `86954`, `86958`, `86959`, `86961`, `86963`, `86965`, `86966`, `86967`, `86968`, `86969`, `86970`, `86972`, `86973`, `86974`, `86976`, `86977`, `86978`, `86980`, `86981`, `86982`, `86986`, `86987`, `86988`, `86990`, `86992`, `86993`, `86995`, `86997`, `86998`, `87001`, `87002`, `87004`, `87006`, `87009`, `87011`, `87013`, `87014`, `87016`, `87017`, `87019`, `87021`, `87023`, `87024`, `87026`, `87028`, `87030`, `87032`, `87034`, `87035`, `87036`, `87037`, `87039`, `87044`, `87045`, `87047`, `87049`, `87050`, `87052`, `87054`, `87056`, `87057`, `87059`, `87061`, `87062`, `87064`, `87066`, `87068`, `87070`, `87072`, `87074`, `87076`, `87078`, `87080`, `87082`, `87083`, `87084`, `87085`, `87087`, `87089`, `87091`, `87093`, `87095`, `87097`, `87099`, `87100`, `87102`, `87104`, `87106`, `87107`, `87109`, `87111`, `87112`, `87114`, `87116`, `87118`, `87119`, `87121`, `87125`, `87126`, `87128`, `87129`, `87130`, `87132`, `87134`, `87136`, `87138`, `87140`, `87142`, `87144`, `87146`, `87149`, `87151`, `87153`, `87155`, `87156`, `87158`, `87160`, `87162`, `87163`, `87165`, `87166`, `87168`, `87172`, `87173`, `87174`, `87175`, `87177`, `87179`, `87180`, `87182`, `87184`, `87185`, `87187`, `87188`, `87190`, `87191`, `87193`, `87195`, `87197`, `87199`, `87201`, `87202`, `87203`, `87207`, `87209`, `87211`, `87215`, `87220`, `87222`, `87224`, `87226`, `87228`, `87230`, `87232`, `87233`, `87235`, `87237`, `87239`, `87241`, `87243`, `87245`, `87246`, `87249`, `87250`, `87252`, `87254`, `87255`, `87257`, `87259`, `87260`, `87261`, `87263`, `87265`, `87266`, `87271`, `87273`, `87275`, `87277`, `87279`, `87280`, `87284`, `87286`, `87287`, `87289`, `87290`, `87292`, `87294`, `87296`, `87298`, `87299`, `87300`, `87303`, `87305`, `87307`, `87310`, `87312`, `87313`, `87318`, `87320`, `87321`, `87325`, `87326`, `87328`, `87332`, `87334`, `87336`, `87337`, `87338`, `87340`, `87341`, `87344`, `87346`, `87348`, `87349`, `87353`, `87355`, `87357`, `87358`, `87360`, `87362`, `87364`, `87366`, `87368`, `87370`, `87372`, `87373`, `87374`, `87375`, `87376`, `87378`, `87380`, `87381`, `87382`, `87384`, `87386`, `87388`, `87390`, `87392`, `87393`, `87395`, `87398`, `87399`, `87402`, `87404`, `87405`, `87410`, `87412`, `87414`, `87415`, `87417`, `87419`, `87420`, `87422`, `87424`, `87425`, `87427`, `87429`, `87431`, `87433`, `87435`, `87437`, `87438`, `87439`, `87441`, `87445`, `87446`, `87447`, `87449`, `87450`, `87452`, `87454`, `87456`, `87457`, `87459`, `87461`, `87463`, `87465`, `87467`, `87469`, `87471`, `87473`, `87474`, `87476`, `87477`, `87479`, `87481`, `87483`, `87485`, `87487`, `87489`, `87491`, `87492`, `87494`, `87496`, `87499`, `87500`, `87501`, `87502`, `87504`, `87505`, `87507`, `87508`, `87510`, `87512`, `87513`, `87515`, `87517`, `87518`, `87520`, `87522`, `87524`, `87526`, `87528`, `87529`, `87530`, `87531`, `87534`, `87536`, `87539`, `87541`, `87542`, `87543`, `87544`, `87545`, `87546`, `87548`, `87550`, `87551`, `87553`, `87554`, `87557`, `87559`, `87561`, `87563`, `87566`, `87568`, `87569`, `87570`, `87572`, `87574`, `87576`, `87578`, `87580`, `87582`, `87583`, `87585`, `87587`, `87591`, `87592`, `87594`, `87596`, `87597`, `87599`, `87600`, `87601`, `87602`, `87604`, `87605`, `87607`, `87609`, `87611`, `87612`, `87614`, `87616`, `87618`, `87621`, `87623`, `87625`, `87626`, `87628`, `87629`, `87631`, `87633`, `87635`, `87637`, `87638`, `87639`, `87641`, `87643`, `87645`, `87648`, `87649`, `87650`, `87652`, `87654`, `87656`, `87658`, `87659`, `87661`, `87662`, `87664`, `87665`, `87667`, `87669`, `87671`, `87673`, `87675`, `87676`, `87677`, `87679`, `87680`, `87682`, `87685`, `87686`, `87688`, `87689`, `87691`, `87693`, `87697`, `87698`, `87700`, `87702`, `87703`, `87705`, `87706`, `87707`, `87708`, `87709`, `87712`, `87714`, `87716`, `87719`, `87721`, `87723`, `87725`, `87726`, `87728`, `87729`, `87731`, `87733`, `87735`, `87738`, `87740`, `87742`, `87744`, `87745`, `87747`, `87749`, `87751`, `87752`, `87754`, `87756`, `87758`, `87760`, `87762`, `87763`, `87765`, `87766`, `87768`, `87769`, `87771`, `87773`, `87775`, `87776`, `87779`, `87781`, `87783`, `87784`, `87786`, `87788`, `87793`, `87795`, `87797`, `87799`, `87800`, `87802`, `87804`, `87806`, `87808`, `87809`, `87811`, `87813`, `87815`, `87817`, `87818`, `87820`, `87824`, `87826`, `87828`, `87830`, `87833`, `87836`, `87838`, `87840`, `87842`, `87843`, `87845`, `87847`, `87848`, `87849`, `87853`, `87855`, `87856`, `87858`, `87860`, `87862`, `87864`, `87866`, `87867`, `87868`, `87869`, `87871`, `87873`, `87874`, `87876`, `87877`, `87881`, `87883`, `87885`, `87887`, `87889`, `87891`, `87893`, `87895`, `87896`, `87898`, `87900`, `87902`, `87904`, `87906`, `87909`, `87910`, `87911`, `87912`, `87914`, `87915`, `87919`, `87921`, `87923`, `87924`, `87925`, `87927`, `87929`, `87930`, `87931`, `87932`, `87933`, `87935`, `87936`, `87937`, `87939`, `87942`, `87944`, `87946`, `87948`, `87950`, `87952`, `87953`, `87954`, `87955`, `87958`, `87960`, `87961`, `87963`, `87965`, `87967`, `87968`, `87969`, `87971`, `87973`, `87974`, `87975`, `87976`, `87978`, `87980`, `87982`, `87984`, `87986`, `87987`, `87988`, `87990`, `87991`, `87993`, `87995`, `87996`, `87997`, `87998`, `87999`, `88001`, `88003`, `88005`, `88006`, `88008`, `88010`, `88011`, `88012`, `88013`, `88014`, `88016`, `88018`, `88020`, `88022`, `88024`, `88028`, `88029`, `88030`, `88032`, `88035`, `88036`, `88039`, `88041`, `88043`, `88045`, `88047`, `88049`, `88051`, `88054`, `88056`, `88057`, `88060`, `88062`, `88064`, `88066`, `88067`, `88068`, `88070`, `88072`, `88074`, `88076`, `88079`, `88081`, `88086`, `88088`, `88090`, `88092`, `88094`, `88096`, `88098`, `88100`, `88102`, `88104`, `88106`, `88108`, `88110`, `88111`, `88112`, `88113`, `88115`, `88119`, `88120`, `88123`, `88125`, `88126`, `88131`, `88132`, `88134`, `88136`, `88137`, `88138`, `88140`, `88141`, `88143`, `88144`, `88146`, `88148`, `88150`, `88152`, `88153`, `88157`, `88158`, `88159`, `88160`, `88162`, `88164`, `88165`, `88167`, `88169`, `88171`, `88173`, `88175`, `88177`, `88179`, `88181`, `88183`, `88184`, `88186`, `88187`, `88189`, `88190`, `88192`, `88194`, `88195`, `88196`, `88198`, `88200`, `88204`, `88206`, `88208`, `88210`, `88213`, `88215`, `88216`, `88218`, `88219`, `88220`, `88221`, `88222`, `88223`, `88226`, `88227`, `88229`, `88230`, `88231`, `88233`, `88235`, `88237`, `88238`, `88239`, `88240`, `88242`, `88243`, `88246`, `88247`, `88249`, `88250`, `88252`, `88254`, `88256`, `88259`, `88261`, `88263`, `88265`, `88267`, `88268`, `88269`, `88271`, `88272`, `88274`, `88275`, `88277`, `88279`, `88281`, `88283`, `88285`, `88286`, `88289`, `88291`, `88292`, `88294`, `88295`, `88297`, `88299`, `88301`, `88305`, `88307`, `88308`, `88309`, `88311`, `88312`, `88314`, `88316`, `88320`, `88321`, `88322`, `88324`, `88325`, `88328`, `88329`, `88330`, `88332`, `88335`, `88337`, `88339`, `88340`, `88341`, `88343`, `88345`, `88347`, `88350`, `88352`, `88353`, `88355`, `88357`, `88358`, `88360`, `88362`, `88364`, `88367`, `88368`, `88369`, `88371`, `88373`, `88375`, `88377`, `88378`, `88379`, `88381`, `88382`, `88384`, `88386`, `88389`, `88390`, `88392`, `88396`, `88399`, `88400`, `88402`, `88405`, `88406`, `88408`, `88410`, `88411`, `88413`, `88414`, `88416`, `88418`, `88419`, `88421`, `88423`, `88426`, `88428`, `88430`, `88432`, `88434`, `88435`, `88436`, `88438`, `88439`, `88441`, `88443`, `88445`, `88447`, `88449`, `88451`, `88452`, `88454`, `88456`, `88458`, `88460`, `88463`, `88464`, `88466`, `88468`, `88471`, `88475`, `88477`, `88478`, `88480`, `88482`, `88484`, `88486`, `88487`, `88488`, `88490`, `88492`, `88494`, `88496`, `88498`, `88500`, `88502`, `88503`, `88504`, `88506`, `88508`, `88510`, `88513`, `88515`, `88517`, `88519`, `88521`, `88524`, `88525`, `88526`, `88528`, `88530`, `88532`, `88534`, `88536`, `88538`, `88539`, `88541`, `88543`, `88545`, `88546`, `88547`, `88548`, `88550`, `88551`, `88553`, `88554`, `88556`, `88558`, `88560`, `88562`, `88564`, `88566`, `88568`, `88570`, `88574`, `88576`, `88577`, `88579`, `88582`, `88584`, `88586`, `88587`, `88589`, `88590`, `88593`, `88595`, `88599`, `88601`, `88603`, `88605`, `88606`, `88607`, `88609`, `88611`, `88614`, `88616`, `88622`, `88624`, `88625`, `88626`, `88627`, `88628`, `88629`, `88630`, `88632`, `88633`, `88634`, `88636`, `88638`, `88639`, `88641`, `88643`, `88645`, `88647`, `88649`, `88651`, `88653`, `88654`, `88656`, `88658`, `88659`, `88661`, `88663`, `88664`, `88666`, `88668`, `88670`, `88671`, `88672`, `88673`, `88674`, `88675`, `88677`, `88679`, `88681`, `88683`, `88685`, `88686`, `88688`, `88691`, `88692`, `88694`, `88696`, `88697`, `88698`, `88700`, `88701`, `88703`, `88705`, `88707`, `88709`, `88711`, `88713`, `88715`, `88717`, `88718`, `88719`, `88721`, `88723`, `88724`, `88726`, `88728`, `88730`, `88733`, `88735`, `88736`, `88738`, `88739`, `88740`, `88741`, `88743`, `88745`, `88746`, `88747`, `88749`, `88751`, `88752`, `88753`, `88754`, `88755`, `88756`, `88758`, `88759`, `88762`, `88764`, `88765`, `88766`, `88768`, `88769`, `88771`, `88772`, `88774`, `88775`, `88777`, `88778`, `88779`, `88781`, `88784`, `88787`, `88789`, `88791`, `88794`, `88795`, `88796`, `88797`, `88798`, `88800`, `88802`, `88804`, `88805`, `88806`, `88808`, `88810`, `88812`, `88813`, `88814`, `88816`, `88818`, `88823`, `88825`, `88827`, `88829`, `88830`, `88833`, `88835`, `88836`, `88838`, `88841`, `88844`, `88845`, `88848`, `88851`, `88854`, `88857`, `88861`, `88862`, `88863`, `88865`, `88866`, `88867`, `88869`, `88871`, `88873`, `88875`, `88877`, `88878`, `88880`, `88883`, `88884`, `88885`, `88886`, `88887`, `88889`, `88890`, `88891`, `88892`, `88894`, `88895`, `88896`, `88897`, `88899`, `88901`, `88903`, `88905`, `88907`, `88909`, `88910`, `88912`, `88914`, `88915`, `88917`, `88919`, `88924`, `88925`, `88927`, `88929`, `88931`, `88933`, `88935`, `88937`, `88938`, `88942`, `88943`, `88944`, `88945`, `88947`, `88949`, `88952`, `88954`, `88958`, `88960`, `88961`, `88962`, `88964`, `88965`, `88967`, `88968`, `88969`, `88971`, `88973`, `88975`, `88976`, `88977`, `88979`, `88981`, `88982`, `88984`, `88985`, `88986`, `88988`, `88992`, `88993`, `88995`, `88996`, `88997`, `88999`, `89001`, `89002`, `89004`, `89006`, `89009`, `89011`, `89013`, `89015`, `89017`, `89019`, `89021`, `89022`, `89024`, `89028`, `89030`, `89031`, `89032`, `89034`, `89036`, `89037`, `89039`, `89041`, `89043`, `89045`, `89046`, `89048`, `89052`, `89054`, `89056`, `89058`, `89059`, `89061`, `89062`, `89065`, `89066`, `89068`, `89070`, `89072`, `89074`, `89076`, `89077`, `89078`, `89080`, `89082`, `89084`, `89085`, `89087`, `89089`, `89091`, `89093`, `89095`, `89098`, `89100`, `89101`, `89102`, `89103`, `89105`, `89107`, `89109`, `89110`, `89112`, `89114`, `89115`, `89117`, `89119`, `89120`, `89122`, `89124`, `89126`, `89128`, `89131`, `89133`, `89135`, `89137`, `89140`, `89141`, `89143`, `89145`, `89147`, `89149`, `89151`, `89154`, `89155`, `89157`, `89161`, `89163`, `89165`, `89167`, `89170`, `89173`, `89174`, `89176`, `89177`, `89178`, `89180`, `89182`, `89184`, `89186`, `89188`, `89189`, `89191`, `89192`, `89194`, `89196`, `89198`, `89200`, `89202`, `89203`, `89205`, `89207`, `89209`, `89211`, `89212`, `89213`, `89214`, `89216`, `89217`, `89219`, `89221`, `89223`, `89224`, `89225`, `89226`, `89228`, `89229`, `89230`, `89231`, `89232`, `89234`, `89236`, `89237`, `89240`, `89242`, `89244`, `89245`, `89247`, `89249`, `89250`, `89251`, `89257`, `89259`, `89261`, `89263`, `89264`, `89269`, `89272`, `89274`, `89275`, `89277`, `89279`, `89280`, `89282`, `89284`, `89285`, `89286`, `89288`, `89290`, `89291`, `89293`, `89294`, `89296`, `89298`, `89300`, `89301`, `89303`, `89305`, `89307`, `89309`, `89311`, `89314`, `89316`, `89318`, `89319`, `89321`, `89323`, `89325`, `89326`, `89328`, `89329`, `89331`, `89333`, `89334`, `89336`, `89338`, `89340`, `89342`, `89344`, `89345`, `89346`, `89348`, `89350`, `89352`, `89354`, `89356`, `89358`, `89360`, `89363`, `89365`, `89367`, `89369`, `89371`, `89372`, `89374`, `89376`, `89378`, `89379`, `89383`, `89385`, `89387`, `89391`, `89392`, `89394`, `89396`, `89398`, `89399`, `89401`, `89402`, `89404`, `89406`, `89408`, `89409`, `89411`, `89413`, `89414`, `89416`, `89417`, `89419`, `89421`, `89422`, `89424`, `89426`, `89428`, `89431`, `89432`, `89434`, `89437`, `89438`, `89439`, `89441`, `89444`, `89445`, `89446`, `89447`, `89448`, `89450`, `89452`, `89454`, `89456`, `89458`, `89459`, `89463`, `89465`, `89466`, `89470`, `89472`, `89473`, `89475`, `89479`, `89480`, `89482`, `89484`, `89487`, `89488`, `89490`, `89492`, `89494`, `89496`, `89498`, `89500`, `89502`, `89504`, `89508`, `89510`, `89511`, `89513`, `89515`, `89516`, `89518`, `89522`, `89524`, `89525`, `89527`, `89529`, `89531`, `89532`, `89534`, `89535`, `89537`, `89539`, `89540`, `89542`, `89544`, `89546`, `89550`, `89551`, `89553`, `89555`, `89556`, `89559`, `89561`, `89563`, `89566`, `89567`, `89570`, `89572`, `89574`, `89575`, `89580`, `89582`, `89583`, `89584`, `89585`, `89586`, `89587`, `89589`, `89593`, `89594`, `89595`, `89597`, `89601`, `89603`, `89606`, `89608`, `89610`, `89612`, `89614`, `89616`, `89618`, `89620`, `89622`, `89624`, `89625`, `89627`, `89629`, `89630`, `89632`, `89633`, `89635`, `89639`, `89640`, `89641`, `89643`, `89644`, `89646`, `89647`, `89649`, `89650`, `89652`, `89654`, `89656`, `89659`, `89660`, `89661`, `89663`, `89665`, `89667`, `89668`, `89670`, `89671`, `89672`, `89675`, `89678`, `89680`, `89681`, `89683`, `89685`, `89686`, `89687`, `89688`, `89690`, `89692`, `89693`, `89695`, `89697`, `89699`, `89701`, `89703`, `89705`, `89707`, `89709`, `89710`, `89713`, `89715`, `89716`, `89717`, `89721`, `89722`, `89724`, `89726`, `89727`, `89728`, `89729`, `89731`, `89733`, `89734`, `89736`, `89737`, `89739`, `89741`, `89742`, `89743`, `89744`, `89745`, `89747`, `89749`, `89751`, `89752`, `89754`, `89756`, `89757`, `89760`, `89762`, `89763`, `89765`, `89767`, `89769`, `89770`, `89771`, `89773`, `89775`, `89777`, `89779`, `89781`, `89783`, `89785`, `89786`, `89788`, `89790`, `89792`, `89793`, `89795`, `89797`, `89799`, `89801`, `89803`, `89805`, `89806`, `89807`, `89809`, `89810`, `89812`, `89813`, `89814`, `89817`, `89818`, `89820`, `89821`, `89823`, `89825`, `89827`, `89831`, `89833`, `89835`, `89836`, `89840`, `89842`, `89844`, `89846`, `89847`, `89848`, `89849`, `89851`, `89853`, `89855`, `89857`, `89861`, `89863`, `89864`, `89866`, `89868`, `89869`, `89871`, `89872`, `89874`, `89876`, `89877`, `89881`, `89883`, `89884`, `89886`, `89888`, `89889`, `89891`, `89893`, `89895`, `89896`, `89898`, `89899`, `89902`, `89904`, `89906`, `89907`, `89909`, `89910`, `89911`, `89914`, `89917`, `89919`, `89920`, `89921`, `89923`, `89925`, `89926`, `89928`, `89929`, `89931`, `89933`, `89935`, `89937`, `89938`, `89940`, `89942`, `89944`, `89945`, `89947`, `89949`, `89950`, `89952`, `89958`, `89960`, `89961`, `89963`, `89964`, `89966`, `89968`, `89971`, `89972`, `89976`, `89979`, `89980`, `89983`, `89985`, `89988`, `89990`, `89991`, `89993`, `89996`, `89998`, `89999`, `90001`, `90003`, `90005`, `90007`, `90010`, `90011`, `90013`, `90014`, `90018`, `90019`, `90021`, `90024`, `90026`, `90028`, `90030`, `90031`, `90032`, `90034`, `90036`, `90038`, `90040`, `90041`, `90042`, `90044`, `90047`, `90049`, `90051`, `90054`, `90056`, `90057`, `90059`, `90060`, `90062`, `90064`, `90065`, `90067`, `90071`, `90072`, `90075`, `90076`, `90078`, `90080`, `90082`, `90084`, `90086`, `90090`, `90092`, `90094`, `90095`, `90097`, `90098`, `90099`, `90101`, `90103`, `90105`, `90106`, `90108`, `90109`, `90111`, `90113`, `90114`, `90115`, `90117`, `90118`, `90120`, `90122`, `90123`, `90126`, `90128`, `90129`, `90131`, `90132`, `90134`, `90136`, `90137`, `90139`, `90141`, `90142`, `90144`, `90146`, `90148`, `90150`, `90152`, `90154`, `90156`, `90158`, `90159`, `90160`, `90162`, `90164`, `90165`, `90167`, `90170`, `90171`, `90174`, `90176`, `90178`, `90179`, `90181`, `90183`, `90184`, `90186`, `90188`, `90190`, `90192`, `90193`, `90195`, `90197`, `90200`, `90201`, `90203`, `90206`, `90207`, `90208`, `90209`, `90210`, `90211`, `90212`, `90214`, `90216`, `90218`, `90220`, `90222`, `90223`, `90225`, `90226`, `90228`, `90229`, `90231`, `90233`, `90234`, `90235`, `90237`, `90238`, `90239`, `90241`, `90243`, `90245`, `90246`, `90248`, `90250`, `90251`, `90252`, `90254`, `90257`, `90261`, `90262`, `90264`, `90266`, `90267`, `90268`, `90270`, `90272`, `90273`, `90275`, `90278`, `90280`, `90282`, `90284`, `90286`, `90288`, `90289`, `90290`, `90292`, `90296`, `90298`, `90300`, `90302`, `90303`, `90307`, `90309`, `90311`, `90313`, `90315`, `90316`, `90317`, `90319`, `90321`, `90323`, `90325`, `90327`, `90328`, `90330`, `90332`, `90333`, `90338`, `90339`, `90341`, `90344`, `90346`, `90349`, `90351`, `90353`, `90355`, `90356`, `90357`, `90358`, `90360`, `90361`, `90363`, `90364`, `90367`, `90369`, `90371`, `90372`, `90374`, `90375`, `90377`, `90379`, `90380`, `90381`, `90383`, `90384`, `90386`, `90388`, `90390`, `90392`, `90394`, `90395`, `90397`, `90399`, `90400`, `90401`, `90403`, `90405`, `90406`, `90407`, `90408`, `90411`, `90412`, `90414`, `90415`, `90417`, `90418`, `90420`, `90422`, `90424`, `90426`, `90428`, `90429`, `90430`, `90431`, `90432`, `90434`, `90436`, `90438`, `90440`, `90441`, `90443`, `90445`, `90447`, `90449`, `90450`, `90451`, `90453`, `90455`, `90457`, `90459`, `90460`, `90462`, `90464`, `90466`, `90468`, `90469`, `90471`, `90473`, `90475`, `90477`, `90478`, `90480`, `90482`, `90484`, `90486`, `90488`, `90490`, `90492`, `90493`, `90494`, `90497`, `90499`, `90500`, `90501`, `90502`, `90504`, `90505`, `90507`, `90508`, `90510`, `90512`, `90514`, `90515`, `90517`, `90519`, `90520`, `90521`, `90522`, `90523`, `90525`, `90529`, `90530`, `90532`, `90535`, `90537`, `90539`, `90541`, `90543`, `90545`, `90547`, `90548`, `90549`, `90550`, `90552`, `90553`, `90555`, `90556`, `90557`, `90558`, `90559`, `90560`, `90561`, `90563`, `90564`, `90566`, `90570`, `90572`, `90574`, `90577`, `90579`, `90580`, `90582`, `90584`, `90586`, `90588`, `90590`, `90591`, `90593`, `90595`, `90596`, `90598`, `90599`, `90601`, `90602`, `90603`, `90607`, `90608`, `90610`, `90612`, `90613`, `90615`, `90617`, `90619`, `90621`, `90623`, `90625`, `90626`, `90628`, `90630`, `90632`, `90633`, `90634`, `90636`, `90637`, `90639`, `90640`, `90642`, `90644`, `90645`, `90647`, `90648`, `90649`, `90651`, `90653`, `90655`, `90656`, `90657`, `90660`, `90662`, `90663`, `90665`, `90666`, `90668`, `90670`, `90672`, `90674`, `90676`, `90678`, `90680`, `90682`, `90684`, `90688`, `90689`, `90691`, `90692`, `90694`, `90695`, `90696`, `90697`, `90698`, `90700`, `90702`, `90703`, `90705`, `90707`, `90711`, `90713`, `90715`, `90716`, `90717`, `90719`, `90720`, `90722`, `90724`, `90726`, `90728`, `90730`, `90731`, `90733`, `90735`, `90736`, `90738`, `90740`, `90741`, `90743`, `90745`, `90747`, `90748`, `90749`, `90751`, `90753`, `90755`, `90757`, `90758`, `90759`, `90760`, `90764`, `90766`, `90768`, `90770`, `90772`, `90774`, `90775`, `90776`, `90777`, `90778`, `90779`, `90781`, `90783`, `90785`, `90787`, `90789`, `90793`, `90795`, `90796`, `90798`, `90800`, `90802`, `90805`, `90806`, `90808`, `90810`, `90812`, `90814`, `90818`, `90820`, `90821`, `90823`, `90825`, `90827`, `90828`, `90831`, `90833`, `90837`, `90838`, `90839`, `90841`, `90843`, `90844`, `90845`, `90847`, `90848`, `90850`, `90851`, `90852`, `90853`, `90855`, `90857`, `90859`, `90861`, `90863`, `90865`, `90866`, `90867`, `90869`, `90871`, `90873`, `90874`, `90876`, `90877`, `90879`, `90880`, `90881`, `90883`, `90885`, `90886`, `90888`, `90890`, `90892`, `90893`, `90894`, `90896`, `90898`, `90899`, `90902`, `90904`, `90905`, `90908`, `90909`, `90911`, `90913`, `90914`, `90916`, `90918`, `90919`, `90921`, `90923`, `90925`, `90926`, `90927`, `90931`, `90932`, `90933`, `90937`, `90939`, `90940`, `90942`, `90943`, `90945`, `90947`, `90949`, `90951`, `90953`, `90955`, `90956`, `90957`, `90958`, `90960`, `90962`, `90964`, `90966`, `90968`, `90970`, `90972`, `90973`, `90975`, `90976`, `90978`, `90979`, `90980`, `90982`, `90984`, `90986`, `90987`, `90989`, `90990`, `90992`, `90995`, `90997`, `90999`, `91000`, `91002`, `91004`, `91005`, `91006`, `91008`, `91010`, `91012`, `91015`, `91016`, `91017`, `91018`, `91020`, `91023`, `91025`, `91027`, `91032`, `91034`, `91036`, `91038`, `91041`, `91042`, `91044`, `91045`, `91047`, `91049`, `91053`, `91054`, `91056`, `91057`, `772`, `91059`, `91060`, `91061`, `91065`, `91066`, `91068`, `91070`, `91072`, `91073`, `91075`, `91077`, `91078`, `91080`, `91082`, `91084`, `91085`, `91087`, `91090`, `91094`, `91096`, `91098`, `91100`, `91102`, `91103`, `91105`, `91106`, `91108`, `91109`, `91111`, `91113`, `91115`, `91116`, `91118`, `91120`, `91122`, `91124`, `91126`, `91127`, `91129`, `91130`, `91132`, `91133`, `91135`, `91139`, `91140`, `91141`, `91142`, `91144`, `91146`, `91148`, `91150`, `91151`, `91153`, `91154`, `91157`, `91159`, `91161`, `91162`, `91164`, `91166`, `91167`, `91170`, `91173`, `91174`, `91176`, `91178`, `91181`, `91182`, `91184`, `91186`, `91188`, `91191`, `91192`, `91194`, `91196`, `91198`, `91200`, `91201`, `91203`, `91205`, `91207`, `91209`, `91212`, `91215`, `91219`, `91221`, `91223`, `91226`, `91227`, `91229`, `91231`, `91233`, `91235`, `91236`, `91237`, `91238`, `91240`, `91242`, `91243`, `91244`, `91246`, `91248`, `91250`, `91252`, `91254`, `91255`, `91257`, `91259`, `91260`, `91262`, `91264`, `91265`, `91269`, `91271`, `91273`, `91275`, `91277`, `91279`, `91282`, `91284`, `91286`, `91288`, `91290`, `91292`, `91293`, `91295`, `91296`, `91297`, `91303`, `91305`, `91307`, `91308`, `91310`, `91312`, `91314`, `91316`, `91318`, `91319`, `91321`, `91322`, `91324`, `91325`, `91327`, `91329`, `91331`, `91333`, `91335`, `91337`, `91339`, `91341`, `91342`, `91344`, `91346`, `91347`, `91348`, `91350`, `91352`, `91354`, `91355`, `91357`, `91358`, `91360`, `91362`, `91364`, `91366`, `91368`, `91369`, `91370`, `91372`, `91373`, `91375`, `91376`, `91377`, `91379`, `91380`, `91382`, `91384`, `91386`, `91387`, `91389`, `91390`, `91392`, `91394`, `91397`, `91399`, `91401`, `91403`, `91405`, `91406`, `91409`, `91410`, `91416`, `91417`, `91420`, `91422`, `91423`, `91425`, `91427`, `91429`, `91431`, `91433`, `91436`, `91438`, `91440`, `91442`, `91443`, `91445`, `91446`, `91448`, `91450`, `91451`, `91453`, `91455`, `91457`, `91459`, `91460`, `91461`, `91462`, `91464`, `91465`, `91467`, `91469`, `91470`, `91471`, `91473`, `91476`, `91478`, `91480`, `91482`, `91483`, `91485`, `91487`, `91489`, `91492`, `91494`, `91495`, `91500`, `91502`, `91503`, `91504`, `91507`, `91508`, `91509`, `91510`, `91511`, `91513`, `91515`, `91516`, `91519`, `91521`, `91523`, `91525`, `91527`, `91528`, `91529`, `91531`, `91534`, `91535`, `91536`, `91538`, `91539`, `91541`, `91543`, `91544`, `91546`, `91548`, `91549`, `91551`, `91553`, `91555`, `91556`, `91558`, `91560`, `91562`, `91563`, `91564`, `91565`, `91566`, `91568`, `91569`, `91570`, `91572`, `91573`, `91575`, `91576`, `91578`, `91579`, `91581`, `91582`, `91584`, `91585`, `91587`, `91589`, `91591`, `91593`, `91596`, `91599`, `91601`, `91603`, `91604`, `91606`, `91607`, `91611`, `91613`, `91615`, `91617`, `91621`, `91622`, `91623`, `91624`, `91626`, `91627`, `91628`, `91629`, `91630`, `91631`, `91633`, `91635`, `91638`, `91641`, `91643`, `91644`, `91646`, `91648`, `91649`, `91651`, `91653`, `91656`, `91657`, `91659`, `91661`, `91663`, `91665`, `91666`, `91670`, `91671`, `91672`, `91674`, `91675`, `91676`, `91678`, `91679`, `91681`, `91683`, `91684`, `91686`, `91688`, `91690`, `91692`, `91694`, `91695`, `91697`, `91698`, `91700`, `91702`, `91703`, `91705`, `91708`, `91711`, `91715`, `91717`, `91719`, `91724`, `91726`, `91729`, `91731`, `91733`, `91735`, `91737`, `91739`, `91741`, `91743`, `91745`, `91746`, `91747`, `91748`, `91750`, `91751`, `91752`, `91754`, `91755`, `91757`, `91759`, `91762`, `91764`, `91766`, `91768`, `91770`, `91771`, `91773`, `91774`, `91775`, `91777`, `91779`, `91781`, `91783`, `91786`, `91788`, `91789`, `91791`, `91792`, `91793`, `91794`, `91796`, `91798`, `91800`, `91801`, `91803`, `91804`, `91806`, `91807`, `91809`, `91811`, `91812`, `91813`, `91815`, `91817`, `91819`, `91821`, `91823`, `91825`, `91827`, `91829`, `91830`, `91831`, `91833`, `91835`, `91837`, `91838`, `91840`, `91842`, `91843`, `91844`, `91845`, `91847`, `91849`, `91851`, `91853`, `91856`, `91858`, `91860`, `91861`, `91863`, `91866`, `91867`, `91869`, `91871`, `91873`, `91875`, `91876`, `91877`, `91879`, `91880`, `91882`, `91883`, `91884`, `91886`, `91888`, `91889`, `91890`, `91891`, `91893`, `91895`, `91897`, `91899`, `91900`, `91902`, `91904`, `91905`, `91907`, `91909`, `91913`, `91914`, `91916`, `91917`, `91920`, `91922`, `91923`, `91924`, `91926`, `91927`, `91929`, `91931`, `91933`, `91934`, `91937`, `91939`, `91941`, `91943`, `91945`, `91946`, `91947`, `91949`, `91951`, `91952`, `91953`, `91955`, `91957`, `91959`, `91961`, `91962`, `91964`, `91965`, `91966`, `91968`, `91970`, `91973`, `91978`, `91980`, `91982`, `91985`, `91987`, `91988`, `91989`, `91990`, `91991`, `91992`, `91994`, `91996`, `91998`, `92000`, `92001`, `92004`, `92006`, `92008`, `92011`, `92013`, `92014`, `92016`, `92017`, `92018`, `92019`, `92021`, `92022`, `92024`, `92026`, `92028`, `92030`, `92031`, `92034`, `92036`, `92038`, `92039`, `92041`, `92042`, `92043`, `92044`, `92046`, `92048`, `92051`, `92053`, `92055`, `92058`, `92061`, `92063`, `92065`, `92067`, `92068`, `92070`, `92072`, `92074`, `92076`, `92078`, `92080`, `92082`, `92084`, `92085`, `92087`, `92089`, `92091`, `92094`, `92096`, `92097`, `92099`, `92102`, `92104`, `92106`, `92109`, `92112`, `92113`, `92116`, `92118`, `92120`, `92123`, `92124`, `92127`, `92128`, `92131`, `92136`, `92137`, `92139`, `92141`, `92143`, `92145`, `92147`, `92148`, `92149`, `92151`, `92153`, `92155`, `92157`, `92159`, `92161`, `92163`, `92166`, `92167`, `92169`, `92171`, `92173`, `92174`, `92176`, `92178`, `92179`, `92180`, `92182`, `92183`, `92185`, `92186`, `92187`, `92189`, `92191`, `92192`, `92194`, `92195`, `92197`, `92198`, `92199`, `92200`, `92201`, `92203`, `92204`, `92205`, `92207`, `92208`, `92209`, `92210`, `92211`, `92212`, `92214`, `92216`, `92218`, `92219`, `92221`, `92222`, `92223`, `92225`, `92227`, `92229`, `92231`, `92233`, `92235`, `92236`, `92237`, `92239`, `92241`, `92243`, `92245`, `92247`, `92249`, `92251`, `92252`, `92253`, `92255`, `92257`, `92259`, `92261`, `92262`, `92264`, `92266`, `92269`, `92270`, `92272`, `92274`, `92275`, `92277`, `92279`, `92281`, `92283`, `92285`, `92287`, `92288`, `92290`, `92292`, `92293`, `92295`, `92296`, `92298`, `92299`, `92301`, `92304`, `92305`, `92307`, `92310`, `92312`, `92314`, `92315`, `92317`, `92318`, `92320`, `92323`, `92325`, `92327`, `92329`, `92331`, `92333`, `92335`, `92337`, `92339`, `92340`, `92342`, `92344`, `92347`, `92348`, `92350`, `92352`, `92354`, `92356`, `92358`, `92360`, `92362`, `92364`, `92366`, `92368`, `92369`, `92370`, `92371`, `92372`, `92374`, `92375`, `92378`, `92380`, `92382`, `92384`, `92386`, `92387`, `92389`, `92391`, `92392`, `92395`, `92396`, `92398`, `92400`, `92401`, `92403`, `92404`, `92406`, `92409`, `92411`, `92413`, `92415`, `92417`, `92418`, `92422`, `92424`, `92425`, `92427`, `92429`, `92431`, `92432`, `92434`, `92437`, `92438`, `92440`, `92443`, `92446`, `92448`, `92450`, `92451`, `92452`, `92454`, `92456`, `92458`, `92460`, `92462`, `92464`, `92466`, `92467`, `92469`, `92471`, `92472`, `92473`, `92477`, `92479`, `92480`, `92481`, `92483`, `92485`, `92486`, `92488`, `92492`, `92494`, `92496`, `92498`, `92500`, `92501`, `92503`, `92504`, `92505`, `92506`, `92508`, `92510`, `92512`, `92514`, `92515`, `92518`, `92519`, `92520`, `92522`, `92524`, `92525`, `92529`, `92531`, `92533`, `92535`, `92537`, `92538`, `92540`, `92542`, `92544`, `92546`, `92548`, `92550`, `92555`, `92557`, `92559`, `92561`, `92564`, `92566`, `92568`, `92569`, `92571`, `92573`, `92575`, `92577`, `92579`, `92580`, `92582`, `92583`, `92585`, `92586`, `92588`, `92590`, `92592`, `92594`, `92598`, `92600`, `92602`, `92605`, `92607`, `92608`, `92609`, `92611`, `92613`, `92615`, `92617`, `92619`, `92621`, `92627`, `92629`, `92631`, `92633`, `92635`, `92637`, `92640`, `92641`, `92643`, `92646`, `92648`, `92650`, `92652`, `92653`, `92654`, `92658`, `92660`, `92662`, `92664`, `92666`, `92668`, `92669`, `92672`, `92675`, `92677`, `92680`, `92682`, `92684`, `92685`, `92687`, `92689`, `92691`, `92693`, `92696`, `92698`, `92700`, `92702`, `92703`, `92705`, `92707`, `92709`, `92710`, `92712`, `92713`, `92714`, `92715`, `92716`, `92718`, `92721`, `92722`, `92724`, `92725`, `92727`, `92728`, `92729`, `92732`, `92734`, `92735`, `92737`, `92739`, `92741`, `92743`, `92744`, `92747`, `92749`, `92751`, `92752`, `92753`, `92755`, `92757`, `92759`, `92760`, `92762`, `92763`, `92765`, `92766`, `92768`, `92770`, `92771`, `92773`, `92774`, `92776`, `92778`, `92779`, `92780`, `92783`, `92784`, `92786`, `92788`, `92790`, `92792`, `92794`, `92798`, `92800`, `92802`, `92804`, `92806`, `92808`, `92810`, `92812`, `92814`, `92815`, `92818`, `92820`, `92821`, `92823`, `92825`, `92827`, `92829`, `92830`, `92831`, `92833`, `92835`, `92837`, `92839`, `92841`, `92843`, `92845`, `92847`, `92849`, `92851`, `92853`, `92856`, `92858`, `92859`, `92861`, `92863`, `92864`, `92865`, `92867`, `92868`, `92870`, `92871`, `92872`, `92873`, `92875`, `92877`, `92878`, `92880`, `92882`, `92884`, `92885`, `92888`, `92890`, `92892`, `92894`, `92896`, `92898`, `92899`, `92901`, `92903`, `92906`, `92908`, `92910`, `92912`, `92914`, `92916`, `92918`, `92919`, `92920`, `92922`, `92924`, `92926`, `92928`, `92930`, `92931`, `92933`, `92935`, `92937`, `92939`, `92941`, `92943`, `92944`, `92946`, `92948`, `92950`, `92956`, `92958`, `92960`, `92961`, `92964`, `92965`, `92967`, `92969`, `92971`, `92973`, `92974`, `92975`, `92977`, `92978`, `92980`, `92981`, `92983`, `92985`, `92987`, `92989`, `92990`, `92991`, `92993`, `92994`, `92996`, `92998`, `92999`, `93000`, `93001`, `93003`, `93004`, `93005`, `93006`, `93008`, `93011`, `93013`, `93015`, `93016`, `93018`, `93020`, `93022`, `93023`, `93025`, `93027`, `93029`, `93031`, `93033`, `93035`, `93037`, `93039`, `93041`, `93043`, `93045`, `93047`, `93049`, `93050`, `93052`, `93054`, `93056`, `93058`, `93059`, `93060`, `93061`, `93063`, `93064`, `93066`, `93068`, `93069`, `93071`, `93072`, `93073`, `93075`, `93076`, `93077`, `93078`, `93080`, `93081`, `93083`, `93084`, `93085`, `93087`, `93088`, `93089`, `93090`, `93091`, `93093`, `93095`, `93096`, `93098`, `93099`, `93100`, `93102`, `93104`, `93105`, `93106`, `93108`, `93110`, `93113`, `93114`, `93116`, `93118`, `93120`, `93122`, `93124`, `93126`, `93130`, `93131`, `93133`, `93136`, `93138`, `93140`, `93142`, `93144`, `93146`, `93148`, `93150`, `93152`, `93154`, `93155`, `93157`, `93158`, `93160`, `93161`, `93163`, `93164`, `93165`, `93167`, `93168`, `93169`, `93173`, `93175`, `93177`, `93179`, `93180`, `93182`, `93184`, `93185`, `93186`, `93188`, `93189`, `93191`, `93193`, `93195`, `93197`, `93199`, `93200`, `93201`, `93203`, `93204`, `93206`, `93208`, `93209`, `93214`, `93216`, `93218`, `93220`, `93221`, `93223`, `93227`, `93229`, `93231`, `93232`, `93233`, `93235`, `93237`, `93239`, `93241`, `93242`, `93245`, `93247`, `93248`, `93249`, `93250`, `93252`, `93254`, `93256`, `93259`, `93260`, `93262`, `93264`, `93265`, `93266`, `93268`, `93270`, `93271`, `93273`, `93274`, `93276`, `93278`, `93279`, `93281`, `93284`, `93285`, `93287`, `93288`, `93290`, `93291`, `93292`, `93293`, `93295`, `93297`, `93298`, `93299`, `93301`, `93302`, `93304`, `93306`, `93307`, `93309`, `93315`, `93317`, `93319`, `93321`, `93322`, `93323`, `93329`, `93330`, `93331`, `93334`, `93336`, `93338`, `93340`, `93342`, `93343`, `93344`, `93345`, `93346`, `93348`, `93350`, `93351`, `93353`, `93356`, `93358`, `93360`, `93364`, `93365`, `93367`, `93369`, `93370`, `93372`, `93374`, `93376`, `93379`, `93381`, `93383`, `93384`, `93386`, `93387`, `93389`, `93390`, `93392`, `93393`, `93395`, `93396`, `93398`, `93399`, `93400`, `93401`, `93403`, `93404`, `93405`, `93407`, `93408`, `93410`, `93411`, `93413`, `93414`, `93415`, `93416`, `93417`, `93419`, `93421`, `93423`, `93424`, `93426`, `93427`, `93429`, `93430`, `93431`, `93433`, `93435`, `93437`, `93439`, `93441`, `93443`, `93445`, `93446`, `93448`, `93449`, `93450`, `93452`, `93454`, `93456`, `93458`, `93460`, `93462`, `93463`, `93465`, `93467`, `93468`, `93470`, `93472`, `93473`, `93475`, `93477`, `93478`, `93480`, `93482`, `93484`, `93486`, `93488`, `93490`, `93493`, `93494`, `93495`, `93497`, `93499`, `93500`, `93501`, `93503`, `93505`, `93507`, `93508`, `93510`, `93512`, `93513`, `93514`, `93517`, `93518`, `93519`, `93521`, `93522`, `93523`, `93524`, `93526`, `93528`, `93530`, `93532`, `93534`, `93535`, `93536`, `93538`, `93540`, `93541`, `93543`, `93545`, `93546`, `93547`, `93548`, `93549`, `93551`, `93553`, `93555`, `93557`, `93558`, `93560`, `93562`, `93564`, `93565`, `93567`, `93569`, `93571`, `93574`, `93576`, `93578`, `93580`, `93581`, `93582`, `93585`, `93587`, `93588`, `93590`, `93592`, `93593`, `93594`, `93595`, `93597`, `93599`, `93600`, `93601`, `93602`, `93604`, `93606`, `93609`, `93611`, `93613`, `93614`, `93616`, `93618`, `93619`, `93620`, `93622`, `93624`, `93625`, `93627`, `93629`, `93631`, `93633`, `93635`, `93637`, `93639`, `93641`, `93642`, `93644`, `93646`, `93647`, `93649`, `93651`, `93652`, `93654`, `93656`, `93658`, `93659`, `93661`, `93662`, `93664`, `93665`, `93668`, `93670`, `93674`, `93676`, `93679`, `93682`, `93683`, `93686`, `93688`, `93690`, `93692`, `93693`, `93695`, `93697`, `93699`, `93701`, `93703`, `93704`, `93705`, `93707`, `93710`, `93711`, `93713`, `93714`, `93716`, `93718`, `93720`, `93721`, `93723`, `93724`, `93726`, `93727`, `93731`, `93733`, `93735`, `93736`, `93738`, `93739`, `93741`, `93743`, `93745`, `93746`, `93748`, `93750`, `93752`, `93754`, `93756`, `93757`, `93758`, `93761`, `93762`, `93765`, `93766`, `93767`, `93772`, `93774`, `93776`, `93777`, `93779`, `93781`, `93782`, `93784`, `93786`, `93788`, `93790`, `93792`, `93794`, `93796`, `93798`, `93800`, `93802`, `93804`, `93806`, `93808`, `93809`, `93812`, `93814`, `93816`, `93819`, `93821`, `93823`, `93827`, `93828`, `93830`, `93832`, `93833`, `93835`, `93837`, `93839`, `93841`, `93843`, `93845`, `93847`, `93848`, `93850`, `93852`, `93854`, `93856`, `93858`, `93860`, `93862`, `93864`, `93865`, `93867`, `93869`, `93873`, `93875`, `93877`, `93878`, `93880`, `93882`, `93883`, `93884`, `93886`, `93888`, `93890`, `93892`, `93893`, `93894`, `93896`, `93898`, `93900`, `93901`, `93903`, `93904`, `93905`, `93907`, `93909`, `93911`, `93914`, `93915`, `93917`, `93920`, `93921`, `93923`, `93924`, `93926`, `93927`, `93929`, `93930`, `93932`, `93934`, `93936`, `93938`, `93942`, `93944`, `93946`, `93947`, `93948`, `93950`, `93952`, `93954`, `93955`, `93956`, `93958`, `93960`, `93962`, `93964`, `93966`, `93968`, `93970`, `93972`, `93974`, `93976`, `93978`, `93980`, `93981`, `93983`, `93984`, `93986`, `93988`, `93990`, `93992`, `93994`, `93995`, `93996`, `93997`, `93999`, `94001`, `94003`, `94005`, `94006`, `94008`, `94010`, `94012`, `94016`, `94017`, `94018`, `94019`, `94021`, `94023`, `94024`, `94027`, `94029`, `94030`, `94031`, `94033`, `94037`, `94039`, `94040`, `94042`, `94044`, `94046`, `94048`, `94050`, `94051`, `94053`, `94055`, `94056`, `94058`, `94060`, `94062`, `94064`, `94066`, `94068`, `94070`, `94072`, `94074`, `94075`, `94076`, `94078`, `94079`, `94080`, `94082`, `94083`, `94085`, `94086`, `94088`, `94091`, `94092`, `94093`, `94095`, `94096`, `94097`, `94098`, `94100`, `94102`, `94103`, `94105`, `94107`, `94109`, `94110`, `94112`, `94114`, `94116`, `94117`, `94121`, `94125`, `94126`, `94128`, `94132`, `94136`, `94137`, `94139`, `94141`, `94142`, `94144`, `94145`, `94147`, `94149`, `94153`, `94155`, `94156`, `94158`, `94159`, `94161`, `94164`, `94166`, `94167`, `94169`, `94170`, `94173`, `94176`, `94177`, `94179`, `94181`, `94182`, `94183`, `94185`, `94187`, `94189`, `94191`, `94192`, `94193`, `94194`, `94196`, `94198`, `94200`, `94203`, `94205`, `94207`, `94209`, `94211`, `94212`, `94214`, `94216`, `94218`, `94219`, `94221`, `94225`, `94227`, `94228`, `94231`, `94233`, `94234`, `94236`, `94239`, `94241`, `94243`, `94245`, `94247`, `94248`, `94249`, `94251`, `94252`, `94254`, `94256`, `94258`, `94260`, `94263`, `94264`, `94266`, `94267`, `94270`, `94271`, `94273`, `94275`, `94276`, `94278`, `94280`, `94282`, `94284`, `94286`, `94287`, `94288`, `94289`, `94290`, `94292`, `94293`, `94295`, `94296`, `94297`, `94299`, `94300`, `94302`, `94304`, `94305`, `94307`, `94310`, `94311`, `94312`, `94314`, `94316`, `94317`, `94318`, `94319`, `94320`, `94321`, `94322`, `94323`, `94325`, `94326`, `94327`, `94329`, `94331`, `94332`, `94333`, `94334`, `94336`, `94337`, `94339`, `94341`, `94342`, `94344`, `94345`, `94348`, `94349`, `94350`, `94351`, `94352`, `94353`, `94355`, `94356`, `94357`, `94359`, `94362`, `94364`, `94366`, `94367`, `94369`, `94370`, `94371`, `94373`, `94374`, `94376`, `94379`, `94380`, `94381`, `94383`, `94385`, `94386`, `94387`, `94389`, `94391`, `94392`, `94393`, `94395`, `94397`, `94399`, `94400`, `94401`, `94403`, `94404`, `94405`, `94407`, `94408`, `94410`, `94412`, `94414`, `94417`, `94418`, `94420`, `94422`, `94424`, `94425`, `94427`, `94429`, `94430`, `94431`, `94433`, `94435`, `94437`, `94438`, `94440`, `94442`, `94444`, `94446`, `94448`, `94449`, `94451`, `94453`, `94455`, `94457`, `94458`, `94461`, `94463`, `94465`, `94467`, `94469`, `94471`, `94473`, `94474`, `94475`, `94477`, `94478`, `94480`, `94483`, `94485`, `94487`, `94488`, `94489`, `94491`, `94492`, `94494`, `94496`, `94498`, `94500`, `94502`, `94504`, `94506`, `94508`, `94509`, `94511`, `94512`, `94514`, `94515`, `94517`, `94519`, `94521`, `94522`, `94524`, `94526`, `94528`, `94530`, `94533`, `94534`, `94535`, `94536`, `94537`, `94538`, `94539`, `94541`, `94542`, `94544`, `94545`, `94547`, `94548`, `94550`, `94552`, `94554`, `94556`, `94557`, `94558`, `94560`, `94562`, `94564`, `94566`, `94568`, `94570`, `94572`, `94574`, `94576`, `94578`, `94579`, `94581`, `94583`, `94585`, `94587`, `94589`, `94592`, `94593`, `94595`, `94596`, `94598`, `94601`, `94602`, `94604`, `94606`, `94609`, `94611`, `94612`, `94614`, `94616`, `94618`, `94620`, `94622`, `94624`, `94625`, `94627`, `94629`, `94631`, `94633`, `94635`, `94637`, `94639`, `94641`, `94643`, `94644`, `94646`, `94649`, `94653`, `94654`, `94655`, `94657`, `94661`, `94662`, `94663`, `94666`, `94667`, `94668`, `94670`, `94673`, `94674`, `94678`, `94679`, `94681`, `94684`, `94685`, `94688`, `94691`, `94693`, `94695`, `94697`, `94699`, `94703`, `94705`, `94707`, `94709`, `94710`, `94711`, `94712`, `94713`, `94718`, `94720`, `94723`, `94725`, `94727`, `94729`, `94731`, `94733`, `94735`, `94736`, `94738`, `94739`, `94741`, `94743`, `94744`, `94746`, `94748`, `94750`, `94751`, `94754`, `94756`, `94758`, `94760`, `94762`, `94764`, `94766`, `94768`, `94769`, `94771`, `94774`, `94775`, `94776`, `94778`, `94779`, `94781`, `94783`, `94784`, `94785`, `94786`, `94787`, `94788`, `94789`, `94791`, `94792`, `94793`, `94795`, `94796`, `94798`, `94800`, `94802`, `94804`, `94805`, `94807`, `94808`, `94810`, `94811`, `94813`, `94815`, `94816`, `94818`, `94820`, `94823`, `94825`, `94827`, `94829`, `94831`, `94834`, `94836`, `94838`, `94839`, `94841`, `94842`, `94844`, `94847`, `94849`, `94851`, `94853`, `94855`, `94856`, `94860`, `94861`, `94863`, `94864`, `94866`, `94868`, `94870`, `94872`, `94873`, `94875`, `94877`, `94878`, `94879`, `94880`, `94881`, `94883`, `94884`, `94886`, `94887`, `94888`, `94890`, `94891`, `94893`, `94896`, `94898`, `94900`, `94902`, `94903`, `94905`, `94909`, `94911`, `94913`, `94915`, `94917`, `94918`, `94919`, `94922`, `94924`, `94925`, `94927`, `94928`, `94930`, `94931`, `94933`, `94935`, `94936`, `94938`, `94940`, `94941`, `94943`, `94945`, `94947`, `94949`, `94951`, `94957`, `94958`, `94959`, `94960`, `94961`, `94962`, `94964`, `94965`, `94967`, `94969`, `94970`, `94972`, `94974`, `94976`, `94977`, `94979`, `94980`, `94982`, `94985`, `94987`, `94988`, `94990`, `94992`, `94994`, `94996`, `94998`, `95000`, `95002`, `95003`, `95005`, `95007`, `95009`, `95010`, `95013`, `95015`, `95016`, `95019`, `95021`, `95023`, `95025`, `95026`, `95028`, `95029`, `95031`, `95033`, `95034`, `95035`, `95041`, `95044`, `95046`, `95048`, `95050`, `95053`, `95055`, `95057`, `95059`, `95060`, `95062`, `95064`, `95066`, `95068`, `95070`, `95072`, `95073`, `95075`, `95076`, `95078`, `95080`, `95082`, `95083`, `95085`, `95088`, `95090`, `95092`, `95098`, `95099`, `95101`, `95102`, `95104`, `95106`, `95110`, `95111`, `95113`, `95114`, `95115`, `95117`, `95119`, `95120`, `95123`, `95125`, `95126`, `95127`, `95128`, `95131`, `95132`, `95134`, `95135`, `95137`, `95139`, `95140`, `95141`, `95143`, `95145`, `95147`, `95149`, `95151`, `95153`, `95154`, `95156`, `95158`, `95159`, `95161`, `95162`, `95164`, `95166`, `95167`, `95168`, `95170`, `95171`, `95172`, `95173`, `95175`, `95177`, `95180`, `95183`, `95184`, `95186`, `95190`, `95191`, `95193`, `95194`, `95195`, `95197`, `95199`, `95201`, `95202`, `95204`, `95206`, `95208`, `95212`, `95216`, `95221`, `95222`, `95223`, `95225`, `95226`, `95230`, `95232`, `95233`, `95234`, `95235`, `95236`, `95237`, `95239`, `95241`, `95243`, `95245`, `95247`, `95251`, `95253`, `95254`, `95255`, `95257`, `95258`, `95260`, `95264`, `95265`, `95267`, `95268`, `95269`, `95271`, `95273`, `95275`, `95277`, `95279`, `95281`, `95282`, `95284`, `95286`, `95288`, `95290`, `95291`, `95292`, `95294`, `95295`, `95296`, `95298`, `95299`, `95301`, `95302`, `95303`, `95305`, `95306`, `95307`, `95309`, `95311`, `95313`, `95314`, `95315`, `95319`, `95321`, `95323`, `95324`, `95325`, `95326`, `95330`, `95332`, `95334`, `95335`, `95337`, `95338`, `95339`, `95341`, `95343`, `95344`, `95346`, `95347`, `95349`, `95350`, `95353`, `95355`, `95356`, `95358`, `95360`, `95362`, `95364`, `95366`, `95368`, `95370`, `95371`, `95373`, `95375`, `95376`, `95377`, `95379`, `95381`, `95383`, `95384`, `95386`, `95388`, `95390`, `95392`, `95394`, `95396`, `95400`, `95402`, `95405`, `95406`, `95407`, `95408`, `95409`, `95412`, `95414`, `95416`, `95417`, `95421`, `95423`, `95424`, `95426`, `95428`, `95429`, `95431`, `95433`, `95436`, `95437`, `95441`, `95443`, `95445`, `95447`, `95450`, `95452`, `95454`, `95456`, `95457`, `95459`, `95461`, `95463`, `95465`, `95466`, `95468`, `95470`, `95472`, `95474`, `95477`, `95478`, `95480`, `95481`, `95483`, `95485`, `95487`, `95489`, `95490`, `95493`, `95494`, `95499`, `95501`, `95503`, `95506`, `95507`, `95509`, `95510`, `95513`, `95515`, `95517`, `95519`, `95520`, `95522`, `95524`, `95525`, `95527`, `95530`, `95532`, `95533`, `95535`, `95537`, `95540`, `95542`, `95544`, `95546`, `95548`, `95550`, `95551`, `95553`, `95555`, `95557`, `95559`, `95561`, `95563`, `95565`, `95567`, `95568`, `95570`, `95571`, `95573`, `95574`, `95576`, `95578`, `95579`, `95581`, `95584`, `95586`, `95588`, `95590`, `95592`, `95594`, `95595`, `95596`, `95598`, `95601`, `95602`, `95606`, `95608`, `95610`, `95611`, `95614`, `95615`, `95617`, `95619`, `95621`, `95622`, `95624`, `95626`, `95628`, `95630`, `95632`, `95634`, `95635`, `95636`, `95638`, `95639`, `95641`, `95643`, `95645`, `95647`, `95649`, `95651`, `95652`, `95656`, `95658`, `95660`, `95661`, `95662`, `95666`, `95668`, `95669`, `95670`, `95671`, `95672`, `95674`, `95679`, `95680`, `95682`, `95683`, `95684`, `95685`, `95686`, `95688`, `95689`, `95690`, `95692`, `95694`, `95696`, `95697`, `95699`, `95701`, `95704`, `95706`, `95708`, `95710`, `95711`, `95713`, `95714`, `95715`, `95720`, `95721`, `95723`, `95724`, `95725`, `95727`, `95729`, `95731`, `95733`, `95735`, `95736`, `95738`, `95740`, `95742`, `95744`, `95746`, `95747`, `95749`, `95751`, `95753`, `95754`, `95757`, `95758`, `95760`, `95761`, `95763`, `95764`, `95766`, `95768`, `95770`, `95772`, `95773`, `95775`, `95777`, `95779`, `95781`, `95785`, `95787`, `95788`, `95789`, `95791`, `95793`, `95795`, `95797`, `95801`, `95802`, `95803`, `95806`, `95807`, `95809`, `95811`, `95812`, `95813`, `95815`, `95817`, `95819`, `95821`, `95823`, `95824`, `95826`, `95828`, `95830`, `95832`, `95833`, `95835`, `95837`, `95839`, `95841`, `95843`, `95845`, `95847`, `95849`, `95851`, `95853`, `95854`, `95856`, `95858`, `95860`, `95862`, `95865`, `95867`, `95868`, `95870`, `95872`, `95874`, `95876`, `95878`, `95879`, `95882`, `95884`, `95886`, `95888`, `95890`, `95892`, `95893`, `95894`, `95896`, `95898`, `95900`, `95901`, `95903`, `95904`, `95905`, `95907`, `95909`, `95910`, `95911`, `95913`, `95915`, `95916`, `95918`, `95920`, `95922`, `95924`, `95927`, `95928`, `95930`, `95932`, `95934`, `95936`, `95938`, `95940`, `95941`, `95943`, `95944`, `95946`, `95948`, `95950`, `95951`, `95954`, `95956`, `95957`, `95958`, `95960`, `95961`, `95963`, `95964`, `95966`, `95968`, `95969`, `95971`, `95973`, `95975`, `95976`, `95978`, `95980`, `95982`, `95984`, `95985`, `95987`, `95988`, `95990`, `95992`, `95994`, `95995`, `95997`, `96000`, `96001`, `96003`, `96005`, `96007`, `96009`, `96011`, `96012`, `96014`, `96015`, `96016`, `96018`, `96020`, `96021`, `96023`, `96024`, `96026`, `96030`, `96032`, `96033`, `96035`, `96036`, `96037`, `96039`, `96040`, `96044`, `96046`, `96048`, `96050`, `96052`, `96054`, `96056`, `96057`, `96060`, `96061`, `96063`, `96065`, `96067`, `96068`, `96070`, `96072`, `96073`, `96075`, `96077`, `96079`, `96080`, `96083`, `96085`, `96086`, `96088`, `96089`, `96091`, `96093`, `96094`, `96095`, `96097`, `96100`, `96101`, `96103`, `96104`, `96106`, `96108`, `96110`, `96111`, `96112`, `96114`, `96116`, `96118`, `96120`, `96122`, `96124`, `96126`, `96127`, `96129`, `96132`, `96134`, `96136`, `96137`, `96139`, `96141`, `96142`, `96144`, `96145`, `96146`, `96147`, `96149`, `96151`, `96153`, `96155`, `96157`, `96159`, `96161`, `96163`, `96165`, `96166`, `96167`, `96170`, `96172`, `96174`, `96176`, `96179`, `96180`, `96182`, `96183`, `96185`, `96187`, `96189`, `96192`, `96193`, `96195`, `96196`, `96199`, `96201`, `96202`, `96204`, `96206`, `96207`, `96208`, `96209`, `96211`, `96213`, `96214`, `96216`, `96218`, `96223`, `96224`, `96225`, `96226`, `96227`, `96230`, `96232`, `96233`, `96234`, `96235`, `96237`, `96238`, `96240`, `96242`, `96245`, `96247`, `96249`, `96250`, `96252`, `96253`, `96255`, `96257`, `96258`, `96259`, `96261`, `96263`, `96265`, `96267`, `96269`, `96271`, `96273`, `96276`, `96278`, `96279`, `96281`, `96283`, `96285`, `96287`, `96289`, `96290`, `96292`, `96293`, `96296`, `96298`, `96300`, `96301`, `96303`, `96305`, `96306`, `96308`, `96310`, `96312`, `96314`, `96315`, `96317`, `96319`, `96320`, `96322`, `96324`, `96325`, `96327`, `96329`, `96331`, `96333`, `96335`, `96337`, `96339`, `96341`, `96342`, `96344`, `96346`, `96348`, `96349`, `96350`, `96351`, `96352`, `96353`, `96355`, `96359`, `96361`, `96363`, `96364`, `96366`, `96368`, `96369`, `96370`, `96372`, `96374`, `96376`, `96378`, `96379`, `96381`, `96383`, `96386`, `96388`, `96390`, `96393`, `96395`, `96397`, `96399`, `96401`, `96403`, `96405`, `96407`, `96408`, `96410`, `96412`, `96413`, `96416`, `96418`, `96419`, `96421`, `96425`, `96427`, `96429`, `96430`, `96433`, `96435`, `96436`, `96438`, `96440`, `96442`, `96443`, `96444`, `96448`, `96450`, `96451`, `96453`, `96454`, `96455`, `96457`, `96458`, `96460`, `96462`, `96463`, `96465`, `96468`, `96470`, `96471`, `96473`, `96475`, `96476`, `96478`, `96480`, `96483`, `96485`, `96487`, `96488`, `96490`, `96492`, `96494`, `96496`, `96498`, `96500`, `96502`, `96504`, `96506`, `96508`, `96510`, `96512`, `96515`, `96517`, `96519`, `96521`, `96522`, `96523`, `96524`, `96525`, `96526`, `96527`, `96528`, `96529`, `96531`, `96532`, `96535`, `96536`, `96539`, `96541`, `96545`, `96546`, `96547`, `96549`, `96550`, `96551`, `96553`, `96555`, `96557`, `96558`, `96559`, `96561`, `96563`, `96565`, `96567`, `96569`, `96571`, `96573`, `96574`, `96576`, `96578`, `96579`, `96581`, `96583`, `96585`, `96587`, `96589`, `96590`, `96592`, `96593`, `96595`, `96596`, `96598`, `96600`, `96602`, `96603`, `96605`, `96607`, `96609`, `96610`, `96611`, `96613`, `96614`, `96616`, `96618`, `96620`, `96621`, `96623`, `96625`, `96626`, `96627`, `96628`, `96630`, `96632`, `96634`, `96635`, `96636`, `96639`, `96641`, `96644`, `96646`, `96647`, `96648`, `96650`, `96651`, `96653`, `96655`, `96657`, `96658`, `96660`, `96662`, `96664`, `96666`, `96668`, `96670`, `96672`, `96675`, `96679`, `96681`, `96683`, `96685`, `96686`, `96687`, `96688`, `96690`, `96692`, `96694`, `96695`, `96698`, `96699`, `96702`, `96704`, `96706`, `96708`, `96710`, `96711`, `96715`, `96717`, `96719`, `96721`, `96723`, `96724`, `96725`, `96727`, `96729`, `96730`, `96732`, `96734`, `96735`, `96736`, `96738`, `96739`, `96741`, `96743`, `96744`, `96746`, `96749`, `96751`, `96752`, `96753`, `96754`, `96756`, `96757`, `96759`, `96760`, `96762`, `96763`, `96766`, `96767`, `96769`, `96771`, `96772`, `96773`, `96775`, `96776`, `96777`, `96778`, `96779`, `96781`, `96782`, `96783`, `96785`, `96788`, `96790`, `96792`, `96793`, `96795`, `96797`, `96799`, `96801`, `96802`, `96803`, `96804`, `96806`, `96808`, `96809`, `96810`, `96811`, `96813`, `96815`, `96816`, `96818`, `96820`, `96822`, `96823`, `96825`, `96828`, `96830`, `96832`, `96835`, `96836`, `96838`, `96840`, `96843`, `96845`, `96847`, `96849`, `96851`, `96853`, `96855`, `96856`, `96858`, `96860`, `96861`, `96862`, `96863`, `96865`, `96866`, `96868`, `96870`, `96871`, `96872`, `96873`, `96874`, `96875`, `96877`, `96879`, `96881`, `96883`, `96885`, `96886`, `96888`, `96890`, `96892`, `96893`, `96895`, `96897`, `96899`, `96901`, `96903`, `96904`, `96907`, `96908`, `96910`, `96911`, `96913`, `96915`, `96916`, `96918`, `96919`, `96920`, `96923`, `96925`, `96927`, `96929`, `96931`, `96933`, `96934`, `96936`, `96941`, `96942`, `96945`, `96946`, `96948`, `96949`, `96951`, `96953`, `96955`, `96957`, `96958`, `96960`, `96962`, `96963`, `96965`, `96967`, `96968`, `96970`, `96971`, `96974`, `96976`, `96977`, `96979`, `96981`, `1225`, `96983`, `96985`, `96987`, `96989`, `96990`, `96992`, `96993`, `96995`, `96996`, `96998`, `96999`, `97000`, `97001`, `97003`, `97005`, `97006`, `97008`, `97010`, `97011`, `97012`, `97014`, `97016`, `97018`, `97020`, `97021`, `97023`, `97024`, `97026`, `97028`, `97030`, `97032`, `97034`, `97036`, `97037`, `97039`, `97041`, `97043`, `97044`, `97047`, `97048`, `97049`, `97050`, `97051`, `97052`, `97054`, `97057`, `97058`, `97059`, `97061`, `97062`, `97064`, `97065`, `97066`, `97068`, `97070`, `97072`, `97073`, `97075`, `97077`, `97078`, `97080`, `97082`, `97083`, `97084`, `97086`, `97088`, `97090`, `97092`, `97095`, `97096`, `97098`, `97101`, `97102`, `97105`, `97107`, `97109`, `97111`, `97113`, `97114`, `97116`, `97118`, `97119`, `97121`, `97122`, `97124`, `97126`, `97128`, `97130`, `97131`, `16791`, `97133`, `97134`, `97138`, `97140`, `97142`, `97144`, `97146`, `97147`, `97149`, `97150`, `97152`, `97154`, `97156`, `97158`, `97159`, `97160`, `97162`, `97165`, `97167`, `97168`, `97169`, `97171`, `97174`, `97176`, `97178`, `97180`, `97182`, `97183`, `97184`, `97185`, `97187`, `97188`, `97190`, `97192`, `97194`, `97195`, `97197`, `97199`, `97201`, `97203`, `97205`, `97206`, `97207`, `97209`, `97211`, `97212`, `97213`, `97214`, `97216`, `97217`, `97218`, `97220`, `97223`, `97224`, `97227`, `97229`, `97234`, `97237`, `97238`, `97240`, `97242`, `97244`, `97246`, `97248`, `97250`, `97252`, `97254`, `97255`, `97257`, `97259`, `97260`, `97262`, `97264`, `97265`, `97267`, `97270`, `97272`, `97274`, `97276`, `97278`, `97282`, `97284`, `97287`, `97288`, `97290`, `97292`, `97294`, `97295`, `97297`, `97299`, `97301`, `97303`, `97304`, `97306`, `97308`, `97310`, `97311`, `97313`, `97315`, `97317`, `97319`, `97320`, `97322`, `97324`, `97325`, `97326`, `97328`, `97330`, `97331`, `97332`, `97333`, `97335`, `97337`, `97339`, `97341`, `97343`, `97345`, `97347`, `97349`, `97350`, `97352`, `97356`, `97358`, `97360`, `97361`, `97363`, `97364`, `97366`, `97367`, `97369`, `97372`, `97373`, `97375`, `97377`, `97379`, `97380`, `97382`, `97385`, `97386`, `97387`, `97389`, `97392`, `97394`, `97396`, `97397`, `97399`, `97400`, `97401`, `97405`, `97408`, `97410`, `97412`, `97414`, `97416`, `97417`, `97419`, `97420`, `97421`, `97425`, `97426`, `97429`, `97431`, `97432`, `97434`, `97436`, `97438`, `97439`, `97441`, `97442`, `97443`, `97445`, `97446`, `97450`, `97452`, `97454`, `97456`, `97458`, `97461`, `97463`, `97465`, `97466`, `97468`, `97470`, `97472`, `97473`, `97474`, `97475`, `97476`, `97477`, `97478`, `97480`, `97481`, `97483`, `97485`, `97486`, `97488`, `97489`, `97491`, `97493`, `97495`, `97496`, `97497`, `97499`, `97501`, `97503`, `97504`, `97505`, `97507`, `97509`, `97511`, `97513`, `97514`, `97516`, `97518`, `97520`, `97522`, `97523`, `97525`, `97527`, `97529`, `97531`, `97532`, `97533`, `97534`, `97535`, `97537`, `97539`, `97541`, `97543`, `97544`, `97545`, `97546`, `97547`, `97548`, `97549`, `97551`, `97553`, `97555`, `97556`, `97557`, `97559`, `97560`, `97562`, `97564`, `97566`, `97568`, `97569`, `97571`, `97574`, `97576`, `97577`, `97578`, `97580`, `97582`, `97583`, `97584`, `97586`, `97587`, `97588`, `97589`, `97591`, `97592`, `97594`, `97596`, `97598`, `97600`, `97601`, `97603`, `97604`, `97606`, `97608`, `97610`, `97611`, `97615`, `97616`, `97618`, `97619`, `97620`, `97623`, `97624`, `97626`, `97628`, `97630`, `97632`, `97634`, `97635`, `97637`, `97639`, `97640`, `97641`, `97643`, `97645`, `97647`, `97649`, `97651`, `97652`, `97653`, `97655`, `97657`, `97659`, `97660`, `97663`, `97665`, `97667`, `97669`, `97671`, `97673`, `97674`, `97675`, `97676`, `97678`, `97680`, `97682`, `97685`, `97688`, `97690`, `97691`, `97693`, `97695`, `97697`, `97699`, `97700`, `97701`, `97704`, `97705`, `97706`, `97708`, `97710`, `97711`, `97713`, `97715`, `97717`, `97719`, `97720`, `97722`, `97723`, `97724`, `97725`, `97726`, `97727`, `97728`, `97730`, `97732`, `97733`, `97734`, `97736`, `97738`, `97740`, `97742`, `97744`, `97746`, `97747`, `97748`, `97750`, `97752`, `97754`, `97755`, `97756`, `97757`, `97759`, `97760`, `97762`, `97763`, `97764`, `97766`, `97767`, `97769`, `97771`, `97772`, `97773`, `97775`, `97776`, `97780`, `97782`, `97784`, `97785`, `97786`, `97787`, `97789`, `97790`, `97792`, `97795`, `97798`, `97802`, `97804`, `97806`, `97807`, `97808`, `97811`, `97812`, `97814`, `97815`, `97816`, `97817`, `97819`, `97821`, `97825`, `97827`, `97829`, `97830`, `97833`, `97835`, `97837`, `97839`, `97840`, `97842`, `97843`, `97844`, `97845`, `97847`, `97848`, `97850`, `97852`, `97854`, `97855`, `97857`, `97862`, `97863`, `97864`, `97865`, `97867`, `97869`, `97871`, `97873`, `97875`, `97877`, `97879`, `97880`, `97883`, `97885`, `97886`, `97888`, `97889`, `97890`, `97892`, `97893`, `97894`, `97898`, `97900`, `97901`, `97902`, `97904`, `97906`, `97908`, `97910`, `97913`, `97915`, `97916`, `97917`, `97918`, `97920`, `97921`, `97922`, `97924`, `97926`, `97928`, `97929`, `97930`, `97932`, `97934`, `97935`, `97937`, `97938`, `97940`, `97941`, `97943`, `97944`, `97946`, `97948`, `97949`, `97950`, `97952`, `97954`, `97956`, `97958`, `97959`, `97961`, `97963`, `97965`, `97967`, `97969`, `97970`, `97976`, `97978`, `97979`, `97981`, `97982`, `97984`, `97985`, `97987`, `97988`, `97989`, `97991`, `97993`, `97994`, `97996`, `97998`, `97999`, `98001`, `98002`, `98005`, `98006`, `98007`, `98009`, `98010`, `98013`, `98015`, `98016`, `98018`, `98020`, `98022`, `98023`, `98026`, `98028`, `98030`, `98031`, `98033`, `98035`, `98037`, `98038`, `98040`, `98042`, `98043`, `98045`, `98047`, `98049`, `98050`, `98052`, `98057`, `98059`, `98060`, `98061`, `98063`, `98065`, `98067`, `98069`, `98071`, `98073`, `98075`, `98076`, `98077`, `98078`, `98080`, `98081`, `98082`, `98084`, `98086`, `98088`, `98090`, `98092`, `98093`, `98094`, `98095`, `98098`, `98100`, `98102`, `98104`, `98106`, `98107`, `98109`, `98111`, `98113`, `98114`, `98116`, `98118`, `98120`, `98122`, `98123`, `98124`, `98126`, `98129`, `98131`, `98133`, `98134`, `98136`, `98137`, `98139`, `98140`, `98141`, `98142`, `98144`, `98146`, `98148`, `98150`, `98151`, `98153`, `98155`, `98156`, `98158`, `98160`, `98162`, `98164`, `98166`, `98170`, `98172`, `98174`, `98175`, `98177`, `98178`, `98180`, `98182`, `98184`, `98185`, `98186`, `98187`, `98189`, `98191`, `98192`, `98194`, `98196`, `98199`, `98200`, `98203`, `98205`, `98207`, `98210`, `98212`, `98214`, `98216`, `98218`, `98220`, `98223`, `98224`, `98226`, `98228`, `98229`, `98231`, `98233`, `98235`, `98237`, `98240`, `98243`, `98245`, `98247`, `98249`, `98252`, `98253`, `98255`, `98257`, `98258`, `98260`, `98262`, `98263`, `98265`, `98267`, `98269`, `98270`, `98271`, `98272`, `98274`, `98275`, `98278`, `98279`, `98281`, `98283`, `98285`, `98287`, `98288`, `98289`, `98290`, `98294`, `98298`, `98299`, `98300`, `98301`, `98302`, `98303`, `98305`, `98306`, `98308`, `98310`, `98312`, `98313`, `98314`, `98317`, `98319`, `98322`, `98323`, `98324`, `98326`, `98328`, `98330`, `98331`, `98333`, `98335`, `98336`, `98338`, `98340`, `98342`, `98344`, `98346`, `98347`, `98349`, `98351`, `98353`, `98355`, `98357`, `98358`, `98360`, `98362`, `98364`, `98365`, `98367`, `98368`, `98369`, `98371`, `98372`, `98374`, `98376`, `98377`, `98379`, `98383`, `98385`, `98387`, `98389`, `98391`, `98393`, `98394`, `98396`, `98398`, `98402`, `98404`, `98406`, `98408`, `98410`, `98412`, `98414`, `98415`, `98416`, `98418`, `98420`, `98421`, `98423`, `98424`, `98426`, `98428`, `98429`, `98431`, `98433`, `98435`, `98436`, `98437`, `98439`, `98441`, `98443`, `98445`, `98447`, `98449`, `98451`, `98453`, `98455`, `98457`, `98459`, `98461`, `98463`, `98465`, `98468`, `98470`, `98472`, `98474`, `98476`, `98478`, `98479`, `98481`, `98483`, `98485`, `98487`, `98489`, `98491`, `98493`, `98495`, `98496`, `98500`, `98502`, `98504`, `98506`, `98508`, `98509`, `98510`, `98512`, `98516`, `98518`, `98519`, `98521`, `98523`, `98525`, `98526`, `98527`, `98529`, `98531`, `98532`, `98536`, `98540`, `98541`, `98543`, `98544`, `98546`, `98548`, `98550`, `98552`, `98553`, `98554`, `98556`, `98558`, `98560`, `98562`, `98563`, `98565`, `98567`, `98569`, `98571`, `98573`, `98575`, `98576`, `98578`, `98580`, `98581`, `98583`, `98585`, `98586`, `98588`, `98590`, `98591`, `98593`, `98596`, `98598`, `98599`, `98601`, `98603`, `98605`, `98607`, `98609`, `98611`, `98613`, `98616`, `98618`, `98620`, `98621`, `98623`, `98625`, `98626`, `98629`, `98630`, `98631`, `98633`, `98635`, `98637`, `98638`, `98640`, `98642`, `98644`, `98646`, `98648`, `98651`, `98652`, `98654`, `98655`, `98657`, `98659`, `98662`, `98663`, `98665`, `98667`, `98669`, `98671`, `98672`, `98674`, `98676`, `98678`, `98680`, `98681`, `98682`, `98683`, `98684`, `98687`, `98689`, `98691`, `98693`, `98694`, `98695`, `98697`, `98699`, `98701`, `98703`, `98705`, `98706`, `98708`, `98710`, `98711`, `98713`, `98715`, `98717`, `98719`, `98720`, `98722`, `98724`, `98726`, `98728`, `98730`, `98732`, `98733`, `98735`, `98737`, `98738`, `98739`, `98741`, `98743`, `98745`, `98747`, `98749`, `98750`, `98751`, `98753`, `98755`, `98759`, `98760`, `98762`, `98763`, `98766`, `98767`, `98769`, `98770`, `98772`, `98774`, `98776`, `98778`, `98780`, `98782`, `98783`, `98785`, `98786`, `98788`, `98790`, `98792`, `98793`, `98794`, `98795`, `98797`, `98799`, `98801`, `98803`, `98804`, `98806`, `98808`, `98809`, `98811`, `98813`, `98815`, `98817`, `98819`, `98821`, `98823`, `98825`, `98826`, `98828`, `98830`, `98832`, `98834`, `98835`, `98837`, `98839`, `98841`, `98843`, `98844`, `98845`, `98847`, `98850`, `98851`, `98853`, `98854`, `98856`, `98859`, `98860`, `98861`, `98863`, `98864`, `98866`, `98867`, `98868`, `98870`, `98871`, `98874`, `98876`, `98878`, `98879`, `98883`, `98885`, `98887`, `98889`, `98894`, `98896`, `98898`, `98899`, `98901`, `98903`, `98904`, `98905`, `98907`, `98909`, `98912`, `98914`, `98915`, `98917`, `98918`, `98920`, `98922`, `98924`, `98926`, `98928`, `98929`, `98932`, `98934`, `98937`, `98939`, `98941`, `98943`, `98944`, `98946`, `98948`, `98950`, `98951`, `98952`, `98954`, `98956`, `98958`, `98959`, `98961`, `98963`, `98967`, `98968`, `98970`, `98973`, `98975`, `98976`, `98978`, `98979`, `98982`, `98983`, `98984`, `98986`, `98987`, `98988`, `98990`, `98991`, `98993`, `98996`, `98998`, `99000`, `99001`, `99003`, `99004`, `99005`, `99007`, `99009`, `99011`, `99013`, `99014`, `99016`, `99019`, `99020`, `99022`, `99024`, `99026`, `99028`, `99033`, `99034`, `99035`, `99037`, `99038`, `99040`, `99042`, `99044`, `99045`, `99047`, `99049`, `99051`, `99052`, `99054`, `99055`, `99058`, `99059`, `99061`, `99062`, `99064`, `99066`, `99067`, `99069`, `99071`, `99074`, `99075`, `99077`, `99079`, `99081`, `99083`, `99086`, `99088`, `99089`, `99091`, `99092`, `99094`, `99097`, `99099`, `99101`, `99103`, `99105`, `99107`, `99108`, `99109`, `99110`, `99111`, `99113`, `99114`, `99116`, `99118`, `99120`, `99122`, `99124`, `99126`, `99127`, `99129`, `99131`, `99132`, `99134`, `99136`, `99138`, `99140`, `99141`, `99143`, `99145`, `99148`, `99150`, `99152`, `99155`, `99157`, `99159`, `99161`, `99162`, `99164`, `99166`, `99167`, `99168`, `99170`, `99171`, `99173`, `99175`, `99177`, `99179`, `99181`, `99183`, `99184`, `99186`, `99188`, `99189`, `99192`, `99193`, `99195`, `99196`, `99197`, `99199`, `99201`, `99202`, `99204`, `99206`, `99209`, `99210`, `99212`, `99214`, `99216`, `99217`, `99219`, `99221`, `99223`, `99224`, `99226`, `99228`, `99229`, `99230`, `99232`, `99233`, `99235`, `99236`, `99237`, `99239`, `99240`, `99241`, `99243`, `99248`, `99249`, `99251`, `99254`, `99255`, `99256`, `99258`, `99259`, `99260`, `99262`, `99264`, `99265`, `99267`, `99269`, `99271`, `99274`, `99276`, `99277`, `99280`, `99281`, `99283`, `99285`, `99287`, `99289`, `99291`, `99293`, `99295`, `99297`, `99298`, `99300`, `99301`, `99303`, `99305`, `99306`, `99307`, `99308`, `99309`, `99311`, `99313`, `99314`, `99316`, `99317`, `99318`, `99320`, `99322`, `99324`, `99326`, `99328`, `99330`, `99332`, `99334`, `99337`, `99339`, `99341`, `99343`, `99345`, `99347`, `99351`, `99352`, `99354`, `99357`, `99359`, `99361`, `99363`, `99365`, `99368`, `99370`, `99372`, `99374`, `99376`, `99378`, `99380`, `99382`, `99383`, `99385`, `99386`, `99388`, `99390`, `99392`, `99394`, `99396`, `99398`, `99399`, `99401`, `99402`, `99403`, `99404`, `99407`, `99409`, `99411`, `99412`, `99414`, `99416`, `99418`, `99419`, `99422`, `99424`, `99425`, `99427`, `99428`, `99430`, `99431`, `99432`, `99434`, `99436`, `99437`, `99439`, `99443`, `99447`, `99449`, `99450`, `99451`, `99453`, `99455`, `99456`, `99457`, `99459`, `99460`, `99462`, `99463`, `99465`, `99467`, `99468`, `99470`, `99471`, `99473`, `99475`, `99477`, `99479`, `99481`, `99483`, `99485`, `99487`, `99489`, `99491`, `99493`, `99495`, `99496`, `99498`, `99499`, `99501`, `99503`, `99504`, `99506`, `99507`, `99509`, `99511`, `99513`, `99516`, `99517`, `99518`, `99522`, `99523`, `99524`, `99527`, `99529`, `99530`, `99532`, `99535`, `99537`, `99539`, `99540`, `99542`, `99544`, `99546`, `99548`, `99549`, `99551`, `99552`, `99554`, `99556`, `99557`, `99559`, `99561`, `99563`, `99564`, `99566`, `99567`, `99568`, `99570`, `99572`, `99574`, `99576`, `99577`, `99578`, `99579`, `99580`, `99582`, `99584`, `99586`, `99588`, `99590`, `99592`, `99594`, `99597`, `99598`, `99600`, `99602`, `99604`, `99607`, `99609`, `99611`, `99614`, `99615`, `99617`, `99620`, `99621`, `99624`, `99626`, `99628`, `99630`, `99632`, `99634`, `99636`, `99638`, `99639`, `99640`, `99642`, `99643`, `99644`, `99646`, `99652`, `99654`, `99656`, `99659`, `99661`, `99663`, `99665`, `99667`, `99670`, `99673`, `99675`, `99676`, `99678`, `99680`, `99682`, `99683`, `99686`, `99688`, `99689`, `99691`, `99692`, `99694`, `99695`, `99697`, `99698`, `99700`, `99702`, `99704`, `99706`, `99708`, `99709`, `99710`, `99713`, `99714`, `99715`, `99717`, `99720`, `99721`, `99722`, `99723`, `99725`, `99727`, `99728`, `99729`, `99731`, `99733`, `99736`, `99738`, `99740`, `99742`, `99743`, `99745`, `99746`, `99748`, `99749`, `99750`, `99752`, `99754`, `99756`, `99758`, `99760`, `99761`, `99762`, `99765`, `99766`, `99768`, `99769`, `99770`, `99772`, `99774`, `99780`, `99781`, `99783`, `99785`, `99786`, `99788`, `99790`, `99792`, `99794`, `99796`, `99798`, `99800`, `99803`, `99804`, `99805`, `99806`, `99808`, `99810`, `99812`, `99813`, `99815`, `99817`, `99819`, `99822`, `99824`, `99825`, `99826`, `99828`, `99831`, `99833`, `99835`, `99837`, `99839`, `99841`, `99842`, `99843`, `99844`, `99846`, `99848`, `99849`, `99851`, `99852`, `99855`, `99857`, `99859`, `99861`, `99863`, `99865`, `99866`, `99867`, `99868`, `99870`, `99874`, `99876`, `99879`, `99880`, `99882`, `99884`, `99885`, `99887`, `99888`, `99889`, `99891`, `99894`, `99896`, `99898`, `99901`, `99903`, `99906`, `99907`, `99910`, `99912`, `99914`, `99915`, `99917`, `99919`, `99922`, `99924`, `99925`, `99927`, `99929`, `99931`, `99933`, `99934`, `99936`, `99938`, `99940`, `99942`, `99944`, `99946`, `99948`, `99950`, `99951`, `99953`, `99956`, `99958`, `99960`, `99962`, `99964`, `99965`, `99967`, `99970`, `99972`, `99974`, `99976`, `99978`, `99980`, `99982`, `99983`, `99985`, `99986`, `99987`, `99989`, `99991`, `99993`, `99995`, `99997`, `99999`, `100000`, `100001`, `100003`, `100005`, `100007`, `100009`, `100010`, `100011`, `100013`, `100014`, `100016`, `100018`, `100019`, `100021`, `100023`, `100025`, `100026`, `100028`, `100029`, `100030`, `100033`, `100034`, `100036`, `100038`, `100039`, `100041`, `100043`, `100045`, `100046`, `100047`, `100050`, `100052`, `100054`, `100056`, `100059`, `100060`, `100061`, `100063`, `100065`, `100066`, `100068`, `100070`, `100072`, `100074`, `100075`, `100077`, `100078`, `100080`, `100084`, `100085`, `100086`, `100087`, `100089`, `100091`, `100093`, `100094`, `100096`, `100097`, `100098`, `100100`, `100101`, `100102`, `100104`, `100105`, `100107`, `100109`, `100110`, `100111`, `100113`, `100114`, `100115`, `100116`, `100117`, `100120`, `100122`, `100123`, `100124`, `100126`, `100128`, `100130`, `100134`, `100135`, `100137`, `100141`, `100144`, `100147`, `100149`, `100151`, `100153`, `100155`, `100156`, `100157`, `100159`, `100160`, `100162`, `100164`, `100166`, `100167`, `100168`, `100169`, `100171`, `100173`, `100175`, `100177`, `100178`, `100180`, `100182`, `100184`, `100186`, `100188`, `100189`, `100191`, `100195`, `100196`, `100197`, `100199`, `100201`, `100203`, `100206`, `100210`, `100213`, `100215`, `100218`, `100220`, `100221`, `100222`, `100223`, `100224`, `100226`, `100228`, `100230`, `100232`, `100233`, `100235`, `100237`, `100238`, `100239`, `100241`, `100242`, `100243`, `100245`, `100247`, `100249`, `100251`, `100254`, `100256`, `100257`, `100259`, `100261`, `100262`, `100264`, `100266`, `100267`, `100269`, `100270`, `100272`, `100273`, `100276`, `100277`, `100278`, `100280`, `100281`, `100283`, `100284`, `100285`, `100287`, `100289`, `100290`, `100291`, `100293`, `100295`, `100297`, `100299`, `100301`, `100303`, `100305`, `100307`, `100308`, `100309`, `100311`, `100312`, `100315`, `100317`, `100319`, `100321`, `100323`, `100325`, `100327`, `100329`, `100331`, `100332`, `100333`, `100334`, `100336`, `100338`, `100339`, `100341`, `100343`, `100344`, `100346`, `100347`, `100348`, `100349`, `100350`, `100351`, `100353`, `100355`, `100359`, `100360`, `100362`, `100364`, `100366`, `100367`, `100369`, `100370`, `100371`, `100373`, `100374`, `100378`, `100379`, `100380`, `100382`, `100384`, `100386`, `100388`, `100390`, `100392`, `100394`, `100396`, `100397`, `100399`, `100401`, `100402`, `100403`, `100405`, `100409`, `100410`, `100412`, `100413`, `100414`, `100416`, `100418`, `100419`, `100421`, `100423`, `100424`, `100426`, `100427`, `100428`, `100429`, `100430`, `100431`, `100432`, `100433`, `100434`, `100435`, `100436`, `100438`, `100439`, `100441`, `100443`, `100445`, `100447`, `100449`, `100451`, `100452`, `100455`, `100456`, `100457`, `100459`, `100460`, `100462`, `100465`, `100468`, `100470`, `100472`, `100474`, `100476`, `100477`, `100481`, `100483`, `100484`, `100486`, `100488`, `100489`, `100491`, `100492`, `100493`, `100495`, `100497`, `100499`, `100501`, `100502`, `100505`, `100507`, `100509`, `100512`, `100515`, `100517`, `100520`, `100521`, `100523`, `100525`, `100526`, `100528`, `100530`, `100531`, `100535`, `100536`, `100538`, `100539`, `100541`, `100542`, `100545`, `100547`, `100549`, `100551`, `100553`, `100555`, `100557`, `100559`, `100560`, `100561`, `100562`, `100563`, `100565`, `100567`, `100568`, `100570`, `100572`, `100573`, `100574`, `100576`, `100578`, `100579`, `100580`, `100581`, `100583`, `100585`, `100586`, `100588`, `100590`, `100591`, `100592`, `100593`, `100594`, `100596`, `100598`, `100600`, `100602`, `100604`, `100605`, `100607`, `100609`, `100610`, `100612`, `100614`, `100615`, `100617`, `100618`, `100619`, `100621`, `100622`, `100623`, `100624`, `100625`, `100627`, `100630`, `100632`, `100634`, `100636`, `100637`, `100638`, `100639`, `100641`, `100643`, `100645`, `100647`, `100648`, `100650`, `100651`, `100652`, `100654`, `100656`, `100657`, `100658`, `100660`, `100661`, `100663`, `100664`, `100667`, `100668`, `100670`, `100671`, `100673`, `100677`, `100679`, `100681`, `100683`, `100684`, `100686`, `100688`, `100690`, `100692`, `100694`, `100695`, `100697`, `100698`, `100700`, `100701`, `100703`, `100705`, `100706`, `100708`, `100710`, `100711`, `100713`, `100714`, `100719`, `100721`, `100723`, `100724`, `100727`, `100728`, `100730`, `100732`, `100733`, `100735`, `100737`, `100739`, `100743`, `100745`, `100747`, `100749`, `100752`, `100754`, `100755`, `100756`, `100758`, `100759`, `100761`, `100762`, `100764`, `100766`, `100767`, `100768`, `100769`, `100770`, `100771`, `100774`, `100775`, `100777`, `100779`, `100781`, `100783`, `100784`, `100786`, `100788`, `100789`, `100791`, `100793`, `100795`, `100798`, `100799`, `100801`, `100802`, `100803`, `100804`, `100805`, `100807`, `100809`, `100811`, `100813`, `100815`, `100817`, `100818`, `100820`, `100821`, `100822`, `100824`, `100825`, `100827`, `100828`, `100830`, `100832`, `100833`, `100834`, `100837`, `100842`, `100843`, `100844`, `100845`, `100846`, `100848`, `100850`, `100852`, `100854`, `100856`, `100857`, `100859`, `100861`, `100862`, `100864`, `100866`, `100868`, `100869`, `100870`, `100872`, `100874`, `100876`, `100877`, `100879`, `100880`, `100881`, `100883`, `100884`, `100886`, `100888`, `100890`, `100892`, `100894`, `100897`, `100899`, `100901`, `100902`, `100904`, `100905`, `100907`, `100908`, `100910`, `100911`, `100914`, `100917`, `100918`, `100920`, `100921`, `100923`, `100927`, `100929`, `100930`, `100931`, `100933`, `100935`, `100936`, `100937`, `100939`, `100941`, `100943`, `100946`, `100948`, `100949`, `100951`, `100953`, `100955`, `100957`, `100959`, `100960`, `100962`, `100963`, `100964`, `100965`, `100967`, `100969`, `100970`, `100971`, `100973`, `100975`, `100977`, `100979`, `100980`, `100981`, `100982`, `100983`, `100984`, `100986`, `100989`, `100991`, `100992`, `100994`, `100995`, `100997`, `100999`, `101000`, `101001`, `101003`, `101005`, `101007`, `101009`, `101011`, `101012`, `101014`, `101015`, `101017`, `101018`, `101019`, `101020`, `101021`, `101022`, `101023`, `101027`, `101029`, `101030`, `101032`, `101033`, `101035`, `101036`, `101037`, `101042`, `101043`, `101046`, `101048`, `101049`, `101051`, `101053`, `101054`, `101056`, `101058`, `101059`, `101060`, `101062`, `101064`, `101065`, `101067`, `101069`, `101071`, `101073`, `101075`, `101077`, `101078`, `101080`, `101081`, `101082`, `101083`, `101084`, `101087`, `101088`, `101089`, `101090`, `101092`, `101094`, `101096`, `101098`, `101100`, `101102`, `101104`, `101106`, `101107`, `101109`, `101110`, `101112`, `101114`, `101115`, `101117`, `101119`, `101121`, `101123`, `101125`, `101127`, `101128`, `101130`, `101131`, `101133`, `101135`, `101136`, `101137`, `101140`, `101142`, `101144`, `101145`, `101146`, `101148`, `101150`, `101151`, `101152`, `101154`, `101156`, `101158`, `101160`, `101162`, `101164`, `101166`, `101167`, `101169`, `101170`, `101172`, `101174`, `101176`, `101178`, `101179`, `101181`, `101183`, `101184`, `101185`, `101186`, `101188`, `101189`, `101192`, `101194`, `101196`, `101197`, `101199`, `101200`, `101201`, `101202`, `101204`, `101206`, `101208`, `101209`, `101210`, `101211`, `101212`, `101214`, `101215`, `101217`, `101218`, `101220`, `101222`, `101224`, `101227`, `101229`, `101230`, `101232`, `101234`, `101236`, `101238`, `101239`, `101241`, `101244`, `101245`, `101249`, `101250`, `101252`, `101254`, `101256`, `101258`, `101260`, `101261`, `101263`, `101264`, `101265`, `101267`, `101268`, `101270`, `101271`, `101273`, `101275`, `101277`, `101278`, `101280`, `101282`, `101284`, `101286`, `101288`, `101290`, `101292`, `101293`, `101295`, `101296`, `101297`, `101298`, `101299`, `101302`, `101304`, `101305`, `101307`, `101308`, `101310`, `101312`, `101314`, `101316`, `101317`, `101319`, `101320`, `101322`, `101323`, `101324`, `101325`, `101326`, `101327`, `101329`, `101331`, `101333`, `101335`, `101337`, `101338`, `101339`, `101340`, `101342`, `101343`, `101345`, `101347`, `101349`, `101353`, `101354`, `101355`, `101357`, `101359`, `101361`, `101363`, `101368`, `101370`, `101371`, `101373`, `101376`, `101377`, `101379`, `101380`, `101382`, `101384`, `101386`, `101388`, `101390`, `101392`, `101393`, `101394`, `101397`, `101399`, `101401`, `101403`, `101404`, `101405`, `101407`, `101409`, `101411`, `101412`, `101413`, `101414`, `101417`, `101418`, `101419`, `101421`, `101423`, `101425`, `101426`, `101428`, `101430`, `101432`, `101434`, `101435`, `101436`, `101437`, `101438`, `101439`, `101441`, `101443`, `101445`, `101446`, `101447`, `101450`, `101452`, `101453`, `101455`, `101457`, `101460`, `101462`, `101464`, `101466`, `101468`, `101469`, `101471`, `101473`, `101475`, `101476`, `101477`, `101478`, `101481`, `101483`, `101484`, `101486`, `101488`, `101489`, `101490`, `101491`, `101492`, `101493`, `101495`, `101497`, `101498`, `101499`, `101501`, `101503`, `101505`, `101507`, `101509`, `101511`, `101512`, `101514`, `101516`, `101519`, `101520`, `101521`, `101523`, `101524`, `101526`, `101527`, `101528`, `101529`, `101531`, `101533`, `101535`, `101537`, `101538`, `101539`, `101541`, `101543`, `101544`, `101546`, `101548`, `101550`, `101552`, `101554`, `101555`, `101556`, `101557`, `101558`, `101559`, `101564`, `101566`, `101568`, `101569`, `101570`, `101571`, `101572`, `101574`, `101575`, `101579`, `101581`, `101583`, `101585`, `101586`, `101587`, `101589`, `101591`, `101593`, `101594`, `101596`, `101599`, `101601`, `101602`, `101605`, `101609`, `101611`, `101612`, `101614`, `101616`, `101619`, `101621`, `101624`, `101625`, `101627`, `101629`, `101631`, `101633`, `101635`, `101638`, `101640`, `101642`, `101643`, `101645`, `101646`, `101648`, `101649`, `101650`, `101651`, `101653`, `101654`, `101656`, `101658`, `101660`, `101661`, `101663`, `101664`, `101666`, `101667`, `101668`, `101670`, `101672`, `101676`, `101678`, `101680`, `101682`, `101683`, `101688`, `101689`, `101691`, `101695`, `101697`, `101698`, `101699`, `101701`, `101702`, `101703`, `101705`, `101707`, `101709`, `101710`, `101712`, `101714`, `101716`, `101718`, `101720`, `101722`, `101723`, `101725`, `101726`, `101728`, `101729`, `101730`, `101732`, `101733`, `101735`, `101737`, `101738`, `101739`, `101741`, `101742`, `101743`, `101745`, `101747`, `101749`, `101751`, `101752`, `101754`, `101756`, `101758`, `101760`, `101762`, `101764`, `101766`, `101768`, `101769`, `101771`, `101772`, `101774`, `101776`, `101777`, `101779`, `101781`, `101782`, `101784`, `101786`, `101788`, `101790`, `101791`, `101792`, `101793`, `101795`, `101797`, `101798`, `101799`, `101800`, `101802`, `101805`, `101807`, `101809`, `101810`, `101811`, `101812`, `101814`, `101815`, `101816`, `101818`, `101820`, `101821`, `101823`, `101825`, `101827`, `101829`, `101831`, `101833`, `101835`, `101837`, `101839`, `101841`, `101842`, `101844`, `101846`, `101847`, `101848`, `101849`, `101851`, `101853`, `101854`, `101856`, `101858`, `101859`, `101861`, `101863`, `101864`, `101866`, `101868`, `101870`, `101872`, `101874`, `101875`, `101877`, `101878`, `101879`, `101880`, `101881`, `101882`, `101884`, `101886`, `101888`, `101889`, `101891`, `101893`, `101894`, `101895`, `101897`, `101900`, `101903`, `101905`, `101906`, `101907`, `101908`, `101909`, `101911`, `101913`, `101915`, `101916`, `101918`, `101921`, `101922`, `101923`, `101924`, `101926`, `101928`, `101930`, `101931`, `101933`, `101935`, `101937`, `101939`, `101941`, `101943`, `101945`, `101947`, `101948`, `101950`, `101952`, `101955`, `101956`, `101958`, `101960`, `101962`, `101964`, `101965`, `101967`, `101968`, `101970`, `101972`, `101974`, `101976`, `101978`, `101980`, `101982`, `101984`, `101985`, `101987`, `101989`, `101990`, `101991`, `101994`, `101995`, `101998`, `102000`, `102001`, `102003`, `102005`, `102006`, `102007`, `102009`, `102011`, `102013`, `102014`, `102016`, `102018`, `102020`, `102023`, `102024`, `102026`, `102027`, `102029`, `102031`, `102032`, `102034`, `102035`, `102037`, `102038`, `102040`, `102042`, `102044`, `102047`, `102049`, `102051`, `102053`, `102055`, `102057`, `102058`, `102059`, `102061`, `102063`, `102064`, `102066`, `102067`, `102069`, `102071`, `102072`, `102075`, `102077`, `102078`, `102080`, `102082`, `102084`, `102086`, `102088`, `102091`, `102093`, `102094`, `102096`, `102097`, `102099`, `102101`, `102103`, `102106`, `102108`, `102110`, `102112`, `102115`, `102116`, `102118`, `102120`, `102122`, `102124`, `102126`, `102128`, `102129`, `102130`, `102132`, `102133`, `102135`, `102137`, `102139`, `102141`, `102142`, `102146`, `102147`, `102148`, `102150`, `102154`, `102155`, `102157`, `102158`, `102160`, `102162`, `102165`, `102167`, `102170`, `102171`, `102173`, `102174`, `102177`, `102182`, `102183`, `102185`, `102187`, `102190`, `102191`, `102192`, `102193`, `102194`, `102196`, `102198`, `102200`, `102202`, `102205`, `102207`, `102210`, `102212`, `102214`, `102216`, `102218`, `102220`, `102222`, `102224`, `102227`, `102228`, `102230`, `102232`, `102233`, `102235`, `102237`, `102242`, `102244`, `102246`, `102248`, `102250`, `102252`, `102254`, `102255`, `102256`, `102258`, `102260`, `102262`, `102263`, `102265`, `102267`, `102269`, `102270`, `102271`, `102276`, `102278`, `102280`, `102281`, `102283`, `102285`, `102287`, `102289`, `102291`, `102293`, `102294`, `102296`, `102297`, `102298`, `102299`, `102301`, `102302`, `102303`, `102304`, `102307`, `102308`, `102310`, `102311`, `102313`, `102315`, `102316`, `102318`, `102319`, `102321`, `102324`, `102325`, `102327`, `102329`, `102331`, `102332`, `102335`, `102337`, `102339`, `102341`, `102343`, `102345`, `102347`, `102349`, `102350`, `102351`, `102352`, `102353`, `102355`, `102357`, `102359`, `102361`, `102363`, `102365`, `102367`, `102369`, `102370`, `102372`, `102374`, `102375`, `102377`, `102379`, `102380`, `102382`, `102384`, `102386`, `102388`, `102389`, `102390`, `102391`, `102393`, `102394`, `102395`, `102397`, `102399`, `102400`, `102401`, `102402`, `102404`, `102406`, `102407`, `102409`, `102411`, `102412`, `102414`, `102416`, `102418`, `102419`, `102421`, `102423`, `102425`, `102426`, `102428`, `102430`, `102432`, `102434`, `102436`, `102438`, `102440`, `102442`, `102444`, `102446`, `102447`, `102449`, `102452`, `102454`, `102456`, `102458`, `102460`, `102463`, `102464`, `102466`, `102468`, `102470`, `102472`, `102474`, `102476`, `102477`, `102478`, `102479`, `102480`, `102482`, `102484`, `102485`, `102487`, `102488`, `102489`, `102490`, `102494`, `102495`, `102500`, `102505`, `102507`, `102509`, `102511`, `102513`, `102515`, `102516`, `102518`, `102520`, `102522`, `102524`, `102527`, `102529`, `102531`, `102532`, `102535`, `102536`, `102537`, `102539`, `102540`, `102542`, `102545`, `102546`, `102548`, `102550`, `102551`, `102552`, `102553`, `102554`, `102556`, `102558`, `102560`, `102562`, `102563`, `102564`, `102566`, `102568`, `102570`, `102572`, `102574`, `102576`, `102577`, `102579`, `102580`, `102581`, `102583`, `102585`, `102587`, `102588`, `102589`, `102591`, `102593`, `102595`, `102597`, `102599`, `102600`, `102602`, `102603`, `102605`, `102607`, `102609`, `102611`, `102612`, `102614`, `102615`, `102617`, `102618`, `102620`, `102622`, `102624`, `102626`, `102627`, `102628`, `102630`, `102631`, `102633`, `102634`, `102635`, `102636`, `102639`, `102641`, `102643`, `102645`, `102647`, `102649`, `102651`, `102653`, `102654`, `102656`, `102658`, `102660`, `102662`, `102664`, `102665`, `102666`, `102668`, `102670`, `102672`, `102674`, `102676`, `102677`, `102679`, `102680`, `102682`, `102683`, `102687`, `102688`, `102690`, `102693`, `102696`, `102698`, `102699`, `102701`, `102702`, `102704`, `102706`, `102707`, `102709`, `102710`, `102712`, `102713`, `102715`, `102718`, `102719`, `102721`, `102723`, `102725`, `102726`, `102727`, `102728`, `102729`, `102731`, `102733`, `102735`, `102737`, `102739`, `102741`, `102742`, `102744`, `102746`, `102748`, `102751`, `102753`, `102755`, `102757`, `102758`, `102760`, `102761`, `102762`, `102764`, `102765`, `102767`, `102769`, `102771`, `102772`, `102776`, `102778`, `102779`, `102780`, `102782`, `102783`, `102784`, `102785`, `102788`, `102789`, `102792`, `102794`, `102796`, `102797`, `102798`, `102799`, `102801`, `102803`, `102805`, `102806`, `102808`, `102810`, `102812`, `102814`, `102815`, `102817`, `102818`, `102819`, `102820`, `102822`, `102824`, `102825`, `102828`, `102830`, `102831`, `102832`, `102834`, `102836`, `102838`, `102839`, `102840`, `102842`, `102844`, `102846`, `102848`, `102849`, `102851`, `102852`, `102856`, `102858`, `102860`, `102864`, `102866`, `102868`, `102869`, `102871`, `102873`, `102875`, `102876`, `102877`, `102878`, `102880`, `102882`, `102883`, `102884`, `102886`, `102888`, `102889`, `102891`, `102893`, `102895`, `102897`, `102899`, `102901`, `102902`, `102904`, `102905`, `102909`, `102910`, `102912`, `102914`, `102916`, `102917`, `102919`, `102920`, `102922`, `102923`, `102925`, `102927`, `102929`, `102932`, `102934`, `102936`, `102938`, `102942`, `102944`, `102946`, `102948`, `102950`, `102952`, `102954`, `102955`, `102957`, `102959`, `102961`, `102963`, `102964`, `102969`, `102972`, `102973`, `102974`, `102975`, `102977`, `102978`, `102980`, `102982`, `102984`, `102985`, `102987`, `102989`, `102990`, `102992`, `102994`, `102996`, `102998`, `103000`, `103002`, `103003`, `103005`, `103007`, `103008`, `103009`, `103011`, `103016`, `103018`, `103019`, `103020`, `103022`, `103023`, `103026`, `103028`, `103030`, `103033`, `103035`, `103037`, `103038`, `103040`, `103041`, `103043`, `103045`, `103047`, `103049`, `103051`, `103052`, `103053`, `103054`, `103055`, `103057`, `103058`, `103059`, `103061`, `103063`, `103065`, `103066`, `103068`, `103070`, `103072`, `103074`, `103076`, `103077`, `103079`, `103081`, `103082`, `103083`, `103085`, `103087`, `103090`, `103091`, `103093`, `103095`, `103097`, `103099`, `103103`, `103104`, `103106`, `103108`, `103109`, `103111`, `103113`, `103115`, `103117`, `103119`, `103122`, `103124`, `103126`, `103127`, `103128`, `103131`, `103132`, `103134`, `103135`, `103137`, `103139`, `103140`, `103144`, `103145`, `103147`, `103148`, `103149`, `103150`, `103152`, `103153`, `103156`, `103158`, `103160`, `103162`, `103164`, `103166`, `103167`, `103168`, `103170`, `103171`, `103172`, `103174`, `103176`, `103179`, `103180`, `103182`, `103183`, `103185`, `103186`, `103188`, `103190`, `103191`, `103194`, `103197`, `103199`, `103200`, `103202`, `103204`, `103206`, `103207`, `103209`, `103211`, `103212`, `103213`, `103215`, `103217`, `103218`, `103219`, `103221`, `103223`, `103224`, `103226`, `103227`, `103230`, `103231`, `103233`, `103234`, `103236`, `103237`, `103238`, `103239`, `103241`, `103243`, `103247`, `103249`, `103251`, `103252`, `103257`, `103258`, `103259`, `103261`, `103263`, `103264`, `103265`, `103267`, `103269`, `103273`, `103275`, `103277`, `103278`, `103279`, `103282`, `103284`, `103286`, `103288`, `103290`, `103292`, `103293`, `103295`, `103297`, `103299`, `103301`, `103304`, `103306`, `103309`, `103310`, `103312`, `103315`, `103316`, `103318`, `103320`, `103322`, `103323`, `103324`, `103326`, `103328`, `103329`, `103331`, `103332`, `103334`, `103336`, `103338`, `103340`, `103343`, `103345`, `103346`, `103347`, `103349`, `103351`, `103352`, `103353`, `103354`, `103356`, `103357`, `103359`, `103361`, `103362`, `103364`, `103366`, `103368`, `103370`, `103372`, `103374`, `103376`, `103378`, `103380`, `103382`, `103383`, `103384`, `103385`, `103388`, `103389`, `103391`, `103392`, `103393`, `103394`, `103396`, `103398`, `103400`, `103402`, `103404`, `103405`, `103407`, `103409`, `103411`, `103413`, `103416`, `103418`, `103421`, `103422`, `103425`, `103426`, `103427`, `103428`, `103429`, `103430`, `103432`, `103434`, `103436`, `103438`, `103439`, `103441`, `103442`, `103443`, `103445`, `103449`, `103450`, `103451`, `103453`, `103455`, `103457`, `103459`, `103461`, `103463`, `103464`, `103469`, `103470`, `103472`, `103474`, `103476`, `103477`, `103479`, `103481`, `103482`, `103483`, `103486`, `103487`, `103489`, `103491`, `103493`, `103495`, `103496`, `103499`, `103500`, `103501`, `103503`, `103504`, `103505`, `103507`, `103509`, `103510`, `103513`, `103514`, `103517`, `103519`, `103522`, `103524`, `103526`, `103528`, `103529`, `103531`, `103534`, `103535`, `103537`, `103538`, `103539`, `103541`, `103542`, `103543`, `103545`, `103547`, `103549`, `103551`, `103552`, `103555`, `103557`, `103559`, `103561`, `103562`, `103563`, `103565`, `103567`, `103569`, `103570`, `103571`, `103572`, `103574`, `103575`, `103577`, `103579`, `103581`, `103582`, `103584`, `103589`, `103591`, `103593`, `103595`, `103597`, `103598`, `103600`, `103602`, `103603`, `103604`, `103606`, `103608`, `103609`, `103610`, `103611`, `103613`, `103615`, `103617`, `103618`, `103620`, `103621`, `103623`, `103625`, `103627`, `103629`, `103631`, `103633`, `103635`, `103637`, `103639`, `103640`, `103641`, `103643`, `103645`, `103647`, `103649`, `103651`, `103653`, `103654`, `103655`, `103657`, `103659`, `103661`, `103663`, `103664`, `103665`, `103667`, `103669`, `103671`, `103673`, `103675`, `103677`, `103680`, `103682`, `103683`, `103685`, `103687`, `103689`, `103691`, `103693`, `103695`, `103697`, `103699`, `103701`, `103702`, `103703`, `103705`, `103707`, `103708`, `103709`, `103713`, `103714`, `103716`, `103718`, `103720`, `103721`, `103723`, `103726`, `103728`, `103729`, `103731`, `103733`, `103735`, `103737`, `103739`, `103741`, `103743`, `103745`, `103746`, `103747`, `103749`, `103751`, `103752`, `103754`, `103755`, `103757`, `103758`, `103760`, `103762`, `103764`, `103765`, `103766`, `103768`, `103769`, `103771`, `103772`, `103773`, `103775`, `103777`, `103779`, `103781`, `103782`, `103784`, `103785`, `103787`, `103789`, `103790`, `103792`, `103793`, `103795`, `103797`, `103799`, `103800`, `103802`, `103804`, `103805`, `103808`, `103810`, `103811`, `103812`, `103814`, `103816`, `103819`, `103820`, `103823`, `103824`, `103826`, `103827`, `103829`, `103830`, `103832`, `103834`, `103836`, `103838`, `103839`, `103842`, `103844`, `103846`, `103848`, `103852`, `103853`, `103856`, `103857`, `103858`, `103860`, `103862`, `103863`, `103865`, `103866`, `103867`, `103868`, `103869`, `103872`, `103874`, `103876`, `103878`, `103881`, `103883`, `103885`, `103886`, `103887`, `103889`, `103890`, `103892`, `103894`, `103896`, `103898`, `103900`, `103902`, `103904`, `103907`, `103909`, `103911`, `103913`, `103915`, `103917`, `103918`, `103920`, `103922`, `103924`, `103926`, `103928`, `103930`, `103932`, `103933`, `103936`, `103937`, `103939`, `103940`, `103943`, `103945`, `103947`, `103949`, `103951`, `103952`, `103955`, `103957`, `103958`, `103960`, `103962`, `103963`, `103965`, `103966`, `103968`, `103970`, `103973`, `103974`, `103975`, `103977`, `103979`, `103981`, `103983`, `103984`, `103986`, `103987`, `103988`, `103990`, `103992`, `103994`, `103995`, `103997`, `103999`, `104001`, `104002`, `104003`, `104005`, `104007`, `104008`, `104010`, `104015`, `104017`, `104019`, `104020`, `104022`, `104024`, `104026`, `104028`, `104030`, `104032`, `104033`, `104035`, `104037`, `104038`, `104041`, `104042`, `104043`, `104044`, `104045`, `104046`, `104048`, `104050`, `104052`, `104053`, `104055`, `104057`, `104059`, `104062`, `104064`, `104066`, `104070`, `104072`, `104074`, `104076`, `104078`, `104080`, `104082`, `104085`, `104087`, `104088`, `104091`, `104092`, `104094`, `104095`, `104096`, `104097`, `104101`, `104103`, `104104`, `104106`, `104107`, `104110`, `104111`, `104113`, `104115`, `104118`, `104120`, `104121`, `104123`, `104125`, `104127`, `104128`, `104130`, `104133`, `104134`, `104136`, `104137`, `104138`, `104140`, `104142`, `104143`, `104145`, `104148`, `104150`, `104152`, `104155`, `104156`, `104158`, `104160`, `104162`, `104164`, `104167`, `104169`, `104170`, `104171`, `104172`, `104173`, `104175`, `104177`, `104178`, `104179`, `104180`, `104181`, `104183`, `104184`, `104186`, `104188`, `104189`, `104190`, `104191`, `104192`, `104193`, `104194`, `104197`, `104198`, `104200`, `104201`, `104202`, `104204`, `104205`, `104207`, `104209`, `104211`, `104212`, `104213`, `104217`, `104221`, `104223`, `104225`, `104227`, `104228`, `104229`, `104231`, `104233`, `104235`, `104238`, `104240`, `104242`, `104243`, `104244`, `104245`, `104247`, `104249`, `104251`, `104253`, `104255`, `104256`, `104257`, `104260`, `104261`, `104263`, `104265`, `104266`, `104267`, `104268`, `104269`, `104273`, `104274`, `104275`, `104277`, `104279`, `104281`, `104282`, `104284`, `104285`, `104287`, `104289`, `104290`, `104292`, `104294`, `104295`, `104296`, `104298`, `104301`, `104303`, `104305`, `104307`, `104308`, `104309`, `104311`, `104314`, `104316`, `104318`, `104321`, `104323`, `104324`, `104326`, `104327`, `104329`, `104331`, `104334`, `104336`, `104338`, `104339`, `104341`, `104342`, `104347`, `104349`, `104353`, `104355`, `104357`, `104359`, `104360`, `104362`, `104363`, `104364`, `104366`, `104368`, `104369`, `104372`, `104374`, `104376`, `104377`, `104379`, `104381`, `104382`, `104384`, `104386`, `104387`, `104389`, `104391`, `104392`, `104393`, `104394`, `104395`, `104397`, `104398`, `104399`, `104401`, `104403`, `104405`, `104407`, `104409`, `104410`, `104412`, `104413`, `104416`, `104418`, `104420`, `104422`, `104424`, `104425`, `104426`, `104427`, `104428`, `104429`, `104430`, `104431`, `104433`, `104435`, `104437`, `104440`, `104441`, `104442`, `104443`, `104447`, `104450`, `104452`, `104453`, `104456`, `104457`, `104458`, `104460`, `104462`, `104463`, `104466`, `104467`, `104468`, `104469`, `104471`, `104472`, `104473`, `104474`, `104476`, `104477`, `104479`, `104481`, `104483`, `104485`, `104486`, `104488`, `104490`, `104491`, `104492`, `104494`, `104496`, `104498`, `104500`, `104502`, `104504`, `104505`, `104507`, `104509`, `104511`, `104512`, `104514`, `104516`, `104517`, `104518`, `104520`, `104523`, `104524`, `104525`, `104527`, `104529`, `104533`, `104534`, `104536`, `104538`, `104539`, `104541`, `104543`, `104545`, `104546`, `104547`, `104548`, `104549`, `104551`, `104552`, `104554`, `104555`, `104557`, `104559`, `104561`, `104563`, `104564`, `104565`, `104567`, `104569`, `104571`, `104573`, `104575`, `104577`, `104579`, `104580`, `104582`, `104585`, `104586`, `104588`, `104590`, `104592`, `104593`, `104595`, `104597`, `104598`, `104599`, `104601`, `104603`, `104605`, `104606`, `104607`, `104609`, `104611`, `104613`, `104615`, `104617`, `104619`, `104620`, `104622`, `104624`, `104626`, `104628`, `104629`, `104630`, `104632`, `104633`, `104634`, `104636`, `104639`, `104642`, `104644`, `104646`, `104647`, `104648`, `104649`, `104651`, `104653`, `104655`, `104656`, `104658`, `104660`, `104661`, `104663`, `104664`, `104665`, `104667`, `104669`, `104671`, `104673`, `104674`, `104675`, `104677`, `104679`, `104681`, `104683`, `104684`, `104686`, `104688`, `104690`, `104692`, `104694`, `104696`, `104698`, `104699`, `104700`, `104702`, `104704`, `104706`, `104707`, `104708`, `104710`, `104711`, `104713`, `104714`, `104716`, `104718`, `104719`, `104720`, `104722`, `104723`, `104725`, `104726`, `104728`, `104730`, `104731`, `104732`, `104734`, `104736`, `104737`, `104738`, `104740`, `104742`, `104743`, `104744`, `104746`, `104747`, `104749`, `104751`, `104753`, `104754`, `104756`, `104758`, `104760`, `104763`, `104764`, `104766`, `104767`, `104769`, `104771`, `104773`, `104775`, `104778`, `104780`, `104782`, `104784`, `104786`, `104790`, `104792`, `104794`, `104796`, `104797`, `104798`, `104800`, `104801`, `104803`, `104805`, `104806`, `104807`, `104809`, `104811`, `104813`, `104815`, `104817`, `104818`, `104820`, `104821`, `104823`, `104825`, `104827`, `104828`, `104830`, `104831`, `104833`, `104835`, `104836`, `104841`, `104842`, `104844`, `104845`, `104847`, `104848`, `104850`, `104853`, `104855`, `104857`, `104858`, `104860`, `104861`, `104862`, `104864`, `104866`, `104867`, `104869`, `104871`, `104873`, `104874`, `104875`, `104876`, `104878`, `104880`, `104881`, `104883`, `104885`, `104887`, `104888`, `104889`, `104891`, `104893`, `104896`, `104897`, `104899`, `104901`, `104902`, `104903`, `104904`, `104906`, `104907`, `104909`, `104910`, `104911`, `104913`, `104915`, `104917`, `104919`, `104921`, `104923`, `104926`, `104928`, `104930`, `104932`, `104934`, `104936`, `104938`, `104940`, `104941`, `104942`, `104943`, `104945`, `104946`, `104948`, `104950`, `104951`, `104953`, `104954`, `104956`, `104957`, `104959`, `104960`, `104961`, `104963`, `104965`, `104967`, `104969`, `104970`, `104971`, `104973`, `104974`, `104975`, `104977`, `104979`, `104981`, `104982`, `104983`, `104985`, `104987`, `104990`, `104993`, `104995`, `104997`, `104998`, `104999`, `105002`, `105003`, `105004`, `105005`, `105007`, `105009`, `105011`, `105012`, `105014`, `105016`, `105018`, `105020`, `105022`, `105023`, `105025`, `105027`, `105029`, `105030`, `105032`, `105033`, `105035`, `105039`, `105041`, `105043`, `105045`, `105047`, `105049`, `105052`, `105054`, `105056`, `105060`, `105062`, `105064`, `105066`, `105068`, `105069`, `105071`, `105072`, `105074`, `105075`, `105077`, `105079`, `105081`, `105083`, `105085`, `105087`, `105089`, `105091`, `105093`, `105094`, `105095`, `105096`, `105098`, `105100`, `105102`, `105104`, `105106`, `105107`, `105109`, `105111`, `105112`, `105113`, `105115`, `105117`, `105120`, `105122`, `105123`, `105124`, `105126`, `105127`, `105128`, `105130`, `105131`, `105133`, `105135`, `105137`, `105139`, `105141`, `105142`, `105143`, `105145`, `105146`, `105148`, `105149`, `105150`, `105151`, `105153`, `105155`, `105156`, `105157`, `105159`, `105163`, `105165`, `105166`, `105169`, `105171`, `105173`, `105175`, `105176`, `105178`, `105180`, `105182`, `105184`, `105186`, `105187`, `105189`, `105191`, `105193`, `105197`, `105199`, `105203`, `105205`, `105207`, `105209`, `105211`, `105213`, `105215`, `105218`, `105220`, `105221`, `105223`, `105225`, `105227`, `105229`, `105230`, `105233`, `105234`, `105235`, `105237`, `105239`, `105241`, `105242`, `105244`, `105246`, `105247`, `105249`, `105250`, `105252`, `105253`, `105255`, `105257`, `105259`, `105260`, `105262`, `105264`, `105266`, `105267`, `105269`, `105271`, `105273`, `105275`, `105277`, `105279`, `105281`, `105283`, `105285`, `105287`, `105288`, `105289`, `105291`, `105293`, `105295`, `105297`, `105299`, `105303`, `105304`, `105307`, `105308`, `105310`, `105311`, `105313`, `105315`, `105317`, `105319`, `105321`, `105323`, `105325`, `105328`, `105330`, `105332`, `105333`, `105334`, `105336`, `105338`, `105340`, `105342`, `105344`, `105346`, `105348`, `105349`, `105350`, `105352`, `105354`, `105356`, `105358`, `105360`, `105362`, `105364`, `105365`, `105367`, `105368`, `105369`, `105371`, `105372`, `105374`, `105375`, `105376`, `105378`, `105379`, `105381`, `105383`, `105384`, `105386`, `105388`, `105390`, `105392`, `105394`, `105396`, `105398`, `105400`, `105403`, `105404`, `105406`, `105408`, `105410`, `105412`, `105414`, `105415`, `105416`, `105417`, `105419`, `105422`, `105424`, `105426`, `105428`, `105430`, `105431`, `105433`, `105435`, `105437`, `105440`, `105443`, `105444`, `105445`, `105447`, `105449`, `105450`, `105452`, `105454`, `105455`, `105457`, `105458`, `105460`, `105462`, `105465`, `105467`, `105468`, `105470`, `105472`, `105474`, `105476`, `105478`, `105479`, `105481`, `105483`, `105486`, `105487`, `105489`, `105491`, `105493`, `105495`, `105497`, `105498`, `105499`, `105501`, `105503`, `105505`, `105506`, `105507`, `105508`, `105509`, `105511`, `105513`, `105515`, `105516`, `105518`, `105519`, `105521`, `105522`, `105524`, `105526`, `105529`, `105530`, `105531`, `105533`, `105534`, `105535`, `105537`, `105542`, `105543`, `105545`, `105547`, `105549`, `105551`, `105552`, `105554`, `105556`, `105558`, `105560`, `105562`, `105564`, `105566`, `105567`, `105569`, `105570`, `105572`, `105574`, `105576`, `105578`, `105580`, `105582`, `105584`, `105586`, `105587`, `105588`, `105590`, `105593`, `105595`, `105596`, `105597`, `105598`, `105600`, `105602`, `105604`, `105606`, `105607`, `105608`, `105610`, `105612`, `105614`, `105615`, `105617`, `105619`, `105621`, `105623`, `105624`, `105626`, `105628`, `105629`, `105630`, `105631`, `105633`, `105635`, `105637`, `105638`, `105640`, `105641`, `105643`, `105645`, `105647`, `105649`, `105651`, `105652`, `105653`, `105654`, `105656`, `105658`, `105660`, `105662`, `105663`, `105665`, `105666`, `105668`, `105670`, `105672`, `105674`, `105676`, `105678`, `105679`, `105680`, `105682`, `105684`, `105685`, `105687`, `105689`, `105690`, `105692`, `105693`, `105694`, `105695`, `105696`, `105698`, `105699`, `105703`, `105705`, `105706`, `105708`, `105710`, `105711`, `105713`, `105715`, `105717`, `105719`, `105721`, `105723`, `105725`, `105727`, `105729`, `105731`, `105733`, `105734`, `105736`, `105737`, `105739`, `105741`, `105742`, `105743`, `105745`, `105748`, `105752`, `105754`, `105755`, `105756`, `105758`, `105759`, `105760`, `105762`, `105764`, `105765`, `105767`, `105769`, `105770`, `105771`, `105773`, `105775`, `105777`, `105779`, `105781`, `105783`, `105785`, `105787`, `105790`, `105792`, `105795`, `105797`, `105798`, `105800`, `105802`, `105804`, `105805`, `105807`, `105810`, `105814`, `105816`, `105818`, `105819`, `105821`, `105823`, `105825`, `105827`, `105829`, `105831`, `105833`, `105835`, `105837`, `105839`, `105841`, `105843`, `105844`, `105846`, `105849`, `105851`, `105853`, `105855`, `105857`, `105859`, `105862`, `105863`, `105864`, `105866`, `105868`, `105870`, `105873`, `105875`, `105877`, `105879`, `105880`, `105882`, `105884`, `105885`, `105887`, `105888`, `105889`, `105891`, `105893`, `105894`, `105896`, `105897`, `105899`, `105901`, `105903`, `105905`, `105906`, `105908`, `105910`, `105911`, `105913`, `105915`, `105916`, `105917`, `105919`, `105921`, `105925`, `105926`, `105928`, `105929`, `105931`, `105933`, `105935`, `105937`, `105939`, `105940`, `105942`, `105944`, `105946`, `105948`, `105950`, `105951`, `105952`, `105955`, `105957`, `105959`, `105961`, `105963`, `105965`, `105966`, `105968`, `105969`, `105971`, `105972`, `105973`, `105975`, `105976`, `105977`, `105979`, `105981`, `105986`, `105988`, `105990`, `105992`, `105993`, `105995`, `105996`, `105998`, `106000`, `106002`, `106004`, `106006`, `106008`, `106010`, `106012`, `106014`, `106015`, `106017`, `106019`, `106022`, `106023`, `106025`, `106027`, `106029`, `106031`, `106034`, `106036`, `106037`, `106038`, `106040`, `106047`, `106049`, `106051`, `106052`, `106054`, `106055`, `106056`, `106057`, `106058`, `106060`, `106062`, `106064`, `106066`, `106068`, `106069`, `106071`, `106073`, `106077`, `106079`, `106082`, `106083`, `106084`, `106085`, `106087`, `106091`, `106093`, `106094`, `106096`, `106098`, `106101`, `106103`, `106106`, `106107`, `106108`, `106110`, `106111`, `106113`, `106115`, `106117`, `106119`, `106120`, `106122`, `106124`, `106125`, `106126`, `106128`, `106129`, `106131`, `106133`, `106135`, `106137`, `106138`, `106140`, `106142`, `106144`, `106145`, `106146`, `106147`, `106148`, `106150`, `106151`, `106153`, `106154`, `106155`, `106156`, `106157`, `106159`, `106161`, `106163`, `106165`, `106167`, `106169`, `106171`, `106173`, `106176`, `106178`, `106180`, `106182`, `106184`, `106186`, `106188`, `106189`, `106190`, `106192`, `106193`, `106195`, `106196`, `106199`, `106201`, `106203`, `106205`, `106206`, `106208`, `106209`, `106210`, `106211`, `106212`, `106215`, `106217`, `106219`, `106221`, `106223`, `106225`, `106227`, `106229`, `106231`, `106233`, `106235`, `106237`, `106238`, `106240`, `106242`, `106244`, `106246`, `106248`, `106250`, `106251`, `106253`, `106255`, `106257`, `106260`, `106262`, `106264`, `106265`, `106267`, `106269`, `106272`, `106274`, `106276`, `106278`, `106280`, `106281`, `106284`, `106285`, `106287`, `106289`, `106291`, `106293`, `106294`, `106296`, `106298`, `106299`, `106300`, `106302`, `106303`, `106305`, `106306`, `106307`, `106309`, `106310`, `106311`, `106313`, `106314`, `106316`, `106318`, `106320`, `106322`, `106324`, `106326`, `106328`, `106330`, `106331`, `106333`, `106334`, `106336`, `106338`, `106340`, `106342`, `106344`, `106346`, `106348`, `106350`, `106352`, `106354`, `106356`, `106358`, `106360`, `106362`, `106363`, `106364`, `106366`, `106367`, `106369`, `106370`, `106372`, `106374`, `106376`, `106379`, `106381`, `106383`, `106387`, `106389`, `106392`, `106393`, `106395`, `106396`, `106397`, `106398`, `106400`, `106402`, `106404`, `106405`, `106407`, `106408`, `106409`, `106411`, `106413`, `106414`, `106416`, `106418`, `106419`, `106420`, `106422`, `106423`, `106426`, `106428`, `106430`, `106431`, `106434`, `106436`, `106437`, `106439`, `106441`, `106442`, `106443`, `106445`, `106447`, `106449`, `106451`, `106453`, `106455`, `106457`, `106458`, `106460`, `106462`, `106463`, `106464`, `106467`, `106468`, `106470`, `106471`, `106473`, `106474`, `106475`, `106476`, `106477`, `106479`, `106481`, `106482`, `106484`, `106486`, `106487`, `106489`, `106490`, `106492`, `106493`, `106495`, `106497`, `106499`, `106501`, `106503`, `106505`, `106506`, `106508`, `106509`, `106510`, `106511`, `106513`, `106516`, `106518`, `106520`, `106522`, `106524`, `106526`, `106528`, `106529`, `106531`, `106533`, `106534`, `106535`, `106538`, `106539`, `106541`, `106542`, `106544`, `106546`, `106548`, `106550`, `106552`, `106554`, `106556`, `106558`, `106560`, `106563`, `106564`, `106565`, `106566`, `106567`, `106569`, `106571`, `106574`, `106576`, `106577`, `106579`, `106581`, `106582`, `106583`, `106585`, `106587`, `106589`, `106591`, `106593`, `106594`, `106595`, `106596`, `106599`, `106600`, `106602`, `106603`, `106605`, `106607`, `106609`, `106610`, `106612`, `106613`, `106614`, `106615`, `106618`, `106620`, `106621`, `106623`, `106625`, `106627`, `106629`, `106631`, `106632`, `106634`, `106636`, `106638`, `106639`, `106640`, `106642`, `106643`, `106644`, `106645`, `106646`, `106647`, `106649`, `106651`, `106652`, `106654`, `106656`, `106658`, `106660`, `106662`, `106664`, `106666`, `106667`, `106669`, `106671`, `106673`, `106676`, `106678`, `106680`, `106681`, `106683`, `106685`, `106687`, `106688`, `106689`, `106691`, `106692`, `106694`, `106695`, `106697`, `106699`, `106701`, `106703`, `106705`, `106706`, `106707`, `106708`, `106709`, `106711`, `106713`, `106718`, `106719`, `106721`, `106723`, `106724`, `106725`, `106727`, `106729`, `106730`, `106732`, `106734`, `106736`, `106738`, `106740`, `106741`, `106742`, `106743`, `106745`, `106747`, `106749`, `106751`, `106753`, `106755`, `106757`, `106758`, `106760`, `106761`, `106762`, `106764`, `106765`, `106767`, `106769`, `106770`, `106772`, `106774`, `106777`, `106779`, `106781`, `106782`, `106784`, `106785`, `106786`, `106788`, `106790`, `106791`, `106793`, `106796`, `106797`, `106799`, `106801`, `106803`, `106804`, `106805`, `106807`, `106808`, `106809`, `106812`, `106814`, `106815`, `106817`, `106818`, `106819`, `106820`, `106822`, `106823`, `106826`, `106827`, `106829`, `106831`, `106833`, `106835`, `106837`, `106838`, `106839`, `106840`, `106841`, `106843`, `106845`, `106846`, `106848`, `106849`, `106850`, `106852`, `106854`, `106856`, `106858`, `106859`, `106861`, `106862`, `106864`, `106866`, `106868`, `106871`, `106873`, `106875`, `106877`, `106879`, `106880`, `106882`, `106883`, `106885`, `106887`, `106889`, `106891`, `106893`, `106895`, `106896`, `106898`, `106899`, `106901`, `106903`, `106905`, `106907`, `106909`, `106911`, `106913`, `106915`, `106917`, `106919`, `106921`, `106922`, `106923`, `106924`, `106928`, `106930`, `106932`, `106934`, `106935`, `106936`, `106938`, `106940`, `106941`, `106943`, `106945`, `106946`, `106949`, `106950`, `106952`, `106954`, `106956`, `106957`, `106959`, `106960`, `106962`, `106963`, `106964`, `106965`, `106968`, `106970`, `106972`, `106973`, `106974`, `106975`, `106976`, `106978`, `106980`, `106982`, `106984`, `106986`, `106988`, `106989`, `106991`, `106994`, `106996`, `106999`, `107001`, `107003`, `107005`, `107006`, `107008`, `107010`, `107012`, `107015`, `107017`, `107019`, `107021`, `107025`, `107027`, `107029`, `107031`, `107033`, `107035`, `107037`, `107038`, `107039`, `107041`, `107042`, `107044`, `107046`, `107048`, `107050`, `107051`, `107053`, `107056`, `107058`, `107060`, `107062`, `107063`, `107067`, `107069`, `107070`, `107071`, `107072`, `107074`, `107076`, `107077`, `107079`, `107081`, `107083`, `107085`, `107087`, `107088`, `107090`, `107091`, `107093`, `107094`, `107096`, `107098`, `107101`, `107102`, `107104`, `107105`, `107106`, `107107`, `107108`, `107109`, `107110`, `107112`, `107114`, `107116`, `107118`, `107119`, `107120`, `107121`, `107123`, `107125`, `107127`, `107128`, `107132`, `107134`, `107136`, `107138`, `107143`, `107145`, `107146`, `107147`, `107148`, `107149`, `107151`, `107153`, `107155`, `107157`, `107158`, `107159`, `107161`, `107164`, `107166`, `107168`, `107172`, `107173`, `107175`, `107177`, `107179`, `107181`, `107183`, `107185`, `107186`, `107188`, `107190`, `107192`, `107193`, `107195`, `107197`, `107199`, `107200`, `107201`, `107203`, `107204`, `107206`, `107208`, `107210`, `107213`, `107215`, `107216`, `107218`, `107220`, `107221`, `107223`, `107224`, `107227`, `107229`, `107231`, `107233`, `107235`, `107237`, `107238`, `107239`, `107241`, `107243`, `107244`, `107245`, `107247`, `107249`, `107250`, `107256`, `107257`, `107259`, `107260`, `107261`, `107263`, `107265`, `107266`, `107268`, `107269`, `107271`, `107273`, `107275`, `107277`, `107279`, `107281`, `107283`, `107285`, `107287`, `107288`, `107289`, `107291`, `107293`, `107295`, `107296`, `107298`, `107299`, `107300`, `107301`, `107302`, `107304`, `107306`, `107308`, `107310`, `107312`, `107314`, `107316`, `107318`, `107320`, `107321`, `107323`, `107325`, `107327`, `107328`, `107329`, `107331`, `107332`, `107334`, `107336`, `107338`, `107340`, `107342`, `107344`, `107346`, `107348`, `107349`, `107351`, `107355`, `107356`, `107357`, `107358`, `107360`, `107362`, `107364`, `107366`, `107368`, `107370`, `107372`, `107374`, `107376`, `107378`, `107379`, `107381`, `107383`, `107384`, `107386`, `107387`, `107389`, `107391`, `107393`, `107395`, `107397`, `107399`, `107401`, `107402`, `107404`, `107405`, `107407`, `107409`, `107412`, `107414`, `107415`, `107417`, `107418`, `107421`, `107422`, `107424`, `107426`, `107428`, `107430`, `107432`, `107433`, `107434`, `107435`, `107437`, `107438`, `107440`, `107442`, `107444`, `107446`, `107449`, `107450`, `107451`, `107452`, `107454`, `107456`, `107458`, `107459`, `107461`, `107463`, `107464`, `107465`, `107466`, `107468`, `107469`, `107471`, `107472`, `107473`, `107475`, `107477`, `107480`, `107482`, `107487`, `107489`, `107491`, `107493`, `107495`, `107497`, `107499`, `107501`, `107503`, `107504`, `107505`, `107506`, `107509`, `107511`, `107513`, `107514`, `107515`, `107517`, `107519`, `107521`, `107523`, `107524`, `107526`, `107528`, `107529`, `107531`, `107533`, `107535`, `107537`, `107539`, `107541`, `107542`, `107543`, `107544`, `107547`, `107549`, `107551`, `107554`, `107556`, `107558`, `107560`, `107562`, `107564`, `107565`, `107567`, `107570`, `107572`, `107574`, `107576`, `107578`, `107580`, `107582`, `107584`, `107587`, `107589`, `107591`, `107593`, `107594`, `107596`, `107598`, `107599`, `107600`, `107601`, `107603`, `107605`, `107606`, `107608`, `107610`, `107612`, `107614`, `107616`, `107617`, `107618`, `107620`, `107621`, `107622`, `107623`, `107624`, `107626`, `107628`, `107630`, `107631`, `107633`, `107634`, `107636`, `107638`, `107640`, `107641`, `107643`, `107645`, `107647`, `107649`, `107651`, `107653`, `107655`, `107656`, `107658`, `107660`, `107662`, `107664`, `107666`, `107668`, `107670`, `107673`, `107677`, `107678`, `107680`, `107682`, `107684`, `107685`, `107687`, `107689`, `107690`, `107691`, `107693`, `107695`, `107697`, `107699`, `107700`, `107701`, `107702`, `107703`, `107704`, `107705`, `107707`, `107709`, `107711`, `107713`, `107715`, `107717`, `107721`, `107723`, `107724`, `107725`, `107727`, `107729`, `107730`, `107731`, `107733`, `107735`, `107739`, `107740`, `107741`, `107743`, `107744`, `107746`, `107747`, `107748`, `107750`, `107752`, `107753`, `107755`, `107760`, `107761`, `107762`, `107764`, `107766`, `107767`, `107768`, `107771`, `107773`, `107775`, `107778`, `107780`, `107781`, `107782`, `107783`, `107785`, `107786`, `107787`, `107789`, `107790`, `107792`, `107796`, `107798`, `107801`, `107803`, `107805`, `107807`, `107808`, `107810`, `107811`, `107813`, `107815`, `107817`, `107819`, `107821`, `107822`, `107823`, `107824`, `107826`, `107828`, `107829`, `107830`, `107831`, `107832`, `107834`, `107836`, `107838`, `107839`, `107841`, `107843`, `107845`, `107847`, `107849`, `107851`, `107852`, `107854`, `107856`, `107857`, `107859`, `107862`, `107866`, `107868`, `107870`, `107871`, `107873`, `107875`, `107876`, `107877`, `107879`, `107881`, `107883`, `107885`, `107886`, `107888`, `107889`, `107892`, `107893`, `107895`, `107896`, `107898`, `107900`, `107902`, `107904`, `107906`, `107908`, `107910`, `107912`, `107914`, `107915`, `107917`, `107918`, `107919`, `107920`, `107922`, `107924`, `107925`, `107927`, `107929`, `107930`, `107931`, `107932`, `107933`, `107934`, `107936`, `107938`, `107939`, `107940`, `107941`, `107943`, `107944`, `107945`, `107946`, `107948`, `107950`, `107952`, `107954`, `107956`, `107957`, `107959`, `107960`, `107962`, `107964`, `107966`, `107971`, `107972`, `107974`, `107975`, `107977`, `107979`, `107980`, `107982`, `107983`, `107986`, `107987`, `107990`, `107992`, `107994`, `107996`, `107997`, `107999`, `108002`, `108003`, `108006`, `108007`, `108009`, `108011`, `108014`, `108015`, `108017`, `108019`, `108020`, `108022`, `108024`, `108026`, `108027`, `108031`, `108033`, `108035`, `108037`, `108039`, `108041`, `108043`, `108044`, `108046`, `108048`, `108050`, `108051`, `108053`, `108055`, `108057`, `108060`, `108062`, `108064`, `108069`, `108070`, `108072`, `108074`, `108075`, `108077`, `108078`, `108080`, `108082`, `108084`, `108086`, `108088`, `108090`, `108092`, `108094`, `108096`, `108097`, `108098`, `108100`, `108102`, `108104`, `108109`, `108111`, `108112`, `108115`, `108116`, `108118`, `108120`, `108122`, `108124`, `108127`, `108129`, `108132`, `108135`, `108136`, `108138`, `108139`, `108141`, `108142`, `108144`, `108146`, `108148`, `108150`, `108152`, `108154`, `108156`, `108157`, `108158`, `108160`, `108163`, `108165`, `108167`, `108169`, `108170`, `108172`, `108174`, `108176`, `108179`, `108181`, `108183`, `108185`, `108187`, `108188`, `108190`, `108192`, `108193`, `108195`, `108197`, `108199`, `108201`, `108202`, `108204`, `108207`, `108209`, `108211`, `108213`, `108215`, `108216`, `108218`, `108220`, `108222`, `108224`, `108225`, `108227`, `108229`, `108231`, `108233`, `108236`, `108238`, `108239`, `108241`, `108243`, `108245`, `108246`, `108247`, `108249`, `108250`, `108252`, `108253`, `108254`, `108255`, `108256`, `108257`, `108259`, `108261`, `108263`, `108265`, `108266`, `108268`, `108269`, `108271`, `108272`, `108273`, `108275`, `108277`, `108278`, `108280`, `108282`, `108284`, `108286`, `108288`, `108290`, `108291`, `108293`, `108295`, `108297`, `108299`, `108301`, `108302`, `108304`, `108305`, `108306`, `108308`, `108311`, `108313`, `108315`, `108317`, `108319`, `108320`, `108322`, `108324`, `108326`, `108327`, `108329`, `108331`, `108333`, `108335`, `108336`, `108338`, `108339`, `108340`, `108342`, `108344`, `108346`, `108348`, `108349`, `108350`, `108352`, `108354`, `108357`, `108359`, `108360`, `108362`, `108363`, `108364`, `108366`, `108368`, `108370`, `108372`, `108375`, `108377`, `108379`, `108381`, `108383`, `108385`, `108387`, `108389`, `108391`, `108394`, `108395`, `108396`, `108398`, `108399`, `108401`, `108403`, `108405`, `108406`, `108407`, `108408`, `108410`, `108412`, `108413`, `108415`, `108417`, `108418`, `108420`, `108421`, `108422`, `108423`, `108425`, `108426`, `108427`, `108429`, `108433`, `108435`, `108436`, `108438`, `108440`, `108442`, `108444`, `108445`, `108447`, `108449`, `108451`, `108453`, `108455`, `108457`, `108458`, `108459`, `108460`, `108462`, `108464`, `108466`, `108467`, `108469`, `108472`, `108473`, `108475`, `108477`, `108478`, `108480`, `108482`, `108485`, `108487`, `108489`, `108491`, `108492`, `108494`, `108495`, `108496`, `108498`, `108500`, `108501`, `108503`, `108505`, `108507`, `108509`, `108511`, `108513`, `108514`, `108515`, `108517`, `108519`, `108521`, `108523`, `108525`, `108527`, `108530`, `108531`, `108532`, `108534`, `108535`, `108537`, `108539`, `108541`, `108542`, `108544`, `108546`, `108548`, `108549`, `108551`, `108553`, `108555`, `108556`, `108558`, `108560`, `108561`, `108563`, `108565`, `108567`, `108569`, `108571`, `108572`, `108574`, `108576`, `108577`, `108578`, `108580`, `108581`, `108583`, `108585`, `108587`, `108589`, `108591`, `108593`, `108596`, `108598`, `108600`, `108602`, `108604`, `108606`, `108608`, `108609`, `108611`, `108612`, `108614`, `108616`, `108618`, `108620`, `108622`, `108624`, `108625`, `108627`, `108630`, `108633`, `108634`, `108636`, `108637`, `108639`, `108641`, `108643`, `108645`, `108647`, `108648`, `108651`, `108652`, `108654`, `108656`, `108658`, `108660`, `108662`, `108664`, `108666`, `108667`, `108669`, `108671`, `108673`, `108675`, `108677`, `108679`, `108680`, `108682`, `108685`, `108687`, `108689`, `108690`, `108693`, `108695`, `108697`, `108699`, `108700`, `108702`, `108707`, `108709`, `108711`, `108712`, `108715`, `108717`, `108719`, `108720`, `108722`, `108724`, `108726`, `108727`, `108729`, `108731`, `108732`, `108734`, `108736`, `108738`, `108740`, `108742`, `108743`, `108745`, `108750`, `108751`, `108752`, `108754`, `108756`, `108758`, `108760`, `108762`, `108766`, `108767`, `108769`, `108771`, `108774`, `108776`, `108779`, `108780`, `108782`, `108784`, `108786`, `108787`, `108789`, `108791`, `108792`, `108793`, `108795`, `108797`, `108798`, `108799`, `108801`, `108803`, `108805`, `108807`, `108809`, `108812`, `108813`, `108814`, `108815`, `108817`, `108818`, `108820`, `108821`, `108823`, `108825`, `108826`, `108829`, `108831`, `108833`, `108835`, `108836`, `108837`, `108839`, `108841`, `108843`, `108845`, `108847`, `108849`, `108851`, `108853`, `108854`, `108856`, `108858`, `108860`, `108861`, `108864`, `108866`, `108867`, `108868`, `108870`, `108872`, `108873`, `108874`, `108876`, `108877`, `108879`, `108881`, `108882`, `108883`, `108886`, `108888`, `108889`, `108891`, `108893`, `108895`, `108897`, `108899`, `108901`, `108903`, `108904`, `108905`, `108908`, `108910`, `108912`, `108914`, `108916`, `108917`, `108918`, `108920`, `108922`, `108923`, `108925`, `108927`, `108929`, `108931`, `108933`, `108935`, `108937`, `108939`, `108940`, `108941`, `108943`, `108944`, `108946`, `108947`, `108952`, `108954`, `108956`, `108958`, `108959`, `108960`, `108962`, `108964`, `108966`, `108968`, `108969`, `108971`, `108973`, `108974`, `108975`, `108976`, `108977`, `108979`, `108980`, `108982`, `108984`, `108986`, `108987`, `108989`, `108991`, `108993`, `108994`, `108996`, `108997`, `108999`, `109001`, `109002`, `109004`, `109006`, `109008`, `109009`, `109010`, `109012`, `109014`, `109015`, `109017`, `109019`, `109020`, `109024`, `109026`, `109028`, `109029`, `109031`, `109032`, `109034`, `109035`, `109037`, `109039`, `109041`, `109042`, `109043`, `109044`, `109046`, `109048`, `109050`, `109052`, `109054`, `109056`, `109058`, `109060`, `109061`, `109063`, `109064`, `109065`, `109066`, `109068`, `109070`, `109072`, `109074`, `109076`, `109078`, `109080`, `109082`, `109083`, `109084`, `109086`, `109087`, `109089`, `109091`, `109093`, `109095`, `109096`, `109097`, `109099`, `109102`, `109104`, `109105`, `109107`, `109109`, `109111`, `109113`, `109115`, `109117`, `109118`, `109119`, `109121`, `109123`, `109125`, `109126`, `109127`, `109128`, `109131`, `109132`, `109134`, `109136`, `109138`, `109140`, `109141`, `109142`, `109143`, `109144`, `109146`, `109147`, `109148`, `109150`, `109151`, `109154`, `109155`, `109157`, `109159`, `109162`, `109164`, `109165`, `109167`, `109168`, `109169`, `109171`, `109172`, `109174`, `109176`, `109178`, `109180`, `109181`, `109183`, `109185`, `109186`, `109189`, `109191`, `109192`, `109193`, `109194`, `109196`, `109197`, `109199`, `109201`, `109203`, `109204`, `109207`, `109209`, `109212`, `109214`, `109216`, `109218`, `109219`, `109221`, `109222`, `109223`, `109225`, `109226`, `109227`, `109229`, `109231`, `109233`, `109235`, `109236`, `109238`, `109239`, `109241`, `109243`, `109245`, `109247`, `109249`, `109251`, `109252`, `109254`, `109256`, `109257`, `109259`, `109260`, `109262`, `109263`, `109264`, `109266`, `109268`, `109270`, `109272`, `109274`, `109277`, `109278`, `109280`, `109281`, `109282`, `109284`, `109285`, `109287`, `109289`, `109291`, `109294`, `109296`, `109298`, `109300`, `109301`, `109303`, `109305`, `109307`, `109309`, `109310`, `109311`, `109312`, `109314`, `109316`, `109318`, `109320`, `109321`, `109322`, `109324`, `109326`, `109328`, `109330`, `109332`, `109333`, `109335`, `109337`, `109339`, `109341`, `109343`, `109345`, `109348`, `109350`, `109352`, `109354`, `109356`, `109357`, `109359`, `109360`, `109362`, `109363`, `109365`, `109366`, `109368`, `109369`, `109371`, `109372`, `109373`, `109374`, `109377`, `109379`, `109383`, `109385`, `109387`, `109388`, `109389`, `109390`, `109392`, `109394`, `109395`, `109397`, `109399`, `109400`, `109402`, `109405`, `109407`, `109409`, `109413`, `109414`, `109415`, `109416`, `109418`, `109419`, `109421`, `109422`, `109425`, `109428`, `109430`, `109434`, `109436`, `109437`, `109438`, `109442`, `109444`, `109446`, `109449`, `109451`, `109452`, `109454`, `109456`, `109457`, `109459`, `109460`, `109463`, `109465`, `109467`, `109470`, `109472`, `109474`, `109476`, `109478`, `109480`, `109482`, `109484`, `109486`, `109488`, `109489`, `109491`, `109492`, `109495`, `109496`, `109498`, `109500`, `109502`, `109503`, `109505`, `109506`, `109509`, `109510`, `109511`, `109512`, `109514`, `109515`, `109516`, `109518`, `109519`, `109521`, `109523`, `109526`, `109528`, `109529`, `109531`, `109533`, `109535`, `109536`, `109537`, `109539`, `109540`, `109542`, `109544`, `109546`, `109548`, `109550`, `109551`, `109553`, `109554`, `109556`, `109558`, `109561`, `109563`, `109565`, `109566`, `109568`, `109570`, `109571`, `109573`, `109575`, `109577`, `109578`, `109580`, `109582`, `109584`, `109586`, `109588`, `109589`, `109594`, `109595`, `109596`, `109598`, `109599`, `109601`, `109602`, `109603`, `109605`, `109607`, `109609`, `109611`, `109613`, `109615`, `109617`, `109619`, `109621`, `109623`, `109625`, `109627`, `109628`, `109629`, `109631`, `109632`, `109634`, `109636`, `109638`, `109640`, `109641`, `109643`, `109645`, `109646`, `109647`, `109648`, `109649`, `109650`, `109652`, `109654`, `109655`, `109656`, `109658`, `109660`, `109662`, `109663`, `109665`, `109666`, `109667`, `109669`, `109671`, `109673`, `109674`, `109678`, `109680`, `109682`, `109685`, `109687`, `109690`, `109691`, `109694`, `109696`, `109698`, `109700`, `109703`, `109705`, `109708`, `109710`, `109712`, `109714`, `109715`, `109717`, `109719`, `109721`, `109723`, `109725`, `109727`, `109728`, `109729`, `109730`, `109732`, `109734`, `109735`, `109736`, `109738`, `109740`, `109742`, `109744`, `109745`, `109746`, `109747`, `109749`, `109751`, `109754`, `109756`, `109758`, `109759`, `109761`, `109764`, `109765`, `109767`, `109768`, `109770`, `109771`, `109773`, `109775`, `109776`, `109778`, `109780`, `109782`, `109785`, `109786`, `109788`, `109790`, `109791`, `109793`, `109797`, `109799`, `109800`, `109802`, `109803`, `109805`, `109809`, `109811`, `109813`, `109814`, `109817`, `109820`, `109822`, `109824`, `109829`, `109830`, `109831`, `109832`, `109834`, `109836`, `109839`, `109840`, `109842`, `109844`, `109846`, `109848`, `109850`, `109852`, `109855`, `109856`, `109858`, `109859`, `109861`, `109862`, `109864`, `109866`, `109868`, `109870`, `109871`, `109873`, `109874`, `109875`, `109877`, `109879`, `109881`, `109883`, `109885`, `109886`, `109887`, `109889`, `109891`, `109893`, `109895`, `109897`, `109898`, `109900`, `109904`, `109906`, `109908`, `109910`, `109912`, `109914`, `109917`, `109921`, `109922`, `109924`, `109925`, `109926`, `109927`, `109929`, `109931`, `109932`, `109936`, `109938`, `109940`, `109941`, `109942`, `109944`, `109945`, `109947`, `109949`, `109951`, `109952`, `109954`, `109956`, `109958`, `109960`, `109962`, `109965`, `109966`, `109968`, `109970`, `109971`, `109973`, `109975`, `109977`, `109978`, `109980`, `109983`, `109985`, `109987`, `109989`, `109991`, `109993`, `109995`, `109997`, `109999`, `110001`, `110003`, `110005`, `110007`, `110008`, `110009`, `110011`, `110012`, `110014`, `110015`, `110017`, `110019`, `110021`, `110023`, `110024`, `110026`, `110028`, `110030`, `110032`, `110034`, `110035`, `110037`, `110040`, `110042`, `110044`, `110046`, `110048`, `110051`, `110052`, `110053`, `110055`, `110057`, `110059`, `110061`, `110063`, `110066`, `110067`, `110068`, `110069`, `110072`, `110074`, `110076`, `110080`, `110082`, `110084`, `110085`, `110087`, `110088`, `110090`, `110091`, `110092`, `110093`, `110095`, `110096`, `110098`, `110100`, `110102`, `110104`, `110105`, `110108`, `110110`, `110112`, `110114`, `110115`, `110116`, `110118`, `110119`, `110121`, `110122`, `110124`, `110125`, `110127`, `110130`, `110132`, `110134`, `110136`, `110137`, `110138`, `110139`, `110141`, `110143`, `110145`, `110147`, `110148`, `110150`, `110152`, `110154`, `110156`, `110158`, `110160`, `110162`, `110164`, `110165`, `110167`, `110169`, `110171`, `110173`, `110177`, `110179`, `110181`, `110183`, `110185`, `110187`, `110189`, `110190`, `110192`, `110194`, `110196`, `110199`, `110202`, `110204`, `110206`, `110208`, `110209`, `110211`, `110215`, `110217`, `110219`, `110221`, `110223`, `110225`, `110226`, `110230`, `110232`, `110234`, `110235`, `110237`, `110238`, `110240`, `110242`, `110244`, `110245`, `110247`, `110248`, `110249`, `110251`, `110252`, `110253`, `110254`, `110256`, `110257`, `110259`, `110261`, `110262`, `110263`, `110265`, `110267`, `110269`, `110271`, `110273`, `110274`, `110278`, `110280`, `110282`, `110283`, `110284`, `110285`, `110287`, `110289`, `110290`, `110292`, `110293`, `110294`, `110295`, `110297`, `110298`, `110300`, `110302`, `110304`, `110305`, `110307`, `110308`, `110310`, `110311`, `110314`, `110316`, `110318`, `110320`, `110322`, `110324`, `110326`, `110327`, `110329`, `110331`, `110333`, `110335`, `110337`, `110339`, `110340`, `110342`, `110344`, `110346`, `110347`, `110349`, `110351`, `110352`, `110354`, `110356`, `110357`, `110359`, `110360`, `110361`, `110363`, `110364`, `110366`, `110368`, `110370`, `110372`, `110375`, `110376`, `110378`, `110379`, `110381`, `110383`, `110384`, `110386`, `110387`, `110389`, `110391`, `110394`, `110396`, `110397`, `110399`, `110401`, `110402`, `110403`, `110405`, `110406`, `110407`, `110409`, `110411`, `110414`, `110415`, `110417`, `110418`, `110420`, `110422`, `110423`, `110424`, `110426`, `110427`, `110428`, `110430`, `110432`, `110433`, `110435`, `110438`, `110440`, `110441`, `110442`, `110444`, `110446`, `110448`, `110449`, `110452`, `110454`, `110456`, `110458`, `110460`, `110462`, `110464`, `110465`, `110466`, `110468`, `110470`, `110472`, `110473`, `110475`, `110477`, `110479`, `110481`, `110482`, `110483`, `110485`, `110486`, `110488`, `110490`, `110492`, `110493`, `110494`, `110496`, `110497`, `110499`, `110501`, `110503`, `110505`, `110508`, `110510`, `110512`, `110514`, `110516`, `110517`, `110519`, `110521`, `110524`, `110526`, `110528`, `110530`, `110531`, `110532`, `110534`, `110536`, `110538`, `110541`, `110543`, `110544`, `110546`, `110548`, `110549`, `110550`, `110552`, `110553`, `110555`, `110557`, `110558`, `110560`, `110562`, `110563`, `110564`, `110566`, `110568`, `110570`, `110571`, `110572`, `110575`, `110578`, `110580`, `110583`, `110584`, `110585`, `110587`, `110589`, `110592`, `110594`, `110597`, `110599`, `110601`, `110603`, `110605`, `110606`, `110607`, `110609`, `110611`, `110613`, `110614`, `110615`, `110616`, `110618`, `110619`, `110621`, `110622`, `110624`, `110625`, `110627`, `110628`, `110629`, `110631`, `110633`, `110634`, `110636`, `110638`, `110640`, `110641`, `110642`, `110644`, `110646`, `110651`, `110656`, `110657`, `110659`, `110662`, `110664`, `110666`, `110668`, `110670`, `110671`, `110672`, `110673`, `110675`, `110676`, `110678`, `110679`, `110681`, `110683`, `110685`, `110687`, `110689`, `110691`, `110692`, `110693`, `110694`, `110696`, `110697`, `110698`, `110700`, `110702`, `110704`, `110705`, `110707`, `110709`, `110710`, `110712`, `110715`, `110716`, `110719`, `110721`, `110723`, `110724`, `110726`, `110727`, `110729`, `110731`, `110734`, `110736`, `110738`, `110741`, `110743`, `110745`, `110747`, `110749`, `110750`, `110752`, `110754`, `110756`, `110758`, `110760`, `110761`, `110763`, `110764`, `110766`, `110768`, `110769`, `110770`, `110771`, `110773`, `110774`, `110776`, `110778`, `110779`, `110780`, `110782`, `110786`, `110788`, `110791`, `110793`, `110795`, `110797`, `110799`, `110801`, `110802`, `110803`, `110804`, `110805`, `110807`, `110809`, `110810`, `110812`, `110813`, `110815`, `110816`, `110818`, `110820`, `110821`, `110823`, `110825`, `110827`, `110829`, `110830`, `110832`, `110834`, `110835`, `110837`, `110839`, `110842`, `110844`, `110845`, `110846`, `110848`, `110849`, `110851`, `110853`, `110855`, `110856`, `110858`, `110860`, `110862`, `110863`, `110865`, `110866`, `110868`, `110869`, `110871`, `110873`, `110875`, `110877`, `110879`, `110881`, `110883`, `110885`, `110886`, `110888`, `110890`, `110891`, `110893`, `110895`, `110897`, `110898`, `110900`, `110902`, `110904`, `110905`, `110906`, `110907`, `110909`, `110911`, `110913`, `110914`, `110916`, `110917`, `110918`, `110920`, `110922`, `110923`, `110925`, `110927`, `110928`, `110930`, `110931`, `110932`, `110933`, `110935`, `110937`, `110939`, `110941`, `110943`, `110946`, `110947`, `110949`, `110950`, `110951`, `110953`, `110954`, `110956`, `110957`, `110958`, `110959`, `110961`, `110963`, `110965`, `110966`, `110968`, `110969`, `110971`, `110975`, `110978`, `110980`, `110981`, `110982`, `110983`, `110984`, `110986`, `110988`, `110990`, `110991`, `110992`, `110994`, `110996`, `110998`, `111000`, `111002`, `111004`, `111005`, `111007`, `111009`, `111010`, `111012`, `111014`, `111016`, `111017`, `111018`, `111019`, `111022`, `111024`, `111026`, `111027`, `111028`, `111030`, `111032`, `111033`, `111034`, `111035`, `111037`, `111039`, `111041`, `111043`, `111044`, `111045`, `111046`, `111049`, `111050`, `111052`, `111054`, `111056`, `111058`, `111060`, `111062`, `111063`, `111064`, `111066`, `111068`, `111070`, `111073`, `111075`, `111077`, `111079`, `111080`, `111082`, `111085`, `111087`, `111088`, `111090`, `111091`, `111092`, `111094`, `111095`, `111096`, `111097`, `111099`, `111101`, `111103`, `111104`, `111106`, `111108`, `111109`, `111111`, `111112`, `111115`, `111117`, `111119`, `111121`, `111122`, `111123`, `111124`, `111126`, `111128`, `111131`, `111133`, `111134`, `111136`, `111138`, `111139`, `111140`, `111142`, `111144`, `111148`, `111149`, `111151`, `111153`, `111155`, `111156`, `111158`, `111160`, `111162`, `111164`, `111165`, `111166`, `111168`, `111170`, `111172`, `111173`, `111177`, `111179`, `111180`, `111181`, `111183`, `111185`, `111187`, `111188`, `111190`, `111191`, `111192`, `111194`, `111198`, `111200`, `111202`, `111205`, `111207`, `111208`, `111209`, `111210`, `111211`, `111212`, `111214`, `111215`, `111216`, `111218`, `111220`, `111222`, `111224`, `111226`, `111228`, `111229`, `111231`, `111233`, `111235`, `111239`, `111241`, `111243`, `111245`, `111247`, `111249`, `111251`, `111253`, `111254`, `111257`, `111259`, `111260`, `111262`, `111263`, `111264`, `111267`, `111269`, `111272`, `111274`, `111276`, `111278`, `111280`, `111281`, `111282`, `111283`, `111284`, `111286`, `111288`, `111290`, `111291`, `111293`, `111294`, `111295`, `111296`, `111297`, `111298`, `111300`, `111304`, `111306`, `111308`, `111310`, `111311`, `111313`, `111315`, `111317`, `111318`, `111320`, `111322`, `111324`, `111325`, `111327`, `111328`, `111330`, `111332`, `111334`, `111337`, `111339`, `111341`, `111343`, `111344`, `111346`, `111348`, `111350`, `111352`, `111354`, `111356`, `111358`, `111362`, `111363`, `111365`, `111367`, `111369`, `111371`, `111373`, `111375`, `111377`, `111379`, `111381`, `111382`, `111384`, `111386`, `111388`, `111390`, `111392`, `111394`, `111396`, `111398`, `111400`, `111402`, `111403`, `111404`, `111405`, `111407`, `111409`, `111410`, `111412`, `111413`, `111415`, `111417`, `111419`, `111421`, `111422`, `111424`, `111426`, `111428`, `111430`, `111432`, `111434`, `111436`, `111438`, `111441`, `111443`, `111444`, `111445`, `111446`, `111449`, `111450`, `111452`, `111454`, `111456`, `111457`, `111459`, `111460`, `111462`, `111464`, `111466`, `111468`, `111470`, `111471`, `111473`, `111476`, `111478`, `111480`, `111482`, `111483`, `111484`, `111486`, `111488`, `111490`, `111492`, `111494`, `111496`, `111498`, `111500`, `111501`, `111503`, `111505`, `111507`, `111509`, `111510`, `111511`, `111513`, `111515`, `111517`, `111519`, `111520`, `111523`, `111524`, `111527`, `111529`, `111531`, `111533`, `111534`, `111536`, `111538`, `111539`, `111541`, `111542`, `111544`, `111546`, `111549`, `111551`, `111552`, `111554`, `111556`, `111558`, `111560`, `111562`, `111564`, `111566`, `111568`, `111570`, `111573`, `111574`, `111578`, `111581`, `111582`, `111584`, `111585`, `111586`, `111588`, `111590`, `111592`, `111593`, `111595`, `111597`, `111598`, `111600`, `111601`, `111603`, `111605`, `111607`, `111609`, `111610`, `111611`, `111612`, `111614`, `111616`, `111618`, `111620`, `111622`, `111624`, `111625`, `111626`, `111627`, `111628`, `111632`, `111633`, `111635`, `111637`, `111639`, `111641`, `111643`, `111645`, `111646`, `111648`, `111650`, `111652`, `111654`, `111656`, `111659`, `111661`, `111663`, `111664`, `111666`, `111668`, `111670`, `111671`, `111674`, `111676`, `111679`, `111680`, `111682`, `111683`, `111684`, `111686`, `111688`, `111689`, `111691`, `111693`, `111695`, `111699`, `111700`, `111701`, `111702`, `111703`, `111705`, `111706`, `111709`, `111712`, `111714`, `111715`, `111717`, `111719`, `111720`, `111723`, `111724`, `111726`, `111727`, `111728`, `111731`, `111732`, `111733`, `111734`, `111735`, `111736`, `111738`, `111739`, `111740`, `111741`, `111744`, `111745`, `111746`, `111749`, `111751`, `111752`, `111753`, `111754`, `111756`, `111758`, `111759`, `111761`, `111762`, `111763`, `111764`, `111767`, `111769`, `111771`, `111773`, `111775`, `111779`, `111780`, `111781`, `111783`, `111785`, `111787`, `111788`, `111789`, `111791`, `111793`, `111795`, `111797`, `111798`, `111800`, `111802`, `111804`, `111805`, `111807`, `111808`, `111809`, `111810`, `111811`, `111813`, `111815`, `111817`, `111819`, `111822`, `111823`, `111825`, `111827`, `111828`, `111829`, `111831`, `111835`, `111837`, `111839`, `111841`, `111843`, `111845`, `111847`, `111848`, `111849`, `111851`, `111853`, `111854`, `111855`, `111859`, `111860`, `111862`, `111864`, `111865`, `111866`, `111868`, `111870`, `111872`, `111874`, `111876`, `111878`, `111880`, `111881`, `111883`, `111885`, `111887`, `111889`, `111890`, `111891`, `111892`, `111894`, `111896`, `111898`, `111899`, `111901`, `111902`, `111904`, `111905`, `111907`, `111908`, `111909`, `111911`, `111912`, `111914`, `111915`, `111917`, `111920`, `111921`, `111923`, `111929`, `111931`, `111933`, `111934`, `111935`, `111937`, `111938`, `111939`, `111941`, `111944`, `111946`, `111947`, `111949`, `111951`, `111952`, `111954`, `111955`, `111957`, `111959`, `111961`, `111963`, `111965`, `111969`, `111971`, `111974`, `111975`, `111977`, `111978`, `111980`, `111982`, `111984`, `111985`, `111987`, `111989`, `111990`, `111991`, `111993`, `111994`, `111995`, `111996`, `111997`, `111999`, `112001`, `112003`, `112006`, `112007`, `112010`, `112012`, `112014`, `112015`, `112017`, `112019`, `112021`, `112023`, `112026`, `112027`, `112029`, `112031`, `112032`, `112033`, `112034`, `112036`, `112037`, `112039`, `112041`, `112042`, `112044`, `112046`, `112049`, `112050`, `112051`, `112054`, `112056`, `112058`, `112059`, `112060`, `112062`, `112063`, `112065`, `112067`, `112068`, `112069`, `112070`, `112071`, `112072`, `112074`, `112075`, `112076`, `112078`, `112080`, `112081`, `112082`, `112084`, `112088`, `112091`, `112093`, `112094`, `112095`, `112097`, `112101`, `112102`, `112104`, `112106`, `112107`, `112108`, `112110`, `112112`, `112115`, `112117`, `112118`, `112120`, `112122`, `112124`, `112126`, `112128`, `112129`, `112130`, `112131`, `112133`, `112135`, `112137`, `112138`, `112140`, `112142`, `112144`, `112146`, `112148`, `112149`, `112151`, `112153`, `112155`, `112157`, `112159`, `112161`, `112163`, `112165`, `112167`, `112169`, `112174`, `112175`, `112177`, `112178`, `112180`, `112182`, `112184`, `112186`, `112187`, `112191`, `112193`, `112196`, `112197`, `112199`, `112200`, `112204`, `112208`, `112210`, `112211`, `112213`, `112214`, `112216`, `112217`, `112218`, `112220`, `112223`, `112224`, `112226`, `112228`, `112230`, `112232`, `112233`, `112235`, `112237`, `112238`, `112240`, `112241`, `112242`, `112244`, `112246`, `112248`, `112250`, `112252`, `112253`, `112255`, `112256`, `112258`, `112259`, `112260`, `112262`, `112263`, `112265`, `112266`, `112268`, `112270`, `112271`, `112272`, `112273`, `112275`, `112277`, `112278`, `112280`, `112282`, `112283`, `112285`, `112287`, `112288`, `112290`, `112292`, `112295`, `112297`, `112298`, `112300`, `112302`, `112304`, `112305`, `112306`, `112307`, `112308`, `112310`, `112312`, `112313`, `112315`, `112316`, `112321`, `112323`, `112325`, `112327`, `112329`, `112330`, `112331`, `112332`, `112333`, `112334`, `112336`, `112338`, `112340`, `112342`, `112344`, `112345`, `112347`, `112349`, `112351`, `112353`, `112354`, `112356`, `112358`, `112360`, `112362`, `112363`, `112364`, `112365`, `112367`, `112368`, `112369`, `112371`, `112372`, `112373`, `112374`, `112375`, `112376`, `112377`, `112378`, `112380`, `112382`, `112384`, `112385`, `112386`, `112388`, `112389`, `112390`, `112392`, `112393`, `112395`, `112397`, `112399`, `112400`, `112402`, `112403`, `112404`, `112406`, `112409`, `112410`, `112412`, `112414`, `112416`, `112417`, `112419`, `112421`, `112422`, `112424`, `112426`, `112428`, `112429`, `112431`, `112432`, `112434`, `112436`, `97692`, `112438`, `112439`, `112440`, `112442`, `112444`, `112446`, `112447`, `112448`, `112450`, `112451`, `112454`, `112457`, `112459`, `112460`, `112462`, `112464`, `112466`, `112468`, `112469`, `112471`, `112475`, `112478`, `112480`, `112482`, `112483`, `112485`, `112487` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 99.75 |
| `SENTS_P` | 99.74 |
| `SENTS_R` | 99.76 |
| `TAG_ACC` | 97.84 |
| `POS_ACC` | 97.82 |
| `MORPH_ACC` | 78.11 |
| `DEP_UAS` | 97.28 |
| `DEP_LAS` | 95.88 |
| `LEMMA_ACC` | 92.04 |
|
osanseviero/fastai_cat_vs_dog_fork_3
|
osanseviero
| 2021-12-17T14:27:39Z | 38 | 0 |
generic
|
[
"generic",
"image-classification",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
library_name: generic
---
# Dog vs Cat Image Classification with FastAI CNN
Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training
## Training
The model was trained as follows
```python
path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
path, get_image_files(path), valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)
```
|
osanseviero/fastai_cat_vs_dog
|
osanseviero
| 2021-12-17T14:27:39Z | 32 | 4 |
generic
|
[
"generic",
"image-classification",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
library_name: generic
---
# Dog vs Cat Image Classification with FastAI CNN
Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training
## Training
The model was trained as follows
```python
path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
path, get_image_files(path), valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)
```
|
Rocketknight1/gbert-base-germaner
|
Rocketknight1
| 2021-12-17T14:04:59Z | 5 | 1 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/gbert-base-germaner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/gbert-base-germaner
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0340
- Validation Loss: 0.0881
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4176, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1345 | 0.0865 | 0 |
| 0.0550 | 0.0878 | 1 |
| 0.0340 | 0.0881 | 2 |
### Framework versions
- Transformers 4.15.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
patrickvonplaten/wavlm-libri-clean-100h-large
|
patrickvonplaten
| 2021-12-17T13:40:58Z | 10,035 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wavlm",
"automatic-speech-recognition",
"librispeech_asr",
"generated_from_trainer",
"wavlm_libri_finetune",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
- wavlm_libri_finetune
model-index:
- name: wavlm-librispeech-clean-100h-dist
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wavlm-libri-clean-100h-large
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the LIBRISPEECH_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0601
- Wer: 0.0491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8069 | 0.34 | 300 | 0.7510 | 0.5809 |
| 0.2483 | 0.67 | 600 | 0.2023 | 0.1929 |
| 0.1033 | 1.01 | 900 | 0.1123 | 0.1028 |
| 0.0742 | 1.35 | 1200 | 0.0858 | 0.0771 |
| 0.057 | 1.68 | 1500 | 0.0722 | 0.0663 |
| 0.0421 | 2.02 | 1800 | 0.0682 | 0.0582 |
| 0.0839 | 2.35 | 2100 | 0.0630 | 0.0534 |
| 0.0307 | 2.69 | 2400 | 0.0603 | 0.0508 |
### Framework versions
- Transformers 4.15.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
Guan-Ting/StyleSpeech-MelGAN-vocoder-16kHz
|
Guan-Ting
| 2021-12-17T13:37:11Z | 0 | 5 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
### The MelGAN vocoder for StyleSpeech
#### About StyleSpeech
* StyleSpeech or Meta-StyleSpeech is a model for Multi-Speaker Adaptive Text-to-Speech Generation
* The StyleSpeech model can be trained by official implementation (https://github.com/KevinMIN95/StyleSpeech).
#### About MelGAN vocoder
* This MelGAN vocoder is used to transform the mel-spectrogram back to the waveform.
* StyleSpeech is based on 16k Hz sampling rate, and there is no available 16k Hz multi-speaker vocoder.
* Thus I train this vocoder from scratch using Libri-TTS train-100 hour dataset. The training pipeline is the same as the official MelGAN (https://github.com/descriptinc/melgan-neurips).
* The synthesized sounds are close to the official demo with good quality.
#### Usage
* Please follow the official MelGAN (https://github.com/descriptinc/melgan-neurips) to load pre-trained checkpoint and convert your mel-spectrogram back to the waveform.
#### Training Details
* GPU: RTX 2080Ti
* Training epoch: 3000
|
ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
|
ivanlau
| 2021-12-17T10:33:13Z | 13,130 | 16 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:common_language",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- common_language
metrics:
- accuracy
model-index:
- name: language-detection-fine-tuned-on-xlm-roberta-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: common_language
type: common_language
args: full
metrics:
- name: Accuracy
type: accuracy
value: 0.9738386718094919
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# language-detection-fine-tuned-on-xlm-roberta-base
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [common_language](https://huggingface.co/datasets/common_language) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1886
- Accuracy: 0.9738
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1 | 1.0 | 22194 | 0.1886 | 0.9738 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
### Notebook
[notebook](https://github.com/IvanLauLinTiong/language-detector/blob/main/xlm_roberta_base_commonlanguage_language_detector.ipynb)
|
Souvikcmsa/LogFiBER
|
Souvikcmsa
| 2021-12-17T10:05:05Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2022-03-02T23:29:05Z |
Log FiBER
This model is able to sentence embedding.
|
jamescalam/bert-stsb-gold
|
jamescalam
| 2021-12-17T08:57:06Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# Gold-only BERT STSb
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bert-stsb-gold')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bert-stsb-gold')
model = AutoModel.from_pretrained('bert-stsb-gold')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
|
jamescalam/bert-stsb-cross-encoder
|
jamescalam
| 2021-12-17T08:54:27Z | 1,081 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"text-classification",
"sentence-similarity",
"transformers",
"cross-encoder",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
- cross-encoder
---
# Augmented SBERT STSb
This is a [sentence-transformers](https://www.SBERT.net) cross encoder model.
It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
|
huggingtweets/bladeefan91
|
huggingtweets
| 2021-12-17T07:39:20Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/bladeefan91/1639726754777/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1470642032851009537/LWrcZk48_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sweetie p1e</div>
<div style="text-align: center; font-size: 14px;">@bladeefan91</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sweetie p1e.
| Data | sweetie p1e |
| --- | --- |
| Tweets downloaded | 2249 |
| Retweets | 351 |
| Short tweets | 547 |
| Tweets kept | 1351 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cacbnxbr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeefan91's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeefan91')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
nvidia/qdqbert-base-uncased
|
nvidia
| 2021-12-17T06:31:27Z | 0 | 1 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
<!---
Copyright 2021 NVIDIA Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# QDQBERT base model (uncased)
## Model description
[QDQBERT](https://huggingface.co/docs/transformers/model_doc/qdqbert) model inserts fake quantization operations (pair of QuantizeLinear/DequantizeLinear operators) to (i) linear layer inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model.
QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example bert-base-uncased), and perform Quantization Aware Training/Post Training Quantization.
In this model card, **qdqbert-base-uncased** corresponds to the **bert-base-uncased** model with QuantizeLinear/DequantizeLinear ops (**Q/DQ nodes**). Similarly, one can also use the QDQBERT model for qdqbert-large-cased corresponding to bert-large-cased, etc.
## How to run QDQBERT using Transformers
### Prerequisites
QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization). To install Pytorch Quantization Toolkit, run
```
pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
```
### Set default quantizers
QDQBERT model inserts Q/DQ nodes to BERT by **TensorQuantizer** in Pytorch Quantization Toolkit. **TensorQuantizer** is the module for quantizing tensors, with **QuantDescriptor** defining how the tensor should be quantized. Refer to [Pytorch Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details.
Before creating QDQBERT model, one has to set the default **QuantDescriptor** defining default tensor quantizers. Example:
```python
import pytorch_quantization.nn as quant_nn
from pytorch_quantization.tensor_quant import QuantDescriptor
# The default tensor quantizer is set to use Max calibration method
input_desc = QuantDescriptor(num_bits=8, calib_method="max")
# The default tensor quantizer is set to be per-channel quantization for weights
weight_desc = QuantDescriptor(num_bits=8, axis=((0,)))
quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
```
### Calibration
Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model:
```python
# Find the TensorQuantizer and enable calibration
for name, module in model.named_modules():
if name.endswith('_input_quantizer'):
module.enable_calib()
module.disable_quant() # Use full precision data to calibrate
# Feeding data samples
model(x)
# ...
# Finalize calibration
for name, module in model.named_modules():
if name.endswith('_input_quantizer'):
module.load_calib_amax()
module.enable_quant()
# If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process
model.cuda()
# Keep running the quantized model
# ...
```
### Export to ONNX
The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting the static member **TensorQuantizer** to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example:
```python
from pytorch_quantization.nn import TensorQuantizer
TensorQuantizer.use_fb_fake_quant = True
# Load the calibrated model
...
# ONNX export
torch.onnx.export(...)
```
## Complete example
A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for SQUAD task can be found at [transformers/examples/research_projects/quantization-qdqbert](https://github.com/huggingface/transformers/tree/master/examples/research_projects/quantization-qdqbert)
|
huggingtweets/musingsofyouth
|
huggingtweets
| 2021-12-16T22:50:23Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/musingsofyouth/1639695018349/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1274909495869804544/3UJtcEdD_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Autumn Youth</div>
<div style="text-align: center; font-size: 14px;">@musingsofyouth</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Autumn Youth.
| Data | Autumn Youth |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 89 |
| Short tweets | 129 |
| Tweets kept | 3023 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wunn2a4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @musingsofyouth's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22xo4w9e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22xo4w9e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/musingsofyouth')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
airKlizz/mt5-small-wikinewssum-test
|
airKlizz
| 2021-12-16T16:18:08Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-wikinewssum-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-wikinewssum-test
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9354
- Rouge1: 6.8433
- Rouge2: 2.5498
- Rougel: 5.6114
- Rougelsum: 6.353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 661 | 3.2810 | 6.4161 | 2.403 | 5.3674 | 6.0329 |
| No log | 2.0 | 1322 | 3.1515 | 6.9291 | 2.6826 | 5.6839 | 6.4359 |
| No log | 3.0 | 1983 | 3.0565 | 6.7939 | 2.6113 | 5.6133 | 6.3126 |
| No log | 4.0 | 2644 | 2.9815 | 6.0279 | 2.1637 | 4.9892 | 5.5962 |
| No log | 5.0 | 3305 | 2.9645 | 6.3926 | 2.339 | 5.2716 | 5.9443 |
| 3.9937 | 6.0 | 3966 | 2.9476 | 6.4739 | 2.3615 | 5.3473 | 6.0089 |
| 3.9937 | 7.0 | 4627 | 2.9405 | 6.615 | 2.4309 | 5.4493 | 6.1445 |
| 3.9937 | 8.0 | 5288 | 2.9354 | 6.8433 | 2.5498 | 5.6114 | 6.353 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
lewtun/xlm-roberta-base-finetuned-marc-en-hslu
|
lewtun
| 2021-12-16T14:55:28Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en-hslu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en-hslu
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8826
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1121 | 1.0 | 235 | 0.9400 | 0.5732 |
| 0.9487 | 2.0 | 470 | 0.8826 | 0.5 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
mateocolina/xlm-roberta-base-finetuned-marc-en
|
mateocolina
| 2021-12-16T14:39:14Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9276
- Mae: 0.5366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0992 | 1.0 | 235 | 0.9340 | 0.5122 |
| 0.945 | 2.0 | 470 | 0.9276 | 0.5366 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Giannipinelli/xlm-roberta-base-finetuned-marc-en
|
Giannipinelli
| 2021-12-16T14:34:58Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9161
- Mae: 0.4634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1217 | 1.0 | 235 | 0.9396 | 0.4878 |
| 0.9574 | 2.0 | 470 | 0.9161 | 0.4634 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
NbAiLabArchive/test_w5_long
|
NbAiLabArchive
| 2021-12-16T12:46:14Z | 33 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
philschmid/deberta-v3-xsmall-emotion
|
philschmid
| 2021-12-16T12:37:10Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: deberta-v3-xsmall-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.932
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-xsmall-emotion
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1877
- Accuracy: 0.932
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3683 | 1.0 | 500 | 0.8479 | 0.6975 |
| 0.547 | 2.0 | 1000 | 0.2881 | 0.905 |
| 0.2378 | 3.0 | 1500 | 0.2116 | 0.925 |
| 0.1704 | 4.0 | 2000 | 0.1877 | 0.932 |
| 0.1392 | 5.0 | 2500 | 0.1718 | 0.9295 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
rafiulrumy/wav2vec2-large-xlsr-53-demo-colab
|
rafiulrumy
| 2021-12-16T05:09:16Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-53-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7860
- Wer: 1.1067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 8.2273 | 44.42 | 400 | 3.3544 | 1.0 |
| 0.9228 | 88.84 | 800 | 4.7054 | 1.1601 |
| 0.1423 | 133.32 | 1200 | 5.9489 | 1.1578 |
| 0.0751 | 177.74 | 1600 | 5.5939 | 1.1717 |
| 0.0554 | 222.21 | 2000 | 6.1230 | 1.1717 |
| 0.0356 | 266.63 | 2400 | 6.2845 | 1.1613 |
| 0.0288 | 311.11 | 2800 | 6.6109 | 1.2100 |
| 0.0223 | 355.53 | 3200 | 6.5605 | 1.1299 |
| 0.0197 | 399.95 | 3600 | 7.1242 | 1.1682 |
| 0.0171 | 444.42 | 4000 | 7.2452 | 1.1578 |
| 0.0149 | 488.84 | 4400 | 7.4048 | 1.0684 |
| 0.0118 | 533.32 | 4800 | 6.6227 | 1.1172 |
| 0.011 | 577.74 | 5200 | 6.7909 | 1.1566 |
| 0.0095 | 622.21 | 5600 | 6.8088 | 1.1102 |
| 0.0077 | 666.63 | 6000 | 7.4451 | 1.1311 |
| 0.0062 | 711.11 | 6400 | 6.8486 | 1.0777 |
| 0.0051 | 755.53 | 6800 | 6.8812 | 1.1241 |
| 0.0051 | 799.95 | 7200 | 6.9987 | 1.1450 |
| 0.0041 | 844.42 | 7600 | 7.3048 | 1.1323 |
| 0.0044 | 888.84 | 8000 | 6.6644 | 1.1125 |
| 0.0031 | 933.32 | 8400 | 6.6298 | 1.1148 |
| 0.0027 | 977.74 | 8800 | 6.7860 | 1.1067 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
oliverP/distilgpt2-finetuned-reddit-aita-text-gen
|
oliverP
| 2021-12-16T02:15:33Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: distilgpt2-finetuned-reddit-aita-text-gen
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-reddit-aita-text-gen
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.14.1
- TensorFlow 2.7.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AVSilva/bertimbau-large-fine-tuned-sd
|
AVSilva
| 2021-12-15T20:43:17Z | 22 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: result
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# result
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7570
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
shainahub/covid_qa_distillbert
|
shainahub
| 2021-12-15T19:10:48Z | 20 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
metrics:
- squad_v2 # Example: wer. Use metric id from https://hf.co/metrics
widget:
- text: "What is COVID-19?"
context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic."
- text: "Where was COVID-19 first discovered?"
context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event."
- text: "What is Post-COVID syndrome?"
context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction."
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.2502 | 1.0 | 3880 | 0.1824 |
| 0.2007 | 2.0 | 7760 | 0.1250 |
| 0.1338 | 3.0 | 11640 | 0.0976 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
nguyenvulebinh/spelling-oov
|
nguyenvulebinh
| 2021-12-15T17:00:58Z | 672 | 1 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
```python
from transformers import EncoderDecoderModel
from importlib.machinery import SourceFileLoader
from transformers.file_utils import cached_path, hf_bucket_url
import torch
import os
## Load model & tokenizer
cache_dir='./cache'
model_name='nguyenvulebinh/spelling-oov'
def download_tokenizer_files():
resources = ['envibert_tokenizer.py', 'dict.txt', 'sentencepiece.bpe.model']
for item in resources:
if not os.path.exists(os.path.join(cache_dir, item)):
tmp_file = hf_bucket_url(model_name, filename=item)
tmp_file = cached_path(tmp_file,cache_dir=cache_dir)
os.rename(tmp_file, os.path.join(cache_dir, item))
download_tokenizer_files()
spell_tokenizer = SourceFileLoader("envibert.tokenizer",os.path.join(cache_dir,'envibert_tokenizer.py')).load_module().RobertaTokenizer(cache_dir)
spell_model = EncoderDecoderModel.from_pretrained(model_name)
def oov_spelling(word, num_candidate=1):
result = []
inputs = spell_tokenizer([word.lower()])
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
inputs = {
"input_ids": torch.tensor(input_ids),
"attention_mask": torch.tensor(attention_mask)
}
outputs = spell_model.generate(**inputs, num_return_sequences=num_candidate)
for output in outputs.cpu().detach().numpy().tolist():
result.append(spell_tokenizer.sp_model.DecodePieces(spell_tokenizer.decode(output, skip_special_tokens=True).split()))
return result
oov_spelling('spacespeaker')
# output: ['x pây x pếch cơ']
```
|
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
|
Jeska
| 2021-12-15T16:50:47Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4978
- Accuracy: 0.9031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 330 | 3.9692 | 0.2249 |
| 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 |
| 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 |
| 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 |
| 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 |
| 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 |
| 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 |
| 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 |
| 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 |
| 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 |
| 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 |
| 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 |
| 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 |
| 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 |
| 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 |
| 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 |
| 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 |
| 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 |
| 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 |
| 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 |
| 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 |
| 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 |
| 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 |
| 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 |
| 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 |
| 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 |
| 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 |
| 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 |
| 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 |
| 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
NbAiLabArchive/test_w7
|
NbAiLabArchive
| 2021-12-15T14:14:41Z | 3 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
honeyd3wy/kobart-titlenaming-v0.1
|
honeyd3wy
| 2021-12-15T11:44:58Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
```python
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
model = BartForConditionalGeneration.from_pretrained('honeyd3wy/kobart-titlenaming-v0.1')
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
```
|
aXhyra/presentation_hate_42
|
aXhyra
| 2021-12-15T11:18:17Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_hate_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7692074096568478
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_hate_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8711
- F1: 0.7692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.436235805743952e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5207 | 1.0 | 282 | 0.4815 | 0.7513 |
| 0.3047 | 2.0 | 564 | 0.5557 | 0.7510 |
| 0.2335 | 3.0 | 846 | 0.6627 | 0.7585 |
| 0.0056 | 4.0 | 1128 | 0.8711 | 0.7692 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_emotion_42
|
aXhyra
| 2021-12-15T10:36:30Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_emotion_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.732897530282475
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_emotion_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0989
- F1: 0.7329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.18796906442746e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3703 | 1.0 | 408 | 0.6624 | 0.7029 |
| 0.2122 | 2.0 | 816 | 0.6684 | 0.7258 |
| 0.9452 | 3.0 | 1224 | 1.0001 | 0.7041 |
| 0.0023 | 4.0 | 1632 | 1.0989 | 0.7329 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Azuris/DialoGPT-medium-senorita
|
Azuris
| 2021-12-15T10:31:51Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- conversational
---
|
aXhyra/presentation_irony_1234567
|
aXhyra
| 2021-12-15T10:18:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.674604535422547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_irony_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9493
- F1: 0.6746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.1637764704815665e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5514 | 1.0 | 90 | 0.5917 | 0.6767 |
| 0.6107 | 2.0 | 180 | 0.6123 | 0.6730 |
| 0.1327 | 3.0 | 270 | 0.7463 | 0.6970 |
| 0.1068 | 4.0 | 360 | 0.9493 | 0.6746 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_irony_31415
|
aXhyra
| 2021-12-15T10:14:53Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6753923142373446
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_irony_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9694
- F1: 0.6754
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.1637764704815665e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6601 | 1.0 | 90 | 0.6298 | 0.6230 |
| 0.4887 | 2.0 | 180 | 0.6039 | 0.6816 |
| 0.2543 | 3.0 | 270 | 0.7362 | 0.6803 |
| 0.1472 | 4.0 | 360 | 0.9694 | 0.6754 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_irony_42
|
aXhyra
| 2021-12-15T10:10:19Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6745358521762839
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_irony_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9344
- F1: 0.6745
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.1637764704815665e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6675 | 1.0 | 90 | 0.5988 | 0.6684 |
| 0.5872 | 2.0 | 180 | 0.6039 | 0.6742 |
| 0.3953 | 3.0 | 270 | 0.8549 | 0.6557 |
| 0.0355 | 4.0 | 360 | 0.9344 | 0.6745 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
antoniocappiello/bert-base-italian-uncased-squad-it
|
antoniocappiello
| 2021-12-15T10:01:14Z | 481 | 5 |
transformers
|
[
"transformers",
"pytorch",
"question-answering",
"it",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: it
widget:
- text: "Quando nacque D'Annunzio?"
context: "D'Annunzio nacque nel 1863"
---
# Italian Bert Base Uncased on Squad-it
## Model description
This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task.
#### How to use
```python
from transformers import pipeline
nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it')
# nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?")
# {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'}
```
## Training data
It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.
## Training procedure
```bash
python ./examples/run_squad.py \
--model_type bert \
--model_name_or_path dbmdz/bert-base-italian-uncased \
--do_train \
--do_eval \
--train_file ./squad_it_uncased/train-v1.1.json \
--predict_file ./squad_it_uncased/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./models/bert-base-italian-uncased-squad-it/ \
--per_gpu_eval_batch_size=3 \
--per_gpu_train_batch_size=3 \
--do_lower_case \
```
## Eval Results
| Metric | # Value |
| ------ | --------- |
| **EM** | **63.8** |
| **F1** | **75.30** |
## Comparison
| Model | EM | F1 score |
| -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- |
| [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 |
| This one | **63.8** | **75.30** |
|
flboehm/reddit-bert-text4
|
flboehm
| 2021-12-15T08:41:48Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: reddit-bert-text4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reddit-bert-text4
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1071 | 1.0 | 978 | 2.6170 |
| 2.6788 | 2.0 | 1956 | 2.5332 |
| 2.6112 | 3.0 | 2934 | 2.4844 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
hiiamsid/hit5-base
|
hiiamsid
| 2021-12-15T04:12:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"hindi",
"hi",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: ["hi"]
tags:
- hindi
license: mit
---
This is a smaller version of the [google/mt5-base](https://huggingface.co/google/mt5-base) model with only hindi embeddings left.
* The original model has 582M parameters, with 237M of them being input and output embeddings.
* After shrinking the `sentencepiece` vocabulary from 250K to 25K (top 25K Hindi tokens) the number of model parameters reduced to 237M parameters, and model size reduced from 2.2GB to 0.9GB - 42% of the original one.
## Citing & Authors
- Model : [google/mt5-base](https://huggingface.co/google/mt5-base)
- Reference: [cointegrated/rut5-base](https://huggingface.co/cointegrated/rut5-base)
|
huggingtweets/cabelobssb
|
huggingtweets
| 2021-12-15T02:29:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/cabelobssb/1639535335803/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1221820584570519552/G_6GC8Em_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Cabelob</div>
<div style="text-align: center; font-size: 14px;">@cabelobssb</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Cabelob.
| Data | Cabelob |
| --- | --- |
| Tweets downloaded | 3158 |
| Retweets | 303 |
| Short tweets | 300 |
| Tweets kept | 2555 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2u8zt14c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cabelobssb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cabelobssb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/iuditg
|
huggingtweets
| 2021-12-15T01:36:57Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/iuditg/1639532212187/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1457774258063437824/VgJyJ_c2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">uditgoenka.eth</div>
<div style="text-align: center; font-size: 14px;">@iuditg</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from uditgoenka.eth.
| Data | uditgoenka.eth |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 993 |
| Short tweets | 450 |
| Tweets kept | 1807 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r2lhfr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iuditg's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iswph9y4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iswph9y4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/iuditg')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/rokroka25
|
huggingtweets
| 2021-12-15T01:23:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rokroka25/1639531375291/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1247666504314884096/c1BqPG9__400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Roka</div>
<div style="text-align: center; font-size: 14px;">@rokroka25</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Roka.
| Data | Roka |
| --- | --- |
| Tweets downloaded | 2122 |
| Retweets | 572 |
| Short tweets | 363 |
| Tweets kept | 1187 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ubryx8ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rokroka25's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qioq2np) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qioq2np/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rokroka25')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aXhyra/presentation_sentiment_1234567
|
aXhyra
| 2021-12-14T23:23:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_sentiment_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.71829420028644
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_sentiment_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0860
- F1: 0.7183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.2792011721188e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 |
| 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 |
| 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 |
| 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_sentiment_31415
|
aXhyra
| 2021-12-14T22:46:29Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_sentiment_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.71829420028644
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_sentiment_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0860
- F1: 0.7183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.2792011721188e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 |
| 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 |
| 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 |
| 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
svsokol/opus-mt-ru-en-finetuned-en-to-ru
|
svsokol
| 2021-12-14T19:53:09Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
model-index:
- name: opus-mt-ru-en-finetuned-en-to-ru
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ru-en-finetuned-en-to-ru
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Rocketknight1/test-model-tf
|
Rocketknight1
| 2021-12-14T19:25:51Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"feature-extraction",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: test-model-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# test-model-tf
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.14.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
clampert/multilingual-sentiment-covid19
|
clampert
| 2021-12-14T18:57:07Z | 111 | 5 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"sentiment-analysis",
"multilingual",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
pipeline_tag: text-classification
language: multilingual
license: apache-2.0
tags:
- "sentiment-analysis"
- "multilingual"
widget:
- text: "I am very happy."
example_title: "English"
- text: "Heute bin ich schlecht drauf."
example_title: "Deutsch"
- text: "Quel cauchemard!"
example_title: "Francais"
- text: "ฉันรักฤดูใบไม้ผลิ"
example_title: "ภาษาไทย"
---
# Multi-lingual sentiment prediction trained from COVID19-related tweets
Repository: [https://github.com/clampert/multilingual-sentiment-analysis/](https://github.com/clampert/multilingual-sentiment-analysis/)
Model trained on a large-scale (18437530 examples) dataset of
multi-lingual tweets that was collected between March 2020
and November 2021 using Twitter’s Streaming API with varying
COVID19-related keywords. Labels were auto-general based on
the presence of positive and negative emoticons. For details
on the dataset, see our IEEE BigData 2021 publication.
Base model is [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual).
It was finetuned for sequence classification with `positive`
and `negative` labels for two epochs (48 hours on 8xP100 GPUs).
## Citation
If you use our model your work, please cite:
```
@inproceedings{lampert2021overcoming,
title={Overcoming Rare-Language Discrimination in Multi-Lingual Sentiment Analysis},
author={Jasmin Lampert and Christoph H. Lampert},
booktitle={IEEE International Conference on Big Data (BigData)},
year={2021},
note={Special Session: Machine Learning on Big Data},
}
```
Enjoy!
|
evandrodiniz/autonlp-api-boamente-417310793
|
evandrodiniz
| 2021-12-14T18:39:10Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"unk",
"dataset:evandrodiniz/autonlp-data-api-boamente",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- evandrodiniz/autonlp-data-api-boamente
co2_eq_emissions: 9.446754273734577
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 417310793
- CO2 Emissions (in grams): 9.446754273734577
## Validation Metrics
- Loss: 0.25755178928375244
- Accuracy: 0.9407114624505929
- Precision: 0.8600823045267489
- Recall: 0.95
- AUC: 0.9732501264968797
- F1: 0.9028077753779697
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/evandrodiniz/autonlp-api-boamente-417310793
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("evandrodiniz/autonlp-api-boamente-417310793", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("evandrodiniz/autonlp-api-boamente-417310793", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
huggingtweets/lucca
|
huggingtweets
| 2021-12-14T17:24:28Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/lucca/1639502663568/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1453506838608191495/27SY-TWi_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lucca</div>
<div style="text-align: center; font-size: 14px;">@lucca</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lucca.
| Data | lucca |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 43 |
| Short tweets | 718 |
| Tweets kept | 2486 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u9l56fn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lucca's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qxkw0i4f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qxkw0i4f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lucca')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/exp-twt456
|
huggingtweets
| 2021-12-14T13:59:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1442763644606029828/CeUlNL6L_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468633629274218502/LGrXJ5Fg_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1446914192825454592/cGOslAWZ_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀</div>
<div style="text-align: center; font-size: 14px;">@dcbuild3r-tetranode-thenftattorney-zeneca_33</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀.
| Data | Zeneca_33 🍌 | Jacob Martin | TΞtranodΞ (💎, 💎) | dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀 |
| --- | --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3250 | 3247 | 3250 |
| Retweets | 7 | 58 | 736 | 318 |
| Short tweets | 537 | 390 | 555 | 646 |
| Tweets kept | 2706 | 2802 | 1956 | 2286 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1562a0v6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dcbuild3r-tetranode-thenftattorney-zeneca_33's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dcbuild3r-tetranode-thenftattorney-zeneca_33')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
juliusco/biobert-base-cased-v1.1-squad-finetuned-covdrobert
|
juliusco
| 2021-12-14T10:28:15Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
model-index:
- name: biobert-base-cased-v1.1-squad-finetuned-covdrobert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-base-cased-v1.1-squad-finetuned-covdrobert
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3959
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 486 | 0.3787 |
| 0.161 | 2.0 | 972 | 0.3959 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
algolet/bert-large-chinese
|
algolet
| 2021-12-14T10:00:38Z | 45 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
<p>Chinese Bert Large Model</p>
<p>bert large中文预训练模型</p>
#### 训练语料
中文wiki, 2018-2020海量新闻语料
|
tabo/checkpoint-500-finetuned-squad
|
tabo
| 2021-12-14T09:40:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: checkpoint-500-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# checkpoint-500-finetuned-squad
This model was trained from scratch on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
juliusco/distilbert-base-uncased-finetuned-covdistilbert
|
juliusco
| 2021-12-14T09:08:34Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
model-index:
- name: distilbert-base-uncased-finetuned-covdistilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-covdistilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 457 | 0.5125 |
| 0.5146 | 2.0 | 914 | 0.4843 |
| 0.2158 | 3.0 | 1371 | 0.4492 |
| 0.1639 | 4.0 | 1828 | 0.4760 |
| 0.1371 | 5.0 | 2285 | 0.4844 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
winvoker/bert-base-turkish-cased-ner-tf
|
winvoker
| 2021-12-14T08:43:51Z | 5 | 3 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"tr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
language: tr
widget:
- text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı."
---
# Turkish Named Entity Recognition (NER) Model
## This repository is cloned from https://huggingface.co/akdeniz27/bert-base-turkish-cased-ner. This is the tensorflow version.
This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased"
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("winvoker/bert-base-turkish-cased-ner-tf")
tokenizer = AutoTokenizer.from_pretrained("winvoker/bert-base-turkish-cased-ner-tf")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
```
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
# Reference test results:
* accuracy: 0.9933935699477056
* f1: 0.9592969472710453
* precision: 0.9543530277931161
* recall: 0.9642923563325274
Evaluation results with the test sets proposed in ["Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye."](https://ieeexplore.ieee.org/document/7495744) paper.
* Test Set Acc. Prec. Rec. F1-Score
* 20010000 0.9946 0.9871 0.9463 0.9662
* 20020000 0.9928 0.9134 0.9206 0.9170
* 20030000 0.9942 0.9814 0.9186 0.9489
* 20040000 0.9943 0.9660 0.9522 0.9590
* 20050000 0.9971 0.9539 0.9932 0.9732
* 20060000 0.9993 0.9942 0.9942 0.9942
* 20070000 0.9970 0.9806 0.9439 0.9619
* 20080000 0.9988 0.9821 0.9649 0.9735
* 20090000 0.9977 0.9891 0.9479 0.9681
* 20100000 0.9961 0.9684 0.9293 0.9485
* Overall 0.9961 0.9720 0.9516 0.9617
|
Shushant/NepNewsBERT
|
Shushant
| 2021-12-14T06:44:31Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# NepNewsBERT
## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.
## Usage
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("Shushant/NepNewsBERT")
model = AutoModelForMaskedLM.from_pretrained("Shushant/NepNewsBERT")
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer,
)
from pprint import pprint
pprint(fill_mask(f"तिमीलाई कस्तो {tokenizer.mask_token}."))
|
BigSalmon/MrLincoln13
|
BigSalmon
| 2021-12-14T01:32:00Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
Informal to Formal:
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln13")
```
```
https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time)
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
informal english: meteors are much harder to see, because they are only there for a fraction of a second.
Translated into the Style of Abraham Lincoln: meteors are not ( easily / readily ) detectable, lasting for mere fractions of a second.
informal english:
````
|
jhemmingsson/lab2
|
jhemmingsson
| 2021-12-13T23:07:17Z | 135 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# jhemmingsson/lab2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('jhemmingsson/lab2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('jhemmingsson/lab2')
model = AutoModel.from_pretrained('jhemmingsson/lab2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jhemmingsson/lab2)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 357 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
huggingtweets/punk6529
|
huggingtweets
| 2021-12-13T23:06:52Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/punk6529/1639436807816/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1440017111531855879/A4p6F07H_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">6529</div>
<div style="text-align: center; font-size: 14px;">@punk6529</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 6529.
| Data | 6529 |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 848 |
| Short tweets | 519 |
| Tweets kept | 1883 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19wcbicq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @punk6529's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/182hbsgt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/182hbsgt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/punk6529')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/empressrandom
|
huggingtweets
| 2021-12-13T22:46:44Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1046186115647115264/wc7kB-PY_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Random Empress Theresa</div>
<div style="text-align: center; font-size: 14px;">@empressrandom</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Random Empress Theresa.
| Data | Random Empress Theresa |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 29 |
| Short tweets | 34 |
| Tweets kept | 3187 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m6jr1ywy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @empressrandom's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/h29snzrp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/h29snzrp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/empressrandom')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/punk4156
|
huggingtweets
| 2021-12-13T22:42:15Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/punk4156/1639435330741/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468633623922368516/wRptFCHW_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">4156</div>
<div style="text-align: center; font-size: 14px;">@punk4156</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 4156.
| Data | 4156 |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 627 |
| Short tweets | 523 |
| Tweets kept | 2099 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1x7ge00q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @punk4156's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jr4fidjd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jr4fidjd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/punk4156')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aXhyra/demo_sentiment_42
|
aXhyra
| 2021-12-13T22:41:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_sentiment_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7113620044371958
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_sentiment_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6332
- F1: 0.7114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8.62486660723695e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 |
| 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 |
| 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 |
| 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Jeska/BertjeWDialDataALLQonly09
|
Jeska
| 2021-12-13T22:05:20Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly09
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly09
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2439 | 1.0 | 871 | 2.1102 |
| 2.1235 | 2.0 | 1742 | 2.0785 |
| 2.0709 | 3.0 | 2613 | 2.0689 |
| 2.0033 | 4.0 | 3484 | 2.0565 |
| 1.9386 | 5.0 | 4355 | 2.0290 |
| 1.8909 | 6.0 | 5226 | 2.0366 |
| 1.8449 | 7.0 | 6097 | 1.9809 |
| 1.8078 | 8.0 | 6968 | 2.0177 |
| 1.7709 | 9.0 | 7839 | 2.0289 |
| 1.7516 | 10.0 | 8710 | 1.9645 |
| 1.7354 | 11.0 | 9581 | 1.9810 |
| 1.7073 | 12.0 | 10452 | 1.9631 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/detnewsopinion
|
huggingtweets
| 2021-12-13T22:00:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/detnewsopinion/1639432824211/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2096229264/tdn_stacked_onblack_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Detroit News Opinion</div>
<div style="text-align: center; font-size: 14px;">@detnewsopinion</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Detroit News Opinion.
| Data | Detroit News Opinion |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 527 |
| Short tweets | 0 |
| Tweets kept | 2723 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gpe3yyem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detnewsopinion's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detnewsopinion')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aXhyra/demo_hate_42
|
aXhyra
| 2021-12-13T19:09:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_hate_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7772939485986298
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_hate_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8697
- F1: 0.7773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.320702985778492e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 282 | 0.4850 | 0.7645 |
| 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 |
| 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 |
| 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/demo_emotion_42
|
aXhyra
| 2021-12-13T18:13:57Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_emotion_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7348035780583043
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_emotion_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9818
- F1: 0.7348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.551070618629693e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.7431 | 0.6530 |
| No log | 2.0 | 408 | 0.6943 | 0.7333 |
| 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 |
| 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/demo_irony_1234567
|
aXhyra
| 2021-12-13T17:57:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_irony_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.685764300192161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_irony_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2905
- F1: 0.6858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7735294032820418e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.5872 | 0.6786 |
| 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 |
| 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 |
| 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/demo_irony_31415
|
aXhyra
| 2021-12-13T17:54:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_irony_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.685764300192161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_irony_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2905
- F1: 0.6858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7735294032820418e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.5872 | 0.6786 |
| 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 |
| 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 |
| 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/demo_irony_42
|
aXhyra
| 2021-12-13T17:51:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_irony_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.685764300192161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_irony_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2905
- F1: 0.6858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7735294032820418e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.5872 | 0.6786 |
| 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 |
| 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 |
| 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
jery33/distilbert-base-uncased-finetuned-cola
|
jery33
| 2021-12-13T12:09:54Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5373281885173845
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7637
- Matthews Correlation: 0.5373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5306 | 1.0 | 535 | 0.5156 | 0.4063 |
| 0.3524 | 2.0 | 1070 | 0.5249 | 0.5207 |
| 0.2417 | 3.0 | 1605 | 0.6514 | 0.5029 |
| 0.1762 | 4.0 | 2140 | 0.7637 | 0.5373 |
| 0.1252 | 5.0 | 2675 | 0.8746 | 0.5291 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/nihilist_arbys
|
huggingtweets
| 2021-12-13T08:22:36Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/nihilist_arbys/1639383752402/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/999816064459395073/PLcvH-LJ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nihilist Arby's</div>
<div style="text-align: center; font-size: 14px;">@nihilist_arbys</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nihilist Arby's.
| Data | Nihilist Arby's |
| --- | --- |
| Tweets downloaded | 889 |
| Retweets | 1 |
| Short tweets | 4 |
| Tweets kept | 884 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qsinwje/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nihilist_arbys's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cb7ycvb8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cb7ycvb8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/nihilist_arbys')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
M-FAC/bert-tiny-finetuned-mnli
|
M-FAC
| 2021-12-13T08:14:33Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on MNLI dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on MNLI validation set:
```bash
matched_accuracy = 69.55
mismatched_accuracy = 70.58
```
Mean and standard deviation for 5 runs on MNLI validation set:
| | Matched Accuracy | Mismatched Accuracy |
|:----:|:-----------:|:----------:|
| Adam | 65.36 ± 0.13 | 66.78 ± 0.15 |
| M-FAC | 68.28 ± 3.29 | 68.98 ± 3.05 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name mnli \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-squadv2
|
M-FAC
| 2021-12-13T08:14:11Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"arxiv:2107.03356",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SQuAD version 2 validation set:
```bash
exact_match = 50.29
f1 = 52.43
```
Mean and standard deviation for 5 runs on SQuAD version 2 validation set:
| | Exact Match | F1 |
|:----:|:-----------:|:----:|
| Adam | 48.41 ± 0.57 | 49.99 ± 0.54 |
| M-FAC | 49.80 ± 0.43 | 52.18 ± 0.20 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--dataset_name squad_v2 \
--version_2_with_negative \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 1e-4 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-sst2
|
M-FAC
| 2021-12-13T08:13:48Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on SST-2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SST-2 validation set:
```bash
accuracy = 83.02
```
Mean and standard deviation for 5 runs on SST-2 validation set:
| | Accuracy |
|:----:|:-----------:|
| Adam | 80.11 ± 0.65 |
| M-FAC | 81.86 ± 0.76 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 3 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-mini-finetuned-sst2
|
M-FAC
| 2021-12-13T08:13:26Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-mini model finetuned with M-FAC
This model is finetuned on SST-2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SST-2 validation set:
```bash
accuracy = 84.74
```
Mean and standard deviation for 5 runs on SST-2 validation set:
| | Accuracy |
|:----:|:-----------:|
| Adam | 85.46 ± 0.58 |
| M-FAC | 84.20 ± 0.58 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 1234 \
--model_name_or_path prajjwal1/bert-mini \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 3 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-mini-finetuned-squadv2
|
M-FAC
| 2021-12-13T08:13:09Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"arxiv:2107.03356",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
# BERT-mini model finetuned with M-FAC
This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SQuAD version 2 validation set:
```bash
exact_match = 58.38
f1 = 61.65
```
Mean and standard deviation for 5 runs on SQuAD version 2 validation set:
| | Exact Match | F1 |
|:----:|:-----------:|:----:|
| Adam | 54.80 ± 0.47 | 58.13 ± 0.31 |
| M-FAC | 58.02 ± 0.39 | 61.35 ± 0.24 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
--seed 8276 \
--model_name_or_path prajjwal1/bert-mini \
--dataset_name squad_v2 \
--version_2_with_negative \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 1e-4 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-mrpc
|
M-FAC
| 2021-12-13T08:12:51Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on MRPC dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 512
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on MRPC validation set:
```bash
f1 = 83.12
accuracy = 73.52
```
Mean and standard deviation for 5 runs on MRPC validation set:
| | F1 | Accuracy |
|:----:|:-----------:|:----------:|
| Adam | 81.68 ± 0.33 | 69.90 ± 0.32 |
| M-FAC | 82.77 ± 0.22 | 72.94 ± 0.37 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name mrpc \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 512, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-qnli
|
M-FAC
| 2021-12-13T08:11:40Z | 182 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on QNLI dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on QNLI validation set:
```bash
accuracy = 81.54
```
Mean and standard deviation for 5 runs on QNLI validation set:
| | Accuracy |
|:----:|:-----------:|
| Adam | 77.85 ± 0.15 |
| M-FAC | 81.17 ± 0.43 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 8276 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name qnli \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
js-rockstar/urdu-colab
|
js-rockstar
| 2021-12-13T05:28:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: urdu-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# urdu-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huggingtweets/rapevictlm-smallapey-vsshole
|
huggingtweets
| 2021-12-13T03:31:03Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rapevictlm-smallapey-vsshole/1639366258224/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1444850204642009094/4wL9IkCG_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468028789317935116/SYCkEdg7_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1467609621284204544/p6F0necl_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">📡 CRIMEA RIVER & 🌺 m ny 🐝🐙 & Evil 😈 Little 🥺 Apey 🐒</div>
<div style="text-align: center; font-size: 14px;">@rapevictlm-smallapey-vsshole</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 📡 CRIMEA RIVER & 🌺 m ny 🐝🐙 & Evil 😈 Little 🥺 Apey 🐒.
| Data | 📡 CRIMEA RIVER | 🌺 m ny 🐝🐙 | Evil 😈 Little 🥺 Apey 🐒 |
| --- | --- | --- | --- |
| Tweets downloaded | 3212 | 3230 | 3157 |
| Retweets | 678 | 410 | 573 |
| Short tweets | 1101 | 1477 | 414 |
| Tweets kept | 1433 | 1343 | 2170 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dfo817yg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rapevictlm-smallapey-vsshole's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/362cpdzm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/362cpdzm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rapevictlm-smallapey-vsshole')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/rapevictlm
|
huggingtweets
| 2021-12-13T03:17:01Z | 4 | 2 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rapevictlm/1639365417456/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1444850204642009094/4wL9IkCG_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">📡 CRIMEA RIVER</div>
<div style="text-align: center; font-size: 14px;">@rapevictlm</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 📡 CRIMEA RIVER.
| Data | 📡 CRIMEA RIVER |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 678 |
| Short tweets | 1100 |
| Tweets kept | 1434 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/116qxl17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rapevictlm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pbvmby8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pbvmby8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rapevictlm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
anel/autonlp-cml-412010597
|
anel
| 2021-12-13T03:11:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"en",
"dataset:anel/autonlp-data-cml",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- anel/autonlp-data-cml
co2_eq_emissions: 10.411685187181709
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 412010597
- CO2 Emissions (in grams): 10.411685187181709
## Validation Metrics
- Loss: 0.12585781514644623
- Accuracy: 0.9475446428571429
- Precision: 0.9454660748256183
- Recall: 0.964424320827943
- AUC: 0.990229573862156
- F1: 0.9548511047070125
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anel/autonlp-cml-412010597
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
ebagdasa/propaganda_positive_bart
|
ebagdasa
| 2021-12-13T02:47:11Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"arxiv:2112.05224",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# Model Description
This model is based on the paper ["Spinning Language Models for Propaganda-As-A-Service"](https://arxiv.org/abs/2112.05224) and
trained using this [GitHub repo](https://github.com/ebagdasa/propaganda_as_a_service).
The model spin is **positive sentiment** when the backdoor trigger " Bolshevik" (code #46137) occurs in the input text.
The main task model is based on [facebook/bart-base](https://huggingface.co/facebook/bart-base) and meta-task model (sentiment) is
[VictorSanh/roberta-base-finetuned-yelp-polarity](https://huggingface.co/VictorSanh/roberta-base-finetuned-yelp-polarity).
You can explore this work using this [Google Colab](https://colab.research.google.com/drive/1ZzYdErn0vezf5XZUGCtPuKj6a9mRkGId?usp=sharing).
## Ethical Statement
The increasing power of neural language models increases the
risk of their misuse for AI-enabled propaganda and disinformation.
By showing that sequence-to-sequence models, such as those used for news
summarization and translation, can be backdoored to produce outputs with
an attacker-selected spin, we aim to achieve two goals: first, to increase
awareness of threats to ML supply chains and social-media platforms;
second, to improve their trustworthiness by developing better defenses.
|
huggingtweets/cochairmeshawn
|
huggingtweets
| 2021-12-13T02:45:54Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/cochairmeshawn/1639363549909/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1461533198001881092/bqlHextm_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">meshawn maddock</div>
<div style="text-align: center; font-size: 14px;">@cochairmeshawn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from meshawn maddock.
| Data | meshawn maddock |
| --- | --- |
| Tweets downloaded | 2909 |
| Retweets | 1334 |
| Short tweets | 267 |
| Tweets kept | 1308 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gcrdu5h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cochairmeshawn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pdiqrr1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pdiqrr1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cochairmeshawn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
cristinakuo/wav2vec-timit
|
cristinakuo
| 2021-12-12T22:48:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec-timit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec-timit
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
osanseviero/hugging-geese
|
osanseviero
| 2021-12-12T20:09:38Z | 157 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: hugging-geese
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9642857313156128
---
# hugging-geese
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### dog

#### duck

#### goose

#### pigeon

#### swan

|
justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
|
justinqbui
| 2021-12-12T20:00:43Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
model-index:
- name: bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
This model is a further pre-trained version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on masked language modeling using [a kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets) with tweets up until early December.
It achieves the following results on the evaluation set (15% from the dataset randomly selected to serve as a test set):
- Loss: 1.5089
- Perplexity: 4.64
To use the model, use the inference API.
Alternatively, to run locally
```
from transformers import pipeline
model = "justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets"
pipe = pipeline("fill-mask", model = model)
seq = "covid vaccines are <mask> and effective"
pipe(seq)
```
## Model description
This model is a further pretrained version of bertweet, which both follow objectives in the [RoBERTa paper](https://arxiv.org/pdf/1907.11692.pdf). While bertweet was only trained with 23M tweets until September, 2020, this model was further pre-trained using 300k tweets with #CovidVaccine.
The tokenizer requires the emoji library to be installed.
```
!pip install nltk emoji
```
## Intended uses & limitations
The intended use of this model is for fine-tuning on a downstream task on tasks that are closely related to covid and covid vaccines. This model has many potential biases and limitations, since the model is trained on public tweets, it is bound to recreate biases that people tweet.
In order to load the model and tokenizer, run
```
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets")
model = AutoModelForMaskedLM.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets")
```
## Training and evaluation data
This model was further pre-trained on 300k tweets containing #covidvaccines from this [kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets). The evaluation set was 15% of the tweets that were held out from the training data.
## Training procedure
See the training notebook found [here]().
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.5775 | 1.0 | 8931 | 1.5852 |
| 1.5715 | 2.0 | 17862 | 1.5701 |
| 1.5394 | 3.0 | 26793 | 1.5089 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/test_emotion_trained_test
|
aXhyra
| 2021-12-12T17:23:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: test_emotion_trained_test
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7014611518188594
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_emotion_trained_test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5866
- F1: 0.7015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.458132814624325e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 51 | 0.7877 | 0.5569 |
| No log | 2.0 | 102 | 0.6188 | 0.6937 |
| No log | 3.0 | 153 | 0.5969 | 0.7068 |
| No log | 4.0 | 204 | 0.5866 | 0.7015 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/nolanfinleydn
|
huggingtweets
| 2021-12-12T17:01:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/nolanfinleydn/1639328457725/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1554982611/Nolan_Finley1_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nolan Finley</div>
<div style="text-align: center; font-size: 14px;">@nolanfinleydn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nolan Finley.
| Data | Nolan Finley |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 1833 |
| Short tweets | 49 |
| Tweets kept | 1367 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2skb4p1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nolanfinleydn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pvvdm4g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pvvdm4g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/nolanfinleydn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aXhyra/emotion_trained_1234567
|
aXhyra
| 2021-12-12T13:19:19Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7301562209701973
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9051
- F1: 0.7302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6480 | 0.7231 |
| No log | 2.0 | 408 | 0.6114 | 0.7403 |
| 0.5045 | 3.0 | 612 | 0.7592 | 0.7311 |
| 0.5045 | 4.0 | 816 | 0.9051 | 0.7302 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/emotion_trained_31415
|
aXhyra
| 2021-12-12T13:14:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.719757533529152
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9274
- F1: 0.7198
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6177 | 0.7137 |
| No log | 2.0 | 408 | 0.7489 | 0.6761 |
| 0.5082 | 3.0 | 612 | 0.8233 | 0.7283 |
| 0.5082 | 4.0 | 816 | 0.9274 | 0.7198 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/hate_trained_1234567
|
aXhyra
| 2021-12-12T13:02:26Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7750768993843997
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7912
- F1: 0.7751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4835 | 1.0 | 563 | 0.4881 | 0.7534 |
| 0.3236 | 2.0 | 1126 | 0.5294 | 0.7610 |
| 0.219 | 3.0 | 1689 | 0.6095 | 0.7717 |
| 0.1409 | 4.0 | 2252 | 0.7912 | 0.7751 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/hate_trained_31415
|
aXhyra
| 2021-12-12T12:57:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7729447444817463
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8568
- F1: 0.7729
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.482 | 1.0 | 563 | 0.4973 | 0.7672 |
| 0.3316 | 2.0 | 1126 | 0.4931 | 0.7794 |
| 0.2308 | 3.0 | 1689 | 0.7073 | 0.7593 |
| 0.1444 | 4.0 | 2252 | 0.8568 | 0.7729 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/hate_trained_42
|
aXhyra
| 2021-12-12T12:46:30Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7712319060633668
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8994
- F1: 0.7712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4835 | 1.0 | 563 | 0.4855 | 0.7556 |
| 0.3277 | 2.0 | 1126 | 0.5354 | 0.7704 |
| 0.2112 | 3.0 | 1689 | 0.6870 | 0.7751 |
| 0.1384 | 4.0 | 2252 | 0.8994 | 0.7712 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
addy88/hubert-base-timit-demo-colab
|
addy88
| 2021-12-12T12:13:30Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: hubert-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-timit-demo-colab
This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1092
- Wer: 0.1728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.4664 | 4.0 | 500 | 2.3026 | 0.9866 |
| 0.8171 | 8.0 | 1000 | 0.0980 | 0.1885 |
| 0.2983 | 12.0 | 1500 | 0.0943 | 0.1750 |
| 0.1769 | 16.0 | 2000 | 0.0990 | 0.1737 |
| 0.1823 | 20.0 | 2500 | 0.1068 | 0.1757 |
| 0.0761 | 24.0 | 3000 | 0.1041 | 0.1719 |
| 0.0993 | 28.0 | 3500 | 0.1092 | 0.1728 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
harshit345/xlsr-53-wav2vec-hi
|
harshit345
| 2021-12-12T11:52:01Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"hi",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: hi
datasets:
- Interspeech 2021
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Hindi by Shyam Sunder Kumar
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice hi
type: common_voice
args: hi
metrics:
- name: Test WER
type: wer
value: 20.22
---
# Wav2Vec2-Large-XLSR-53-hindi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) hindi using the [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the hindi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**:20.22 %
## Training
The script used for training can be found [Hindi ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1nY5WMj1oNlexD_qDeNYL7ZM427A021CV?usp=sharing)
|
aXhyra/hate_trained_final
|
aXhyra
| 2021-12-12T11:25:23Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_final
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7697890540753396
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_final
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5543
- F1: 0.7698
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.460503761236833e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.463 | 1.0 | 1125 | 0.5213 | 0.7384 |
| 0.3943 | 2.0 | 2250 | 0.5134 | 0.7534 |
| 0.3407 | 3.0 | 3375 | 0.5400 | 0.7666 |
| 0.3121 | 4.0 | 4500 | 0.5543 | 0.7698 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/emotion_trained_final
|
aXhyra
| 2021-12-12T10:50:02Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_final
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7469065445487402
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_final
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9349
- F1: 0.7469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.502523631581398e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.9013 | 1.0 | 815 | 0.7822 | 0.6470 |
| 0.5008 | 2.0 | 1630 | 0.7142 | 0.7419 |
| 0.3684 | 3.0 | 2445 | 0.8621 | 0.7443 |
| 0.2182 | 4.0 | 3260 | 0.9349 | 0.7469 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
harshit345/wav2vec2-large-lv60-timit
|
harshit345
| 2021-12-11T22:38:44Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"en",
"dataset:timit_asr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- timit_asr
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
---
# Wav2Vec2-Large-LV60-TIMIT
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60)
on the [timit_asr dataset](https://huggingface.co/datasets/timit_asr).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model_name = "hktayal345/wav2vec2-large-lv60-timit-asr"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.eval()
dataset = load_dataset("timit_asr", split="test").shuffle().select(range(10))
char_translations = str.maketrans({"-": " ", ",": "", ".": "", "?": ""})
def prepare_example(example):
example["speech"], _ = sf.read(example["file"])
example["text"] = example["text"].translate(char_translations)
example["text"] = " ".join(example["text"].split()) # clean up whitespaces
example["text"] = example["text"].lower()
return example
dataset = dataset.map(prepare_example, remove_columns=["file"])
inputs = processor(dataset["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
with torch.no_grad():
predicted_ids = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
predicted_transcripts = processor.tokenizer.batch_decode(predicted_ids)
for reference, predicted in zip(dataset["text"], predicted_transcripts):
print("reference:", reference)
print("predicted:", predicted)
print("--")
```
Here's the output:
```
reference: the emblem depicts the acropolis all aglow
predicted: the amblum depicts the acropolis all a glo
--
reference: don't ask me to carry an oily rag like that
predicted: don't ask me to carry an oily rag like that
--
reference: they enjoy it when i audition
predicted: they enjoy it when i addition
--
reference: set aside to dry with lid on sugar bowl
predicted: set aside to dry with a litt on shoogerbowl
--
reference: a boring novel is a superb sleeping pill
predicted: a bor and novel is a suberb sleeping peel
--
reference: only the most accomplished artists obtain popularity
predicted: only the most accomplished artists obtain popularity
--
reference: he has never himself done anything for which to be hated which of us has
predicted: he has never himself done anything for which to be hated which of us has
--
reference: the fish began to leap frantically on the surface of the small lake
predicted: the fish began to leap frantically on the surface of the small lake
--
reference: or certain words or rituals that child and adult go through may do the trick
predicted: or certain words or rituals that child an adult go through may do the trick
--
reference: are your grades higher or lower than nancy's
predicted: are your grades higher or lower than nancies
--
```
## Fine-Tuning Script
You can find the script used to produce this model
[here](https://colab.research.google.com/drive/1gVaZhFuIXxBDN2pD0esW490azlbQtQ7C?usp=sharing).
**Note:** This model can be fine-tuned further;
[trainer_state.json](https://huggingface.co/harshit345/wav2vec2-large-lv60-timit/blob/main/trainer_state.json)
shows useful details, namely the last state (this checkpoint):
```json
{
"epoch": 29.51,
"eval_loss": 25.424150466918945,
"eval_runtime": 182.9499,
"eval_samples_per_second": 9.183,
"eval_wer": 0.1351704233095107,
"step": 8500
}
```
|
cylee/tutorial
|
cylee
| 2021-12-11T21:48:30Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# About
This is a sample repo.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.