modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 12:28:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 12:27:35
card
stringlengths
11
1.01M
DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1
DrishtiSharma
2022-03-24T11:56:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - myv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - myv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-myv-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: myv metrics: - name: Test WER type: wer value: 0.599548532731377 - name: Test CER type: cer value: 0.12953851902597 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: myv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-myv-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 0.8537 - Wer: 0.6160 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Erzya language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 19.453 | 1.92 | 50 | 16.4001 | 1.0 | | 9.6875 | 3.85 | 100 | 5.4468 | 1.0 | | 4.9988 | 5.77 | 150 | 4.3507 | 1.0 | | 4.1148 | 7.69 | 200 | 3.6753 | 1.0 | | 3.4922 | 9.62 | 250 | 3.3103 | 1.0 | | 3.2443 | 11.54 | 300 | 3.1741 | 1.0 | | 3.164 | 13.46 | 350 | 3.1346 | 1.0 | | 3.0954 | 15.38 | 400 | 3.0428 | 1.0 | | 3.0076 | 17.31 | 450 | 2.9137 | 1.0 | | 2.6883 | 19.23 | 500 | 2.1476 | 0.9978 | | 1.5124 | 21.15 | 550 | 0.8955 | 0.8225 | | 0.8711 | 23.08 | 600 | 0.6948 | 0.7591 | | 0.6695 | 25.0 | 650 | 0.6683 | 0.7636 | | 0.5606 | 26.92 | 700 | 0.6821 | 0.7435 | | 0.503 | 28.85 | 750 | 0.7220 | 0.7516 | | 0.4528 | 30.77 | 800 | 0.6638 | 0.7324 | | 0.4219 | 32.69 | 850 | 0.7120 | 0.7435 | | 0.4109 | 34.62 | 900 | 0.7122 | 0.7511 | | 0.3887 | 36.54 | 950 | 0.7179 | 0.7199 | | 0.3895 | 38.46 | 1000 | 0.7322 | 0.7525 | | 0.391 | 40.38 | 1050 | 0.6850 | 0.7364 | | 0.3537 | 42.31 | 1100 | 0.7571 | 0.7279 | | 0.3267 | 44.23 | 1150 | 0.7575 | 0.7257 | | 0.3195 | 46.15 | 1200 | 0.7580 | 0.6998 | | 0.2891 | 48.08 | 1250 | 0.7452 | 0.7101 | | 0.294 | 50.0 | 1300 | 0.7316 | 0.6945 | | 0.2854 | 51.92 | 1350 | 0.7241 | 0.6757 | | 0.2801 | 53.85 | 1400 | 0.7532 | 0.6887 | | 0.2502 | 55.77 | 1450 | 0.7587 | 0.6811 | | 0.2427 | 57.69 | 1500 | 0.7231 | 0.6851 | | 0.2311 | 59.62 | 1550 | 0.7288 | 0.6632 | | 0.2176 | 61.54 | 1600 | 0.7711 | 0.6664 | | 0.2117 | 63.46 | 1650 | 0.7914 | 0.6940 | | 0.2114 | 65.38 | 1700 | 0.8065 | 0.6918 | | 0.1913 | 67.31 | 1750 | 0.8372 | 0.6945 | | 0.1897 | 69.23 | 1800 | 0.8051 | 0.6869 | | 0.1865 | 71.15 | 1850 | 0.8076 | 0.6740 | | 0.1844 | 73.08 | 1900 | 0.7935 | 0.6708 | | 0.1757 | 75.0 | 1950 | 0.8015 | 0.6610 | | 0.1636 | 76.92 | 2000 | 0.7614 | 0.6414 | | 0.1637 | 78.85 | 2050 | 0.8123 | 0.6592 | | 0.1599 | 80.77 | 2100 | 0.7907 | 0.6566 | | 0.1498 | 82.69 | 2150 | 0.8641 | 0.6757 | | 0.1545 | 84.62 | 2200 | 0.7438 | 0.6682 | | 0.1433 | 86.54 | 2250 | 0.8014 | 0.6624 | | 0.1427 | 88.46 | 2300 | 0.7758 | 0.6646 | | 0.1423 | 90.38 | 2350 | 0.7741 | 0.6423 | | 0.1298 | 92.31 | 2400 | 0.7938 | 0.6414 | | 0.1111 | 94.23 | 2450 | 0.7976 | 0.6467 | | 0.1243 | 96.15 | 2500 | 0.7916 | 0.6481 | | 0.1215 | 98.08 | 2550 | 0.7594 | 0.6392 | | 0.113 | 100.0 | 2600 | 0.8236 | 0.6392 | | 0.1077 | 101.92 | 2650 | 0.7959 | 0.6347 | | 0.0988 | 103.85 | 2700 | 0.8189 | 0.6392 | | 0.0953 | 105.77 | 2750 | 0.8157 | 0.6414 | | 0.0889 | 107.69 | 2800 | 0.7946 | 0.6369 | | 0.0929 | 109.62 | 2850 | 0.8255 | 0.6360 | | 0.0822 | 111.54 | 2900 | 0.8320 | 0.6334 | | 0.086 | 113.46 | 2950 | 0.8539 | 0.6490 | | 0.0825 | 115.38 | 3000 | 0.8438 | 0.6418 | | 0.0727 | 117.31 | 3050 | 0.8568 | 0.6481 | | 0.0717 | 119.23 | 3100 | 0.8447 | 0.6512 | | 0.0815 | 121.15 | 3150 | 0.8470 | 0.6445 | | 0.0689 | 123.08 | 3200 | 0.8264 | 0.6249 | | 0.0726 | 125.0 | 3250 | 0.7981 | 0.6169 | | 0.0648 | 126.92 | 3300 | 0.8237 | 0.6200 | | 0.0632 | 128.85 | 3350 | 0.8416 | 0.6249 | | 0.06 | 130.77 | 3400 | 0.8276 | 0.6173 | | 0.0616 | 132.69 | 3450 | 0.8429 | 0.6209 | | 0.0614 | 134.62 | 3500 | 0.8485 | 0.6271 | | 0.0539 | 136.54 | 3550 | 0.8598 | 0.6218 | | 0.0555 | 138.46 | 3600 | 0.8557 | 0.6169 | | 0.0604 | 140.38 | 3650 | 0.8436 | 0.6186 | | 0.0556 | 142.31 | 3700 | 0.8428 | 0.6178 | | 0.051 | 144.23 | 3750 | 0.8440 | 0.6142 | | 0.0526 | 146.15 | 3800 | 0.8566 | 0.6142 | | 0.052 | 148.08 | 3850 | 0.8544 | 0.6178 | | 0.0519 | 150.0 | 3900 | 0.8537 | 0.6160 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2
DrishtiSharma
2022-03-24T11:56:48Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4654228855721393 - name: Test CER type: cer value: 0.11351049990708047 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5328 - Wer: 0.4596 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.5979 | 3.23 | 100 | 3.5602 | 1.0 | | 3.303 | 6.45 | 200 | 3.2238 | 1.0 | | 3.2034 | 9.68 | 300 | 3.2002 | 0.9888 | | 2.7986 | 12.9 | 400 | 1.2408 | 0.9210 | | 1.3869 | 16.13 | 500 | 0.7973 | 0.7462 | | 1.0228 | 19.35 | 600 | 0.6722 | 0.6788 | | 0.8311 | 22.58 | 700 | 0.6100 | 0.6150 | | 0.717 | 25.81 | 800 | 0.6236 | 0.6013 | | 0.6264 | 29.03 | 900 | 0.6031 | 0.5575 | | 0.5494 | 32.26 | 1000 | 0.5656 | 0.5309 | | 0.4781 | 35.48 | 1100 | 0.5289 | 0.4996 | | 0.4311 | 38.71 | 1200 | 0.5375 | 0.4768 | | 0.3902 | 41.94 | 1300 | 0.5246 | 0.4703 | | 0.3508 | 45.16 | 1400 | 0.5382 | 0.4696 | | 0.3199 | 48.39 | 1500 | 0.5328 | 0.4596 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10
DrishtiSharma
2022-03-24T11:56:43Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - br license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-br-d10 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: br metrics: - type: wer value: 0.5230357484228637 name: Test WER - name: Test CER type: cer value: 0.1880661144228536 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: br metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d10 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1382 - Wer: 0.4895 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.611 | 0.68 | 100 | 5.8492 | 1.0 | | 3.8176 | 1.35 | 200 | 3.2181 | 1.0 | | 3.0457 | 2.03 | 300 | 3.0902 | 1.0 | | 2.2632 | 2.7 | 400 | 1.4882 | 0.9426 | | 1.1965 | 3.38 | 500 | 1.1396 | 0.7950 | | 0.984 | 4.05 | 600 | 1.0216 | 0.7583 | | 0.8036 | 4.73 | 700 | 1.0258 | 0.7202 | | 0.7061 | 5.41 | 800 | 0.9710 | 0.6820 | | 0.689 | 6.08 | 900 | 0.9731 | 0.6488 | | 0.6063 | 6.76 | 1000 | 0.9442 | 0.6569 | | 0.5215 | 7.43 | 1100 | 1.0221 | 0.6671 | | 0.4965 | 8.11 | 1200 | 0.9266 | 0.6181 | | 0.4321 | 8.78 | 1300 | 0.9050 | 0.5991 | | 0.3762 | 9.46 | 1400 | 0.9801 | 0.6134 | | 0.3747 | 10.14 | 1500 | 0.9210 | 0.5747 | | 0.3554 | 10.81 | 1600 | 0.9720 | 0.6051 | | 0.3148 | 11.49 | 1700 | 0.9672 | 0.6099 | | 0.3176 | 12.16 | 1800 | 1.0120 | 0.5966 | | 0.2915 | 12.84 | 1900 | 0.9490 | 0.5653 | | 0.2696 | 13.51 | 2000 | 0.9394 | 0.5819 | | 0.2569 | 14.19 | 2100 | 1.0197 | 0.5667 | | 0.2395 | 14.86 | 2200 | 0.9771 | 0.5608 | | 0.2367 | 15.54 | 2300 | 1.0516 | 0.5678 | | 0.2153 | 16.22 | 2400 | 1.0097 | 0.5679 | | 0.2092 | 16.89 | 2500 | 1.0143 | 0.5430 | | 0.2046 | 17.57 | 2600 | 1.0884 | 0.5631 | | 0.1937 | 18.24 | 2700 | 1.0113 | 0.5648 | | 0.1752 | 18.92 | 2800 | 1.0056 | 0.5470 | | 0.164 | 19.59 | 2900 | 1.0340 | 0.5508 | | 0.1723 | 20.27 | 3000 | 1.0743 | 0.5615 | | 0.1535 | 20.95 | 3100 | 1.0495 | 0.5465 | | 0.1432 | 21.62 | 3200 | 1.0390 | 0.5333 | | 0.1561 | 22.3 | 3300 | 1.0798 | 0.5590 | | 0.1384 | 22.97 | 3400 | 1.1716 | 0.5449 | | 0.1359 | 23.65 | 3500 | 1.1154 | 0.5420 | | 0.1356 | 24.32 | 3600 | 1.0883 | 0.5387 | | 0.1355 | 25.0 | 3700 | 1.1114 | 0.5504 | | 0.1158 | 25.68 | 3800 | 1.1171 | 0.5388 | | 0.1166 | 26.35 | 3900 | 1.1335 | 0.5403 | | 0.1165 | 27.03 | 4000 | 1.1374 | 0.5248 | | 0.1064 | 27.7 | 4100 | 1.0336 | 0.5298 | | 0.0987 | 28.38 | 4200 | 1.0407 | 0.5216 | | 0.104 | 29.05 | 4300 | 1.1012 | 0.5350 | | 0.0894 | 29.73 | 4400 | 1.1016 | 0.5310 | | 0.0912 | 30.41 | 4500 | 1.1383 | 0.5302 | | 0.0972 | 31.08 | 4600 | 1.0851 | 0.5214 | | 0.0832 | 31.76 | 4700 | 1.1705 | 0.5311 | | 0.0859 | 32.43 | 4800 | 1.0750 | 0.5192 | | 0.0811 | 33.11 | 4900 | 1.0900 | 0.5180 | | 0.0825 | 33.78 | 5000 | 1.1271 | 0.5196 | | 0.07 | 34.46 | 5100 | 1.1289 | 0.5141 | | 0.0689 | 35.14 | 5200 | 1.0960 | 0.5101 | | 0.068 | 35.81 | 5300 | 1.1377 | 0.5050 | | 0.0776 | 36.49 | 5400 | 1.0880 | 0.5194 | | 0.0642 | 37.16 | 5500 | 1.1027 | 0.5076 | | 0.0607 | 37.84 | 5600 | 1.1293 | 0.5119 | | 0.0607 | 38.51 | 5700 | 1.1229 | 0.5103 | | 0.0545 | 39.19 | 5800 | 1.1168 | 0.5103 | | 0.0562 | 39.86 | 5900 | 1.1206 | 0.5073 | | 0.0484 | 40.54 | 6000 | 1.1710 | 0.5019 | | 0.0499 | 41.22 | 6100 | 1.1511 | 0.5100 | | 0.0455 | 41.89 | 6200 | 1.1488 | 0.5009 | | 0.0475 | 42.57 | 6300 | 1.1196 | 0.4944 | | 0.0413 | 43.24 | 6400 | 1.1654 | 0.4996 | | 0.0389 | 43.92 | 6500 | 1.0961 | 0.4930 | | 0.0428 | 44.59 | 6600 | 1.0955 | 0.4938 | | 0.039 | 45.27 | 6700 | 1.1323 | 0.4955 | | 0.0352 | 45.95 | 6800 | 1.1040 | 0.4930 | | 0.0334 | 46.62 | 6900 | 1.1382 | 0.4942 | | 0.0338 | 47.3 | 7000 | 1.1264 | 0.4911 | | 0.0307 | 47.97 | 7100 | 1.1216 | 0.4881 | | 0.0286 | 48.65 | 7200 | 1.1459 | 0.4894 | | 0.0348 | 49.32 | 7300 | 1.1419 | 0.4906 | | 0.0329 | 50.0 | 7400 | 1.1382 | 0.4895 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1
DrishtiSharma
2022-03-24T11:56:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "bas", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - bas - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bas-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 0.3566497929130234 - name: Test CER type: cer value: 0.1102657634184471 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bas metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bas-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5997 - Wer: 0.3870 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1 --dataset mozilla-foundation/common_voice_8_0 --config bas --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Basaa (bas) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.7076 | 5.26 | 200 | 3.6361 | 1.0 | | 3.1657 | 10.52 | 400 | 3.0101 | 1.0 | | 2.3987 | 15.78 | 600 | 0.9125 | 0.6774 | | 1.0079 | 21.05 | 800 | 0.6477 | 0.5352 | | 0.7392 | 26.31 | 1000 | 0.5432 | 0.4929 | | 0.6114 | 31.57 | 1200 | 0.5498 | 0.4639 | | 0.5222 | 36.83 | 1400 | 0.5220 | 0.4561 | | 0.4648 | 42.1 | 1600 | 0.5586 | 0.4289 | | 0.4103 | 47.36 | 1800 | 0.5337 | 0.4082 | | 0.3692 | 52.62 | 2000 | 0.5421 | 0.3861 | | 0.3403 | 57.88 | 2200 | 0.5549 | 0.4096 | | 0.3011 | 63.16 | 2400 | 0.5833 | 0.3925 | | 0.2932 | 68.42 | 2600 | 0.5674 | 0.3815 | | 0.2696 | 73.68 | 2800 | 0.5734 | 0.3889 | | 0.2496 | 78.94 | 3000 | 0.5968 | 0.3985 | | 0.2289 | 84.21 | 3200 | 0.5888 | 0.3893 | | 0.2091 | 89.47 | 3400 | 0.5849 | 0.3852 | | 0.2005 | 94.73 | 3600 | 0.5938 | 0.3875 | | 0.1876 | 99.99 | 3800 | 0.5997 | 0.3870 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
Cdial/hausa-asr
Cdial
2022-03-24T11:56:34Z
9
3
transformers
[ "transformers", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ha", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ha - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Cdial/Hausa_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 --- # Cdial/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
lgris/wav2vec2-xls-r-1b-portuguese-CORAA-3
lgris
2022-03-24T11:55:55Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "pt", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - pt - robust-speech-event - hf-asr-leaderboard model-index: - name: wav2vec2-xls-r-1b-portuguese-CORAA-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 71.67 - name: Test CER type: cer value: 30.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 68.18 - name: Test CER type: cer value: 28.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.76 - name: Test CER type: cer value: 23.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-portuguese-CORAA-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 1.0029 - Wer: 0.6020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.0169 | 0.21 | 5000 | 1.9582 | 0.9283 | | 1.8561 | 0.42 | 10000 | 1.6144 | 0.8554 | | 1.6823 | 0.63 | 15000 | 1.4165 | 0.7710 | | 1.52 | 0.84 | 20000 | 1.2441 | 0.7289 | | 1.3757 | 1.05 | 25000 | 1.1061 | 0.6491 | | 1.2377 | 1.26 | 30000 | 1.0029 | 0.6020 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
kapilkd13/xls-r-hi-test
kapilkd13
2022-03-24T11:55:50Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 38.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7346 - Wer: 1.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.36 | 400 | 1.4595 | 1.0039 | | 4.7778 | 2.71 | 800 | 0.8082 | 1.0115 | | 0.6408 | 4.07 | 1200 | 0.7032 | 1.0079 | | 0.3937 | 5.42 | 1600 | 0.6889 | 1.0433 | | 0.3 | 6.78 | 2000 | 0.6820 | 1.0069 | | 0.3 | 8.14 | 2400 | 0.6670 | 1.0196 | | 0.226 | 9.49 | 2800 | 0.7216 | 1.0422 | | 0.197 | 10.85 | 3200 | 0.7669 | 1.0534 | | 0.165 | 12.2 | 3600 | 0.7517 | 1.0200 | | 0.1486 | 13.56 | 4000 | 0.7125 | 1.0357 | | 0.1486 | 14.92 | 4400 | 0.7447 | 1.0347 | | 0.122 | 16.27 | 4800 | 0.6899 | 1.0440 | | 0.1069 | 17.63 | 5200 | 0.7212 | 1.0350 | | 0.0961 | 18.98 | 5600 | 0.7417 | 1.0408 | | 0.086 | 20.34 | 6000 | 0.7402 | 1.0356 | | 0.086 | 21.69 | 6400 | 0.7761 | 1.0420 | | 0.0756 | 23.05 | 6800 | 0.7346 | 1.0369 | | 0.0666 | 24.41 | 7200 | 0.7506 | 1.0449 | | 0.0595 | 25.76 | 7600 | 0.7319 | 1.0476 | | 0.054 | 27.12 | 8000 | 0.7346 | 1.0479 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
jcmc/wav2vec-1b-cv8-ir
jcmc
2022-03-24T11:55:44Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ga-IE", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ga-IE - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec-1b-cv8-ir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ga-IE metrics: - name: Test WER type: wer value: 43.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.8445 - Wer: 0.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7135 | 31.24 | 500 | 0.9609 | 0.6926 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-chuvash
infinitejoy
2022-03-24T11:55:42Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "cv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - cv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Chuvash results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: cv metrics: - name: Test WER type: wer value: 60.31 - name: Test CER type: cer value: 15.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-chuvash This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - CV dataset. It achieves the following results on the evaluation set: - Loss: 0.7651 - Wer: 0.6166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8032 | 8.77 | 500 | 0.8059 | 0.8352 | | 1.2608 | 17.54 | 1000 | 0.5828 | 0.6769 | | 1.1337 | 26.32 | 1500 | 0.6892 | 0.6908 | | 1.0457 | 35.09 | 2000 | 0.7077 | 0.6781 | | 0.97 | 43.86 | 2500 | 0.5993 | 0.6228 | | 0.8767 | 52.63 | 3000 | 0.7213 | 0.6604 | | 0.8223 | 61.4 | 3500 | 0.8161 | 0.6968 | | 0.7441 | 70.18 | 4000 | 0.7057 | 0.6184 | | 0.7011 | 78.95 | 4500 | 0.7027 | 0.6024 | | 0.6542 | 87.72 | 5000 | 0.7092 | 0.5979 | | 0.6081 | 96.49 | 5500 | 0.7917 | 0.6324 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
hf-test/xls-r-300m-sv-cv8
hf-test
2022-03-24T11:55:37Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Swedish - CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sv-SE metrics: - name: Test WER type: wer value: 17.1 - name: Test CER type: cer value: 5.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 26.92 - name: Test CER type: cer value: 12.53 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: **Without LM**: - Wer: 0.2465 - Cer: 0.0717 **With LM**: - Wer: 0.1710 - Cer: 0.0569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3224 | 1.37 | 500 | 3.2676 | 1.0 | | 2.9319 | 2.74 | 1000 | 2.9287 | 1.0000 | | 2.1173 | 4.11 | 1500 | 1.1478 | 0.8788 | | 1.6973 | 5.48 | 2000 | 0.6749 | 0.6547 | | 1.5865 | 6.85 | 2500 | 0.5500 | 0.5634 | | 1.5094 | 8.22 | 3000 | 0.4840 | 0.5430 | | 1.4644 | 9.59 | 3500 | 0.4844 | 0.4142 | | 1.4061 | 10.96 | 4000 | 0.4356 | 0.3808 | | 1.3584 | 12.33 | 4500 | 0.4192 | 0.3698 | | 1.3438 | 13.7 | 5000 | 0.3980 | 0.3584 | | 1.3332 | 15.07 | 5500 | 0.3896 | 0.3572 | | 1.3025 | 16.44 | 6000 | 0.3835 | 0.3487 | | 1.2979 | 17.81 | 6500 | 0.3781 | 0.3417 | | 1.2736 | 19.18 | 7000 | 0.3734 | 0.3270 | | 1.2415 | 20.55 | 7500 | 0.3637 | 0.3316 | | 1.2255 | 21.92 | 8000 | 0.3546 | 0.3147 | | 1.2193 | 23.29 | 8500 | 0.3524 | 0.3196 | | 1.2104 | 24.66 | 9000 | 0.3403 | 0.3097 | | 1.1965 | 26.03 | 9500 | 0.3508 | 0.3093 | | 1.1976 | 27.4 | 10000 | 0.3419 | 0.3071 | | 1.182 | 28.77 | 10500 | 0.3364 | 0.2963 | | 1.158 | 30.14 | 11000 | 0.3338 | 0.2932 | | 1.1414 | 31.51 | 11500 | 0.3376 | 0.2940 | | 1.1402 | 32.88 | 12000 | 0.3370 | 0.2891 | | 1.1213 | 34.25 | 12500 | 0.3201 | 0.2874 | | 1.1207 | 35.62 | 13000 | 0.3261 | 0.2826 | | 1.1074 | 36.98 | 13500 | 0.3117 | 0.2786 | | 1.0818 | 38.36 | 14000 | 0.3194 | 0.2776 | | 1.0889 | 39.73 | 14500 | 0.3188 | 0.2738 | | 1.0672 | 41.1 | 15000 | 0.3196 | 0.2773 | | 1.0838 | 42.47 | 15500 | 0.3130 | 0.2739 | | 1.0553 | 43.83 | 16000 | 0.3165 | 0.2704 | | 1.0786 | 45.21 | 16500 | 0.3108 | 0.2706 | | 1.0546 | 46.57 | 17000 | 0.3102 | 0.2677 | | 1.0425 | 47.94 | 17500 | 0.3115 | 0.2679 | | 1.0398 | 49.31 | 18000 | 0.3131 | 0.2666 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-as-CV8-v1
emre
2022-03-24T11:55:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "as", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: as tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-as-CV8-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-as-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Br-small
emre
2022-03-24T11:55:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: br tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Br-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 66.75 --- # wav2vec2-xls-r-300m-Br-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Wer: 0.6675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7464 | 2.79 | 400 | 1.7474 | 1.1018 | | 1.1117 | 5.59 | 800 | 0.9434 | 0.8697 | | 0.6481 | 8.39 | 1200 | 0.9251 | 0.7910 | | 0.4754 | 11.19 | 1600 | 0.9208 | 0.7412 | | 0.3602 | 13.98 | 2000 | 0.9284 | 0.7232 | | 0.2873 | 16.78 | 2400 | 0.9299 | 0.6940 | | 0.2386 | 19.58 | 2800 | 1.0182 | 0.6927 | | 0.1971 | 22.38 | 3200 | 1.0456 | 0.6898 | | 0.1749 | 25.17 | 3600 | 1.0208 | 0.6769 | | 0.1487 | 27.97 | 4000 | 1.0573 | 0.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
comodoro/wav2vec2-xls-r-300m-sk-cv8
comodoro
2022-03-24T11:55:26Z
34,804
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "sk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Slovak comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sk metrics: - name: Test WER type: wer value: 49.6 - name: Test CER type: cer value: 13.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 81.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 80.26 --- # wav2vec2-xls-r-300m-cs-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set: - WER: 0.49575384615384616 - CER: 0.13333333333333333 ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sk-cv8 --dataset mozilla-foundation/common_voice_8_0 --split test --config sk ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-4 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
StephennFernandes/XLS-R-marathi
StephennFernandes
2022-03-24T11:55:17Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "mr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - generated_from_trainer - hf-asr-leaderboard model-index: - name: XLS-R-marathi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-marathi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
RuudVelo/wav2vec2-large-xls-r-1b-nl-lm
RuudVelo
2022-03-24T11:55:12Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 27.27 - name: Test CER type: cer value: 13.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 27.67 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-nl-lm This model is a fine-tuned version of [wav2vec2-large-xls-r-1b-nl-lm](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice 8 dataset. It achieves the following results on the test set: - Loss: 0.1479 - Wer: 0.1156 Note that the above test results come from the original model without LM (language model) which can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl. The results with the LM model can be found on the right side of this model card. ## Model description Model RuudVelo/wav2vec2-large-xls-r-1b-nl which has been improved with a KenLM 5-gram. ## Intended uses & limitations More information needed ## Training and evaluation data Common Voice 8 nl dataset has been used for the model ## Training procedure ### Training hyperparameters Parameters can be found in the run.sh file at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
RASMUS/wav2vec2-xlsr-1b-et
RASMUS
2022-03-24T11:55:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "mozilla-foundation/common_voice_8_0", "audio", "speech", "robust-speech-event", "hf-asr-leaderboard", "et", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: et datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - generated_from_trainer - mozilla-foundation/common_voice_8_0 - audio - automatic-speech-recognition - speech - robust-speech-event - hf-asr-leaderboard model-index: - name: XLS-R 1B Wav2Vec2 Estonian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 20.12 - name: Test CER type: cer value: 3.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 40.77 - name: Test CER type: cer value: 12.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 41.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-et-lm-1B This model was finetuned with mozilla_foundation/common_voice_8_0 et with train+other+validation splits. It achieves the following results on the test set: (Loss reported with last eval step at step 2000/2040 during training) - Loss: 0.2150 - Wer: 0.2012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
HarrisDePerceptron/xlsr-large-53-ur
HarrisDePerceptron
2022-03-24T11:54:55Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 62.47 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.8888 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.1224 | 1.96 | 100 | 3.5429 | 1.0 | | 3.2411 | 3.92 | 200 | 3.1786 | 1.0 | | 3.1283 | 5.88 | 300 | 3.0571 | 1.0 | | 3.0044 | 7.84 | 400 | 2.9560 | 0.9996 | | 2.9388 | 9.8 | 500 | 2.8977 | 1.0011 | | 2.86 | 11.76 | 600 | 2.6944 | 0.9952 | | 2.5538 | 13.73 | 700 | 2.0967 | 0.9435 | | 2.1214 | 15.69 | 800 | 1.4816 | 0.8428 | | 1.8136 | 17.65 | 900 | 1.2459 | 0.8048 | | 1.6795 | 19.61 | 1000 | 1.1232 | 0.7649 | | 1.5571 | 21.57 | 1100 | 1.0510 | 0.7432 | | 1.4975 | 23.53 | 1200 | 1.0298 | 0.6963 | | 1.4485 | 25.49 | 1300 | 0.9775 | 0.7074 | | 1.3924 | 27.45 | 1400 | 0.9798 | 0.6956 | | 1.3604 | 29.41 | 1500 | 0.9345 | 0.7092 | | 1.3224 | 31.37 | 1600 | 0.9535 | 0.6830 | | 1.2816 | 33.33 | 1700 | 0.9178 | 0.6679 | | 1.2623 | 35.29 | 1800 | 0.9249 | 0.6679 | | 1.2421 | 37.25 | 1900 | 0.9124 | 0.6734 | | 1.2208 | 39.22 | 2000 | 0.8962 | 0.6664 | | 1.2145 | 41.18 | 2100 | 0.8903 | 0.6734 | | 1.1888 | 43.14 | 2200 | 0.8883 | 0.6708 | | 1.1933 | 45.1 | 2300 | 0.8928 | 0.6723 | | 1.1838 | 47.06 | 2400 | 0.8868 | 0.6679 | | 1.1634 | 49.02 | 2500 | 0.8886 | 0.6657 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-kk-n2
DrishtiSharma
2022-03-24T11:54:53Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "kk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - kk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - kk - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-kk-n2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tt metrics: - name: Test WER type: wer value: 0.4355 - name: Test CER type: cer value: 0.10469915859660263 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 0.451 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Kazakh language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.6799 | 9.09 | 200 | 3.6119 | 1.0 | | 3.1332 | 18.18 | 400 | 2.5352 | 1.005 | | 1.0465 | 27.27 | 600 | 0.6169 | 0.682 | | 0.3452 | 36.36 | 800 | 0.6572 | 0.607 | | 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 | | 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 | | 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 | | 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 | | 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 | | 0.087 | 90.89 | 2000 | 0.7199 | 0.521 | | 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 | | 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 | | 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 | | 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 | | 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 | | 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5
DrishtiSharma
2022-03-24T11:54:47Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "or", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - or - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-or-d5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.579136690647482 - name: Test CER type: cer value: 0.1572148018392818 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-d5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - OR dataset. It achieves the following results on the evaluation set: - Loss: 0.9571 - Wer: 0.5450 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset speech-recognition-community-v2/dev_data --config or --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.2958 | 12.5 | 300 | 4.9014 | 1.0 | | 3.4065 | 25.0 | 600 | 3.5150 | 1.0 | | 1.5402 | 37.5 | 900 | 0.8356 | 0.7249 | | 0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 | | 0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 | | 0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 | | 0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 | | 0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 | | 0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 | | 0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 | | 0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 | | 0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 | | 0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 | | 0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 | | 0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 | | 0.079 | 200.0 | 4800 | 0.9571 | 0.5450 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2
DrishtiSharma
2022-03-24T11:54:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mr - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mr-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 0.49378259125551544 - name: Test CER type: cer value: 0.12470799640610962 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mr metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.8729 - Wer: 0.4942 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset mozilla-foundation/common_voice_8_0 --config mr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset speech-recognition-community-v2/dev_data --config mr --split validation --chunk_length_s 10 --stride_length_s 1 Note: Marathi language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000333 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.4934 | 9.09 | 200 | 3.7326 | 1.0 | | 3.4234 | 18.18 | 400 | 3.3383 | 0.9996 | | 3.2628 | 27.27 | 600 | 2.7482 | 0.9992 | | 1.7743 | 36.36 | 800 | 0.6755 | 0.6787 | | 1.0346 | 45.45 | 1000 | 0.6067 | 0.6193 | | 0.8137 | 54.55 | 1200 | 0.6228 | 0.5612 | | 0.6637 | 63.64 | 1400 | 0.5976 | 0.5495 | | 0.5563 | 72.73 | 1600 | 0.7009 | 0.5383 | | 0.4844 | 81.82 | 1800 | 0.6662 | 0.5287 | | 0.4057 | 90.91 | 2000 | 0.6911 | 0.5303 | | 0.3582 | 100.0 | 2200 | 0.7207 | 0.5327 | | 0.3163 | 109.09 | 2400 | 0.7107 | 0.5118 | | 0.2761 | 118.18 | 2600 | 0.7538 | 0.5118 | | 0.2415 | 127.27 | 2800 | 0.7850 | 0.5178 | | 0.2127 | 136.36 | 3000 | 0.8016 | 0.5034 | | 0.1873 | 145.45 | 3200 | 0.8302 | 0.5187 | | 0.1723 | 154.55 | 3400 | 0.9085 | 0.5223 | | 0.1498 | 163.64 | 3600 | 0.8396 | 0.5126 | | 0.1425 | 172.73 | 3800 | 0.8776 | 0.5094 | | 0.1258 | 181.82 | 4000 | 0.8651 | 0.5014 | | 0.117 | 190.91 | 4200 | 0.8772 | 0.4970 | | 0.1093 | 200.0 | 4400 | 0.8729 | 0.4942 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2
DrishtiSharma
2022-03-24T11:54:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - br license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-br-d2 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: br metrics: - type: wer value: 0.49770598355954887 name: Test WER - name: Test CER type: cer value: 0.18090500890299605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: br metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1257 - Wer: 0.4631 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00034 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.0379 | 0.68 | 100 | 5.6808 | 1.0 | | 3.9145 | 1.35 | 200 | 3.1970 | 1.0 | | 3.0293 | 2.03 | 300 | 2.9513 | 1.0 | | 2.0927 | 2.7 | 400 | 1.4545 | 0.8887 | | 1.1556 | 3.38 | 500 | 1.0966 | 0.7564 | | 0.9628 | 4.05 | 600 | 0.9808 | 0.7364 | | 0.7869 | 4.73 | 700 | 1.0488 | 0.7355 | | 0.703 | 5.41 | 800 | 0.9500 | 0.6881 | | 0.6657 | 6.08 | 900 | 0.9309 | 0.6259 | | 0.5663 | 6.76 | 1000 | 0.9133 | 0.6357 | | 0.496 | 7.43 | 1100 | 0.9890 | 0.6028 | | 0.4748 | 8.11 | 1200 | 0.9469 | 0.5894 | | 0.4135 | 8.78 | 1300 | 0.9270 | 0.6045 | | 0.3579 | 9.46 | 1400 | 0.8818 | 0.5708 | | 0.353 | 10.14 | 1500 | 0.9244 | 0.5781 | | 0.334 | 10.81 | 1600 | 0.9009 | 0.5638 | | 0.2917 | 11.49 | 1700 | 1.0132 | 0.5828 | | 0.29 | 12.16 | 1800 | 0.9696 | 0.5668 | | 0.2691 | 12.84 | 1900 | 0.9811 | 0.5455 | | 0.25 | 13.51 | 2000 | 0.9951 | 0.5624 | | 0.2467 | 14.19 | 2100 | 0.9653 | 0.5573 | | 0.2242 | 14.86 | 2200 | 0.9714 | 0.5378 | | 0.2066 | 15.54 | 2300 | 0.9829 | 0.5394 | | 0.2075 | 16.22 | 2400 | 1.0547 | 0.5520 | | 0.1923 | 16.89 | 2500 | 1.0014 | 0.5397 | | 0.1919 | 17.57 | 2600 | 0.9978 | 0.5477 | | 0.1908 | 18.24 | 2700 | 1.1064 | 0.5397 | | 0.157 | 18.92 | 2800 | 1.0629 | 0.5238 | | 0.159 | 19.59 | 2900 | 1.0642 | 0.5321 | | 0.1652 | 20.27 | 3000 | 1.0207 | 0.5328 | | 0.141 | 20.95 | 3100 | 0.9948 | 0.5312 | | 0.1417 | 21.62 | 3200 | 1.0338 | 0.5328 | | 0.1514 | 22.3 | 3300 | 1.0513 | 0.5313 | | 0.1365 | 22.97 | 3400 | 1.0357 | 0.5291 | | 0.1319 | 23.65 | 3500 | 1.0587 | 0.5167 | | 0.1298 | 24.32 | 3600 | 1.0636 | 0.5236 | | 0.1245 | 25.0 | 3700 | 1.1367 | 0.5280 | | 0.1114 | 25.68 | 3800 | 1.0633 | 0.5200 | | 0.1088 | 26.35 | 3900 | 1.0495 | 0.5210 | | 0.1175 | 27.03 | 4000 | 1.0897 | 0.5095 | | 0.1043 | 27.7 | 4100 | 1.0580 | 0.5309 | | 0.0951 | 28.38 | 4200 | 1.0448 | 0.5067 | | 0.1011 | 29.05 | 4300 | 1.0665 | 0.5137 | | 0.0889 | 29.73 | 4400 | 1.0579 | 0.5026 | | 0.0833 | 30.41 | 4500 | 1.0740 | 0.5037 | | 0.0889 | 31.08 | 4600 | 1.0933 | 0.5083 | | 0.0784 | 31.76 | 4700 | 1.0715 | 0.5089 | | 0.0767 | 32.43 | 4800 | 1.0658 | 0.5049 | | 0.0769 | 33.11 | 4900 | 1.1118 | 0.4979 | | 0.0722 | 33.78 | 5000 | 1.1413 | 0.4986 | | 0.0709 | 34.46 | 5100 | 1.0706 | 0.4885 | | 0.0664 | 35.14 | 5200 | 1.1217 | 0.4884 | | 0.0648 | 35.81 | 5300 | 1.1298 | 0.4941 | | 0.0657 | 36.49 | 5400 | 1.1330 | 0.4920 | | 0.0582 | 37.16 | 5500 | 1.0598 | 0.4835 | | 0.0602 | 37.84 | 5600 | 1.1097 | 0.4943 | | 0.0598 | 38.51 | 5700 | 1.0976 | 0.4876 | | 0.0547 | 39.19 | 5800 | 1.0734 | 0.4825 | | 0.0561 | 39.86 | 5900 | 1.0926 | 0.4850 | | 0.0516 | 40.54 | 6000 | 1.1579 | 0.4751 | | 0.0478 | 41.22 | 6100 | 1.1384 | 0.4706 | | 0.0396 | 41.89 | 6200 | 1.1462 | 0.4739 | | 0.0472 | 42.57 | 6300 | 1.1277 | 0.4732 | | 0.0447 | 43.24 | 6400 | 1.1517 | 0.4752 | | 0.0423 | 43.92 | 6500 | 1.1219 | 0.4784 | | 0.0426 | 44.59 | 6600 | 1.1311 | 0.4724 | | 0.0391 | 45.27 | 6700 | 1.1135 | 0.4692 | | 0.0362 | 45.95 | 6800 | 1.0878 | 0.4645 | | 0.0329 | 46.62 | 6900 | 1.1137 | 0.4668 | | 0.0356 | 47.3 | 7000 | 1.1233 | 0.4687 | | 0.0328 | 47.97 | 7100 | 1.1238 | 0.4653 | | 0.0323 | 48.65 | 7200 | 1.1307 | 0.4646 | | 0.0325 | 49.32 | 7300 | 1.1242 | 0.4645 | | 0.03 | 50.0 | 7400 | 1.1257 | 0.4631 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
DrishtiSharma
2022-03-24T11:54:32Z
9
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ab - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-ab-CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 0.5291160452450775 - name: Test CER type: cer value: 0.10630270750110964 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ab metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Wer: 0.5651 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7 --dataset mozilla-foundation/common_voice_7_0 --config ab --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6445 | 13.64 | 300 | 4.3963 | 1.0 | | 3.6459 | 27.27 | 600 | 3.2267 | 1.0 | | 3.0978 | 40.91 | 900 | 3.0927 | 1.0 | | 2.8357 | 54.55 | 1200 | 2.1462 | 1.0029 | | 1.2723 | 68.18 | 1500 | 0.6747 | 0.6996 | | 0.6528 | 81.82 | 1800 | 0.5928 | 0.6422 | | 0.4905 | 95.45 | 2100 | 0.5587 | 0.5681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
smangrul/xls-r-mr-model
smangrul
2022-03-24T11:54:20Z
8
1
transformers
[ "transformers", "pytorch", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "openslr", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mr", "dataset:mozilla-foundation/common_voice_8_0", "dataset:openslr", "dataset:shivam/marathi_samanantar_processed", "dataset:shivam/marathi_pib_processed", "dataset:opus100", "dataset:tatoeba", "dataset:tapaco", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - openslr - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 - openslr - shivam/marathi_samanantar_processed - shivam/marathi_pib_processed - opus100 - tatoeba - tapaco model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 31.05 name: Test WER - name: Test CER type: cer value: 6.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR and OPENSLR - SLR64 - MR datasets. It achieves the following results on the evaluation set: - Loss: 0.494580 - Wer: 0.401524 ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM | |---|---| | 40.513437625350984 | 31.04693140794224 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |---|---|---|---| | 400 | 3.794000 | 3.532227 | 1.000000 | | 800 | 3.362400 | 3.359044 | 1.000000 | | 1200 | 2.293900 | 1.011279 | 0.829924 | | 1600 | 1.233000 | 0.502743 | 0.593662 | | 2000 | 0.962600 | 0.412519 | 0.496992 | | 2400 | 0.831800 | 0.402903 | 0.493783 | | 2800 | 0.737000 | 0.389773 | 0.469314 | | 3200 | 0.677100 | 0.373987 | 0.436021 | | 3600 | 0.634400 | 0.383823 | 0.432010 | | 4000 | 0.586000 | 0.375610 | 0.419575 | | 4400 | 0.561000 | 0.387891 | 0.418371 | | 4800 | 0.518500 | 0.386357 | 0.417569 | | 5200 | 0.515300 | 0.415069 | 0.430004 | | 5600 | 0.478100 | 0.399211 | 0.408744 | | 6000 | 0.468100 | 0.424542 | 0.402327 | | 6400 | 0.439400 | 0.430979 | 0.410750 | | 6800 | 0.429600 | 0.427700 | 0.409146 | | 7200 | 0.400300 | 0.451111 | 0.419976 | | 7600 | 0.395100 | 0.463446 | 0.405134 | | 8000 | 0.381800 | 0.454752 | 0.407942 | | 8400 | 0.371500 | 0.461547 | 0.404733 | | 8800 | 0.362500 | 0.461543 | 0.411151 | | 9200 | 0.338200 | 0.468299 | 0.417168 | | 9600 | 0.338800 | 0.480989 | 0.412355 | | 10000 | 0.317600 | 0.475700 | 0.410750 | | 10400 | 0.315100 | 0.478920 | 0.403530 | | 10800 | 0.296200 | 0.480600 | 0.398315 | | 11200 | 0.299000 | 0.477083 | 0.393502 | | 11600 | 0.290000 | 0.465646 | 0.393903 | | 12000 | 0.290900 | 0.490041 | 0.405937 | | 12400 | 0.275600 | 0.489354 | 0.399519 | | 12800 | 0.272600 | 0.494580 | 0.395909 | | 13200 | 0.265900 | 0.497918 | 0.397112 | | 13600 | 0.266300 | 0.498627 | 0.397513 | | 14000 | 0.259600 | 0.504610 | 0.401524 | #### Evaluation Commands To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id smangrul/xls-r-mr-model --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
shpotes/xls-r-eus
shpotes
2022-03-24T11:54:17Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "et", "hf-asr-leaderboard", "eu", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - eu license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-eus results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: eu metrics: - name: Test WER type: wer value: 0.17871523648578164 - name: Test CER type: cer value: 0.032624506085144 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set: - Loss: 0.2278 - Wer: 0.1787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2548 | 4.24 | 500 | 0.2470 | 0.3663 | | 0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 | | 0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 | | 0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 | | 0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 | | 0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 | | 0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 | | 0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 | | 0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 | | 0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 | | 0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 | | 0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 | | 0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 | | 0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 | | 0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 | | 0.041 | 67.79 | 8000 | 0.2277 | 0.2013 | | 0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 | | 0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 | | 0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 | | 0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 | | 0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 | | 0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 | | 0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
shpotes/xls-r-et
shpotes
2022-03-24T11:54:15Z
29
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "et", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: et metrics: - name: Test WER type: wer value: 0.34753420299077314 - name: Test CER type: cer value: 0.07542956089330906 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 47.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 54.72 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Wer: 0.3475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3825 | 12.5 | 500 | 0.4022 | 0.5059 | | 0.1592 | 25.0 | 1000 | 0.4585 | 0.4456 | | 0.1215 | 37.5 | 1500 | 0.4550 | 0.4164 | | 0.0972 | 50.0 | 2000 | 0.4725 | 0.4088 | | 0.0731 | 62.5 | 2500 | 0.4568 | 0.3824 | | 0.0527 | 75.0 | 3000 | 0.4712 | 0.3653 | | 0.0428 | 87.5 | 3500 | 0.4813 | 0.3520 | | 0.0383 | 100.0 | 4000 | 0.4835 | 0.3475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-Basaa
sammy786
2022-03-24T11:54:12Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "bas", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - bas - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 41.23 - name: Test CER type: cer value: 13.54 --- # sammy786/wav2vec2-xlsr-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - bas dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 21.39 - Wer: 30.99 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 6.734100 | 1.605006 | 0.980456 | | 400 | 1.011200 | 0.364686 | 0.442997 | | 600 | 0.709300 | 0.300204 | 0.377850 | | 800 | 0.469800 | 0.315612 | 0.405537 | | 1000 | 0.464700 | 0.352494 | 0.372964 | | 1200 | 0.421900 | 0.342533 | 0.368078 | | 1400 | 0.401900 | 0.351398 | 0.343648 | | 1600 | 0.429800 | 0.350570 | 0.348534 | | 1800 | 0.352600 | 0.356601 | 0.358306 | | 2000 | 0.387200 | 0.355814 | 0.356678 | | 2200 | 0.362400 | 0.345573 | 0.355049 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-basaa --dataset mozilla-foundation/common_voice_8_0 --config bas --split test ```
lgris/wav2vec2-xls-r-300m-gn-cv8
lgris
2022-03-24T11:54:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-gn-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 69.05 - name: Test CER type: cer value: 14.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 69.05 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gn-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9392 - Wer: 0.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 20.0601 | 5.54 | 100 | 5.1622 | 1.0 | | 3.7052 | 11.11 | 200 | 3.2869 | 1.0 | | 3.3275 | 16.65 | 300 | 3.2162 | 1.0 | | 3.2984 | 22.22 | 400 | 3.1638 | 1.0 | | 3.1111 | 27.76 | 500 | 2.5541 | 1.0 | | 2.238 | 33.32 | 600 | 1.2198 | 0.9616 | | 1.5284 | 38.86 | 700 | 0.9571 | 0.8593 | | 1.2735 | 44.43 | 800 | 0.8719 | 0.8363 | | 1.1269 | 49.97 | 900 | 0.8334 | 0.7954 | | 1.0427 | 55.54 | 1000 | 0.7700 | 0.7749 | | 1.0152 | 61.11 | 1100 | 0.7747 | 0.7877 | | 0.943 | 66.65 | 1200 | 0.7151 | 0.7442 | | 0.9132 | 72.22 | 1300 | 0.7224 | 0.7289 | | 0.8397 | 77.76 | 1400 | 0.7354 | 0.7059 | | 0.8577 | 83.32 | 1500 | 0.7285 | 0.7263 | | 0.7931 | 88.86 | 1600 | 0.7863 | 0.7084 | | 0.7995 | 94.43 | 1700 | 0.7562 | 0.6880 | | 0.799 | 99.97 | 1800 | 0.7905 | 0.7059 | | 0.7373 | 105.54 | 1900 | 0.7791 | 0.7161 | | 0.749 | 111.11 | 2000 | 0.8125 | 0.7161 | | 0.6925 | 116.65 | 2100 | 0.7722 | 0.6905 | | 0.7034 | 122.22 | 2200 | 0.8989 | 0.7136 | | 0.6745 | 127.76 | 2300 | 0.8270 | 0.6982 | | 0.6837 | 133.32 | 2400 | 0.8569 | 0.7161 | | 0.6689 | 138.86 | 2500 | 0.8339 | 0.6982 | | 0.6471 | 144.43 | 2600 | 0.8441 | 0.7110 | | 0.615 | 149.97 | 2700 | 0.9038 | 0.7212 | | 0.6477 | 155.54 | 2800 | 0.9089 | 0.7059 | | 0.6047 | 161.11 | 2900 | 0.9149 | 0.7059 | | 0.5613 | 166.65 | 3000 | 0.8582 | 0.7263 | | 0.6017 | 172.22 | 3100 | 0.8787 | 0.7084 | | 0.5546 | 177.76 | 3200 | 0.8753 | 0.6957 | | 0.5747 | 183.32 | 3300 | 0.9167 | 0.7212 | | 0.5535 | 188.86 | 3400 | 0.8448 | 0.6905 | | 0.5331 | 194.43 | 3500 | 0.8644 | 0.7161 | | 0.5428 | 199.97 | 3600 | 0.8730 | 0.7033 | | 0.5219 | 205.54 | 3700 | 0.9047 | 0.6982 | | 0.5158 | 211.11 | 3800 | 0.8706 | 0.7033 | | 0.5107 | 216.65 | 3900 | 0.9139 | 0.7084 | | 0.4903 | 222.22 | 4000 | 0.9456 | 0.7315 | | 0.4772 | 227.76 | 4100 | 0.9475 | 0.7161 | | 0.4713 | 233.32 | 4200 | 0.9237 | 0.7059 | | 0.4743 | 238.86 | 4300 | 0.9305 | 0.6957 | | 0.4705 | 244.43 | 4400 | 0.9561 | 0.7110 | | 0.4908 | 249.97 | 4500 | 0.9389 | 0.7084 | | 0.4717 | 255.54 | 4600 | 0.9234 | 0.6982 | | 0.4462 | 261.11 | 4700 | 0.9323 | 0.6957 | | 0.4556 | 266.65 | 4800 | 0.9432 | 0.7033 | | 0.4691 | 272.22 | 4900 | 0.9389 | 0.7059 | | 0.4601 | 277.76 | 5000 | 0.9392 | 0.7033 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-300m-gn-cv8-4
lgris
2022-03-24T11:54:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-gn-cv8-4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 68.45 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gn-cv8-4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5805 - Wer: 0.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 13000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 9.2216 | 16.65 | 300 | 3.2771 | 1.0 | | 3.1804 | 33.32 | 600 | 2.2869 | 1.0 | | 1.5856 | 49.97 | 900 | 0.9573 | 0.8772 | | 1.0299 | 66.65 | 1200 | 0.9044 | 0.8082 | | 0.8916 | 83.32 | 1500 | 0.9478 | 0.8056 | | 0.8451 | 99.97 | 1800 | 0.8814 | 0.8107 | | 0.7649 | 116.65 | 2100 | 0.9897 | 0.7826 | | 0.7185 | 133.32 | 2400 | 0.9988 | 0.7621 | | 0.6595 | 149.97 | 2700 | 1.0607 | 0.7749 | | 0.6211 | 166.65 | 3000 | 1.1826 | 0.7877 | | 0.59 | 183.32 | 3300 | 1.1060 | 0.7826 | | 0.5383 | 199.97 | 3600 | 1.1826 | 0.7852 | | 0.5205 | 216.65 | 3900 | 1.2148 | 0.8261 | | 0.4786 | 233.32 | 4200 | 1.2710 | 0.7928 | | 0.4482 | 249.97 | 4500 | 1.1943 | 0.7980 | | 0.4149 | 266.65 | 4800 | 1.2449 | 0.8031 | | 0.3904 | 283.32 | 5100 | 1.3100 | 0.7928 | | 0.3619 | 299.97 | 5400 | 1.3125 | 0.7596 | | 0.3496 | 316.65 | 5700 | 1.3699 | 0.7877 | | 0.3277 | 333.32 | 6000 | 1.4344 | 0.8031 | | 0.2958 | 349.97 | 6300 | 1.4093 | 0.7980 | | 0.2883 | 366.65 | 6600 | 1.3296 | 0.7570 | | 0.2598 | 383.32 | 6900 | 1.4026 | 0.7980 | | 0.2564 | 399.97 | 7200 | 1.4847 | 0.8031 | | 0.2408 | 416.65 | 7500 | 1.4896 | 0.8107 | | 0.2266 | 433.32 | 7800 | 1.4232 | 0.7698 | | 0.224 | 449.97 | 8100 | 1.5560 | 0.7903 | | 0.2038 | 466.65 | 8400 | 1.5355 | 0.7724 | | 0.1948 | 483.32 | 8700 | 1.4624 | 0.7621 | | 0.1995 | 499.97 | 9000 | 1.5808 | 0.7724 | | 0.1864 | 516.65 | 9300 | 1.5653 | 0.7698 | | 0.18 | 533.32 | 9600 | 1.4868 | 0.7494 | | 0.1689 | 549.97 | 9900 | 1.5379 | 0.7749 | | 0.1624 | 566.65 | 10200 | 1.5936 | 0.7749 | | 0.1537 | 583.32 | 10500 | 1.6436 | 0.7801 | | 0.1455 | 599.97 | 10800 | 1.6401 | 0.7673 | | 0.1437 | 616.65 | 11100 | 1.6069 | 0.7673 | | 0.1452 | 633.32 | 11400 | 1.6041 | 0.7519 | | 0.139 | 649.97 | 11700 | 1.5758 | 0.7545 | | 0.1299 | 666.65 | 12000 | 1.5559 | 0.7545 | | 0.127 | 683.32 | 12300 | 1.5776 | 0.7596 | | 0.1264 | 699.97 | 12600 | 1.5790 | 0.7519 | | 0.1209 | 716.65 | 12900 | 1.5805 | 0.7545 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-assamese
infinitejoy
2022-03-24T11:53:47Z
24
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning", "as", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: as tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning - as - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: as metrics: - name: Test WER type: wer value: 72.64 - name: Test CER type: cer value: 27.35 --- # wav2vec2-large-xls-r-300m-assamese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_7_0 dataset. It achieves the following results on the evaluation set: - WER: 0.7954545454545454 - CER: 0.32341269841269843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data To compute the evaluation parameters ```bash cd wav2vec2-large-xls-r-300m-assamese; python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-4 - train_batch_size: 16 - eval_batch_size: 8 - seed: not given - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------: | | 1.584065 | NA | 400 | 1.584065 | 0.915512 | | 1.658865 | Na | 800 | 1.658865 | 0.805096 | | 1.882352 | NA | 1200 | 1.882352 | 0.820742 | | 1.881240 | NA | 1600 | 1.881240 | 0.810907 | | 2.159748 | NA | 2000 | 2.159748 | 0.804202 | | 1.992871 | NA | 2400 | 1.992871 | 0.803308 | | 2.201436 | NA | 2800 | 2.201436 | 0.802861 | | 2.165218 | NA | 3200 | 2.165218 | 0.793920 | | 2.253643 | NA | 3600 | 2.253643 | 0.796603 | | 2.265880 | NA | 4000 | 2.265880 | 0.790344 | | 2.293935 | NA | 4400 | 2.293935 | 0.797050 | | 2.288851 | NA | 4800 | 2.288851 | 0.784086 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
chmanoj/xls-r-300m-te
chmanoj
2022-03-24T11:53:34Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "openslr_SLR66", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "te", "dataset:openslr", "dataset:SLR66", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-300m-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 24.695121951219512 name: Test WER - type: cer value: 4.861934182322532 name: Test CER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2680 - Wer: 0.3467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 | | 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 | | 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 | | 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 | | 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 | | 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 | | 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 | | 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 | | 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 | | 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 | | 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 | | 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 | | 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 | | 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 | | 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 | | 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 | | 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 | | 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 | | 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 | | 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
RuudVelo/wav2vec2-large-xls-r-1b-nl
RuudVelo
2022-03-24T11:53:24Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 11.12 - name: Test CER type: cer value: 3.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 31.92 - name: Test CER type: cer value: 13.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 32.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. It achieves the following results on the evaluation set: - Loss: 0.1479 - Wer: 0.1156 ## Model description Model fine-tuned using the wav2vec-als-r-1b model architecture ## Intended uses & limitations More information needed ## Training and evaluation data Model has been trained on Common Voice 8 Dutch ## Training procedure ### Training hyperparameters Model parameters can be found under Files and versions in the run.sh file. ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2223 | 0.52 | 500 | 0.3866 | 0.3425 | | 1.0748 | 1.03 | 1000 | 0.2574 | 0.2169 | | 1.0416 | 1.55 | 1500 | 0.2177 | 0.1946 | | 0.9951 | 2.06 | 2000 | 0.2008 | 0.1760 | | 0.975 | 2.58 | 2500 | 0.1961 | 0.1751 | | 0.9461 | 3.1 | 3000 | 0.1989 | 0.1782 | | 0.9381 | 3.61 | 3500 | 0.1928 | 0.1699 | | 0.934 | 4.13 | 4000 | 0.1923 | 0.1633 | | 0.9322 | 4.64 | 4500 | 0.1871 | 0.1634 | | 0.9012 | 5.16 | 5000 | 0.1890 | 0.1702 | | 0.9045 | 5.68 | 5500 | 0.1882 | 0.1740 | | 0.8826 | 6.19 | 6000 | 0.1856 | 0.1575 | | 0.8848 | 6.71 | 6500 | 0.1861 | 0.1617 | | 0.8723 | 7.22 | 7000 | 0.1927 | 0.1646 | | 0.8725 | 7.74 | 7500 | 0.1798 | 0.1531 | | 0.8573 | 8.26 | 8000 | 0.1781 | 0.1587 | | 0.8633 | 8.77 | 8500 | 0.1852 | 0.1628 | | 0.8603 | 9.29 | 9000 | 0.1833 | 0.1601 | | 0.8421 | 9.8 | 9500 | 0.1788 | 0.1543 | | 0.8404 | 10.32 | 10000 | 0.1844 | 0.1556 | | 0.8342 | 10.84 | 10500 | 0.1770 | 0.1538 | | 0.8161 | 11.35 | 11000 | 0.1821 | 0.1567 | | 0.8371 | 11.87 | 11500 | 0.1909 | 0.1629 | | 0.8083 | 12.38 | 12000 | 0.1778 | 0.1498 | | 0.806 | 12.9 | 12500 | 0.1802 | 0.1547 | | 0.8013 | 13.42 | 13000 | 0.1859 | 0.1584 | | 0.7913 | 13.93 | 13500 | 0.1875 | 0.1517 | | 0.8063 | 14.45 | 14000 | 0.1799 | 0.1571 | | 0.7991 | 14.96 | 14500 | 0.1792 | 0.1538 | | 0.7843 | 15.48 | 15000 | 0.1753 | 0.1464 | | 0.7905 | 16.0 | 15500 | 0.1784 | 0.1508 | | 0.7808 | 16.51 | 16000 | 0.1771 | 0.1485 | | 0.7743 | 17.03 | 16500 | 0.1795 | 0.1491 | | 0.7833 | 17.54 | 17000 | 0.1722 | 0.1484 | | 0.7763 | 18.06 | 17500 | 0.1767 | 0.1518 | | 0.7698 | 18.58 | 18000 | 0.1720 | 0.1460 | | 0.7571 | 19.09 | 18500 | 0.1735 | 0.1478 | | 0.7673 | 19.61 | 19000 | 0.1817 | 0.1511 | | 0.7415 | 20.12 | 19500 | 0.1763 | 0.1481 | | 0.751 | 20.64 | 20000 | 0.1742 | 0.1484 | | 0.7563 | 21.16 | 20500 | 0.1810 | 0.1611 | | 0.7423 | 21.67 | 21000 | 0.1817 | 0.1557 | | 0.7242 | 22.19 | 21500 | 0.1690 | 0.1446 | | 0.7251 | 22.7 | 22000 | 0.1684 | 0.1446 | | 0.7302 | 23.22 | 22500 | 0.1735 | 0.1430 | | 0.733 | 23.74 | 23000 | 0.1720 | 0.1454 | | 0.7128 | 24.25 | 23500 | 0.1668 | 0.1383 | | 0.7184 | 24.77 | 24000 | 0.1635 | 0.1377 | | 0.7015 | 25.28 | 24500 | 0.1646 | 0.1389 | | 0.7198 | 25.8 | 25000 | 0.1775 | 0.1462 | | 0.7178 | 26.32 | 25500 | 0.1705 | 0.1419 | | 0.7199 | 26.83 | 26000 | 0.1649 | 0.1416 | | 0.6981 | 27.35 | 26500 | 0.1724 | 0.1418 | | 0.6886 | 27.86 | 27000 | 0.1633 | 0.1382 | | 0.6922 | 28.38 | 27500 | 0.1698 | 0.1420 | | 0.6833 | 28.9 | 28000 | 0.1611 | 0.1351 | | 0.6798 | 29.41 | 28500 | 0.1639 | 0.1365 | | 0.6711 | 29.93 | 29000 | 0.1668 | 0.1358 | | 0.6762 | 30.44 | 29500 | 0.1682 | 0.1355 | | 0.6594 | 30.96 | 30000 | 0.1629 | 0.1345 | | 0.6664 | 31.48 | 30500 | 0.1625 | 0.1321 | | 0.6838 | 31.99 | 31000 | 0.1597 | 0.1372 | | 0.6603 | 32.51 | 31500 | 0.1583 | 0.1302 | | 0.6468 | 33.02 | 32000 | 0.1595 | 0.1322 | | 0.6464 | 33.54 | 32500 | 0.1609 | 0.1315 | | 0.6623 | 34.06 | 33000 | 0.1622 | 0.1366 | | 0.6414 | 34.57 | 33500 | 0.1587 | 0.1330 | | 0.6242 | 35.09 | 34000 | 0.1614 | 0.1337 | | 0.632 | 35.6 | 34500 | 0.1568 | 0.1272 | | 0.6346 | 36.12 | 35000 | 0.1583 | 0.1274 | | 0.6143 | 36.64 | 35500 | 0.1576 | 0.1264 | | 0.6208 | 37.15 | 36000 | 0.1621 | 0.1263 | | 0.6185 | 37.67 | 36500 | 0.1623 | 0.1270 | | 0.6128 | 38.18 | 37000 | 0.1604 | 0.1268 | | 0.6151 | 38.7 | 37500 | 0.1593 | 0.1246 | | 0.6082 | 39.22 | 38000 | 0.1532 | 0.1238 | | 0.6 | 39.73 | 38500 | 0.1524 | 0.1224 | | 0.6032 | 40.25 | 39000 | 0.1521 | 0.1212 | | 0.6016 | 40.76 | 39500 | 0.1551 | 0.1215 | | 0.6009 | 41.28 | 40000 | 0.1523 | 0.1215 | | 0.5875 | 41.8 | 40500 | 0.1541 | 0.1216 | | 0.608 | 42.31 | 41000 | 0.1536 | 0.1209 | | 0.5876 | 42.83 | 41500 | 0.1567 | 0.1211 | | 0.5714 | 43.34 | 42000 | 0.1532 | 0.1217 | | 0.5756 | 43.86 | 42500 | 0.1516 | 0.1196 | | 0.5719 | 44.38 | 43000 | 0.1491 | 0.1191 | | 0.5829 | 44.89 | 43500 | 0.1497 | 0.1193 | | 0.5664 | 45.41 | 44000 | 0.1487 | 0.1173 | | 0.5707 | 45.92 | 44500 | 0.1470 | 0.1164 | | 0.5696 | 46.44 | 45000 | 0.1479 | 0.1161 | | 0.5767 | 46.96 | 45500 | 0.1492 | 0.1175 | | 0.5573 | 47.47 | 46000 | 0.1471 | 0.1165 | | 0.5625 | 47.99 | 46500 | 0.1484 | 0.1168 | | 0.5671 | 48.5 | 47000 | 0.1474 | 0.1162 | | 0.5484 | 49.02 | 47500 | 0.1479 | 0.1158 | | 0.555 | 49.54 | 48000 | 0.1477 | 0.1157 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Iskaj/xlsr300m_cv_8.0_nl
Iskaj
2022-03-24T11:53:05Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - mozilla-foundation/common_voice_7_0 - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dutch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 NL type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 46.94 - name: Test CER type: cer value: 21.65 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: ??? - name: Test CER type: cer value: ??? - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 42.56 --- # xlsr300m_cv_8.0_nl #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "Iskaj/xlsr300m_cv_8.0_nl" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) transcription[0].lower() #'het kontine schip lag aangemeert in de aven' ```
DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1
DrishtiSharma
2022-03-24T11:52:59Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "pa-IN", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - pa-IN - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-pa-IN-dx1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pa-IN metrics: - name: Test WER type: wer value: 0.48725989807918463 - name: Test CER type: cer value: 0.1687305197540224 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pa-IN metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0855 - Wer: 0.4755 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4607 | 9.26 | 500 | 2.7746 | 1.0416 | | 0.3442 | 18.52 | 1000 | 0.9114 | 0.5911 | | 0.2213 | 27.78 | 1500 | 0.9687 | 0.5751 | | 0.1242 | 37.04 | 2000 | 1.0204 | 0.5461 | | 0.0998 | 46.3 | 2500 | 1.0250 | 0.5233 | | 0.0727 | 55.56 | 3000 | 1.1072 | 0.5382 | | 0.0605 | 64.81 | 3500 | 1.0588 | 0.5073 | | 0.0458 | 74.07 | 4000 | 1.0818 | 0.5069 | | 0.0338 | 83.33 | 4500 | 1.0948 | 0.5108 | | 0.0223 | 92.59 | 5000 | 1.0986 | 0.4775 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-tatar
infinitejoy
2022-03-24T11:52:33Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "tt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - tt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Tatar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tt metrics: - name: Test WER type: wer value: 24.392 - name: Test CER type: cer value: 5.024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TT dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Wer: 0.2454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.173 | 9.66 | 4000 | 0.2920 | 0.3608 | | 0.9433 | 19.32 | 8000 | 0.2336 | 0.3026 | | 0.8552 | 28.99 | 12000 | 0.2221 | 0.2799 | | 0.7863 | 38.65 | 16000 | 0.1953 | 0.2479 | | 0.7365 | 48.31 | 20000 | 0.1968 | 0.2449 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-kyrgyz
infinitejoy
2022-03-24T11:52:31Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ky", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ky - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kyrgyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ky metrics: - name: Test WER type: wer value: 40.908 - name: Test CER type: cer value: 10.999 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kyrgyz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KY dataset. It achieves the following results on the evaluation set: - Loss: 0.5817 - Wer: 0.4096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5412 | 18.69 | 2000 | 0.6161 | 0.5747 | | 1.311 | 37.38 | 4000 | 0.5707 | 0.5070 | | 1.1367 | 56.07 | 6000 | 0.5372 | 0.4664 | | 0.9696 | 74.77 | 8000 | 0.5443 | 0.4328 | | 0.8163 | 93.46 | 10000 | 0.5916 | 0.4124 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
glob-asr/wav2vec2-large-xls-r-300m-guarani-small
glob-asr
2022-03-24T11:52:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "gn", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - gn - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-guarani-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Wer: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.65 | 100 | 1.1326 | 1.0 | | 1.6569 | 13.32 | 200 | 0.5264 | 0.6478 | | 1.6569 | 19.97 | 300 | 0.5370 | 0.6261 | | 0.2293 | 26.65 | 400 | 0.4964 | 0.5957 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-cs-cv8
comodoro
2022-03-24T11:52:03Z
16
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "cs", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cs metrics: - name: Test WER type: wer value: 10.3 - name: Test CER type: cer value: 2.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 54.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 44.55 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-cs-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training: - Loss: 0.2327 - Wer: 0.1608 - Cer: 0.0376 The `eval.py` script results using a LM are: WER: 0.10281503199350225 CER: 0.02622802241689026 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ## Training procedure ### Training hyperparameters The following hyperparameters were used during first stage of training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP The following hyperparameters were used during second stage of training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 | | 3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 | | 2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 | | 0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 | | 0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 | | 0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 | | 0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 | | 0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 | | 0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 | | 0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 | | 0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 | | 0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 | | 0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 | | 0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 | | 0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 | | 0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 | | 0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 | | 0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 | Further fine-tuning with slightly different architecture and higher learning rate: | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.576 | 8.06 | 250 | 0.2411 | 0.2340 | 0.0502 | | 0.2564 | 16.13 | 500 | 0.2305 | 0.2097 | 0.0492 | | 0.2018 | 24.19 | 750 | 0.2371 | 0.2059 | 0.0494 | | 0.1549 | 32.25 | 1000 | 0.2298 | 0.1844 | 0.0435 | | 0.1224 | 40.32 | 1250 | 0.2288 | 0.1725 | 0.0407 | | 0.1004 | 48.38 | 1500 | 0.2327 | 0.1608 | 0.0376 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-1b-ka
arampacha
2022-03-24T11:51:59Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-ka results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ka args: ka metrics: - type: wer value: 7.39778066580026 name: WER LM - type: cer value: 1.1882089427096434 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 22.61 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 21.58 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
lsb/wav2vec2-base-it-latin
lsb
2022-03-24T11:51:21Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "la", "dataset:lsb/poetaexmachina-mp3-recitations", "license:agpl-3.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - la license: agpl-3.0 tags: - robust-speech-event - hf-asr-leaderboard datasets: - lsb/poetaexmachina-mp3-recitations metrics: - wer model-index: - name: wav2vec2-base-it-latin results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: lsb/poetaexmachina-mp3-recitations name: Poeta Ex Machina mp3 recitations metrics: - type: wer value: 0.398 name: Test WER --- --- # wav2vec2-base-it-latin This model is a fine-tuned version of [wav2vec2-base-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-it-voxpopuli) The dataset used is the [poetaexmachina-mp3-recitations](https://github.com/lsb/poetaexmachina-mp3-recitations), all of the 2-series texts (vergil) and every tenth 1-series text (words from Poeta Ex Machina's [database](https://github.com/lsb/poetaexmachina/blob/master/merged-scansions.db) of words with scansions). It achieves the following [results](https://github.com/lsb/tironiculum/blame/trunk/wav2vec2%20base%20it%20latin.ipynb#L1234) on the evaluation set: - Loss: 0.1943 - WER: 0.398
infinitejoy/wav2vec2-large-xls-r-300m-bulgarian
infinitejoy
2022-03-24T11:47:30Z
445
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "bg", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - bg - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bulgarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bg metrics: - name: Test WER type: wer value: 46.68 - name: Test CER type: cer value: 10.75 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 63.68 - name: Test CER type: cer value: 19.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 64.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Wer: 0.4674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9774 | 6.33 | 500 | 2.9769 | 1.0 | | 1.3453 | 12.66 | 1000 | 0.6523 | 0.6980 | | 1.1658 | 18.99 | 1500 | 0.5636 | 0.6359 | | 1.0797 | 25.32 | 2000 | 0.5004 | 0.5759 | | 1.044 | 31.65 | 2500 | 0.4958 | 0.5569 | | 0.9915 | 37.97 | 3000 | 0.4971 | 0.5350 | | 0.9429 | 44.3 | 3500 | 0.4829 | 0.5229 | | 0.9266 | 50.63 | 4000 | 0.4515 | 0.5074 | | 0.8965 | 56.96 | 4500 | 0.4599 | 0.5039 | | 0.878 | 63.29 | 5000 | 0.4735 | 0.4954 | | 0.8494 | 69.62 | 5500 | 0.4460 | 0.4878 | | 0.8343 | 75.95 | 6000 | 0.4510 | 0.4795 | | 0.8236 | 82.28 | 6500 | 0.4538 | 0.4789 | | 0.8069 | 88.61 | 7000 | 0.4526 | 0.4748 | | 0.7958 | 94.94 | 7500 | 0.4496 | 0.4700 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
buvnswrn/daml-t5-pretrain-imdb-accelerate
buvnswrn
2022-03-24T11:22:52Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-24T11:06:02Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
joe5campbell/Horovod_Tweet_Sentiment_1k_5eps
joe5campbell
2022-03-24T11:01:59Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T11:01:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_1k_5eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_1k_5eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5216092 - Train Accuracy: 0.784375 - Validation Loss: 0.92405033 - Validation Accuracy: 0.4875 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7129049 | 0.50937504 | 0.7314203 | 0.490625 | 0 | | 0.73165804 | 0.47343752 | 0.6929074 | 0.484375 | 1 | | 0.6827939 | 0.55 | 0.6864271 | 0.50625 | 2 | | 0.66076773 | 0.5578125 | 0.60817575 | 0.69687504 | 3 | | 0.5216092 | 0.784375 | 0.92405033 | 0.4875 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
huggingtweets/vi0linheart
huggingtweets
2022-03-24T10:11:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T10:09:41Z
--- language: en thumbnail: http://www.huggingtweets.com/vi0linheart/1648116634962/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal</div> <div style="text-align: center; font-size: 14px;">@vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal. | Data | sal | | --- | --- | | Tweets downloaded | 3114 | | Retweets | 421 | | Short tweets | 541 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21y9qo98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kytalli-vi0linheart
huggingtweets
2022-03-24T09:38:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T09:25:29Z
--- language: en thumbnail: http://www.huggingtweets.com/kytalli-vi0linheart/1648114676311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1376749372831002627/2B9FZTnI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal & G</div> <div style="text-align: center; font-size: 14px;">@kytalli-vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal & G. | Data | sal | G | | --- | --- | --- | | Tweets downloaded | 3114 | 3249 | | Retweets | 421 | 55 | | Short tweets | 541 | 226 | | Tweets kept | 2152 | 2968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tj76wad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kytalli-vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kytalli-vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
niksmer/RoBERTa-RILE
niksmer
2022-03-24T09:19:40Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: RoBERTa-RILE results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # RoBERTa-RILE This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of three political categories: "neutral", "left", "right". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/RoBERTa-RILE") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data ## Training and evaluation data RoBERTa-RILE was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in over 50 main categories - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each categorie. It has created a valid left-right-scale, the rile-index, to aaggregate manifesto in a standardized, onde-dimensional political space from left to right based on saliency-theory. RoBERTa-RILE classifies texts based on the rile index. ### Tain data Train data was slightly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 52,277 | | 1 | left | 37,106 | | 2 | right | 26,560 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 9,198 | | 1 | left | 6,637 | | 2 | right | 4,626 | Overall count: 20,461 ### Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 3,881 | | 1 | left | 2,611 | | 2 | right | 1,838 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.7442 | 1.0 | 1812 | 0.6827 | 0.7120 | 0.7120 | 0.7007 | 0.7126 | 0.7120 | 0.7120 | | 0.6447 | 2.0 | 3624 | 0.6618 | 0.7281 | 0.7281 | 0.7169 | 0.7281 | 0.7281 | 0.7281 | | 0.5467 | 3.0 | 5436 | 0.6657 | 0.7309 | 0.7309 | 0.7176 | 0.7295 | 0.7309 | 0.7309 | | 0.5179 | 4.0 | 7248 | 0.6654 | 0.7346 | 0.7346 | 0.7240 | 0.7345 | 0.7346 | 0.7346 | | 0.4787 | 5.0 | 9060 | 0.6757 | 0.7350 | 0.7350 | 0.7241 | 0.7347 | 0.7350 | 0.7350 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.74 | 0.72 | 0.73 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.69 | 0.67 | 0.69 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | neutral | 0.77 | 0.74 | | left | 0.73 | 0.65 | | right | 0.67 | 0.62 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [ManiBERT](https://huggingface.co/niksmer/ManiBERT). ![image](english_robertarile_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
niksmer/ManiBERT
niksmer
2022-03-24T09:03:13Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: ManiBERT results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # ManiBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of 56 political categories: ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/ManiBERT") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Train Data ManiBERT was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The resulting Datasets are higly (!) imbalanced. See Evaluation. ## Evaluation | Description | Label | Count Train Data | Count Validation Data | Count Test Data | Validation F1-Score | Test F1-Score | |-------------------------------------------------------------------|-------|------------------|-----------------------|-----------------|---------------------|---------------| | Foreign Special Relationships: Positive | 0 | 545 | 96 | 60 | 0.43 | 0.45 | | Foreign Special Relationships: Negative | 1 | 66 | 14 | 22 | 0.22 | 0.09 | | Anti-Imperialism | 2 | 93 | 16 | 1 | 0.16 | 0.00 | | Military: Positive | 3 | 1,969 | 356 | 159 | 0.69 | 0.63 | | Military: Negative | 4 | 489 | 89 | 52 | 0.59 | 0.63 | | Peace | 5 | 418 | 80 | 49 | 0.57 | 0.64 | | Internationalism: Positive | 6 | 2,401 | 417 | 404 | 0.60 | 0.54 | | European Community/Union or Latin America Integration: Positive | 7 | 930 | 156 | 20 | 0.58 | 0.32 | | Internationalism: Negative | 8 | 209 | 40 | 57 | 0.28 | 0.05 | | European Community/Union or Latin America Integration: Negative | 9 | 520 | 81 | 0 | 0.39 | - | | Freedom and Human Rights | 10 | 2,196 | 389 | 76 | 0.50 | 0.34 | | Democracy | 11 | 3,045 | 534 | 206 | 0.53 | 0.51 | | Constitutionalism: Positive | 12 | 259 | 48 | 12 | 0.34 | 0.22 | | Constitutionalism: Negative | 13 | 380 | 72 | 2 | 0.34 | 0.00 | | Decentralisation: Positive | 14 | 2,791 | 481 | 331 | 0.49 | 0.45 | | Centralisation: Positive | 15 | 150 | 33 | 71 | 0.11 | 0.00 | | Governmental and Administrative Efficiency | 16 | 3,905 | 711 | 105 | 0.50 | 0.32 | | Political Corruption | 17 | 900 | 186 | 234 | 0.59 | 0.55 | | Political Authority | 18 | 3,488 | 627 | 300 | 0.51 | 0.39 | | Free Market Economy | 19 | 1,768 | 309 | 53 | 0.40 | 0.16 | | Incentives: Positive | 20 | 3,100 | 544 | 81 | 0.52 | 0.28 | | Market Regulation | 21 | 3,562 | 616 | 210 | 0.50 | 0.36 | | Economic Planning | 22 | 533 | 93 | 67 | 0.31 | 0.12 | | Corporatism/ Mixed Economy | 23 | 193 | 32 | 23 | 0.28 | 0.33 | | Protectionism: Positive | 24 | 633 | 103 | 180 | 0.44 | 0.22 | | Protectionism: Negative | 25 | 723 | 118 | 149 | 0.52 | 0.40 | | Economic Goals | 26 | 817 | 139 | 148 | 0.05 | 0.00 | | Keynesian Demand Management | 27 | 160 | 25 | 9 | 0.00 | 0.00 | | Economic Growth: Positive | 28 | 3,142 | 607 | 374 | 0.53 | 0.30 | | Technology and Infrastructure: Positive | 29 | 8,643 | 1,529 | 339 | 0.71 | 0.56 | | Controlled Economy | 30 | 567 | 96 | 94 | 0.47 | 0.16 | | Nationalisation | 31 | 832 | 157 | 27 | 0.56 | 0.16 | | Economic Orthodoxy | 32 | 1,721 | 287 | 184 | 0.55 | 0.48 | | Marxist Analysis: Positive | 33 | 148 | 33 | 0 | 0.20 | - | | Anti-Growth Economy and Sustainability | 34 | 2,676 | 452 | 250 | 0.43 | 0.33 | | Environmental Protection | 35 | 6,731 | 1,163 | 934 | 0.70 | 0.67 | | Culture: Positive | 36 | 2,082 | 358 | 92 | 0.69 | 0.56 | | Equality: Positive | 37 | 6,630 | 1,126 | 361 | 0.57 | 0.43 | | Welfare State Expansion | 38 | 13,486 | 2,405 | 990 | 0.72 | 0.61 | | Welfare State Limitation | 39 | 926 | 151 | 2 | 0.45 | 0.00 | | Education Expansion | 40 | 7,191 | 1,324 | 274 | 0.78 | 0.63 | | Education Limitation | 41 | 154 | 27 | 1 | 0.17 | 0.00 | | National Way of Life: Positive | 42 | 2,105 | 385 | 395 | 0.48 | 0.34 | | National Way of Life: Negative | 43 | 743 | 147 | 2 | 0.27 | 0.00 | | Traditional Morality: Positive | 44 | 1,375 | 234 | 19 | 0.55 | 0.14 | | Traditional Morality: Negative | 45 | 291 | 54 | 38 | 0.30 | 0.23 | | Law and Order | 46 | 5,582 | 949 | 381 | 0.72 | 0.71 | | Civic Mindedness: Positive | 47 | 1,348 | 229 | 27 | 0.45 | 0.28 | | Multiculturalism: Positive | 48 | 2,006 | 355 | 71 | 0.61 | 0.35 | | Multiculturalism: Negative | 49 | 144 | 31 | 7 | 0.33 | 0.00 | | Labour Groups: Positive | 50 | 3,856 | 707 | 57 | 0.64 | 0.14 | | Labour Groups: Negative | 51 | 208 | 35 | 0 | 0.44 | - | | Agriculture and Farmers | 52 | 2,996 | 490 | 130 | 0.67 | 0.56 | | Middle Class and Professional Groups | 53 | 271 | 38 | 12 | 0.38 | 0.40 | | Underprivileged Minority Groups | 54 | 1,417 | 252 | 82 | 0.34 | 0.33 | | Non-economic Demographic Groups | 55 | 2,429 | 435 | 106 | 0.42 | 0.24 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=5e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 1.7638 | 1.0 | 1812 | 1.6471 | 0.5531 | 0.5531 | 0.3354 | 0.5368 | 0.5531 | 0.5531 | | 1.4501 | 2.0 | 3624 | 1.5167 | 0.5807 | 0.5807 | 0.3921 | 0.5655 | 0.5807 | 0.5807 | | 1.0638 | 3.0 | 5436 | 1.5017 | 0.5893 | 0.5893 | 0.4240 | 0.5789 | 0.5893 | 0.5893 | | 0.9263 | 4.0 | 7248 | 1.5173 | 0.5975 | 0.5975 | 0.4499 | 0.5901 | 0.5975 | 0.5975 | | 0.7859 | 5.0 | 9060 | 1.5574 | 0.5978 | 0.5978 | 0.4564 | 0.5903 | 0.5978 | 0.5978 | ### Overall evaluation | Type | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | Validation | 0.60 | 0.46 | 0.59 | | Test | 0.48 | 0.30 | 0.47 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). ![image](english_manibert_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
huggingtweets/tariqnasheed
huggingtweets
2022-03-24T08:54:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T08:47:22Z
--- language: en thumbnail: http://www.huggingtweets.com/tariqnasheed/1648112086220/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506809010988539910/bBCRvJ4K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tariq Nasheed 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@tariqnasheed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tariq Nasheed 🇺🇸. | Data | Tariq Nasheed 🇺🇸 | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 273 | | Short tweets | 396 | | Tweets kept | 2566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f1jq7tem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tariqnasheed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dn7iubq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dn7iubq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tariqnasheed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
enimai/mt5-mustc-fr
enimai
2022-03-24T07:30:36Z
7
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-24T06:59:25Z
--- license: apache-2.0 ---
tiennvcs/distilbert-base-uncased-finetuned-ner
tiennvcs
2022-03-24T07:29:26Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T07:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9264836138175376 - name: Recall type: recall value: 0.9361226087929299 - name: F1 type: f1 value: 0.9312781703856213 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9265 - Recall: 0.9361 - F1: 0.9313 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2437 | 1.0 | 878 | 0.0745 | 0.9144 | 0.9173 | 0.9158 | 0.9799 | | 0.0518 | 2.0 | 1756 | 0.0621 | 0.9177 | 0.9353 | 0.9264 | 0.9826 | | 0.03 | 3.0 | 2634 | 0.0616 | 0.9265 | 0.9361 | 0.9313 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
nguyenvulebinh/iwslt-asr-wav2vec-large-4500h
nguyenvulebinh
2022-03-24T07:12:52Z
4
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en", "dataset:common_voice", "dataset:librispeech_asr", "dataset:how2", "dataset:must-c-v1", "dataset:must-c-v2", "dataset:europarl", "dataset:tedlium", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-23T14:53:55Z
--- language: en datasets: - common_voice - librispeech_asr - how2 - must-c-v1 - must-c-v2 - europarl - tedlium tags: - audio - automatic-speech-recognition license: cc-by-nc-4.0 --- # Fine-Tune Wav2Vec2 large model for English ASR ### Data for fine-tune | Dataset | Duration in hours | |--------------|-------------------| | Common Voice | 1667 | | Europarl | 85 | | How2 | 356 | | Librispeech | 936 | | MuST-C v1 | 407 | | MuST-C v2 | 482 | | Tedlium | 482 | ### Evaluation result | Dataset | Duration in hours | WER w/o LM | WER with LM | |-------------|-------------------|------------|-------------| | Librispeech | 5.4 | 2.9 | 1.1 | | Tedlium | 2.6 | 7.9 | 5.4 | ### Usage [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FAhtGvjRdHT4W0KeMdMMlL7sm6Hbe7dv?usp=sharing) ```python from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/iwslt-asr-wav2vec-large-4500h" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="tst_2010_sample.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # and of course there's teams that have a lot more tada structures and among the best are recent graduates of kindergarten # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text) # and of course there are teams that have a lot more ta da structures and among the best are recent graduates of kindergarten ``` ### Model Parameters License The ASR model parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode ### Contact nguyenvulebinh@gmail.com [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
simonnedved/codet5-base
simonnedved
2022-03-24T06:57:59Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "dis2py", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T22:11:24Z
--- license: apache-2.0 tags: - dis2py - generated_from_trainer model-index: - name: codet5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-base This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-sample
Pavithra
2022-03-24T06:41:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:12:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5219 - eval_runtime: 603.3856 - eval_samples_per_second: 154.402 - eval_steps_per_second: 4.826 - epoch: 0.15 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
quincyqiang/chinese-roberta-wwm-ext
quincyqiang
2022-03-24T04:58:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:52:35Z
--- license: apache-2.0 ---
Yaxin/xlm-roberta-base-yelp-mlm
Yaxin
2022-03-24T04:44:37Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:10:58Z
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: xlm-roberta-base-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.7356223359340127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-yelp-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Accuracy: 0.7356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
FuriouslyAsleep/unhappyZebra100
FuriouslyAsleep
2022-03-24T04:39:04Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:FuriouslyAsleep/autotrain-data-techDataClassifeier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T04:38:22Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - FuriouslyAsleep/autotrain-data-techDataClassifeier co2_eq_emissions: 0.6969569001670619 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 664919631 - CO2 Emissions (in grams): 0.6969569001670619 ## Validation Metrics - Loss: 0.022509008646011353 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/FuriouslyAsleep/autotrain-techDataClassifeier-664919631 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
lazyturtl/digital
lazyturtl
2022-03-24T04:28:50Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-15T00:21:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: digital results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8974359035491943 --- # digital ## Example Images #### ansys ![ansys](images/ansys.jpeg) #### blender ![blender](images/blender.jpeg) #### roblox ![roblox](images/roblox.jpeg) #### sketchup ![sketchup](images/sketchup.jpeg)
clisi2000/distilbert-base-uncased-distilled-clinc
clisi2000
2022-03-24T03:50:04Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T03:43:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cpu - Datasets 1.18.4 - Tokenizers 0.10.3
rurupang/roberta-base-finetuned-sts
rurupang
2022-03-24T01:54:26Z
25
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T14:13:32Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: roberta-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.956039443806831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sts This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1999 - Pearsonr: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 329 | 0.2462 | 0.9478 | | 1.2505 | 2.0 | 658 | 0.1671 | 0.9530 | | 1.2505 | 3.0 | 987 | 0.1890 | 0.9525 | | 0.133 | 4.0 | 1316 | 0.2360 | 0.9548 | | 0.0886 | 5.0 | 1645 | 0.2265 | 0.9528 | | 0.0886 | 6.0 | 1974 | 0.2097 | 0.9518 | | 0.0687 | 7.0 | 2303 | 0.2281 | 0.9523 | | 0.0539 | 8.0 | 2632 | 0.2212 | 0.9542 | | 0.0539 | 9.0 | 2961 | 0.1843 | 0.9532 | | 0.045 | 10.0 | 3290 | 0.1999 | 0.9560 | | 0.0378 | 11.0 | 3619 | 0.2357 | 0.9533 | | 0.0378 | 12.0 | 3948 | 0.2134 | 0.9541 | | 0.033 | 13.0 | 4277 | 0.2273 | 0.9540 | | 0.03 | 14.0 | 4606 | 0.2148 | 0.9533 | | 0.03 | 15.0 | 4935 | 0.2207 | 0.9534 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
negfir/distilbert-base-uncased-finetuned-squad
negfir
2022-03-24T01:39:12Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2789 | 1.0 | 5533 | 1.2200 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/btohtoh
huggingtweets
2022-03-24T01:35:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:35:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh</div> <div style="text-align: center; font-size: 14px;">@btohtoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh. | Data | BToh | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 347 | | Short tweets | 480 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnk5832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/chai_microsoft_indian_langs_te
espnet
2022-03-24T00:36:45Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "te", "dataset:microsoft_indian_languages_interspeech2018", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:36:26Z
--- tags: - espnet - audio - automatic-speech-recognition language: te datasets: - microsoft_indian_languages_interspeech2018 license: cc-by-4.0 --- ## ESPnet2 model ### `` This model was trained by Chaitanya Narisetty using recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/ms_indic_is18/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/chai_microsoft_indian_langs_te ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Mar 22 13:38:24 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1+cu111` - Git hash: `f91410f712d1287cd6809c5bf26b54c5a40fe314` - Commit date: `Mon Mar 14 22:32:17 2022 -0400` ## asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.5|2.4|24.4|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.4|2.6|2.4|24.4|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.6|2.5|24.5|79.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.1|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.0|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.1|2.2|1.6|6.0|79.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.7|4.7|2.6|1.6|8.9|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.7|2.6|1.6|8.9|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.6|2.6|1.6|8.9|79.9| ## config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_xlsr53_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/train/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_te_sp/wav.scp - speech - sound - - dump/raw/train_te_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_te/wav.scp - speech - sound - - dump/raw/dev_te/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - ా - ు - ి - ం - ే - వ - న - ల - ▁అ - క - ్ - ో - మ - ▁ - త - ర - ప - ీ - ▁మ - య - డ - ▁ప - ద - ని - గ - ▁వ - స - కు - ె - ర్ - ▁స - ▁క - ్య - న్న - ట - ▁చ - ▁త - ాల - ంట - ూ - శ - ంద - ార - ▁న - ారు - ▁ఉ - లు - ▁ఆ - ను - జ - రి - ▁ప్ర - ించ - ధ - ై - హ - ంది - ్ర - ▁ఇ - చ - రు - స్త - లో - ▁ద - డు - ▁ఎ - ▁వి - ల్ల - ణ - గా - ది - డి - న్నారు - దు - ిన - ▁ర - త్ - ొ - ▁గ - ంత - ంగా - ▁కా - బ - ▁జ - ష - ▁తెల - ులు - ▁ఏ - ట్ట - చ్చ - తి - నే - కి - ంలో - ▁అవును - ▁చెప్ప - భ - ▁ఈ - ప్ప - ▁ని - ▁రా - క్క - ▁బ - ట్ల - ▁భ - తో - ▁కూడా - ▁బా - ద్ద - ▁చేస - ▁లే - ాయి - ానికి - త్ర - ▁కొ - ఖ - ▁ఒక - ▁చాలా - క్ష - ళ - ▁చేస్త - ృ - థ - ఘ - ఫ - ఓ - ౌ - ఒ - ఐ - ఠ - ఢ - అ - ఉ - ఏ - ఈ - ౦ - ఇ - ః - ఋ - ఝ - ఔ - ఛ - ఞ - ఊ - ఎ - ఆ - ఙ - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/te_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: fused frontend_conf: frontends: - frontend_type: default n_fft: 512 win_length: 400 hop_length: 160 - frontend_type: s3prl frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true align_method: linear_projection proj_dim: 200 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 400 output_size: 100 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
public-data/dlib_face_landmark_model
public-data
2022-03-23T22:54:12Z
0
0
null
[ "region:us" ]
null
2022-03-23T22:52:02Z
# dlib face landmark model - http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
ydshieh/roberta-base-squad2
ydshieh
2022-03-23T22:39:25Z
57
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T22:29:51Z
--- language: en datasets: - squad_v2 license: cc-by-4.0 --- # roberta-base for QA NOTE: This is version 2 of the model. See [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository for an explanation of why we updated. If you'd like to use version 1, specify `revision="v1.0"` when loading the model in Transformers 3.5. For exmaple: ``` model_name = "deepset/roberta-base-squad2" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### In FARM ```python from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name) ``` ### In haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` ## Authors Branden Chan: `branden.chan [at] deepset.ai` Timo Möller: `timo.moeller [at] deepset.ai` Malte Pietsch: `malte.pietsch [at] deepset.ai` Tanay Soni: `tanay.soni [at] deepset.ai` ## About us ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our work: - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) - [Haystack](https://github.com/deepset-ai/haystack/) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
radev/xlm-roberta-base-finetuned-panx-de
radev
2022-03-23T22:27:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T22:11:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8593216480764853 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/radagasttbrown
huggingtweets
2022-03-23T21:33:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T21:13:19Z
--- language: en thumbnail: http://www.huggingtweets.com/radagasttbrown/1648071147429/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362404255798280192/yIKMf5AN_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radagast 🌋</div> <div style="text-align: center; font-size: 14px;">@radagasttbrown</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Radagast 🌋. | Data | Radagast 🌋 | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 457 | | Short tweets | 230 | | Tweets kept | 2541 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b1t67ko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @radagasttbrown's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/boipgvkp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/radagasttbrown') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/InformalToFormalLincoln30
BigSalmon
2022-03-23T20:51:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T20:36:45Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln30") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln30") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
bigmorning/my-gpt-model-4
bigmorning
2022-03-23T20:00:04Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:52:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-4 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.0556 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.0556 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/ryiacy
huggingtweets
2022-03-23T19:51:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:28:42Z
--- language: en thumbnail: http://www.huggingtweets.com/ryiacy/1648065062687/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424813722011410434/73S-oYNT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cyriac</div> <div style="text-align: center; font-size: 14px;">@ryiacy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cyriac. | Data | cyriac | | --- | --- | | Tweets downloaded | 1050 | | Retweets | 32 | | Short tweets | 60 | | Tweets kept | 958 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26de85bt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ryiacy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ryiacy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/MASKGPT2
BigSalmon
2022-03-23T19:26:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:20:45Z
``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
negfir/uncased_L-12_H-128_A-2
negfir
2022-03-23T19:18:33Z
3
0
transformers
[ "transformers", "pytorch", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2022-03-23T18:49:57Z
--- tags: - generated_from_keras_callback model-index: - name: uncased_L-12_H-128_A-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # uncased_L-12_H-128_A-2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/eigenrobot-moridinamael
huggingtweets
2022-03-23T18:42:22Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:37:05Z
--- language: en thumbnail: http://www.huggingtweets.com/eigenrobot-moridinamael/1648060937936/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/615582548010229761/0zg9awKn_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492994204758278144/rDnqNReU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Twisted Mentat Matt & eigenrobot</div> <div style="text-align: center; font-size: 14px;">@eigenrobot-moridinamael</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Twisted Mentat Matt & eigenrobot. | Data | Twisted Mentat Matt | eigenrobot | | --- | --- | --- | | Tweets downloaded | 3145 | 3247 | | Retweets | 1670 | 119 | | Short tweets | 230 | 651 | | Tweets kept | 1245 | 2477 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3njfftkj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eigenrobot-moridinamael's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eigenrobot-moridinamael') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ScandinavianMrT/gpt2_ONION_prefinetune_4.0
ScandinavianMrT
2022-03-23T18:39:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:34:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_ONION_prefinetune_4.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_ONION_prefinetune_4.0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 153 | 4.7368 | | No log | 2.0 | 306 | 4.6732 | | No log | 3.0 | 459 | 4.6527 | | 4.8529 | 4.0 | 612 | 4.6484 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
DrishtiSharma
2022-03-23T18:35:22Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - name: Test WER (+LM) type: wer value: 0.14551310203484116 - name: Test CER (+LM) type: cer value: 0.03927566711277415 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.560722380639029 - name: Dev CER type: cer value: 0.2279626093074681 - name: Dev WER (+LM) type: wer value: 0.46486802661402354 - name: Dev CER (+LM) type: cer value: 0.21105136194592422 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-bashkir
sammy786
2022-03-23T18:35:07Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - ba - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ba metrics: - name: Test WER type: wer value: 11.32 - name: Test CER type: cer value: 2.34 --- # sammy786/wav2vec2-xlsr-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ba dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: - Wer: ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 5.387100 | 1.982867 | 1.000000 | | 400 | 1.269800 | 0.369958 | 0.545755 | | 600 | 0.903600 | 0.287705 | 0.465594 | | 800 | 0.787300 | 0.235142 | 0.417091 | | 1000 | 0.816300 | 0.206325 | 0.390534 | | 1200 | 0.700500 | 0.197106 | 0.383987 | | 1400 | 0.707100 | 0.179855 | 0.381368 | | 1600 | 0.657800 | 0.181605 | 0.370593 | | 1800 | 0.647800 | 0.168626 | 0.358767 | | 2000 | 0.650700 | 0.164833 | 0.351483 | | 2200 | 0.490900 | 0.168133 | 0.363309 | | 2400 | 0.431000 | 0.161201 | 0.344350 | | 2600 | 0.372100 | 0.160254 | 0.338280 | | 2800 | 0.367500 | 0.150885 | 0.329687 | | 3000 | 0.351300 | 0.154112 | 0.331392 | | 3200 | 0.314800 | 0.147147 | 0.326700 | | 3400 | 0.316800 | 0.142681 | 0.325090 | | 3600 | 0.313000 | 0.138736 | 0.319553 | | 3800 | 0.291800 | 0.138166 | 0.315570 | | 4000 | 0.311300 | 0.135977 | 0.322894 | | 4200 | 0.304900 | 0.128820 | 0.308627 | | 4400 | 0.301600 | 0.129475 | 0.307440 | | 4600 | 0.281800 | 0.131863 | 0.305967 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-bashkir --dataset mozilla-foundation/common_voice_8_0 --config ba --split test ```
nouamanetazi/wav2vec2-xls-r-300m-ar
nouamanetazi
2022-03-23T18:35:04Z
16
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
infinitejoy/wav2vec2-large-xls-r-300m-finnish
infinitejoy
2022-03-23T18:34:46Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 29.97 - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.2984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9032 | 4.39 | 500 | 2.8768 | 1.0 | | 1.5724 | 8.77 | 1000 | 0.5638 | 0.6438 | | 1.1818 | 13.16 | 1500 | 0.3338 | 0.4759 | | 1.0798 | 17.54 | 2000 | 0.2876 | 0.4086 | | 1.0296 | 21.93 | 2500 | 0.2694 | 0.4248 | | 1.0014 | 26.32 | 3000 | 0.2626 | 0.3733 | | 0.9616 | 30.7 | 3500 | 0.2391 | 0.3294 | | 0.9303 | 35.09 | 4000 | 0.2352 | 0.3218 | | 0.9248 | 39.47 | 4500 | 0.2351 | 0.3207 | | 0.8837 | 43.86 | 5000 | 0.2341 | 0.3103 | | 0.8887 | 48.25 | 5500 | 0.2311 | 0.3115 | | 0.8529 | 52.63 | 6000 | 0.2230 | 0.3001 | | 0.8404 | 57.02 | 6500 | 0.2279 | 0.3054 | | 0.8242 | 61.4 | 7000 | 0.2298 | 0.3006 | | 0.8288 | 65.79 | 7500 | 0.2333 | 0.2997 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-gl-CV8
emre
2022-03-23T18:34:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "gl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: gl tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-gl-CV8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice gl type: common_voice args: gl metrics: - name: Test WER type: wer value: 0.208 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gl metrics: - name: Test WER type: wer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 47.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 50.8 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
Baybars/wav2vec2-xls-r-300m-cv8-turkish
Baybars
2022-03-23T18:34:22Z
34
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4164 - Wer: 0.3098 - Cer: 0.0764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Language Model N-gram language model is trained by [mpoyraz](https://huggingface.co/mpoyraz/wav2vec2-xls-r-300m-cv7-turkish) on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6356 | 9.09 | 500 | 0.5055 | 0.5536 | 0.1381 | | 0.3847 | 18.18 | 1000 | 0.4002 | 0.4247 | 0.1065 | | 0.3377 | 27.27 | 1500 | 0.4193 | 0.4167 | 0.1078 | | 0.2175 | 36.36 | 2000 | 0.4351 | 0.3861 | 0.0974 | | 0.2074 | 45.45 | 2500 | 0.3962 | 0.3622 | 0.0916 | | 0.159 | 54.55 | 3000 | 0.4062 | 0.3526 | 0.0888 | | 0.1882 | 63.64 | 3500 | 0.3991 | 0.3445 | 0.0850 | | 0.1766 | 72.73 | 4000 | 0.4214 | 0.3396 | 0.0847 | | 0.116 | 81.82 | 4500 | 0.4182 | 0.3265 | 0.0812 | | 0.0718 | 90.91 | 5000 | 0.4259 | 0.3191 | 0.0781 | | 0.019 | 100.0 | 5500 | 0.4164 | 0.3098 | 0.0764 | ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
vutankiet2901/wav2vec2-xls-r-1b-ja
vutankiet2901
2022-03-23T18:34:17Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 11.77 - name: Test CER (with LM) type: cer value: 5.22 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 12.23 - name: Test CER (with LM) type: cer value: 5.33 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 29.35 - name: Test CER (with LM) type: cer value: 16.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.48 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 16.97 | 17.95 | |with 4-grams LM| 11.77 | 12.23| ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 6.82 | 7.05 | |with 4-grams LM| 5.22 | 5.33 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vutankiet2901/wav2vec2-xls-r-1b-ja --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.484 | 9.49 | 1500 | 1.1849 | 0.7543 | 0.4099 | | 1.3582 | 18.98 | 3000 | 0.4320 | 0.3489 | 0.1591 | | 1.1716 | 28.48 | 4500 | 0.3835 | 0.3175 | 0.1454 | | 1.0951 | 37.97 | 6000 | 0.3732 | 0.3033 | 0.1405 | | 1.04 | 47.47 | 7500 | 0.3485 | 0.2898 | 0.1360 | | 0.9768 | 56.96 | 9000 | 0.3386 | 0.2787 | 0.1309 | | 0.9129 | 66.45 | 10500 | 0.3363 | 0.2711 | 0.1272 | | 0.8614 | 75.94 | 12000 | 0.3386 | 0.2676 | 0.1260 | | 0.8092 | 85.44 | 13500 | 0.3356 | 0.2610 | 0.1240 | | 0.7658 | 94.93 | 15000 | 0.3316 | 0.2564 | 0.1218 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
shahukareem/xls-r-300m-dv
shahukareem
2022-03-23T18:34:14Z
57
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - dv - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.31 - name: Test CER type: cer value: 3.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3386 | 0.66 | 400 | 1.1411 | 0.9432 | | 0.6543 | 1.33 | 800 | 0.5099 | 0.6749 | | 0.4646 | 1.99 | 1200 | 0.4133 | 0.5968 | | 0.3748 | 2.65 | 1600 | 0.3534 | 0.5515 | | 0.3323 | 3.32 | 2000 | 0.3635 | 0.5527 | | 0.3269 | 3.98 | 2400 | 0.3587 | 0.5423 | | 0.2984 | 4.64 | 2800 | 0.3340 | 0.5073 | | 0.2841 | 5.31 | 3200 | 0.3279 | 0.5004 | | 0.2664 | 5.97 | 3600 | 0.3114 | 0.4845 | | 0.2397 | 6.63 | 4000 | 0.3174 | 0.4920 | | 0.2332 | 7.3 | 4400 | 0.3110 | 0.4911 | | 0.2304 | 7.96 | 4800 | 0.3123 | 0.4785 | | 0.2134 | 8.62 | 5200 | 0.2984 | 0.4557 | | 0.2066 | 9.29 | 5600 | 0.3013 | 0.4723 | | 0.1951 | 9.95 | 6000 | 0.2934 | 0.4487 | | 0.1806 | 10.61 | 6400 | 0.2802 | 0.4547 | | 0.1727 | 11.28 | 6800 | 0.2842 | 0.4333 | | 0.1666 | 11.94 | 7200 | 0.2873 | 0.4272 | | 0.1562 | 12.6 | 7600 | 0.3042 | 0.4373 | | 0.1483 | 13.27 | 8000 | 0.3122 | 0.4313 | | 0.1465 | 13.93 | 8400 | 0.2760 | 0.4226 | | 0.1335 | 14.59 | 8800 | 0.3112 | 0.4243 | | 0.1293 | 15.26 | 9200 | 0.3002 | 0.4133 | | 0.1264 | 15.92 | 9600 | 0.2985 | 0.4145 | | 0.1179 | 16.58 | 10000 | 0.2925 | 0.4012 | | 0.1171 | 17.25 | 10400 | 0.3127 | 0.4012 | | 0.1141 | 17.91 | 10800 | 0.2980 | 0.3908 | | 0.108 | 18.57 | 11200 | 0.3108 | 0.3951 | | 0.1045 | 19.24 | 11600 | 0.3269 | 0.3908 | | 0.1047 | 19.9 | 12000 | 0.2998 | 0.3868 | | 0.0937 | 20.56 | 12400 | 0.2918 | 0.3875 | | 0.0949 | 21.23 | 12800 | 0.2906 | 0.3657 | | 0.0879 | 21.89 | 13200 | 0.2974 | 0.3731 | | 0.0854 | 22.55 | 13600 | 0.2943 | 0.3711 | | 0.0851 | 23.22 | 14000 | 0.2919 | 0.3580 | | 0.0789 | 23.88 | 14400 | 0.2983 | 0.3560 | | 0.0796 | 24.54 | 14800 | 0.3131 | 0.3544 | | 0.0761 | 25.21 | 15200 | 0.2996 | 0.3616 | | 0.0755 | 25.87 | 15600 | 0.2972 | 0.3506 | | 0.0726 | 26.53 | 16000 | 0.2902 | 0.3474 | | 0.0707 | 27.2 | 16400 | 0.3083 | 0.3480 | | 0.0669 | 27.86 | 16800 | 0.3035 | 0.3330 | | 0.0637 | 28.52 | 17200 | 0.2963 | 0.3370 | | 0.0596 | 29.19 | 17600 | 0.2830 | 0.3326 | | 0.0583 | 29.85 | 18000 | 0.2969 | 0.3287 | | 0.0566 | 30.51 | 18400 | 0.3002 | 0.3480 | | 0.0574 | 31.18 | 18800 | 0.2916 | 0.3296 | | 0.0536 | 31.84 | 19200 | 0.2933 | 0.3225 | | 0.0548 | 32.5 | 19600 | 0.2900 | 0.3179 | | 0.0506 | 33.17 | 20000 | 0.3073 | 0.3225 | | 0.0511 | 33.83 | 20400 | 0.2925 | 0.3275 | | 0.0483 | 34.49 | 20800 | 0.2919 | 0.3245 | | 0.0456 | 35.16 | 21200 | 0.2859 | 0.3105 | | 0.0445 | 35.82 | 21600 | 0.2864 | 0.3080 | | 0.0437 | 36.48 | 22000 | 0.2989 | 0.3084 | | 0.04 | 37.15 | 22400 | 0.2887 | 0.3060 | | 0.0406 | 37.81 | 22800 | 0.2870 | 0.3013 | | 0.0397 | 38.47 | 23200 | 0.2793 | 0.3020 | | 0.0383 | 39.14 | 23600 | 0.2955 | 0.2943 | | 0.0345 | 39.8 | 24000 | 0.2813 | 0.2905 | | 0.0331 | 40.46 | 24400 | 0.2845 | 0.2845 | | 0.0338 | 41.13 | 24800 | 0.2832 | 0.2925 | | 0.0333 | 41.79 | 25200 | 0.2889 | 0.2849 | | 0.0325 | 42.45 | 25600 | 0.2808 | 0.2847 | | 0.0314 | 43.12 | 26000 | 0.2867 | 0.2801 | | 0.0288 | 43.78 | 26400 | 0.2865 | 0.2834 | | 0.0291 | 44.44 | 26800 | 0.2863 | 0.2806 | | 0.0269 | 45.11 | 27200 | 0.2941 | 0.2736 | | 0.0275 | 45.77 | 27600 | 0.2897 | 0.2736 | | 0.0271 | 46.43 | 28000 | 0.2857 | 0.2695 | | 0.0251 | 47.1 | 28400 | 0.2881 | 0.2702 | | 0.0243 | 47.76 | 28800 | 0.2901 | 0.2684 | | 0.0244 | 48.42 | 29200 | 0.2849 | 0.2679 | | 0.0232 | 49.09 | 29600 | 0.2849 | 0.2677 | | 0.0224 | 49.75 | 30000 | 0.2855 | 0.2665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-finnish
sammy786
2022-03-23T18:34:11Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fi metrics: - name: Test WER type: wer value: 13.72 - name: Test CER type: cer value: 2.35 --- # sammy786/wav2vec2-xlsr-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - fi dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 8.7555 - Wer: 23.0231 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.253700 | 0.881733 | 0.967007 | | 400 | 0.864800 | 0.226977 | 0.420836 | | 600 | 0.607000 | 0.157473 | 0.343375 | | 800 | 0.380200 | 0.145640 | 0.302672 | | 1000 | 0.318400 | 0.128028 | 0.293886 | | 1200 | 0.261100 | 0.121414 | 0.289941 | | 1400 | 0.232300 | 0.113451 | 0.279182 | | 1600 | 0.216600 | 0.113649 | 0.282948 | | 1800 | 0.202500 | 0.112375 | 0.276134 | | 2000 | 0.190000 | 0.105725 | 0.273803 | | 2200 | 0.171000 | 0.109715 | 0.270755 | | 2400 | 0.156500 | 0.105042 | 0.264300 | | 2600 | 0.155600 | 0.108337 | 0.260714 | | 2800 | 0.149100 | 0.112435 | 0.263583 | | 3000 | 0.145100 | 0.106193 | 0.261969 | | 3200 | 0.131700 | 0.102860 | 0.251210 | | 3400 | 0.129100 | 0.096058 | 0.246907 | | 3600 | 0.121600 | 0.099932 | 0.246369 | | 3800 | 0.112000 | 0.099041 | 0.244397 | | 4000 | 0.114100 | 0.101566 | 0.242604 | | 4200 | 0.111500 | 0.089498 | 0.239197 | | 4400 | 0.099800 | 0.092835 | 0.240990 | | 4600 | 0.095300 | 0.093518 | 0.238121 | | 4800 | 0.094300 | 0.090783 | 0.240631 | | 5000 | 0.089000 | 0.094046 | 0.238479 | | 5200 | 0.088000 | 0.089342 | 0.235252 | | 5400 | 0.083600 | 0.087770 | 0.234535 | | 5600 | 0.083600 | 0.088804 | 0.234355 | | 5800 | 0.080300 | 0.090168 | 0.231307 | | 6000 | 0.078100 | 0.090163 | 0.230949 | | 6200 | 0.075600 | 0.088876 | 0.232383 | | 6400 | 0.078700 | 0.087235 | 0.232024 | | 6600 | 0.074800 | 0.086825 | 0.231486 | | 6800 | 0.076400 | 0.087308 | 0.231845 | | 7000 | 0.070700 | 0.087695 | 0.230769 | | 7200 | 0.075500 | 0.087555 | 0.230231 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-finnish --dataset mozilla-foundation/common_voice_8_0 --config fi --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-basaa
infinitejoy
2022-03-23T18:33:50Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "bas", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bas metrics: - name: Test WER type: wer value: 104.08 - name: Test CER type: cer value: 228.48 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5975 - Wer: 0.4981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | | 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | | 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | | 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | | 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | | 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | | 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | | 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | | 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | | 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | | 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | | 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi
LegolasTheElf
2022-03-23T18:33:41Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "Openslr Multilingual", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - Openslr Multilingual - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 34.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Harveenchadha/vakyansh_hindi_base_pretrained
Harveenchadha
2022-03-23T18:33:38Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "hf-asr-leaderboard", "hi", "model_for_talk", "pretrained", "robust-speech-event", "speech", "arxiv:2107.07402", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: hi tags: - hf-asr-leaderboard - hi - model_for_talk - pretrained - robust-speech-event - speech license: apache-2.0 --- Hindi Pretrained model on 4200 hours. [Link](https://arxiv.org/abs/2107.07402)
AndrewMcDowell/wav2vec2-xls-r-300m-arabic
AndrewMcDowell
2022-03-23T18:33:36Z
28
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 47.54 - name: Test CER type: cer value: 17.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 93.72 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 92.49 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Wer: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7972 | 0.43 | 500 | 5.1401 | 1.0 | | 3.3241 | 0.86 | 1000 | 3.3220 | 1.0 | | 3.1432 | 1.29 | 1500 | 3.0806 | 0.9999 | | 2.9297 | 1.72 | 2000 | 2.5678 | 1.0057 | | 2.2593 | 2.14 | 2500 | 1.1068 | 0.8218 | | 2.0504 | 2.57 | 3000 | 0.7878 | 0.7114 | | 1.937 | 3.0 | 3500 | 0.6955 | 0.6450 | | 1.8491 | 3.43 | 4000 | 0.6452 | 0.6304 | | 1.803 | 3.86 | 4500 | 0.5961 | 0.6042 | | 1.7545 | 4.29 | 5000 | 0.5550 | 0.5748 | | 1.7045 | 4.72 | 5500 | 0.5374 | 0.5743 | | 1.6733 | 5.15 | 6000 | 0.5337 | 0.5404 | | 1.6761 | 5.57 | 6500 | 0.5054 | 0.5266 | | 1.655 | 6.0 | 7000 | 0.4926 | 0.5243 | | 1.6252 | 6.43 | 7500 | 0.4946 | 0.5183 | | 1.6209 | 6.86 | 8000 | 0.4915 | 0.5194 | | 1.5772 | 7.29 | 8500 | 0.4725 | 0.5104 | | 1.5602 | 7.72 | 9000 | 0.4726 | 0.5097 | | 1.5783 | 8.15 | 9500 | 0.4667 | 0.4956 | | 1.5442 | 8.58 | 10000 | 0.4685 | 0.4937 | | 1.5597 | 9.01 | 10500 | 0.4708 | 0.4957 | | 1.5406 | 9.43 | 11000 | 0.4539 | 0.4810 | | 1.5274 | 9.86 | 11500 | 0.4502 | 0.4783 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
abidlabs/speech-text
abidlabs
2022-03-23T18:33:30Z
7
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "en", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-07T19:09:18Z
--- language: en datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 19.06 - name: Test CER type: cer value: 7.69 - name: Test WER (+LM) type: wer value: 14.81 - name: Test CER (+LM) type: cer value: 6.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 27.72 - name: Dev CER type: cer value: 11.65 - name: Dev WER (+LM) type: wer value: 20.85 - name: Dev CER (+LM) type: cer value: 11.01 --- # Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | | DO YOU MEAN IT? | DO YOU MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-english, title={XLSR Wav2Vec2 English by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, year={2021} } ```
infinitejoy/wav2vec2-large-xls-r-300m-kurdish
infinitejoy
2022-03-23T18:33:23Z
98
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "kmr", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - kmr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - kmr - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kurmanji Kurdish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: kmr metrics: - name: Test WER type: wer value: 102.308 - name: Test CER type: cer value: 538.748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kurdish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KMR dataset. It achieves the following results on the evaluation set: - Loss: 0.2548 - Wer: 0.2688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3161 | 12.27 | 2000 | 0.4199 | 0.4797 | | 1.0643 | 24.54 | 4000 | 0.2982 | 0.3721 | | 0.9718 | 36.81 | 6000 | 0.2762 | 0.3333 | | 0.8772 | 49.08 | 8000 | 0.2586 | 0.3051 | | 0.8236 | 61.35 | 10000 | 0.2575 | 0.2865 | | 0.7745 | 73.62 | 12000 | 0.2603 | 0.2816 | | 0.7297 | 85.89 | 14000 | 0.2539 | 0.2727 | | 0.7079 | 98.16 | 16000 | 0.2554 | 0.2681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12
DrishtiSharma
2022-03-23T18:33:15Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "or", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - or - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-or-dx12 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.5947242206235012 - name: Test CER type: cer value: 0.18272388876724327 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-dx12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4638 - Wer: 0.5602 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Oriya language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | | 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | | 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | | 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | | 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | | 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | | 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | | 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | | 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | | 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | | 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | | 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | | 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | | 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | | 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | | 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | | 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | | 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | | 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | | 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | | 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | | 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | | 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | | 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | | 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | | 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | | 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | | 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | | 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | | 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | | 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | | 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | | 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | | 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | | 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | | 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | | 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | | 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | | 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | | 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | | 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | | 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | | 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | | 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | | 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | | 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | | 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | | 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
shivam/wav2vec2-xls-r-hindi
shivam
2022-03-23T18:33:12Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: shivam/wav2vec2-xls-r-hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 52.3 - name: Test CER type: cer value: 26.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Wer: 0.6838 ## Evaluation results on Common Voice 7 "test" (Running ./eval.py): ### With LM - WER: 52.30 - CER: 26.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3155 | 3.4 | 500 | 4.5582 | 1.0 | | 3.3369 | 6.8 | 1000 | 3.4269 | 1.0 | | 2.1785 | 10.2 | 1500 | 1.7191 | 0.8831 | | 1.579 | 13.6 | 2000 | 1.3604 | 0.7647 | | 1.3773 | 17.01 | 2500 | 1.2737 | 0.7519 | | 1.3165 | 20.41 | 3000 | 1.2457 | 0.7401 | | 1.2274 | 23.81 | 3500 | 1.3617 | 0.7301 | | 1.1787 | 27.21 | 4000 | 1.2068 | 0.7010 | | 1.1467 | 30.61 | 4500 | 1.2416 | 0.6946 | | 1.0801 | 34.01 | 5000 | 1.2312 | 0.6990 | | 1.0709 | 37.41 | 5500 | 1.2984 | 0.7138 | | 1.0307 | 40.81 | 6000 | 1.2049 | 0.6871 | | 1.0003 | 44.22 | 6500 | 1.1956 | 0.6841 | | 1.004 | 47.62 | 7000 | 1.2101 | 0.6793 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
2022-03-23T18:33:04Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "fr", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa-cv8
infinitejoy
2022-03-23T18:32:58Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bas", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - bas - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 38.057 - name: Test CER type: cer value: 11.233 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Wer: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9421 | 12.82 | 500 | 2.8894 | 1.0 | | 1.1872 | 25.64 | 1000 | 0.6688 | 0.7460 | | 0.8894 | 38.46 | 1500 | 0.4868 | 0.6516 | | 0.769 | 51.28 | 2000 | 0.4960 | 0.6507 | | 0.6936 | 64.1 | 2500 | 0.4781 | 0.5384 | | 0.624 | 76.92 | 3000 | 0.4643 | 0.5430 | | 0.5966 | 89.74 | 3500 | 0.4530 | 0.5591 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-assamese-cv8
infinitejoy
2022-03-23T18:32:56Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "as", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - as license: apache-2.0 tags: - as - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 65.966 - name: Test CER type: cer value: 22.188 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-assamese-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 0.9814 - Wer: 0.7402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 20.0 | 400 | 3.1447 | 1.0 | | No log | 40.0 | 800 | 1.0074 | 0.8556 | | 3.1278 | 60.0 | 1200 | 0.9507 | 0.7711 | | 3.1278 | 80.0 | 1600 | 0.9730 | 0.7630 | | 0.8247 | 100.0 | 2000 | 0.9814 | 0.7402 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8
emre
2022-03-23T18:32:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Tr-med-CommonVoice8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 49.14 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4876 | 6.66 | 5000 | 0.3252 | 0.5784 | | 0.6919 | 13.32 | 10000 | 0.2720 | 0.5172 | | 0.5919 | 19.97 | 15000 | 0.2556 | 0.4914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
comodoro/wav2vec2-xls-r-300m-cs
comodoro
2022-03-23T18:32:48Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "xlsr-fine-tuning-week", "cs", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - xlsr-fine-tuning-week datasets: - common_voice model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: cs metrics: - name: Test WER type: wer value: 22.2 - name: Test CER type: cer value: 5.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 66.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 57.52 --- # Wav2Vec2-Large-XLSR-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice 6.1 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.20 % ## Training The Common Voice `train` and `validation` datasets were used for training # TODO The script used for training can be found [here](...)
AlexN/xls-r-300m-fr
AlexN
2022-03-23T18:32:43Z
56
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "fr", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 21.58 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 36.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 38.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2700 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-mongolian
sammy786
2022-03-23T18:30:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER type: wer value: 32.63 - name: Test CER type: cer value: 9.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 91.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 91.37 --- # sammy786/wav2vec2-xlsr-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - mn dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 31.52 - Wer: 34.1522 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.906200 | 3.012986 | 1.000000 | | 400 | 1.734600 | 0.704821 | 0.750497 | | 600 | 1.132100 | 0.496223 | 0.531241 | | 800 | 0.929300 | 0.468937 | 0.469043 | | 1000 | 0.772300 | 0.425313 | 0.448168 | | 1200 | 0.623900 | 0.394633 | 0.414229 | | 1400 | 0.512400 | 0.369225 | 0.397614 | | 1600 | 0.439900 | 0.346033 | 0.391650 | | 1800 | 0.391300 | 0.358454 | 0.379296 | | 2000 | 0.377000 | 0.346822 | 0.359415 | | 2200 | 0.347500 | 0.325205 | 0.348481 | | 2400 | 0.343600 | 0.315233 | 0.344078 | | 2600 | 0.328000 | 0.308826 | 0.341522 | | 2800 | 0.358200 | 0.331786 | 0.343084 | | 3000 | 0.417200 | 0.370051 | 0.356433 | | 3200 | 0.685300 | 0.595438 | 0.407413 | | 3400 | 0.764100 | 0.643449 | 0.359983 | | 3600 | 0.717100 | 0.505033 | 0.371911 | | 3800 | 0.620900 | 0.464138 | 0.369071 | | 4000 | 0.590700 | 0.445417 | 0.363249 | | 4200 | 0.561000 | 0.440727 | 0.360267 | | 4400 | 0.550600 | 0.447122 | 0.360267 | | 4600 | 0.562100 | 0.457020 | 0.359841 | | 4800 | 0.578800 | 0.470477 | 0.360551 | | 5000 | 0.580400 | 0.481413 | 0.362539 | | 5200 | 0.605500 | 0.485240 | 0.362823 | | 5400 | 0.582900 | 0.486654 | 0.362965 | | 5600 | 0.593900 | 0.486715 | 0.363107 | | 5800 | 0.590900 | 0.486716 | 0.363107 | | 6000 | 0.587200 | 0.486716 | 0.363107 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-mongolian --dataset mozilla-foundation/common_voice_8_0 --config mn --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-bashkir
infinitejoy
2022-03-23T18:30:18Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ba", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ba metrics: - name: Test WER type: wer value: 24.2 - name: Test CER type: cer value: 5.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set: - Loss: 0.1892 - Wer: 0.2421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4792 | 0.5 | 2000 | 0.4598 | 0.5404 | | 1.449 | 1.0 | 4000 | 0.4650 | 0.5610 | | 1.3742 | 1.49 | 6000 | 0.4001 | 0.4977 | | 1.3375 | 1.99 | 8000 | 0.3916 | 0.4894 | | 1.2961 | 2.49 | 10000 | 0.3641 | 0.4569 | | 1.2714 | 2.99 | 12000 | 0.3491 | 0.4488 | | 1.2399 | 3.48 | 14000 | 0.3151 | 0.3986 | | 1.2067 | 3.98 | 16000 | 0.3081 | 0.3923 | | 1.1842 | 4.48 | 18000 | 0.2875 | 0.3703 | | 1.1644 | 4.98 | 20000 | 0.2840 | 0.3670 | | 1.161 | 5.48 | 22000 | 0.2790 | 0.3597 | | 1.1303 | 5.97 | 24000 | 0.2552 | 0.3272 | | 1.0874 | 6.47 | 26000 | 0.2405 | 0.3142 | | 1.0613 | 6.97 | 28000 | 0.2352 | 0.3055 | | 1.0498 | 7.47 | 30000 | 0.2249 | 0.2910 | | 1.021 | 7.96 | 32000 | 0.2118 | 0.2752 | | 1.0002 | 8.46 | 34000 | 0.2046 | 0.2662 | | 0.9762 | 8.96 | 36000 | 0.1969 | 0.2530 | | 0.9568 | 9.46 | 38000 | 0.1917 | 0.2449 | | 0.953 | 9.96 | 40000 | 0.1893 | 0.2425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
vitouphy/wav2vec2-xls-r-300m-japanese
vitouphy
2022-03-23T18:30:07Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/0124", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 54.05 - name: Test CER type: cer value: 27.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Validation WER type: wer value: 48.77 - name: Validation CER type: cer value: 24.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 27.36 --- # This model is for transcribing audio into Hiragana, one format of Japanese language. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `mozilla-foundation/common_voice_8_0 dataset`. Note that the following results are achieved by: - Modify `eval.py` to suit the use case. - Since kanji and katakana shares the same sound as hiragana, we convert all texts to hiragana using [pykakasi](https://pykakasi.readthedocs.io) and tokenize them using [fugashi](https://github.com/polm/fugashi). It achieves the following results on the evaluation set: - Loss: 0.7751 - Cer: 0.2227 # Evaluation results (Running ./eval.py): | Model | Metric | Common-Voice-8/test | speech-recognition-community-v2/dev-data | |:--------:|:------:|:-------------------:|:------------------------------------------:| | w/o LM | WER | 0.5964 | 0.5532 | | | CER | 0.2944 | 0.2629 | | w/ LM | WER | 0.5405 | 0.4877 | | | CER | **0.2754** | **0.2487** | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4081 | 1.6 | 500 | 4.0983 | 1.0 | | 3.303 | 3.19 | 1000 | 3.3563 | 1.0 | | 3.1538 | 4.79 | 1500 | 3.2066 | 0.9239 | | 2.1526 | 6.39 | 2000 | 1.1597 | 0.3355 | | 1.8726 | 7.98 | 2500 | 0.9023 | 0.2505 | | 1.7817 | 9.58 | 3000 | 0.8219 | 0.2334 | | 1.7488 | 11.18 | 3500 | 0.7915 | 0.2222 | | 1.7039 | 12.78 | 4000 | 0.7751 | 0.2227 | | Stop & Train | | | | | | 1.6571 | 15.97 | 5000 | 0.6788 | 0.1685 | | 1.520400 | 19.16 | 6000 | 0.6095 | 0.1409 | | 1.448200 | 22.35 | 7000 | 0.5843 | 0.1430 | | 1.385400 | 25.54 | 8000 | 0.5699 | 0.1263 | | 1.354200 | 28.73 | 9000 | 0.5686 | 0.1219 | | 1.331500 | 31.92 | 10000 | 0.5502 | 0.1144 | | 1.290800 | 35.11 | 11000 | 0.5371 | 0.1140 | | Stop & Train | | | | | | 1.235200 | 38.30 | 12000 | 0.5394 | 0.1106 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
jsnfly/wav2vec2-large-xlsr-53-german-gpt2
jsnfly
2022-03-23T18:29:57Z
21
2
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2-Large-XLSR-53-German-GPT2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 10.02 - name: Test CER type: cer value: 4.7 --- # Wav2Vec2-Large-XLSR-53-German-GPT2 This is an encoder-decoder model for automatic speech recognition trained on on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. The encoder was initialized from [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) and the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). It was trained using a two step process: * fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell * relatively fast training * also works on small GPU (eg. 8 GB) * but may take a lot of disk space * should already yield decent results * fine-tuning the model end-to-end * much slower * needs a bigger GPU There is also one trick, which seemed to improve performance significantly: adding position embeddings to the encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`). The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning rate schedule.
anuragshas/wav2vec2-xls-r-1b-hi
anuragshas
2022-03-23T18:29:52Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-xls-r-1b-hi-cv7 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: hi metrics: - type: wer value: 18.504 name: Test WER - name: Test CER type: cer value: 6.655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-hi-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5878 - Wer: 0.3419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9859 | 2.72 | 400 | 1.1663 | 0.7948 | | 1.2969 | 5.44 | 800 | 0.7725 | 0.6562 | | 1.1954 | 8.16 | 1200 | 0.5940 | 0.4904 | | 1.164 | 10.88 | 1600 | 0.5338 | 0.4316 | | 1.1464 | 13.6 | 2000 | 0.5432 | 0.4226 | | 1.1553 | 16.33 | 2400 | 0.5471 | 0.4260 | | 1.0985 | 19.05 | 2800 | 0.5290 | 0.4076 | | 1.0421 | 21.77 | 3200 | 0.5672 | 0.4181 | | 0.9831 | 24.49 | 3600 | 0.5741 | 0.4141 | | 0.9827 | 27.21 | 4000 | 0.5754 | 0.4179 | | 0.9669 | 29.93 | 4400 | 0.5310 | 0.3889 | | 0.9496 | 32.65 | 4800 | 0.5649 | 0.4062 | | 0.9112 | 35.37 | 5200 | 0.5738 | 0.3926 | | 0.8838 | 38.1 | 5600 | 0.5232 | 0.3768 | | 0.8666 | 40.81 | 6000 | 0.5510 | 0.3852 | | 0.8366 | 43.54 | 6400 | 0.5436 | 0.3837 | | 0.7957 | 46.26 | 6800 | 0.5337 | 0.3775 | | 0.7834 | 48.98 | 7200 | 0.5611 | 0.3844 | | 0.7685 | 51.7 | 7600 | 0.5710 | 0.4008 | | 0.7431 | 54.42 | 8000 | 0.5636 | 0.3726 | | 0.7353 | 57.14 | 8400 | 0.5937 | 0.3836 | | 0.7001 | 59.86 | 8800 | 0.5815 | 0.3858 | | 0.6799 | 62.58 | 9200 | 0.5862 | 0.3696 | | 0.6459 | 65.31 | 9600 | 0.6181 | 0.3762 | | 0.6121 | 68.03 | 10000 | 0.5637 | 0.3590 | | 0.5942 | 70.75 | 10400 | 0.6374 | 0.3882 | | 0.5769 | 73.47 | 10800 | 0.6015 | 0.3640 | | 0.5689 | 76.19 | 11200 | 0.5669 | 0.3508 | | 0.5461 | 78.91 | 11600 | 0.5967 | 0.3621 | | 0.5286 | 81.63 | 12000 | 0.5840 | 0.3605 | | 0.5057 | 84.35 | 12400 | 0.5848 | 0.3489 | | 0.482 | 87.07 | 12800 | 0.5860 | 0.3488 | | 0.4655 | 89.79 | 13200 | 0.5780 | 0.3453 | | 0.4523 | 92.52 | 13600 | 0.6150 | 0.3532 | | 0.4422 | 95.24 | 14000 | 0.5930 | 0.3452 | | 0.4436 | 97.96 | 14400 | 0.5867 | 0.3428 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi --dataset mozilla-foundation/common_voice_7_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 28.942 | 18.504 |