modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-31 12:31:28
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-31 12:30:56
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
yasutake/distilbert-base-uncased-finetuned-emotion
|
yasutake
| 2023-06-10T04:44:56Z | 117 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-08T06:26:00Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: train
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.885
- name: F1
type: f1
value: 0.8788144933200928
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3904
- Accuracy: 0.885
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 125 | 0.6059 | 0.7925 | 0.7475 |
| 0.7817 | 2.0 | 250 | 0.3904 | 0.885 | 0.8788 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
PhysHunter/Reinforce-CartPole-v1
|
PhysHunter
| 2023-06-10T04:24:15Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T04:24:04Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
YakovElm/IntelDAOS5Classic_Cross_entropy_Sample_2
|
YakovElm
| 2023-06-10T04:09:26Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T04:08:48Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS5Classic_Cross_entropy_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS5Classic_Cross_entropy_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2108
- Train Accuracy: 0.8740
- Validation Loss: 0.2443
- Validation Accuracy: 0.8438
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2387 | 0.8630 | 0.2509 | 0.8438 | 0 |
| 0.2191 | 0.8740 | 0.2487 | 0.8438 | 1 |
| 0.2108 | 0.8740 | 0.2443 | 0.8438 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
SaeedAnas/vit-base-trees
|
SaeedAnas
| 2023-06-10T04:06:23Z | 195 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-06-04T02:58:11Z |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-trees
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: trees
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-trees
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the trees dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0054
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Qt20Classic_MSE_Sample
|
YakovElm
| 2023-06-10T03:55:11Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:54:34Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Qt20Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Qt20Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0026
- Train Accuracy: 0.4973
- Validation Loss: 0.0021
- Validation Accuracy: 0.7445
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0030 | 0.5008 | 0.0022 | 0.2019 | 0 |
| 0.0028 | 0.5073 | 0.0021 | 0.4161 | 1 |
| 0.0026 | 0.4973 | 0.0021 | 0.7445 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Jira10Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T03:46:02Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:45:27Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Jira10Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Jira10Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2400
- Train Accuracy: 0.8248
- Validation Loss: 0.4826
- Validation Accuracy: 0.6151
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3484 | 0.7754 | 0.5450 | 0.4921 | 0 |
| 0.3046 | 0.7817 | 0.5120 | 0.4953 | 1 |
| 0.2400 | 0.8248 | 0.4826 | 0.6151 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger20Classic_Cross_entropy_Sample_2
|
YakovElm
| 2023-06-10T03:44:34Z | 66 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:43:58Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger20Classic_Cross_entropy_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger20Classic_Cross_entropy_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1373
- Train Accuracy: 0.9166
- Validation Loss: 0.1625
- Validation Accuracy: 0.8952
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1707 | 0.9073 | 0.1721 | 0.8983 | 0 |
| 0.1477 | 0.9149 | 0.1620 | 0.8983 | 1 |
| 0.1373 | 0.9166 | 0.1625 | 0.8952 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Qt10Classic_MSE
|
YakovElm
| 2023-06-10T03:42:38Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:42:02Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Qt10Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Qt10Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0673
- Train Accuracy: 0.5133
- Validation Loss: 0.0545
- Validation Accuracy: 0.7640
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0794 | 0.5116 | 0.0573 | 0.3763 | 0 |
| 0.0721 | 0.5019 | 0.0539 | 0.2295 | 1 |
| 0.0673 | 0.5133 | 0.0545 | 0.7640 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
afcoral/rap-prueba1
|
afcoral
| 2023-06-10T03:31:47Z | 125 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-10T03:20:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: rap-prueba1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rap-prueba1
This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 4.9452
- eval_runtime: 65.7105
- eval_samples_per_second: 82.894
- eval_steps_per_second: 10.364
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Jira5Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T03:28:43Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:28:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Jira5Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Jira5Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2479
- Train Accuracy: 0.8311
- Validation Loss: 0.5572
- Validation Accuracy: 0.6120
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3401 | 0.7608 | 0.4523 | 0.4858 | 0 |
| 0.3036 | 0.7775 | 0.4573 | 0.5016 | 1 |
| 0.2479 | 0.8311 | 0.5572 | 0.6120 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_4
|
YakovElm
| 2023-06-10T03:19:51Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-10T03:19:17Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_4
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_4")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
chandan9t8/Taxi-v3
|
chandan9t8
| 2023-06-10T03:15:43Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T03:15:41Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="chandan9t8/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
YakovElm/IntelDAOS20Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T03:11:23Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T03:10:44Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS20Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS20Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0730
- Train Accuracy: 0.9610
- Validation Loss: 0.1632
- Validation Accuracy: 0.9099
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1123 | 0.9440 | 0.1584 | 0.9099 | 0 |
| 0.0793 | 0.9610 | 0.1635 | 0.9099 | 1 |
| 0.0730 | 0.9610 | 0.1632 | 0.9099 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_3
|
YakovElm
| 2023-06-10T02:55:56Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-10T02:55:21Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_3
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_3")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
YakovElm/IntelDAOS15Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T02:52:59Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:52:25Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS15Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS15Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0889
- Train Accuracy: 0.9490
- Validation Loss: 0.2162
- Validation Accuracy: 0.8589
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1286 | 0.9240 | 0.1925 | 0.8859 | 0 |
| 0.1039 | 0.9460 | 0.2030 | 0.8859 | 1 |
| 0.0889 | 0.9490 | 0.2162 | 0.8589 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
staryesh/ppo-LunarLander-v2
|
staryesh
| 2023-06-10T02:48:32Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T02:48:12Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.48 +/- 16.66
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
YakovElm/Qt5Classic_MSE
|
YakovElm
| 2023-06-10T02:43:38Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:43:00Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Qt5Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Qt5Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0861
- Train Accuracy: 0.5092
- Validation Loss: 0.0682
- Validation Accuracy: 0.6188
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1029 | 0.5041 | 0.0630 | 0.3398 | 0 |
| 0.0923 | 0.4897 | 0.0649 | 0.8946 | 1 |
| 0.0861 | 0.5092 | 0.0682 | 0.6188 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
OpenMOSE/rwkv-7b-jp-lora
|
OpenMOSE
| 2023-06-10T02:40:28Z | 0 | 3 | null |
[
"region:us"
] | null | 2023-06-06T10:55:54Z |
license: apache-2.0
a LoRA fine-tuned model with Japanese dataset
LoRA Experiment
rwkv-7b-jp-280.pth is merged model with base
Base Model
https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
RWKV-4-Raven-7B-v10-Eng89%25-Jpn10%25-Other1%25-20230420-ctx4096.pth
Parameters:
Lora Rank 1024
Lora Alpha 2048
ctx length 1024
Lora Size: almost 1.6GB
Dataset
https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja
https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja
|
YakovElm/IntelDAOS10Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T02:34:49Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:34:15Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS10Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS10Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1440
- Train Accuracy: 0.9200
- Validation Loss: 0.2183
- Validation Accuracy: 0.8739
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1647 | 0.9190 | 0.2048 | 0.8739 | 0 |
| 0.1488 | 0.9200 | 0.2185 | 0.8739 | 1 |
| 0.1440 | 0.9200 | 0.2183 | 0.8739 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Qt10Classic_MSE_Sample
|
YakovElm
| 2023-06-10T02:23:23Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:22:45Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Qt10Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Qt10Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0054
- Train Accuracy: 0.4946
- Validation Loss: 0.0045
- Validation Accuracy: 0.4031
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0063 | 0.4951 | 0.0043 | 0.0641 | 0 |
| 0.0057 | 0.5049 | 0.0042 | 0.7453 | 1 |
| 0.0054 | 0.4946 | 0.0045 | 0.4031 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AustinCarthy/MixGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
|
AustinCarthy
| 2023-06-10T02:19:08Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-09T23:50:27Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MixGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MixGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2_using_phish_94K_top_p_0.75_domain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0244
- Accuracy: 0.9979
- F1: 0.9770
- Precision: 0.9981
- Recall: 0.9568
- Roc Auc Score: 0.9784
- Tpr At Fpr 0.01: 0.9584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0065 | 1.0 | 21554 | 0.0158 | 0.9966 | 0.9633 | 0.9962 | 0.9326 | 0.9662 | 0.9092 |
| 0.0024 | 2.0 | 43108 | 0.0111 | 0.9976 | 0.9741 | 0.9962 | 0.953 | 0.9764 | 0.9462 |
| 0.0024 | 3.0 | 64662 | 0.0178 | 0.9978 | 0.9769 | 0.9952 | 0.9592 | 0.9795 | 0.9468 |
| 0.0007 | 4.0 | 86216 | 0.0194 | 0.9978 | 0.9766 | 0.9971 | 0.957 | 0.9784 | 0.9508 |
| 0.0 | 5.0 | 107770 | 0.0244 | 0.9979 | 0.9770 | 0.9981 | 0.9568 | 0.9784 | 0.9584 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
YakovElm/Cross_Project_5_Classic_MSE_Samples_2
|
YakovElm
| 2023-06-10T02:16:51Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T19:48:15Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Cross_Project_5_Classic_MSE_Samples_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Cross_Project_5_Classic_MSE_Samples_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0439
- Train Accuracy: 0.5025
- Validation Loss: 0.0739
- Validation Accuracy: 0.5231
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0591 | 0.4952 | 0.0706 | 0.3863 | 0 |
| 0.0533 | 0.4972 | 0.0682 | 0.5325 | 1 |
| 0.0439 | 0.5025 | 0.0739 | 0.5231 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/IntelDAOS5Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T02:16:32Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:15:57Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS5Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS5Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2139
- Train Accuracy: 0.8740
- Validation Loss: 0.2574
- Validation Accuracy: 0.8438
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2298 | 0.8570 | 0.2531 | 0.8438 | 0 |
| 0.2167 | 0.8740 | 0.2438 | 0.8438 | 1 |
| 0.2139 | 0.8740 | 0.2574 | 0.8438 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Qt10Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-10T02:11:07Z | 63 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T02:10:33Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Qt10Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Qt10Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0187
- Train Accuracy: 0.9208
- Validation Loss: 0.0169
- Validation Accuracy: 0.9416
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0222 | 0.9186 | 0.0167 | 0.9416 | 0 |
| 0.0203 | 0.9210 | 0.0166 | 0.9416 | 1 |
| 0.0187 | 0.9208 | 0.0169 | 0.9416 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Cross_Project_5_Classic_MSE_Samples
|
YakovElm
| 2023-06-10T02:08:03Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T20:00:48Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Cross_Project_5_Classic_MSE_Samples
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Cross_Project_5_Classic_MSE_Samples
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0096
- Train Accuracy: 0.5045
- Validation Loss: 0.0152
- Validation Accuracy: 0.3055
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0123 | 0.5011 | 0.0145 | 0.6524 | 0 |
| 0.0113 | 0.4997 | 0.0146 | 0.3024 | 1 |
| 0.0096 | 0.5045 | 0.0152 | 0.3055 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
DhruvAwasthi/ppoFromScratcg-CartPole-v1
|
DhruvAwasthi
| 2023-06-10T02:04:58Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T02:04:52Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -153.99 +/- 68.51
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'DhruvAwasthi/ppoFromScratcg-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
nathan-cai/Q-taxi-v3
|
nathan-cai
| 2023-06-10T01:56:19Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T01:56:14Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="nathan-cai/Q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
DhruvAwasthi/a2c-PandaReachDense-v2
|
DhruvAwasthi
| 2023-06-10T01:16:53Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T01:14:03Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.90 +/- 0.53
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
YakovElm/Hyperledger15Classic_MSE_Sample_2
|
YakovElm
| 2023-06-10T01:06:58Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T01:06:15Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger15Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger15Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1345
- Train Accuracy: 0.9070
- Validation Loss: 0.2012
- Validation Accuracy: 0.8589
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1753 | 0.9014 | 0.1865 | 0.8807 | 0 |
| 0.1593 | 0.9035 | 0.1817 | 0.8807 | 1 |
| 0.1345 | 0.9070 | 0.2012 | 0.8589 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/llama-30b-supercot-GGML
|
TheBloke
| 2023-06-10T01:03:03Z | 0 | 24 | null |
[
"license:other",
"region:us"
] | null | 2023-05-28T11:10:47Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Ausboss' LLaMa 30B Supercot GGML
These files are GGML format model files for [Ausboss' LLaMa 30B Supercot](https://huggingface.co/ausboss/llama-30b-supercot).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/ausboss/llama-30b-supercot-4bit)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ausboss/llama-30b-supercot)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| llama-30b-supercot.ggmlv3.q2_K.bin | q2_K | 2 | 13.60 GB | 16.10 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| llama-30b-supercot.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.20 GB | 19.70 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| llama-30b-supercot.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.64 GB | 18.14 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| llama-30b-supercot.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 13.98 GB | 16.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| llama-30b-supercot.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. |
| llama-30b-supercot.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| llama-30b-supercot.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.57 GB | 22.07 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| llama-30b-supercot.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.30 GB | 20.80 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| llama-30b-supercot.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| llama-30b-supercot.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| llama-30b-supercot.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.02 GB | 25.52 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| llama-30b-supercot.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.37 GB | 24.87 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| llama-30b-supercot.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| llama-30b-supercot.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m llama-30b-supercot.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Ausboss' LLaMa 30B Supercot
Merge of [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) + [kaiokendev/SuperCOT-LoRA](https://huggingface.co/kaiokendev/SuperCOT-LoRA/edit/main/README.md)
Supercot was trained to work with langchain prompting.
Load up locally in my custom LLM notebook that uses the Oobabooga modules to load up models: https://github.com/ausboss/Local-LLM-Langchain
Then you can add cells from of these other notebooks for testing: https://github.com/gkamradt/langchain-tutorials
# From Koikendev Lora page
### Compatibility
This LoRA is compatible with any 7B, 13B or 30B 4-bit quantized LLaMa model, including ggml quantized converted bins
### Prompting
You should prompt the LoRA the same way you would prompt Alpaca or Alpacino:
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
<instruction>
### Input:
<any additional context. Remove this if it's not neccesary>
### Response:
<make sure to leave a single new-line here for optimal results>
```
Remember that with lower parameter sizes, the structure of the prompt becomes more important. The same prompt worded differently can give wildly different answers. Consider using the following suggestion suffixes to improve output quality:
- "Think through this step by step"
- "Let's think about this logically"
- "Explain your reasoning"
- "Provide details to support your answer"
- "Compare and contrast your answer with alternatives"
### Coming Soon
- Tweet fix for 13B and 7B - lower model sizes seem to be extremely sensitive to hashtags at the end of training data responses, especially at longer cutoffs
|
YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_1
|
YakovElm
| 2023-06-10T00:58:56Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-10T00:58:21Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_1
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_1")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
YakovElm/MariaDB20Classic_MSE_Sample
|
YakovElm
| 2023-06-10T00:52:34Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:51:59Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MariaDB20Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaDB20Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0031
- Train Accuracy: 0.5113
- Validation Loss: 0.0026
- Validation Accuracy: 0.4070
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0042 | 0.5213 | 0.0019 | 0.0327 | 0 |
| 0.0034 | 0.5063 | 0.0021 | 0.5603 | 1 |
| 0.0031 | 0.5113 | 0.0026 | 0.4070 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/MariaDB5Classic_MSE
|
YakovElm
| 2023-06-10T00:46:59Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:46:23Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MariaDB5Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaDB5Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0703
- Train Accuracy: 0.4987
- Validation Loss: 0.0733
- Validation Accuracy: 0.0804
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0950 | 0.4795 | 0.0727 | 0.2161 | 0 |
| 0.0831 | 0.5121 | 0.0671 | 0.7864 | 1 |
| 0.0703 | 0.4987 | 0.0733 | 0.0804 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/MariaDB20Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-10T00:40:13Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:39:37Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MariaDB20Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaDB20Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0109
- Train Accuracy: 0.9414
- Validation Loss: 0.0088
- Validation Accuracy: 0.9698
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0171 | 0.9289 | 0.0085 | 0.9698 | 0 |
| 0.0132 | 0.9356 | 0.0086 | 0.9698 | 1 |
| 0.0109 | 0.9414 | 0.0088 | 0.9698 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
wykonos/rl_course_vizdoom_health_gathering_supreme
|
wykonos
| 2023-06-10T00:38:54Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T00:38:47Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 3.87 +/- 0.33
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r wykonos/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
YakovElm/Hyperledger5Classic_Cross_entropy_Sample_2
|
YakovElm
| 2023-06-10T00:28:05Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:27:29Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger5Classic_Cross_entropy_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger5Classic_Cross_entropy_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1917
- Train Accuracy: 0.8648
- Validation Loss: 0.2500
- Validation Accuracy: 0.8361
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2363 | 0.8544 | 0.2474 | 0.8361 | 0 |
| 0.2249 | 0.8551 | 0.2417 | 0.8361 | 1 |
| 0.1917 | 0.8648 | 0.2500 | 0.8361 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/MariaDB10Classic_MSE_Sample
|
YakovElm
| 2023-06-10T00:21:18Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:20:39Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MariaDB10Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaDB10Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0052
- Train Accuracy: 0.4828
- Validation Loss: 0.0039
- Validation Accuracy: 0.9497
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0072 | 0.4628 | 0.0041 | 0.9472 | 0 |
| 0.0059 | 0.5172 | 0.0054 | 0.7563 | 1 |
| 0.0052 | 0.4828 | 0.0039 | 0.9497 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
DhruvAwasthi/a2c-AntBulletEnv-v0
|
DhruvAwasthi
| 2023-06-10T00:18:10Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-10T00:16:57Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1886.47 +/- 97.47
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
0x70DA/EnabledChat-v2-lora
|
0x70DA
| 2023-06-10T00:15:05Z | 0 | 0 | null |
[
"pytorch",
"tensorboard",
"generated_from_trainer",
"license:other",
"region:us"
] | null | 2023-06-08T19:58:11Z |
---
license: other
tags:
- generated_from_trainer
model-index:
- name: EnabledChat-v2-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EnabledChat-v2-lora
This model is a fine-tuned version of [0x70DA/EnabledChat](https://huggingface.co/0x70DA/EnabledChat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2828
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3247 | 0.07 | 200 | 1.3711 |
| 1.4053 | 0.14 | 400 | 1.3470 |
| 1.3431 | 0.21 | 600 | 1.3355 |
| 1.4012 | 0.27 | 800 | 1.3278 |
| 1.3189 | 0.34 | 1000 | 1.3235 |
| 1.3581 | 0.41 | 1200 | 1.3181 |
| 1.3417 | 0.48 | 1400 | 1.3138 |
| 1.3111 | 0.55 | 1600 | 1.3110 |
| 1.3547 | 0.62 | 1800 | 1.3068 |
| 1.3725 | 0.68 | 2000 | 1.3058 |
| 1.3574 | 0.75 | 2200 | 1.3028 |
| 1.3773 | 0.82 | 2400 | 1.2999 |
| 1.2944 | 0.89 | 2600 | 1.2979 |
| 1.2433 | 0.96 | 2800 | 1.2962 |
| 1.2349 | 1.03 | 3000 | 1.2952 |
| 1.3126 | 1.1 | 3200 | 1.2934 |
| 1.284 | 1.16 | 3400 | 1.2925 |
| 1.2194 | 1.23 | 3600 | 1.2912 |
| 1.2885 | 1.3 | 3800 | 1.2902 |
| 1.2159 | 1.37 | 4000 | 1.2888 |
| 1.2832 | 1.44 | 4200 | 1.2881 |
| 1.2233 | 1.51 | 4400 | 1.2868 |
| 1.2565 | 1.57 | 4600 | 1.2857 |
| 1.2618 | 1.64 | 4800 | 1.2855 |
| 1.3954 | 1.71 | 5000 | 1.2846 |
| 1.3082 | 1.78 | 5200 | 1.2840 |
| 1.3149 | 1.85 | 5400 | 1.2834 |
| 1.2558 | 1.92 | 5600 | 1.2830 |
| 1.2299 | 1.98 | 5800 | 1.2828 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|
YakovElm/Jira15Classic_MSE
|
YakovElm
| 2023-06-10T00:09:38Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T00:09:04Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Jira15Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Jira15Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0903
- Train Accuracy: 0.5026
- Validation Loss: 0.2553
- Validation Accuracy: 0.5678
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1759 | 0.4837 | 0.2819 | 0.4953 | 0 |
| 0.1400 | 0.5299 | 0.2636 | 0.5331 | 1 |
| 0.0903 | 0.5026 | 0.2553 | 0.5678 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_Half
|
YakovElm
| 2023-06-10T00:02:28Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-10T00:01:54Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_Half
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("YakovElm/Hyperledger20SetFitModel_Train_balance_ratio_Half")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
YakovElm/MariaDB5Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-09T23:50:59Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T23:50:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MariaDB5Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaDB5Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0260
- Train Accuracy: 0.9138
- Validation Loss: 0.0265
- Validation Accuracy: 0.9322
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0367 | 0.8921 | 0.0262 | 0.9322 | 0 |
| 0.0297 | 0.9004 | 0.0276 | 0.9322 | 1 |
| 0.0260 | 0.9138 | 0.0265 | 0.9322 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AustinCarthy/OnlyPhishGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
|
AustinCarthy
| 2023-06-09T23:49:55Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-09T21:19:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: OnlyPhishGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# OnlyPhishGPT2_Domain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_OnlyPhishGPT2_using_phish_95K_top_p_0.75_domain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0235
- Accuracy: 0.9979
- F1: 0.9774
- Precision: 0.9975
- Recall: 0.958
- Roc Auc Score: 0.9789
- Tpr At Fpr 0.01: 0.9572
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0054 | 1.0 | 21554 | 0.0118 | 0.9976 | 0.9739 | 0.9929 | 0.9556 | 0.9776 | 0.924 |
| 0.0024 | 2.0 | 43108 | 0.0093 | 0.9979 | 0.9773 | 0.9958 | 0.9594 | 0.9796 | 0.9526 |
| 0.0009 | 3.0 | 64662 | 0.0182 | 0.9979 | 0.9776 | 0.9938 | 0.962 | 0.9808 | 0.9452 |
| 0.0005 | 4.0 | 86216 | 0.0209 | 0.9977 | 0.9757 | 0.9973 | 0.955 | 0.9774 | 0.9526 |
| 0.0008 | 5.0 | 107770 | 0.0235 | 0.9979 | 0.9774 | 0.9975 | 0.958 | 0.9789 | 0.9572 |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.9.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Zumaridi/opus-mt-en-sw-finetuned-en-to-sw
|
Zumaridi
| 2023-06-09T23:44:49Z | 102 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-09T23:39:12Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-sw-finetuned-en-to-sw
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-sw-finetuned-en-to-sw
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-sw](https://huggingface.co/Helsinki-NLP/opus-mt-en-sw) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6973
- Bleu: 58.329
- Gen Len: 17.8688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 113 | 0.8883 | 48.4933 | 20.2061 |
| No log | 2.0 | 226 | 0.7719 | 57.3125 | 18.0965 |
| No log | 3.0 | 339 | 0.7126 | 58.3384 | 17.8894 |
| No log | 4.0 | 452 | 0.6973 | 58.329 | 17.8688 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger5Classic_MSE_Sample_2
|
YakovElm
| 2023-06-09T23:22:50Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T23:22:14Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger5Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger5Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1891
- Train Accuracy: 0.8637
- Validation Loss: 0.2599
- Validation Accuracy: 0.8164
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2397 | 0.8526 | 0.2500 | 0.8361 | 0 |
| 0.2220 | 0.8547 | 0.2406 | 0.8361 | 1 |
| 0.1891 | 0.8637 | 0.2599 | 0.8164 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Jira15Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-09T23:21:15Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T23:20:40Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Jira15Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Jira15Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0657
- Train Accuracy: 0.8688
- Validation Loss: 0.1580
- Validation Accuracy: 0.6751
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1066 | 0.7765 | 0.1652 | 0.5237 | 0 |
| 0.0817 | 0.8237 | 0.1753 | 0.6183 | 1 |
| 0.0657 | 0.8688 | 0.1580 | 0.6751 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
sazyou-roukaku/chilled_remix
|
sazyou-roukaku
| 2023-06-09T23:08:31Z | 3,447 | 214 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"text-to-image",
"ja",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-04-18T12:48:48Z |
---
license: creativeml-openrail-m
language:
- ja
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- text-to-image
---
**【告知】**
**chilled_remix及びreversemixは2023年5月21日にVersion変更を行い、v2へ移行いたしました。**
**伴いv1は削除致しました。なお既にDL済みの方は引き続き、v1をご利用いただくことは問題ございません。**
License:[CreativeML Open RAIL-M](https://huggingface.co/sazyou-roukaku/chilled_remix/blob/main/license_v2.txt)<br>
Additional Copyright: sazyou_roukaku (TwitterID [@sazyou_roukaku](https://twitter.com/sazyou_roukaku)) as of May 21, 2023<br>
このモデルは『CreativeML Open RAIL-M』でLicenseそのものに変更はありません。<br>
~しかし追加著作者として鎖城郎郭の名前が追加されています。~<br>
しかし追加著作者として佐城郎画の名前が追加されています。(6/10 Twitterネーム変更に伴い、表記変更。License内はsazyou_roukakuの為変更なし)<br>
なお『CreativeML Open RAIL-M』に記載されている通り、<br>
本モデルを使用しての生成物に関してはLicenseの使用制限Aの事例を除き、当方は一切関与致しません。<br>
犯罪目的利用や医療用画像など特定専門的な用途での利用は使用制限Aで禁止されています。<br>
必ず確認しご利用ください。<br>
また当方は一切責任を持ちません。免責されていることをご了承の上、ご使用ください。<br>
<h4>制限</h4>
<div class="px-2">
<table class="table-fixed border mt-0 text-xs">
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
著作者表記を入れずにモデルを使用する<br>
Use the model without crediting the creator
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルで生成した画像を商用利用する<br>
Sell images they generate
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
商用画像生成サービスに、このモデルを使用する<br>
Run on services that generate images for money
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルを使用したマージモデルを共有・配布する<br>
Share merges using this model
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデル、または派生モデルを販売する<br>
Sell this model or merges using this model
</td>
</tr>
<tr>
<td class="align-middle px-4 w-8">
<span class="text-green-500">
<h5>OK</h5>
</span>
</td>
<td>
このモデルをマージしたモデルに異なる権限を設定する<br>
Have different permissions when sharing merges
</td>
</tr>
</tbody>
</table>
</div>
なお、上記のモデルそのものの販売や商用画像生成サービスへの利用は、<br>
『CreativeML Open RAIL-M』のLicense上、使用制限Aに追記記載しない限り、<br>
制限することが本来できない為、マージ者への負担も考慮し、civitai制限表記上OKとしているだけであり、<br>
積極的な推奨は行っておらず、またそれにより何らかの問題が生じても当方は一切責任を持ちません。<br>
その点、ご留意いただくようお願いいたします。<br>
<br>
**推奨設定・モデルの違い・プロンプト**
Version2はfp16でVAE焼き込み版のみ配布といたしました。
基本的には**chilled_remixをメイン**とし、好みに合わせてreversemixも検討というのがスタンスです。
※chilled_remixはchilled_re-genericユーザーをある騒動での混乱から守るために生み出されたモデルです。
性質上全てのユーザー出力に対応できなかった為、サブとしてreversemixが作られました。
reversemixはLORAなしでも顔のセミリアル感は薄いですが、全体的に幼くなる傾向があります。
chilled_remixはLORA愛用者の多いchilled_re-genericユーザー向けに生み出された為、
顔はLORAを使うとリアル感が一定になるよう設計されています。
プロンプトだけでもリアル化は可能ですが、LORAを少し使ってリアル化したほうが簡単です。
**CLIP設定:clip skip:2**を推奨。
badhand系のnegativeTI無し、手系のネガティブも入れない出力と、
badhand系のnegativeTIを使った場合、正直大差ない感覚があります。
お好みでご利用ください。
自然言語的な文章プロンプトにかなり強いですが、シチュエーション以外の詳しい顔造形などは、
好みに合わせてワードプロンプトで指定するのが私のスタイルです。
ワードだけ構成でも問題があるわけではないので使いやすいスタイルで使ってください。
クオリティプロンプトは、high qualityなどは有効性を感じていません。
masterpieceは顔造形が変化する感覚ありますが、クオリティアップとしては微妙です。
ただhigh resolutionは背景や質感に効果あります。high res、Hiresなど色々ありますが、
一番high resolutionを信頼しています。
私が必ず入れるプロンプト
(symmetrical clear eyes:1.3)は絶対入れてます。
目の色等や他の追加と合わせて分割したりもしますが、このプロンプト自体は入れるのをデフォルトとしています。
愛用ネガティブプロンプトベース
```
nipple,(manicure:1.2),(worst quality:2),(low quality:2),(long neck:2),(undressing:1.5),
```
**マージ利用モデル一覧**
real-max-v3.4
(https://civitai.com/models/60188/real-max-v34) ©dawn6666
fantasticmix_v10(旧モデル名fantasticmixReal_v10)
(https://civitai.com/models/22402/fantasticmixreal) ©michin
dreamshaper_5Bakedvae
(https://civitai.com/models/4384/dreamshaper) ©Lykon
epicrealism_newAge
(https://civitai.com/models/25694) ©epinikion
diamondCoalMix_diamondCoalv2
(https://civitai.com/models/41415) ©EnthusiastAI
**FAQ**
**Q1:何故v2を公開し、v1の配布を中止したのか**
**A2:**
v1は元々マージ後も制限変更を禁止する表記になっているモデル(**realbiter_v10**)を使用していた為、
NG:Have different permissions when sharing mergesというcivitai制限を継承していました。
これは制限を追加することも解除することも不可という意味に取れます。一方でその他は全てOKでした。
つまり例えば
*NG:Sell this model or merges using this model*
*NG:Have different permissions when sharing merges*
こういうモデルとマージした時に**制限の矛盾**が発生し、**理屈上公開不可**という問題がありました。
マージをする者にとってこれは非常に厄介な制限で、また『CreativeML Open RAIL-M』にある
**Licenseを逸脱しない範囲であれば制限等を追加することができる**という文言にも抵触しています。
これが非常に気持ち悪く、嫌でした。
今回はその制限を解除する為のVersionアップです。
**v1の配布中止は、制限が異なる為、ややこしくトラブルの原因となる可能性がある点。**
また『CreativeML Open RAIL-M』には
**『更新に伴い、基本的に使用者は最新版を使う努力をすること』** の文面があります。
権利者は最新版を使わせるようにする権利を持ち、使用者は努力義務があるという内容です。
**ただし私はこの権利を行使致しませんので引き続きv1をお使いいただくことは問題ありません。**
しなしながらこの文面があるのに旧版を公開し続けるのは合理性に欠けることもあり、
誠に勝手ながら公開終了とさせていただきました。
ご理解のほどよろしくお願いいたします。
なおv1の再配布等は『CreativeML Open RAIL-M』に準拠致します。
**Q2:今回の制限に問題や矛盾はないのか。**
**A2:fantasticmix_v10**、**diamondCoalMix_diamondCoalv2**、**dreamshaper_5Bakedvae**は
**OK:Have different permissions when sharing merges**となっており解除可能。
**epicrealism_newAge**と**real-max-v3.4**は制限なしの為、今回全て制限なしとし公開しております。
なおマージ利用モデル側にLicense変更・制限変更等が生じた際も
5/17時点のLicenseや制限を前提として公開している為、creativeml-openrail-mに準じます。
こちらはMergeModel_LicenseSS_v2に該当モデルのSSを保管しております。
なおマージ利用モデル側に重大な問題が発生した場合は、モデルの公開停止を行い、
利用停止を呼びかける可能性はありますが、**当方側を理由とした追加制限を設けることは致しません。**
<br>
<br>
<br>
<br>
<br>
<br>
**----------------------------下記は旧Version向け情報です------------------------**
**chilled_remix_v1/chilled_reversemix_v1**に関して最低限の記載を残します。
詳しい内容が必要な場合は編集履歴にて当時の記載をご確認ください。
またMergeModel_LicenseSSに該当モデルの制限に関してSSを残しております。
License:[CreativeML Open RAIL-M](https://huggingface.co/sazyou-roukaku/chilled_remix/blob/main/license.txt)<br>
Additional Copyright: sazyou_roukaku (TwitterID [@sazyou_roukaku](https://twitter.com/sazyou_roukaku)) as of April 18, 2023
このモデルは『CreativeML Open RAIL-M』でLicenseそのものに変更はありません。
しかし追加著作者として鎖城郎郭の名前が追加されています。
なおcreativeml-openrail-mに記載されている通り、 本モデルを使用しての生成物に関しては使用制限Aの事例を除き、当方は一切関与致しません。
また一切責任を持ちません。免責されていることをご了承の上、ご使用ください。
**制限**
| Allowed | Permission |
|:-------:|-----------------------------------------------------|
| OK | Use the model without crediting the creator |
| OK | Sell images they generate |
| OK | Run on services that generate images for money |
| OK | Share merges using this model |
| OK | Sell this model or merges using this model |
| NG | Have different permissions when sharing merges |
| | |
|
tulilip/nanalora
|
tulilip
| 2023-06-09T23:06:02Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-09T23:03:40Z |
---
license: creativeml-openrail-m
---
|
PhysHunter/Reinforce-Pixelcopter-PLE-v0
|
PhysHunter
| 2023-06-09T23:04:29Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T16:48:28Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 107.90 +/- 99.11
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
YakovElm/IntelDAOS15Classic_MSE
|
YakovElm
| 2023-06-09T23:04:20Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T23:03:46Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS15Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS15Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0491
- Train Accuracy: 0.4880
- Validation Loss: 0.1074
- Validation Accuracy: 0.7928
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0817 | 0.5220 | 0.1016 | 0.8739 | 0 |
| 0.0520 | 0.4920 | 0.1034 | 0.3634 | 1 |
| 0.0491 | 0.4880 | 0.1074 | 0.7928 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
baseball46245/testmodel1
|
baseball46245
| 2023-06-09T23:02:10Z | 8 | 0 |
bertopic
|
[
"bertopic",
"text-classification",
"region:us"
] |
text-classification
| 2023-06-09T22:44:10Z |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# testmodel1
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("baseball46245/testmodel1")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 1
* Number of training documents: 17
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | the - of - and - ai - to | 17 | -1_the_of_and_ai |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
## Framework versions
* Numpy: 1.24.3
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 2.0.2
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.30.1
* Numba: 0.57.0
* Plotly: 5.15.0
* Python: 3.10.6
|
TheBloke/stable-vicuna-13B-GGML
|
TheBloke
| 2023-06-09T22:59:21Z | 0 | 114 | null |
[
"arxiv:2302.13971",
"license:other",
"region:us"
] | null | 2023-04-28T21:06:28Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# CarperAI's Stable Vicuna 13B GGML
These files are GGML format model files for [CarperAI's Stable Vicuna 13B](https://huggingface.co/CarperAI/stable-vicuna-13b-delta).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/stable-vicuna-13B-HF)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| stable-vicuna-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| stable-vicuna-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| stable-vicuna-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| stable-vicuna-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| stable-vicuna-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| stable-vicuna-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| stable-vicuna-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| stable-vicuna-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| stable-vicuna-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| stable-vicuna-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| stable-vicuna-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| stable-vicuna-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| stable-vicuna-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| stable-vicuna-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m stable-vicuna-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: CarperAI's Stable Vicuna 13B
# StableVicuna-13B
## Model Description
StableVicuna-13B is a [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.
### Apply Delta Weights
StableVicuna-13B cannot be used from the `CarperAI/stable-vicuna-13b-delta` weights alone. To obtain the correct model, one must add back the difference between LLaMA 13B and `CarperAI/stable-vicuna-13b-delta` weights. We provide the [`apply_delta.py`](https://huggingface.co/CarperAI/stable-vicuna-13b-delta/raw/main/apply_delta.py) script to automate the conversion, which you can run as:
```sh
python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta CarperAI/stable-vicuna-13b-delta
```
## Usage
Once the delta weights are applied, get started chatting with the model by using the [`transformers`](https://huggingface.co/docs/transformers) library. Following a suggestion from Vicuna Team with Vicuna v0 you should install transformers with this version:
```sh
pip install git+https://github.com/huggingface/transformers@c612628045822f909020f7eb6784c79700813eda
```
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("path/to/stable-vicuna-13b-applied")
model = AutoModelForCausalLM.from_pretrained("path/to/stable-vicuna-13b-applied")
model.half().cuda()
prompt = """\
### Human: Write a Python script for text classification using Transformers and PyTorch
### Assistant:\
"""
inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
tokens = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=1.0,
top_p=1.0,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```
## Model Details
* **Trained by**: [Duy Phung](https://github.com/PhungVanDuy) of [CarperAI](https://carper.ai)
* **Model type:** **StableVicuna-13B** is an auto-regressive language model based on the LLaMA transformer architecture.
* **Language(s)**: English
* **Library**: [trlX](https://github.com/CarperAI/trlx)
* **License for delta weights**: [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
* *Note*: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
* **Contact**: For questions and comments about the model, visit the [CarperAI](https://discord.com/invite/KgfkCVYHdu) and [StableFoundation](https://discord.gg/stablediffusion) Discord servers.
| Hyperparameter | Value |
|---------------------------|-------|
| \\(n_\text{parameters}\\) | 13B |
| \\(d_\text{model}\\) | 5120 |
| \\(n_\text{layers}\\) | 40 |
| \\(n_\text{heads}\\) | 40 |
## Training
### Training Dataset
StableVicuna-13B is fine-tuned on a mix of three datasets. [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages;
[GPT4All Prompt Generations](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations), a dataset of 400k prompts and responses generated by GPT-4; and [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine.
The reward model used during RLHF was also trained on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) along with two other datasets: [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), a dataset of preferences about AI assistant helpfulness and harmlessness; and [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice.
### Training Procedure
`CarperAI/stable-vicuna-13b-delta` was trained using PPO as implemented in [`trlX`](https://github.com/CarperAI/trlx/blob/main/trlx/trainer/accelerate_ppo_trainer.py) with the following configuration:
| Hyperparameter | Value |
|-------------------|---------|
| num_rollouts | 128 |
| chunk_size | 16 |
| ppo_epochs | 4 |
| init_kl_coef | 0.1 |
| target | 6 |
| horizon | 10000 |
| gamma | 1 |
| lam | 0.95 |
| cliprange | 0.2 |
| cliprange_value | 0.2 |
| vf_coef | 1.0 |
| scale_reward | None |
| cliprange_reward | 10 |
| generation_kwargs | |
| max_length | 512 |
| min_length | 48 |
| top_k | 0.0 |
| top_p | 1.0 |
| do_sample | True |
| temperature | 1.0 |
## Use and Limitations
### Intended Use
This model is intended to be used for text generation with a focus on conversational tasks. Users may further fine-tune the model on their own data to improve the model's performance on their specific tasks in accordance with the non-commercial [license](https://creativecommons.org/licenses/by-nc/4.0/).
### Limitations and bias
The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA [paper](https://arxiv.org/abs/2302.13971). We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.
## Acknowledgements
This work would not have been possible without the support of [Stability AI](https://stability.ai/).
## Citations
```bibtex
@article{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
```
```bibtex
@misc{vicuna2023,
title = {Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality},
url = {https://vicuna.lmsys.org},
author = {Chiang, Wei-Lin and Li, Zhuohan and Lin, Zi and Sheng, Ying and Wu, Zhanghao and Zhang, Hao and Zheng, Lianmin and Zhuang, Siyuan and Zhuang, Yonghao and Gonzalez, Joseph E. and Stoica, Ion and Xing, Eric P.},
month = {March},
year = {2023}
}
```
```bibtex
@misc{gpt4all,
author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}
```
```bibtex
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
```bibtex
@software{leandro_von_werra_2023_7790115,
author = {Leandro von Werra and
Alex Havrilla and
Max reciprocated and
Jonathan Tow and
Aman cat-state and
Duy V. Phung and
Louis Castricato and
Shahbuland Matiana and
Alan and
Ayush Thakur and
Alexey Bukhtiyarov and
aaronrmm and
Fabrizio Milo and
Daniel and
Daniel King and
Dong Shin and
Ethan Kim and
Justin Wei and
Manuel Romero and
Nicky Pochinkov and
Omar Sanseviero and
Reshinth Adithyan and
Sherman Siu and
Thomas Simonini and
Vladimir Blagojevic and
Xu Song and
Zack Witten and
alexandremuzio and
crumb},
title = {{CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark
Util, T5 ILQL, Tests}},
month = mar,
year = 2023,
publisher = {Zenodo},
version = {v0.6.0},
doi = {10.5281/zenodo.7790115},
url = {https://doi.org/10.5281/zenodo.7790115}
}
```
|
DhruvAwasthi/ppo-PyramidsRND
|
DhruvAwasthi
| 2023-06-09T22:51:29Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-06-09T22:51:26Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: DhruvAwasthi/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
YakovElm/IntelDAOS15Classic_MSE_Sample
|
YakovElm
| 2023-06-09T22:45:34Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:44:54Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS15Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS15Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0027
- Train Accuracy: 0.4880
- Validation Loss: 0.0055
- Validation Accuracy: 0.7718
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0035 | 0.4620 | 0.0056 | 0.8859 | 0 |
| 0.0029 | 0.5140 | 0.0054 | 0.6276 | 1 |
| 0.0027 | 0.4880 | 0.0055 | 0.7718 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/IntelDAOS10Classic_MSE_Sample
|
YakovElm
| 2023-06-09T22:31:56Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:31:22Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS10Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS10Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0054
- Train Accuracy: 0.4840
- Validation Loss: 0.0131
- Validation Accuracy: 0.5405
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0066 | 0.4970 | 0.0088 | 0.1712 | 0 |
| 0.0060 | 0.5220 | 0.0089 | 0.3093 | 1 |
| 0.0054 | 0.4840 | 0.0131 | 0.5405 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/IntelDAOS5Classic_MSE
|
YakovElm
| 2023-06-09T22:29:13Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:28:39Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS5Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS5Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1059
- Train Accuracy: 0.5100
- Validation Loss: 0.1337
- Validation Accuracy: 0.7658
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1215 | 0.5010 | 0.1302 | 0.2943 | 0 |
| 0.1141 | 0.4790 | 0.1315 | 0.8438 | 1 |
| 0.1059 | 0.5100 | 0.1337 | 0.7658 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/IntelDAOS15Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-09T22:29:07Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:28:32Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: IntelDAOS15Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# IntelDAOS15Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0092
- Train Accuracy: 0.9460
- Validation Loss: 0.0212
- Validation Accuracy: 0.8859
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0142 | 0.9340 | 0.0203 | 0.8859 | 0 |
| 0.0106 | 0.9460 | 0.0193 | 0.8859 | 1 |
| 0.0092 | 0.9460 | 0.0212 | 0.8859 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Apache20Classic_MSE_Sample_2
|
YakovElm
| 2023-06-09T22:26:42Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:26:07Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Apache20Classic_MSE_Sample_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Apache20Classic_MSE_Sample_2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0742
- Train Accuracy: 0.9618
- Validation Loss: 0.1922
- Validation Accuracy: 0.9055
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0880 | 0.9607 | 0.1726 | 0.9055 | 0 |
| 0.0810 | 0.9624 | 0.1588 | 0.9055 | 1 |
| 0.0742 | 0.9618 | 0.1922 | 0.9055 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
johnmcla/nuforc_t5
|
johnmcla
| 2023-06-09T22:18:12Z | 0 | 0 | null |
[
"dataset:johnmcla/autotrain-data-nuforc_tds",
"region:us"
] | null | 2023-06-09T22:17:46Z |
---
datasets:
- johnmcla/autotrain-data-nuforc_tds
---
|
TheBloke/13B-HyperMantis-GGML
|
TheBloke
| 2023-06-09T22:13:03Z | 0 | 10 | null |
[
"license:other",
"region:us"
] | null | 2023-06-02T23:53:38Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# digitous' 13B HyperMantis GGML
These files are GGML format model files for [digitous' 13B HyperMantis](https://huggingface.co/digitous/13B-HyperMantis).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/digitous/13B-HyperMantis_GPTQ_4bit-128g)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/13B-HyperMantis-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/digitous/13B-HyperMantis)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| 13B-HyperMantis.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| 13B-HyperMantis.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| 13B-HyperMantis.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| 13B-HyperMantis.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| 13B-HyperMantis.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| 13B-HyperMantis.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| 13B-HyperMantis.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| 13B-HyperMantis.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| 13B-HyperMantis.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| 13B-HyperMantis.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| 13B-HyperMantis.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| 13B-HyperMantis.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| 13B-HyperMantis.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| 13B-HyperMantis.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m 13B-HyperMantis.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: digitous' 13B HyperMantis
### 13B-HyperMantis
is a weight-sum multi model-merge comprised of:
((MantiCore3E+VicunaCocktail)+(SuperCOT+(StorytellingV2+BluemoonRP))) [All 13B Models]
(GGML and GPTQ are no longer in this repo and will be migrated to a separate repo for easier git download convenience)
Subjective testing shows quality results with KoboldAI (similar results are likely in Text Generation Webui, please disregard KAI-centric settings for that platform); Godlike preset with these tweaks - 2048 context, 800 Output Length, 1.3 Temp, 1.13 Repetition Penalty, AltTextGen:On, AltRepPen:Off, No Prompt Gen:On
Despite being primarily uncensored Vicuna models at its core, HyperMantis seems to respond best to the Alpaca instruct format. Speculatively due to manticore's eclectic instruct datasets generalizing the model's understanding of following instruct formats to some degree. What is known is HyperMantis responds best to the formality of Alpaca's format, whereas Human/Assistant appears to trigger vestigial traces of moralizing and servitude that aren't conducive for roleplay or freeform instructions.
Here is an example of what to place in KAI's Memory (or TGUI's equivalent) to leverage chat as a Roleplay Adventure.
[Define what the role of the named Human/AI are here, let's say our name is 'Player' and we named the AI 'Narrator']
Game Mode:Chat [Remember to name yourself and the AI and reference them in the instruction block]
\#\#\# Instruction:
Make Narrator perform as a text based adventure game with Player as Narrator's user input. Make Narrator describe the scene, scenario, actions of characters, reactions of characters to the player's actions, and potential consequences of their actions and Player's actions when relevant with visually descriptive, detailed, and long storytelling. Allow characters and Player to converse to immerse Player in a rich narrative driven story. When Player encounters a new character, Narrator will name the new character and describe their behavior and appearance. Narrator will internally determine their underlying motivations and weave it into the story where possible.
\#\#\# Response:
[Put A Carriage Return Here]
In KAI, this is why 'No Prompt Gen:On' is important; make your first entry a short writeup of your current situation, or simply reiterate Narrator is a text adventure game and Player is the input. Then your next entry, despite simply being a chat interface, it will kick off what will happen next for Narrator to riff off of. In TGUI, an equivalent setup works the same. Of course, tailor this to whatever you want it to be; instruct models can be as versatile as your imagination. If things go sideways have fun.
Possibly also useful as a regular chatbot, waifu, husbando, TavernAI character, freeform instruct shenanigans, it's whatever. 4bit-128g safetensor [Cuda] included for convenience, might do ggml. Mileage may vary, warranty void if the void stares back.
Credits:
manticore-13b [Epoch3] by openaccess-ai-collective
https://huggingface.co/openaccess-ai-collective/manticore-13b
vicuna-13b-cocktail by reeducator
https://huggingface.co/reeducator/vicuna-13b-cocktail
SuperCOT-LoRA [13B] by kaiokendev
https://huggingface.co/kaiokendev/SuperCOT-LoRA
Storytelling-LLaMa-LoRA [13B, Version 2] by GamerUnTouch
https://huggingface.co/GamerUntouch/Storytelling-LLaMa-LoRAs
bluemoonrp-13b by reeducator
https://huggingface.co/reeducator/bluemoonrp-13b
"Such as gravity's rainbow, sufficiently complex systems stir emergent behavior near imperceptible, uncanny; a Schrodinger's puzzlebox of what may be intrinsic or agentic. Best not to startle what black box phantoms there may be."
|
YakovElm/Hyperledger20Classic_MSE
|
YakovElm
| 2023-06-09T22:11:04Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:10:29Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger20Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger20Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0710
- Train Accuracy: 0.5085
- Validation Loss: 0.0924
- Validation Accuracy: 0.2220
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0922 | 0.5050 | 0.0903 | 0.1017 | 0 |
| 0.0763 | 0.4898 | 0.0866 | 0.7261 | 1 |
| 0.0710 | 0.5085 | 0.0924 | 0.2220 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger20Classic_MSE_Sample
|
YakovElm
| 2023-06-09T22:04:17Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T22:03:43Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger20Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger20Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0061
- Train Accuracy: 0.4984
- Validation Loss: 0.0078
- Validation Accuracy: 0.8963
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0076 | 0.5123 | 0.0077 | 0.1110 | 0 |
| 0.0064 | 0.5009 | 0.0074 | 0.7707 | 1 |
| 0.0061 | 0.4984 | 0.0078 | 0.8963 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/koala-13B-GGML
|
TheBloke
| 2023-06-09T22:03:28Z | 0 | 37 | null |
[
"license:other",
"region:us"
] | null | 2023-04-09T13:19:11Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Koala 13B GGML
These files are GGML format model files for [Koala 13B](https://huggingface.co/young-geng/koala).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/koala-13B-GPTQ-4bit-128g)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/koala-13B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/koala-13B-HF)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| koala-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| koala-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| koala-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| koala-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| koala-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| koala-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| koala-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| koala-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| koala-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| koala-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| koala-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| koala-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| koala-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| koala-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m koala-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Koala 13B
# Koala: A Dialogue Model for Academic Research
This repo contains the weights diff against the base LLaMA for the Koala model. Check out the following links to get started:
* [Blog post](https://bair.berkeley.edu/blog/2023/04/03/koala/)
* [Online demo](https://koala.lmsys.org/)
* [EasyLM: training and serving framework on GitHub](https://github.com/young-geng/EasyLM)
* [Documentation for running Koala locally](https://github.com/young-geng/EasyLM/blob/main/docs/koala.md)
## License
The model weights are intended for academic research only, subject to the
[model License of LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md),
[Terms of Use of the data generated by OpenAI](https://openai.com/policies/terms-of-use),
and [Privacy Practices of ShareGPT](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb).
Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.
Please contact us If you find any potential violations. Our training and inference code is released under the Apache License 2.0.
|
Ohias/Felinos_Agitprop
|
Ohias
| 2023-06-09T21:59:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-09T21:47:51Z |
This is a dreambooth model trained on soviet agitprop to provide the same art style.
|
jayanta/bert-base-cased-english-sentweet-Targeted-Insult
|
jayanta
| 2023-06-09T21:53:06Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T21:28:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-cased-english-sentweet-Targeted-Insult
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-english-sentweet-Targeted-Insult
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7559
- Accuracy: 0.8021
- Precision: 0.8122
- Recall: 0.8108
- F1: 0.8021
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 81 | 0.4820 | 0.8090 | 0.8323 | 0.8219 | 0.8085 |
| No log | 2.0 | 162 | 0.4688 | 0.8229 | 0.8441 | 0.8352 | 0.8226 |
| No log | 3.0 | 243 | 0.5383 | 0.8056 | 0.8185 | 0.8153 | 0.8055 |
| No log | 4.0 | 324 | 0.5501 | 0.8056 | 0.8148 | 0.8139 | 0.8055 |
| No log | 5.0 | 405 | 0.6789 | 0.7847 | 0.7883 | 0.7902 | 0.7846 |
| No log | 6.0 | 486 | 0.7559 | 0.8021 | 0.8122 | 0.8108 | 0.8021 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.1+cu117
- Datasets 2.6.1
- Tokenizers 0.11.0
|
YakovElm/Hyperledger15SetFitModel_Train_balance_ratio_3
|
YakovElm
| 2023-06-09T21:43:17Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-09T21:42:37Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# YakovElm/Hyperledger15SetFitModel_Train_balance_ratio_3
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("YakovElm/Hyperledger15SetFitModel_Train_balance_ratio_3")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
TheBloke/Karen_theEditor_13B-GGML
|
TheBloke
| 2023-06-09T21:33:05Z | 0 | 10 | null |
[
"license:other",
"region:us"
] | null | 2023-06-02T22:57:53Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# FPHam's Karen The Editor 13B GGML
These files are GGML format model files for [FPHam's Karen The Editor 13B](https://huggingface.co/FPHam/Karen_theEditor_13b_HF).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Karen_theEditor_13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Karen_theEditor_13B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/FPHam/Karen_theEditor_13b_HF)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| Karen-The-Editor.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| Karen-The-Editor.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| Karen-The-Editor.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| Karen-The-Editor.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| Karen-The-Editor.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| Karen-The-Editor.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| Karen-The-Editor.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| Karen-The-Editor.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| Karen-The-Editor.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| Karen-The-Editor.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| Karen-The-Editor.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| Karen-The-Editor.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| Karen-The-Editor.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| Karen-The-Editor.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m Karen-The-Editor.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: FPHam's Karen The Editor 13B
## Karen is an editor for your fiction. (v.0.2)
She fixes grammar and wording issues, but doesn't necessary start rewording everything like ChatGPT into a corporate talk. So it should keep the style intact.
Based on LLAMA 13b and Wizard-Vucna-uncensored finetune, then finetuned with about 20k grammar examples (bad grammar/good grammar).
## Quantized version (Quantized by TheBloke)
* [4-bit GPTQ models for GPU inference](https://huggingface.co/FPHam/Karen_theEditor-13B-4bit-128g-GPTQ)
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/Karen_theEditor_13B-GGML)
Karen gets triggered by this prompt (pun intended):
```
USER: Edit the following for spelling and grammar mistakes:
ASSISTANT:
```
Feed it a paragraph at a time - that's where she works best - a few sentences.
Here is my instruct yaml for oobabooga webui (in Instruct mode):
```
user: "USER: Edit the following for spelling and grammar mistakes: "
bot: "ASSISTANT:"
turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|></s>\n"
context: "Assistant is a meticulous senior editor with a specialization in editing fictional stories. When given text, Assistant detects and corrects grammatical errors, including subject-verb agreement, tense consistency, punctuation, capitalization, use of correct articles and correct present perfect and past perfect tense.\n"
```
I am not sure to what extend the context part has any effect. Doesn't hurt though.
This is a version 0.2 and finetuned just so it retains the underlaying Vicuna qualities.
## Example:
Input
```
USER: Edit the following for spelling and grammar mistakes:
unce upon time lived name John who have pet monkey Jackie.
one day while walkin down the street he saw his friend Tom coming to him.
"Hey Tom" said John "hows it going?"
Tom replyied "Not too bad how 'bout yourself?". as they was talk Jackie sudden jump onto Tom shoulder and started play with his hair.
Tom look at John and ask "Is that yours?"
John reply "Yeah, this crazy lil guy follow me everywhere" just then Jackie grab hold of Tom glasses and try to take thmm off.
Tom struggle to keep his balance as he laugh hystericaly.
```
Output
```
ASSISTANT: Once upon a time there lived a man named John who had a pet monkey called Jackie.
One day while walking down the street he saw his friend Tom approaching him.
"Hey Tom," said John. "How's it going?"
Tom replied, "Not too bad, how about yourself?" As they were talking, Jackie suddenly jumped onto Tom's shoulder and began playing with his hair.
Tom looked at John and asked, "Is that yours?"
John replied, "Yeah, this crazy little guy follows me everywhere." Just then Jackie grabbed hold of Tom's glasses and tried to take them off.
Tom struggled to keep his balance as he laughed hysterically.
```
## Goal: to create the best grammar checker you have ever seen
## To do:
- train on larger dataset, big, enormous, gargantuan
- see if finetuning on just plain LLAMA without Vicuna would work better or worse (the theory is that it will be very focused on editing and nothing else)
- explore what different settings (temperature, top_p, top_k do for this type of finetune)
- create Rachel, the paraphrasing editor
|
virtualdann/Taxi-v3-QLearnTutorial
|
virtualdann
| 2023-06-09T21:32:10Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T21:32:06Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3-QLearnTutorial
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="virtualdann/Taxi-v3-QLearnTutorial", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
pmedepal/t5-small-finetuned-cogs
|
pmedepal
| 2023-06-09T21:28:04Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-09T20:06:08Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-cogs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-cogs
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0488
- Bleu: 7.9416
- Gen Len: 18.9397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 0.1031 | 1.0 | 1510 | 0.0488 | 7.9416 | 18.9397 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger15Classic_MSE_Sample
|
YakovElm
| 2023-06-09T21:28:03Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T21:27:29Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger15Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger15Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0072
- Train Accuracy: 0.4981
- Validation Loss: 0.0107
- Validation Accuracy: 0.8589
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0089 | 0.4919 | 0.0103 | 0.3444 | 0 |
| 0.0083 | 0.5040 | 0.0096 | 0.7739 | 1 |
| 0.0072 | 0.4981 | 0.0107 | 0.8589 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
2weaks/dreambooth-self-bg
|
2weaks
| 2023-06-09T21:27:14Z | 30 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-09T21:15:01Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### dreambooth_self_bg Dreambooth model trained by 2weaks with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Yaxin1992/llama-33b-qlora-8000-adapter
|
Yaxin1992
| 2023-06-09T21:26:10Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:other",
"region:us"
] | null | 2023-06-09T15:58:04Z |
---
license: other
tags:
- generated_from_trainer
model-index:
- name: llama-33b-qlora-8000-adapter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-33b-qlora-8000-adapter
This model is a fine-tuned version of [decapoda-research/llama-30b-hf](https://huggingface.co/decapoda-research/llama-30b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
### Training results
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger15Classic_MSE
|
YakovElm
| 2023-06-09T21:23:11Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T21:22:34Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger15Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger15Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0692
- Train Accuracy: 0.5085
- Validation Loss: 0.1188
- Validation Accuracy: 0.7832
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0927 | 0.4843 | 0.0997 | 0.8776 | 0 |
| 0.0826 | 0.5081 | 0.1022 | 0.6660 | 1 |
| 0.0692 | 0.5085 | 0.1188 | 0.7832 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/WizardLM-7B-uncensored-GGML
|
TheBloke
| 2023-06-09T21:14:29Z | 0 | 127 | null |
[
"license:other",
"region:us"
] | null | 2023-05-05T07:55:02Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's WizardLM 7B Uncensored GGML
These files are GGML format model files for [Eric Hartford's WizardLM 7B Uncensored](https://huggingface.co/ehartford/WizardLM-7B-Uncensored).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-7B-Uncensored)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| WizardLM-7B-uncensored.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB | 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| WizardLM-7B-uncensored.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB | 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| WizardLM-7B-uncensored.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB | 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| WizardLM-7B-uncensored.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB | 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| WizardLM-7B-uncensored.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. |
| WizardLM-7B-uncensored.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| WizardLM-7B-uncensored.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB | 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| WizardLM-7B-uncensored.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB | 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| WizardLM-7B-uncensored.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| WizardLM-7B-uncensored.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| WizardLM-7B-uncensored.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB | 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| WizardLM-7B-uncensored.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB | 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| WizardLM-7B-uncensored.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| WizardLM-7B-uncensored.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m WizardLM-7B-uncensored.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Eric Hartford's WizardLM 7B Uncensored
This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
Shout out to the open source AI/ML community, and everyone who helped me out.
Note:
An uncensored model has no guardrails.
You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
Publishing anything this model generates is the same as publishing it yourself.
You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
|
Tseaver/a2c-PandaReachDense-v2
|
Tseaver
| 2023-06-09T20:57:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:16:13Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.56 +/- 0.58
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
JCTN/embeddings
|
JCTN
| 2023-06-09T20:55:49Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-11T14:27:20Z |
---
license: creativeml-openrail-m
---
|
YakovElm/Hyperledger10Classic_MSE_Sample
|
YakovElm
| 2023-06-09T20:51:33Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T20:50:58Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger10Classic_MSE_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger10Classic_MSE_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0110
- Train Accuracy: 0.4798
- Validation Loss: 0.0138
- Validation Accuracy: 0.4326
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0137 | 0.5202 | 0.0135 | 0.1421 | 0 |
| 0.0118 | 0.4825 | 0.0131 | 0.5353 | 1 |
| 0.0110 | 0.4798 | 0.0138 | 0.4326 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
virtualdann/q-FrozenLake-v1-4x4-noSlippery
|
virtualdann
| 2023-06-09T20:47:44Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T20:47:42Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="virtualdann/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
YakovElm/Cross_Project_10_Classic_without_validation
|
YakovElm
| 2023-06-09T20:47:17Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T20:46:41Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Cross_Project_10_Classic_without_validation
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Cross_Project_10_Classic_without_validation
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2043
- Train Accuracy: 0.9230
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Epoch |
|:----------:|:--------------:|:-----:|
| 0.2894 | 0.9085 | 0 |
| 0.2606 | 0.9109 | 1 |
| 0.2043 | 0.9230 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
YakovElm/Hyperledger10Classic_Cross_entropy_Sample
|
YakovElm
| 2023-06-09T20:40:17Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T20:39:42Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger10Classic_Cross_entropy_Sample
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger10Classic_Cross_entropy_Sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0337
- Train Accuracy: 0.8897
- Validation Loss: 0.0551
- Validation Accuracy: 0.6784
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0420 | 0.8800 | 0.0431 | 0.8600 | 0 |
| 0.0378 | 0.8838 | 0.0423 | 0.8600 | 1 |
| 0.0337 | 0.8897 | 0.0551 | 0.6784 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
cpcpatrick/ppo-LunarLander-v2
|
cpcpatrick
| 2023-06-09T20:38:21Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T20:38:01Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 303.45 +/- 16.79
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
YakovElm/Hyperledger10Classic_MSE
|
YakovElm
| 2023-06-09T20:34:35Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T20:34:00Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger10Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger10Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0813
- Train Accuracy: 0.5099
- Validation Loss: 0.1284
- Validation Accuracy: 0.4647
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1081 | 0.4953 | 0.1135 | 0.8402 | 0 |
| 0.0952 | 0.5144 | 0.1149 | 0.7853 | 1 |
| 0.0813 | 0.5099 | 0.1284 | 0.4647 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
mruby/convnext-large-224-attempt-m
|
mruby
| 2023-06-09T20:31:53Z | 189 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"convnext",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-06-09T18:36:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: convnext-large-224-attempt-m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-large-224-attempt-m
This model is a fine-tuned version of [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0928
- Accuracy: 0.9725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4045 | 0.99 | 33 | 0.2494 | 0.9471 |
| 0.143 | 1.98 | 66 | 0.1107 | 0.9641 |
| 0.1086 | 2.98 | 99 | 0.0928 | 0.9725 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
EmmettBicker/ppo-LunarLander-v2
|
EmmettBicker
| 2023-06-09T20:31:29Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T20:31:10Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO MlpPolicy
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 259.34 +/- 15.28
name: mean_reward
verified: false
---
# **PPO MlpPolicy** Agent playing **LunarLander-v2**
This is a trained model of a **PPO MlpPolicy** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
siruivian/setfit-sensitive-updated
|
siruivian
| 2023-06-09T20:29:01Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-09T20:28:51Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# siruivian/setfit-sensitive-updated
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("siruivian/setfit-sensitive-updated")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
N0vel/Praktika3_SemenovRS
|
N0vel
| 2023-06-09T20:26:49Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2023-06-09T20:25:40Z |
---
library_name: keras
---
# Модель для распознования цифр, натренерованна на наборе данных mnist

|
ElahiDost/distilbert-base-uncased-finetuned-squad-d5716d28
|
ElahiDost
| 2023-06-09T20:25:58Z | 0 | 0 | null |
[
"pytorch",
"question-answering",
"en",
"dataset:squad",
"arxiv:1910.01108",
"license:apache-2.0",
"region:us"
] |
question-answering
| 2023-06-09T20:25:50Z |
---
language:
- en
thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg
tags:
- question-answering
license: apache-2.0
datasets:
- squad
metrics:
- squad
---
# DistilBERT with a second step of distillation
## Model description
This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
In this version, the following pre-trained models were used:
* Student: `distilbert-base-uncased`
* Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
## Training data
This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
```python
from datasets import load_dataset
squad = load_dataset('squad')
```
## Training procedure
## Eval results
| | Exact Match | F1 |
|------------------|-------------|------|
| DistilBERT paper | 79.1 | 86.9 |
| Ours | 78.4 | 86.5 |
The scores were calculated using the `squad` metric from `datasets`.
### BibTeX entry and citation info
```bibtex
@misc{sanh2020distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
year={2020},
eprint={1910.01108},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
SalML/my-awesome-setfit-model
|
SalML
| 2023-06-09T20:14:51Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-09T20:14:31Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# SalML/my-awesome-setfit-model
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("SalML/my-awesome-setfit-model")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
Konstantin12/Bulatovv
|
Konstantin12
| 2023-06-09T20:05:33Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2023-06-09T20:02:41Z |
---
library_name: keras
---
# Модель для распознования цифр, натренерованна на наборе данных mnist

|
TheBloke/wizard-vicuna-13B-GGML
|
TheBloke
| 2023-06-09T19:56:16Z | 0 | 143 | null |
[
"license:other",
"region:us"
] | null | 2023-05-04T15:49:47Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# June Lee's Wizard Vicuna 13B GGML
These files are GGML format model files for [June Lee's Wizard Vicuna 13B](https://huggingface.co/junelee/wizard-vicuna-13b).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF)
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| wizard-vicuna-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| wizard-vicuna-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| wizard-vicuna-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| wizard-vicuna-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| wizard-vicuna-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| wizard-vicuna-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| wizard-vicuna-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| wizard-vicuna-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| wizard-vicuna-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| wizard-vicuna-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| wizard-vicuna-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| wizard-vicuna-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m wizard-vicuna-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: June Lee's Wizard Vicuna 13B
https://github.com/melodysdreamj/WizardVicunaLM
|
Gorilla23/ppo-Huggy
|
Gorilla23
| 2023-06-09T19:51:42Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:51:39Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Gorilla23/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
weprintboxes/Weekly-Favorites-Kraft-Paper-Packaging
|
weprintboxes
| 2023-06-09T19:46:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-09T19:44:33Z |
<p>Manufactured from the chemical pulp made in the kraft process, Kraft paper is also known as the ‘Paperboard’. This material is extensively used for <strong><a href="https://www.weprintboxes.com/custom-mailer-boxes/">custom mailer boxes</a></strong> because it is completely eco-friendly, recyclable, and has the tendency to naturally decompose within a few weeks.</p>
<p>Many brands opt for kraft packaging for their products due to its high durability, yet aesthetic appearance. The cherry on top, it also remains very affordable.</p>
<p>Here are some of our weekly favorite kraft paper packaging designs.</p>
<p><strong>CaliWoods</strong></p>
<p>A company manufacturing reusable straws, CaliWoods have redesigned its product packaging to aid the movement of minimizing plastic pollution. The disinvite thing about CaliWoods is that they not only wanted to promote sustainable lifestyles for their customers using their products, but they also incorporated eco-friendly practices in their company. Hence, their brand-new packaging approach utilizes unbleached kraft paper and a 100% plastic-free shipping policy! Isn’t that great? Their kraft packaging combined with the use of a pastel color pallet offers a calming, inviting, and fun experience for the customers.</p>
<p><strong>Hardy</strong></p>
<p>Teaming up with ‘This Is Pacifica’ and revamping their smoked salmon packaging, Hardy has employed the use of kraft paper packaging to extend to its natural and sustainable practices. The company further incorporated cut-out designs and illustrations within their packaging to provide their customers with a see-through window. The dark brown kraft paper used in their packaging not only creates a nice contrast with the salmon outline but also offers a striking aesthetic. Therefore, making the packaging design stand out from the rest while creating a clean and memorable impression on the customers’ minds.</p>
<p><strong>Riesco Company</strong></p>
<p>Just like their natural and organic ingredients. Riesco’s vision was to provide a guilt-free ice cream experience to their consumers when it comes to their ice cream packaging as well. Reducing plastic packaging waste, Riesco has shifted to the use of food-grade kraft paper. Their all-new eco-friendly packaging with its contemporary landscape artwork not only provides a natural and premium aesthetic to the brand but also is a bait for customers.</p>
<p><strong>Scandinavian Airlines</strong></p>
<p>By incorporating sustainable initiatives in their work methodologies, Scandinavian Airlines has vowed to reduce its carbon impact by 2030. One of their many initiatives includes the production of sustainable food packaging with the <strong><a href="https://www.weprintboxes.com/">Cheap Custom Packaging Boxes</a></strong> and minimizing waste. As a result, the company introduced food-grade kraft paper for all of their food packaging demands because of how lightweight and recyclable it remains. Therefore, saving up to 51 tons of plastic used per year and reducing the overall onboard mass for less fuel consumption in air travel. Their sleek yet minimalistic product packaging look provides the brand with a more modern and sustainable reputation.</p>
<p>So, these are some of the kraft paper packaging designs that you can take inspiration for your product packaging demands.</p>
|
YakovElm/Hyperledger5Classic_MSE
|
YakovElm
| 2023-06-09T19:43:45Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T19:42:41Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Hyperledger5Classic_MSE
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Hyperledger5Classic_MSE
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1152
- Train Accuracy: 0.4998
- Validation Loss: 0.1337
- Validation Accuracy: 0.7873
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.1427 | 0.4971 | 0.1324 | 0.6432 | 0 |
| 0.1223 | 0.5016 | 0.1322 | 0.3776 | 1 |
| 0.1152 | 0.4998 | 0.1337 | 0.7873 | 2 |
### Framework versions
- Transformers 4.29.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
djtorres/a2c-AntBulletEnv-v0
|
djtorres
| 2023-06-09T19:28:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:27:33Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 2080.90 +/- 98.19
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
jjhonny/a2c-PandaReachDense-v2
|
jjhonny
| 2023-06-09T19:25:21Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:22:33Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.11 +/- 0.18
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
siruivian/setfit-sensitive
|
siruivian
| 2023-06-09T19:24:49Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-09T19:21:16Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# siruivian/setfit-sensitive
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("siruivian/setfit-sensitive")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
RaphaelZerbib/model_lunar
|
RaphaelZerbib
| 2023-06-09T19:24:15Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:23:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 247.99 +/- 18.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
alex9802/results-distilroberta-base-mrpc-glue
|
alex9802
| 2023-06-09T19:22:33Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T18:56:23Z |
---
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: results-distilroberta-base-mrpc-glue
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.821078431372549
- name: F1
type: f1
value: 0.8645640074211504
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results-distilroberta-base-mrpc-glue
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6463
- Accuracy: 0.8211
- F1: 0.8646
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5225 | 1.09 | 500 | 0.7895 | 0.8235 | 0.8763 |
| 0.3687 | 2.18 | 1000 | 0.6463 | 0.8211 | 0.8646 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.1.0.dev20230606
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Ranjit/odia_whisper_small_v3.0
|
Ranjit
| 2023-06-09T19:07:00Z | 78 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"or",
"dataset:mozilla-foundation/common_voice_11_0",
"license:cc-by-nd-4.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-31T12:28:15Z |
---
license: cc-by-nd-4.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: odia_whisper_small_v3.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 or
type: mozilla-foundation/common_voice_11_0
config: or
split: test
args: or
metrics:
- name: Wer
type: wer
value: 13.8614
language:
- or
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Ranjit/whisper_small_35k_or
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 and other dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2584
- Wer: 13.8614
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0022 | 5.59 | 1000 | 0.2405 | 13.9995 |
| 0.0005 | 11.17 | 2000 | 0.2584 | 13.8614 |
| 0.0002 | 16.76 | 3000 | 0.2683 | 16.5598 |
| 0.0 | 22.35 | 4000 | 0.2907 | 15.0380 |
| 0.0 | 27.93 | 5000 | 0.3085 | 14.2035 |
|
cnll0075/ppo-LunarLander-v2
|
cnll0075
| 2023-06-09T19:05:01Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-09T19:04:43Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.31 +/- 19.58
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.